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REFLECTION-ASYMMETRIC SHAPES IN ATOMIC NUCLEI

W. Nazarewicz™

Joint Institute for Heavy-lon Research,

Holifield Heavy Ion Research Facility,

P.C. Box 2008, Oak Ridge, Tennessee 37831, U.S.A.

ABSTRACT

Can atomic nuclei be unstable with respect to deformations that break i..irinsic
parity? On the theoretical side calculations indicate the existence of stable octupole
deformations. There is also vast supporting experimental evidence for the presence
of very collective low-energy dipole and octupole modes. In this contribution, recent
advances in the physics of nuclear reflection—asymmetric shapes are discussed in terms of
underlying shell effects. Particular attention is given to the recently predicted octupole
excitations at superdeformed shapes.

INTRODUCTION

Why can certain nuclei be described in terms of intrinsic shapes with parity-
breaking static moments? At first glance such a violation of a very fundamental sym-
metry is astonishing since strong interactions do actually conserve parity. One has to
bear in mind, however, that the description in terms of the intrinsic system automati-
cally involves the symmetry breaking mechanism. Of course, the fundamental quantum
numbers, such as angular momentum, parity, baryon number, etc., associated with the
basic space-time symmetries, are conserved in the laboratory system. On the other
hand, in the body-fixed system of a nucleus the many-body wave function is, usually,
not an eigenstate of fundamental symmetry operators. From this viewpoint the con-
cept of nuclear stable octupole deformation is analogous to the idea of permanently
quadrupole-deformed nuclear shapes. Therefore, if one accepts the possibility of stable
quadrupole deformation in the ground state of the even-even nucleus, one cannot reject
the picture of nuclear shapes that do not conserve intrinsic parity.

Microscopically, the symmetry breaking mechanism is always associated with
pairs of quantum-mechanical states that are (almosi) degenerate in energy. In quantal
systems such a hybridization leads to reduced stability and even an infinitely small
perturbation of a degenerate system produces a final response in the system due to
the rearrangement of many close states. For instance, quadrupole deformation can Le
immediately associated with the residual interaction acting between spherical tingle-
particle states of the isotropic harmonic oscillator. Indeed, as soon as the Fermi level
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enters the valence shell the (¢, j) degeneracy is removed by the quadrupole-quadrupole
force and the nucleus becomes deformed.

An analogous coupling between intrinsic states of opposite parity is produced by
the long-range octupole-octupole residual interaction. In some cases the mixing is so
strong that the nucleus acquires stable octupole deformation in the body-fixed frame.
For normally-deformed systems the condition for strong octupole coupling occurs for
particle numbers associated with the maximum A N=1 interaction between the intruder
subshell (£,7) and the normal parity subshell (¢ - 3,5 — 3). The regions of nuclei
with strong octupole correlations correspond to particle numbers near 34 (ga/2 «— pyj2
coupling), 56 (ky1/2 +» ds/2 coupling), 88 (iy3/2 « fr2 coupling), and 134 (j15/2  G9/2
coupling), i.e. the tendency towards octupole deformation occurs just above closed
shells.

The main goal of this presentation is not to cover the whole field of nuclear
octupole and dipole modes. For this we rather refer the reader to recent reviews.*"
Instead, I would like to emphasize selected aspects of octupole collectivity. In particvlar,
I will discuss “hidden” symmetries of the anisotropic harmonic oscillator and their
apparent consequences for the presence of superdeformed reflection-asymmetric shapes.

REFLECTION-ASYMMETRIC SHAPES AT LOW EXCITATION ENERGY

For the Ra-Th (Z~88, N~134) and Ba-Sm (Z~56, N~88) nuclei, the features of
stable octupole deformation, namely low-lying negative-parity states, parity doublets,
alternating parity bands with enhanced El transitions have been established (for a
recent review see, e.g., ref. 7).

Many mean-field calculations predict reflection instability for nuclei around ?2*Th
and '*%Ba. There are calculations based on the Nilsson-Strutinsky approach with folded-
Yukawa and Woods-Saxon deformed potentia.lss‘14 as well as Hartree-Fock calculations
based on the Skyrme or Gogny forces.13-20 AJl these models yield similar results for
stable octupole deformations, but give slightly different predictions for the height of the
octupole barrier.

The calculated octupcle minima are usually very shallow with octupole barriers
varying between 0.5 and 2 MeV, depending on the model. Consequently, dynamic
fluctuations are expected to play a significant role. Some attempts towards including
dynamic corrections by means of parity projection or gaussian overlap approximation
have been made in refs.17-20

Deformation selfconsistent cranking calculations confirm empirical results, i.e.
the stability of octupole deformation increases at medinm spins.21'23 The enhancement
of octupole strength with rotation is caused by (i) weaker pairing correlations for the
octupole shape, which increase the moments of inertia, and (ii) by the octupole mixing
between single-particle states of opposite parity approaching each other with frequency.

In the presence of low-lying octupole excitations a large E1 moment may arise in
the intrinsic frame due to a shift between the centre of charge and the centre of mass.
Such a dipole moment manifests itself by very enhanced electric dipole transitions be-
tween opposite parity members of quasi-molecular rotational bands. Many properties of
low-lying E1 modes in the transitional nuclei near ''°Ba and ?*'Th can be explained by
the reflection-asymmetric deformed shell model theory based on the Strutinsky renor-
malisation procedure.22’24'26 The calculations reproduce the systematic trends seen
in the experimental data and the vanishing values of the intrinsic dipole moments,
D,, in certain nuclei. In particular, it has been demonstrated26 that the macroscopic
contribution to the intrinsic dipole moment based on the droplet model is very small
for lanthanides and hecomes important in actinide nuclei, thus providing a concictent
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description of experimental data in both mass regions. This effect is partly related to
the presence of the neutron-skin contribution to D,. Recently, first attempts to cal-
culate intrinsic dipole moments within the full selfconsistent theory have been made.
Egido and Robledo used the parity- pro_]ected HF+BCS model with Gogny interaction
to reproduce B(El) rates in the Ra-Th 19 and Ba 20 nuclei. They obtained excel-
lent agreement with experimental data. For more discussion related to the question of
“collective” intrinsic dipole moments I refer the reader to contribution by P. Butler.

The complex interplay between rotation znd reflection-asymmetric and triaxial
degrees of freedom is most pronounced in transiticral nuclei, like '®Ra or '"®Sm, which
do not have well developed ground-state deformation but still exhibit “quasirotaticnal”
bands of alternating parity and large B(E1) rates. According to the calculations22: 23
octupole instability in these nuclei persists up to very high rotational frequencies. Such
a pattern with low quadrupole- and strong octupole- and dipole collectivity has recently
been observed in 2'*Ra (ref. 28) and 8Sm (ref. 29).

Other candidates for the strong octupole-quadrupole coupling can be find in
medium-mass nuclei. In the A~70 mass region the shell correction calculations!0
predict octupole softness onlﬁ in the transitional isotopes of Zn-Se with N<36. A recent
study of the nucleus 61Ge 3 suggests that a coupling between reflection-asymmetric
and triaxial degrees of freedom takes place in this exotic N=Z system!.

The nonaxial, K#0, octupole components should certainly play a significant role
at nearly spherical shapes. Very good testing-grounds for investigation the coupling
between octupole excitations and triaxiality are the nuclei around "Zr, see discussion

in refs.”

NUCLEAR SHELL STRUCTURE AND OCTUPOLE DEFORMATION

Since the normal-parity single-particle states form a pseudo-oscillator pattern
reflecting the presence of the pseudo-SU(3) symmetrysa“36 one can argue that many
properties of deformed and superdeformed states should reflect basic features of the
harmonic oscillator. In this section I shall discuss some properties of the single-particle
shell structure of a three-dimensional harmonic oscillator with frequencies in rational
ratios (RHO). The RHO classification scheme leads to the geometrical “multicluster”
picture of nuclear deformed shapes. This simplistic picture is strongly supported by
the behaviour of the octupole shell-forces of the RHO and the presented results of
microscopic calculations.

Quantum Numbers of the Rational Harmonic Oscillator

The RHO exhibits the strongest level degeneracy that results in an appearance
of spherical and deformed magic gaps. The problem of unusual degeneracies of the
single—particle levels in the RHO has been extensively discussed in the literature, see
reviews S0+ 38 and refs. therein.

The single-particle Hamiltonian of the three-dimensional oscillator potential is
given by

%ip,+wm ”"‘E‘Wn{an |}s (1)

where we assume M =1, i=1. The single-particle energies of (1) are

€nynany = Ea:wi (ni + %) ) (2)

i=1

'In the recent work>! Skalski employed parameterisation of nuclear shapes involving both 85 and
4 and confirmed octupole inatability and 7-sofiness in ®'Ge. ’



where n; are numbers of oscillator quanta in three spatial directions. The single-
particle diagram of the axially-deformed harmonic oscillator is displayed in fig. 1. Here
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Fig. 1. Single-particle level spectrum of the axially symmetric harmonic
oscillator shown as a function of yuadrupole deformation £. Here
wo = 3(2w; + wy). The orbital degeneracy is ny+1, which is il-
lustrated by artificially splitting the lines. The arrows indicate the
characteristic deformations corresponding to the ratio of w | lwy =
1:2, i:1, 2:1 and 3:1.

w) = w; = w, and the single-particle energies depend only on two quantum numbers:
ny=n;+ny and n3. Due to the axial symmetry each level is (ny +1) times degenerate.

For the RHO the ratios of frequencies are rational numbers. This condition can
be expressed in terms of three integers k;, i=1,2,3:

w,-k.- = LTJ, (3)

where @ can be calculated from the volume conservation condition, w wywy = @3, and

is equal to
- - - 41
w= \/’ kikoks - @,y wo = A3 (4)



For example, the spherical shape corresponds to ky=k,=ky=1, while the axial
shapes have & =k:=k;. In the axial casc it is convenient to write the single-particle
energies in terms of the shell frequency, waen, and the shell principal quantum, N,
defined by 39

[0

win +wyn, = w.!lu.'"Nalu‘") Nalmll =n, kl! + n.'ik'l’ Wahell = FT- (5)
L&)
Let us now introduce new quantum numbers i, and A,:
n, .
A [k_] A = n (mod k), (6)
]

where the symbol [z] stands for the integer part of z. Single-particle energies of the
RHO can be thus written as

2+ ]
EALA ArAy T wM +w Z k (7)

M'-

where M = v| + vy + vy is the new principal quantum number. At fixed values of A,
the level degeneracy is equal to (M + 1)(M + 2), i.e. it corresponds exactly to the
degeneracy of a spherical oscillator with ptmcx}ra] quantum number A, In the next
step one can introduce new ladder operators

4“)—_\/17.(“’) (ﬁn‘(fl.‘—l’;":(—ﬁ:\'i—ki‘*'l))%=(ai)ki([ZL:] (—E—'}'ﬂ)i ©

where #;=a}a, is the boson number operator and {A}={A A;X3}. It is easy to verify
that operators (8) indeed fulfil the standard boson commutation rules, i.e.

[A‘{A},A;A}i-] = 6.",'- (9)

The new boson operator A,“) acts only on the quantum number v; leaving A; unchanged,
AP L ki Ay ) = VI I (o DR+ Ay o) (10)

Now, analogously to the well-known spherical case, one can construct eight generators
linear in A HA! AH} that fulfil the commutation rules of SU(3) and commute with
the RHO Hamiltonian. This proves that the dynamical symmetry in question is SU(3).
The RHO eigenstates belonging to the same {A} family form for a given M the basis of
an irreducible symmetric representation (irrep) of SU(3), (M, {A}). Each family has a
corresponding ground state belonging to the one-dimensional representation of SU(3)
for M=0, which is the vacuum for the new bosons, eq. {3). Since 0 < A; < % the
number of {A}-families is equal to k) kqk;.

At the spherical shape, &k =k,=ks=1, there is cnly one family present, labelled
by {A}=(000). The degeneracy of each level is (M + 1)(M + 2) and the magic gaps
occur at particle numbers

Nar = %(M (M +2)(M+3)=1, 4, 10, 20, 35, 56, 84, --- (1)

Other cases of significant physical interest are the superdeformed prolate (k,=1,
k;=1, k3=2) and the hyperdeformed prolate (k,=1, k;=1, k3=3) shapes. Here, since
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Magic numbers and spectrum of the prolate superdeformed (k;=1,
k;=1, k3=2) harmonic oscillator. The arrows indicate from which
spherical oscillator representations a given superdeformed represen-
tation is built (see text). The sizes of circles schematically illustrate
the dimensions of spherical representations. The harmonic oscilla-
tor degeneracies have been doubled to take into account the spin.
Two different positions of the Fermi level, ¢} and 2, are indi-
cated in the spectrum. The quantum numbers (A, Az, A3) of two

A-families are shown below the spectrum. (Taken from ref. °°.)

Fig. 2.

A1=2;=0, the number of independent SU(3) irreps for a given M is equal simply to &,
and they can be easily distinguished by means of A;.

As seen in fig. 2 there are two kinds of closed-shell systems that are expected
at superdeformed shapes. In the “asymmetric” case, indicated as A, the number of
filled shells within the family (A)=(000) is larger by one than that within the family
(2)=(001). In fig. 2 this is illustrated by the position of the Fermi level €. Consequently
the magic numbers are then equal to sums of two consecutive spherical magic numbers
and read N,‘.T:’,’+N,ﬁt,m)=1, 5, 14, 30, 55, etc. The numbers shown in the figure have
been doubled to include the spin degeneracy. In the “symmetric” variant B the missing
(001) shell is filled and the magic numbers are equal to doubled spherical oscillator
magic numbers, N,(‘l,"m’+N,$(}°')=2, 8, 20, 40, 70, etc.

The situation becomes slightly more complex at hyperdeformed shapes, see fig. 3.
In the “strongly asymmetric” variant A the number of filled shells within the family
(000) is lacger by one than those of the families (001) and (002), which leads to magic
numbers NR%, + N3P+ Nif?=1, 6, 18, 40, 75, etc. In the variant B the occupation of the
family (002) is lower than those of the families (000) and (001) and the resulting magic
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Fig. 3. Similar to fig. 2 but for the prolate hyperdeformed (k,=1, k,=1,
k3=3) harmonic oscillator. Three different positions of the Fermi
level, €, €2, and €¥, are indicated in the spectrum. The quantum
numbers (A; A2A3) of three A-families are shown below the spectrum.

(Taken from ref. 38.)

numbers are N3, +NpL +Ni?2=2, 9, 24, 50, 90, etc. Finally, in the “symmetric”
case C' the occupations of families (000), (001) and (002) are identical and the magic
numbers are equal to tripled spherical oscillator magic numbers, NJ{°+ N3+ Njy2=3,
12, 30, 60 and 105, etc.

The examples discussed so far represent the simplest possible situation in which
the numbers &; are relatively prime. The degeneracy pattern becomes, however, rather
complicated in the case when two k;’s have a common multiplier. Such a situation
is present where different irreps of SU(3) are degenerate, e.g., on the oblate side,
k|=k2=kl>1, k3=1.

In order to label the oblate superdeformed shells of the RHO, one can introduce
quantum numbers A, and N defined in a similar way as ), (see e.g. ref.43):

A =vi(modky), N=v, +uvs, (12)
where vy =[n, fk,]. Contrary to the case of prolate shapes the shell degeneracy depends
explicitly on A;: )

a(N,A,) = 5(1\7 + D[k N 4202 + 1)) (13)



It can be shown (see detailed discussion in ref.as) that (i) the degeneracy pattern of the
RHO on the oblate side represented by labelling (12) corresponds in fact to reducible

representations of SU(3) 44 and (i) in the particular case of superdeformed oblate
nuclei, k) =2, ky=1, the dynamical symmetry is O(4) 45,

Multicluster Model

According to eq. (5) the energy difference between neighbouring oscillator shells,
Wykett, decreases smorthly with deformation. This indicates that the overall magnitude
of the shell effects is expected to be strongest at the spherical shape. Below are discussed
some examples that indicate that even at very strong elongations the appearing shell
structure leads to an enhanced stability similar to that observed for spherical shell
gaps. Moreover, we will describe the deformed shell-stabilized systems in terms of
“multiclusters” of spherical subsystems (clusters), as dictated by the decomposition of
the RHO representations into the isotropic ones, as described in the previous section.
Of course, the term “cluster” should not be understood in the most direct sense of
a spatial spherical cluster, since in medium mass and heavy nuclei the probability of
clustering into large fragments is strongly inhibited by the Pauli principle. However, it
turns out that the group-theory symmetries of these clusters induce some properties of
superdeformed states as if the clustering occucred in the real space.

The main assumption of the “cluster” model is that every {A}-family (an
SU(3) oscillator) should correspond to an independent fragment. The num-
ber of fragments is then equal to the number of one-dimensional irreps of

SU(3), i.e. it is equal to k;jkak;.

Octupole Shell Force of the RHO

The degenerate shell of the RHO consists, in general, of states having different
parities. Indeed, the generalized Bose operators (8) are parity-even for even values of
k; and parity—odd for odd values of k;. Consequently, the total parity of single-particle
state |it)=|r nzn3) can be written as

Th = (-—l)N = (_1)4\1+4\7+«\a(_1)kw1 thavo+kavs _ AT, (14)

The above expression can be given a simple interpretation. The parity =, is the intrinsic
parity of the corresponding bosonic vacuum whilst 7, represents the parity of an excited
mode. In the case of superdeformed prolate shapes with even values of &3, eq. (14)
reduces to

i = ()M (=)™ = (~1)"*, (15)
where A is the projection of the orbital angular momentum on the symmetry axis
(z-axis).

The fact that degenerate single-particle orbitals have different parities has inter-
esting consequences for the octupole mode, @3k =r3Y;k, since the optimum condition
for the level hybridization is met. Table 1 shows the energies of particle-hole excita-
tions associated with various components of octupole tensor. Let us first consider the
superdeformed shape with &) =1 and k;=2. The K =1 and X =3 octupole components
conserve intrinsic parity =x). Interestingly, since A E=2wy—w, =0, for K=1 there exist
non-vanishing matrix elements between states belonging to the same supershell. This
suggests that superdeformed magic prolate nuclei are potential candidates for stable



Table 1. Energies of the particle-hole excitation, AFE, associated with the
octupole interaction Q:u\‘-v

e et e e
K AE/h Optimal conditiens for instability
0 | wy, 2wi-wy, 2w twy, dwy | superdeformed oblate shapes

1 | wi, 2wy-wy, 2wytw,, 3w, | superdeformed prolate shapes

2 wa, 2wy Wy, 2wy +wy superdeformed oblate shapes

3 Wy, Jwy no instability

“banana shapes” 46. 47, K =1 octupole deformations?. The K =0 and K =2 interactions
act only between states with opposite values of m,. At the superdeformed oblate shape
with &k, =2, ky=1, this scenario is reversed: the X =0 and K'=2 modes conserve 7. By
inspecting Table 1 one can immediately conclude that the superdeformed oblate nuclei
should be unstable with respect to K =0 and K =2 octupole fields (AE=2w, -w,=0!).

In order to analyze the octupole couplings in the RHO model, the doubly-
stretched octupole interaction,

e =t Ye(QY), el = ;- o (i =1,2,3) (16)

of Sakamoto and Kishimoto 48 49 has been used. This interaction can be viewed as
an improved conventional multipole-multipole force. Firztly, it satisfies the nuclear-
selfconsistency’ rigorously even if the system is deformed. Secondly, it yields the zero-
energy RPA spurious modes, i.e. it automatically separates the translational and reori-
entation modes. Last but not least, for the doubly-stretched interaction the coupling
between octupole and dipole modes disappears.

Let us first discuss properties of low-lying octupole modes within the RPA for-
malism. The RPA equation for the excitation energy, w, is given by the dispersion
relation

1
1clf R:}K(W) - 0 (17)
K3k
where £3%/ is the self-consistent octupole coupling strength48
arMuw? ‘
T ('Y + ;(4 ~ K*){(r'P2)")o

_174— [K2(7K2 - 67) + 72] (= P3)" oy (18)

and
o) = ¥ gt [NAQI0)F + 1103710 (19)

is the RPA response function. The value of Ry (w = 0)/2 is the inverse energy-weighted
sum rule S_,, which can be related to the microscopic interaction strength, 7\, by 5

K = (25.0)7" (20)

IStrictly speaking the instability is not expected for doubly magic systems since the corresponding
coupling disappears. The optimal situation is expected to occur in nuclei that are singly magic. In
this case the superdeformed shape is stabilized by the magic neutron/proton gap whilst the instability
is caused by valence protons/neuntrons.

¥The shape of the potential and that of the density must be tke same
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Consequently, if the quantity
Ik = (N::';:'j)“ - (rix)"! (21)

is negative (positive), then the lowest cnergy octupole mode is unstable (stable) with
respect to permanent deformation. In order to check the susceptibility of the RHO
to octupole distortions one can thus calculate Iyx as a function of the shell filling.
For the RHO this can be Jdone analytically. Below are presented selected result of the
calculations for the K'=0 mode (and closed-shell systems).

(i) Spherical case, kj=k;=k;=1. Here

71 .5
sph __
a0 = ;4—7;;3/45 >0, (22)
where A=N), is the particle number, cf. eq. (11), and M is the principal quantum
number of the last occupied shell. It is seen that the spherical magic harmonic
oscillator is stable with respect to octupole distortion and Iy, does not exhibit

any shell fluctuations?.

(ii) Superdeformed case, k;=k;=1, k3=2. Here, the result depends on the value of
Nahell, i.e.

159 = .1_5'_’_2‘.‘4 N 37 asymmetric system, case A of fig. 2 (23)
73 symmetric system, case B of fig. 2.

(iii) Hyperdeformed case, ky=k;=1, k;=3. Here we consider three positions of the
Fermi level, see fig. 3. Also in this case the result depends on Nypen:

7 2 2252 (1 - F”f% asymmetric system, €z
W
LiP = ——11201\';%A X q 2252 (1+ §%5) asymmetric system, ef (24)
° 4316 symmetric system, €%.

As seen from eqs. (23-24) there exists a correlation between the predictions of the
geometrical multi-cluster model and the underlying single-particle picture. Namely,
for the systems expected to be asymmetric the value of Iy, is small, and it increases for
more symmetric multicluster configurations. This result is already quite encouraging.
However, no octupole instability has been predicted by the RPA since in all cases I3,>0.
On the other hand, it is well known that the deformed shell model alone (here: the
RHO) is not able to predict correctly the nuclear binding and deformation energies since
it partly neglects the interaction energy arising from the two-body effective forces 50,
According to the Strutinsky energy theorem the fiuctuating part of the total energy, the
shell-correction, is, however, reproduced fairly well by the independent single-particle
model.

Since we know that the smooth energy of the harmonic oscillator is a very poor
approximation to the liquid drop energy we should not expect the RPA result discussed
above to be very accuratell. In the next step, therefore, we calculate the shell driving
force associated with the doubly-stretched octupole interactions.

11t is worth noting that the exact result (22) comes from from the delicate cancelation between the
M-dependent terms. In ref. 48, where the the terms of O(1/M?) were neglected, the anthors obtsined
I30=0 also for spherical closed-shell systems.

{The RPA is the harmonic expansion around the equilibrium point and its predictions depend
crucially on the curvature of the total potential energy.



In the presence of the small perturbing potential, 1/, the total shell correction

can be written as
JDFA'" = 61"1,!(" + ‘srtlull + 61:5!"](( . (25)

Y] s .
where 6E£,.?,,, is the unperturbed sheil correction,

ou

oA
JE};I()'" = Z l";l'i - Z ";ltlﬁu (26)
a=1

a=]

is the first order correction to § Eun 51 , and

T Sl SE LT M o S | PR, (27)
Eu 1‘“ Enﬂ

a=1 d=A+1 Ean a=1 =1

is the second order contribution tc the shell energy. In eqs. (26-27) 7, is the smoot}-ad
occupation number of the single-particle state |o) and E.z-F. is the particle-hole
excitation energy.

For the octupole field, V=8yxQ%,, the first order term (26) vanishes and the
shell driving force is solely determined by the second order correction & ES:?,", which is
proportional to the squarc of the corresponding deformation By,

6E.$:Zu = C.‘ll(ﬂ."fl(" (28)

The shell-energy octupole-stiffiness coeflicient, Cyx, given by eq. (27) (V — Qix),
determines the octupole suscentibility of shell energy. If Cyy is negative then there
exists a shell force favouring stable deformations™. On the other hand, if Cyy is positive,
the shell correction tends to restore reflection symmetry.

The results of calculations for Cyx are displayed in figs. 4-6. For the sphericai
chape, fig. 4, the octupole-driving shell force is positive, i.e. there is no tendency to
develop stable octupole deformations. Of course, in this case all octupole modes are
degenerate.

The situation at superdeformed prolate shape is shown in fig. 5. For particle
numbers representing the asymmetric case A of fig. 2 (Nynen~even) the Csx is negative
for the K=0,1 and 3 modes. For the symmetric systems (case B) there is no shell
octupole driving force towards reflection-asymmetric shapes.

Finally, the hyperdeformed case is illustrated in fig. 6. As expected, for the
systems representing the asymmetric case A of fig. 3 the shell correction decreases with
octupole deformations for the X'=0,1 and 3 modes, whilst no octupole-driving tendency
is predicted for the symmetric case C.

In summary, the role of spherical clusters in definiug properties of superdeformed
states becomes more clear when one considers the shell energy of the RHO. For magic
numbers given by two unequal spherical clusters (case - in fig. 2, i.e., N or Z equal
to 28, 60, 110 etc.), the shell energy decreases with increasing reflection asymmetry.
On the other hand, for the particle numbers 40, 80, 140 {case B), the nuclear shape
is expected to be fairly rigid with respect to reflection asymmetric distortions**. For
hyperdeformed shapes, fig. 3, the harmonic oscillator model suggests that the strongest
tendency for reflection asymmetry should be expected in case A, i.e. for the particle

**The liquid drop model energy never favours reflection-asymmetric shapes. This means that stable
octupole shapes can only arise from shell effects, i.e. from the shell driving force.

1 The relation between spherical and superdeformed magic numbers was discussed by Bengtsson
et al. in 1981 43, In order to understand the alternating behaviour of microscopic octupole shell
correction they introduced the model of two touching harmonic oscillators, i.e. two spherical clusters.
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Fig. 4. Shell-correction octupole-stiffness coeflicient Cyye (in units of
f;tb;" for the closed-shell configurations of the spherical harmonic
oscillator.

numbers 12, 36,80,150. Particle numbers that stabilize reflection-symmetric shapes
(case C) are equal to 24, 60, 120.

Reflection—Asymmetric Shapes in Light Nuclei

In light nuclei the spin-orbit interaction is relatively weak and, in addition, the
diffuseness of the nuclear surface is comparable with the nuclear radius. Consequently,
the harmonic occillator model gives a fairly goed approximation to the nuclear average
potential. Among many well-deformed configurations in light nuclei there are several
good examples that nicely illustrate the simple oscillator (multicluster) scheme.

A classic example is the ground-state of *’Ne, which can be well descrited as
erising from an '*0-*He di-nucleus configuration92-94. According to the RHO scheme
this reflection asymmetric superdeformed system can be viewed as a combination of
two spherical “clusters” with particle numbers 2 (alpha particle) and 8 (spherical '¢0).

There are several candidates for reflection-asymmetric structures among the so
called quasi~molecular resonances. For instance, the alternating parity band built on
the 0F state in 0 can be well described in terms of a+'*C dipole molecular band 99,
Observed resonances in the asymmetric fission 2!Mg—!0 + 3Be (or *’Ne+a) can be
attributed to the calculated low-lying reflection-asymmetric hyperdeformed minimum
in *Mg 56, According to the RHO scheme this configuration can be associated with
the symmetric a+'%0+a (see 57) or asymmetric '¥0+a+a ar %048 Be structures.

Octupole Correlations in Superdeformed Nuclei

The microscopic mechanism behind reflection asymmetry at certain superde-
formed shapes is twofold. The octupole interaction ¥an couples the orbitals with asymp-
totic quantum numbers [N n; A]Q and [N + 1 ny + 1 AJQ. The largest number of
such matrix elements corresponds to states with the highest possible value of n4, i.e.
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Fig. 5. Similar to fig. 4 but for the superdeformed closed-shell configura-
tions of the RHO.

for n3=0. This tendency has been discussed long ago in the context of the fission
barrier asymmetry 38.59, The second mechanism behind the octupole instability in
superdeformed states is the octupole interaction between the high-N intruder orbitals
and specific pseudo-oscillator levels. For example, the same pairs of orbitals, such as
((660]1/2-[530]1/2) or ([770}1/2~{640]1/2), which are responsible for octupole defor-
mations in the light actinides, appear close to the Fermi level in superdeformed SD
configurations around *®Gd and '**Hg.

Calculations based on the realistic mean-field potentials confirm the prediction
of the RHO, i.e. regions of particle numbers, which favour reflection-symmetric or
reflection-asymmetric shapes alternate?3:60-63 554 the tendency towards mass-asymmetry
is strongly favoured at particle numbers around 28, 64 and 114 whilst for particle num-
bers around 38, 84 and 144 the minimum shell correction energy is found at reflection—
symmetric shapes.

For superdeformed bands around 2Dy the low-energy octupole collectivity can
be attributed to the “octupole-driving” proton number Z=64. On the other hand
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Fig. 6. Similar to fig. 4 but for the hyperdeformed closed-shell configura-
tions of the RHO.

there is no such a tendency for the neutron system. But as predicted, the particle
number N=84 has been found to strongly favour reflection-symmetric shapes. The
opposite is true for superdeformed configurations in the Hg-Pb region, i.e. octupole
correlations have neutron origin (because of the “optimal” neutron number N=114).
As an illustrative example the results of Woods-Saxon-Strutinsky calculations for 192Hg
are shown in fig. 7. Whilst the neutron shell correction strongly favours octupole
distortions the proton shell correction drives the system towards B3=0. The resulting
shell correction is almost insensitive to 8, and, thanks 1o the very shallow macroscopic
energy, the total potential energy reveals a pronounced octupole softness.

Recently, the octupole susceptibility in superdeformed configurations has been
investigated within the parity-projected Skyrme-Hartree-Fock model 64, The selfcon-
sistent calculations do confirm the predictions of models based on the shell-correction
approach, i.e. they indicate quiie a sizeable lowering of the octupole excitations built
on the superdeformed intrinsic state. Recent calculations % in terms of the Generator
Coordinate Method (GCM) confirm this tendency.
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Properties of low-frequency octupole vibrations built upon superdeformed shapes
have been analysed recently by Mizutori et al. 47,66,67 in terms of the RPA method
with the cranked Nilsson potential and the doubly-stretched octupole residual inter-
action. They found rather strong K-dependence of superdeformed octupole modes.
In particular, the K'=1 “banana” mode turned out to be very collective. At normal
deformations, the spatial difference between doubly-stretched and normal multipole-
multipole forces is rather small. At large deformations, however, these interactions give



markedly different predictions. For instance, the K:==3 octupole vibrations are very
collective in terms of doubly-stretched coordinates, but they are relatively weak when
expressed through normal octupole interactions 67 ‘Chis means that the experimental
observation (or: non-observation) of very collective K =3 octupole vibrations will tell
us which of these two residual interactions is more realistic.

The deformation-driving shell-forces of K =0,1,2,3 superdeformed octupole modes
have been recently discussed in ref. 68 within the deformed Woods-Saxon model. The
calculations indicate a correlation between the shell forces of different K-modes. This
result is in a qualitative agreement with the predict’-ns of the RHO model.

Octupole softness (but not octupole instability) in superdeformed nuclei in the
A~190 region is expected to persist at high angular momenta.47:60,61,63,66,67 ;.
sequently, collective octupole vibrational excitations can be mixed with low-lying one-
and two-particle states thus modifying the excitation pattern near the yrast line. Ac-
cording to the calculations the first excited state in the doubly-magic superdeformed
configurations in 2Dy and '?Hg should have a collective octupole character, in a nice
analogy to the well-known collective 37 state in the doubly-magic spherical nucleus
2"Pb. Morcover, the B(El) rates for depopulating the superdeformed octupole band
should be markedly enhanced because of (i) the reduced excitation energy of the giant
dipole resonance built on the superdeformed state 25 and (ii) the large macroscopic con-
tribution to the intrinsic dipole moment, which is proportional to the product of 5,4,.
The presence of large dipole moments (or enhanced B(E1) rates) is a direct conse-
quence of the doubly-stretched octupole force. The K=0 and K=1 (r*Y;3x)" operators
are linear combinations of the ordinary octupole fields, r*Y3x and the compressional
digote fields, r*Yix 67, Again, if the doubly-stretched residual interaction is realised in
nature, strong dipole transitions de-exciting superdeformed octupole states should be
present.
Recent experimental data on '*3Hg 69 show a low-frequency pseudo crossing in
one of the observed superdeformed bands as well as dipole transitions (most likely in
one direction only) between one superdeformed band and another. An admixture of
an octupole phonon built on the [624]9/2 ground-state into the [512]5/2 band provides
a possible explanation of these effects 69, The experimental data for '%*Hg, together
with the observed reduction in alignments and the unusual similarity of superdeformed
bands in the A~190 region, are the first pieces of experimental evidence supporting the
presence of sirong octupole correlations in superdeformed configurations.

As far as hyperdeformed shapes are concerned, a third hyperdeformed minimum
around the fission barrier has been calculated 70-72 for neutron-rich nuclei around
Z=86, N=148, i.c. exactly around the octupole-driving particle numbers 80 and 150).
Experimentall¥ the third minimum shows up as an alternating-parity microstructure
of resonances 374

SUMMARY

The field of octupole deformation is among the most quickly expanding areas
of nuclear structure. Experimental discovery of nuclear quasimolecular bands, parity
doublets and collective intrinsic dipole moments certainly gave this subject a strong
push. Theoretically, many properties of low-lying octupole and dipole modes have been
successfully described using reflection-asymmetric mean field approach and collective
models like the GCM or RPA.

Recent discovery of discrete superdeformed rotational bands in heavy nuclei
opened up a2 whole new field, namely the near yrast superdeformed spectroscopy. Es-
pecially exciting is the question of low—energy collective excitations at very deformed



configurations. Among them, the octupole modes have been predicted to be particu-
larly favoured. In this contribution, overall features of octupole correlations have been
described in terms of the RHO model. In particular, we have demonstrated that there
exists an apparent relation between the multiple irreps of SU(3) and the tendency (sus-
ceptibility) to cluster into spherical fragments. The simple relation between the cluster
size, the number of clusters (equal to the number of irreps of SU(3)), and the overall
equilibrium shape is supported by the microscopic calculations.
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