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DISCLAIMER

SUMMARY
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A battery of statistical techniques are combined to im-

oleun vlassnatul g

prove detection of low-level dose response. First, Mahalanobig

distances are used to classify objects as normal or abnormal.

Then the proportion classified abnormal is regressed on dose.

Finally, a subset of regressor varlables 1s selected which maxim-

izes the sgslope of the dose response line. Use of the techniques
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is illustrated by application to mouse sperm damaged by low doses

of x-rays.

This woik ‘ras supported by the United States Department of Ener-
gy, contract number W~7405-ENG-48 and the Environmental Protec—
tion Agency Pass Through Agreement EPA~IAG-D5-E681-AN.
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tion-
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INTRODUCTION

This study is concerned with developing =a statistical
methodology which will help to improve the detection of low-level
effects of harmful agents. The problem 1s dividead into three
parts. First, 1t 1g necessary to classify objects exposed to an
agent as "mormal" or "abnormal" based on a vector of wmeasure-
ments - Initially the objJects are wunclassified, but for each
there 1s available an independent, discrete measurement (the dose
of the agent) which is assumed to be related to the likelihood
that the object is abnormal. Next, the relationship between the
dose of the agent and the degree of abnormality (the response) is
to be quantified- Finally, a subset of variables from the meas-
urement vector 1is to be selected which optimizes the dose-
response relationship. This methedology can be used in measuring
the effects of possibly hazardous environmental agents such as
alr pollution, exposure to chemicals or radiation, or in testing
a new drug for possibly harmful side effects.

Our method uses a variety of statistical techniques
which are not new but their combination {s and has proven useful
in a recent practical application. We begin by describing this

application.

DESCRIPTION OF THE DATA

Chemical mutagens and x—irradiation affect the wmorphology
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of sperm heads 1n a way that can be distinguished under a wmicro-

scope (Wyrobek and Bruce 1978). Normally a biclogist studies
each sperm under a microscope and makes a subjective judgement as
to whether the sperm is "normal" or "abnormal”. The percent ab-
normal 1s then plotted against dose and used to find an estimate
for a "doubllng dose", that dose which leads to twice the back-
ground (0 dose) abnormal percentage. In our experiment
groups of 3 mice received acute, testicular doses of 0, 30, 60,
90 or 120 rads of x-irradiation. For each mouse 50 sperm were
chosen at random, photographed and enlarged. Eleven measurements
were made on each of the 750 sperm head silhouettes (Figure 1),
Initially the sperm used in this study were not classi-
fied by a blologist since ou. goal was to try to develop a system
which 1s more sensitive thau the subjective ome currently used.

Thus, our first problem was to find a way of relating the meas-

urements to the dose of x-rays.

ESTABLISHING A DOSE-RESPONSE RELATIONSHIP

A useful measure of the difference between a p-~variate
observation vector x = (x;, «.+ ,Xp) and a group mean vector X =

(Xy, «++ , %y) is the Mahalanobis distance (M-distance) defined

by

Mx) = (x -%)" s x-%) ,

where § 1s the group sample covariance matrix. This measure can
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be thought of as a distance in a p-dimensional space which takes
into account the scales of the measurements us well as correla-
tions between pairs.

We pooled the 150 observations from 3 mice with O rad ex-—
posure to form a control group. Each observation can now be ex-
pressed as an M-distance from the control group (0 rad) mean. We
expect that, on the average, observations from mice receiving
high doses of radiation will have greater M~distances than obser-
vations from mice receiving low doses. We can also treat the M-
distance as a dependent variable and regress it on dose. Figure 2
shows the result when the mean M-distances for the 15 mice are
regressed on the 5 dose levels 1n our experiment. The regression
line in the figure has intercept 10.87 and slope 0.14.

A point estimate for the doubling dose is the intercept
(A) divided by the slope (B). In this case the estimated
doubling-dose is 76 rads. This is roughly equivalent to the 70
rad doubling dose established by the conventional method based on
visual scoring of 500 sperm per mouse.

Replicate measurements at each dose can be used to wmeas-
ure the goodness-of-fit of the regression line to this data. This

1s accomplished through the F-statistic
k

0 (7.4 (ke2)
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where Y;, 1is the response (mean M-distance) of the jth mouse at
the 1ith dose 1level, g} the mean response for all 3 mice at the

A
ith dose level, Y; the linear regression predicted respomnse, n;=3
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the number of mice at each dose level, k=5 the number of dosea

levels and N=15 the total number of mice.

In our case F = 0.77 with 3 and 10 degrees uwf freedom

leading to P = 0.54 for the appropriateness of the linear model.
(Subsequently this P value will be referred to as P-linearity.)
Although thils test indicates that the linear wmadel provides an

adequate fit to the data, the estimated doubling dose is no lower

than that estimated using current methods.

There is evidence that mean M-dilstances are not very

robugt against larpge "outlier" values from measurements on single
sperm. This is shown in the figure where one of the mice at 90

rads has a very large mean M-distance, which was caused by a sin-

gle outlier awmong the 50 sperm measurements which contributed to

the mean. In addition, biologists are unfamiliar with M-

distances znd would prefer to see results expressed as percent

abnormal sperm. Thus, we seek a method for using M-distances to

classify sperm as normal or abnormal. This should also reduce

the sensitivity of the measurz to large outliers.

CLASSIFICATION OF INDIVIDUAL SPERM

The M-distances for sperm in the countrol group are ident~

ical to the squared radii defined by Gnanadesikan (p.172).

Therefore, if we assume that the vector of measurements x has a
multinormal distribution, the M~distances will have approximately
a zhi~squared distribution with degrees of freedom equal to the

number of varlables. Unfortunately, our data contain too many
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"outliera" with very large M-distances for the assumption of mul-
tinormality to hold so that we cannot use chi-square critical
values. However, we can find a wvalue which will arbitrarily
classify a proportion of the control group sperm as abnormal. If
the value 28 1s chosen 7 of the 150 M~distances for control sperm
(4.67%) will be classified as abnormal. This compares with the
upper 5% chi-square value (with 11 d.f.) of 19.675. When this
value 1is used to classify the sperm, and the resulting mean per-
cent abnormal for each mouse is regressed on dose, we obtain the
result shown in Figure 3. We see a dramatic reduction of the
doubling dose to 34 rads and an increase in P-linearity te 0.98.
In this case detection of low-level effects has been improved by

using M-distances for classification rather than as a quantita-

tive measure of abnormality.

REDUCING THE NUMBER OF MEASUREMENTS

Now we wish to determine whether any significaant loss in
detection ability occurs when fewer variables are used. Standard
techniques for comparisons among subsets of variables cannot be
applied here since the dependent variable (percent classified ab-
normal) 1is not fixed. It varies depending on the critical value
selected for M-distances which, in turn, depends on the number of
variatles included. With the help of Jan2 Gentleman’s subrou~-

tine, ALLNR, it is easy (although time consuming) to compute re-

gressions using all possible combinations of subsets of vari-

-
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ables. With eleven variables this requires computing

11 fib 11 11
( ) :\ )+ . e +( ) =2 ~ 1= 2047
11 10 1

regressions. This is easily accomplished on a computer. For
each subset of variables a critical value was selected for M-
distances which arbitrarily classified 5 % of the zero~rad sperm
ss abnormal. This facllitates comparisons between the resulting
regressions. In comparing repressions we restricted attention to
subsets for which P-linearity was 0.8 or higher (guaranteeing
that linear regressiou gives a good fit to the data) and for
which the estimated doubling dose is within the upper 95% confi-
dence limit of that found by using all eleven variables. This
limit can be found as follows: A point estimate for doubling-

dose is A/B which has variance approximately equal to

var A 2 var B 2 A cov(A,B)

var(A/B) = + -
B o B

(Kendall & Stuart,Vol. 1,p.232). Under the assumption that A/B
has an approximate normal distribution, an approximation for the
vpper 5% confidence limit is given by A/B + t * s(A/B), where ¢t
is the upper 5% point of a t-distribution with (n-2) d.f. and
s(A/B) 1s the estimated standard deviation of the doubling dose.
In our case n=15 means so that d.£.=13. Thus, the upper
95% confidence 1limit for our estimated doubling dose is 55.87.
Figure 4 shows all combinations of variablea which satisfy the

twin criteria P-linearity > 0.8 and doubling-dose < 55.
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Most of the points 1in Figure 4 represent combinat’ons of
variables which statistically are equivalent. However, we can
reduce this set by noting that the 1deal regression has P-
linearity = 1.0 and doubling dose = 0. We prefer points near
these values over those farther away. A convex hull of admissi-
ble points way be constructed by connecting those sharing equal
numbers of variables and nearest to the (1.0,0) corner of the
figure. Admissible points are defined as those for which there
are no other points (for the same number of variables) below and
to the right of them. A point is inadmissible if another point
(with the same number of variables) has better P-~linearity and

lower doubling dose. Figure 3 shows convex hulls of admissible

points.

COMPARIGONS AMONG REGRESSIQNS

Admissible points may also be compared. First, we con-
vert the doubling dose to a p-value based on a test of how signi-
ficantly better it is than the point using all 1l variables. A

rough test of this is given by

Doubling dose (subset 5) - Doubling dose (all 1l variables)

t = ———

Standard error (Doubling dose subset S)

which will have an approximate t-distribution with (n-2) d.f. A
simple method for combining the two measures of merit 1s the op-
timality coefficient defined by

-8~
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a
Optimality Coefficient = 4 P

1
L+ (=B .

where B, 1s the F-value for doubling dose test and & is P-
linearity. An optimality coefficient can be determined for each
point, and for each subset of k variables there will be a minimal
optimality coefficient.

A plot of these minima against the number of variables is
gshown d1n Figure 6. The figure shows that adding variables im-
proves performance, as measured by the optimality coefficient, up
to five variables. 1If more than five variables are used perfor-~
mance deteriorates. Thus, we are able to find an "optimal" sub~
set of variables. 7This optimal subset Is at least no worse than

all other subsets and may be better (with probability greater

than zero).

COMPARISON WITH CURRENT CLASSIFICATION METHOD

It is interesting to compare classification based on M-~
distances with subjective classification by experienced biolo-
plsts. The bilologists were asked to classify a subset of the 750
plctures of sperm heads without knowing the M-distances or com-
puter classificat?.n. A sample of lOOisperm were selected by the
gtatisticians and classified by the blologists with the results
shown in Table I. 1In this table M-distances are based on the
flve best wvarilables, as determined by minimizing the optimality
coefficient. The table shows that all samples classifled as ab-

normal have M-distauces greater than 12. The majority of the
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normal samples (67 out of 84 or 80%) have M-distances less than
12. The interesting question 1s whether the 17 sperm classified
as normal by biologists but with M-distances greater than 12 are
normal or abnormal. Visually they cannot be distinguished from
other normal specimens, but quantitatively they differ from the

bulk of the normals.

DISCUSSION

We believe that the idea of using M-distances from a con-
trol group as a measure of response is a new and useful one. It
can be applied to many situations, particularly those where the
exact nature of the response cannot be predicted or described
pricr to the experiment. In general, M-distances will not be
normally distributed so that it will be necessary to transform
them prior to quantifying the dose-response relationship. He
found it helpful to use M-distances to classify objects as normal
or abnormal and to regress the percent classified abrnormal on
dose. This may not be appropriate in other situations but it
does succeed In removing the effects of extreme M-distances on
the regression. In our case it allowed us to express the results
in terms familiar to biologists.

A second new idea 1s the use of two criteria to select a
subset of variables which maximize the dose-response relation-
ship. The criterion of goodness-of-fit seems a natural one. It

is also natural to seek sets of variables which minimize doubling
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dose. Statisticlans may prefer to select subsets based on the
criterion of slope of the regression line, whose standard error
can be determined explicitly rather than by approximation. We
chose to use doubling dose for two reasoms. First, doubling dose
is familiar to blologists and results expressed in its terms can
be compared with current capabilities. Second, the standard er-
ror for doubling-dose, which is used in deterwining the P-value
used in comparisons, includes uncertainties due to both slope and
intercept; thus it may provide a more reliable gulde than wusing
slope alone as a criterion.

There are many ways the twin criteria of P~linearity and
P-doubling dose could have teen cowbined; we chose one that
measures the two-dimensional Euclidean distance from the optimal
point. Varlous welghting schemes could be applied, depending on
whether l{nearity is more iwportant or less impo -tant than reduc-
ttan 1in doubling dose. We only wish to sugges a useful method
for selecting a subset of variahbles when standard methods cannot
be applied due to varying regressions.

Qur results suggest that <careful measurement of sperm
head dimensions combined with application of the statistical
methods described here can lead to increased detection of low-
level effects. This 1s due to the increased sensitivity of a

quantitative measurement system over a subjective, visual one.
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Table 1. Distribution of M-distances in a Sample of 100 Sperm

Biologists” Classification

M-Distance* Normal Abnormal

<12 67 0
12-14 6 2
1416 6 1
16-18 1 2
18~20 . 0 ) 1
20-22 1 1
22-24 2 0
24-26 0 0
26-28 0 1
28-30 0 1
>30 1 7
Totals 84 16

* M-distance based on five "best'" variables (L1, L2, L4, Wl, Area)
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LEGENDS TO FIGURES

Figure l. Enlarged drawing of mouse sperm head and 11 measure-

ments.

Figure 2. Regression of mean Mahalanobi~ dizcance on dose in

rads. Mahalanobis distance 1s based on the ll1 dimensions of Fig-

ure ! and and measuted from the mean for a control group of 150

sperm from three mice exposed to zero rads. Means are based on

50 sperm from each of three mice at each dose level.

Figure 3. Regression of percent abnormal sperm on dose in rads.
Sperm were classified as abnormal if their Mahalanobis distance
is greater than 28. The doubling dose estimated from this re-

gression line is 34.

Figure 4. Plots of doubling dose vs. P-linearity for regressions
satisfying the criteria: P-linearity > 0.8 and estimated dou-
bling dose < 55. Each polnt represents a subset of the 11 vari-

ables shown in Figure 1. All points are statistically equivalent

but we prefer those with low doubling dose and high P-linearity.

Figure 5. Convex hulls of admissible points. These points are a

subset of those in Figure 4 and include only those for which

there 1s no point, with the same number of variables, which 1is

both below and to the right of it.

Figure 6. Optimum subsets of variables as determined by the op-
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timality coefficient (OC). The OC is equal to the minimum Eu-
clidean distance between points on the convex hulls of Figure 5
and the 'ideal"” point (1.0,0). Dsubling dose has been converted
to a P-value prior to measuring the OC. The five wvariables

¢ (1,2,4,5,9) have the lowest OC and represent our best estimate of

the most sensitive subset of variables.
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1. L, — length along axis
2. L, --length to tip of hook
3. L4 ~ length to tail attachment site
4. 1, — length to point of maximum width
5. "W, — maximum width
6. W, — width to tip of hook
7. D, — lower diagonal
8. D, — upper diagonal
9. Area
10. Perimeter
11. Shape = (Perimeter)2 /{474 Area)

Dan Moore, et al.

Fig. 1
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Fig. 3
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NOTICE

"This report was prepared as an account of work sponsored by the United
States Government. Neither the United States nor the United States
Department of Energy, nor any of their employees, nor any of *heir
contractors, subcontractors, or their employees, makes any warranty, exéress
or implied, or assumes any legal liability or respoasibility for the
accurdacy, completeness or usefulness of any information, app;ratus, product

or process disclosed, or represents that its use would not infringe

privately~owned rights.”
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