FASTBUS Segment Driver Microcode Description¥®

David T.esny

October, 1981
Updated June, 1983

This document reflects microcode version 5(126)

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
DEPARTMENT OF PHYSICS
LOOMIS LABORATORY OF PHYSICS
1110 W. GREEN STREET
URBANA, ILLINOIS 61801

DISTRIBUTION OF THIS BOCUMENT IS UNLIMITED

TR-225

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

boe/ek] 01195477

DOE/ER/011954—477
C00-1195-477

DE83 017972 |

gﬁgggys Eggmentf?;iver Microcode Description*®

David Lesny
October, 1981
Updated June, 1983

University of Illinois at Urbana-Champaign
Department of Physics
High Energy Physics Group
Urbana, Illinois

This document reflects microcode version 5(126)

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, complelcucss, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refei»
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

* Work supported in part by the Department oﬁﬁEﬁérgy,
contract DE-AC02-76ER(01195 ‘

S i ER(DISTRIBUTION OF THIS LOCUMENT 15 UNLIMITED

Pacs Index: 06.50.Mk

Table of Contents

CHAPTER 1 FASTBUS SEGMENT DRIVER
1.1 FSD FEATURES & v 4 ¢« v 4 o ¢ o v & &
1.2 PROGRAMMING THE FSD + ¢ « « « « &
1.3 UNIBUS VS FASTBUS BUFFERS
1.4 MULTIPLE DEVICE ADDRESSING . . e e e .
1.5 DIFFERENCES IN ADDRESSING AND WORD SIZES . .

CHAPTER 2 UNIBUS I1/0-PAGE REGISTERS
2.1 FSDHCS - HARDWARE CONTROL/STATUS REGISTER. .
2,2 FSDCTL - CONTROL BLOCK ADDRESS
2.3 FSDMSC - MICROCODE STATUS CODE
2.4 FSDPRM ~ LIST PARAMETERS
2.5 FSDBAL/FSDBAH - BUFFER ADDRESS
2.6 FSDLAL/FSDLAH - LIST BLOCK ADDRESS
2.7 FSDSAL/FSDSAH ~ STATUS BLOCK ADDRESS . .
2.8 FSDCSR - SOFTWARE CONTROL/ STATUS REGISTER. .
CHAPTER 3 CONTROL BLOCK
3.1 CTLPRM - LIST PARAMETERS
3.2 CTLBFA - LSB OF THE UNIBUS BUFFER ADDRESS .
3.3 CTLBFL ~ UNIBUS BUFFER LENGTH
3.4 CTLBLM - UNIBUS BUFFER LIMIT
3.5 CTLLBA - LIST BLOCK ADDRESS
3.6 CTLSBA - STATUS BLOCK ADDRESS
CHAPTER 4 LIST FORMAT
4.1 LSTOPC - OPCODE AND OPTION BITS
4.2 LSTOPT - OPTION BITS e v e e e e
4.3 LSTPAL/LSTPAH - FASTBUS PRIMARY ADDRESS . .
4.4 LSTSAL/LSTSAH - FASTBUS SECONDARY ADDRESS . .
4.5 LSTWCL/LSTWCH - WORD COUNT OR IMMEDIATE DATA
CHAPTER 5 STATUS BLOCK FORMAT
5.1 STATUS HEADER ¢« v v ¢« ¢ o «
5,2 STATUS BODY . . . ¢ ¢ v v v & v s o & o o
CHAPTER 6 OPCODES

6.1 STANDARD OPGODES & & v w4 0 o 4 o W « e e

ii

| L L
SO v W

NN DNDNDNDNDN

. CHAPTER 7

CHAPTER 8

CHAPTER 9

APPENDIX A

Index

OPCODES 200 THROUGH 277

« « s+ . . 6-8

OPCODES 240 THROUGH 277 - MULTIPLE DEVICE ADDRESS

OPCODES . ¢ & « v v ¢« v ¢« o « o« & &
OPCODES 300 THROUGH 377 - FASTBUS TO
TRANSFER « ¢ . o ¢ o o .

SPECIAL OPCODES

ERROR RESPONSES

ERROR RESPONSE WORDS
PARITY ERROR RESPONSE
ERROR RESPONSE CODES

MULTIPLE DEVICE ADDRESSING

USING MULTIPLE DEVICE ADDRESSING . .
MDA BUFFER MANAGEMENT
MDA STATUS ELEMENTS
ERROR HANDLING

FASTBUS TRANSFER ADDRESSING

FASTBUS TRANSFER ADDRESSING DEVICE .
USING FASTBUS TRANSFER ADDRESSING .

9-2
. 9-2
FASTBUS TRANSFER ADDRESSING BUFFER MANAGEMENT . . 9-3
FASTBUS TRANSFER ADDRESSING ERROR HANDLING 9-3

ACKNOWLEDGEMENTS

iii

.« + « « .+ . 6-13
FASTBUS
e e e . . . 6-13
N M
B
e e e o oo .73
e e+ e o . o 1-3
« e e . . . 8-2
« o e . . . 82
e+ e+ o . . 83
e v e e e . . 83

. . . - . .

CHAPTER 1

FASTBUS SEGMENT DRIVER

The FASTBUS Segment Driver, here after referred to as
the FSD, is a list-driven, microcoded interface bétween the
UNIBUS of a PDP-11 system and the FASTBUS. The list
structure used by the FSD allows the programmer on the
PDP-11 to program a sequence of data transfers to take place
without the aid or intervention of the PDP-11. This allows
the FASTBUS to be driven at FSD rates, independent of the
PDP-11 processor.

Due to the difference in speed between the FASTBUS and
UNIBUS, the major goal of the FSD was to provide an
interface which could transfer data on FASTBUS without
significantly reducing the bandwidth in a multi-master
system. This was accomplished by bursting data on the
FASTBUS through a 256 word fast buffer internal to the FSD.
Data can be transferred at near FASTBUS rates through this
memory and only moved on the UNIBUS when the FSD is not
master of FASTBUS. This allows other masters in the same
system to transfer their data while the FSD is moving data
on the slower UNIBUS.

o

FASTBUS SEGMENT DRIVER Page 1-2

1.1 FSD FEATURES

The FSD has the ability to:

1.

Perform all FASTBUS —cycles except pipelined
transfers, in either complete operations
(arbitration, primary address cycle, secondary
address cycle, data cycles, terminatiomn) or
individual primitive cycles.

Provide complete status on the execution of all
FASTBUS Operations and primitive cycles.

Be programed for various responses to0 errors on
FASTBUS. These responses include terminating the
list, terminating the element, ignoring the error
or automatically retrying a programable number of
times.

Accept a single UNIBUS buffer through which I/O0 on
the FASTBUS takes place.

Perform the same FASTBUS Operation on a group of
FASTBUS devices with a single opcode.

Transfer data between two FASTBUS devices without
moving the data onto the UNIBUS. This allows
FASTBUS transfers whose rates are dictated only by
the master/slave response times.

Automatically break block transfers into bursts of
between 1 and 256 words to help prevent locking out-
other masters in the system.

FASTBUS SEGMENT DRIVER Page 1-3

1.2 PROGRAMMING THE FSD

The FSD is a list driven interface. The FSD takes
instructions from a list and returns status to a status
block. Data is tranferred to and from a UNIBUS buffer.
There are five parts involved in controlling the FSD.

1. UNIBUS I/0-Page Registers

The 1/0-Page registers are used to start and stop
the FSD and to report the state of the FSD.

2. Control Block

The control block contains parameters for the
entire 1list as well as the addresses of .the list,
status block and UNIBUS buffer.

3. List Block

The list block contains a sequence of instructions
which the FSD is to follow. The FSD executes these
instructions, or list elements, until either the
end of the list is reached or a fatal error causes
an abort.

4. Status Block

As the FSD executes the list, information about the
execution of the individual elements is returned to
the status block.

5. UNIBUS Buffer

The UNIBUS buffer, which is defined only once per
list, 1is a block of memory where the FSD reads and
writes the data being transferred. The location of
the UNIBUS buffer and its length are defined in the
control block.

Programming the FSD involves setting up a control block
and list, allocating space for the status block and UNIBUS
buffer, and filling in the UNIBUS buffer with data to write
to the FASTBUS. The PDP-11 tells the FSD where the control
block is within UNIBUS memory through the I/0-Page
registers. The FSD reads the control block into internal
memory. Once the control block is read, the FSD begins
executing the 1list elements contained within the list.
Status information about the execution is returned to the
status block. When the FSD completes the execution of the
list, a PDP-1l interriupt can be generated by the FSD.

FASTBUS SEGMENT DRIVER Page 1-4

1.3 UNIBUS VS FASTBUS BUFFERS

Most data transfers on FASTBUS move data through the UNIBUS
memory. Because of this, the FSD is geared mostly toward
UNIBUS to FASTBUS operations. For example the UNIBUS buffer
is defined in the control block and remains defined for the
entire list. There are also several FSD instructions
(opcodes) which allow the user to manipulate the UNIBUS
. buffer pointer. However in some cases, the user wants to
"move data between two FASTBUS devices. This can be
accomplished by moving the data from the first FASTBUS
device 1into the UNIBUS buffer, reseting the UNIBUS buffer
pointer, and finally writing the data to the second FASTBUS
. device. Since the UNIBUS is relatively slow in comparision
to the FASTBUS, and because the data is being moved twice
(from FASTBUS to UNIBUS, then UNIBUS to FASTBUS), the time
to execute this type of operation would be very ' large. To
help speed up these types of operations, the FSD supports a
second data transfer mechanism called FASTBUS Transfer
Addressing, sometimes referred to as FASTBUS to FASTBUS
transfers.

When a FASTBUS to FASTBUS transfer is to be performed,
the wuser first defines the FASTBUS Transfer Device with an
FSD opcode. This FASTBUS Transfer Device can then be used,
at the discretion of the wuser, in place of the UNIBUS
buffer. The data is never moved into the UNIBUS memory.
All data motion takes place on FASTBUS between the two
FASTBUS devices and the FSD. This allows the data to be
transferred at FSD rates. These types of data transfers are
fully explained in chapter 9. '

1.4 MULTIPLE DEVICE ADDRESSING

Most operations performed on FASTBUS by the FSD require
only one FASTBUS primary address. At times it is useful to
perform the same operation on a group of devices. The FSD
provides a mechanism for doing this, called Multiple Device
Addressing. This feature allows the user to define a group
of FASTBUS primary address modules and then perform an
operation, via one request, on this group of addresses. See
chapter 8 for a complete description of Multiple Device
Addressing.

FASTBUS SEGMENT DRIVER Page 1-5

1.5 DIFFERENCES IN ADDRESSING AND WORD SIZES

The UNIBUS has a 16-bit word and 16, 18 or 22-bit
addressing (dependent on the CPU model), whereas FASTBUS has
a 32-bit word and 32-bit addressing. Also the UNIBUS uses
8-bit byte addressing, whereas FASTBUS uses word addressing.
"There is therefore a 4 to 1 address map formed between the
UNIBUS and FASTBUS. These differences in word size as well
as addressing can lead to the possibility of confusion when
“talking about addresses, offsets, word counts, etc. In
general the following statements describe how the microcode
deals with these differences.

1. If the word(s) are in the UNIBUS memory, they are
16-bit words.

2. If the word(s) are in a FASTBUS device, 'ihey are
32-bit words.

3. Addressing on the UNIBUS is in terms of bytes,
however the least significant bit of the address is
always ignored (addressing 1is always on a word
boundary). Likewise, offsets into UNIBUS memory
are always given in bytes.

4. Addressing on the FASTBUS is in terms of 32-bit
words. Likewise, offsets in FASTBUS ‘address space
are given in terms of 32-bit words.

5. Word counts are always in terms of the number of
16-bit words. If 32-bit- words are being
transferred, the word count specified must be
double the uwber ol wurds Lo be transferred.
Likewise the count returned in the status element
is the number of 16-bit words transferred.

6. Offsels iu list elements, and those returned in the
status elements are in terms of 16-bit words.

7. A 32-bit word in UNIBUS memory occupies two 1l6-bit
words in sequential adddresses. The 1least:
significant 16-bits (LSB, bits O through 15) occupy
the first word, and the most significant 16-bits
(MSB, bits 16 through 31) occupy the second word.

8. A 16-bit word in UNIBUS memory occupies only one
word. This word will map into the least
significant 16 bits of a 32-bit word on FASTBUS.
When reading data from FASTBUS and storing in the
UNIBUS buffer, the most significant bits are never
stored. When writing data on FASTBUS which has
been take from the UNIBUE buffer, the wusl
significant bits are always zeroed. This allows
for packed data when doing 16-bit mode transfers on
FASTBUS, '

CHAPTER 2

UNIBUS 1/0~PAGE REGISTERS

There are thirteen UNIBUS I/0O-Page registers associated
with the FSD. The PDP-11 can read and write all thirteen of
these registers, however only eleven are used by version 5
of the microcode. Of these eleven, only three ever need be
accessed by the PDP-11. These I/0-Page registers are used
for control and status reporting of the FSD. The other
eight are used for debugging new versions of the microcode
and are not needed for controling the FSD. The offsets and
description of each I/0-Page register are given in table
2-1.

Prior to executing a list, the user must inform the FSD
where the list resides in memory. This is done by supplying
the 18-bit address of the control block in registers FSDCTL
and FSDCSR. Upon completion of the list, status is returned
by the FSD in FSDCSR. Register FSDHCS is used to control
the FSD. ‘ :

UNIBUS I/0-PAGE REGISTERS Page 2-2

The offset is from the base address strapped on the UPI
interface board. LSB stands for the least significant 16
bits (bits O through 15). MSB stands for the most
significant 16 bits (bits 16 through 31).

Offset Name Description

0 FSDCTL LSB of the control block address
2 FSDCSR Software control/status register
4 FSDMSC Microcode status code

6 e unused FSD register

10 FSDPRM List parameters

12 unused FSD register

14 FSDBAL LSB of the buffer address

16 FSDBAH MSB of the buffer address

20 FSDLAL LSB of the list block address

22 FSDLAH MSB of the list block address

24 FSDSAL LSB of the status block address
26 FSDSAH MSB of the status block address:-

30 UPI register

32 UPI register

34 FSDHCS Hardware control/status register

Table 2-1. I/0-Page locations and descriptions

UNIBUS I/0-PAGE REGISTERS

2.1 FSDHCS - HARDWARE CONTROL/STATUS REGISTER.

This register contains bits which control the
return status on the current state of the FSD.

Bit Name Description
—I; gnused o
14 unused
13 unused
12 unused
il unused
10 unused
9 unused
8 unused
7 HCSRDY FSD ready flag
6 HCSIE Interrupt enable
5 unused
4 unused
3 unused
2 unused
1 HCSHLT FSD halt control

0 HCSXCT

Execute a new list

Page 2-3

FSD and

UNIBUS I/0-PAGE REGISTERS Page 2-4

2.1.1 HCSRDY (RO) - FSD Ready

When this bit is set, the FSD is in an idle state and 1is
polling the execute bit (HCSXCT). When the PDP-11 sets
HCSXCT, the FSD will begin executing the list pointed to by
FSDCTL and FSDCSR and HCSRDY will be cleared. When the FSD
finishes execution of the list, HCSRDY will again be set.
If execution is halted by.the setting of HCSHLT in FSDHCS,
. the FSD will again set HCSRDY when it becomes idle. This is
a read only bit to the PDP-11.

2.1.2 HCSIE (RW) - Interrupt Enable

If this bit 1is set, the FSD will generate a_ vectored
interrupt on the PDP-11 whenever the ready bit (HCSRDY)
becomes set. If ready is set when the PDP-11 sets this bit,
an interrupt will also be generated.

2.1.3 HCSHLT (RW) - Halt The FSD

The setting of this bit will cause an active FSD to suspend
the execution of a list. The FSD will stop executing the
list when the current list element is completed, even if it
is FASTBUS master. When the FSD halts, it outputs the
status block header, sets the ready bit (HCSRDY), and polls
for further instructions from the PDP-1l. Should the PDP-11
clear the halt bit, the FSD will resume execution of the
list. However if the execute bit (HCSXCT) is set, the FSD
will begin execution of a new list by reading a new control
block. Setting HCSXCT will automatically clear HCSHLT.

2.1.4 HCSXCT (WO) - Execute A New List

When set by the PDP-11, the FSD will begin executing a list
as defined by the control block pointed to by FSDCTL and
FSDCSR. 1If the FSD is not idle when this bit 1is set, the
execute command will be ignored. This is a write only bit
to the PDP-11 and is always read as a zero.

UNIBUS I/0-PAGE REGISTERS Page 2-5

2.2 FSDCTL - CONTROL BLOCK ADDRESS

This register contains the least significant 16 bits of
the control block address. Address bits 16 and 17 are
contained in FSDCSR. When the HCSXCT bit in FSDHCS is set,
the FSD wuses the contents of this register and FSDCSR to
build a pointer to the control block.

2.3 FSDMSC - MICROCODE STATUS CODE

This register 1is used primarily for debugging the
microcode. The microcode returns a number in this register
indicating its current state. The current state codes are

Code Name Description
0 MSCIDL Idle
1 MSCCTL Loading the control block
2 MSCXLE Setting up to execute a list element
3 MSCDON Terminating a list
4 MSCWES Terminating a list element
5 unused
6 MSCFMC Waiting for FASTBUS master cycle complete
7 MSCFAC Waiting for FASTBUS address cycle complete
10 MSCFDC Waiting for FASTBUS data cycle complete
11 MSCIHB Idle but holding FASTBUS mastership

2.4 FSDPRM - LIST PARAMETERS

This register contains the contents of the control
block entry CTLPRM while the FSD is executing a list. This
register is for maintenance only.

2.5 FSDBAL/FSDBAH - BUFFER ADDRESS

These registers contain the 18-bit buffer address which
the FSD is using for the currently executing list. FSDBAL
contains the least significant 16 bits. FSDBAH contains the
extended address bits 16 and 17. This register is for
maintenance only. .

UNIBUS I/0-PAGE REGISTERS Page 2-6

2.6 FSDLAL/FSDLAH - LIST BLOCK ADDRESS

These registers contain the 18-bit list block address
which the FSD is currently executing. FSDLAL contains the
least significant 16 bits. FSDLAH contains the extended
address bits 16 and 17. This register is for maintenance
only. '

2.7 FSDSAL/FSDSAH - STATUS BLOCK ADDRESS

These registers contain the 18-bit status block address
where- the FSD reports status ‘on the currently executing
list. FSDSAL contains the- least significant 16 bits.
FSDSAH contains the extended address bits 16 and .17. This
register is for maintenance only.

UNIBUS I/0-PAGE REGISTERS Page 2-7

2.8 FSDCSR - SOFTWARE CONTROL/STATUS REGISTER.

FSDCSR contains information for controlling the
execution of the FSD as well as the status of the FSD upon
termination of a list. All bits within this register can be
read and written by the PDP-11, however only those bits
which are used to control the FSD should be changed by the

PDP-11. The bits which return status are only valid when
the FSD is in the ready state.

Bit Name Description

I; E;;;RR ;;;;;;;;;-a fatal error
14 CSRHLT Stopped by a HALT command (in FSDHCS)
13 CSRLEI Stopped by a list element opcode 030
12 CSRLRE Stopped by the limit register being exceeded
11 CSRSBO Stopped by the status block overflowing
10 CSRHFB Holding FASTBUS mastership
9 CSRHFA Holding FASTBUS address lock
8 unused
7 CSRWRN A non-fatal error has occured
6 CSRNXC UNIBUS NXM during a control block read
5 CSRNXS UNIBUS NXM during a status block write
4 CSRNXL UNIBUS NXM during a list element read
3 CSRNXB UNIBUS NXM during é buffer access
2 CSRRST Software reset

1 CSRA17 Bit 17 of the control block address

0 CSRAl6 Bit 16 of the control block address

UNIBUS 1/0-PAGE REGISTERS Page 2-8

2.8.1 CSRERR (RO) - Stopped By A Fatal Error

The FSD aborted execution of the list because it encountered
a fatal error. The type of error is indicated in either
FSDCSR or the status block header word. The FSD cannot
continue and must be restarted by loading a new list.

“2.8.2 CSRHLT (RO) - Stopped By A HALT Command

The FSD has suspended execution of the current list because
the " PDP-11 set bit HCSHLT in the FSDHCS register. When the
halt bit is cleared the FSD will continue where it stopped
in the current 1list. If the execute bit is set (HCSXCT),
the FSD will abort the current list and begin the execution
of a new list as pointed to by FSDCTL and FSDCSR.

2.8.3 CSRLEI (RO) - Stopped By A List Element Opcode 030.

The FSD has suspended execution of the current list because
an opcode 030, 1list element interrupt, was executed. The
FSD is in the same state as if the HCSHLT bit was set in
FSDHCS. When the PDP-11 clears bit HCSHLT, the FSD will
continue execution of the current list. Should the PDP-11
set bit HCSXCT instead, the FSD will begin the execution of
a new list as pointed to by FSDCTL and FSDCSR. No further
action is taken on the old list.

2.8.4 CSRLRE (RO) - Stopped By The Limit Register Being
Exceeded

The limit register (as given by CTLBLM of the control block,
section 3.4) was exceeded by the execution of the last list
element. The list pointer offset (STLLPL/STLLPH) contained
in the status header block points to the list element
immediately following the element which moved the buffer
pointer past the limit.

2.8.5 CSRSBO (RO) - Stopped By The Status Block Overflowing

Not enough room was allocated in the status block body for
the list to be executed. The list element which caused this
error is NOT executed. The list pointer offset
(STLLPL/STLLPH) contained in the status header block points
to the list element which would have written its status
beyoud Lhe status block had it been executed.

UNIBUS I/0-PAGE REGISTERS Page 2-9

2.8.6 CSRHFB (RO) - Holding FASTBUS Mastership

The FSD is the current master of FASTBUS even though it is
in the idle state. This condition will result if the last
list element executed had the option bits OPCHFB or OPCHFA
set and the FSD was FASTBUS master. It will also occur if
the list aborted with a fatal error while the FSD was bus
master and the parameter bit PRMHFE was set in the parameter
word CTLPRM. To release mastership, either the software
‘reset bit, CSRRST, must be set or a new list must be
" executed by the FSD.

2.8.7 CSRHFA (RO) - Holding FASTBUS Address Lock

The FSD is connected to a FASTBUS device. The address of
the device is returned in the status header block
(STLPAL/STLPAH). This condition will result if the last
element executed had the option bit OPCHFA set and the FSD
was connected to a device. It will also occur if the list
aborted with a fatal error while a device was connected and
the option bit PRMHFE was set in the parameter word CTLPRM.
A software reset will force the FSD to release the device.

2.8.8 CSRWRN (RO) - A Non~fatal Error Has Occurred

Some list element had a non-fatal error. The PDP-11"' must
search the status block to determine which element(s) had
the warning. A warning is either a non-fatal parity error
or a non-faral slave status code.

2.8.9 CSRNXC (RU) - UNLIBUS NXM During The <Control Block
Read .

The control block address given in FSDCTL and FSDCSR does
not exist in UNIBUS memory. The FSD immediately becomes
ready. The FSD retains control of the 'FASTBUS if it was
currently FASTBUS master.

2.8.10 CSRNXS (RO) - UNIBUS NXM During A Status Block Write

The FSD attempted to output the status for either the list
or a list element to a non-existent location in UNIBUS
memory. Execution of the list is aborted and no further
status 1is output. The FSD remains FASTBUS master if it was
bus master and bit PRMHFE in word CTLPRM was set.

UNIBUS I/0-PAGE REGISTERS Page 2-10

2.8.11 CSRNXL (RO) - UNIBUS NXM During A List Element Read

The FSD attempted to read a list element from a non-existent
memory location. The 1list element offset pointer in the
status block header points at the element where the FSD had
the problem. The 1list 1is aborted and the status block
header is output. The FSD remains FASTBUS master if it was
bus master and bit PRMHFE in word CTLPRM was set.

2.8.12 CSRNXB (RO) — UNIBUS NXM During A Buffer Access

The FSD got a non-existent memory error while trying to read
or write the buffer on the UNIBUS. The list is aborted and
the status block header is output. The FSD remains FASTBUS
master if it was bus master and bit PRMHFE in word CTLPRM
was set.

2.8.13 CSRRST (RW) ~ Software Reset

If this bit is set when the FSD begins execution, a software
reset is performed instead of a list execution. The control
block address in FSDCTL is ignored. If the FSD is FASTBUS
master, a release of the bus is done. The status bits in
FSDCSR are reset. No other status information is returned.
If this bit was set while the FSD was halted (setting HCSHLT
or opcode 030), the current list 1is aborted. The ‘"status
block contains valid information up to the point of
termination since the halting of the FSD forces all status
to be output to the block.

2.8.14 CSRA17/CSRA16 (RW) - Control Block Extended Address
Bits

CSRA17 and CSRAl6 are the extended address bits of the
control block address. These bits, along with the contents
of FSDCTL, form an 18 bit address which points to the first
word of the control block.

CHAPTER 3

CONTROL BLOCK

The control block is a seven 16-bit word block of
memory constructed Dby the programmer. It contains
parameters needed by the FSD to define the 1list to be
executed, the UNIBUS buffer and the location in memory where
status on the execution of the list is to be stored. Table
3-1 defines the offsets into the control block where each
parameter is stored. The 18-bit address of the first word
of ‘the control block is given to the FSD in the I/0-Page
registers FSDCTL and FSDCSR. When bit HCSXCT is set in the
FSDHCS register, the FSD reads the control block into
internal RAM.

Offset Name Description

0 CTLPRM List parameters

2 CTLBFA LSB ot the UNIBUS buffer address
4 CTLBFL UNIBUS buffer length

6 CTLBLM UNIBUS buffer limit

10 CTLLBA LSB of the list block address

12 CTLSBA LSB of the status block address
14 CTLSBL Status block length

Table 3-1. Control block format

CONTROL BLOCK

Page 3-2

3.1 CTLPRM - LIST PARAMETERS

CTLPRM.

Options which are on a list wide basis are contained in

Extended

address bits for the buffer, list and

status block addresses are also contained in this register.

Bit
15
14
13
12
11

10

No status elements are to be written

the UNIBUS buffer address
the UNIBUS buffer addreés
the list address
the list addresg
the status block address

the status block address

Hold FASTBUS mastership after a fatal error

Name Description
PRMNSE
unused
unused
uhuséd
unused
unused
unused
unused
PRMB17 Bit 17 of
PRMB16 Bit 16 of
PRML17 Bit 17 of
PRML16 Bit 16 of
PRMS17 Bit 17 of
PRMS16 Bit 16 of
PRMHFE
PRMWEN

Write enable the UNIBUS buffer

CONTROL BLOCK Page 3-3

3.1.1 PRMNSE - No Status Elements Are To Be Written

If PRMNSE is set, the FSD will suppress the writing of
status elements for each list element executed. The status
header will still be written upon the termination of the
list.

" 3.1.2 PRMB17/PRMB16 ~ UNIBUS Buffer Extended Address Bits

PRMB17 and PRMBl6 are the extended address bits for the
UNIBUS buffer address. These bits, along with the contents
of CTLBFA, form an 18-bit address which points to the first
word of the buffer.

3.1.3 PRML17/PRML16 - List Extended Address Bits

PRML17 and PRML16 are the extended address bits for the list
address. These bits, along with the contents of CTLLBA,
form an 18 bit address which points to the first word of the
list.

3.1.4 PRMS17/PRMS16 - Status Block Extended Address Bits

PRMS17 and PRMS16 are the extended address bits for the
status block address. These bits, along with the contents
of CTLSBA, form an 18 bit address which points to the first
word of the status block for the list.

3.1.5 PRMHFE - Hold FASTBUS Mastership After An Error

The setting of this bit will cause the FSD to maintain
FASTBUS mastership and the current device connection (if
they are present) when the list terminates due to a fatal
error. If this bit 1is <clear the FSD will release any
connected device and bus mastership prior to becoming ready.
Bits CSRHFB and CSRHFA in FSDCSR reflect the current state
the FSD with respect.to the FASTRIIS.

3.1.6 PRMWEN - Write Enable The UNIBUS Buffer

The UNIBUS buffer is always readable by the FSD. However
this bit must be set for the FSD to be able to write into
the buffer. Should this bit not be set and the FSD attempt
to execute a list element which requires writing the buffer,
the list will be terminated with a write protect error.

CONTROL BLOCK Page 3-4

3.2 CTLBFA - LSB OF THE UNIBUS BUFFER ADDRESS

CTLBFA holds the least significant 16 bits of the
UNIBUS buffer address. This entry along with bits
PRMB17/PRMB16 of CTLPRM form ‘the 18-bit address of the
UNIBUS buffer to be used by the list. This address is the
initial internal buffer address used by the FSD. Whenever
data is transferred through the FSD to or from the UNIBUS
. buffer, the internal pointer is incremented by the number of
words transferred. Special function 1list elements are
provided which move the buffer pointer relative to the
current location or relative to the initial address. These
elements will not allow the pointer to be moved beyond the
buffer address. If the pointer is moved beyond the limit
register address, and attempt to execute another opcode will
result in a limit register exceeded error.

3.3 CTLBFL - UNIBUS BUFFER LENGTH

. CTLBFL holds the length of the UNIBUS buffer being
used. The 1length 1is given in terms of 16-bit words. The
FSD will not attempt to access any locations beyond the
buffer 1length. Should a list element attempt to go beyond
this upper bound, the FSD will halt the list with a buffer
overflow error. '

3.4 CTLBLM - UNIBUS BUFFER LIMIT

CTLBLM holds the length which sets a pointer 1limit in
16-bit words. Should the internal buffer address pointer be
moved beyond the limit address, the FSD will not begin the
next element in the list. The list is aborted with a limit
register exceeded error (CSRLRE is set in FSDCSR).

3.5 CTLLBA - LIST BLOCK ADDRESS

CTLLBA holds the least significant 16 bits of the 1list
address. The most significant 16 bits are taken from the
parameter register (CTLPRM), bits PRML16 and PRML17. The
list is decribed in chapter 4.

3.6 CTLSBA - STATUS BLOCK ADDRESS

CTLSBA holds the least signiticant 16 bits of the
status block address. The most significant bits are taken
from the parameter register (CTLPRM), bits ©PRMS16 and
PRMS17. The status block is described in chapter 5.

CHAPTER 4

LIST FORMAT

A "list" is a group of contiguous, multi~word, fixed
length "list elements" which resides in UNIBUS memory. Each
list element is eight 16-bit words in 1length. The 1list
element consists of an opcode which defines the task the FSD
is to perform, option bits which modify the task, and
parameters needed by the FSD to perform the task. Some
opcodes do not use every word within the element, however
the space must still be allocated within the list.

The list is read only to the FSD. The status of the
execution of the list is returned in the status block. The
FSD executes an element one at a time wuntil either a
termination element 1is found, or a fatal error occurs. The
format of a list element is given in table 4-1.

Offset Name Description

0 LSTOPC Opcode and option bits

2 LSTOPT Option bits

4 LSTPAL LSB of the FASTBUS primary address

6 LSTPAH MSB of the FASTBUS primary address

10 LSTSAL LSB of the FASTBUS secondary address

12 LSTSAH MSB of the FASTBUS secondary address

14 LSTWCL LSB of the word count or immediate data
16 LSTWCH MSB of the word count or immediate data

Table 4-1. List element format

LIST FORMAT Page 4-2
4.1 LSTOPC - OPCODE AND>0PTION BITS
This word defines the task which the FSD is to perform.

The option bits provide a means of modifing the meaning of
the opcode.
Bit Name Description
—I; OPCPER Parity error reponse éode

14 OPCPER Parity error response code

13 OPCPER Parity error response code

12 OPCPER Parity error response code

11 unused

10 OPCFTS FASTBUS transfer secondary addressing

9 OPCWID Write immediate data o

8 OPCHLF Half word transfer

7 OPCSTD Standard vs Special function opcode

6 opcode |

5 opcode

4 ‘opcode

3 opcode

2 opcode

1 opcode

0 opcode

LIST FORMAT Page 4-3

4.1.1 OPCPER - Parity Error Response Code

The parity error reponse code is a 4 bit encoded field used
by the FSD to determine the type of action to be taken when
parity errors are detected. Unlike the 32-bit error
response words in the FSD”s system parameter block, this
reponse code is on an element by element basis. It controls
parity errors during secondary address cycles as well as
. data cycles. Each of the 16 possible response codes are
" identical in function to the 16 response codes in the error
response word. e

4.1.2 OPCFTS - FASTBUS Transfer Secondary Addressing

This option bit is used by the special function opcode (060)
which loads the FASTBUS Transfer Device address. It
indicates that a secondary address cycle must be performed
after each primary address cycle to FASTBUS Transfer Device.
For the other FASTBUS devices, the secondary address bit is
actually part of the opcode. This option bit is ignored by
all other opcodes.

4.1.3 OPCWID - Write Immediate Data

This option bit is used only by those opcodes which do
single word writes to the FASTBUS. When set, the data word
to be written to FASTBUS is taken from the word count word
of the 1list element (LSTWCL/LSTWCH) and not from the data
buffer. This option bit is ignored by those elements which
do not do single word writes.

4.1.4 OPCHLF - Half Word Transfer

By default, the FSD performs all data transfers between the
FASTBUS and UNIBUS in terms of 32-bit words. When this bit
is set, data transfers will be done in 16-bit words. When
the data is written to FASTBUS, it is right justified in the
32-bit word with the high order 16 bits being set to zero.
When the data 1is read from FASTBUS, the low order 16 bits
are written to the UNIBUS and the high order 16 bits are
ignored. The data is packed in the UNIBUS buffer (ie. each
16~bit word immediately follows the previous one). This
option bit is ignored for FASTBUS to FASTBUS data transfers.

LIST FORMAT Page 4-4

4.1.5 OPCSTD - Standard Opcode

There are two types of opcodes, STANDARD and SPECIAL
FUNCTION. Standard opcodes only perform data transfers
(UNIBUS to FASTBUS and FASTBUS to FASTBUS). Special
function opcodes are used to change internal FSD pointers,
FSD parameters, and do primitive FASTBUS operations. When
OPCSTD is set, bits 0 through 6 are interpreted as being a
. standard opcode. When it 1is <clear, these bits are
" interpreted as being a special function opcode.

LIST FORMAT Page 4-5

4.2 LSTOPT - OPTION BITS

This word contains more option bits as in LSTOPC.

Bit Name Description
15 OPCILE Ignore this element
14 OPCHFB Hold FASTBUS mastership
13 OPCHFA Hold FASTBUS address connection

12 OPCHFX Hold FASTBUS between bursts

11 unused
10 unused
9 unused
8 unused
7 unused
6 unused
5 unused
4 unused
3 unused
2 unused

1 OPCSNR Suppress null read

0 OQPCFIQ FASTBUS device is FIFO like

LIST FORMAT Page 4-6

4.2.1 OPCILE - Ignore The Element

When set, the FSD ignores the function defined by this
element. Even though the setting of the bit turns the
opcode into a NOOP, bus mastership and a connected device
will be released unless option bits OPCHFB and/or OPCHFA are
set. A status element 1is output to the status block
indicating this element was skipped.

4.,2.2 OPCHFB - Hold FASTBUS Mastership

Normally the FSD releases mastership of the FASTBUS between
the execution of list elements. If this bit is set, the FSD
will maintain FASTBUS mastership. Setting this bit also
implies that OPCHFX is set. *

4.2.3 OPCHFA - Hold FASTBUS Address Connection Between
Elements

The FSD normally releases any FASTBUS device currently
addressed when the 1list element terminates execution. If
OPCHFA is set, the FSD will maintain the address connection
between 1list elements. Setting this bit also impiles that
OPCHFB and OPCHFX are set.

4.,2.4 OPCHFX - Hold FASTBUS Between Bursts

Normally the FSD releases mastership of FASTBUS between the
bursting of data. If OPCHFX is set, the FSD will maintain
mastership (and the address lock) between "bursts. Please
note that even though a slight increase in throughput to the
UNIBUS is gained by setting this bit, a major decrease in
throughput on FASTBUS in a multi-master environment is
possible.

4.2.5 OPCSNR - Suppress Null Read

Whenever an opcode is executed which performs a read block
transfer, a null read cycle (read the NTA register) is
performed automatically by the FSD to force the slave to
remove the signals it 1is asserting on FASTBUS. If this
option bit is set, the null read 1is suppressed. This
feature 1is wusefull if a series of successive read block
trancfers is performed to the same slave device.

LIST FORMAT Page 4-7

4.2.6 OPCFIO - FASTBUS Device Is FIFO Like

This options bit defines the device on the FASTBUS as being
a FIFO (first in, first out) type of device. Certain
operations (eg. error retries) are handed differently for
FIFO devices than for other FASTBUS devices.

LIST FORMAT Page 4-8

4.3 LSTPAL/LSTPAH - FASTBUS PRIMARY ADDRESS

For those opcodes which do primary address cycles on
FASTBUS, these words contain the 32-bit FASTBUS primary
address.

4.4 LSTSAL/LSTSAH - FASTBUS SECONDARY ADDRESS

For those opcodes which do secondary address cyecles on
FASTBUS, these words contain the 32-bit FASTBUS secondary
address. o

4.5 LSTWCL/LSTWCH ~ WORD COUNT OR IMMEDIATE DATA

This 32-bit word contains either a word count for block
transfers, an offset for special functions, or 32-bits of
FASTBUS data for immediate data writes.

CHAPTER 5

STATUS BLOCK FORMAT

The status block is where the FSD reports what actions
were taken during the execution of the list. There are two
parts to the status block. The status header contains
information related to the list as a whole. The status body
contains information on an element-by-element basis. When
the FSD has completed execution of a list element, a four
word status element is writtem into the next sequential
locations 1in the status body. When the list is terminated,
the status header is output. The status block is only
guaranteed to be valid when the FSD has completed execution
of the list and is in the ready state.

STATUS BLOCK FORMAT Page 5-2

5.1 STATUS HEADER

The initial address of the status block 1is given by
CTLSBA and PRMS17/PRMS16 of CTLPRM. The first ten words of
the status block are the header. Such list wide information
as the final UNIBUS buffer pointer offset and the connected
FASTBUS device address are stored in the header. Table 5-1
shows the format of the status header.

Offset Name Description

0 STLESW Error status word of the last element executed
2 STLCSR A copy of FSDCSR

4 STLBPL. LSB of the final UNIBUS buffer pointer offset
6 STLBPH MSB of the final UNIBUS buffer pointer offset
10 STLLPL LSB of the final list pointer offset

12 STLLPH MSB of the final list pointer offset

14 STLPAL LSB of the last FASTBUS primary address

16 STLPAH MSB of the last FASTBUS primary.address
20 STLSAL LSB of the last FASTBUS secondary address
22 STLSAH MSB of the last FASTBUS secondary address

Table 5-1. Status header format

5.1.1 STLESW - Error Status Word

The error status word contains flags which indicate what
type of errors (or warnings) occurred during the execution
of the last list element. This word is a copy of the error
status word (STEESW) for the last list element executed
prior to list terminatiom. A copy is placed in the header
to allow the PDP-11 to quickly determine why the list
aborted. See the description of STEESW for a detailed
explanation of each bit within this word.

5.1.2 STLCSR - A Copy Of FSDCSR

This word contains a copy of the final contents of FSDCSR.
Sea section 2.8 for a desciption of FSDCSR.

5.1.3 STLBPL/STLBPH - Final UNIBUS Buffer Pointer Offset

This 32-bit word contains the offset in 16-bit words from
the start of the UNIBUS buffer to the final buffer pointer.

STATUS BLOCK FORMAT : Page 5-3

5.1.4- STLLPL/STLLPH - Final List Pointer Offset

This 32-bit word contains the offset in 16-bit words from
the start of the list to the last word plus 1 read by the
FSD from the list. The address of the 1last 1list element
executed is computed by the formula,

initial list address + (2 * (list offset — 8))

The exception to this equation is when the list aborted due
to an NXM error while reading the list element. 1In this
case the offset points directly at the element in error (no
need to subtract 8).

5.1.5 STLPAL/STLPAH - FASTBUS Primary Address

If CSRHFA is set in FSDCSR, this 32-bit word contains the
FASTBUS primary address of the device which was connected to
the FSD when the list terminated. If the FSD does not do a
secondary address cycle but does do block transfers, the FSD
assumes this is a logical address and adds the number of
words transferred to the initial primary address. This word
will be zero if no FASTBUS device is addressed when the list
terminates (ie. mno address connection is maintained).

5.1.6 STLSAL/STLSAH ~ FASTBUS Secondary Address

If CSRHFA is set in FSDCSR, this 32-bit word contains the
last secondary address of the device as computed by the FSD.
This word is zero if no FASTBUS device is addressed when the
list terminates (ie. no address connection is maintained)
or if no secondary address cycle was ever performed. The
FSD keeps track of the correct secondary address by adding
the number of words block transferred to the last secondary
address cycle requested. STLSAL/STLSAH reflects this
updated secondary address.

STATUS BLOCK FORMAT | Page 5-4

5.2 STATUS BODY

Immediately following the status header is the status
body. The body is of .indeterminate length, since it is
based upon the number of list elements executed by the FSD.
Each status element written to the body is four words in
length. When the FSD has completed execution of the first
list element in the list, a status element is written into
~ the body at words 11 through l4. As each 1list element is
executed, the FSD' writes the status element in the next
sequential memory locations in the status body. All list
elements, except for the termination element, have a status
element written to the body. The format for a status
element is given in table 5-2.

Offset Name Description

0 STEESW Error status word

2 STEISW Information status word
4 STEWCL LSB of the word count
6- STEWCH MSB of the word count

Table 5-2. Status element format

STATUS BLOCK FORMAT Page 5-5

5.2.1 STEESW - Error Status Word
The error status word contains flags which indicate what

type of errors (or warnings) occurred during the execution
of the list element.

Bit Name Description
15 SEEBOV Buffer overflow
i4 unused
13 unused
12 SEEIOC 1Illegal opcode
11 SEEFTD FASTBUS Transfer Device error
10 SEEWPR Buffer write protected
9 SEEIOP 1Illegal operation
8 SEEPER FASTBUS parity error
7 SEEARB FASTBUS arbitration timeout
6 SEEDAT FASTBUS error occurred at data time
5 SEEXAD 'FASTBUS error occurred at secondary address time
4 SEEADR FASTBUS error occurred at address time
3 SEERTO FASTBUS response timeout
2 SEFSS2 FASTBUS slave status bit 2

1 SEESS1 FASTBUS slave status bit 1

0 SEESSO0 FASTBUS slave status bit 0

STATUS BLOCK FORMAT Page 5-6

5.2.1.1 SEEBOV - Buffer overflow

The element requested the FSD to transfer more data words
than were available in the buffer. Data was transferred
until the pointer reached the end of the buffer. The number
of words which did get transferred are reported in the word
count word of the status element. This error cam also occur
for special function opcodes which move the internal buffer
. pointer.

5.2.1.2 SEEIOC - Illegal opcode
There are a total of 256 possible opcodes, not all of which

are implemented. An attempt to execute an undefined opcode
results in this error.

5.2.1.3 SEEFTD - FASTBUS transfer device error
The error being reported by this status element occured
while the FSD was accessing the FASTBUS Transfer Device

which was being used as the buffer in a FASTBUS to FASTBUS
transfer. ’

5.2.1.4 SEEWPR - Buffer write protected

The opcode needed to wfité into the buffer, however the
write enable bit (PRMWEN) in CTLPRM was not set. No data
was transferred. :

5.2.1.5 SEEIOP - Illegal operation

This error occurs when an illegal operation is attempted by
a special function opcode. This error is opcode specific.

5.2.1.6 SEEPER - FASTBUS parity error

A FASTBUS parity error occurred during the data transfer.
This bit is a warning if parity errors were to be ignored.

STATUS BLOCK FORMAT ‘ Page 5-7

5.2.1.7 SEEARB - FASTBUS arbitration timeout

The FSD was unable to win mastership of the FASTBUS.

5.2.1.8 SEEDAT - FASTBUS data time error

. The bits SEERTO, SEESS2, SEESSl, and SEESSO can occur on
either primary address, secondary address, or data cycle.
If SEEDAT is set, the error reported by these bits occurred
on a data cycle.

5.2.1.9 SEEXAD - FASTBUS secondary address error

Same as SEEDAT except the error occurred during a FASTBUS
secondary address cycle.

5.2.1.10 SEEADR - FASTBUS primary address error

Same as SEEDAT except the error occurred during a FASTBUS
primary address cycle.

5.2.1.11 SEERTO - FASTBUS response timeout

The DK or AK signal did not rome hack fram the slave in an
appropriate amount of time. If this is a primary address
cycle error, the device most likely does not exist or the SI
route tables are not set up correctly. If this is a data
cycle error, some type of hardware error has occurred in the
connected slave. The address of the device is returned in
STLPAL/STLPAH of the status header.

5.2.1.12 SEESS(0,1,2) - FASTBUS slave status response bits

SEESS2, SEESSl and SEESSO contain the slave status response
which cauocd the FASTBUS crror.

STATUS BLOCK FORMAT Page 5-8

5.2.2 STEISW - Information Status Word

STEISW contains status information about the execution of
the list element.

Bit Name Description

15 SEEERR Fatal error indication flag

14 SEEHFB FASTBUS mastership was held
13 SEEHFA FASTBUS address connection was held

12 SEERTY FASTBUS retry was attempted

11 unused
10 unused
9 unused
8 unused

7 SEEWRN Warning indication flag

6 unused
5 unused
4 unused

3 SEEMDA Multiple device header status element
2 SEEJSL CALL/RETURN/JUMP sub-list status element
1 SEENIO Non-I/0 list element

0 SEEILE Ignored element

STATUS BLOCK FORMAT Page 5-9

5.2.2.1 SEEERR - Error indication flag

This bit is set whenever the element had a fatal error which
caused the FSD to abort execution of the list.

5.2.2.2 SEEHFB - FASTBUS mastership was held

" The option bit OPCHFB in the list element was set causing
the FSD to maintain ownership of the FASTBUS when the
element completed. -

5.2.2.3 SEEHFA - FASTBUS address connection was held

The option bit OPCHFB in the list element was set causing
the FSD to maintain the current address connection when the
list element completed. -

5.2.2.4 SEERTY - FASTBUS retry was attempted

A FASTBUS error occurred during the execution of this 1list
element and a retry was attempted. If the list was not
aborted due to a FASTBUS error the retry was successful.
The slave status response which 1invoked the retry is
indicated in STEESW unless the element abortéd on a later
FASTBUS transfer due to a fatal slave status error.

5.2.2.5 SEEWRN - Warning indication flag

This bit is set if the element had a non-fatal (warning)
error. Some warnings are. FASTBUS parity errors which were
ignored, FASTBUS error retries, or slave status responses
which were ignored.

5.2.2.6 SEEMDA - Multiple device header status element

This status element is the header for a multiple device
address 1list element. The parameter word contains the
number of device addresses stored in the table on which the
opcode will be performed. See chapter 8 for a description
of Multiple Device Addressing.

STATUS BLOCK FORMAT Page 5-10

5.2.2.7 SEEJSL - CALL/RETURN/JUMP sub-list status element

The list element which corresponds to this status element
was a CALL, RETURN, or JUMP sub-list element (opcode 10, 11,
or 12). The parameter word gives the offset in 16-~bit words
from the start of the list block to the address of the next
list element which will be executed.

5.2.2.8 SEENIO - Non-I/0 list element

The element did not do any FASTBUS transfers. Only those
special function opcodes which do not do any data transfers
to/from FASTBUS set this bit.

5.2.2.9 SEEILE - Ignored list element

The list element had its "ignore me" (OPCILE) bit set. The
FSD treated the element as a NOOP.

5.2.3 STEWCL/STEWCH - Word Count Or Data

This 32-bit word is opcode specific in its meaning. For all
standard opcodes and those special opcodes which do FASTBUS
data transfers, this 32-bit word contains the number of data
words transferred. If the element terminated in an error,
this count does not include the word which caused the error.
For the non-I/0 special function opcodes, this word is
either unused (returned as 0), or contains opcode specific
status information, such as offsets. See the specific
opcode description for the meaning of this status entry.

CHAPTER 6

OPCODES

The opcode is an 8 bit instruction within . the 1list
element which defines the function the FSD is to perform.
The opcode is located in bits 0 through 7 of word LSTOPC in
the list element. There are 256 possible opcodes which are
divided into two classes of 128 opcodes each. The class 1is
selected by bit 7 (OPCSTD) of the opcode. Standard opcodes,
selected when OPCSTD is set, perform data transfers on
FASTBUS (UNIBUS to FASTBUS or FASTBUS to FASTBUS). Each bit
within a standard opcode signifies a FASTBUS operation or
control function, such as read vs. write, block vs. single
word transfer, etc. These opcodes do all the FASTBUS
operations needed to transfer the data, from arbitration to
bus release. Special function opcodes, selected when OPCSTD
is clear, perform internal FSD operations as well as
primitive FASTBUS operations. Not all of the 256 possible
opcodes are implemented. An attempt to execute an
unimplemented opcode will result in an illegal opcode error
which aborts the list.

OPCODES Page 6-2

6.1 STANDARD OPCODES

Standard opcodes (200 through 377) perform complete
FASTBUS transactions. They arbitrate, address a device, do
an optional secondary address, read or write data in single
or block mode, and optionally release the address and bus.
Standard options can be decoded bit-wise into specific
FASTBUS operation and control, such as addressing control or
-data space, reading or writing, and single or block data
transfers. Table 6-1 outlines how each bit can be decoded.

Bit Name Value Description

7 OPCSTD 1 Must be set for standard opcodes

6 OPCFTD 0 UNIBUS buffer
FASTBUS Transfer Device

p—

5 OPCMDA O Single FASTBUS device address
1 Multiple Device Address

4 QOPCXAD O No secondary address
1 secondary address cycle required

3 OPCBLK O Single word transfer
1 Block transfer

2 OPCBRD O Single device addressing
1 Broadcast addressing

1 OPCCTL O Address data space
1 Address control space

0 OPCWRT O Write operation
1 Read operation

Table 6-1. Standard opcode decoding

OPCODES Page 6-3

The following sections describe each standard opcode in
detail. Each opcode will transfer in either 16 or 32-bit
word mode as specified by the value of OPCHLF in the options
word of the element. Those opcodes which do single word
writes also check the OPCWID bit for write immediate
functions. If OPCWID is set, the single 16 or 32-bit word
is taken from the word count word (LSTWCL/LSTWCH) of the
list element and not from the buffer. If OPCMDA is set, the
opcode is to be applied on the multiple device address and
the address contained in LSTPAL/LSTPAH is ignored. If
OPCFTD is set, the opcode transfers data to the FASTBUS -
Transfer Device instead of the UNIBUS buffer. The FASTBUS
Transfer Device is defined by special function opcode 060.

If the option bit OPCHFA is set, the device addressed
will remain connected to the FSD. Prior to addressing a new
device, the FSD will always first release any device left
connected to the FSD by this option.

For every opcode, the FASTBUS primary address is given
in LSTPAL/LSTPAH (except for multiple device address
opcodes); the secondary address is given in LSTSAL/LSTSAH;
the word count for block transfers is given in
LSTWCL/LSTWCH.

The word count is always given in terms of 16-bit words
even if the transfer mode is 32-bit. For instance, if it is
desired to write 256 32-bit words to a device, the word
count would be 512. If an odd count is given while in
32-bit mode, the count is rounded down (a word count of 11
would transfer 5 32-bit words). FASTBUS to FASTBUS
transfers also require the word coint to be in terms of
16-bit words.

The list element format for each standard opcode 1is
defined below. The offset is the number of bytes from the
current list element pointer.

Offset) contents
2, 0) option//opcode
6, 4) FASTBUS primary address
12,10) FASTBUE seccondary addrcoo
16,14) Word count or immediate data

The status element word always contains the number of 16-bit
words read or written by the FSD. The possible errors which
can occur during the execution of a standard opcode are:

Possible errors: SEEBOV, SEEWPR, SEEPER
SEEARB, SEERTO, SEESS(0,1,2)

OPCODES Page 6-4

The following table lists the standard opcodes which perform
UNIBUS to FASTBUS transfers with single device addressing.

Opcode R/W Space Block Broadcast Secondary

200 W data no no no
201 R data no no no
202 W control no no no
203 R control no no no
204 W data no yes no
205 R data no yes no
206 W control no yes no
207 R control no yes no
210 W data yes no no
211 R data yes no naQ
212 W control yes no no
213 R control yes no no
214 W data yes yes no
215 R data yes yes © no
216 W control yes yes no
217 R control yes yes no
220 W data no no yes
221 R data no no yes
222 W control no no yes
223 R control no "~ no . yes
224 W data no yes yes
225 R data no yes yes
226 W control no yes yes
227 R control no yes yes
230 W data, yes no yes
231 R data yeco ‘no vas
232 W control yes no yes
233 R control yes no yes
234 W data yes yes yes
235 R dala yes ves yes
236 W control yes .~ yes yes
237 R control yes ycs yes

Table 6-2. Single address opcodes for UNIBUS transfers

OPCODES Page 6-5

The following table lists the standard opcodes which perform
UNIBUS to FASTBUS transfers with multiple device addressing.

Opcode R/W Space Block Broadcast Secondary

240 W . data no no no
241 R data no no no
242 W control no no no
243 R control no no no
244 W data no yes no
245 R data no yes no
246 W control no . yes no
247 R control no yes no
250 W data yes no no
251 R data yes no no
252 %) control yes no no
253 R control yes no no
254 W data yes yes no
255 R data yes yes " no
256 W control yes yes no
257 R control yes yes ' no
260 W data no no yes
261 R data no no yes
262 W control no no yes
263 R control no " no . yes
264 W data no ~ yes yes
265 R data no yes yes
266 W control no yes yes
267 R control no yes. yes
270 W - data yes no yes
271 R data yes no yes
272 W control yes no yes
273 R control yes no yes
274 W data yes yes yes
275 R data yes yes yes
276 W control yes ~yes yes
277 R control yes yes yes

Table 6-3. Multiple address opcodes for UNIBUS transfers

OPCODES - Page 6-6

The following table lists the standard opcodes which ﬁerform
FASTBUS to FASTBUS transfers with single device addressing.

Opcode R/W Space Block Broadcast Secondary

300 W data no no no
301 R data no no . no
302 W control no no no
303 R control no no no
304 W data no yes no
305 R data no yes no
306 W control no yes no
307 R control no yes no
310 W data yes no no
311 R data yes no no
312 W control yes no no
313 R control yes no no
314 W data yes yes no
315 R data yes yes " no
316 W control yes yes no
317 R control yes yes no
320 W data no no yes
321 R data " mno no yes
322 W control no no yes
323 R control no no . yes
324 W data no . yes yes
325 R data no yes yes
326 W control no yes yes
327 R control no yes yes
330 W data yes “no yes
331 R data yeo no yes
332 W control yes no yes
333 R control yes no yes
334 W data yes yes yes
335 R data yes yes yes
336 W control yes - yes yes
337 R control yecs yes yes

Table 6-4. Single address opcodes for FASTBUS transfers

OPCODES Page 6-7

The following table lists the standard opcodes which perform
FASTBUS to FASTBUS transfers with multiple device
addressing.

Opcode R/W Space Block Broadcast Secondary

340 W data no no no
. 341 R data B + 1) no no
342 W control no no no
343 R control no no no
344 W data no yes no
345 R data no yes no
346 W control no yes no
347 R control no yes no
350 W data yes no no:
351 R data yes no no
352 W control yes no no
353 R control yes no no
354 W data yes yes ‘no
355 R data yes yes no
356 W control yes yes ' no
357 R control yes yes no
360 W data no no yes
361 R data no no yes
362 W control no " no . yes
363 R control no - no yes
364 W data no yes yes
365 R data no yes yes
366 W control no yes. yes
367 R . control no yes yes
370 w data yes uo yes
371 R data yes no yes
372 W control yes no yes
373 R~ control yes no yes
374 1% data yes yes yes
375 R data yes ~yes yes
376 W control yes yes yes
377 R control yes yes yes

Table 6-5. Multiple address opcodes for FASTBUS transfers

OPCODES Page 6-8

6.2 OPCODES 200 THROUGH 277

The following sections (6.2.1 through 6.2.32) describe
the standard function opcodes 200 through 277. These
opcodes transfer data between the FASTBUS and the UNIBUS

buffer. Only one FASTBUS device 1is addressed per list
element. ‘

6.2.1 Opcode 200 ~ Single Write Data Space
The FASTBUS device is addressed in data space and a single

word, "taken from either the buffer or list element, is
written to the device.

6.2.2 Opcode 201 - Single Read Data Space

The FASTBUS device is addressed in data space and a single
word is read from the device into the buffer.

6.2.3 Opcode 202 - Single Write Control Space

Same as opcode 200 except the device is addressed in control
space.

6.2.4 Opcode 203 - Single Read Control Space

Same as opcode 201 except the device is addressed in control
epace.

6.2.5 Opcode 204 - Broadcast Single Write Data Space
A broadcast address cycle is performed to data space. This

is followed by a write of a single word take from the buffer
or list element.

6.2.6 Opcode 205 - Broadcast Single Read Data Space

A broadcast address cycle is performed to data space. This
is followed by a read of a single word into the buffer.

OPCODES Page 6-9
6.2.7 Opcode 206 - Broadcast Write Single Word Control
Space

Same as opcode 204 except control space is addressed.

6.2.8 Opcode 207 - Broadcast Single Read Control Space

Same as opcode 205 except control space is addressed.

6.2.9 Opcode 210 - Block Write Data Space

The FASTBUS device is addressed in data space and a block of
words taken from the buffer is written to the device.

6.2.10 Opcode 211 - Block Read Data Space

The FASTBUS device is addressed in data space and a block of
words is read from the device into the buffer.

6.2.11 Opcode 212 - Block Write Control Space

Same as opcode 210 except control space is addressed.

6.2.12 Opcode 213 - Block Read Control Space

Same as opcode 211 except control space is addressed.

6.2.13 Opcode 214 - Broadcast Block Write Data Space

A broadcast address cycle is performed to data space. This
is followed by a block write of data from the buffer.

6.2.14 Opcode 215 - Broadcast Block Read Data Space

A broadcast address cycle is performed to data space. This
is followed by a block read of data into the buffer. The
interpretation of the data from thioc opcode is unclear.

OPCODES

6.2.15 Opcode

Same as opcode

6.2.16 Opcode

.Same as opcode

6.2.17 Opcode

216

214

217

215

220

The FASTBUS device

cycle

is followed

word write cycle.

6.2.18 Opcode

221

The FASTBUS device

cycle

is followed

word read cycle.

6.2.19 Opcode

Same as opcode

6.2.20 Opcode

Same as opcode

222

220

223

221

Page 6-10

~ Broadcast Block Write Control Space

except control space is addressed.

- Broadcast Block Read Contxol Space

except control space is addressed

— Secondary Single Write Data Space

is addressed in data space. The address
by a secondary address cycle and a single

- Secondary Single Read Data Space

is addressed in data space. The address
by a secondary address cycle and a single

- Secondary Single Write Control Space

except control space is addressed

—~ Secondary Single Read Control Space

except control space is addressed.

6.2.21 Opcode 224 - Broadcast Secondary Single Write Data
Space

A broadcast address cycle is performed to data space. The

address cycle is followed by a secondary address cycle and a

single write cycle.

6.2.22 Opcode 225 - Broadcast Secondary Single Read Data
Space

A broadcast address cycle is performed to data space. The

address cycle is followed by a secondary address cycle and a

single read cycle.

OPCODES Page 6-11
6.2.23 Opcode 226 -~ Broadcast Secondary Single Write
Control Space

Same as opcode 224 except control space is addressed.

6.2.24 Opcode 227 - Broadcast Secondary Single Read Control
Space

Same as opcode 225 except control space is addressed

6.2.25 Opcode 230 - Secondary Block Write Data Space
The FASTBUS device is addressed in data space. This address

cycle is followed by a secondary address cycle and a block
write. :

6.2.26 Opcode 231 - Secondary Block Read Data Space
The FASTBUS device is addressed in data space. This address

cycle is followed by a secondary address cycle and a block
read.

6.2.27 Opcode 232 - Secondary Block Write Control Space

Same as opcode 230 except control space 1is addressed.

6.2.28 Opcode 233 - Secondary Block Read Control Space

Same as opcode 231 except control space is addressed.

6.2.29 Opcode 234 - Broadcast Secondary Block Write Data
Space

A broadcast address cycle is performed to data space. This
address cycle is followed by a secondary address cycle and a
block write.

OPCODES Page 6-12

6.2.30 Opcode 235 - Broadcast Secondary Block Read Data
Space .

A broadcast address cycle is performed to data space. This
address cycle is followed by a secondary address cycle and a
block read. The result of this opcode is unclear.

6.2.31 Opcode 236 - Broadcast Secondary Block Write Control
‘ Space :

Same as opcode 234 except control space is addressed.

6.2.32 Opcode 237 - Broadcast Secondary Block Read Control
: Space i

Same as opcode 235 except control space is addressed.

OPCODES Page 6-13

6.3 OPCODES 240 THROUGH 277 -~ MULTIPLE DEVICE ADDRESS
OPCODES

Opcodes 240 through 277 perform the same functions as
opcodes 200 through 237. The extension is that the function
is performed on a list of FASTBUS device addresses. These
addresses are fetched from the Multiple Device Address table
contained within the FSD. This table is loaded by a special
‘function opcode. The - task specified by the opcode is
performed once for each address contained within the table.
The same result could be achieved if the list contained an
element for every address within the MDA table. Such
opcodes are useful for performing identical functions on a
large group of FASTBUS devices.

For each address contained in the MDA table, a-separate
status element 1s written into the ‘'status body. The
programmer should take this into consideration when
allocating a buffer for the status block. The status
element is of the same form as for the other standard
opcodes. In the present microcode, 63 addresses can be
loaded into the table at one time.

6.4 OPCODES 300 THROUGH 377 - FASTBUS TQO FASTBUS TRANSFER

Opcodes 300 through 377 perform the same functions as
opcodes 200 through 277 except that the data is mever
transferred to or from the UNIBUS buffer. The data buffer
actually resides in what is referred to as the FASTBUS
‘'ranster Device. 'I'his device, which 1n most cases will be a
random access memory, acts as the buffer for the transfer.
This FASTBUS to FASTBUS transfer is very hlgh speed since no
UNIBUS access is required.

OPCODES Page 6~-14

6.5 SPECIAL OPCODES

Special opcodes (000 through 177) perform internal FSD
operations as well as primitive FASTBUS operations. The
opcode for a special function cannot 'be decoded as the
standard opcodes. Also the use of the parmameter words in
the 1list element are opcode specific and cannot be
generalized. The use of a special opcode automatically

* implies the FASTBUS is not to be released when the opcode is

complete. This is the same as setting bit OPCHFB in the
options word of the element. Each opcode description
includes the parameter word usage, possible errors, and the
status element parameter word which will be written.

For example:

Status element: 16-bit word offset
Possible errors: SEEBOV, SEEIOP

2, 0) option//opcode

6, 4) FASTBUS primary address
12,10) FASTBUS secondary address
14,16) Word count, offset, data, etc

OPCODES Page 6-15

Opcode Description

000 Termination element

001 Diagnostic, dump internal FSD ram

002 Diagnostic, dump internal FSD registers
003 Move buffer address pointer

004 Set buffer address pointer

005 Save current buffer address pointer
006 Restore buffer address pointer

007 Save a computed word count

010 Call a sub-list

011 Return from a sub-list

012 Jump to a new list

013 Returns the version/edit of microcode

014 Set the multiple device address table
015 Read the multiple device address table
016 Set the system parameter block

017 Read the system parameter block

020 Set the burst size

021 Set the clock cycle (not used)

022 Set the retry counter

023 Set the arbitration vector (not used)

024 Set the primary address error response word
025 Set the secondary address error response word
026 Set the data error response word

027 reserved

030 List element interrupt

031 Arbitrate for the FASTBUS

032 Release FASTBUS mastership

033 Release FASTBUS address lock

034 Address FASTBUS in data space

035 Addiess FASTBUS iu woulivul space

036 Broadcast address FASTBUS in data space

037 Broadcast address FASTBUS in control space
040 UNIBUS transfer, write a single word of data
041 UNIBUS transfer, wrire a block of data

042 UNIBUS transfer, write a secondary address
043 reserved ’

044 FASTBUS transfer, write a single data word
045 FASTBUS transfer, write a block of data

046 FASTBUS transfer, write a secondary address
047 reserved

050 UNIBUS transfer, read a single data word
051 UNIBUS transfer, read a block of data

052 UNIBUS cransfer, read a secondary address
053 reserved

054 FASTBUS transfer, read a single word of data
055 FASTBUS transfer, read a block of data

056 FASTBUS transfer, read a secondary address
057 reserved

060 Set the FASTBUS Tranafer Device address

061 Read the FASTBUS Transfer Device address

Table 6-~6. Special function opcodes

OPCODES ‘ Page 6-16

6.5.1 Opcode 000 - Termination Element

The termination element causes the FSD to end the execution
of the list. This is the only element which does not have a
corresponding status element written into the status block.
Any device connected to the FSD remains connected. If the
FSD is bus master, it retains "control of the bus. The
status header 1is output to the status block and the FSD is
. marked "ready" in register FSDHCS. :

Status element: None written
Possible errors: None

2, 0) option//opcode
6, 4) unused
12,10) unused
16,14) unused

6.5.2 Opcode 001 - Diagnostic Opcode, Dump FSD Ram

This is a diagnostic opcode and is not intended for general
use. This opcode returns the contents of the 1K internal
FSD memory. The parameters are the starting address within
the ram (0 to 17777 octal) and the number of words to dump.
The data, which is always 32-bit words, is returned to the
buffer. A buffer overflow error will occur if there is not
enough room in the buffer. If the number of words to dump
goes beyond . the 1K 1length, an 1illegal operation error
ocecuro.

Status element: number of 16-bit words dumped
Possible errors: SEEBOV, SEEIOP, SEEWPR

2, 0) option//opcode

6, 4) starting ram address
12,10) unused

16,14) number of 16-bit words to dump

OPCODES Page 6-17

6.5.3 Opcode 002 - Diagnostic Opcode, Dump FSD Registers

This is a diagnostic opcode and is not intended for general
use. This opcode returns the contents of the seventeen
32-bit internal FSD registers. No parameters are needed for
this opcode. The contents of the registers are returned to
the buffer. A buffer overflow error will occur if there is
not enough room in the buffer.

‘Status element: number of 16-bit words dumped
Possible errors: SEEBOV, SEEWPR

2, 0) option//opcode
6, 4) unused
12,10) unused

16,14) unused

6.5.4 Opcode 003 - Move The UNIBUS Buffer Addreés Pointer

The UNIBUS buffer pointer is moved by the offset given in
the element. The offset is the number of 16-bit words to
move the pointer from its current location. It can be a
negative number (2°s complement). An 1illegal operation
error will result if the new pointer 1is lower than the
initial UNIBUS buffer address or beyond the defined buffer
length.

Status element: 16-bit word offset the pointer was moved
Possible errvors: SEEIQOP

2, 0) option//opcode

6, 4) unused

12,10) unused)
16,14) offset in 16-bit words to move the pointer

OPCODES Page 6-18

6.5.5 Opcode 004 - Set The UNIBUS Buffer Address Pointer

This opcode is similar to 003 except the offset is from the
initial UNIBUS buffer address given in the control block.
For example, to set the pointer to the initial address, the
offset would be 0. An illegal operation error will result
if the pointer is set beyond the defined bounds of the
buffer.

‘Status element: 16-bit word offset the pointer was moved
Possible errors: SEEIQP

2, 0) option//opcode

6, 4) unused

12,10) unused -
16,14) offset in 16-bit words to set the pointer

6.5.6 Opcode 005 - Save The UNIBUS Buffer Address Pointer

The current UNIBUS buffer address pointer 1is saved on an
internal FSD stack. A maximum of 15 pointers can be placed
on the stack. An illegal operation error will result if the
stack is full. The buffer pointer can also be incremented
at the same time to leave room for a word count word (see
opcode 007).

Status element: number of 16-bit words the pointer was
moved ‘

Possible errors: SEELOP

2, 0) option//opcode

6, 4) unused.

12,10) unused i

16,14) offset in 16-bit words to move the pointer

OPCODES : Page 6-19

6.5.7 Opcode 006 - Restore The UNIBUS Buffer Address
Pointer

A UNIBUS buffer address pointer, previously saved on the
internal stack by opcode 005, is restored as the current
pointer. An illegal operation error will result if the
stack is empty.

» Status element: zero
Possible errors: SEEIOP

2, 0) option//opcode
6, 4) unused
12,10) unused
16,14) unused

6.5.8 Opcode 007 - Save A Computed Word Count

This opcode is used together with opcode 005 to compute the
number of 16-bit words stored in the buffer. The last
address saved on the internal stack is popped and subtracted
from the current UNIBUS buffer address pointer. This number
is stored in the UNIBUS buffer at the saved address. The
current buffer address pointer remains unchanged. An
illegal operation error will result if the stack is empty.
A usefull sequence would be opcode 005 with an offset of 2
(1 if 16-bit transfer mode), FASTBUS reads, and ending with
this opcode.. The number of 16-bit words read from FASTBUS
wonld he written to the saved buffer location.

Status element: number of 16-bit words stored in the buffer
Possible errors: SERIQP

2, 0) option//opcode
6, 4) unused
12,10) unused
16,14) unused

OPCODES Page 6-20

6.5.9 Opcode 010 - Call A Sub-list

This opcode provides the means to create subroutine 1lists
which can be called by the main list. The starting address
of the sub-list is passed as an offset in 16-bit words from
the 1initial 1list address. The offset can be a negative
number. The address of the next list element is saved on an
internal stack up to a depth of 15. An illegal operation
. error will result if this limit is exceeded.

Status element: new UNIBUS list address
Possible errors: SEEIQOP

2, 0) option//opcode

6, 4) unused

12,10) unused .

16,14) offset in 16~bit words from initial list address

6.5.10 Opcode 011 - Return From A Sub-list Call

This is the complement of opcode O010. The 1list address
saved on the stack by opcode 010 is popped and used as the
address for the next list element. An 1illegal operation
error will result if the stack is empty. '

Status element: saved UNIBUS list address
Possible errors: SEEIOP

2, 0) oprion//opcode

6, 4) unused

12,10) unused
16,14) unused

OPCODES Page 6-21

6.5.11 Opcode 012 - Jump To A New List

This opcode is similar to opcode 010 except the current list
address is not saved on the stack. The address of the new
list is passed as an offset in 16~bit words from the initial
list address and can be negative. There are no errors
associated with this element.

. Status element: new UNIBUS list address
Possible errors: None

2, 0) option//opcode

6, 4) unused

12,10) unused

16,14) offset in 16-bit words from initial.list address

6.5.12 Opcode 013 - Return The Version Of The Microcode

The version, release level and edit level of the microcode
is returned 1in the status element. The edit number is
contained in bits 0 through 15, the release level in bits 16
through 23, and the version in bits 24 through 31.

Status element: version/release/edit number
Possible errors: None

2, 0) option//opcode

6, 4) unused

12,10) unused
16,14) unused

OPCODES ' : Page 6-22

6.5.13 Opcode 014 - Set The Multiple Device Address Table

The Multiple Device Address table 1is wused by standard
opcodes 240 through 277 and 340 through 377. This opcode
loads the table from the UNIBUS buffer into memory internal
to the FSD. Each primary address in the table is 32-bits.
A maximum of 63 primary addresses can be loaded into the
table. If the number is 0, the current table is cleared.
» Any attempt to execute a MDA opcode with a cleared table
will result in an illegal operation error. The MDA table
remains loaded between lists. It is only cleared during a
powerup or hardware reset.

Status element: number of primary addresses stored
Possible errors: SEEBOV, SEEIOP

2, 0) option//opcode

6, 4) unused

12,10) unused

16,14) number of primary addresses to load

6.5.14 Opcode 015 — Read The Multiple Device Address Table

The Multiple Device Address table is copied to the UNIBUS
buffer. The total number of primary addresses returned is
stored in the status element. Each primary address is a
32-bit word.

Status element: number of primary addresses stored

Possible errors: SEEBOV, SEEWPR
2, 0) option//opcode
6, 4) unused
12,10) unused
16,14) unused

OPCODES Page 6-23

6.5.15 Opcode 016 - Set The System Parameter Block

The system parameter block is a block of eight 32-bit words
which contains parameters for the operation of the FSD. The
parameter block is read from the UNIBUS buffer and stored in
memory internal to the FSD. Not all entries in the
parameter block are used by the FSD. However all locations
must be allocated in the buffer. The contents of these

. locations are ignored, but are stored -within the FSD as

given. Opcode 017 which reads this table will return the
contents as stored. The system parameter block remains
loaded between lists. It is only cleared during a powerup
or hardware reset. The following table outlines the
contents of the system parameter block. Each entry in the
system parameter block can be set individually by other
special function opcodes.

Offset Name Description

0 SYPBRS Burst size for block transfers
4 SYPCLK Clock cycle (unused)

10 SYPRTY Retry counter 4

14 SYPARB Arbitration vector (unused)

20 SYPAEC Primary address error control word
24 SYPXEC Secondary address error control word
30 SYPDEC Data error control word

34 reserved for future assignment

Status element: always contains 16
Possible errors: SEEBOV, SEEIOP

2, 0) option//opcode
6, 4) unused
12,10) unused
16,14) unused

6.5.16 Opcode 017 - Read The System Parameter Block

This opcode will read the system parameter block into the
UNIBUS buffer. The system parameter block is outlined in
opcode 016. :

Status element: always contains 16

Possible errors: SEEBOV, SEEWPR

2, 0) option//opcode
6, 4) unused
12,10) vnused
16,14) unused

OPCODES ‘ Page 6-24

6.5.17 Opcode 020 - Set The Burst Size

Due to hardware restrictions, there is a maximum limit as to
the number of words which can be transferred at one time on
the FASTBUS. Block transfer requests greater than this
maximum are broken down into several bursts whose length is
governed by the burst size. The burst size 1is independent
of the transfer mode size (16 or 32-bit). The hardware
. maximum for a burst is 256 words. The default setting for
" the burst size is 256. This opcode allows the burst size to
be set to any value between 1 and 256, - If the new burst
size exceed these boundaries, the maximum burst size is
used. Since data-is transferred between FASTBUS and the
UNIBUS through a memory buffer internal to the FSD, the
larger the burst size the 1less overhead involved in the
transfer.

Status element: new burst size
Possible errors: None

2, 0) option//opcode
6, 4) unused
12,10) unused
16,14) new burst size

6.5.18 Opcode 021 - Set The Clock Cycle

This opcode will change the clock cycle entry in the system
parameter block. The clock cycle is not used by the FSD and
the contents of this word are ignored. Opcode 017 (read
system parameter block) will return the contents of this
word.

]

Status element: new clock cycle
Possible errors: None

2, 0) option//opcode
6, 4) unused

12,10) unused
16,14) new clock cycle

OPCODES Page 6-25

6.5.19 Opcode 022 - Set The Retry Counter

FASTBUS errors can be automatically retried by the FSD. The
retry counter is the number of times the FSD will attempt to
retry the same FASTBUS cycle before giving up with a fatal
error. The default retry counter is 5 and can be set to any
number between 0 and 2**18. If the new count exceeds these
boundaries, the maximum value is used.

* Status element: new retry counter
Possible errors: None

2, 0) option//opcode
6, 4) unused

12,10) unused

16,14) new retry counter

6.5.20 Opcode 023 - Set The Arbitration Vector

This opcode will change the arbitration vector entry in the
system parameter block. The arbitration vector cannot be
changed by the FSD microcode. It can only be modified by
the PDP-11 through the I/0O-page register or by accessing CSR
8 from FASTBUS. The entry for the arbitration vector 1is
therefore ignored but is stored unmodified in the FSD.
Opcode 017 (read system parameter block) will return the
contents of this word. '

Status element: new arbitration vector
Possible errors: None

2, 0) option//opcode

6, 4) unused

12,10) unused
16,14) new arbitration vector

OPCODES Page 6-26

6.5.21 Opcode 024 —~ Set The Primary Address Error Response
Word

This opcode sets the primary address error response word for
the FSD.

Status element: primary address error response word
Possible errors: None

2, 0) option//opcode

6, 4) unused

12,10) unused
16,14) primary address error response word

6.5.22 Opcode 025 - Set The Secondary Address Error
Response Word

This opcode sets the secondary address error response word
for the FSD. :

Staius element: secondary address error response word
Possible errors: None

2, 0) option//opcode

6, 4) unused

12,10) unused
16,14) secondary address error response word’

6.5.23 Opcode 026 - Set The Data Error Response Word
This opcode sets the data error response word for the FSD.
Status element: data error,responSé word
Possible errors: None

2, 0) option//opcode

6, 4) unused

12,10) unused
16,14) data error responece word

OPCODES - Page 6-27

6.5.24 Opcode 030 - List Element Interrupt

This opcode emulates the setting of the halt bit (HCSHLT) in
FSDHCS for the FSD. After the execution of the element, the
halt bit in FSDHCS is set to one, the FSD becomes ready
(generating an interrupt if HCSIE is also set), and the FSD
waits until either the halt bit is cleared or the execution
bit (HCSXCT) is set. This opcode is wuseful for
. read/modify/write type operations or conditional execution
of the remaining portion of the list based on data read in
by the portion of the list preceeding this element.

Status element: zero
Possible errors: None

2, 0) option//opcode
6, 4) unused
12,10) unused
16,14) unused

6.5.25 Opcode 031 - Arbitrate For FASTBUS

This opcode allows the PDP-11 to arbitrate for the FASTBUS.
If the FSD is already FASTBUS master, the bus and any
address are released prior to the new arbitration cycle.
Arbitrating for the FASTBUS is not required when doing the
primitive opcodes since the FSD will automatically arbitrate
whenever a FASTBUS primary address cycle is to be performed
and it is not master of the FAETBUS.

Status element: zero

Possible errors: SEEARB
2, 0) option//opcode
6, 4) unused

12,10) unused
16,14) unused

OPCODES Page 6-28

6.5.26 Opcode 032 - Release FASTBUS Mastership

This opcode will make the FSD release any address lock and
mastership of FASTBUS. If the FSD is not master of FASTBUS,
the opcode is a NOOP. C

Status element: zero

© Possible errors: None

2, 0) option//opcode
6, 4) unused
12,10) unused
16,14) unused

6.5.27 Opcode 033 - Release The FASTBUS Address Lock

The FASTBUS device currently addressed is released however
FASTBUS mastership 1is retained. If there 1is no device
currently addressed the opcode is a NOOP.

Status element: zero

- Possible errors: None

2, 0) option//opcode
6, 4) unused

12,10) unused
16,14) unused

OPCODES Page 6-29

6.5.28 Opcodes 034,035,036,037 - FASTBUS Primary Address
Cycles

These four opcodes perform the four different primary
address cycles available on FASTBUS. For all four, the
FASTBUS primary address is taken from the primary address
word of the list element. If the FSD is not FASTBUS master,
an arbitration cycle is done prior to the primary address
. cycle. If a device 1is already addressed, it is released
prior to the new address cycle.

The four possible primary address cycles are:

034 Address data space
035 Address control space
036 Broadcast data space
037 Broadcast control space

Status element: =zero
Possible errors: SEEARB, SEERTO, SEESS(0,1,2)

2, 0) option//opcode

6, 4) FASTBUS primary address
12,10) unused

16,14) unused

6.5.29 Opcode 040 - UNIBUS Transfer, Single Word Write Of
DalLa '

A single data word is written to the FASTBUS device
currently addressed. The data can come from either the
UNIBUS buffer or the lisl elewmeul dependiing on the setting
of bit OPCWID in the options word., The data word written is
either 16 or 32-bits depending on the setting of the OPCHLF
bit in the options word. Should the FSD not be connected to
a device, the list will abort with an illegal operation
error.

Status element: number of 16-bit words written (0, 1, or 2)
Possible errors: SEEBOV, SEEIOP, SEERTO, SEESS(0,1,2)

2, 0) option//opcode

6, 4) unused

12,10) unused
16,14) immediate data if OPCWID=1

OPCODES Page 6-30

6.5.30 Opcode 041 - UNIBUS Transfer, Block Write Of Data

A block of data words taken from the UNIBUS buffer is
written to the FASTBUS device currently connected by the
FSD. If no device is connected an illegal operation error
will abort the 1list. The transfer will be either 16 or
32-bit mode depending on the setting of the OPCHLF bit in
the options word. :

Status element: number of 16-bit words written
Possible errors: SEEBOV, SEEIOP, SEERTO, SEESS(0,1,2)

2, 0) option//opcode
6, 4) unused

12,10) unused

16,14) word count

6.5.31 Opcode 042 - UNIBUS Transfer, Write A Secondary
Address :

Opcode 042 does a secondary address cycle to the device
currently addressed. If no device is connected, the list is
terminated in an illegal operation error. The secondary
address is taken from the secondary address word of the list
element. '

Status element: zero

Possible errors: SEEIOP; SEERTO, SEESS(0,1,2)
2, 0) option//opcode
6, 4) unused

12,10) FASTBUS secondary address
16,14) unused T

OPCODES Page 6-31

6.5.32 Opcode 044 — FASTBUS Transfer, Single Word Write Of
Data

A single data word 1is written to the FASTBUS device
currently addressed. The data can come from either the
FASTBUS transfer device or the list element depending on the
setting of bit OPCWID in the options word. The data word
written is either 16 or 32-bits depending on the setting of
the OPCHLF bit in the options word. Should the FSD not be
connected to a device, the list will abort with an illegal
operation error.

Status element: number of 16-bit words written (0, 1, or 2)
Possible errors: SEEBOV, SEEIOP, SEERTO, SEESS(0,1,2)

2, 0) option//opcode

6, 4) unused -

12,10) unused

16,14) immediate data if OPCWID=1

6.5.33 Opcode 045 - FASTBUS Transfer, Block Write Of Data

A block of data words taken from the FASTBUS transfer device
is written to the FASTBUS device currently connected by the
FSD. If no device is connected an illegal operation error
will abort the list. The transfer will be either 16 or
32-bit mode depending on the setting of the OPCHLF 'bit in
the options word.

Status element: number of 16-bit words written
Possible errors: SEEBOV, SEEIOP, SEERTO, SEESS(0,1,2)

2, 0) option//opcode
6, 4) unused

12,10) unused

16,14) word count

OPCODES Page 6-32

6.5.34 Opcode 046 - FASTBUS Transfer, Write A Secondary
Address

Opcode 044 does a secondary address cycle to the device
currently addressed. If no device is connected, the list is
terminated in an illegal operation error. The secondary
address is taken from the secondary address word of the list
element. This opcode performs the same function as opcode
© 042,

Status element: zero
Possible errors: SEEIOP, SEERTO, SEESS(0,1,2)

2, 0) option//opcode

6, 4) unused

12,10) FASTBUS secondary address
16,14) unused

6.5.35 Opcode 050 - UNIBUS Transfer, Single Word Read Of
Data

A single data word is read from the FASTBUS device currently
addressed and stored in the UNIBUS buffer. The data word
read is either 16 or 32-bits depending on the setting of the
OPCHLF bit 1in the options word. Should the FSD not be
connected to a device, the list will abort with an illegal
operation error.

Status element: number of 16-bit words read (0, 1, or 2)

Possible errors: SEEBOV, SEEIOP, SEEWPR, SEEPER
SEERTO, SEESS(0,1,2)

2, 0) option//opcode
6, 4) unused :
12,10) unused

16,14) unused

OPCODES Page 6-33

6.5.36 Opcode 051 - UNIBUS Transfer, Block Read Of Data

A block of data words 1is read from the FASTBUS device
currently connected and written into the UNIBUS buffer. If
no device is connected an illegal operation error will abort
the 1list. The transfer will be either 16 or 32-bit mode
depending on the setting of the OPCHLF bit in the options
word.

" Status element: number of 16-bit words read

Possible errors: SEEBOV, SEEIOP, SEEWPR, SEEPER
SEERTO, SEESS(0,1,2)

2, 0) option//opcode
6, 4) unused
12,10) unused
16,14) unused

6.5.37 Opcode 052 - UNIBUS Transfer, Read A Secondary
Address

This opcode performs a secondary address read cycle on the
device connected. If no device is connected, the list will
abort with an illegal operation error. This type of cycle
will return the current value of the NTA register within the
device. The data returned by the device is always stored in
the UNIBUS buffer as a 32-bit word. ‘

Status elemenf: number of 16-bit words read (0 or 2)

Possible errors: SEEBOV, SEEIOP, SEEWPR, SEEPER
SEERTO, SEESS(0,1,2)

2, 0) option//opcode
6, 4) unused
12,10) unused
16,14) unused

OPCODES Page 6-34

6.5.38 Opcode 054 - FASTBUS Tramsfer, Single Word Read Of
Data

A single data word is read from the FASTBUS device currently
addressed and stored in the FASTBUS transfer device. The
data word read is either 16 or 32-bits depending on the
setting of the OPCHLF bit in the options word. Should the
FSD not be connected to a device, the list will abort with
“an ‘illegal operation error.

Status element: number of 16-bit words read (0, 1, or 2)

Possible errors: SEEBOV, SEEIOP, SEEPER
SEERTO, SEESS(0,1,2)

2, 0) option//opcode
6, 4) unused
12,10) unused
16,14) unused

6.5.39 Opcode 055 - FASTBUS Transfer, Block Read Of Data

A block of data words is read from the FASTBUS device
currently connected and written into the FASTBUS transfer
device. If no device 1is connected an 1illegal operation
error will abort the list. The transfer will be either 16
or 32-bit mode depending on the setting of the OPCHLF bit in
the options word. ’

Statue olement: aumber of 16=bit words read

Possible errors: SEEBOV, SEEIOP, SEEPER
SEERTO, SEESS(0,1,2)

2, 0) option//opcode
6, 4) unused :
12,10) unused

16,14) unused

OPCODES Page 6-35

6.5.40 Opcode 056 - FASTBUS Transfer, Read A Secondary
Address '

This opcode performs a secondary address read cycle on the
device connected. If no device is connected, the list will
abort with an illegal operation error. This type of cycle
will return the current value of the NTA register within the
device. The data returned by the device is always stored in
.the FASTBUS transfer device as a 32-bit word.

Status element: number of 16-bit words read (0 or 2)

Possible errors: SEEBOV, SEEIOP, SEEPER
SEERTO, SEESS(0,1,2)

2, 0) option//opcode
6, 4) unused
12,10) unused
16,14) unused

6.5.41 Opcode 060 - Set The FASTBUS Transfer Device Address

This opcode sets the FASTBUS Transfer Device address which
is used by standard opcodes 300 through 377 and special
function opcodes 44, 45, 46, 54, 55 and 56. The list
element contains the primary address, the secondary address
if needed, and the total number of words that can be stored
in the device. If OPCFTS is clear, only a primary address
is done by the FSD when the FASTBUS Transfer Device 1is
addressed. Should OPCFTS be set, the FSD -will do a
secondary address after the primary address connection to
the device.

Status elemeul: zero
Possible errors: none
2, 0) option//opcode
6, 4) FASTBUS primary address

12,10) secondary address (optional)
16,14) maximum transfer word count

OPCODES Page 6-36

6.5.42 Opcode 061 - Read The FASTBUS Transfer Device
Address ' :

This opcode causes the FSD to write the current information
it contains on the FASTBUS Transfer Device. Five 32-bit
words are returned to the UNIBUS buffer. The first four
words returned are the list element which was used to load
the FASTBUS Transfer Device. The fifth word contains the
“total number of words transferred to this device since it
was defined.

Status element: always contains 5
Possible errors: SEEBOV, SEEWPR
2, 0) option//opcode
6, 4) unused

12,10) unused
16,14) unused

CHAPTER 7

ERROR RESPONSES

During the course of operations, FASTBUS errors are
likely to occur. In some circumstances the user may want to
ignore the error. In other cases a retry might be in order.
In others, the error could be considered fatal. To help
speed up total throughput between the UNIBUS and FASTBUS,
the FSD 1is able to handle errors 'without the PDP-11
intervening. The wuser programs the FSD error control
through the error response words (ERW). 'These words, which
are part of the system parameter block; contain information,
the error response code, which informs the FSD how to handle
non-zero slave status response and response ' timeouts. The
three basic FASTBUS cycles (primary addressing, secondary
addressing and data) each have their own error response
word. Parity error responses can also be programmed. . Their
error response code is contained in the list element options
word. ‘

When an error occurs, the FSD looks in the appropriate
location for control information. For response timeouts and
slave status errors, the FSD refers to the system parameter
block error response words. For parity errors, the FSD
looks at the list element. The error response code (ERC) is
decoded and the F8D takes the appropriate action based upon
this code.

ERROR RESPONSES Page 7-2

7.1 ERROR RESPONSE WORDS

Error response words (ERW) are 32~bit words contained in the
system parameter block which contain the information the FSD
needs for handling FASTBUS errors. The ERW controls the
FSD“s response to non-zero slave status responses (SS=1
through SS=7) and response timeouts (no AK or DK). The ERW
is broken into eight 4-bit fields. The first field, in bits
-0-3, contains the error response code (ERC) for response
timeouts. The remaining fields contain the ERC for SS
responses 1 through 7.

There are three different error response words, one for each
type of FASTBUS cycle. The primary address ERW controls all
errors which occur during primary address cycles. The
secondary address ERW controls all errors which occur during
secondary address cycles. The data ERW controls all errors
which occur during data cycle, both single and block mode
transfers. The FSD remembers the setting of the ERWs
between lists. They are only changed by either loading a
new system parameter block or by executing the list elements
which specifically change the error response words. The
default setting for all the fields in the error response
words is such that all errors are treated as fatal errors.

+ + + + + + + + +

! Most significant bits ! Least significant bits !
tm—m + + + -+ + o R e
115 12111 8!7 413 0!15 12111 81!7 413 0!
+ + + + 4 + + + +
10 314 718 11112 15116 19!20 23124 27128 311!
e e + + S + -+ —t————— +
! ! ! ! ! ! ! ! !
I RTO ! SS=1 ! S§8=2 ! 8S=3 ! §S8=4 ! §S8=5 ! §88=6 ! §S=7 |
! ! ! 1 ! ! ! ! !
+ + -+ + + + + -+ —+

Table 7-1. Error response word layout

ERROR RESPONSES Page 7-3

7.2 PARITY ERROR RESPONSE

Parity errors, which can only be detected when the FSD
performs FASTBUS read cycles, are controled on a list
element basis. Unlike response timeout and slave status
errors, the error response code for parity errors is
contained within the list element performing the FASTBUS
read cycle. The ERC resides in the list element options
.word, bits 16 through 19 (bits 12 through 15 of LSTOPC).

+ + e o o + + -+ +
! LSTOPT ! LSTOPC !
+- + ——t S gt + + +—— + +
115 12111 8!7 413 0!15 12111 8!7 413 0!
+- +- += -+ + ——te——— + +=- +
10 15116 19120 23124 31!
+ + + -—+ + + + -+ +
! IParity! ! !
! Options ! ERC ! ! Opcode !
! ! ! ! !
+ —+- + o + + -+ - +

Table 7-2. List element options word layout

7.3 ERROR RESPONSE CODES

There are 16 possible error response codes (ERC 0 . through
15), however . the FSD currently only uses seven of these.
The seven different error response codes are:

ERC Description

0 Ignore the error

1 Reset retry - fatal

2 End of block - terminate the element
3 Fatal error - terminate the list

4 unused

5 Reset retry - ignore

6 Busy retry -~ fatal

7 Busy retry - ignore

Error response codes 4 and 8 through 15 currently perform
the same function as ERC 3. The user should avoid using
these codes since they may be defined in the future.

ERROR RESPONSES ' Page 7-4

7.3.1 ERC 0 - Ignore The Error

This is a very usefull response for most types of errors.
Expected slave status errors could be ignored. Many
applications (i.e, physics data acquisition) also like to
ignore parity errors. It is not advised that this ERC be
used in the response timeout field. If used in the RTO
field, chances are the list will terminate with an illegal
. operation error (SEEIOP). All errors which are ignored are
recorded in status element and the warning flag (SEEWRN) is
set.

7.3.2 ERC 1 - Reset Retry, Fatal

The FSD can automatically handle retries for all FASTBUS
errors. The number of times the FSD will attempt the retry
is programmed through the retry counter in the system
parameter block. The FSD will do retries in a different
mannor depending on the type of FASTBUS device and also on
what TFASTBUS cycle the error occurs. - For primary and
secondary addressing errors, the FSD simply repeats the
cycle with the same data. Single word data transfers also
simply repeat the cycle. Block transfers, however, need to
be handled specially since = the slave automatically
increments the next transfer address (NTA) after each data
transfer. '

If the device is a FIFO (OPCFIO is set in LSTOPT), the FSD
retries the. data transfer by shifting to single word mode
(mode select = 0). If the data is accepted, the FSD shifts
back to block transfer mode (mode select = 1) and transfers
the remaining data words.

For all other devices, the FSD detaches (lowers AS), then
readdresses the device. If no secondary address cycle was
ever issued, the FSD assumes the primary address 1is a
logical address. The total number of words transferred
prior to the error are added to the primary address. This
modified 1logical address contains the correct internal
address to start transferring at the word in error. If a
secondary address cycle had been issued, a primary address
cycle with the orignal address is issued. This is followed
by a secondary address cycle whose address is the original
secondary address plus the number of words transferred
correctly. In either case the slave should have an NTA
which points at the word in error.

The FSD retries until either the cycle completes without an
error, oOr the maXimum retry count is reached. When the FSD
runs out of retry attempts, the error is treated as a fatal
error (see ERC 3, fatal errors). The status element
indicates that a retry was attempted (SEERTY, SEEWRN are set
in STEERW).

ERROR RESPONSES Page 7-5

7.3.3 ERC 2 - End Of Block, Terminate The Element

Errors programmed with this response code cause the FSD to
stop executing the current list element. The FSD terminates
the element as if no error occurred and proceeds with the
next element in sequence. This type of response is useful
" when doing indeterminant length block transfers. Slaves
usually respond with SS=2 when they have no more data. This
code would terminate the element as if the user had asked to
transfer only the total number of words of data available
from the device. The user could also wuse this code for
primary address response timeouts to skip a list element
whose primary address does not correspoind to any FASTBUS
device. : .

7.3.4 ERC 3 - Fatal Error, Terminate The List

This code will cause the FSD to abort any further execution.
If the FASTBUS Operation was a write, the UNIBUS buffer
pointer or the FASTBUS transfer device address are set to
point at the word in error. If the FASTBUS Operation was a
read, all data is written to the UNIBUS buffer or FASTBUS
transfer device. This includes the word in error, however
the buffer pointer is set to point at the word in error.

7.3.5 ERC 5 - Reset Retry, Ignore

This code performs a retry in the same mannor as ERC 1. The
difference however is the way the FSD treats errors which
cannot be corrected by retrying. If the FSD runs out of
retry attempts the error is ignored in the same fashion as
ERC 0.

7.3.6 ERC 6 - Busy Retry, Fatal

Busy retries are handled the same as reset retries except
for block transfers. If the error occurred during a block
transfer cycle, no reset of the device is performed; the
cycle 1is simply repeated. This error code is usefull for
errors such as SS=1 where the NTA is known not to have
incremented. As with ERC 1, the list element aborts with a
fatal error if the error cannot be corrected.

ERROR RESPONSES Page 7-6

7.3.7 ERC 7 - Busy Retry, Ignore

This error reponse code performs the same action as ERC 6
except that uncorrectable errors are ignored.

CHAPTER 8

MULTIPLE DEVICE ADDRESSING

Many times in data acquisition and control, .the same
" function needs to be performed on a large number of devices.
The user could generate a list containing a separate 1list
element for each device which needs to be addressed.
However there is a much easier way to do this with the FSD.
The FSD has a feature called Mutiple Device Addressing
(MDA). 'This feature allows the user to perform the same
standard opcode on a list of devices which had previously
been programmed into the FSD. The list of devices is loaded
from the UNIBUS buffer into FSD internal memory. Since the
FSD does not have to fetch a new list element from the
UNIBUS for each device, total throughput is increased.

MULTIPLE DEVICE ADDRESSING Page 8-2

8.1 USING MULTIPLE DEVICE ADDRESSING

Prior to executing any MDA opcodes, the 1list of
addresses must be loaded into the FSD. The list is loaded
via special function opcode 014. The 1list 1is stored in
memory internal to the FSD. ' The list can contain between 0
and 63 different device addresses. These addresses are used
during .the primary address cycle of the opcode which
. utilizes the MDA table. If no addresses are given,
" executing an MDA opcode will result in a null operation.
Initially the table is empty.

Once the table has been loaded the user can execute any
MDA opcode. The opcode is executed once for each address
contained within the table. These addresses are used during
the primary address cycle. The primary address contained
within the 1list element (LSTPAL/LSTPAH) 1is * ignored.
Secondary addresses are still taken from the list element
(LSTSAL/LSTSAH). Block transfer word counts and immediate
data are also taken from the list element (LSTWCL/LSTWCH).

All option bits in LSTOPT and LSTOPC are honored.
These include OPCHFB, OPCHFA and OPCHFX. Normally the FSD
will release FASTBUS between execution of the opcode on the
different addresses in the table. If however any of the
hold bits are set, the bus and/or device will not be
released. Block transfer burst rules are also obeyed by the
FSD.

8.2 MDA BUFFER MANAGEMENT

MDA opcodes use the buffer in the same manner as if all
the addresses in the MDA table had their own list element.
For read opcodes, all data read from the FASTBUS devices is
packed in the buffer in sequential order. For write
opcodes, the buffer pointer is moved as data is written to
the FASTBUS device. Because of the way write operations are
done, indeterminate block transfer writes with an MDA opcode
could have unexpected results.

MULTIPLE DEVICE ADDRESSING Page 8-3

8.3 MDA STATUS ELEMENTS

The FSD will output a status element for each address
an MDA opcode used during execution. Since this could cause
confusion when examining the status block, the FSD also
outputs a status element to indicate an MDA opcode was being
executed. This MDA header element is output prior to
executing the opcode with any address. The information bit
SEEMDA is set indicating this is an MDA header element. The

‘status element word contains the number of device addresses

stored in the table. This may be the number of status
elements which follow in the block which the MDA opcode will
output. Due to fatal errors, this will not necessarily be
true.

Following the MDA header element, the FSD will write
status elements for each primary address the optode used
during execution. The format of the status element is the
same as for other standard functions opcodes.

8.4 [ERROR HANDLING

MDA opcodes obey the same rules for error handling
which other standard function opcodes use. However some
clarification is needed for using the end of block and fatal
error response codes.

8.4.1 End Of Block Response Code

If the FSD response to an error 1is the end of block
response, the current list element is not aborted as is the
case for other opcodes. The FSD terminates the opcode for
the current address, writing the status element to the
status block. The FSD then goes to ‘the next address in the
table instead of the next list element in the list.

8.4.2 Fatal Error Response Code

When a error occurs whose response code is fatal, the FSD
aborts the 1list at the given point. No other addresses
within the MDA table are referenced.

CHAPTER 9

FASTBUS TRANSFER ADDRESSING

Many applications of FASTBUS require that data be moved
from one FASTBUS device to another. It is also desirable
that this motion of data be done at FASTBUS transfer rates.
However moving the data into the UNIBUS buffer through the
FSD forces the data to be transferred at UNIBUS rates. For
this reason the FSD has a feature called FASTBUS Transfer
Addressing (FTA). This allows the FSD to move data between
two different FASTBUS devices without moving the data into
the UNIBUS buffer. The second FASTBUS device performs the
same function as the UNIBUS buffer.

FASTBUS TRANSFER ADDRESSING Page 9-2

9.1 FASTBUS TRANSFER ADDRESSING DEVICE

Almost any FASTBUS device can be used as the buffer in
FASTBUS Transfer Addressing opcodes. There are only two
restrictions placed on the FASTBUS Transfer Device.

1. The addressing space within the FASTBUS Transfer
Device used for the buffer must be in FASTBUS data
space. Transfers to control space are not
supported. v

2. The buffer must be accessable by direct addressing.
Indirect addressing modes, such as 1is wused to
access the Segment Interconnect Route Table, are
not supported.

To summarize, the FASTBUS Transfer Device must be similar to
a random access memory module. However first in, first out
type of devices can be used as the buffer.

9.2 USING FASTBUS TRANSFER ADDRESSING

Prior to executing any opcodes which wuse the FASTBUS
Transfer Addressing feature, the wuser must define the
FASTBUS Transfer Device (i.e. the buffer). -This 1is done
via special function opcode 060. This list element tells
the FSD the primary address, secondary address and size of
the FASTBUS Transfer Device. The option bits OPCFIO and
OPCFTS are also used by the FSD to determine certain
properties of the device. If the device is a FIFQ, QPCFIO
must be set to correctly handle error retries during block
transfers. If a secondary address must be issued prior to
any data transfers (i.e. the primary address is a
geographical address), then OPCFTS must be set. All other
options bit are ignored.

Once the FASTBUS Transfer Device has been defined, the
user can execute any standard function opcode which uses the
FTA. It is also possible to use special function opcodes
which do primitive FASTBUS data transfers with the FASTBUS
Transfer Device.

FASTBUS TRANSFER ADDRESSING Page 9-3

9.3 FASTBUS TRANSFER ADDRESSING BUFFER MANAGEMENT

Once defined, the FSD will remember the FASTBUS
Transfer Device between lists. This includes the number of
words transferred. As with the UNIBUS buffer, data 1is
always sequentially read and written to the device. The
user can read the current definition of the FASTBUS Transfer
Device as well as the number of words read/written to it
. since the last definition. This can be done via special

function opcode 061.

9.4 TFASTBUS TRANSFER ADDRESSING ERROR HANDLING

In the coarse of operations, errors can result during
data transmission to the FTD. When this occurs, the FSD
uses the same error handling techniques as for other FASTBUS
data tramnsfer errors. The same error response words are
used and the error response codes have the same meaning.
Since the FSD buffers data internally when transfering the
data, it is possible that data can be lost if fatal or end
of block errors occur when transfering to the FASTBUS
Transfer Device.

APPENDIX A

ACKNOWLEDGEMENTS

Design for the FASTBUS Segment Driver microcode was prepared
with help of the following people.

R. Brown, R. Downing, M. Haney
B. Jackson, K. Nater and J. Wray
University of Illinois
Loomis Labratory of Physics
1110 W. Green Street
Urbana, Illinois 61801

E. Barsotti, M. Larwill, T. Lagerlund,
R. Pordes and L. Taff
Fermilab, P. 0. Box 500
Batavia, Illinois 60510

D. Gustavson, C. Logg
Stanford Linear Accelerator Center
Stanford University
Stanford, California 94305

Page Index-1

INDEX

—
[
w

Addressing differences .

Control block

address 2-1, 2-5

definition 1-3 :

description 3-1

extended address bits 2-10

NXM . . ., . 2-9
CSRAl6 2-7, 2-10
CSRA17 ¢« v ¢« ¢ v « « .+ 2-7, 2-10
CSRERR . . .« « « « « « &« o + & 2-7 to 2-8
CSRHFA . . « « ¢« « o « o « « » 2-7, 2-9, 3-3, 5-3
CSRHFB . . + ¢« « o « « o « &« « 2-7, 2-9, 3-3
CSRHLT . . 2-7 to 2-8
CSRLEI . . 2-7 to 2-8
CSRLRE . . 2-7 to 2-8, 3-4
CSRNXB . . 2-7, 2-10
CSRNXC . . 2-7, 2-9
CSRNXL 2-7, 2-10
CSRNXS 2-7, 2-9
CSRRST . . 2-7, 2-9 to 2-10
CSRSBO . . 2-7 to 2-8 :
CSRWRN . . 2-7, 29
CTLBFA 3-1, 3-4
CTLBFL 3-1, 3-4
CTLBLM . . . 2-8, 3-1, 3~4
CTLLBA 3-1, 3-4
CTLPRM 2-5, 2-9 to 2-10, 3-1 to 3-2
CTLSBA . . . 3-1, 3-4
CTLSBL . . . 3-1
ERC v ¢ ¢« ¢« v ¢ ¢ o o« o o o o 1=1,7-3
Error -

control . e e e e w171

parity« < « o 4 4 o » 13

response timeout e e o 12

slave status . 7-2
Error response code

busy retry . 7-5 to 7-6

definition . . « « « + & 7-3

end of block . e+ o <« o 15

fatal o 75

ignore . . e 7-4

introduction . . . 7-1

reset retry 7-4 to 7-5

Error response word
definition « « ¢ « & 12
introduction . 7-1

Error status
arbitration timeout 5~7

Page Index-2

buffer overflow
buffer write protected .
data error . . .

FASTBUS transfer dev1ce
illegal opcode .

illegal operation

parity error -
primary address error -
response timeout -

secondary address error
slave status . v e e e
ERW . & ¢ v o« v e o o v o o

e s e s e = . .
NN N OO NN O

to 7-2

FASTBUS
addressing . . 1-5
hold address . . v 2-9
hold mastership 2-9
word size . . . v« .« 15
FASTBUS segment drlver . 1-1
FASTBUS to FASTBUS tranfers 9-1
FASTBUS to FASTBUS transfers . 1-4
FASTBUS transfer addressing
buffer management 9-3
device . . e e e e e e s 9-2
error handllng e e s e . .93
introduction 1-4, 9-1
operation . 9-2
FASTBUS transfer dev1ce
defintion . . . « & & -4
introduction .
Fatal error . e e e e e e e
FDSHCS . & v v ¢ v o o v« s & s
FIFO . . .
First in flrst out dev1ce
FSD
control bluck .
control block address
execution . . .
fatal error
features . . + .« +« ¢ o .+ . .
halt
holding FASTBUS addreSS
holding FASTBUS mastership .
interrupt enable . .
introduction
limit register exceeded .
list block address .
list element opcode 030
list parameters
microcode status .
ProOgraming . « « &« & o «
ready . . .
software reset
status block address . . .
status block overflow

NN N0
1 Ly 181
PO EHN

» v

2-10

2-8, 6-27

| UL
L)

OOV O LWL OO NP U -

Page Index-3

UNIBUS buffer address 2-5, 3-3 to 3-4
UNIBUS buffer length . . 3-4
UNIBUS buffer limit . . . 3-4
WAININEG .« « o o « o o & 2-9
FSDBAH . 2-2, 2-5
FSDBAL . 2-2, 2-5
FSDCSR . 2-1 to 2-2, 2-4, 2-7 to 2-8,
3-1, 3-3 to 3-4, 5-2 to 5-3
FSDCTL . 2-1 to 2-2, 2-4 to 2-5, 2-8,
2-10, 3-1
FSDHCS . 2-2 to 2-4, 2-8, 3-1, 6-27
FSDLAH . 2-2, 2-6
FSDLAL . 2-2, 2-6
FSDMSC . 2-2, 2-5
FSDPRM . 2-2, 2-5
FSDSAH . . . 2-2, 2-6
FSDSAL . . . 2-2, 2-6
FTA 9-1
FTD 9-1
Hardware control/status . 2-3
HCSHLT . . 2-3 to 2-4, 2-8, 6-27
HCSIE . . 2-3 to 2-4, 6-27
HCSRDY . . . « « « « « . . 2-3 to 2-4
HCSXCT . « v « = « & « & . 2-3 to 2-5, 3-1, 6-27
HSCHLT . . 2-4
Information status :
CALL 5-10
errot e 4 . 59
held address connection . 5-9
held bus mastership . 5-9.
ignored . 5-10
JUMP . e 4 e e e e . 5-10
multiple device address . 5-9
non-1/0 . 5-10
retry . 5-9
RETURN . . 5-10
warning . 5-9
Least significant bits . 1-5
Limit register exceeded 2-8
List block
address . 2-1, 2-6, 3-4
definition 1-3
extended address . . 3-3
format . 4-1
NXM . 2-10
parameters . . 2-5, 3-2
List element
immediate data . 4~8
interrupt 2-8
length 4-1
opcode . 4-2, 6-1
optivns . . . 4-2, 4-5

Page Index-4

primary address . 4-8
secondary address . . 4-8
special opcode 6-14
standard opcode . 6-3
word count . . . 4-8
List element interrupt . 6-27
LSB e e e e . 1-5, 2-2
LSTOPC 4-1 to 4-2, 7-3
LSTOPT . . 4=1, 4-5, 7-4
LSTPAH . . 4-1, 4-8
LSTPAL . . 4-1, 4-8
LSTSAH . . . « ¢« ¢« ¢ ¢ « « « . 4-1, 4-8
LSTSAL « ¢« ¢ ¢ « « « o« o « « « 4~-1, 4-8
LSTWCH . . 41, 4-8
LSTWCL . . 4-1, 4-8
MDA 8-1
Microcode status . . . 2-5
Most significant bits 1-5
MSB . 1-5, 2-2
MSCCTL . 2-5
MSCCTX . 2-5
MSCDON . 2-5
MSCFAC . . 2-5
MSCFDC . . 2-5
MSCFMC . 2-5
MSCIDL . 2-5
MSCIHB . 2-5
MSCWES . 2-5
MSCXLE « « « « o« & 2-5
Multiple device addressing
buffer management 8-2
error handling . 8-3
introduction . 1-4, 8-1
number of devices 8-2
operation 8-2
SEEMDA . . 8-3
status elements 8-3
Next transfer address 7-4
Non—-fatal errors . 2-9
NTA 7-4
OPCBLK« ¢« « « .« & . 6-2
OPCBRD . + v v ¢ ¢+ « « + & . 6-2
OPCCTL . . 6-2
OPCFIO . . 4=5, 47, 7-4
OPCFTD ¢« ¢« + ¢ o « o « 6=2
OPCFTS . « « « « + v « o o o« & 4=2 to 4-3
OPCHFA . . 2-9, 4-5 to 4-6
OPCHFB . . 2-9, 4-5 to 4-6
OPCHFX . . 4=0
OPCHLF . . 4=-2 to 4-3
OPCILE 4=5 to 4-6
OPCMDA h=2

Page Index-5

Opcodes
FASTBUS to FASTBUS transfer
FASTBUS transfer device
introduction
MDA+ ¢ ¢« « ¢« .+ &
multiple device address
multiple device addressing .

UL B T |
W W

w

NN NN UIN N = e b = s o ot

special -14
5 standard

OPCPER . . v « « « « « « « « « 4-2 to 4-3
OPCSNR . . . ¢« ¢« « « « + o « « 4=5 to 4-6
OPCSTD . . : ~2, 4-4, 6~1 to 6-2
OPCWID « ¢« « « « & -2 to 4-3
OPCWRT . . . « « ¢« o ¢ &« o« & -
OPCXAD . -
Options

FASTBUS transfer secondary address &4-3

FIFO device . + + « + + + o« 47

half word transfer 4-3

hold fastbus address . . 4~6

hold fastbus between bursts 4-6

hold FASTBUS mastership . . 4-6

ignore elements 4-6

parity error response code . 4-3

standard opcode . 4-4

suppress null read . . 4-6

write immediate data . . 4-3
Parity error response 7-3
PRMB16 + ¢ ¢« « o ¢+ o o« = « « « 3-2 to 3-4
PRMB17 « . « .« . . 3-2 to 3-4
PRMHFE . . . %+ « +« ¢« « « & & « 2-9 to 2-10, 3-2 to 3-3
PRMLI6 : &+ 4+ & & o s & s & & « 3=2 to 3=3
PRML17 . . 3-2 to 3-3
PRMNSE . .« 3-2 to 3-3
PRMS16 ¢« « + « « « +« 3-2 to 3-3
PRM317 « . .« .« . 3-2 to 3-3
PRMWEN . . 3-2'to 3-3
SEEADR 5-5, 5-7
SEEARB 5-5, 5-7
SEEBOV . . 5-5 to 5-6
SEEDAT . . 5=5, 5-7
SEEERR . . 5-8 to 5-9
SEEFID . . . « « « . .« . . 5-5 to 5-6
SEEHFA 5-8 to 5-9
SEEHFB + + « « + . . 5-8 to 5-9
SEEILE - « « « . . 5-8, 5-10
SEEIOC . . . + « &« « & ¢« « &+ « 5=5 to 5-6
SEEIOP . «. « ¢« ¢« + « ¢« o« o« & « 55 to 5-6, 7-4
SEEJSL . . 5-8, 5~10
SEEMDA . . 5-8 to 5-9
SEENIO . . 5-8, 5-10
SEEPER . . 5-5 to 5-6
SEERTO . . 5=5, 5-7

»

SEERTY . 5-8 to 5-9, 7-4
SEESSO . . 5-5, 5~7
SEESS1 . . 5-5, 5-7
SEESS2 . . 5-5, 5-7
SEEWPR . . 5-5 to 5-6
SEEWRN . 5-8 to 5-9, 7-4
SEEXAD . e e s e a 5-5, 5-7
Software control/status 2-7
. Software reset . 2-9 to 2-10
Starting the FSD . 2-4 :
Status block
address . . 2-6, 3-4
body . . 5-1, 5-4
definition . 1-3
element . . 5-1
extended address . 3-3
format . . . 5-1
header 5-1 to 5-2
initial addres . 5=2
NXM 2-9
overflow . . 2-8
Status body . 5-1, 5-4
Status element
data 5-10
definition . . . 5=4
error status word . 5=5
information status word . 5-8
introduction . . . v 51
special opcode 6-14
standard opcode . 6-3
suppress . , . . 3-3
word count . . 5-10"
Status header
definition . . 5-2
error status word . 5-2
FASTBUS primary address 5-3
FASTRUS secondary addrces 5-3
FSDCSR . . . 5-2
introduction . . 5-1
list pointer offset 5-3
software control/status 5-2
UNIBUS buffer pointer offset 5-2
STEERW . . « &+ 4 ¢ « « o« « « « 1-4
STEESW 5«4 tu 5-5
STEISW . . 5-4, 5-8
STEWCH . . 5-4, 5-10
STEWCL . 5-4, 5-10
STLBPH . . 5-2
STLBPL . 5-2
STLCSR . 5-2
STLESW . . 5-2
STLLPH . . 2-8, 5-2 to 5-3
ETLLIL . . 2-8, 5-2 to 5-3
STLPAH . 2-9, 5~2 to 5-3
STLPAL . 2-9, 5-2 to 5-3

Page Index-6

STLSAH + ¢« « « + + 52 to 5-3
STLSAL + « « « « « « +» 5=2 to 5-3
Stopping the FSD 2-4
System parameter

arbitration vector 6-25

burst size 6-24

clock eycle 6-24

data error response word . . 6-26

error response words 7-2

primary address error response word 6-26

retry counter 6-25

secondary address error response word 6-26
System parameter block 6-23

Termination status 2-7

UNIBUS
addressing 1
buffer01
I/0-PAGE registers 1
non-existent memory 2-
2
1

to 2-10
NXM . . . ¢« ¢« ¢« « ¢ ¢ « o « 2-9 to 2-10
word size . . . + + & . . . 1-
UNIBUS buffer
address« . . 2-5, 3-4

2-5
definition 1-3
extended address 3-3
length i 3-4
limit . . .« . « + « . « « . 3-4
NXM . . ¢« v v v 4 o o o 2-1
write enable 3-3
UNIBUS I/0-PAGE registers
introduction 2-1
locations 2=2
UNIBUS vs FASTBUS buffers . . 1-4

Warning ¢« ¢ « « . . 2=
Word size differences . . 1

Page Index-7

