

**MASTER  
TOPICAL REPORT**

**Hydrothermal Alteration at the Roosevelt  
Hot Springs Thermal Area, Utah:  
Modal Mineralogy, and Geochemistry of  
Sericite, Chlorite, and Feldspar from  
Altered Rocks, Thermal Power Company  
Well Utah State 14-2**

by  
**J. M. BALLANTYNE**

**Work performed under Contract No.**

**EG-78-C-07-1701**

**Department of Geology and Geophysics**

**University of Utah  
Salt Lake City, Utah (USA)**

**November 1978**

**Prepared for  
DEPARTMENT OF ENERGY  
Division of Geothermal Energy**

## **DISCLAIMER**

**This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.**

## **DISCLAIMER**

**Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.**

NOTICE

**MASTER**

This report was prepared to document work sponsored by the United States Government. Neither the United States nor its agent, the United States Department of Energy, nor any Federal employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

NOTICE

Reference to a company or product name does not imply approval or recommendation of the product by the University of Utah or the U. S. Department of Energy to the exclusion of others that may be suitable.

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

TOPICAL REPORT

78-1701.a.1.1.5

Hydrothermal Alteration at the Roosevelt Hot Springs  
Thermal Area, Utah: Modal Mineralogy, and Geochemistry of Sericite,  
Chlorite, and Feldspar from Altered Rocks, Thermal Power Company

Well Utah State 14-2

by

J. M. Ballantyne

## TABLE OF CONTENTS

|                                 | <u>Page</u> |
|---------------------------------|-------------|
| ABSTRACT. . . . .               | 1           |
| INTRODUCTION. . . . .           | 2           |
| ANALYTICAL TECHNIQUES . . . . . | 6           |
| MODAL MINERALOGY. . . . .       | 8           |
| MINERAL ANALYSES. . . . .       | 15          |
| ACKNOWLEDGEMENTS. . . . .       | 33          |
| REFERENCES. . . . .             | 34          |
| APPENDIX. . . . .               | 35          |
| DISTRIBUTION. . . . .           | 37          |

## LIST OF TABLES

| <u>Table</u> |                                                                       | <u>Page</u> |
|--------------|-----------------------------------------------------------------------|-------------|
| 1            | Computer Calculated Modal Mineralogy: Well No. 14-2. . . . .          | 9           |
| 2            | Mineral Compositions Used in Mode Calculation . . . . .               | 10          |
| 3            | Estimated Modes for Input to Mode Calculation Program . . . . .       | 11          |
| 4            | Feldspar Analyses: Thermal Power Co. Well Utah State<br>14-2. . . . . | 16          |
| 5            | Chlorite Analyses: Thermal Power Co. Well Utah State<br>14-2. . . . . | 17          |
| 6            | Sericite Analyses: Thermal Power Co. Well Utah State<br>14-2. . . . . | 20          |

## LIST OF FIGURES

| <u>Figures</u> |                                                                                                                                              | <u>Page</u> |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1              | Hydrothermal Alteration in Well 14-2: Products and Extent of Alteration. . . . .                                                             | 3           |
| 2              | Compositions of Chlorites from Well 14-2: $\text{Si}^{4+}$ vs. $\text{Mg}^{2+}/(\text{Mg}^{2+} + \text{Fe}^{2+} + \text{Fe}^{3+})$ . . . . . | 22          |
| 3              | Compositions of Chlorites from Well 14-2. $\text{Si}^{4+}$ vs. $\text{Mg}^{2+}/(\text{Mg}^{2+} + \text{Fe}^{2+} + \text{Fe}^{3+})$ . . . . . | 23          |
| 4              | Compositions of Chlorites from Well 14-2: Octahedral Cation Relationships. . . . .                                                           | 25          |
| 5              | Compositions of Sericites from Well 14-2: $\text{Si}^{4+}$ ions per 4 Tetrahedral Cations . . . . .                                          | 28          |
| 6              | Compositions of Sericites from Well 14-2: $\text{F}^-$ vs. $\text{Mg}^{2+}/(\Sigma \text{ Octahedral Cations})$ . . . . .                    | 30          |

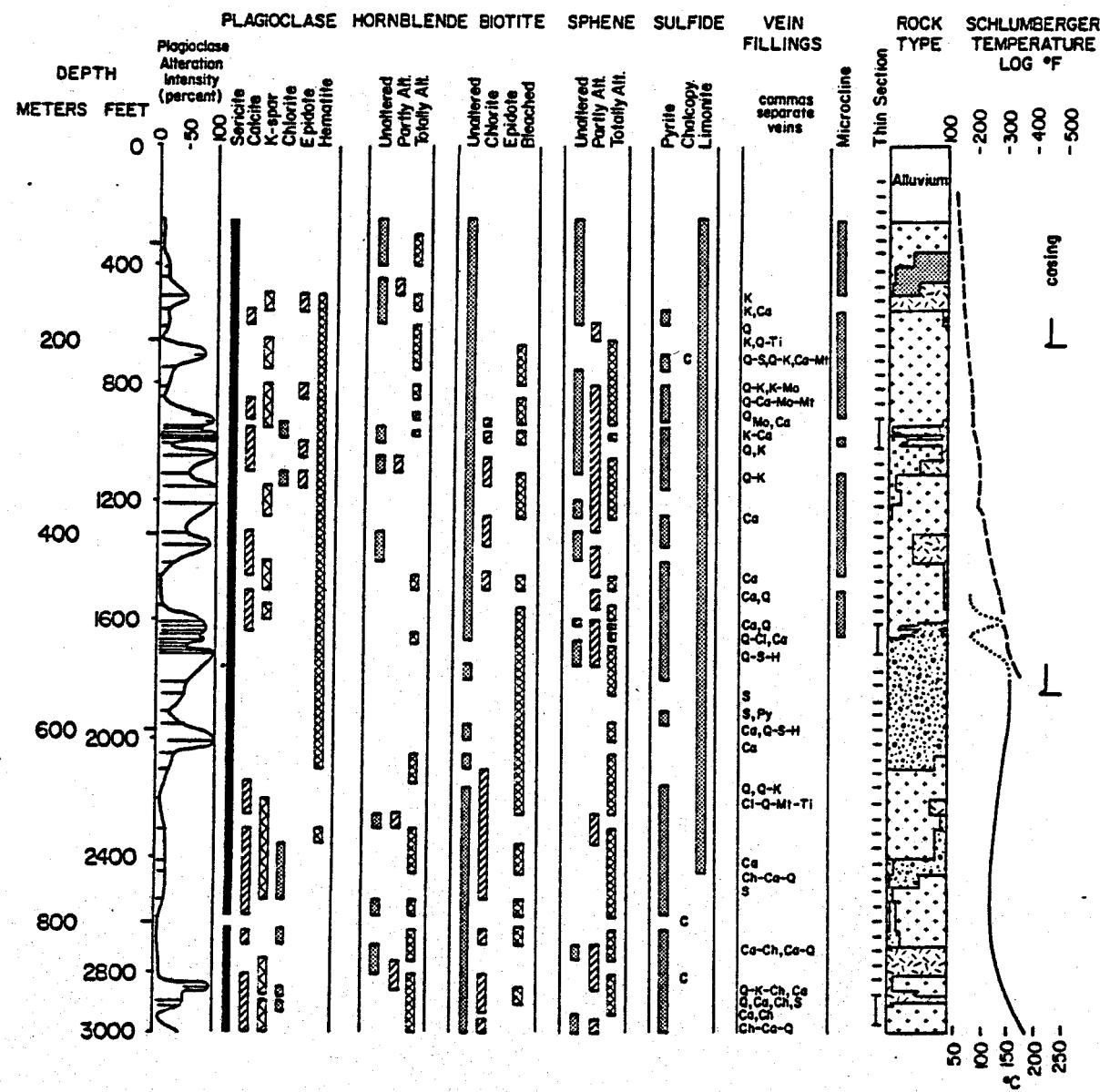
## ABSTRACT

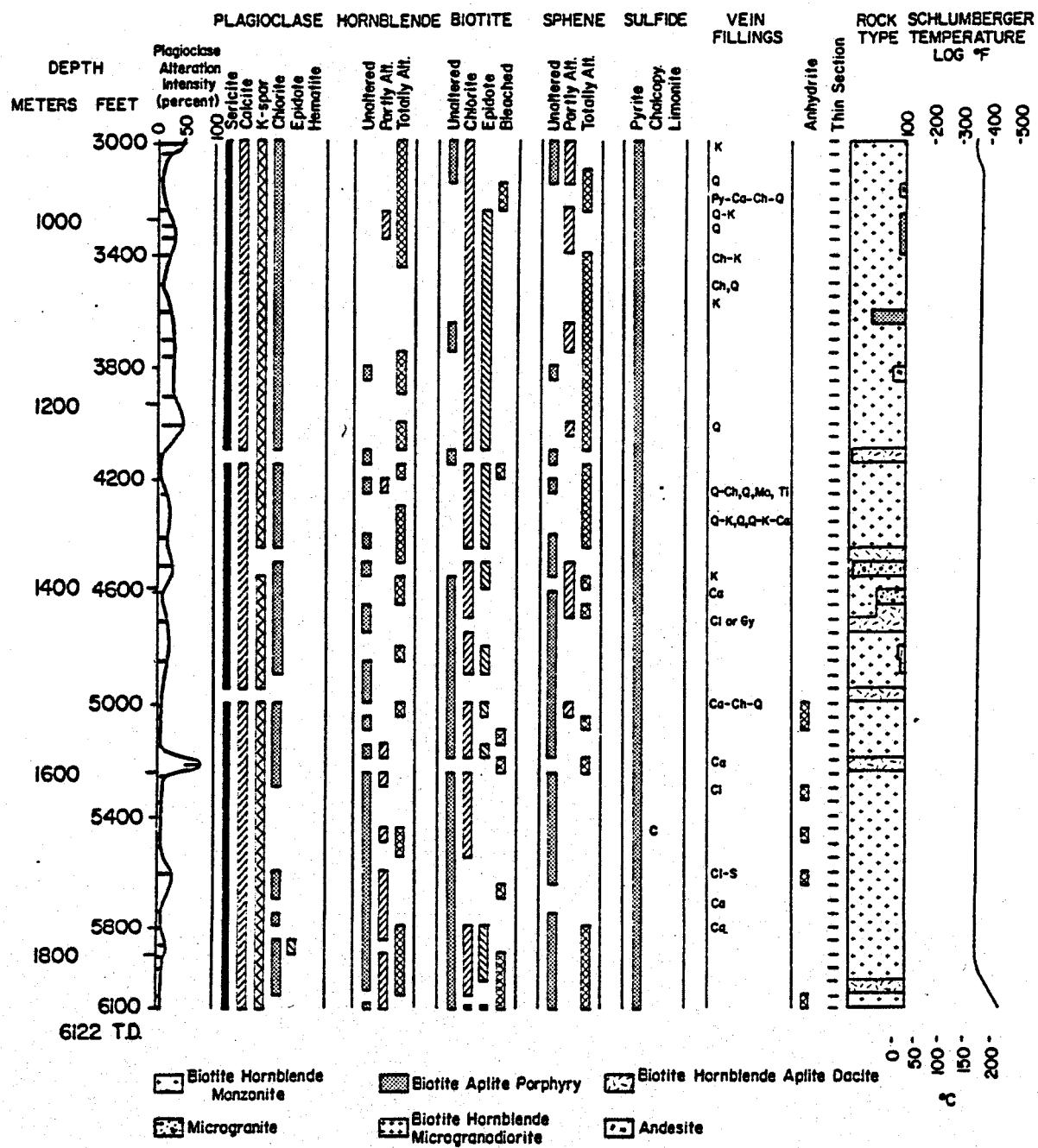
Sericites, chlorites, feldspars, biotite and hornblende from hydrothermally altered rocks at several depths in Thermal Power Company well Utah State 14-2, Roosevelt Hot Springs Thermal Area, Utah, have been analysed using the electron microprobe. Sericites and ferromagnesian minerals have been analysed for 12 major elements, and feldspars for 3. The results have been used, along with whole rock chemical analyses, to computer calculate modal mineralogy for samples from the drillhole. Calculated modes for hydrothermal minerals are in reasonable agreement with observations from thin sections.

Chlorite compositions plotted in terms of ions on a graph of  $\text{Si}^{4+}$  versus  $\text{Mg}^{2+}/(\text{Mg}^{2+} + \text{Fe}^{2+} + \text{Fe}^{3+})$  fall in the ripidolite-pycnochlorite-brunsvigite field and show distinct differences due to host mineral type. Tetrahedral occupancy in chlorite by  $\text{Si}^{4+}$  ions increases according to host mineral in the order: biotite, plagioclase, hornblende; and octahedral occupancy by  $\text{Mg}^{2+}$  ions increases in the order: plagioclase, hornblende, biotite. A ternary plot of  $\text{Mg}^{2+}$ ,  $\text{Fe}^{2+} + \text{Fe}^{3+}$ , and  $\text{Al}^{3+}$  ions in octahedral positions shows a less distinct effect of host mineral control. No systematic compositional trends within the drillhole are evident but compositions do vary with depth.

Sericites replace plagioclase and rarely biotite. No host mineral effect is evident. All of the sericites are phengitic, having  $\text{Si}^{4+}:\text{Al}^{3+}$  ratios greater than 3:1, and  $\text{Si}^{4+}$  content shows an overall downhole increase with depth in the drillhole. An overall downhole decrease is exhibited by  $\text{F}^-$  relative to  $\text{Mg}^{2+}$ .

## INTRODUCTION


Microprobe chemical analyses of mineral phases have been obtained from samples of cuttings taken at several depths in Thermal Power Company's well Utah State 14-2, Roosevelt Hot Springs, Utah.


Minerals were analysed: (1) to provide input data for a computer program which calculates a modal rock composition, given mineral compositions and a whole rock chemical analysis; and (2) to detect any compositional zoning in hydrothermal minerals within the drillhole.

The well was drilled to a depth of 6100 feet in a biotite hornblende monzonite which has been intruded by numerous silicic to intermediate dikes. Three zones of relatively strongly altered and fractured rock occur in the upper half of the drillhole and are assumed to be conduits for hot water inflow to the well. The lithologies and alteration have been described by Ballantyne and Parry (1978) and are summarized in Figure 1, reproduced here from that report.

Sericite, chlorite, hornblende and biotite have been analysed for 12 elements: Si, Ti, Al, Fe, Mn, Mg, Ca, K, Na, Ba, Cl, F. Feldspars have been analysed for Ca, K, and Na. Minerals for analysis have been chosen from 8 samples from different depths in the drillhole.

Figure 1.. Hydrothermal Alteration in Well 14-2: Products and extent of alteration. Horizontal bars on plagioclase destruction graph indicate range of plagioclase destruction observed in a thin section.  
Abbreviations: B, barite; C, chalcopyrite; Ca, Calcite; Ch, chlorite; Cl, clay; Gy, gypsum; H, hematite; K, k-feldspar; Mo, montmorillonite; Mt, magnetite; Py, pyrite; Q, quartz; S, sericite; Ti, Leuxocene. (From Ballantyne and Parry, 1978.)





## ANALYTICAL TECHNIQUES

Minerals were analysed using a 3-channel ARL electron microprobe at an acceleration voltage of 15kv for a fixed total beam current achieved in approximately 13 seconds. An attached Tracor Northern energy dispersive unit provides an energy spectrum on a visual display unit which, while not quantitative, can be used to identify mineral phases by the relative concentrations of the elements present. A beam of approximately 1 micron in diameter was used because of the fine-grained nature of many of the hydrothermal minerals. Typically ten spots were analysed for each mineral grain or, in the case of fine grained minerals, for each aggregate in a particular environment in any one chip. For each spot the energy spectrum from 0 to 10 kev was checked to ensure correct identification of the mineral phase concerned. This is particularly important with fine grained hydrothermal minerals where, for example, chlorite and sericite or albite are intermixed on a fine scale and are not optically distinguishable.

For sericite, chlorite, hornblende and biotite analyses, the standards used were amphiboles, a pyroxene, biotites, and a scapolite. X-ray counts were reduced to oxide and halide weight percentages, with standard deviations, using a Hewlett Packard 25 programmable calculator. Bence-Albee matrix corrections (Bence and Albee, 1968) were then calculated using a computer program which also calculates a structural formula. Input data to the Bence-Albee routine also includes an ideal water content and a typical ferric to ferrous iron ratio for the mineral concerned. The data are corrected by an iterative routine which corrects the original oxide data

each time with successively more accurate approximations of the water content.

Feldspars were analysed for only Ca, K and Na using feldspar standards. First estimates of  $\text{SiO}_2$  and  $\text{Al}_2\text{O}_3$  content were made, assuming stoichiometry, and these data input to the program described above.  $\text{SiO}_2$  and  $\text{Al}_2\text{O}_3$  weight percentages were then recalculated from the Bence-Albee corrected values for  $\text{CaO}$ ,  $\text{K}_2\text{O}$  and  $\text{Na}_2\text{O}$ .

## MODAL MINERALOGY

Modal mineralogy has been calculated by computer for 40 samples from Thermal Power Co. well Utah State 14-2 and the results are given in Table 1. A computer-calculated rock mode has several advantages in the current situation aside from removing the tedium of point counting:

1. For a sample of drill cuttings a calculated mode may be more representative than a mode obtained by point-counting a thin section because a thin section may not be truly representative of the rock sample.
2. A whole rock chemical analysis provides average data for an interval rather than for a point, and the mode thus calculated smooths out the effects of small dikes or other local variations in rock composition.
3. A calculated mode provides quantitative data for fine-grained, hydrothermal minerals which may not be obtainable by point-counting.

The computer program MODECALC performs a weighted least squares regression fit of a whole rock chemical analysis to the compositions of a stipulated set of minerals. Because the best mathematical fit may give negative and overly large positive numbers, an initial rough estimate of mineral abundances is also entered and positive values are obtained by weighting the solution toward this estimate. The weight is chosen by the user to be the minimum required for positive results and the same weight is used for all samples. The estimate of modal abundances need only be very

Table 1. Computer Calculated Modal Mineralogy: Well No. 14-2

| Sample* | Plagioclase | K-Feldspar | Quartz | Biotite | Hornblende | Sericite | Chlorite | Calcite | Sphene | Rutile | Monazite | Pyrite |
|---------|-------------|------------|--------|---------|------------|----------|----------|---------|--------|--------|----------|--------|
| 200     | 59          | 26         | 9.8    | .31     | .69        | .48      |          | .95     | .40    |        | .62      |        |
| 400     | 56          | 24         | 11     | 2.2     | .93        | .57      |          | .07     | .62    | .05    | 1.4      |        |
| 500     | 52          | 21         | 8.7    | 6.7     | 2.6        | .90      |          | .24     | 2.4    |        | 1.7      |        |
| 600     | 60          | 24         | 4.2    | 3.4     | 1.7        | 1.0      |          | .11     | 1.3    |        | 1.9      |        |
| 700     | 61          | 25         | 5.4    | 3.3     | 1.4        | .91      |          | .22     | 1.0    |        | 1.0      |        |
| 800     | 58          | 27         | 4.7    | 2.8     | 1.6        | 1.0      |          | .60     | 1.5    |        | 1.2      |        |
| 900     | 58          | 21         | 5.1    | 3.3     |            | 4.5      | 1.1      | 1.3     | .93    | .21    | 1.9      |        |
| 920     | 64          | 9.8        | 8.0    | 3.0     |            | 2.7      | 1.4      | .07     |        | .44    | 4.4      |        |
| 940     | 54          | 9.7        | 10     | 8.8     |            | 4.1      | 2.2      | 2.4     | 2.4    | .07    | 1.9      |        |
| 960     | 56          | 17         | 9.0    | 5.2     |            | 3.6      | 1.5      | .67     | 2.0    |        | 1.4      |        |
| 980     | 53          | 15         | 12     | 5.8     |            | 4.1      | 1.9      | .69     | 2.1    |        | 1.6      |        |
| 1000    | 53          | 15         | 11     | 6.8     |            | 4.2      | 1.9      | .66     | 2.2    |        | 1.3      |        |
| 1100    | 60          | 20         | 6.6    | 2.4     |            | 4.0      | .93      | .18     | 1.4    |        | 1.2      |        |
| 1200    | 61          | 20         | 9.9    | .93     |            | 2.1      | .71      |         |        | .38    | 1.7      |        |
| 1300    | 55          | 14         | 8.4    | 8.2     |            | 3.3      | 1.8      | 1.0     | 2.2    |        | 2.0      |        |
| 1400    | 52          | 23         | 6.1    | 6.4     |            | 4.7      | 1.3      | 1.2     | 2.1    |        | .90      |        |
| 1500    | 51          | 25         | 5.7    | 6.4     |            | 4.7      | 1.3      | .65     | 2.1    |        | .33      |        |
| 1600    | 55          | 21         | 14     | 2.3     |            | 1.2      | .73      | .29     | .40    | .36    | 1.5      |        |
| 1620    | 57          | 17         | 8.9    | 5.8     |            | 3.5      | 1.4      | .62     | 1.4    |        | 1.1      |        |
| 1640    | 57          | 13         | 9.5    | 7.5     |            | 3.6      | 1.9      | .79     | 1.9    |        | 1.9      |        |
| 1660    | 58          | 17         | 15     | 2.1     |            | 1.5      | .90      | .12     |        | .34    | 1.2      |        |
| 1680    | 57          | 16         | 16     | 3.2     |            | .96      | 1.0      | .11     |        | .36    | 1.0      |        |
| 1700    | 60          | 13         | 18     | 2.2     |            | .08      |          | .11     |        | .20    | 1.5      |        |
| 1800    | 55          | 20         | 16     | 1.4     |            | .80      |          | .16     |        | .21    | 1.3      |        |
| 1900    | 54          | 23         | 16     | .49     |            | .26      |          | .12     |        | .19    | 1.3      |        |
| 2000    | 54          | 19         | 18     | 1.6     |            |          |          | .21     |        | .19    | 1.1      |        |
| 2100    | 55          | 25         | 5.9    | 3.0     | 1.4        | .84      | 5.1      | .45     | 1.6    | .12    | .42      | .06    |
| 2400    | 47          | 26         | 11     | 2.6     | 1.8        | .69      | 5.1      | 1.7     | 1.5    |        | .06      | .05    |
| 2800    | 44          | 29         | 5.5    | 2.6     | 1.9        | 1.3      | 5.9      | 1.8     | 3.2    | .18    | 1.6      | .16    |
| 2855    | 46          | 23         | 6.7    | 2.6     | 1.8        | 1.2      | 7.1      | 3.3     | 2.7    | .53    | 1.9      | .33    |
| 2875    | 42          | 9.1        | 11     | 6.7     | 2.5        | 1.1      | 14       | 1.7     | 2.0    | .71    | 2.0      | .81    |
| 2900    | 39          | 32         | 5.6    | 2.6     | 2.0        | 1.5      | 6.5      | 2.1     | 3.5    | .31    | 1.8      | .24    |
| 2920    | 44          | 26         | 4.8    | 4.2     | 2.0        | 1.4      | 8.1      | 2.5     | 2.8    | .61    | .66      | .28    |
| 2940    | 41          | 25         | 5.0    | 5.2     | 2.4        | 1.3      | 9.3      | 2.3     | 3.2    | .33    | .84      | .23    |
| 3000    | 41          | 29         | 4.7    | 4.2     | 2.1        | 1.4      | 7.9      | 2.3     | 3.3    | .31    | .82      | .14    |
| 3500    | 57          | 28         | 4.3    | 1.4     | .80        | .88      | 3.0      | .90     | 1.2    | .48    | 1.0      | .19    |
| 4000    | 52          | 28         | 4.5    | 2.0     | 1.3        | 1.0      | 4.2      | 1.4     | 2.0    | .29    | 1.3      | .28    |
| 5000    | 52          | 26         | 4.1    | 2.5     | 1.9        | 1.1      | 5.2      | 1.0     | 2.8    |        | .88      | .14    |
| 5500    | 56          | 32         | 4.4    | .22     | .90        | .96      | 1.7      | .53     | 1.6    |        | 1.2      | .06    |
| 6095    | 53          | 33         | 4.9    | .17     | 1.0        | .97      | 1.7      | 1.1     | 1.7    | 1.3    |          | .12    |

\* Number represents depth (in feet) to top of 5 or 10 foot sample interval.  
Units are Weight Percent.

Table 2 Mineral Compositions\* Used in Mode Calculation

|                                | Plagioclase | K-Feldspar | Biotite | Hornblende | Chlorite | Sericite |
|--------------------------------|-------------|------------|---------|------------|----------|----------|
| SiO <sub>2</sub>               | 68.0        | 65.1       | 36.4    | 44.2       | 29.9     | 53.1     |
| TiO <sub>2</sub>               |             |            | 2.95    | .93        | .11      | .10      |
| Al <sub>2</sub> O <sub>3</sub> | 19.9        | 18.5       | 13.9    | 8.23       | 19.8     | 30.9     |
| Fe <sub>2</sub> O <sub>3</sub> |             |            | 23.8    | 21.6       | 34.6     | 3.48     |
| MnO                            |             |            | .35     | .57        | .81      | .04      |
| MgO                            |             |            | 11.8    | 10.2       | 14.3     | 1.69     |
| CaO                            | .50         | .01        | .05     | 11.9       | .21      | .14      |
| K <sub>2</sub> O               | .17         | 15.4       | 10.8    | 1.08       | .21      | 10.3     |
| Na <sub>2</sub> O              | 11.4        | 1.06       | .07     | 1.27       | .08      | .18      |

\* Recalculated to 100% excluding BaO, H<sub>2</sub>O and halides.

All other minerals used are assumed stoichiometric.

Units are weight percent.

Table 3. Estimated Modes for Input to Mode Calculation Program

| Samples   | Plagioclase | K-Feldspar | Quartz | Biotite | Hornblende | Sericite | Chlorite | Calcite | Sphene | Rutile | Hematite | Pyrite |
|-----------|-------------|------------|--------|---------|------------|----------|----------|---------|--------|--------|----------|--------|
| 200-800   | 40          | 40         | 5      | 10      | 1          | 1        | 1        | 1       | 1      | 1      | 1        |        |
| 900-1680  | 35          | 40         | 5      | 10      |            | 5        | 1        | 1       | 1      | 1      | 1        |        |
| 1700-2000 | 35          | 40         | 5      | 10      |            | 5        | 1        | 1       | 1      | 1      | 1        |        |
| 2100-6095 | 40          | 40         | 5      | 5       | 1          | 1        | 5        | 1       | 1      | 1      | 1        | .2     |

Units are weight percent.

approximate and does not have a strong effect on the final result. The mathematical basis for the program is discussed briefly in the appendix.

The mineral compositions used are given in Table 2 and the estimated modes in Table 3. Occasional absences of sphene and especially rutile from the table occur where negative abundances were still obtained for these in the first run and they were excluded from the final run. The whole rock chemical analyses from which samples were chosen for mode calculations are reported in Parry (1978) and are not reproduced here. Note that most of the samples chosen are from the more strongly altered portions of the hole above 3000 feet.

The modes shown in Table 1 must be considered as approximate. Only one composition for each mineral phase has been used in the program, whereas in fact mineral compositions change with rock type and to some extent with position in the drillhole. The mixing inherent in samples of cuttings means that variable amounts of dike material are included in samples of host rock and vice versa. The compositions of feldspar, biotite and hornblende, and the estimated modes for these minerals are those for the biotite hornblende monzonite. Major minerals from the dikes should be included for more reliable results, but have not been analysed at the time of writing.

In spite of the above uncertainties a number of features are evident in the results:

1. Sericite abundances are computed to be higher in the zone between 900 and 1640 feet which corresponds to a zone of stronger plagioclase destruction in Figure 1. However,

plagioclase destruction is also higher between 1660 and 2000 feet, while calculated sericite abundance in this zone is low. The discrepancy is probably due to the fact that the latter interval corresponds to a microgranite dike which almost certainly has different mineral compositions.

Calculated quartz abundance also jumps in this latter zone.

2. Calcite abundance increases below 2400 feet which corresponds to the beginning of abundant chlorite and calcite in plagioclase noted in thin sections. The computed high chlorite content between 2800 and 3000 feet correlates with the high chlorite abundance seen in thin sections from this zone, though chlorite is also abundant for several hundred feet above the zone.
3. Pyrite reaches a computed peak of 0.81% at 2875 feet in this set of samples and is present in amounts greater than 0.1% below 2850 feet, it's abundance decreasing again in the bottom 1000 feet of the drillhole. This correlates with observations from thin sections.
4. Hematite is the only iron oxide included in the computations, though some magnetite is present, and much of the iron in the upper section of the drillhole occurs in limonites other than hematite. Iron oxide content appears to be relatively uniform throughout the drillhole except for an increase near 920 feet, in the uppermost of the three fracture zones, and a decrease near 2400 feet of unknown origin.

When a more complete set of mineral compositions becomes available more appropriate rock modes will be computed, and the results used in the interpretation of the chemistry of hydrothermal minerals and of the hydrothermal alteration system.

## MINERAL ANALYSES

Sericite, chlorite and feldspar analyses are discussed below. The data have by no means been completely interpreted but some of the results are plotted on Figures 2 through 6. All plots for sericite and chlorite are in terms of ions calculated from the structural formula rather than in weight percent. The structural formulas used are based on 4 tetrahedral cations. No statistical analysis of the data has been performed to date.

Feldspar analyses are presented in Table 4 but no interpretation of the results has been made. The plagioclases cluster around Ab<sub>96.5</sub> An<sub>2.5</sub> Or<sub>1.0</sub> except for those from sample 2855 which have a range of An and Ab contents: Ab<sub>73-80</sub> An<sub>18-26</sub> Or<sub>1-2</sub>. The K-feldspars contain less than 0.5% An and have a range of 84 to 98% Or.

Forty-two chlorites from 4 environments in five sample intervals have been analysed, most for 12 components, a few for only 9 (those excluding Ba, Cl and F). Analyses are listed in Table 5. Chlorite occurs replacing hornblende, biotite and plagioclase, and in veins. The data are plotted on Figures 2, 3 and 4, again in terms of ions. Figures 2 and 3 are plots of  $Mg^{2+}/(Mg^{2+} + Fe^{2+} + Fe^{3+})$  versus the number of  $Si^{4+}$  ions calculated from the structural formula (based on 4 tetrahedral cations). These figures are modified from Figure 81 of Deer, Howie and Zussman (1966). The chlorites fall in the ripidolite-pycnochlorite-brunsvigite field. Tetrahedral occupancy does not appear to distinguish samples when all environment types are averaged, but for grains within a single sample it appears that the  $Si^{4+}$  occupancy is highest in chlorite replacing hornblende and lowest in that replacing biotite. Chlorite  $Mg^{2+}/(Mg^{2+} + Fe^{2+} + Fe^{3+})$  ratio

Table 4 Feldspar Analyses: Thermal Power Co. Well Utah State 14-2.

|                                  | 1650<br>1.2A <sup>k</sup> | 1650<br>1.2B <sup>a</sup> | 1650<br>1.2A <sup>k</sup> | 1650<br>1.2B <sup>a</sup> | 1700<br>2D.2 <sup>k</sup> | 1700<br>2C.1A <sup>k</sup> | 1700<br>2C.1B <sup>a</sup> | 1700<br>2C.2A <sup>a</sup> | 1700<br>2C.2B <sup>k</sup> | 1700<br>2C.2C <sup>k</sup> | 1700<br>3D.A <sup>a</sup> | 1700<br>3D.1B <sup>k</sup> | 1700<br>3D.1C <sup>k</sup> | 1700<br>3D.3 <sup>a</sup> | 1700<br>3D.3 <sup>k</sup> |
|----------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|---------------------------|----------------------------|----------------------------|---------------------------|---------------------------|
| SiO <sub>2</sub> *               | 64.7                      | 67.6                      | 65.0                      | 67.8                      | 65.8                      | 65.5                       | 67.1                       | 67.7                       | 64.7                       | 64.4                       | 66.8                      | 65.6                       | 65.5                       | 65.9                      | 65.0                      |
| Al <sub>2</sub> O <sub>3</sub> * | 18.3                      | 19.9                      | 18.4                      | 19.6                      | 18.5                      | 18.5                       | 19.7                       | 19.8                       | 18.3                       | 18.2                       | 19.5                      | 18.6                       | 18.5                       | 19.4                      | 18.4                      |
| CaO                              | .02                       | .65                       | .02                       | .38                       | .02                       | .01                        | .60                        | .52                        | .01                        | .02                        | .52                       | .01                        | .02                        | .62                       | .01                       |
| K <sub>2</sub> O                 | 15.5                      | .22                       | 15.2                      | .29                       | 15.4                      | 15.7                       | .12                        | .16                        | 15.7                       | 15.1                       | .14                       | 15.7                       | 15.5                       | .11                       | 15.4                      |
| Na <sub>2</sub> O                | .91                       | 11.2                      | 1.19                      | 11.3                      | 1.09                      | .93                        | 11.2                       | 11.3                       | .76                        | 1.13                       | 11.2                      | .95                        | 1.03                       | 11.0                      | 1.05                      |
| Total                            | 99.4                      | 99.6                      | 99.8                      | 99.4                      | 100.8                     | 100.6                      | 98.7                       | 99.5                       | 99.5                       | 98.9                       | 98.2                      | 100.9                      | 100.6                      | 97.0                      | 99.9                      |

|                                  | 2800<br>4B.1A <sup>p</sup> | 2800<br>4B.1B <sup>a</sup> | 2800<br>4B.1C <sup>k</sup> | 2800<br>4B.3 <sup>p</sup> | 2800<br>3B.4 <sup>k</sup> | 2800<br>3B.3B <sup>p</sup> | 2855<br>2.4A <sup>a</sup> | 2855<br>2.9 <sup>k</sup> | 4400<br>2B.4B <sup>p</sup> | 4400<br>3B.2 <sup>p</sup> | 4400<br>3B.3 <sup>k</sup> |  |  |  |
|----------------------------------|----------------------------|----------------------------|----------------------------|---------------------------|---------------------------|----------------------------|---------------------------|--------------------------|----------------------------|---------------------------|---------------------------|--|--|--|
| SiO <sub>2</sub> *               | 63.1                       | 66.4                       | 63.4                       | 62.5                      | 63.6                      | 61.9                       | 68.0                      | 63.6                     | 66.2                       | 64.5                      | 65.4                      |  |  |  |
| Al <sub>2</sub> O <sub>3</sub> * | 22.9                       | 19.4                       | 18.0                       | 23.1                      | 23.0                      | 23.2                       | 19.9                      | 18.0                     | 18.8                       | 18.8                      | 18.6                      |  |  |  |
| CaO                              | 4.15                       | .53                        | .04                        | 4.51                      | 4.09                      | 4.71                       | .54                       | .03                      | .04                        | .45                       | .04                       |  |  |  |
| K <sub>2</sub> O                 | .29                        | .17                        | 13.9                       | .30                       | .25                       | .22                        | .19                       | 16.2                     | 15.0                       | .16                       | 14.81                     |  |  |  |
| Na <sub>2</sub> O                | 9.13                       | 11.1                       | 1.71                       | 8.89                      | 9.27                      | 8.76                       | 11.4                      | .24                      | 1.53                       | 10.8                      | 1.49                      |  |  |  |
| Total                            | 99.6                       | 97.6                       | 97.0                       | 99.3                      | 100.2                     | 98.8                       | 100.0                     | 98.1                     | 101.6                      | 94.7                      | 100.3                     |  |  |  |

Superscripts to sample numbers: k k-feldspar; p plagioclase; a albite

\* Calculated

Table 5 Chlorite Analyses: Thermal Power Co. Well Utah State 14-2.

|                                  | 2800<br>40.1 <sup>p</sup> | 2800 <sup>h</sup><br>30.1 | 2800 <sup>h</sup><br>30.2 | 2800 <sup>p</sup><br>30.3 | 2800 <sup>b</sup><br>30.4 | 2800 <sup>b</sup><br>30.5 | 2800 <sup>v</sup><br>38.1 | 2800 <sup>b</sup><br>38.2 | 2800 <sup>p</sup><br>38.3 | 2800 <sup>b</sup><br>38.3 | 2800 <sup>p</sup><br>1C.1A | 2800 <sup>b</sup><br>1C.1B | 2855 <sup>p</sup><br>4.1 | 2855 <sup>m</sup><br>3.1 |
|----------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------------------------|----------------------------|--------------------------|--------------------------|
| SiO <sub>2</sub>                 | 26.2                      | 28.5                      | 29.6                      | 26.5                      | 26.7                      | 26.3                      | 27.5                      | 26.9                      | 28.9                      | 26.8                      | 27.8                       | 27.5                       | 26.1                     | 32.5                     |
| TiO <sub>2</sub>                 | .04                       | .07                       | .22                       | .07                       | .07                       | .03                       | .34                       | .09                       | .05                       | .10                       | .03                        | .54                        | .06                      | .06                      |
| Al <sub>2</sub> O <sub>3</sub>   | 18.7                      | 17.1                      | 15.6                      | 18.6                      | 18.4                      | 16.1                      | 16.7                      | 19.3                      | 19.8                      | 17.6                      | 18.5                       | 19.0                       | 19.2                     | 21.8                     |
| FeO*                             | 26.5                      | 26.2                      | 23.9                      | 26.3                      | 24.1                      | 28.8                      | 23.7                      | 23.2                      | 24.1                      | 23.6                      | 28.2                       | 22.9                       | 23.0                     | 22.8                     |
| Fe <sub>2</sub> O <sub>3</sub> * | 4.40                      | 4.35                      | 3.97                      | 4.36                      | 3.99                      | 4.78                      | 3.93                      | 3.85                      | 4.01                      | 3.91                      | 4.69                       | 3.81                       | 3.83                     | 3.78                     |
| MnO                              | 1.08                      | .67                       | .61                       | .57                       | .62                       | 1.19                      | .57                       | .64                       | .59                       | .73                       | .79                        | .70                        | .53                      | .48                      |
| MgO                              | 11.7                      | 12.8                      | 14.5                      | 11.5                      | 14.3                      | 12.1                      | 13.51                     | 14.4                      | 12.1                      | 13.2                      | 9.27                       | 14.4                       | 9.74                     | 9.22                     |
| CaO                              | .09                       | .42                       | .48                       | .17                       | .05                       | .18                       | .24                       | .07                       | .33                       | .12                       | .15                        | .09                        | .09                      | .09                      |
| K <sub>2</sub> O                 | .09                       | .32                       | .31                       | .28                       | .06                       | .10                       | .42                       | .37                       | .62                       | .25                       | .26                        | .36                        | .95                      | 3.29                     |
| Na <sub>2</sub> O                | .02                       | .04                       | .05                       | .07                       | .01                       | .07                       | .10                       | .05                       | .75                       | .03                       | .10                        | .02                        | .04                      | .03                      |
| BaO                              | -                         | -                         | -                         | -                         | -                         | -                         | -                         | -                         | -                         | -                         | -                          | -                          | .00                      | .00                      |
| Cl                               | -                         | -                         | -                         | -                         | -                         | -                         | -                         | -                         | -                         | -                         | -                          | -                          | .01                      | .01                      |
| F                                | -                         | -                         | -                         | -                         | -                         | -                         | -                         | -                         | -                         | -                         | -                          | -                          | .25                      | .21                      |
| H <sub>2</sub> O**               | 11.2                      | 11.3                      | 11.4                      | 11.3                      | 11.4                      | 11.0                      | 11.4                      | 11.4                      | 11.4                      | 11.4                      | 11.2                       | 11.5                       | 11.3                     | 11.4                     |
| Total                            | 100.0                     | 101.8                     | 100.6                     | 99.7                      | 99.7                      | 100.7                     | 98.4                      | 100.3                     | 102.7                     | 97.7                      | 101.0                      | 100.8                      | 95.1                     | 105.7                    |

Numbers of Ions on the Basis of 28 Total (-) Charges, 10 (0) and 8 (OH,Cl,F)

|                   |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|-------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Si                | 2.80 | 2.97 | 3.08 | 2.83 | 2.82 | 2.83 | 2.95 | 2.81 | 2.94 | 2.90 | 2.95 | 2.85 | 2.91 | 3.17 |
| Ti                | .00  | .01  | .02  | .01  | .01  | .00  | .03  | .01  | .00  | .01  | .00  | .04  | .00  | .00  |
| Al(iv)            | 1.20 | 1.03 | .92  | 1.17 | 1.12 | 1.17 | 1.05 | 1.19 | 1.06 | 1.10 | 1.05 | 1.15 | 1.09 | .83  |
| Al(vi)            | 1.15 | 1.06 | 1.00 | 1.19 | 1.11 | .88  | 1.06 | 1.18 | 1.31 | 1.14 | 1.26 | 1.17 | 1.44 | 1.68 |
| Fe <sup>+2*</sup> | 2.37 | 2.28 | 2.08 | 2.35 | 2.13 | 2.60 | 2.12 | 2.02 | 2.05 | 2.13 | 2.50 | 1.98 | 2.15 | 1.86 |
| Fe <sup>+3*</sup> | .35  | .34  | .31  | .35  | .32  | .39  | .32  | .30  | .31  | .32  | .37  | .30  | .32  | .28  |
| Mn                | .10  | .06  | .05  | .05  | .06  | .11  | .05  | .06  | .05  | .07  | .07  | .06  | .05  | .04  |
| Mg                | 1.86 | 1.99 | 2.25 | 1.84 | 2.25 | 1.94 | 2.16 | 2.24 | 1.84 | 2.13 | 1.46 | 2.21 | 1.62 | 1.34 |
| Ca                | .01  | .05  | .05  | .02  | .01  | .02  | .03  | .01  | .04  | .01  | .02  | .01  | .01  | .01  |
| K                 | .01  | .04  | .04  | .04  | .01  | .01  | .06  | .05  | .08  | .03  | .04  | .05  | .13  | .41  |
| Na                | .00  | .01  | .01  | .01  | .00  | .02  | .02  | .01  | .15  | .01  | .02  | .00  | .01  | .01  |
| Ba                | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | .00  | .00  |
| Cl                | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | .00  | .00  |
| F                 | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | .09  | .06  |
| OH**              | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 7.91 | 7.93 |

Chlorite replaces: b biotite; h hornblende; p plagioclase; v vein. m is mixed layer chlorite-illite.

\* Fe partitioned by a Fe +3 to total Fe ratio of 0.13      \*\* Calculated H<sub>2</sub>O

Table 5 Chlorite Analyses: Thermal Power Co. Well Utah State 14-2. (cont.)

|                                  | 2940<br>1.1p | 2940<br>2.6p | 2940h<br>4.1h | 2940<br>5.1Ah | 2940<br>5.1Bb | 2940<br>5.1Cp | 2940<br>5.2Av | 2940<br>5.2Bb | 2940h<br>5.4h | 2940<br>7.1p | 2940<br>6.3p | 2940<br>6.1p | 2940<br>6.2p |
|----------------------------------|--------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|--------------|--------------|--------------|
| SiO <sub>2</sub>                 | 28.5         | 28.1         | 29.0          | 26.6          | 27.4          | 26.0          | 28.5          | 28.1          | 28.9          | 26.3         | 27.0         | 27.0         | 27.9         |
| TiO <sub>2</sub>                 | .03          | .07          | .11           | .07           | .09           | .04           | .07           | .07           | .08           | .05          | .16          | .04          | .10          |
| Al <sub>2</sub> O <sub>3</sub>   | 16.5         | 15.8         | 15.2          | 17.4          | 17.6          | 17.3          | 17.0          | 18.0          | 14.9          | 19.9         | 17.8         | 18.1         | 19.8         |
| FeO*                             | 23.2         | 24.2         | 24.6          | 28.2          | 26.3          | 27.9          | 25.4          | 21.4          | 23.6          | 23.1         | 26.1         | 27.8         | 23.0         |
| Fe <sub>2</sub> O <sub>3</sub> * | 3.85         | 4.01         | 4.08          | 4.69          | 4.37          | 4.64          | 4.21          | 3.56          | 3.92          | 3.84         | 4.33         | 4.62         | 3.82         |
| MnO                              | .66          | .63          | .57           | .62           | .77           | .73           | .57           | .82           | .58           | .61          | .91          | .90          | .50          |
| MgO                              | 14.7         | 12.8         | 14.9          | 11.4          | 13.8          | 11.7          | 13.5          | 17.4          | 14.6          | 15.1         | 12.1         | 10.6         | 12.6         |
| CaO                              | .34          | .37          | .47           | .27           | .10           | .35           | .43           | .08           | .53           | .05          | .18          | -            | -            |
| K <sub>2</sub> O                 | .02          | .07          | .09           | .10           | .15           | .06           | .09           | .10           | .09           | .08          | .06          | -            | -            |
| Na <sub>2</sub> O                | .05          | .04          | .03           | .05           | .01           | .07           | .06           | .03           | .05           | .05          | .04          | -            | -            |
| BaO                              | .00          | .00          | .02           | .03           | .03           | .04           | .02           | .01           | .02           | .00          | .03          | .05          | .01          |
| Cl                               | .06          | .06          | .04           | .04           | .03           | .02           | .02           | .01           | .01           | .01          | .02          | .01          | .01          |
| F                                | .24          | .23          | .28           | .17           | .19           | .13           | .19           | .11           | .22           | .14          | .16          | .16          | .15          |
| H <sub>2</sub> O**               | 11.3         | 11.2         | 11.2          | 11.0          | 11.2          | 11.0          | 11.3          | 11.5          | 11.3          | 11.4         | 11.2         | 11.1         | 11.5         |
| Total                            | 99.5         | 97.6         | 100.6         | 100.6         | 102.0         | 100.0         | 101.4         | 101.2         | 98.8          | 100.7        | 100.0        | 100.4        | 99.3         |

Numbers of Ions on the Basis of 28 Total (-) Charges, 10(O) and 8 (OH, Cl, F)

|                    |      |      |      |      |      |      |      |      |      |      |      |      |      |
|--------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Si                 | 3.01 | 3.05 | 3.04 | 2.84 | 2.85 | 2.81 | 2.97 | 2.87 | 3.08 | 2.73 | 2.88 | 2.88 | 2.92 |
| Ti                 | .00  | .01  | .01  | .01  | .01  | .00  | .01  | .01  | .00  | .01  | .00  | .01  | .00  |
| Al(iv)             | .99  | .95  | .96  | 1.16 | 1.15 | 1.19 | 1.03 | 1.13 | .92  | 1.27 | 1.12 | 1.12 | 1.08 |
| Al(vi)             | 1.06 | 1.07 | .92  | 1.04 | 1.01 | 1.01 | 1.05 | 1.04 | .95  | 1.17 | 1.11 | 1.16 | 1.37 |
| Fe <sup>+2</sup> * | 2.04 | 2.19 | 2.16 | 2.53 | 2.29 | 2.52 | 2.21 | 1.84 | 2.10 | 2.01 | 2.33 | 2.48 | 2.02 |
| Fe <sup>+3</sup> * | .31  | .33  | .32  | .38  | .34  | .38  | .33  | .27  | .31  | .30  | .35  | .37  | .30  |
| Mn                 | .06  | .06  | .05  | .06  | .07  | .07  | .05  | .07  | .05  | .05  | .08  | .08  | .04  |
| Mg                 | 2.31 | 2.07 | 2.33 | 1.81 | 2.14 | 1.88 | 2.10 | 2.65 | 2.32 | 2.33 | 1.92 | 1.68 | 1.97 |
| Ca                 | .04  | .04  | .05  | .03  | .01  | .04  | .05  | .01  | .06  | .01  | .02  | -    | -    |
| K                  | .00  | .01  | .01  | .01  | .02  | .01  | .01  | .01  | .01  | .01  | .01  | -    | -    |
| Na                 | .01  | .01  | .01  | .01  | .00  | .02  | .01  | .01  | .01  | .01  | .01  | -    | -    |
| Ba                 | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  |
| Cl                 | .01  | .01  | .01  | .01  | .01  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  |
| F                  | .08  | .08  | .09  | .06  | .06  | .05  | .06  | .04  | .08  | .04  | .05  | .06  | .05  |
| OH                 | 7.91 | 7.91 | 7.90 | 7.93 | 7.93 | 7.95 | 7.93 | 7.96 | 7.92 | 7.95 | 7.94 | 7.94 | 7.95 |

Chlorite replaces: b biotite; h hornblende; p plagioclase; v vein.

\*Fe partitioned by a Fe<sup>+3</sup> to total Fe ratio of 0.13. \*\* Calculated H<sub>2</sub>O.

Table 5 Chlorite Analyses: Thermal Power Co. Well Utah State 14-2. (cont.)

|                                  | 4400 <sub>b</sub><br>38.1 <sup>b</sup> | 4400 <sub>b</sub><br>48.1 <sup>b</sup> | 4400 <sub>b</sub><br>48.2 <sup>b</sup> | 4400 <sub>b</sub><br>48.3 <sup>b</sup> | 4400 <sub>b</sub><br>48.4 <sup>b</sup> | 4400 <sub>b</sub><br>58.2 <sup>b</sup> | 4400 <sub>b</sub><br>1.4 | 4400 <sub>b</sub><br>1.5 | 4400 <sub>b</sub><br>2:1 <sup>v</sup> | 4400 <sub>b</sub><br>3.1 <sup>p</sup> | 4400 <sub>b</sub><br>3.7 <sup>v</sup> | 4400 <sub>b</sub><br>4.3 <sup>b</sup> | 4400 <sub>b</sub><br>4.7 <sup>b</sup> | 4400 <sub>b</sub><br>4.4 <sup>p</sup> | 4400 <sub>b</sub><br>0-2 <sup>p</sup> |
|----------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|--------------------------|--------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| SiO <sub>2</sub>                 | 25.7                                   | 26.3                                   | 26.8                                   | 27.1                                   | 26.0                                   | 25.9                                   | 26.5                     | 26.5                     | 27.5                                  | 28.3                                  | 27.0                                  | 26.4                                  | 26.9                                  | 25.6                                  | 27.1                                  |
| TiO <sub>2</sub>                 | .14                                    | .03                                    | .02                                    | .15                                    | .09                                    | .13                                    | .20                      | .09                      | .08                                   | .03                                   | .04                                   | .13                                   | .12                                   | .04                                   | .11                                   |
| Al <sub>2</sub> O <sub>3</sub>   | 18.7                                   | 18.9                                   | 17.6                                   | 18.8                                   | 18.5                                   | 16.5                                   | 19.1                     | 18.7                     | 17.1                                  | 18.4                                  | 18.0                                  | 19.4                                  | 18.0                                  | 18.8                                  | 19.1                                  |
| FeO*                             | 27.5                                   | 27.6                                   | 26.5                                   | 26.7                                   | 27.0                                   | 29.7                                   | 22.1                     | 23.7                     | 23.8                                  | 19.7                                  | 22.1                                  | 22.9                                  | 19.7                                  | 26.7                                  | 22.9                                  |
| Fe <sub>2</sub> O <sub>3</sub> * | 4.56                                   | 4.58                                   | 4.40                                   | 4.43                                   | 4.48                                   | 4.94                                   | 3.67                     | 3.94                     | 3.95                                  | 3.27                                  | 3.66                                  | 3.80                                  | 3.28                                  | 4.44                                  | 3.80                                  |
| MnO                              | .97                                    | .64                                    | .51                                    | .93                                    | .92                                    | .83                                    | .70                      | .72                      | .77                                   | .87                                   | .95                                   | .69                                   | 1.64                                  | .76                                   | .56                                   |
| MgO                              | 11.3                                   | 10.0                                   | 12.2                                   | 12.6                                   | 12.7                                   | 9.67                                   | 14.9                     | 14.6                     | 15.6                                  | 13.0                                  | 12.0                                  | 15.1                                  | 17.5                                  | 11.7                                  | 15.3                                  |
| CaO                              | .06                                    | .10                                    | .33                                    | .14                                    | .11                                    | .17                                    | .07                      | .07                      | .10                                   | .17                                   | .18                                   | .06                                   | .06                                   | .11                                   | .09                                   |
| K <sub>2</sub> O                 | .07                                    | .21                                    | .04                                    | .24                                    | .05                                    | .19                                    | .07                      | .12                      | .07                                   | .55                                   | .12                                   | .08                                   | .17                                   | .08                                   | .14                                   |
| Na <sub>2</sub> O                | .00                                    | .06                                    | .05                                    | .04                                    | .02                                    | .60                                    | .02                      | .02                      | .02                                   | .06                                   | .05                                   | .01                                   | .02                                   | .06                                   | .02                                   |
| BaO                              | .00                                    | .02                                    | .01                                    | .03                                    | .00                                    | .05                                    | .03                      | .04                      | .02                                   | .03                                   | .05                                   | .03                                   | .06                                   | .06                                   | .05                                   |
| Cl                               | .00                                    | .02                                    | .01                                    | .01                                    | .02                                    | .02                                    | .02                      | .02                      | .02                                   | .02                                   | .02                                   | .01                                   | .02                                   | .03                                   | .01                                   |
| F                                | .16                                    | .11                                    | .19                                    | .15                                    | .20                                    | .09                                    | .14                      | .21                      | .11                                   | .11                                   | .09                                   | .19                                   | .12                                   | .14                                   | .21                                   |
| H <sub>2</sub> O**               | 11.1                                   | 11.1                                   | 11.1                                   | 11.2                                   | 11.1                                   | 10.9                                   | 11.4                     | 11.3                     | 11.3                                  | 11.6                                  | 11.4                                  | 11.4                                  | 11.5                                  | 11.1                                  | 11.4                                  |
| Total                            | 100.3                                  | 99.7                                   | 99.8                                   | 102.5                                  | 101.2                                  | 99.7                                   | 98.9                     | 100.0                    | 100.4                                 | 96.1                                  | 95.7                                  | 100.2                                 | 99.1                                  | 99.6                                  | 100.8                                 |

Numbers of Ions on the Basis of 28 Total (-) Charges, 10(O) and 8 (OH, Cl, F)

|                   |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|-------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Si                | 2.76 | 2.83 | 2.87 | 2.81 | 2.75 | 2.84 | 2.80 | 2.79 | 2.88 | 3.05 | 2.96 | 2.76 | 2.82 | 2.75 | 2.81 |
| Ti                | .01  | .00  | .00  | .01  | .01  | .01  | .02  | .01  | .01  | .00  | .00  | .01  | .01  | .00  | .01  |
| Al(iv)            | 1.24 | 1.17 | 1.13 | 1.19 | 1.25 | 1.16 | 1.20 | 1.21 | 1.12 | .95  | 1.04 | 1.24 | 1.18 | 1.25 | 1.19 |
| Al(vi)            | 1.13 | 1.22 | 1.09 | 1.11 | 1.05 | .97  | 1.18 | 1.11 | .99  | 1.39 | 1.29 | 1.15 | 1.04 | 1.13 | 1.14 |
| Fe <sup>+2*</sup> | 2.46 | 2.48 | 2.37 | 2.32 | 2.39 | 2.73 | 1.95 | 2.09 | 2.08 | 1.77 | 2.03 | 2.00 | 1.73 | 2.40 | 1.98 |
| Fe <sup>+3*</sup> | .37  | .37  | .35  | .35  | .36  | .41  | .29  | .31  | .31  | .26  | .30  | .30  | .26  | .36  | .30  |
| Mn                | .09  | .06  | .05  | .08  | .08  | .08  | .06  | .06  | .07  | .08  | .09  | .06  | .15  | .07  | .05  |
| Mg                | 1.80 | 1.61 | 1.94 | 1.95 | 2.00 | 1.58 | 2.34 | 2.29 | 2.44 | 2.09 | 1.96 | 2.35 | 2.73 | 1.88 | 2.36 |
| Ca                | .01  | .01  | .04  | .02  | .01  | .02  | .01  | .01  | .01  | .02  | .02  | .01  | .01  | .01  | .01  |
| K                 | .01  | .03  | .01  | .03  | .01  | .03  | .01  | .02  | .01  | .08  | .02  | .01  | .02  | .01  | .02  |
| Na                | .00  | .01  | .01  | .01  | .00  | .13  | .00  | .00  | .00  | .01  | .01  | .00  | .00  | .01  | .00  |
| Ba                | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  |
| Cl <sup>-</sup>   | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .01  | .00  |
| F                 | .06  | .04  | .07  | .07  | .07  | .03  | .05  | .07  | .04  | .04  | .03  | .06  | .04  | .05  | .07  |
| OH                | 7.94 | 7.96 | 7.93 | 7.95 | 7.93 | 7.97 | 7.95 | 7.93 | 7.96 | 7.96 | 7.97 | 7.97 | 7.96 | 7.95 | 7.93 |

Chlorite replaces: b biotite; h hornblende; p plagioclase; v vein. \*Fe partitioned by a Fe<sup>+3</sup> to total

Fe ratio of 0.13.

\*\* Calculated H<sub>2</sub>O.

Table 6. Sericite Analyses: Thermal Power Co. Well

## Utah State 14-2

|                                | 1700 | 1700 | 1700 | 1700  | 1700              | 1700              | 1700  | 1700  | 2800 | 2800 | 2855  | 2855 | 2855 | 2855 | 2855 | 2855  | 2855  |
|--------------------------------|------|------|------|-------|-------------------|-------------------|-------|-------|------|------|-------|------|------|------|------|-------|-------|
|                                | 20.2 | 20.3 | 2C.1 | 2C.2  | 30-1 <sup>b</sup> | 30-2 <sup>a</sup> | 30-28 | 30-3  | 48.1 | 38.3 | 4.1   | 2.2  | 2.4  | 2.7  | 2.8  | 2.9   | 2.11  |
| SiO <sub>2</sub>               | 47.9 | 48.9 | 47.6 | 50.8  | 49.2              | 48.3              | 49.9  | 49.3  | 52.2 | 48.1 | 52.1  | 47.9 | 51.0 | 52.0 | 48.8 | 51.0  | 51.3  |
| TiO <sub>2</sub>               | .04  | .02  | .45  | .03   | .20               | .24               | .00   | .06   | .08  | .14  | .07   | .09  | .08  | .11  | .03  | .06   | .05   |
| Al <sub>2</sub> O <sub>3</sub> | 28.5 | 33.7 | 28.8 | 32.1  | 27.6              | 28.1              | 32.9  | 31.9  | 26.4 | 30.8 | 29.0  | 31.5 | 28.1 | 26.8 | 32.4 | 28.5  | 28.5  |
| Fe <sub>2</sub> O <sub>3</sub> | 5.09 | 1.22 | 5.33 | 2.13  | 5.30              | 6.09              | 3.39  | 3.39  | 3.50 | 2.78 | 3.76  | 1.73 | 2.52 | 4.26 | 1.85 | 3.12  | 2.97  |
| MnO                            | .06  | .02  | .07  | .01   | .07               | .08               | .04   | .04   | .04  | .03  | .06   | .03  | .04  | .04  | .01  | .04   | .04   |
| MgO                            | 2.11 | .62  | 2.05 | .85   | 2.96              | 1.13              | .13   | 1.33  | 2.19 | .81  | 2.30  | .54  | 1.79 | 2.30 | .68  | 2.06  | 1.98  |
| CaO                            | .07  | .23  | .07  | .04   | .02               | .07               | .32   | .06   | .20  | .16  | .14   | .15  | .11  | .13  | .03  | .08   | .06   |
| K <sub>2</sub> O               | 8.43 | 8.00 | 10.0 | 9.55  | 11.0              | 9.98              | 8.25  | 9.76  | 8.53 | 10.2 | 9.61  | 10.3 | 10.4 | 9.12 | 10.0 | 10.4  | 10.7  |
| Na <sub>2</sub> O              | .10  | .33  | .18  | .10   | .12               | .14               | .13   | .12   | .08  | .34  | .08   | .42  | .07  | .09  | .24  | .05   | .05   |
| BaO                            | .02  | .01  | .08  | .02   | .04               | .03               | .02   | -     | -    | -    | .07   | .14  | .04  | .21  | .18  | .06   | .03   |
| Cl                             | .01  | .02  | .00  | .00   | .02               | .02               | .01   | -     | -    | -    | .00   | .00  | .00  | .02  | .00  | .00   | .00   |
| F                              | .54  | .10  | .26  | .29   | .66               | .58               | .37   | -     | -    | -    | .42   | .34  | .37  | .37  | .05  | .41   | .34   |
| H <sub>2</sub> O*              | 4.25 | 4.56 | 4.34 | 4.43  | 4.13              | 4.17              | 4.40  | 4.53  | 4.57 | 4.52 | 4.33  | 4.35 | 4.35 | 4.49 | 4.32 | 4.36  |       |
| Total                          | 97.1 | 97.7 | 99.2 | 100.4 | 101.3             | 100.9             | 99.9  | 100.5 | 97.8 | 97.9 | 100.9 | 98.0 | 98.9 | 99.8 | 99.7 | 100.1 | 100.4 |

Numbers of Ions on the Basis of 22 total (-) charges,

10 (O) and 2 (OH, Cl, F)

|    |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Si | 3.28 | 3.26 | 3.23 | 3.32 | 3.29 | 3.23 | 3.28 | 3.24 | 3.50 | 3.27 | 3.42 | 3.26 | 3.42 | 3.46 | 3.25 | 3.39 | 3.40 |
| Ti | .00  | .00  | .02  | .00  | .01  | .01  | .00  | .00  | .00  | .01  | .00  | .00  | .00  | .01  | .00  | .00  | .00  |
| Al | .72  | .74  | .77  | .68  | .71  | .77  | .72  | .76  | .50  | .73  | .58  | .74  | .58  | .54  | .75  | .61  | .60  |
| AI | 1.59 | 1.90 | 1.53 | 1.80 | 1.46 | 1.45 | 1.83 | 1.72 | 1.59 | 1.74 | 1.58 | 1.78 | 1.64 | 1.55 | 1.79 | 1.62 | 1.62 |
| Fe | .26  | .06  | .27  | .10  | .26  | .31  | .16  | .16  | .16  | .14  | .19  | .09  | .13  | .21  | .09  | .15  | .15  |
| Mn | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  |
| Mg | .22  | .06  | .21  | .08  | .29  | .31  | .01  | .13  | .22  | .08  | .23  | .06  | .18  | .23  | .07  | .20  | .20  |
| Ca | .01  | .02  | .01  | .00  | .00  | .01  | .02  | .00  | .01  | .01  | .01  | .01  | .01  | .01  | .00  | .01  | .00  |
| K  | .74  | .68  | .87  | .80  | .94  | .85  | .69  | .82  | .73  | .88  | .80  | .94  | .89  | .77  | .93  | .88  | .90  |
| Na | .01  | .04  | .02  | .01  | .02  | .02  | .02  | .02  | .01  | .04  | .01  | .06  | .01  | .01  | .03  | .01  | .01  |
| Ba | .00  | .00  | .00  | .00  | .00  | .00  | .00  | -    | -    | -    | .00  | .00  | .00  | .01  | .00  | .00  | .00  |
| Cl | .00  | .00  | .00  | .00  | .00  | .00  | .00  | -    | -    | -    | .00  | .00  | .00  | .00  | .00  | .00  | .00  |
| F  | .12  | .02  | .06  | .06  | .14  | .12  | .08  | -    | -    | -    | .09  | .07  | .08  | .08  | .01  | .09  | .07  |
| OH | 1.88 | 1.98 | 1.94 | 1.94 | 1.86 | 1.88 | 1.92 | 2.00 | 2.00 | 2.00 | 1.91 | 1.93 | 1.92 | 1.92 | 1.99 | 1.91 | 1.93 |

Sericite replaces plagioclase except where <sup>b</sup> indicates biotite replacement.\*Calculated H<sub>2</sub>O

Table 6 (Continued) Sericite Analyses: Thermal Power Co. Well Utah State 14-2.

|                                | 2940<br>5.1 | 2940<br>5.3 | 2940<br>6.1 | 4400<br>28.1 | 4400<br>48.2 | 5000<br>1.7 | 5000<br>3.7 |
|--------------------------------|-------------|-------------|-------------|--------------|--------------|-------------|-------------|
| SiO <sub>2</sub>               | 49.05       | 50.4        | 49.5        | 52.9         | 51.1         | 54.0        | 49.8        |
| TiO <sub>2</sub>               | .04         | .14         | .05         | .02          | .11          | .11         | .03         |
| Al <sub>2</sub> O <sub>3</sub> | 31.7        | 30.0        | 30.8        | 28.2         | 25.9         | 21.3        | 27.5        |
| Fe <sub>2</sub> O <sub>3</sub> | 2.18        | 1.54        | 1.62        | 3.38         | 3.88         | 4.10        | 3.83        |
| MnO                            | .06         | .04         | .05         | .01          | .03          | .03         | .03         |
| MgO                            | .94         | 1.67        | 1.36        | 1.30         | 2.07         | 2.71        | .58         |
| CaO                            | .19         | .16         | .10         | .44          | .20          | .20         | .11         |
| K <sub>2</sub> O               | 10.3        | 9.88        | 10.2        | 8.12         | 9.23         | 9.79        | 10.9        |
| Na <sub>2</sub> O              | .16         | .75         | .07         | .10          | .12          | .05         | .12         |
| BaO                            | .00         | .05         | .03         | .00          | .03          | .09         | .06         |
| Cl                             | .01         | .01         | .01         | .01          | .02          | .02         | .01         |
| F                              | .24         | .25         | .25         | .08          | .22          | .45         | .22         |
| H <sub>2</sub> O*              | 4.41        | 4.42        | 4.42        | 4.55         | 4.42         | 4.30        | 4.38        |
| Total                          | 99.2        | 99.3        | 98.5        | 99.1         | 97.3         | 97.2        | 97.6        |

Sericite replaces plagioclase.

\* Calculated H<sub>2</sub>O

Numbers of Ions on the Basis of 22 total (-) Charges, 10(O) and 2 (OH,Cl,F)

|    |      |      |      |      |      |      |      |
|----|------|------|------|------|------|------|------|
| Si | 3.27 | 3.35 | 3.32 | 3.48 | 3.48 | 3.70 | 3.41 |
| Ti | .00  | .01  | .00  | .00  | .00  | .01  | .00  |
| Al | .73  | .65  | .68  | .52  | .52  | .30  | .59  |
| Al | 1.76 | 1.70 | 1.76 | 1.67 | 1.56 | 1.42 | 1.63 |
| Fe | .11  | .08  | .09  | .16  | .20  | .21  | .20  |
| Mn | .00  | .00  | .00  | .00  | .00  | .00  | .00  |
| Mg | .09  | .17  | .14  | .13  | .21  | .28  | .06  |
| Ca | .01  | .01  | .01  | .03  | .01  | .01  | .01  |
| K  | .88  | .84  | .87  | .68  | .80  | .85  | .95  |
| Na | .02  | .10  | .01  | .01  | .02  | .01  | .02  |
| Ba | .00  | .00  | .00  | .00  | .00  | .00  | .00  |
| Cl | .00  | .00  | .00  | .00  | .00  | .00  | .00  |
| F  | .05  | .05  | .05  | .02  | .05  | .10  | .05  |
| OH | 1.95 | 1.95 | 1.95 | 1.98 | 1.95 | 1.90 | 1.95 |

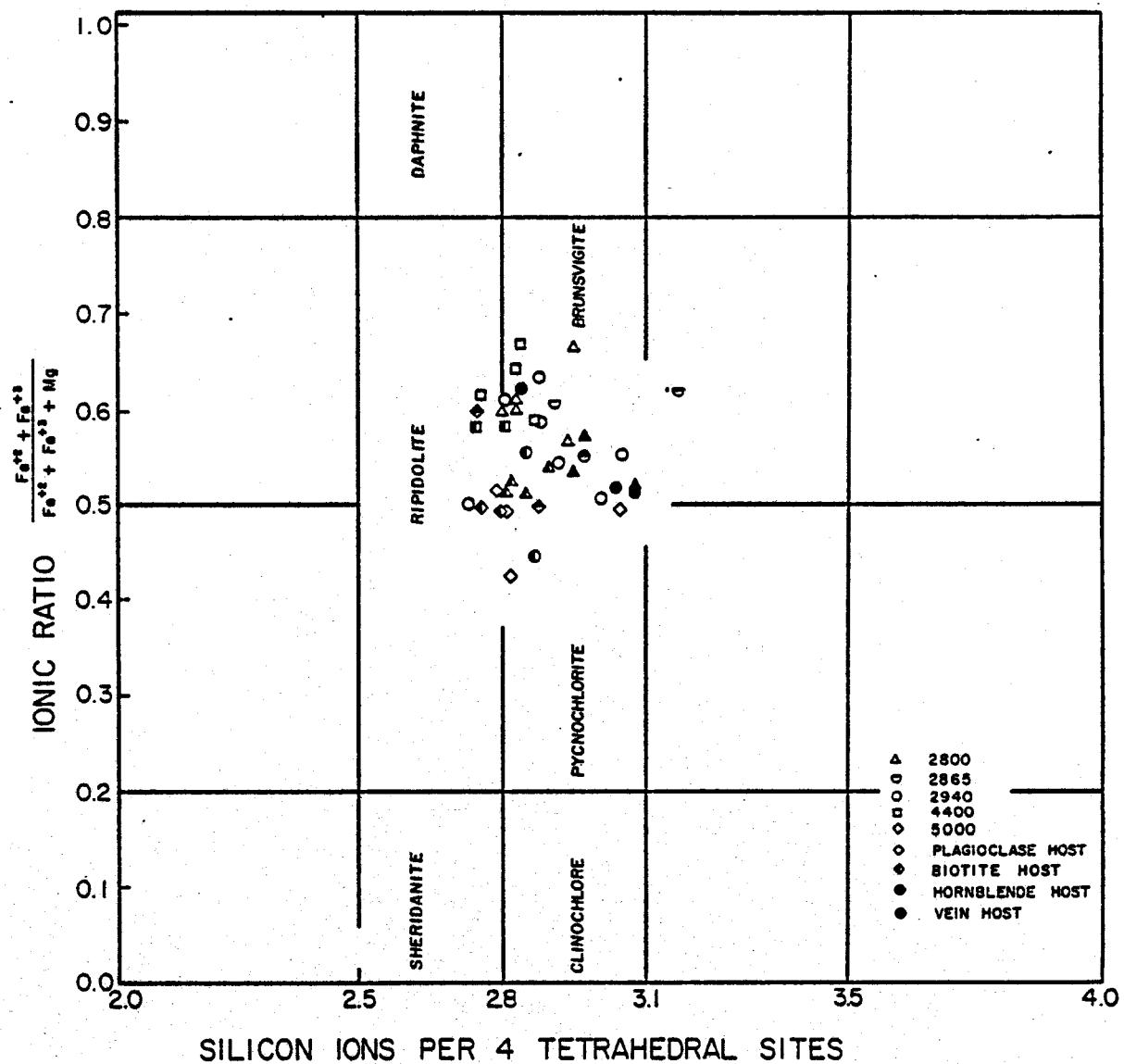



Figure 2. Compositions of chlorites from Well 14-2. Classification after Deer, Howie & Zusman (1966), Figure 81.

Figure 3. Compositions of chlorites from Well 14-2. Data is identical to that of Figure 2, with samples plotted separately to demonstrate inter- and intra-sample differences. Symbol codes are as for Figure 2.

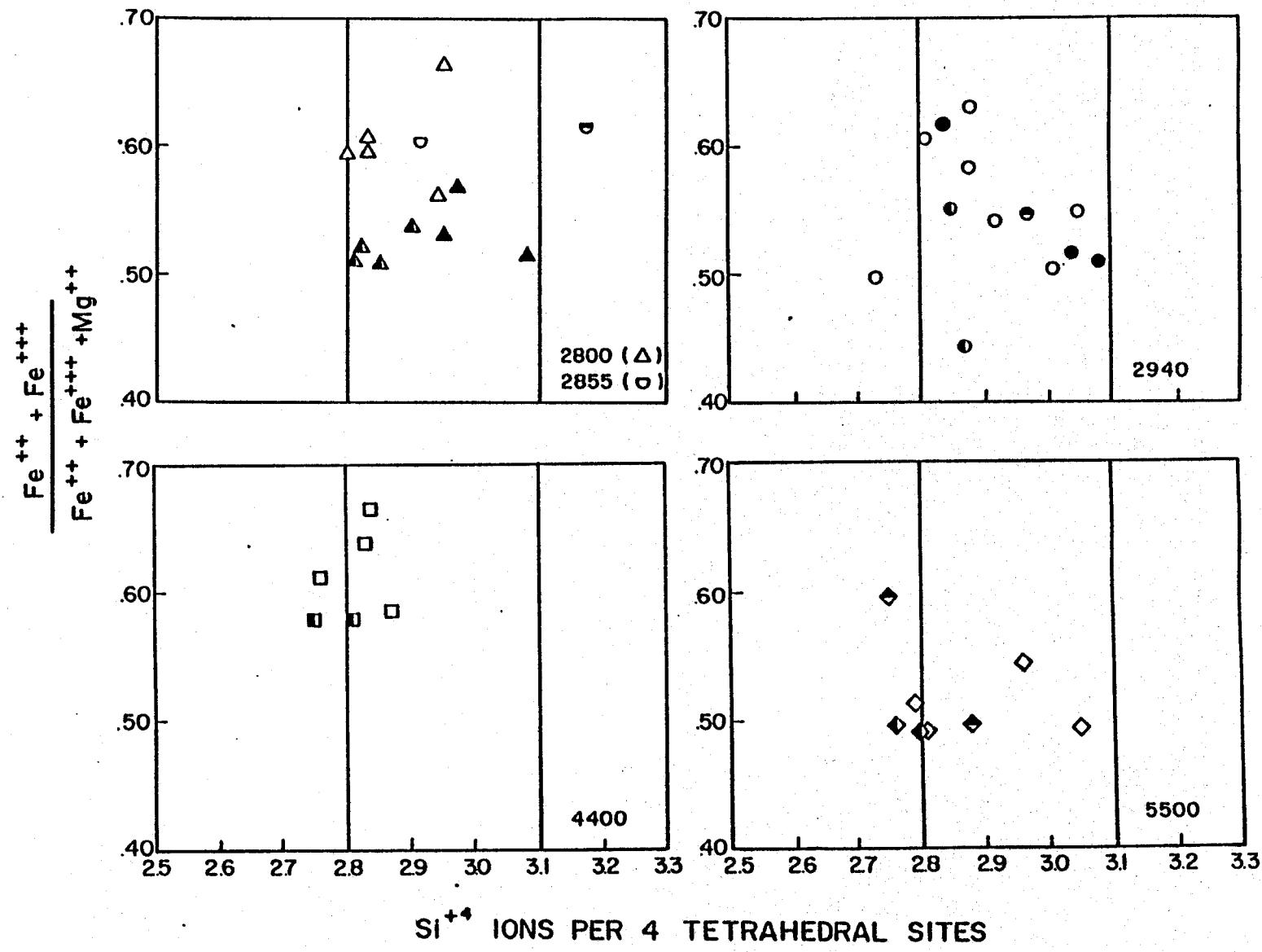
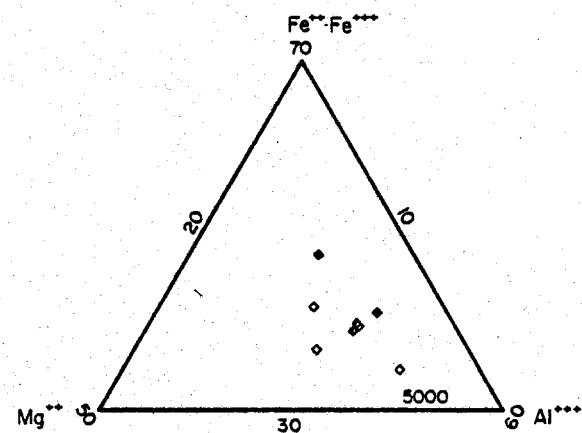
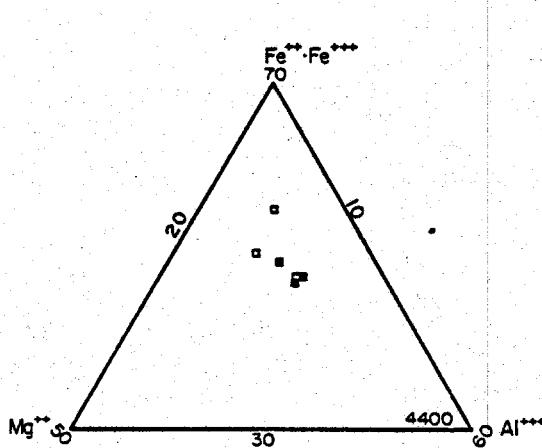
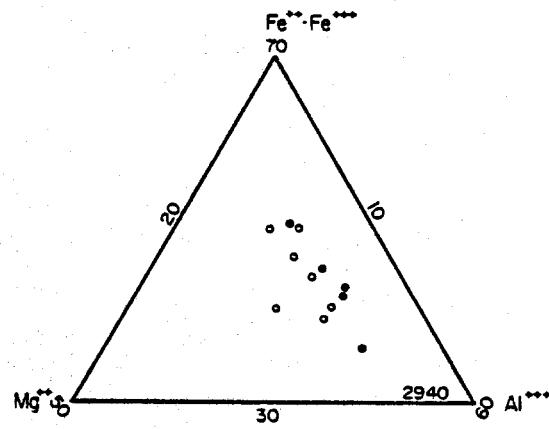
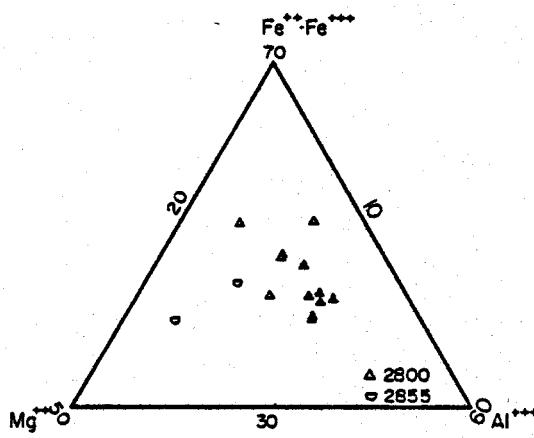
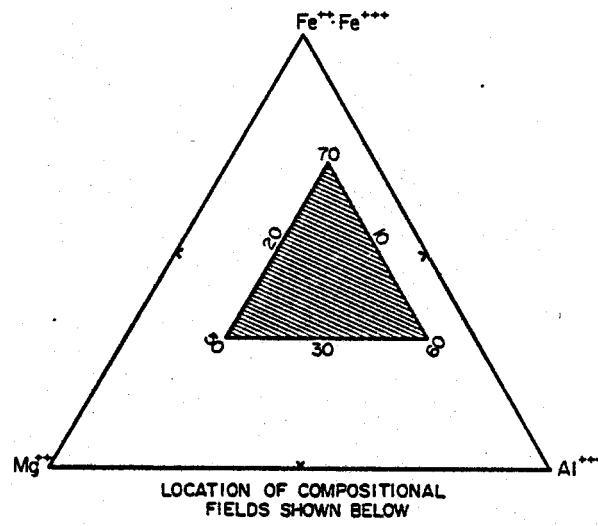








Figure 4. Composition of chlorites from Well 14-2: Octahedral cation relationships. Data for individual samples are plotted on separate diagrams and are coded for host mineral type. Open symbols, plagioclase host; filled symbols hornblende host; left half filled, biotite host; top half filled, vein host.



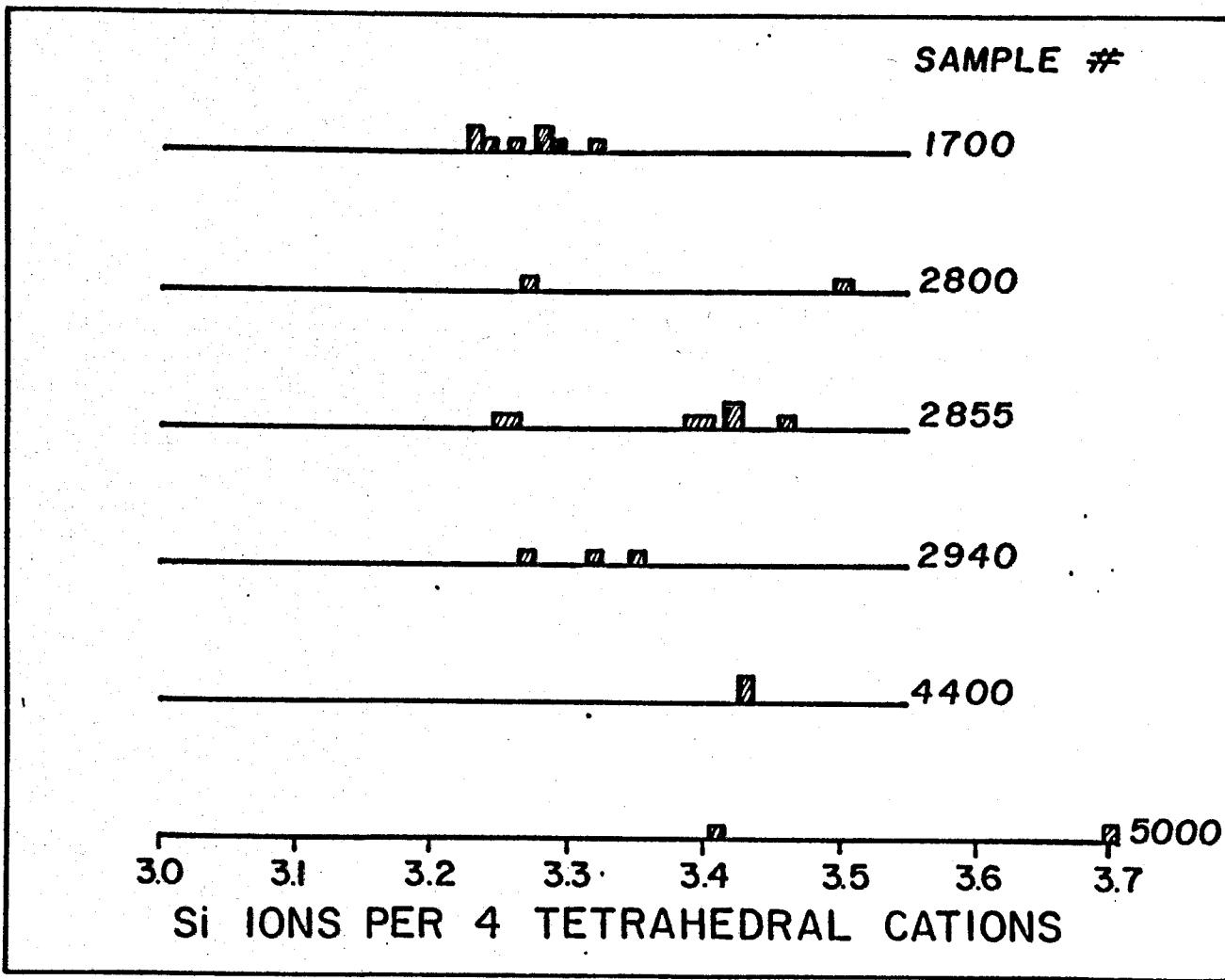

distinguishes some samples from others but is not, in general, a good sample discriminator. Within a sample, however, the ratio varies according to the chlorite host, increasing from plagioclase through hornblende to biotite. This is also the direction of MgO weight percent increase in the host minerals. When host mineral types are separated samples can be seen to fall into somewhat distinct, though overlapping, areas but no downhole compositional trend is evident. Where there is a compositional difference between two samples the chlorites replacing different host minerals show corresponding changes. For example, if sample A has a higher  $Mg^{2+}/(Mg^{2+} + Fe^{2+} + Fe^{3+})$  ratio than sample B, then the chlorites replacing each host mineral in sample A have higher values than their counterparts in sample B.

Figure 4 is a ternary plot of  $Mg^{2+}$ ,  $Fe^{2+} + Fe^{3+}$ , and  $Al^{3+}$  in octahedral positions. Although there is considerable overlap some clustering of different samples into different areas is evident. The host mineral appears to affect chlorite composition quite strongly in some samples, less so in others. The vein chlorites from sample 5000 are also quite distinct from the chlorites replacing plagioclase and biotite, but the vein sample from 2940 falls within the fields for other host minerals.

Twenty-four sericite aggregates from six sample intervals within the drillhole have been analysed for 12 elements (Ba, Cl and F data were not obtained for one sample). Analyses are listed in Table 6. All but three of the aggregates replace plagioclase. The remainder replace biotite and do not appear to be distinguishable from those replacing plagioclase.

Figure 5 is a histogram of  $Si^{4+}$  in tetrahedral position. The sericites are phengites, having tetrahedral  $Si^{4+}:Al^{3+}$  ratios greater than 3:1. Sericite aggregates within different samples comprise different but overlapping

Figure 5. Compositions of Sericites from Well 14-2:  $\text{Si}^{4+}$  ions per 4 tetrahedral cations.



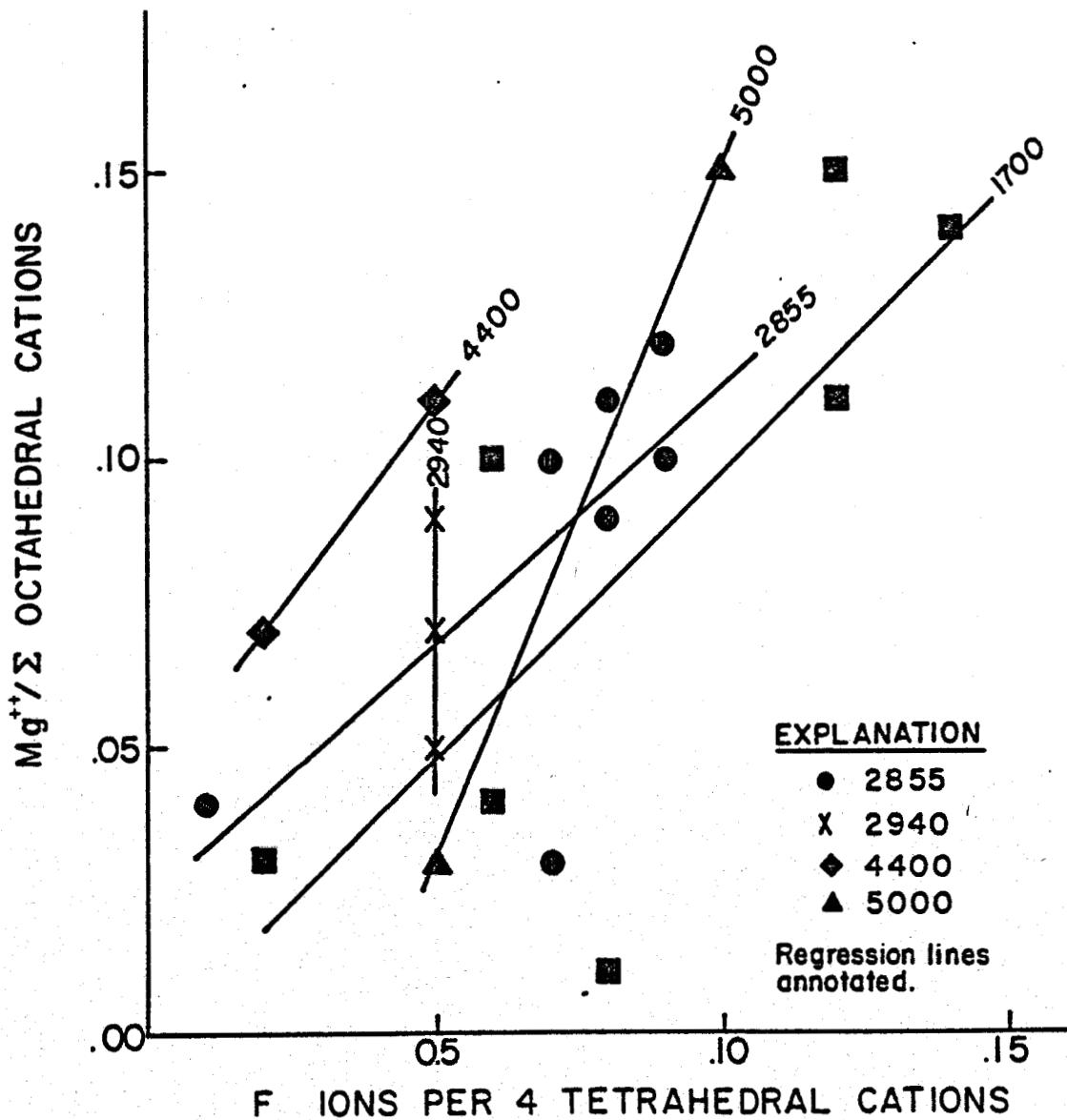



Figure 6. Compositions of sericites from Well 14-2: Computed lines of regression for each sample are shown.

populations showing an overall downhole increase in Si content. The ratios of  $Fe^{3+}$  to total octahedral cations lie in the range .03 to .16, most having means near .09.

Figure 6 is a plot of  $F^-$  against  $Mg^{2+}/\text{Sum of octahedral cations}$  showing a positive correlation between the two, and a general decrease in fluorine relative to Mg with increasing depth in the drillhole. The lines shown on Figure 6 are regression lines. Correlation coefficients ( $r^2$ ) are 0.58 for sample 1700, 0.46 for 2855 and for the others, of course, 1.00 since they are straight lines joining two or three points. Three of the lines (those for 1700, 2855 and 4400) are nearly parallel, and shift to the left, i.e. to a decrease in F relative to Mg, with increasing depth in the drillhole. Sample 2940 does not conflict with this trend, while not fitting it exactly, and sample 5000 is anomalous. The small number of data points for three of the samples should be considered as a limiting factor in making this interpretation.

In comparison with chlorite, sericite compositions exhibit different effects in response to host mineral type or position in the drillhole. In the data set reported here host mineral type does not appear to control sericite composition. However results from another hydrothermal system (J.M. Ballantyne, in preparation) indicate that such a control is to be expected. The lack of evidence for it here is probably merely a function of sampling, little data being available for host minerals other than plagioclase.

The data presently available are enigmatic in that downhole compositional trends evident in the sericites are not present in the chlorites. Physico-chemical controls for major element substitutions have

not been evaluated in this report, but it seems reasonable that the different compositional parameters discussed for sericites and chlorites would be controlled by different chemical or physical attributes of a hydrothermal solution.

Compositional variation in hydrothermal minerals as a function of host mineral type indicates that overall equilibrium between rock and hydrothermal solution has not been attained. It may therefore be possible to distinguish the effects of different hydrothermal events, if later events have not totally destroyed the effects of those preceding. It is hoped that further results will provide this type of information for well 14-2. In a different situation, where relationships of veins to rock are determinable, (not a feasibility in samples of drillcuttings) it may even be possible to trace the evolution of a hydrothermal fluid.

The data discussed in this report are preliminary results from a Ph.D. research project currently in progress. A more rigorous, statistical treatment of the data is underway, evaluation of different parameters will be made and more data collected. These, together with a discussion of theoretical models to explain observed compositional variation and zoning, will be included in a future publication.

#### ACKNOWLEDGEMENTS

The FORTRAN computer program MODECALC is based in part on a BASIC program provided by Steve Cone, formerly of Kennecott Explorations Inc. The mathematical formula on which the program is based was modified by Ralph T. Shuey, formerly of this department.

The Bence-Albee correction and structural formula calculation FORTRAN program was written by Geoffrey H. Ballantyne of this department, based in part on a Bence-Albee correction routine provided by James W. Nicholls of the University of Calgary.

Thanks are due to William T. Parry, who coordinated the research effort of which this study is a part, for his encouragement and for many useful discussions.

The research was supported by a DOE/DGE grant, contract #EG-78-C-07-1701.

## REFERENCES

Ballantyne, J.M. and Parry, W.T., 1978, Hydrothermal alteration at the Roosevelt Hot Springs Thermal Area, Utah: Petrographic characterization of the alteration to 2 kilometers depth: Technical Report 78-1701-a.1.1, DOE/DGE, contract EG-78-C-07-1701, 26 p.

Bence, A.E. and Albee, A.L., 1968, Empirical correction factors for the electron microanalysis of silicates and oxides: Jour. Geol. v. 76, p. 382-403.

Deer, W.A., Howie, R.A., and Zussman, J., 1966, An Introduction to the Rock-Forming Minerals: Longman, 528 p.

Draper, N.R. and Smith, H., 1966, Applied Regression Analysis: John Wiley and Sons, 407 p.

Parry, W.T., 1978, Hydrothermal alteration at the Roosevelt Hot Springs Thermal Area, Utah: Part II, Chemical compositions of rocks, Thermal Power Co. Well Utah State 14-2, Technical Report 78-1701-a.1.2, DOE/DGE, contract EG-78-C-07-1701.

## APPENDIX

The FORTRAN computer program MODECALC calculates a modal mineralogic composition for a rock given a whole rock chemical analysis and a stipulated set of mineral analyses. The program is in part a modification of a BASIC program provided by Steve Cone.

In its simplest form the solution to the problem can be reduced to solving a set of linear equations by matrix inversion methods.

$$y_i = x_{ij}\beta_j$$

where  $y_i$  is the percentage of the  $i$ th component in the whole rock analysis,  $x_{ij}$  is the percentage of the  $i$ th component in the  $j$ th mineral phase and  $\beta_j$  is the abundance of the  $j$ th phase.

The solution in matrix notation is:

$$[\beta] = [Y] [X]^{-1}$$

However, since the number of mineral phases is usually less than the number of chemical components analysed (it may not be more) the solution is overdefined and a weighted least squares method must be used. The matrix formulation for this is given by Draper and Smith (1966, page 79) as:

$$[\beta] = ([X]^T [W] [X])^{-1} ([X]^T [W] [Y])$$

where  $[W]$  is a diagonal square matrix in which  $w_{jj} = 1/y_j$ . This has the effect of giving component analyses with small values the same weight as those with large values. Note that  $T$  means the transpose and  $-1$  the inverse of a matrix.

Unfortunately, this method works for simple test cases but tends to give negative numbers when real data, with their inherent inaccuracies, are used. A method to weight the solution toward an initial guess for the mode was devised by Ralph T. Shuey in order to obviate the problem.

The goodness of fit of the data is  $\sum_i w_i (y'_i - y_i)^2$ . The distance from the estimated mode is  $\sum_j s_j (\beta_j - \beta^0_j)^2$ , where  $y_i$  is the actual and  $y'_i$  the regression calculated value of the  $i$ th component,  $\beta_j$  is the computed and  $\beta^0_j$  the estimated value for the  $j$ th phase, and  $s_j = 1/\beta^0_j$ , a weighting factor with a similar effect to  $w_i$ .

The function to be minimized is:

$$\sum_i w_i (y'_i - y_i)^2 + \lambda A/B \sum_j s_j (\beta_j - \beta^0_j)^2$$

where  $A = \sum_i w_i y_i^2$  and  $B = \sum_j s_j \beta^0_j$ .  $\lambda$  is the weight to the estimated mode chosen by the operator. Typical values are 0.05, 0.1. The former was used for this report.

The matrix formulation for this is:

$$[\beta] = ([X]^T [W] [X] + \lambda A/B [S])^{-1} ([X]^T [W] [Y] + \lambda A/B [S] [\beta^0])$$

The FORTRAN programming was done by the writer.

## DISTRIBUTION

David N. Anderson  
 Executive Director  
 Geothermal Resources Council  
 P.O. Box 1033  
 Davis, CA 95616

Dr. James K. Applegate  
 Department of Geology  
 Boise State University  
 Boise, ID 83725

Mr. Sam Arentz, Jr., President  
 Steam Corporation of America  
 1720 Beneficial Life Tower  
 Salt Lake City, UT 84111

Dr. David J. Atkinson  
 Hydrothermal Energy Corp.  
 2519 Horseshoe Canyon Drive  
 Los Angeles, CA 90046

Dr. Carl F. Austin  
 c/o Geothermal Technology  
 Code 2661, NWC  
 China Lake, CA 93555

Mr. Lawrence Axtell  
 Geothermal Services, Inc.  
 10072 Willow Creek Rd.  
 San Diego, CA 92131

Mr. Larry Ball  
 DOE  
 Division of Geothermal Energy  
 3rd Floor, MS 3122C  
 20 Massachusetts Ave., N.W.  
 Washington, DC 20545

Mr. Ronald Barr  
 Earth Power Corporation  
 P.O. Box 1566  
 Tulsa, OK 74101

Dr. Rudolf A. Black  
 DOE  
 Dir. of Div. of Geothermal Energy  
 3rd Floor, MS 3122C  
 20 Massachusetts Ave., N.W.  
 Washington, DC 20545

Dr. David D. Blackwell  
 Southern Methodist University  
 Department of Geological Sciences  
 Dallas, TX 75275

Dr. Gunnar Bodvarsson  
 Oregon State University  
 School of Oceanography  
 1377 N.W. Alta Vista Dr.  
 Corvallis, OR 97330

Mr. C. M. Bonar  
 Director, Geothermal Projects  
 Atlantic Richfield Co.  
 P.O. Box 1829  
 Dallas, TX 75221

Roger L. Bowers  
 Hunt Energy Corp.  
 2500 1st Natl Bank Bldg.  
 Dallas, TX 75202

Gerald Brophy  
 DOE  
 Division of Geothermal Energy  
 3rd Floor, MS 3122C  
 20 Massachusetts Ave., N.W.  
 Washington, DC 20545

Mr. William D. Brumbaugh  
 Geophysics Bldg., Room 12  
 Interpretation Group  
 Conoco  
 Ponca City, OK 74601

Mr. Glen Campbell  
 Geothermal Supervisor  
 Gulf Min. Resource Company  
 1720 South Bell Aire St.  
 Denver, CO 80222

Tom Cassel  
 Fels Center of Govt.  
 Univ. of Pennsylvania  
 39th & Walnut Streets  
 Philadelphia, PA 19104

Dr. Bob Christiansen  
 U.S. Geological Survey  
 345 Middlefield Road  
 Menlo Park, CA 94205

Eugene V. Ciancanelli  
Consulting Geologist  
12352 Escala Drive  
San Diego, CA 92128

Dr. Jim Combs  
Geothermal Services, Inc.  
10072 Willow Creek Rd.  
San Diego, CA 92131

Mr. F. Dale Corman, President  
O'Brien Resources, Inc.  
49 Toussin Avenue  
Kentfield, CA 94904

Dr. R. Corwin  
Dept. Eng. Geoscience  
University of California @ Berkeley  
Berkeley, CA 94720

Mr. Ritchie Coryell  
Program Manager  
National Science Foundation  
1800 G Street, N.W.  
Washington, DC 20050

Dr. Gary Crosby  
Phillips Petroleum Company  
71-C PRC  
Bartlesville, OK 74003

Mr. W. L. D'Olier  
Geothermal Operations  
Thermal Power Co.  
601 California Street  
San Francisco, CA 94108

Mrs. Katie Dixon  
3781 Lois Lane  
Salt Lake City, UT 84117

Mr. William Dolan  
Chief Geophysicist  
Amax Exploration Inc.  
4704 Harlan Street  
Denver, CO 80212

John E. Dooley  
R. F. Smith Corp.  
552 E. 3785 S.  
Salt Lake City, UT 84106

Robert C. Edmiston  
Anadarko Production Co.  
P.O. Box 1330  
Houston, TX 77001

Mr. Samuel M. Eisenstat, President  
Geothermal Exploration Co., Inc.  
400 Park Ave.  
New York City, NY 10022

Dr. Val A. Finlayson  
Research Engineer  
Utah Power and Light Company  
1407 West North Temple  
Salt Lake City, UT 84110

Mr. Milton Fisher  
295 Madison Avenue  
New York City, NY 10017

Mr. Ron Forrest, Geologist  
Phillips Petroleum Co.  
P.O. Box 858  
Milford, UT 84751

Ken Fournier  
Union Oil  
Union Research Center  
Box 76  
Brea, CA 92621

Dr. Frank Frischknecht  
Box 25046, Denver Federal Center  
U.S. Geological Survey  
Denver, CO 80225

Robert Furgerson  
Argonaut Enterprises  
1480 Hoyt Street  
P.O. Box 26330  
Denver, CO 80226

Mr. Gary Galyardt, Geologist  
U.S. Geological Survey  
MS 602  
Box 25046, Federal Center  
Denver, CO 80225

Ms. N. Sylvia Goeltz  
UV Industries, Inc.  
19th Floor, University Club Bldg.  
Salt Lake City, UT 84111

Dr. N. E. Goldstein  
 Lawrence Berkeley Laboratory  
 Building 90  
 University of California, Berkeley  
 Berkeley, CA 94720

Mr. Steven M. Goldstein  
 The Mitre Corporation  
 Metrek Division  
 1820 Dolley Madison Blvd.  
 McLean, VA 22101

Mr. Bob Greider, V. P. Exploration  
 Intercontinental Energy Co.  
 P.O. Box 17529  
 Denver, CO 80217

Mr. J. H. Hafenbrack  
 Exxon Co. USA  
 P.O. Box 120  
 Denver, CO 80201

Mr. Dee C. Hansen  
 Utah State Engineer  
 442 State Capitol  
 Salt Lake City, UT 84114

Dr. Norman Harthill  
 Executive Vice President  
 Group Seven, Inc.  
 9250 W. 5th Ave.  
 Lakewood, CO 80226

Dan E. Haymond  
 P.O. Box 239  
 Salt Lake City, UT 84110

Mr. Jack Von Hoene  
 Davon, Inc.  
 250 North 100 West  
 Milford, UT 84751

George Hopkins  
 Geotronics Corp.  
 10317 McKalla Place  
 Austin, TX 78758

Mr. Gerald W. Huttner, Sr. Geologist  
 Intercontinental Energy Corporation  
 7503 Marin Dr., Suite 1-C  
 Englewood, CO 80110

Mr. Laurence P. James  
 2525 South Dayton Way #1406  
 Denver, CO 80231

Dr. George R. Jiracek  
 Department of Geology  
 University of New Mexico  
 Albuquerque, NM 87131

Mr. Richard L. Jodry  
 P.O. Box 941  
 Richardson, TX 75080

Dr. Paul Kasameyer  
 Lawrence Livermore Lab, L-224  
 P.O. Box 808  
 Livermore, CA 94550

Dr. George Keller  
 Professor and Head  
 Department of Geophysics  
 Colorado School of Mines  
 Golden, CO 80401

Mr. James B. Koenig  
 Geothermex  
 901 Mendocino Avenue  
 Berkeley, CA 94704

Dr. Mark Landisman  
 Professor of Geophysics  
 University of Texas, Dallas  
 Box 688  
 Richardson, TX 75080

A. W. Laughlin  
 Group Leader  
 Geothermal Programs  
 Geological Applications Group G-9  
 Los Alamos Scientific Laboratory  
 P.O. Box 1663  
 Los Alamos, NM 87545

Mr. Guy W. Leach, Geologist  
 Oil Development Company of Texas  
 Box 12053, American Natl Bank Bldg.  
 Amarillo, TX 79101

Mr. Dick Lenzer  
 Phillips Petroleum Company  
 P.O. Box 239  
 Salt Lake City, UT 84110

Earth Sciences Division Library  
 Building 90  
 University of California  
 Lawrence Berkeley Laboratory  
 1 Cyclotron Road  
 Berkeley, CA 94720

Mr. Skip Matlick  
Republic Geothermal  
P.O. Box 3388  
Santa Fe Springs, CA 90670

James O. McClellan, President  
Geothermal Electric Systems Corp.  
5278 Pinemont Drive, Suite A-150  
Salt Lake City, UT 84107

Dr. Robert B. McEuen  
Woodward Clyde Consultants  
Three Embarcadero Center, Suite 700  
San Francisco, CA 94111

Mr. Don C. McMillan  
Utah Geological & Mineral Survey  
606 Blackhawk Way, Research Park  
Salt Lake City, UT 84108

Dr. Tsvi Meidav  
Consultant  
40 Brookside Ave.  
Berkeley, CA 94705

Mr. Frank G. Metcalfe, Pres.  
Geothermal Power Corporation  
1127 Grant Ave., Suite 6  
P.O. Box 1186  
Novato, CA 94947

Dr. Martin Molloy  
U.S. DOE  
133 Broadway  
Oakland, CA 94612

Dr. Frank Morrison  
Professor of Geophysics Eng.  
University of California  
Hearst Mining Building  
Berkeley, CA 94720

Dr. L. J. Patrick Muffler  
U.S. Geological Survey  
345 Middlefield Road  
Menlo Park, CA 94205

Mr. Clayton Nichols  
DOE  
Division of Geothermal Energy  
Idaho Operations Office  
550 Second Street  
Idaho Falls, ID 83401

Mr. Carel Otte  
President of Geothermal Division  
Union Oil Company  
P.O. Box 7600  
Los Angeles, CA 90051

Dr. Wayne Peebles  
Dept. of Geological Sciences  
Southern Methodist University  
Dallas, TX 75221

Mr. C. R. Possell  
General Ener-Tech, Inc.  
4842 Viane Way  
San Diego, CA 92110

Dr. Alan O. Ramo  
Sunoco Energy Development Co.  
12700 Park Central Pl.  
Suite 1500, Box 9  
Dallas, TX 75251

Marshall Reed  
DOE  
Division of Geothermal Energy  
3rd Floor, MS 3122C  
20 Massachusetts Ave., N.W.  
Washington, DC 20545

Robert S. Reed  
Thermogenics, Inc.  
c/o Hughes Aircraft  
Centinela and Teale  
Culver City, CA 90230

Dr. Robert W. Rex, President  
Republic Geothermal, Inc.  
11823 E. Slauson Ave., Suite 1  
Santa Fe Springs, CA 90670

Ms. Barbara Ritzma  
Science & Engineering Department  
Marriott Library  
159 MLi, CAMPUS

Dr. Jack Salisbury  
DOE  
Division of Geothermal Energy  
3rd Floor, MS 3122C  
20 Massachusetts Avenue, N.W.  
Washington, DC 20545

Dr. Konosuke Sato  
 Metal Mining Agency of Japan  
 Tokiwa Bldg.  
 1-24-14 Toranomon  
 Minato-Ku, Tokyo  
 JAPAN

Dr. John V. A. Sharp  
 Hydrosearch, Inc.  
 333 Flint Street  
 Reno, NV 89501

Mr. Wayne Shaw  
 Getty Oil Company  
 P.O. Box 5237  
 Bakersfield, CA 93308

Mr. Gregory L. Simay  
 City of Burbank - Public Service Dept.  
 164 West Magnolia Blvd.  
 Burbank, CA 91503

Mr. W. P. Sims  
 DeGolyer and MacNaughton  
 One Energy Square  
 Dallas, TX 75206

Donald W. Smellie  
 Consulting Geophysicist  
 1015 - 837 W. Hastings St.  
 Vancouver V6C 1C4 CANADA

Dr. H. W. Smith  
 Department of Electrical Engineering  
 University of Texas, Austin  
 Austin, TX 78712

Marty Steyer  
 Natl Geothermal Info Resource  
 Lawrence Berkeley Lab, 50A-0143A  
 Univ. of California  
 Berkeley, CA 94720

Mr. Paul V. Storm  
 California Energy Company, Inc.  
 Wells Fargo Bldg., Suite 300  
 P.O. Box 3909  
 Santa Rosa, CA 95402

Dr. Chandler Swanberg  
 New Mexico State University  
 P.O. Box 4408  
 University Park Dr.  
 Las Cruces, NM 88003

Dr. Charles M. Swift, Jr.  
 Chevron Oil Co.-Minerals Staff  
 P.O. Box 3722  
 San Francisco, CA 94105

Dr. Bernard Tillement  
 Aquitaine Co. of Canada  
 2000 Aquataine  
 540 5th Avenue, S.W.  
 Calgary, Alberta  
 Canada T2P 0M4

David D. Tillson  
 Washington Public Power Supply System  
 P.O. Box 968  
 Richland, WA 99352

Dr. Ronald Toms  
 DOE  
 Division of Geothermal Energy  
 3rd Floor, MS 3122C  
 20 Massachusetts Avenue, N.W.  
 Washington, DC 20545

Dr. John Tsiaperas  
 Shell Oil Company  
 Box 831  
 Houston, TX 77001

Dr. A. F. Veneruso  
 Geothermal Technology Division 5736  
 Sandia Laboratories  
 Albuquerque, NM 87115

Dan Vice  
 555 Park Lane  
 Billings, MT 59102

Dr. James R. Wait  
 Rx7, Room 242, RB1  
 U.S. Dept. of Commerce  
 National Oceanic & Atmospheric Admin.  
 Environmental Research Labs  
 Boulder, CO 80302

John Walker  
 DOE  
 Division of Geothermal Energy  
 3rd Floor, MS 3122C  
 20 Massachusetts Ave., N.W.  
 Washington, DC 20545

Mr. D. Roger Wall, Geologist  
Geothermal Resources Division  
Aminoil USA, Inc.  
1250 Coddington Center  
Santa Rosa, CA 95401

Dr. Paul Walton, President  
American Geological Enterprises, Inc.  
1102 Walker Bank Bldg.  
Salt Lake City, UT 84111

Ed Witterholt  
City Services Oil Co.  
Energy Research Lab  
Box 50408  
Tulsa, OK 74150

Mr. William B. Wray, Jr.  
VanCott, Bagley, Cornwall & McCarthy  
141 East 1st South  
Salt Lake City, UT 84111

Dr. Paul C. Yuen  
University of Hawaii @ Manoa  
2540 Dole Street, Holmes 240  
Honolulu, HI 96822

Dr. S. H. Yungul  
Chevron Resources Co.  
P.O. Box 3722  
San Francisco, CA 94119

Dr. Elliot J. Zais  
Elliot Zais & Associates  
7915 N.W. Siskin Dr.  
Corvallis, OR 97330