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SUMMARY 

A battery of statistical techniques are combined to im­

prove detection of low-level dose response. First, Mahalanobls 

distances are used to classify objects as normal or abnormal. 

Then the proportion classified abnormal is regressed on dose. 

Finally, a subset of regressor variables is selected which maxim­

izes the slope of the dose response line. Use of the techniques 

is Illustrated by application to mouse sperm damaged by low doses 

of x-rays. 
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INTRODUCTION 

This study is concerned with developing a statistical 

methodology which will help to improve the detection of low-level 

effects of harmful agents. The problem is divided into three 

parts- First, it is necessary to classify objects exposed to an 

agent as "normal" or "abnormal" based on a vector of measure­

ments- Initially the objects are unclassified, but for each 

there is available an independent, discrete measurement (the dose 

of the agent) which is assumed to be related to the likelihood 

that the object is abnormal. Next, the relationship between the 

dose of the agent and the degree of abnormality (the response) is 

to be quantified- Finally, a subset of variables from the meas­

urement vector is to be selected which optimizes the dose-

response relationship. This methodology can be used in measuring 

the effects of possibly hazardous environmental agents such as 

air pollution, exposure to chemicals or radiation, or in testing 

a new drug for possibly harmful side effects. 

Our method uses a variety of statistical techniques 

which are not new but their combination is and has proven useful 

In a recent practical application. We begin by describing this 

application. 

DESCRIPTION OF THE DATA 

Chemical mutagens and x-irradiation affect the morphology 
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of sperm heads in a way that can be distinguished under a micro­

scope (Wyrobek and Bruce 1978). Normally a biologist studies 

each sperm under a microscope and makes a subjective judgement as 

to whether the sperm is "normal" or "abnormal". The percent ab­

normal is then plotted against dose and used to find an estimate 

for a "doubling dose", that dose which leads to twice the back­

ground (0 dose) abnormal percentage. In our experiment 

groups of 3 mice received acute, testicular doses of 0, 30, 60, 

90 or 120 rads of x-irradiation. For each mouso 50 sperm were 

chosen at random, photographed and enlarged. Eleven measurements 

were made on es'-h of the 750 sperm head silhouettes (Figure 1). 

Initially the sperm used in this study were not classi­

fied by a biologist since ou: goal was to try to develop a system 

which is more sensitive than the subjective one currently used. 

Thus, our first problem was to find a way of relating the meas­

urements to the dose of x-rays. 

ESTABLISHING A DOSE-RESPONSE RELATIONSHIP 

A useful measure of the difference between a p-variate 

observation vector x = (x1 , ... ,Xp) and a group mean vector x = 

(5, x T) is the Mahalanobis distance (M-distance) defined 

by 

M(x) = (x - x ) ' S - 1 (x - x) , 

where S i s the group sample covar iance m a t r i x . This measure can 
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be thought of as a distance in a p-dimensional space which takes 

into account the scales of the measurements sis well as correla­

tions between pairs. 

We pooled the 150 observations from 3 mice with 0 rad ex­

posure to form a control group. Each observation can now be ex­

pressed as an M-distance from the control group (0 rad) mean. We 

expect that, on the average, observations from mice receiving 

high doses of radiation will have greater M-distances than obser­

vations from mice receiving low doses. We can also treat the M-

distance as a dependent variable and regress it on dose. Figure 2 

shows the result when the mean M-distances for the 15 mice are 

regressed on the 5 dose levels in our experiment. The regression 

line in the figure has intercept 10.87 and slope 0.14. 

A point estimate for the doubling dose is the intercept 

(A) divided by the slope (B). In this case the estimated 

doubling-dose Is 76 rads. This is roughly equivalent to the 70 

rad doubling dose established by the conventional method based on 

visual scoring of 500 sperm per mouse. 

Replicate measurements at each dose can be used to meas­

ure the goodness-of-fit of the regression line to this data. This 

is accomplished through the F-statistic 
k „ 2 
£ n.(Y.-Y.) /(k-2) 

F = _ ^ 
k n. 
£ £ (Y -Y.)2/(N-k) 
i = l j = l 'J ' 

where Y,-- i s the response (mean M-dis tance) of the j t h mouse a t 

the i t h dose l e v e l , Yj the mean response for a l l 3 mice a t the 
A 

ith dose level, Y^ the linear regression predicted response, n; =3 
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the number of mice at each dose level, k=5 the number of dosa 

levels and N=15 the total number of mice. 

In our case F = 0.77 with 3 and 10 degrees of freedom 

leading to P = 0.54 for the appropriateness of the linear model. 

(Subsequently this P value will be referred to as P-linearity.) 

Although this test indicates that the linear model provides an 

adequate fit to the data, the estimated doubling dose is no lower 

than that estimated using current methods. 

There is evidence that mean M-distances are not very 

robust against large "outlier" values from measurements on single 

sperm. This is shown in the figure where one of the mice at 90 

rads has a very large mean M-distance, which was caused by a sin­

gle outlier among the 50 sperm measurements which contributed to 

the mean. In addition, biologists are unfamiliar with M-

distances and would prefer to see results expressed as percent 

abnormal sperm. Thus, we seek a method for using M-distances to 

classify sperm as normal or abnormal. This should also reduce 

the sensitivity of the measure to large outliers. 

CLASSIFICATION OF INDIVIDUAL. SPERM 

The M-distances for sperm in the control group are ident­

ical to the squared radii defined by Gnanadesikan (p.172). 

Therefore, if we assume that the vector of measurements x has a 

multinormal distribution, the M-distances will have approximately 

p chi-squared distribution with degrees of freedom equal to the 

number of variables. Unfortunately, our data contain too many 



"outliers" "1th very large M-distances for the assumption of mul-

tinormality to hold so that we cannot use chi-square critical 

values. However, we can find a value which will arbitrarily 

classify a proportion of the control group sperm as abnormal. If 

the value 28 is chosen 7 of the 150 M-distances for control sperm 

(4.67%) will be classified as abnormal. This compares with the 

upper 5% chi-square value (with 11 d.f.) of 19.675. When this 

value is used to classify the sperm, and the resulting mean per­

cent abnormal for each mouse is regressed on dose, we obtain the 

result shown in Figure 3. We see a dramatic reduction of the 

doubling dose to 34 rads and an increase in P-linearity to 0.98. 

In this case detection of low-level effects has been improved by 

using M-distances for classification rather than as a quantita­

tive measure of abnormality. 

REDUCING THE NUMBER OF MEASUREMENTS 

Now we wish to determine whether any significant loss in 

detection ability occurs when fewer variables are used. Standard 

techniques for comparisons among subsets of variables cannot be 

applied here since the dependent variable (percent classified ab­

normal) is not fixed. It varies depending on the critical value 

selected for M-distances which, in turn, depends on the number of 

variables included. With the help of Jan-3 Gentleman's subrou­

tine, ALI.NR, it is easy (although time consuming) to compute re­

gressions using all possible combinations of subsets of vari-
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ables. VJith eleven variables this requires computing 

(U\ /U\ lU\ n 

I ) ;. }+ . . . +1 j = 2 - 1 - 2047 
HI' W M' 

regressions. This ia easily accomplished on a computer. For 

each subset of variables a critical value was selected for M-

distances which arbitrarily classified 5 % of the zero-rad sperm 

as abnormal. This facilitates comparisons between the resulting 

regressions. In comparing regressions we restricted attention to 

subsets for which P-linearity was 0.8 or higher (guaranteeing 

that linear regression gives a good fit to the data) and for 

which the estimated doubling dose is within the upper 95% confi­

dence limit of that found by using all eleven variables. This 

limit can be found as follows: A point estimate for doubling-

dose is A/B which has variance approximately equal to 

var A A*var B 2 A cov(A,B) 
var(A/B) = — + 

B* BH B* 

(Kendall & Stuart,Vol. l,p.232). Under the assumption that A/B 

has an approximate normal distribution, an approximation for the 

upper 5% confidence limit is given by A/B +• t * s(A/B), where t 

is the upper 5% point of a t-distribution with (n-2) d.f. and 

s(A/B) is the estimated standard deviation of the doubling dose. 

In out case n=15 means so that d.f.=13. Thus, the upper 

95% confidence limit for our estimated doubling dose is 55.87. 

Figure 4 shows all combinations of variables which satisfy the 

twin criteria P-linearity > 0.8 and doubling-dose < 55. 
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Most of the points In Figure A represent combinations of 

variables which statistically are equivalent. However, we can 

reduce this set by noting that the ideal regression has P-

linearity = 1.0 and doubling dose = 0. We prefer points near 

these values over those farther away. A convex hull of admissi­

ble points may be constructed by connecting those sharing equal 

numbers of variables and nearest to the (1.0,0) corner of the 

figure. Admissible points are defined as those for which there 

are no other points (for the same number of variables) below and 

to the right of them. A point is inadmissible if another point, 

(with the same number of variables) has better P-linearity and 

lower doubling dose. Figure 5 shows convex hulls of admissible 
points. 

COMPARISONS AMONG REGRESSIONS 

Admissible points may also be compared. First, we con­

vert the doubling dose to a p-value based on a test of how signi­

ficantly better it is than the point using all 11 variables. A 

rough test of this is given hy 

Doubling dose (subset S) - Doubling dose (all 11 variables) 
t >= 

Standard error (Doubling dose subset S) 

which will have an approximate t-distribution with (n-2) d.f. A 

simple method for combining the two measures of merit is the op-

timality coefficient defined by 
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Optimalicy Coefficient = T P* + (1 - ^ ) * . 

where Pp is the F-value for doubling dose test and Fjj is P-

linearity. An optimality coefficient can be determined for each 

point, and for each subset of k variables there will be a minimal 

optimality coefficient. 

A plot of these minima against the number of variables is 

shown in Figure 6. The figure shows that adding variables im­

proves performance, as measured by the optimality coefficient, up 

to five variables. If more than five variables are used perfor­

mance deteriorates. Thus, we are able to find an "optimal" sub­

set of variables. This optimal subset is at least no worse than 

all other subsets and may be better (with probability greater 

than zero). 

COMPARISON WITH CURRENT CLASSIFICATION METHOD 

It is interesting to compare classification based on M-

distances with subjective classification by experienced biolo­

gists. The biologists were asked to classify a subset of the 750 

pictures of sperm heads without knowing the M-distances or com­

puter classification. A sample of 100 sperm were selected by the 

statisticians and classified by the biologists with the results 

shown in Table I. In this table M-distances are based on the 

five best variables, as determined by minimizing the oHtimality 

coefficient. The table shows that all samples classified as ab­

normal have M-diatances greater than 12. The majority of the 
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normal samples (67 out of 84 or 80%) have M-distances less than 

12. The interesting question is whether the 17 sperm classified 

as normal by biologists but with M-distances greater than 12 are 

normal or abnormal. Visually they cannot be distinguished from 

other normal specimens, but quantitatively they differ from the 

bulk of the normals. 

DISCUSSION 

We believe that the idea of using M-distances from a con­

trol group as a measure of response is a new and useful one. It 

can be applied to many situations, particularly those where the 

exact nature of the response cannot be predicted or described 

prlcr to the experiment. In general, M-dlstances will not be 

normally distributed so that it will be necessary to transform 

them prior to quantifying the dose-response relationship. We 

found it helpful to use M-distances to classify objects as normal 

or abnormal and to regress the percent classified abnormal on 

dose. This may not be appropriate in other situations but It 

does succeed in removing the effects of extreme M-distances on 

the regression. In our case it allowed us to express the results 

in terms familiar to biologists. 

A second new idea Is the use of two criteria to select a 

subset of variables which maximize the dose-response relation­

ship. The criterion of goodness-of-fit seems a natural one. It 

is also natural to seek sets of variables which minimize doubling 
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dose. Statisticians may prefer to select subsets based on the 

criterion of slope of the regression line, whose standard error 

can be determined explicitly rather than by approximation. We 

chose to use doubling dose for two reasons. First, doubling dose 

is familiar to biologists and results expressed in its terms can 

be compared with current capabilities. Second, the standard er­

ror for doubling-dose, which is used in determining the P-value 

used in comparisons, includes uncertainties due to both slope and 

intercept; thus it may provide a more reliable guide than using 

slope alone as a criterion. 

There are many ways the twin criteria of P-linearity and 

P-doubllng dose could have been combined; we chose one that 

measures the two-dimensional Euclidean distance from the optimal 

point. Various weighting schemes could be applied, depending on 

whether linearity is more important or less Impo tant than reduc­

tion in doubling dose. We only wish to sugges a useful method 

for selecting a subset of variables when standard methods cannot 

be applied due to varying regressions. 

Our results suggest that careful measurement of sperm 

head dimensions combined with application of the statistical 

methods described here can lead to increased detection of low-

level effects. This is due to the increased sensitivity of a 

quantitative measurement system over a subjective, visual one. 
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Table 1. D i s t r i b u t i o n of M-distances in a Sample of 100 Sperm 

B i o l o g i s t s ' C l a s s i f i c a t i o n 
i M-Distance* Normal Abnormal 

<12 67 0 

12-14 6 2 

14-16 6 1 

16-18 1 2 

18-20 0 1 

20-22 1 1 

22-24 2 0 

24-26 0 0 

26-28 0 1 

28-30 0 1 

>30 1 7 

T o t a l s 84 16 

* M-distance based on f i v e " b e s t " v a r i a b l e s (LI , L2, L4, Wl, Area) 



LEGENDS TO FIGURES 

Figure 1. Enlarged drawing of mouse sperm head and 11 measure­

ments. 

Figure 2. Regression of mean Mahalanobi- distance on dose in 

rads. Mahalanobis distance is based on the 11 dimensions of Fig­

ure 1 and and measured from the mean for a control group of 150 

sperm from three mice exposed to zero rads. Means are based on 

50 sperm from each of three mice at each dose level. 

Figure 3. Regression of percent abnormal sperm on dose in rads. 

Sperm were classified as abnormal if their Mahalanobis distance 

is greater than 28. The doubling dose estimated from this re­

gression line is 34. 

Figure 4. Plots of doubling dose vs. P-linearlty for regressions 

satisfying the criteria: P-linearity > 0.8 and estimated dou­

bling dose < 55. Each point represents a subset of the 11 vari­

ables shown in Figure 1. All points are statistically equivalent 

but we prefer those with low doubling dose and high P-linearity. 

Figure 5. Convex hulls of admissible points. These points are a 

subset of those in Figure 4 and include only those for which 

there is no point, with the same number of variables, which is 
both below and to the right of it. 

Figure 6. Optimum subsets of variables as determined by the op-
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timallty coefficient (OC). The OC is equal to the minimum Eu­

clidean distance between points on the convex hulls of Figure 5 

and the "ideal" point (1.0,0). Djubling dose has been converted 

to a P-value prior to measuring the OC. The five variables 

(1,2,4,5,9) have the lowest OC and represent our best estimate of 

the most sensitive subset of variables. 
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1. L. — length along axis 
2. L j — length to t ip of hook 

l_ 3 — length to tail attachment site 
t_4 — length to point of maximum width 

3 
4, 
5. 
6 
7 
8 
9 

10 

'W 1 — maximum width 
W 2 — width to t ip of hook 
D 1 — lower diagonal 
D 2 — upper diagonal 
Area 
Perimeter 

11. Shape = (Perimeter)2/M7r»Area) 
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