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Abstract 

We propose a column-eliminating and a lower bound updating technique for the 

simplex method for linear programming. A pricing criterion is developed for checking 

whether or not a dual hyperplane corresponding to a column intersects a simplex contain­

ing all of the optimal dual feasible solutions. If the dual hyperplane has no intersection 

with this simplex, we can eliminate the corresponding column from the constraints. As 

the simplex method iterates, the working constraint matrix eventually eliminates all 

columns except those that are in at least one optimal basis. 

Key words: Linear Programming, Simplex Method, Ellipsoid Method, Karmarkar Method, 

Column Elimination, Lower Bound U pdaLing. 
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1. Introduction 

Techniques for solving linear programming (LP) have been intensely studied for 

four decades. The birth of linear programming is usually identified with the concurrent 

development of the simplex method in 194 7 by George Dantzig. It says much for the 

algorithm's originator that the simplex method still remains the major algorithm used 

in optimization systems, although recently interior methods are serious competitors. 

Two more recent approaches to solving linear programs are the ellipsoid method 

(Khachiyan [7]) and the projective algorithm (Karmarkar [6]). Recently, Todd [8] and I 

[9] found that the ellipsoid method and Karmarkar's algorithm are closely related. Both of 

these methods generate a shrinking dual ellipsoid containing the optimal dual solutions. 

Therefore, some columns may be eliminated from the constraints if their corresponding 

dual hyperplanes have no intersection to the containing ellipsoid. 

When I talked with George Dantzig regarding this eliminating issue, he predicted 

that a similar result could be obtained for the simplex method. Therefore, we started a 

series of research meetings along this direction. The result is this paper on a criterion for 

eliminating columns in each iteration of the simplex method. In this report, we introduce 

the notion of a simplex st that contains all optimal feasible dual solutions. When the 

primal is in canonical form and feasible, the simplex in the dual space is the negative 

orthant and a half space whose boundary hyperplane is parallel to the dual objective. At 

the next iteration t + 1, a separating dual hyperplane deletes part of the simplex st and 

forms a new containing simplex, St+1 . Thus, we developed a strong column-eliminating 

theorem: if a dual hyperplane corresponding to column j has no intersection with the 

containing simplex st, then column j in the primal constraint matrix cannot be in an 

optimal basis and, therefore can be eliminated from further computation. As the simplex 

method iterates, the working constraint matrix ultimately reduces to only those columns 

that are in at least one optimal basis. 

As Goldfarb and Hao [5] pointed out, the theorem derived in this paper is similar to 

the one proposed by Cheng [1, 2]. In particular, Corollary 1 in our paper is identical to 

Theorem 1 on identifying the permanent nonbasic variables for the simplex method in 



Cheng [1]. A complete literature on identifying permanent nonbasic and basic variables 

can be found in Cheng [2]. However, all existing techniques need to approximate the 

optimal objective value, and we develop the theoretical basis for a lower bound updating 

technique. Most existing techniques need the assumption of nondegeneracy, and we relax 

this assumption after initially assuming it. Moreover, the geometrical interpretation of 

the containing simplex in our theorem is new and this interpretation may lead to a 

pricing rule for selecting the incoming column as the one that most reduces the volume 

of the containing simplex of iteration t + 1 relative to that of iteration t. We also give 

a simple numerical example to show how this column-eliminating scheme performs in 

practice. 

2. The Dual Containing Simplex 

We assume for the moment: 

Assumptions 

1. an initial basic feasible solution is known; 

2. the minimal objective value is known in advance; 

3. every vertex of the feasible polytope is nondegenerate. 

The last two assumptions will be dropped later. Without losing generaliLy, we can 

describe the primal LP problem in terms of the canonical form at each iteration t of the 

simplex method. 

LP Canonical Fnrm 

PLP minimize z =ex 
subject to x E X = { x E Rn : Ax = b and x ;?: 0} 

whe1·e A E Rmxn, r. io the vector of all one's 1 h > O, and 

A = (I, D) and c = ( 0, cv). 

The initial basic feasible solution is x0 = (1?, o)T and the initial objective value is 

cx0 = 0. We also denote by z• ~ 0 the given minimal objective value. The dual of the 

above linear program PLP is 

2 
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DLP maxtmtze yb 

subject to y E Y = {y E Rm : yA < e} 

where the row vector y E Rm. For all feasible x E X and y E Y we have by the weak 

duality theorem (Dantzig [3]) 

yb ~ z* ~ z = ex. (1) 

The dual solution corresponding to the initial basic feasible solution is y0 = 0. If 

e ~ 0, then y0 A ~ e is feasible and y0b = ex0 = 0 and the solution x0 is opti::nal. 

Otherwise y0 = 0 is an infeasible dual solution whose dual objective function shares the 

same value as the primal objective value ex0 = 0. We also denote by Hi the hyperplane 

and by Hj the half space 

Hj = {y E Rm: yai ~ ej}, 

where ai is the jth column of A. If y0 = 0 is feasible for DLP, then both x 0 and 

y0 solve problems PLP and DLP. Othewise, we have at least one hyperplane, say Hk, 

which separates 0 from Y. Obviously, the number of such separating hyperplanes are the 

number of ei 's with negative sign. 

Let 

6. = ex - z* = -z*. (2) 

Then for all dual optimal feasible solutions y* of DLP, 

y* A ~ e and y*b;:: -6.. 

In particular, the first rn basic columns of A state y* ~ 0, so that 

y* ~ 0 and y*b ~ -6. 

define the simplex st for iteration t: 

St = {y E Rm : y ~ 0, yb ~ -~}. 

Therefore, st is a simplex containing all optimal dual feasible solutions y*: 

(3) 

3 



3. The Column-Eliminating Theorem 

If x* and y• are optimal solutions to PLP and DLP respectively, then complementary 

slackness conditions hold: 

(ci -·y*ai)xj = 0 for 1 ~ j ~ n. {4) 

Hence, Cj- y*ai > 0 implies that xj = 0, i.e., the jth column is not in any optimal basis 

and hence can be eliminated from the problem. A sufficient condition that Cj- y*ai > 0 

for all dual feasible y• is that it be true for all y• E S', since St contains all optimal dual 

feasible solutions as well as other y. It suffices therefore to show that the hyperplane H; 

has no points in common with S 1, or that st is contained in the interior of Hj: 

st c Int(Hj"). {5) 

However, st only has m + 1 vertices, namely 

{6) 

where Ui is the ith unit vector. Therefore, S 1 C Int(Hi~) if and only if these vertices Vi 

are strictly in the interior of the half space Hj. Thus, we have 

Theorem 1 

If 

'Cj- ·yaj > 0 for y =Vi, i- {0, 1; ... ,m), (7) 

then the j th column of A is not in any optimal basis for PLP. 

Proof. If (7) is true, then c; - ya; > 0 for all y = ~.Xi Vi = St where .Xi ;:::: 0, ~.Xi = 1. 

Since all optimal dual feasible solutions y• ~ S', 

- ·- 0 • 0 Cj - y a; > ===} X j = . 

Hence, the proof simply follows from the complementary slackness conditions discussed 

above. Q.E.D. 

4 



I' .J 

Furthermore, we can explicitly calculate the minimum of those m + 1 values in 

Theorem 1. Letting liij be the ith component of column lij, we derive 

Corollary 1 ( nondegenerate case) 

If 

(8) 

then the jth column of A is not in any optimal basis for PLP. 

In order to apply Theorem 1, the values lii;, bi, and Cj must be available from the 

canonical form. In the revised simplex method only bi and the inverse of the basis in 

either explicit or factorized form are available at the start of iteration t. It is necessary 

to compute c; but it is .too costly to compute ai; for every column j except for the 

selected incoming column j = s. However, at the end of the iteration t, the updated 

values aiir for the outgoing column ir of iteration t are readily at hand for iteration t + 1 

and Theorem 1 may be applied to ir· For example, if (8) holds for updated aiir, bi, and 

c;r, then column ir will never reenter the basis. This results in the following corollary. 

Corollary 2 ( nondegenerate case) 

Let the sth column be the incoming column in the simplex method and lirs be the 

pivot. In either of the following two cases, 

1) all a is, except lir.q, are non positive; 

2) 
bi tl. 
- > - for all liis > 0, i =/= r, 
ais lcsl 

the outgoing column ir can be eliminated. 

Proof. Note that 

-Cs 
updated c· =- > O· 

]r - ' ars 

- br 
updated br = =- > 0; 

ars . 
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1 
updated a . = - > 0· rJr - 1 

ars 

d d 
_ -ais . ../.. 

up ate aiir = -=--, z 1 r. 
ars 

Substituting the above updated values into (8), the condition for eliminating column ir 
becomes 

(9) 

Obviously, if 7£; 8 ~ 0 for all i # 1', tht: second term i.s zero o.nd the firot torm ie 

positive. Hence column ir can be dropped in case 1. 

In case 2 of Corollary 2, 

Thus, multiplying (9) by ar8 , 

or 

which is equivalent to 

b.; d 
- > - for all ais > 0 i # 1". 
a~s lcsl Q.E.D. 

One should note that if two rows tie for pivot, the outgoing column can not be 

eliminated since degeneracy occurs at iteration t + 1 (Dantzig [4]). We now remove the 

nondegeneracy assumption, i.e., we allow that b ~ 0 instead of b > 0. In this case, S' 

may not be bounded. However, Theorem 1 is still valid if we define 

6 
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and Corollary 1 can be modified as 

Corollary 3 (degenerate or non degenerate case) 

If for some i, bi = 0 and Ciij < 0, then don't eliminate column j; otherwise if 

- A ·c ca:ij>> c; + u mm 0, mll!_ -=- > 0, 
1 ::Si::Sm,b; >O bi 

then the j th column of A is not in any optimal basis for PLP. 

Similarly, Corollary 2 can be modified as 

Corollary 4 (degenerate or non degenerate case) 

Let sth column be the incoming column in the simplex method and lirs be the pivot. 

In either of the following two cases, 

1) all ai8 , except Cir11 , are nonpositive; 

2) 

for all Cii8 > 0, i =/= r, 

the outgoing column ir can be eliminated. 

7 



4. The Lower Bound Generating Technique 

Until now we have assumed that the minimal objective value z• is known in advance. 

Actually, all of the above theorems and corollaries are still valid if z* of (2) is replaced 

by a lower bound z0 for z•. At each step of the simplex method, we can update z0 to a 

possibly higher lower bound by using the following techniques. 

Theorem 2 

Let a; be the ith row of A, 

6i = { bi max6eR{ 6: c- 6ai ;:::: 0}, if { 6: c- 6ai ;:::: 0} -#0; 
. -oo, otherwise 

(10) 

and 

Then for all feasible x E X, 

z =ex;:::: -D... 

Proof. If/::).. is finite, say b..= -6k, then 

i.e., bkUk is a feasible solution for DLP. Therefore, from (1), 

for all feasible x E X. Q.E.D. 

The following corollary resembles Theorem 2 by looking for a dual feasible solution 

that has the form 8e'T. 

Corollary 5 

/::).. = { =( e Tb) maxoER { 6! c beT r1 ~ 0}; if { 6: «;"""' 6e T A~ 0} :/; 0; 
oo, otherwise . 

Then for all feasible x E X, 

z =ex~ -A. 

Thus, /::).. can be calculated using a ratio test on A against c. 

8 



5. A Numerical Example 

Suppose that the simplex tableau is given as follows (Dantzig [3) pp. 97): 

Rows Coil Col2 Col3 Col4 Col5 RHS 

Row·l -3/2 7/8 0 -3/8 1 1/2 

Row2 1/2 -3/8 1 -1/8 0 3/2 

Cost 12 -1 0 2 0 0 

Using (10), we obtain 81 = -4/7 and 62 = -oo. Hence, D.= 4/7 from Theorem 2. 

Now using Corollary 1, we have 

and 

c1 +D. min( 0, m~n (~1 ) ) = 12 + (4/7)( -3) > 0 
1~1~2 bi 

c4 +D.min( 0, m~n (~4 )) =2+(4/7)(-3/4) >0. 
1~•9 bi 

Therefore, Columns 1 and 4 can be eliminated from the computational tableau. 

Moreover, only the pivot a12 = 7/8 in the incoming column (Col 2) is positive. Using 

Corollary 4, the outgoing column (Col 5) can be eliminated from the tableau as well. 

Thus, we have only two columns (Col 2 and Col 3) left, which form the optimal basis. 

6. Conclusion 

We have proposed column-eliminating and lower bound updating techniques in the 

simplex method for linear programming. A pricing criterion is developed on checking 

the intersection between dual hyperplanes and the dual simplex containing all of the 

optimal dual feasible solutions. Under this criterion, some columns may be identified 

early as the optimal nonbasic columns; therefore they can be eliminated in the course 

of the simplex method. As the simplex method iterates, the working constraint matrix 

ultimately reduces to only those columns that are in some optimal basis. 

9 
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