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Eliminating Columns in the Simplex Method for Linear Programming

Yinyu Ye *
Stanford University, Stanford, CA
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Abstract

We propose a column-eliminating and a lower bound updating technique for the
simplex method for linear programming. A pricing criterion is developed for checking
whether or not a dual hyperplane corresponding to a column intersects a simplex contain-
ing all of the optimal dual feasible solutions. If the dual hyperplane has no intersection
with this simplex, we can eliminate the corresponding column from the constraints. As
the simplex method iterates, the working constraint matrix eventually eliminates all

columns except those that are in at least one optimal basis.

Key words: Linear Programming, Simplex Method, Ellipsoid Method, Karmarkar Method,

Column Elimination, Lower Bound Updating,.
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1. Introduction

Techniques for sélving linear programming (LP) have been intensely studied for
four decades. The birth of linear programming is usually identified with the concurrent
development of the simplex method in 1947 by George Dantzig. It says much for the
algorithm’s originator that the simplex method still remains the major algorithm used

in optimization systems, although recently interior methods are serious competitors.

Two more recent approaches to solving linear programs are the ellipsoid method
(Khachiyan [7]) and the projective algorithm (Karmarkar [6]). Recently, Todd (8] and I
[9] found that the ellipsoid method and Karmarkar’s algorithm are closely related. Both of
these methods generate a shrinking dual ellipsoid containing the optimal dual solutions.
Therefore, some columns may be eliminated from the constraints if their corresponding

dual hyperplanes have no intersection to the containing ellipsoid.

When I talked with George Dantzig regarding this eliminating issue,'he predicted
that a similar result could be obtained for the simplex method. Therefore, we started a
series of research meetings along this direction. The result is this paper on a criterion for
eliminating columns in each iteration of the simplex method. In this report, we introduce
the notion of a simplex S* that contains all optimal feasible dual solutions. When the
primal is in canonical form and feasible, the simplex in the dual space is the negative
orthant and a half space whose boundary hyperplane is parallel to the dual objective. At
the next iteration t + 1, a separating dual hyperplane deletes part of the simplex S* and
forms a new containing simplex, S**1. Thus, we developed a strong column-eliminating
theorem: if a dual hyperplane corresponding to column j has no intersection with the
containing simplex S*, then column j in the primal constraint matrix cannot be in an
optimal basis and, therefore can be elimiﬂated from further computation. As the simplex
method iterates, the working constraint matrix ultimately reduces to only those columns
that are in at least one optimal basis.

As Goldfarb and Hao [5] pointed out, the theorem derived in this paper is similar to
the one proposed by Cheng [1, 2]. In particular, Corollary 1 in our paper is identical to

Theorem 1 on identifying the permanent nonbasic variables for the simplex method in



Cheng [1]. A complete literature on identifying permanent nonbasic and basic variables
can be found in Cheng [2]. However, all existing techniques need to approximate the
optimal objective value, and we develop the theoretical basis for a lower bound updating
technique. Most existing techniques need the assumption of nondegeneracy, and we relax
this assumption after initially assuming it. Moreover, the geometrical interpretation of
the containing simplex in our theorem is new and this interpretation may lead to a
pricing rule for selecting the incoming column as the one that most reduces the volume
of the containing simplex of iteration ¢ 4 1 relative to that of iteration t. We also give
~a simple numerical example to show how this column-eliminating scheme performs in

practice.

2. The Dual Containiﬁg Simplex
We assume for the moment:
Assumptions
1. an initial basic feasible solution is kno§vn;
2. the minimal objective value is known in advance;

3. every vertex of the feasible polytope is nondegenerate.

The last two assumptions will be dropped later. Without losing generalily, we can
describe the primal LP problem in terms of the canonical form at each iteration ¢ of the

simplex method.

LP Canonical Farm

PLP minimize z2=¢r

subject to xEX:{xER”:Zx:E and z >0}
where A € R™*"™, ¢ i the vector of all one’s, h > 0), and
A=(I, D) and €=(0, ¢p).

The initial basic feasible solution is z° = (ET,O)T and the initial objective value is
¢z° = 0. We also denote by z* < 0 the given minimal objective value. The dual of the

above linear program PLP is



DLP maximize yb
subject to yeY ={ye R™:yA <}

where the row vector y € R™. For all feasible z € X and y € Y we have by the weak
duality theorem (Dantzig [3])
yb < 2* < z =¢cz. (1)

The dual solution corresponding to the initial basic feasible solution is y° = 0. If
€ > 0, then y°A < ¢ is feasible and y°b = €z° = 0 and the solution z° is optimal.
Otherwise ¥° = 0 is an infeasible dual solution whose dual objective function shares the

same value as the primal objective value ¢z° = 0. We also denote by H; the hyperplane
H; ={y € R™ : y@; =¢;},
and by H; the half space
H; ={y € R™ : ya; < ¢},
where @; is the jth column of A. If y° = 0 is feasible for DLP, then both z° and
y? solve problems PLP and DLP. Othewise, we have at least one hyperplane, say Hy,

which separates 0 from Y. Obviously, the number of such separating hyperplanes are the

number of ¢;’s with negative sign.

Let

A=¢z—2"=-2". (2)
Then for all dual optimal feasible solﬁtions y* of DLP,
y*A<? and y'b> -A.
In particular, the first m basic columns of A state y* < 0, so that
y* <0 and y*bh> —-A
define the simplex S* for iteration ¢:

St={ye R™:y <0, yb > —A}.

Therefore, S is a simplex containing all optimal dual feasible solutions y*:

y# € St. ' (3)



3. The Column-Eliminating Theorem
If z* and y* are optimal solutions to PLP and DLP respectively, then complementary
slackness conditions hold: '

(i —vy*aj)z; =0 for 1<j<n (4)

Hence, ¢; —y*a; > 0 implies that =7 =0, i.e., the jth column is not in any optimal basis
and hence can be eliminated from the problem. A sufficient condition that ¢; — y*a; > 0
for all dual feasible y* is that it be true for all y* € S, since S* contains all optimal dual
feasible solutions as well as other y. It suffices therefore to show that the hyperplane H;

has no points in common with S¢, or that S* is contained in the interior of H P
S* C Int(H;). (5)
However, S® only has m + 1 vertices, namely
Vl=0, Vi=(-A/b)U; for 1<i<m, (6)

where Uj is the ith unit vector. Therefore, S* C Int(H;) if and only if these vertices V*

are strictly in the interior of the half space H; . Thus, we have

Theorem 1

If
Ej - 'yaj g 0 fOl‘ y = Vi, i on (0, 1‘, au,m), (7)

then the jth column of A is not in any optimal basis for PLP.
Proof. If (7) is true, then ¢j —ya; >0forally =3 AVi= St where \; >0, S\ =1.
Since all optimal dual feasible solutions y* € §°%,

¢ —y'a; >0=z;=0.

Hence, the proof simply follows from the complementary slackness conditions discussed

above. : Q.E.D.



Furthermore, we can explicitly calculate the minimum of those m + 1 values in

Theorem 1. Letting @;; be the ith component of column @;, we derive

Corollary 1 (nondegenerate case)

If

o - a@y
¢; + A min( 0,lglsnm(5i ))>0, (8)
then the jth column of A is not in any optimal basis for PLP.

In order to apply Theorem 1, the values Gij, bi, and ¢; must be available from the
canonical form. In the revised simplex method only ; and the inverse of the basis in
either explicit or factorized form are available at the start of iteration ¢. It is necessary
to compute ¢; but it is too costly to compute @;; for every column j except for the
selected incoming column j = s. However, at the end of the iteration ¢, the updated
values @;;j, for the outgoing column j, of iteration ¢ are readily at hand for iteration ¢ +1
and Theorem 1 may be applied to j,. For example, if (8) holds for updated @;;,, b;, and

¢j,, then column j, will never reenter the basis. This results in the following corollary.
Corollary 2 (nondegenerate case)

Let the sth column be the incoming column in the simplex method and @,, be the

pivot. In either of the following two cases,
1) all @;,, except ar,, are nonpositive;

2)

_b—i>_ forall @;j, >0, i#r,
Ais Icsl

the outgoing column j, can be eliminated.

Proof. Note that

br¢
updated A = A+ E_Cs > 0;
— —Cs
updated ¢;, = = > 0;
- b,
updated b, = = > 0;



°-l

updated b; = b; —

a
—2 >0, i #r;
Grs

1
updated @,;, = o > 0;

—a; .
updated @;;, = —_di, i# T

rs
Substituting the above updated values into (8), the condition for eliminating column j,

becomes
Eia/ars ) l/ara
, =

Gys ‘ i 5rai.s/a'rs by /“rs

)>0. 9)

Obviously, if @;; < 0 for all ¢ # », the second term is zero and the first torm is
positive. Hence column j, can be dropped in case 1.

In case 2 of Corollary 2,

_-‘Eia/ars ) l/ars ) (:_) 1

min(0, r'n#ln( =

S WS S ep——
Thus, multiplying (9) by a@,,,
o ArBEE
mln‘¢raala>0(;l‘— - f::)
or _ _
IIlin (_B_: _ _b_r) A+ brce/ara
i#r,a;,>0 Qg Qrs )
which is equivalent to
A _
—_— = for all a;; >0 # Q.E.D.
Qis Icsl

One should note that if two rows tie for pivot, the outgoing column can not be
eliminated since degeneracy occurs at iteration ¢ + 1 (Dantzig [4]). We now remove the
nondegeneracy assumption, i.e., we allow that b > 0 instead of b > 0. In this case, S*
may not be bounded. However, Theorem 1 is still valid if we define

i —-A -5,' U; ifi)-,'>0
4 ={E-oo/)U3 if b =0,

6



and Corollary 1 can be modified as
Corollary 3 (degenerate or nondegenerate case)
If for some i, b; = 0 and @;j < 0, then don't eliminate column j; otherwise if

¢;+Amin( 0, min ari-j) >0,
j
1<i<m,b; >0 bi

then the jth column of A is not in any optimal basis for PLP.

Similarly, Corollary 2 can be modified as
Corollary 4 (degenerate or nondegenerate case)

Let sth column be the incoming column in the simplex method and @,, be the pivot.

In either of the following two cases,
1) all @;,, except @,a, are nonpositive;
2)

A

b; b, o .
T > max(a, —6:) forall @, >0, i#r,

the outgoing column j, can be eliminated.



4. The Lower Bound Generating Technique

Until now we have assumed that the minimal objective value 2* is knbwn in advance.
Actually, all of the above theorems and corollaries are still valid if z* of (2) is replaced
by a lower bound 2° for z*. At each step of the simplex method, we can update z° to a
possibly higher lower bound by using the following techniques.

Theorem 2
Let @; be the ith row of A,

5 = {Ei maxscr{6:c— 6@ >0}, if {6:2— 6a; >0} # 0; (10)

—00, otherwise
and
A= — 112?5){1: ;.
Then for all feasible z € X,
z=¢zx > —-A.

Proof. If A is finite, say A = —, then
t—6rax =c¢c— 6 ULA >0,
i.e., 6x Uy is a feasible solution for DLP. Therefore, from (1),
~A=§Urb<co =3
for all feasible z € X. : Q.E.D.

The following corollary resembles Theorem 2 by looking for a dual feasible solution

that has the form &eT.
Corollary 5
Let
A { —(eTh)maxser{6:2 6cTA0}, L {6:c=6eTA>0}#0;

00, otherwise .

Then for all feasible x € X,
z=7cz 2 —-A.

Thus, A can be calculated using a ratio test on A against €.

8



5. A Numerical Example

Suppose that the simplex tableau is given as follows (Dantzig [3] pp. 97):

Rows Col 1 Col 2 Col 3 Col 4 Col 5 RHS
Row1l  -3/2 7/8 0 3/8 1 1/2
Row 2 1/2 -3/8 1 -1/8 0 3/2
Cost 12 10 2 0 0

| Using (10), we obtain §; = —4/7 and é; = —oo. Hence, A = 4/7 from Theorem 2.

Now using Corollary 1, we have
- . .Gy
¢ + Amin( 0, lrélilgz(z—i) )=12+(4/7)(-3) >0

and

&+ Amin( 0, min (%’f‘) ) = 2+ (4/7)(~3/4) > 0.

Therefore, Columns 1 and 4 can be eliminated from the computational tableau.
Moreover, only the pivot @;2 = 7/8 in the incoming column (Col 2) is positive. Using
Corollary 4, the outgoing column (Col 5) can be eliminated from the tableau as well.

Thus, we have only two columns (Col 2 and Col 3) left, which form the optimal basis.

6. Conclusion

We have proposed column-eliminating and lower bound updating techniques in the
simplex method for linear programming. A pricing criterion is developed on checking
the interseétion between dual hyperplanes and the dual simplex containing all of the
optimal dual feasible solutions. Under this criterion, some columns may be identified
early as the optimal nonbasic coluxhns; therefore they can be eliminated in the course
of the simplex method. As the simplex method iterates, the working constraint matrix

ultimately reduces to only those columns that are in some optimal basis.
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