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ABSTRACT

Many roboticoperations,e.g.,mapping,scanningifeaturefollowing,etc.,require
" accuratesurfacefollowingof arbitrarytargets.This paper presentsa versatile

surfacefollowingand mapping system designedto promote hardware,software
and applicationindependence,modular development,and upward expandability.
These goalsare met by: a full,a priorispecificationof the hardware and
softwareinterfaces;a modular systemarchitecture;and a hierarchicalsurface-data
analysismethod, permittingapplicationspecifictuningat each conceptuallevel
oftopologicalabstraction.This surfacefollowingsystemwas fullydesignedand
implementedindependentlyofanyspecificrobotichost,thensuccessfullyintegrated
withand demonstratedon a completelya prioriunknown, real-timeroboticsystem.



1. INTRODUCTION

1.1 APPLICATION

Many roboticoperationsrequireaccuratesurfacefollowingofarbitrarytargets.
Such operations include scanning, terrain mapping/surveying, feature following,
target recognition, and target monitoring. Furthermore, surface following in a
background mode can provide secondary benefit in object avoidance, relative motion
reduction, and increased "tool" effectiveness.

A surface following system provides demands which, when heeded, modify the
robotic control commands to maintain a user specified distance between the end
effector emd the target. This ability requires the surface following system to predict
the next target-offset distance based on the end effector's current velocity vector,
the extrapolation of recent target points, and a precise characterization of: the
sensor s!trstem, the input's accuracy, and the surface's inherent roughness.I

To be generally apphcable, a surface following system must minimize its
assump!:ions about the target and yet to be wo,_hwhile, it must be attuned to the
target's particular surface character, i.e., the global applicability of locai changes
in s_lope. Hence, general applicability places tremendous demands on the surface

, following system, requiring both a reliable non-contact proximity sensor system,
i.e., one unaffected by surface texture, color, orientation, size, composition, etc.,

and hi!,_hly sophisticated data interpretation capabilities.

1.2 DI$SIGN MOTIVATIONS

The design of this surface following system is motivated by the following four
cons_iderations:

1) Hardware Independence - Since surface following is required for a variety of
applications, the hardware system is designed as a self-contained, "plug-in"
module. The hardware system includes its own sensory system, a dedicated
CPU, memory space for all its local and shared variables, and all necessary,
specialized interconnections.

2) Software Independence - Similarly, the software system is designed to maximize
its compatibility with the application's software environment by employing
its own CPU and restricting communication to predefined use of absolute
addressed, shared memory locations. These absolute addresses are determined
at :mn-time based on user defined parameter settings indicating the hardware
configuration.

3) Ap.__dication Independence - To enable the system to successfully follow an
arbit. ;wy surface: a robust sensor system is employed (capable of detecting
most. targets); the system is designed to operate in reM-time, i.e., greater than
the typical control system's loop rate (> 150 Hz); and the forecasting algorithms
are designed to accommodate a wide variety of surface textures and modalities.

4) Upward Expandability - The system is designed to readily accommodate future
technical enhancements by its modular design, shared memory communication,
and hierarchical organization.

1



2 INTRODUCTION

The following section describes the hardware chosen for the system's initial
implementation. Section 3 details the specific software algorithms used for surface
mapping and terrain forecasting and the system's overall software architecture,
while Section 4 presents general conclusions.



2. HARDWARE

2.1 SURFACE FOLLOWING SYSTEM

Conceptually, this surface following system consists of four hardware modules'
a sensor system, an A/D converter, a CPU and externally accessible memory. These
modules were configured and implemented as shown in Fig. 2.1.

TERRAIN FOLLOWING SYSTEM i , EXTER ,NAL
I
!
I
I
I

[ SensorSystem'_.(AJD Converter_ CPU/Memory -__I_ Access, _, FunctionsL (SPECTRONICS)_.) _ (MIZAR} (MOTOROLA} "_'
I

' |

I
I
I
I
I
I

Fig. 2.1. Hardware configuration--development system.

The sensor system is a separate module responsible for measuring the
absolute dist_mce between the target's surface and the sensor's face, regardless of

" ambient noise (light/sound conditions) or surface character (color, texture, sheen,
conductivity, etc.). Due to the unconstrained character of the environment, the
sensor system must be extremely robust and accurate. After a careful survey of
the available sensor technologies and systems, high intensity LED triangulation was
determined to be the best sensor _echnology for this application. A sample sensor
system was obtained, the Suectronics Model 204-4,1 and its performance empirically
analyzed. 2 This system was found to be extremely robust with respect to color,
sheen, angle of incidence, ambient noise, and texture; and to be approximately an
order of magnitude more accurate (< :t: 0.015") than generally considered necessary
for this application. The system s shortcomings lie in its re. tricted handling of
glossy black surfaces (only visible between a -10 ° and +20 ° angle of incidence),
its relatively small 4" field of view (only acctlrate for targets between 2" and 6"
from the sensor) and its non-monotonic I,ature for targets closer than 2". This final
attribute requires the system to be invoked only when the surface is known to be
more than 2" away from the sensor and for the overall system to have a sufficient
response rate to prevent inadvertent violation of this 2" lower bound.

This sensor system has both analog and digital RS-232 output ports. We chose
to directly connect its analog port to an A/D board in order to greatly increas_

" the data acquisition rate; RS-232 is updated at 60 Hz, whereas the analog signal is
updated at ,,_250 Hz. This difference is extremely critical since the surface following

. system must be faster than the robotic control software's 100 Hz.
The A/D board chosen for this system is a MIZAR "MZ8605-2-00. ''3 This board

is VMEbus compatible with 16-bit addressing and provides 12-bit resolution on 8
differential input channels at approximately 25 KHz. As such, this board provides

3



4 HARDWARE

more than enough speed to permit multiple samplings per cycle (employed for
statistical signal-noise reduction, see Section 3.2.1) and capability to accommodate
multiple sensor systems (permitting eventual expansion of the surface following
system).

The CPU board chosen for the surface following system was a Motorola "MVME
133XT. ''4 This 25 MHz board is VMEbus compatible with 32 bit addressing and
contains an MC68020 microprocessor, an MC68882 Floating Point Coprocessor, and
4 megabytes DRAM. This board directly accesses the A/D board for sensor input
and stores global information within its 4 Mb of externally addressable DRAM.
This board was used for system development, testing and simulations.

2.2 SYSTEM INTEGRATION

* The surface following system was integrated with an existing robotic control
system for proof-of-principle testing and demonstration. Unfortunately, there were
undocumented timing incompatibilities between the Motorola CPU board used in
the surface followhlg system and the FORCE CPU board (model "CPU-30 ZBE")5
controlling the VMEbus in the demonstration system. These incompatibilities led
to porting the surface following system to a FORCE-compatible CPU board.

The CPU board chosen for surface following in the demonstrated system was a
FORCE "CPU-33 B/4. ''5 This 25 MHz board is VMEbus compatible with 32 bit
addressing and contains an MC68030 microprocessor, an MC68882 Floating Point
Coprocessor: and 4 megabytes DRAM.

The FORCE "CPU-33 B/4" requires the support of a separate memory board

to provide the necessary shared memory. (The surface following system's external
communication interface requires absolute addressing of its shared memory, rhe
4 Mb of DRAM on the Motorola "MVME 133XT" could be easily partitioned to
restrict its CPU to one portion of the memory while permitting absolute address
accessing of the remainder. This feature was not available on the FORCE "CPU-33
B/4.") Hence, the configuration of the demonstrated surface following system was
changed to that shown in Fig. 2.2.

!
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!
!
!
!

, ,, , , m !
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Fig. 2.2' Hardware conflguration_demonstrated system.
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On the demonstrated system, externally accessible shared memory was stored
" on a Chrislin "CI-VMEmory 8Mb. ''6 As its name indicates, this board is VME

compatible and has 8 Megabytes of DRAM. Furthermore, it has a 5 MHz typical
. access rate and 24/32 bit addressing modes, more than sufficient for this application.

The switch to a separate memory board was completely indiscernible to the external
accessing functions.

k

L,



3. SOFTWARE

. The surface following software system is responsible for: maintaining an internal
map of the observed surface's topology and predicting the amount of vertical, end
effector movement necessary to maintain a desired surface offset distance. The
surface map is available ofltine and can be used for user display or additional
target analysis. The required movement prediction is output in the form of a AZ
demand on the end effector's desired position vector and hence, can be coupled
with movement demands provided from other sources, e.g., object avoidance, reflex
actions, path planning, etc.

This chapter is divided into three sections. The first twc describe the surface
mapping and surface forecasting algorithms, respectively, while the third presents
an overview of the system's software architecture and fuIictional components.

q,

3.1 SURFACE MAPPING

3.1.1 Implementation

A long term surface map is maintained in shared memory for eventual display
and analysis. This rectangular map is composed of individual square grids and is
implemented as a one dimensional array of grid pairs. The particular grid associated
with a given world coordinate is determined at run-time, based on data stored in

" a map header structure. This implementation permits run-time specification and
alteration of the map's size, relative shape, resolution, and physical correspondence
and permits reductions in both the map storage costs and access times.

Each grid stores two pieces of information: the average height of the
correspondingsurface area and the number of readings represented in this average.
Although storing the average rather than the sum introduces both round-off errors
and additional execution time, the memory space savings more than justify the cost.
The round-off error is negligible, due to the raw data's high accuracy relative to
the application's requirements. Furthermore, the execution time is only increased
by a single multiply and divide operation per map insertion, wherea3 the memory
space required for each grid is reduced by the size of its count field (25% in our
implementation).

The average height for each grid is stored as a two byte, integer number of "milli-
inches." This permits a 65 inch range of surface height values. A new average is
determined by multiplying the current average value by the count, adding the new
value, and dividing by the count plus one. The count field is stored as a single
byte integer and thus permits counts of up to 255. After 255 samples are obtained
which correspond to the same grid, each additional sample only affects the grid's
"average height" field--the count remains 255. Thus, the impact of each sample on
the "average" value is described by the following:

let Ave (N) = "average height" for a given grid after N samples,
hi = grid height determined by sample i, and

' al (N) = weighting of sample i on Ave (N)

N
then Ave (N) = _i=l(ai(N)h|) and the individual weights of the samples are

7



8 SOFTWARE

i

255_ N-256
al (N) -- _ 256) (N > 256) A(i < 256)

255_ N-i
256 ] (N > 256) A (i > 256)

The effect of the one byte limit on counts, 256, is clear and this equation could
easily be generalized for arbitrary count sizes. From this equation, we see that for
values of N less than 257, the function yields a simple average with all samples
having an equal 1/N weight. However, for values of N greater than 256, the weight
of a single sample is a function of its age relative to the 256 threshold.

This averaging scheme provides many advsxltages: low execution time, low
storage space requirements, simple averaging for ali but the most heavily sampled
grids, and slow data aging which gives greater impact to more recent samples while
retaining significant historical inertia.

This implementation requires only three bytes of memory for each grid,
regardless of the number of samples taken. However, since memory is only accessible
in multiples of the individual data types' size, e.g., a two byte integer is only
accessible on "e'_,en" byte boundaries, grids are stored as pairs-- each six byte array
element stores the information corresponding to two, adjacent grids.

The fielded system has 3 Mb of memory available for the surface map. This
provides space for a one million grid map or nearly 70 square feet of surface coverage
wLh a grid resolution of 0.01 sq. in.

3.1.2 Usage

To take advantage of the Spectronics sensor system's high degree of accuracy
(<0.01 in.) and extremely small foot-print size (<0.00008 sq. in.), the surface map
capability was designed to permit extremely high precision and high resolution
mapping. These qualities require the surface to be relatively stable and the sensor's
position data to be both accurate and precise. If either of these requirements
fail, e.g., the surface changes or the position data is erroneous, then the map
is defective and should be reinitialized. However, since high resolution mapping
requires long-term map retention for sufficient topological data to be gathered to
usefully characterize the overall surface, no automatic reinitialization of _he map is
provided. Rather, explicit user control functions for map reinitialization and storage
are supplied: MapR.eset, MapRefocus, and UpLoadMap.

MapReset and MapRefocus allow the user to reinitialize the map and specify
its physical correspondence, based on the user's "region of interest." These functions
maximally exploit the data space available for the surface map. The user's region
of interest is mapped at the finest resolution that both memory space and position
accuracy will allow. (For this application, the finest resolution possible, based on
available position accuracy, is expected to be 0.01 sq. in.) If additional memory
space is available, the map is symmetrically expanded at this finest resolution.

MapReset and MapRefocus only differ in their initial "average height"
values for areas which were scanned by the previous map. MapReset clears
all previous map data from memory and is used whenever the previous data is
considered corrupt, e.g., the topology has changed, the world coordinates or sensor
data was incorrect, etc. MapRefocus permits the system to exploit previous
height information for regions common to both maps and is used whenever the
user's "region of interest" has changed. If this change permits an increase in the
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. resolutioa, the initial "average height" values for grids corresponding to previously
mapped regions are taken directly from the earlier, coarser grid(s). If the resolution
must decreased, these initial "average height" values are obtained by averaging the

. heights of the corresponding, finer grids, see Fig. 3.1. In both cases, the count field
is set to zero and used as a indicator that the data was obtained under a different
mapping scheme and should be replaced whenever new data is obtained.

!
!

I
i li | b i i,i

I L

height height , height i_alght

helgh't 4.523 4.523 _ 2.'647 2.834' helgh'tI

4.523 "_ helgll't helghi '| _'t height 2.644
4.523 4.523 i 2.441 2.653

I

ii |

I

To A Finer Resolution _ To A Coarser Resolution
I
I
I
I

Fig. 3.1. MapRefocus--common grid initialization.

Note that since grid boundaries and resolutions are based on the user's "region
of interest," new grids may physically overlap previous grids. In such a case, the
new .grid's initial height is based on the relative surface area contribution of the
previous, overlapping grids, i.e.,

let Ga (b) = grid a in mapping b

h/A / = height of grid A= surface area of the region common to all grids in set X

then

O({Gi (b), Gj(b+l)})
VGj(b'_'I)' h(Gj(b+l)) = Z h(vi(b))

Note that this general equation provides for both forms of grid initialization shown
in Fig. 3.1.

The desire to maximally utilize the available memory space leads to an
additional problem. The new map must be stored in the same memory space
as the old map without overwriting any information necessary for the proper
reinitialization of the map, regardless of any change in the "region of interest" or in

. the resolution. This "in-situ" reinitialization requires two passes of the map's data
structure. During the first pass, the overlapped region is scanned from beginning to
end and moved to the top of the data structure. The second pass scans this region

• backwards and moves the data to its correct location. If the resolution is becoming
finer, "expansion" of the previous grids occurs during the second pass, while the
data is being written to its final position, see Fig. 3.2. If the resolution is becoming
coarser, "compression" of the previous grids occurs during the first pass, while the
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data is being moved to the top of the data structure, see Fig. 3.2. This method
ensures that the more compact version of the overlapped region is what is stored
at the top of the data structure, thereby leaving sufficient memory space to avoid
overwriting subsequently needed data

I __1 I I iii I __

Reaionof Overlap

,I "
First Pass: Second Pass:

Previous Map Move Expand & Position

' ......... i!Regionof Overlap

I "
First Pass: Second Pass:

Previous Map Compress & Move Position

Fig. 3.2. MapRefocus--in-line reinitialization.

UpLoadMap provides long-term storage of maps to disk. This function writes
the map header structure and all map data to a text file for subsequent analysis
or display. Conceivably, this capability could be used to display composite, high
resolution maps of larger surfaces or to reinstall a previous map when rescanning a
surface.

3.2 SURFACE FORECASTING

Surface forecasting analyzes recent sensor data and end effector positions to
characterize the target's surface, predict subsequent target points, and present
necessary demands on the end efffector's movement to maintain a constant sensor-
to-surface stand-off distance. The system was designed to be generally applicable
to many different types of surfaces from smooth, man-made targets, e.g., floors,
containers, tools, etc., to rough, natural terrain, e.g., sand, gravel, turf, etc.
However, since exploiting specific knowledge of a given target's relative smoothness 11

and the global relevance of its local slopes can have a tremendous impact on
a system's forecast efficiency, accuracy and responsiveness, the system permits
inclusion of such surface characteristic knowledge through user definable tuning
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parameters and employs a hierarchical data processing and representation scheme
" to isolate the handling and tuning of signal noise, textural sensitivity, local

responsiveness, and forecast stability. Each of these hierarchical levels and their
. respective tuning parameters are presented in the following four sections.

3.2.1 Signal Noise

The surface following software system requires as input both the sensor's
distance measuremen_ and the end effector's position and orientation values. Prom
this data, the absolute coordinates of the sensor's footprint a_recalculated and used
for both surface mapping and surface forecasting. Inaccuracies in these input values
due to signal noise can be reduced by averaging across multiple samples. Since these
input values are from independent sources and available at different rates, separate
tuning algorithms and parameters are employed.

Sensor data is a:_lable from the A/D board at _25 KHz, see Section 2.1. Hence,
we assume successive readings are measuring the same physical target point and
can be directly averaged. The tuning parameter, Sensor__Readings, defines the
number of successive readings across which to average. Based on a detailed empirical
analysis of our particular hardware system's noise level, a value of seven (7) was
chosen for the Sensor Readings parameter.

The end effector's position and orientation values are provided by a completely
external process at _32Hz. Since the surface forecast must be updated at > 100Hz,

. the system cannot wait for multiple readings to be available. Instead, the noisy
readings are used with the smoothed sensor data (described above) to approximate
the coordinates of the target point, and a rolling average of the more recent such
coordinates is used as the current value. The sample size for this rolling average
is set by _he user's parameter EE Readings. While this method effectively
reduces signal noise, it also delays the system's response to end effector movements.
EE Readings should be 'set with this trade-off in mind. (Clearly, a better solution
to th']ls problem is to average across multiple encoder readings before calculating the
end effector's position and orientation values. Unfortunately, that solution could not
be implemented without access to the external process making those calculations.)

3.2.2 Textural Sensitivity

Due to the sensor's high degree of accuracy (<0.01 in.) and small footprint
size (<0.00008 sq. in.), minor surface changes commonly considered texture or
granulation are measurable and could be used to alter the topological forecasting.
For the system to be useful for many different applications and surface types, the
level of textural sensitivity must be adjustable.

Textural sensitivity is controlled by dividing the target space into "intervals"
within which all data is averaged together, much like the grids in surface mapping.

" These "intervals" correspond to cylindrical volumes of the target space, with
radius IntervalSize and axis parallel to the Z (height) axis. Thus, the user's

• specification of IntervalSize alters the perceived resolution of the physical world,
see Fig. 3.3. (This implementation has the secondary benefit of greatly reducing
the storage space requirements necessary to make meaningful forecasts at the end
effector's physical scale.)
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Fig. 3.3. Adjusting sensitivity--data averaged into intervals.

However, unlike the grids in surface mapping, the intervals are dynamically
positioned based on the actual path of the sensor's footprint and intentionally
overlapped to prevent possible oscillation between adjacent intervals. This dynamic
positioning ensures the intervals have a relatively uniform samplin& base and reflect
a slm1 _r span of the footprint's travel path, see Fig. 3.4. This, in turn, permits
the ;_ntervals to be used with equal weight when extrapolating the target's surface
during surface forecasting.

Y
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Fig. 3.4=. Physlca] correspondence of intervals.

While the sensor's footprint remains within IntervalSize inches in the X-Y
hyperplane from the center of the current interval, the target point is associated
with that interval. However, whenever the path of the sensor's footprint exceeds
IntervalwSize inches from the center of the current interval, a new interval is
created, centered at the current point, see Fig. 3.4. (The arrows indicate the path
of the sensor's footprint and their boldness indicates the interval with which the
data corresponds.)
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If the next sensor reading occurs more than one interval from the previousu

interval's range, i.e., the current sensor's footprint exceeds 2 * Interval_Size
inches from the center of the current interval, the unsampled, intervening path is

. interpolated and the appropriate intervals created and positioned along the route,
see Fig. 3.5. This condition results whenever the sensor's footprint moves too
swiftly, relative to the Interval_Size, or there is an intermittent loss of sensor
data, e.g., when the target suddenly drops out of range. This path interpolation
permits smooth forecastingacross difficult target surfaces and sustains the constant
positional rel?ationship between successive intervals.

YT Interval._.__.
4T.,, ._ H

1
IntervalA,- , -, e

1 "-7_; 'J , ,,.,, I 2
R/'_ : ,_ \ :,-.,,/ i Pr1 ......

:_,, g 3
Ptl".. /":,'--'°° h 4

'" " t Pt2

(Z) ,
X Intervals

m

Fig. 3.5. Interpolation of intervals--position and height.

3.2.3 Local Responsivenes_

Responsiveness at this level of the hierarchy refers to the degree of impact that
individual interval heights have on the overall forecast. If the impact is too great,
non-globally relevant changes in slope will errc mously alter the forecast. However,
if the impact is too low, adaptations to significant surface changes will be excessively
delayed. As with textural sensitivity, the desired level of responsiveness is dependant
on the particular application involved. Hence, for the surface following system to
be generally useful, the system's responsiveness to local changes in slope must also
be adjustable.

Control of the system's responsiveness is provided by combining disjoint groups
of contiguous intervals into "ranges," where each range consists of RangeSize
number of intervals and has a height equal to the average height of its constituents,
see Fig. 3.6. (Note the effect of Range Size on the handling of the aberrant
interval (fourth fromthe left) and the cha_e in background slope.)

As new intervals are created, the ranges are dynamically redefined to use the
most recent interval data. Hence, the current range always incorporates the most
recent Range Size intervals. This method ensures the use of the most relevant

. target data and a uniform sampling base for each range. For efficiency, all active
intervals are stored in a single ring data structure with pointers indicating tile head
of each range. This implementation permits easy range shifting when new intervals
are created.
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Fig. 3.6. Local responsiveness--intervals averaged into ranges.

3.2.4 Forecast Stability

Forecast stability, or non-volatility, is provided in three ways: by basing the
forecast on numerous, widely spaced samplings, through the use of intervals and
ranges; by 'masking the forecast output to permit user control of its precision;
and by extrapolating the target's surface during periods of sensory depravation,
and thereby increasing the system's ovcrall target applicability. The following
paragraphs individually detail these three stabilizing techniques.

First, surface forecasting linearly extrapolates the two most recent range heights
to predict the target's underlying slope, ¢. This slope is used in conjunction with
the most recent measure of the sensor's footprint's lateral speed to estimate the
change in target height, AH, since the previous sensor reading. The vertical demand
placed on the end effector, AZ, is then the sum of AH and the difference between
the desired and previous actual surface offset distances.

Second, since for some applications one may prefer stability of end effector's
movement over its extreme accuracy, a hysteretic function is placed on the AZ
values actually output. The user parameter Permitted Variance specifies the
amount by which AZ must change before any demand is reTayed to the end eifector.

Third, forecast stability is provided during intermittent periods of sensor data
loss, e.g., when the target is out of detection range. During these periods, AH is
extrapolated based on (I), the most recent lateral speed estimation, and the elapsed
time.

Although this system uses two-point linear extrapolation to estimate (I), it can
readily be extended to higher order techniques and/or the use of additional ranges.
Two-point linear extrapolation was determined to be sufficiently sophisticated for
this application (soil), since the benefit of higher order extrapolation techniques
requires the existence of a greater degree of local surface information content than
is present in this application.
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3.2.5 Usage

. Four external access functions communicate with the surface forecasting
algorithms: SFReset, DevVector, RawDistance and EEPos.

SFReset allows the user to reinitialize surface forecasting and the desired
surface offset distance. This function writes its single parameter value (the desired
surface offset distance) to shared memory and triggers the surface following system
to reset all local surface forecasting variables, e.g., interval positions and heights,
range heights, previous AZ value, etc.

DevVector returns a 6x 1 vector indicating the surface following demand to
be placed on the end effector. This vect,_r permits inclusion of both positional and
orientational demands, though only the AZ value is currently being prescribed.
Returning the 6xl vector rather thrm only a AZ permits direct expansion of
the system to 3-dimensional surface following without having to modify the user-
interface.

RawDistance returns the most recent sel.sor-to-_arget distance measurement
used by the surface following system. This value is obtained by averaging multiple
sensor readings to reduce the signal noise, see "signal noise" above.

An external process is responsible for calculating the end effector's most recent
position and orientation data in world coordinates and passing these values as a
parameter to EEPos. The external access function EEPos then updates shared

• memory accordingly.

3.3 ARCHITECTURE

The surface following system uses a modular, top-down approach to facilitate
the individual development, verification, and extension of its capabilities. All
complex and globally accessible data structures, physical hardware constants and
user defined parameters are externally defined to permit the:_r use by other processes,
e.g., those executing the external access functions, and their rapid adaptation to
hardware or application specific changes. This design permitted the previously
described hardware configuration change, see Section 2.2, to be software realized in
a matter of minutes.

The surface following software is designed to be a robust, stand-alone system,
completely independent of the operating syst=m environment used to control the
actual robot. Furthermore, since the software must operate in reM-time, it
is executed on a dedicated processor rather than risk the unpredictable delays
associated with time-shared environments. For these reasons, the system exclusively

. communicates through absolute addressing of shared memory and provides all
shared memory management.

. Conceptually, this system passes through three basic phases: initializing
memory, responding to external requests, and processing input data, see Fig. 3.7.
The primary functional components of each of these phases will be detailed in this
section.
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Fig. 3.7. Surface followingefunctional breakdown.

3.3.1 Initialization

This first phase of the system is responsible for partitioning and initializing the
shared memory and creating and initializing all surface forecasting data structures.
Initial values for physical hardware constants are defined in a single header file.
These constants include the absolute starting address and size reserved for shared
memory. Default values for user defined tuning parameters are encoded in a single
function, InitializeConstants, which permits their values to be calculated at
run-time.

Three separate functions are responsible for initialization.
InitializeMemory partitions the shared memory space and sets-up absolute
addressed pointers to each of its internal structures, including the surf_.ce map
and data logging arrays, see Fig. 3.8. InitializeConstants fills shared memory
with the default values of the non-local variables, i.e., shared and user defined
variables, and InitializeForecasting creates and/or initializes the local data
structures used in surface forecasting, e.g., intervals, ranges, etc., based on position
and sensor input data. (Note that the surface map is not automatically reset during
initialization, see Section 3.1.2.)

After initialization is complete, the system infinitely cycles through the following
two phases.
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Fig. 3.8. Shared memory--conceptual breakdown.

3.3.2 Process External Requests

There are two types of external requests handled by the surface following system,
. requests for reinitialization or for shaved memory access. All external requests are

communice.ted to the surface following _ysterr: through specialized flags defined
" in the shared memory. The surface following system inspects these flags before

. processing the data for each cycle.
Reinitialization requests permit the user to invoke a controlled restart of either

surface mapping or surface following. The user can restart surface mapping by
calling either of the external access functions: MapReset or MapRefocus, see
Section 3.1.2. The user can restart surface forecasting by calling SFReset, see
Section 3.2.5. The SFReset function reinitializes all of the intervals, ranges, and

local _ariables associated with surface forecasting and is, in fact, the same function
execuoed during system initialization described above. These three access functions
modify appropriate shared memory values, e.g., MapR.efocus downloads the user's
new "region of interest," before flagging the surface following system into action.

Memory access requests provide the user with exclusive access to the shared
memory. This is necessary to ensure data integrity, since most of the data stored
in shared memory cannot be accessed in a single cycle. Shared memory access is
controlled and communicated through a four-step flagging protocol:

Flag Value Interpretation

1 External request for access
2 System acknowledges and waits

" 3 External access completed
0 System acknowledges and proceeds

s

(Note that a four-step protocol is necessary since the communicating systems may
be restarted independently and must then determine the status of shared memory
access to prevent its corruption.)
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3.3.3 Process Data

During each cycle in which sensor data is obtained, the world coordinates of the
current target point are approximated (Calculate Next Target Point) based
on the most recent end effector position and orientation data and smoothed sensor
data stored in shared memory. (Note that the sensor's position and orientation with
respect to the end effector's origin is a constant, stored in shared memory during
system initialization.) This target point is then used to update both the surface
map (Update Map) and forecasting data structures (Update Intervals,
Update_Rangers, UpdateFore-cast), see Fig. 3.7. These various Functions are
modularized to permit independent analysis of different approaches, e.g., alternative
methods of combining intervals to control local responsiveness can be analyzed
without effecting the other levels of the forecasting hierarchy. During cycles in which
sensor data is unavailable, only surface forecasting is performed, see Section 3.2.4.



4. CONCLUSIONS

The surface following system described in the preceding chapters was
" successfully tested and demonstrated m the FY91 Hanford Demo. The target

' ' ' ' e

surface used l.n this demonstration was a natural, rol!mg terrain of finely crush d
clay stones with randomly scattered, man-made objects and ramps. Although
full integration with the robotic system at Hanford required several hardware and
software changes, e.g., porting the system to a FORCE CPU and the use of a
separate memory board, see Section 2.2; the extension of signal noise reduction
methods to the end effector's position and orientation values; see Section 3.2.1; etc.,
the overall design of the surface following system permitted rapid compliance with
those requirements. Furtherrnore, the system provided effective, real time surface
forecasting for both the rough clay and smooth objects, despite their extremely
different surface character. (Note that the drastic contrast in both the surface
textures and the global relevance of local slopes prevented the use of optimal tuning
parameter values within any given region, i.e., target inconsistency mandated the
use of (sub-optimal) general purpose, parameter values.)

Superior performance in an unconstrained environment will ultimately require:
1) automatic adaptation to the topological surface characteristics currently

addressed by ouser-defined_ tuning parameters; and 2) incorporation of multiplesensor systemo to provide orientational demands for 3-dimensional surface following.'
Development and valida*ion of these new capabilities will require extensive empirical
analysis of the system's behavior over a broad range of target types, slopes, and
transitions. Hence, for convenience and efficiency, the surface following system must

' be implemented on a readily accessible robotic control system, e.g., HERMIES-III. 7
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