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l. Abstract and Summary

Microprogram optimization is the rearrangement of micro-
code written vertically, with one operation issued per step,
vinto legal horizontal hicroinstructions, in which several
operations are issued each instruction cycle. The rearrange-
ment is to be done in a way that approximately minimizes the
running time of the code.

We identify this problem with the problem of. processor
scheduling with resource constraints. As a résult of this
identification, the problem of optimizing basic blocks of
microcode can be seen to be np—cgmplete; however, we are able
to use approximate methods for basic blocks which héve good
records in other, similar, scheduling environments. We use a
method of scheduling called "priority list scheduling" in which
the tasks are ordered according to some evaluation function,
and then schedules are found by répeated scans of the list.
Several evaluafion functions are shown to perform very well
on large samples of various classes of random data—precedeﬁce
graphs with characteristics similar to those derived from
microprograms. An evaluation function we produced is sénsitive
to both the data-precedence graph and the resource constraints;
it performed best of those tested, though the differences
among the four best functions, while statistically significant,
were small.

A method of spotting resource bottlenecks in the derived -
data-precedence graph is adapted from a lower bound suggested
by Fernandez and Bussel [FERN73]. This method permits us to

produce the above-mentioned "resource considerate" evaluation



function, in which tasks which contribute directly to or

~

precede bottlenecks have their priorities raised. We were
also able to greatly reduce\the complexity of the calculations
necessary to compute the lower bound, thus making the above
strategy more practical. fhe lower bound is further used to
bound the percentage differences between the lengths of
schedules produced ahd the optimal.

A method is suggested for optimizing beyond basic blocks.
We treat groupsvof basic blocks as if\they were one block,
encoding the information necessary to control the motion of
tasks between(blocks as data-precedence constraints on the
conditional tasks. We are thus able to optiﬁizellong paths’
of code, with no back branches, using the'same methods used
for basic blocks. These methods are-efficient (order n2),
and are capab%e of handling the long blocks obteined this way
quite.weli.. When loops are encountered, the'contents of the
loop areveptimized, and then the loop is treated as a unit,
with iis own data—precedence constraints, permitting other
tasks to move past, ehead ef, or into the loop, as is appro-

priate. The code obtained seems as optimized as, and remark-

ably similar to, that obtained by hand.




2. Introduction to the Problem

Microprograms are sequences of microperations (MOPs)
which cchtrol the most_fundamehtal resources of'the com-
puter. A MOP might, ‘for exaﬁple,.control whether a reg—.
ister is written intd during a particular clock cYcle, or
select which of several pos51ble data paths might be fed
into an adder. In many microprogrammable computers, the
fact that seteral different parts of the hardware can

operate simultaneously may be taken advantage of in the

‘microprogram, and a colle¢tion of MOPs may be specified

for a single microprogram cycle, rather than just one.

Such microprograms are said to be horizontal (rather than

vvertical) and a collection of MOPs specified for a single

cycle is called a micrcinstruction.

| This is an investigation into the practicality of taking
a sequential microprogram written for a horizontal machine
and gathering the MOPs ihto microinstructions in a way
that apprdximately optimizes the running time of the micro-
program. Within basic blocks (no transfers of control),
this corresponds to gathering the MOPs into as few'ﬁicro—
instructions as possible; subjecthto, of course, the
data-precedence requiremehts on the MOPs..and the resource
usage constraints, which will prchibit certain combinations

of MOPs from being specified in the same microinstructions.

Beyond basic blocks dynamic considerations apply and we




can no longer guarantee that improvements that shorten
some branches»of code at the expense of others will improve
running time. We investigate such improvements at length
but, as is the case with some compi}er optimizations, it
- is difficult to measure their effectiveness except empiri-
~cally. We remark here that the problem at hand does not
otherwise bear much resemblance to compiler optimization,
except in the use of some flow graph techniques. Indeed,
we assume that alllordinary compiler optimizations have
already been applied to the ve;ticél code before the
gathering into microinétructions.

The reader is invited to look at the source and object

codes in the examples presented in Chapters 5 and 8. The

code is written for.the Courant Instituﬁe PUMA System,
and, with proper documentation, the source code éould be
easily understood, having the flavor of assembly language
level code. The corresponding horizontal code, however,

is usually quite obscure.

Why This Is Important

After extensive experience with the highly horizontal
PUMA,micrpcode, it is clear that this aspect of micropro-
gramming, producing'parallel code, is most unpleasant,
“very time consuming, and very error prone. lFurthermore,'

those not very familiar with the techniques would seem




essentially prevented from producing any ﬁractical micro-
cede at all. Even for a skilled programmer, Writing a
large interpreter would be a most forﬁidable task without
automatic parallelization.

The same consideration appears to be true when one is
compiling high level languages (machine dependent or inde-
pendent) into horizontal microcode. While most compilation
tasks involve the same concepts as compilation into maehine
language, it is essential that the compiler be able to make
reasonably full use of the machine's resources. If user
microprogramming of horizontal machines is going to become
somewhat common, and this appears likely, it seems ciear
that the techniques investigated herein Will be important.
It ie often mentioned in the literature that automatic
parallelization is a necessary and missing systems aid;
however, it is also felt that finding practical methods of
parallelizing is a difficult problem toward which little
progress has been made [AGER76], and is regarded as "next

to impossible" [ROSS75].



The survey presented here supports that conclusion. It )

CHAPTER 3. Previous Investigations of This Problem

/

Fortunately, an excellent survey of methods of optimiz-
ing microprograms exists, Agerwala [AGER 76]. That survey,
updated in March 1976, refers to the gathering of MOPs into

microinstructions as "word dimension reduction" and generally

Nonetheless, the first paragraph of the conclusions section
states

"Most of the important work to date on microprogram
optimization has been surveyed in this paper and,
unfortunately, the results are disappointing. Very
few techniques exist that can be profitably applied
in any practical environment."

considers it to be the most promising area of optimization.
seems to be unknown whether any of the work done to date
can provide enouéh help to the microprogrémming systemsv
designer to enaole the writing of large programs using
sequential code.

| We now survey all the paralleiization methods we were
able to find. The main reduction aléorithms are presented
in some detail and an annotated bibliography contains all
relevant:references. The references are generally from
two sources: the IEEE Computer Society Transactions on
Computers and the SIGMICRO Yearly Workshop preprints. The
SIGMICRO papers, unfortunétely, are very loosely edited, and
the algorithms are often imprecise. Despite that,

they are the best source of current information.

6 .




In our descriptions of the algorithms we will use

terminolpgy from processor scheduling theory; indeed, in
Chapter 5 we will formalize an identification between
optimizing microcode and scheduling processors. Most

terms should be clear enough from their contexts to provide
a general underétanding of the algorithms, but all terms
used are defined carefully in the next chapter. For the
time being, we may think of the MOPs as having a data-

: dependéncy relation upon them; that is, some MOPs will

have to be plaéed in earlier microinstructions than others
to preserve data'validity{ Using this relation, we form .
the data dependency graph referred to below. The tasks
referred to in the following chapter definitions (Fig. 4.1)
will be representing the MOPs, as we will explain- in

Chapter 5.

Optimal Solutions

We can break the work done into two categoriés,
algorithms which always find the optimal'solhtién, and those
which might not. We consider the former first; though
none of them seems useful in a practical environmenf.
Evidently, the first algorithm was proposed by Astopas
and Plukas [ASTO 711}. 'They\consider all possible gather-
ings of MOPs (parﬁitionings) which don't violate the data
dependencie;;»they then accept the shorﬁest one which

doesn't violate the resource conflict criterion.




An improvement upon this algorithm is made by Yah,
et al. [YAU 74]. They generate only valid microinstruc-
tion partitionings, and not all of those; they then select
the shortést, or stop if they obtain one which is provably
minimal. Unfortunately, this still seems to uée far too
much time to be of much use. Of interest in that paper,
though, is the faét that they use heuristics to guide the
order in which the operations are grouped, stopping if
they reach a provably ﬁinimal partition. Since they then
present a not necessarily minimal algorithm which uses
much the same heuristics, this paper is referred to later
in this section.

Finally, an algorithm is given by Tabandah and

Ramamoorthy [TABA74]. It is considered in the context

of the SIMPL compilér (see the next.referencé) and is
similar in style to the nonoptimal algorithm of
Ramamoorthy and Tsuchiya, which is presented.next. Again,
this algorithm requires immense amounts of time and space

and is not suggested as a practical solution.

Approximate Solutions

We now consider algorithms which produce suboptimal

results but are possibly practical. The most important work

seems to be that connected with the SIMPL compiler,'
Ramamoorthy and Tsuchiya [RAMA74]. SIMPL is a high level

microprogramming language using the rather restrictive




single identity principle, in which variables may be .

assigned values only once. It is first compiled into
sequential microcode and is then parallelized. Briefly,
their parallelizing algorithm is. as follows:

Ignoring resource constraints, they identify critical

MOPs as those on the critical path(s), which are paths'of
maximal length on the data-precedence graph. The natural
partitioning of these MOPs is taken, in which MOPs the
saﬁe distance from the top are in the same partition.

Each of these is then split up into the minimum number
necessary to avoid resource conflict. (Here a potentially
large loss of optimality is evident, as data and resource
independent MOPs from adjacent partitions are never placed
in the same new intermediate partition.) Finally the non-
critical MOPs are placed in this scheme from earliest to
‘latest; occasionally a ﬁew partition is formed for one of
them when it would delay its successors too much to place
it legally in an existing partitibn.

The next algorithm we consider is that of Tsuchiya and
Gonzalez [TSUC74], also developed in relation to the SIMPL
compiler and meant to be an improvement over the one given
above. Briefly, they do the following:

The latest partitioning is formed, in whicﬁ MOPs are placed
~as late as possible without increasing the humber of parti-
tions over the minimum, and with no regard paid to resource

conflict. Individual partitions are then considered earliest



to latest. If no resource conflicts exist, as many MOPs

as can be brought in legally from later partitions are

and this becomes a permanent microinstruction.. If

conflicts do exist, all possible MOPs whose data dependencies
will allow are brought into the partition and a choice. of

a permanent set of MOPs for this microinstruction is made.
The remaining MOPs are pushed into the next partition,

where they may have a ripple effect on their successors,
possibly causing new instructions after what had been .

the last. )

Unfortuntately, the algorithm was nbt giveﬁ in enough
detail for us to resolve conflicts between the criteria
given for choosing which MOPs to delay, and those actually
delayed in a rather detailed example.

Next we consider the previously mentioned algorithm
- of Yau, Schowe, and TSuchiya'[YAU74]. This 1s rather
different in spirit from the prejious two in that it
constructs microinstructions an instruction a£ a time,
rather than starting with a more global partitioning
and then altering it. Théir algorithm is eséentially:

The weight of a MOP is defined as its number of

deécendants’(ﬁot necessarily direct descendants),

and thé weight of a microinstruction as-the shm of

thé weights of its cénstituent MOPs. Microinstructions

are formed one at a time, from the earliest to the

latest, by considering every possible legal micro-

10




instruction producable from the MOPs not yet used

and selecting the one with the greatest weight. We
remark that only microinstructions which cannot have
another MOP legally added to them need be considered

for maximal weight.

As will be explained in more detail later, we found this
the most interesting of the algoriﬁhms here, and investigated
it in’sdme detail.

Dasgupta and Tartar [DASG76] . present an algorithm
which they claimed to be optimal; however, it simply considers
MOPs in their sourée order and places them each as eafly
as.possible without violating resource and data-dependency
rules. Its nonoptimality is evident from very short
examples [DASG78], but it is difficult to ascertain that
from the algorithm, which is quite complex due to their
handling of fpoly—phase" microinstructions (which we
will briefly discuss in Chapter 9, and which we feel would
not present a great deal of difficulty in an implementation),

~Finally, we consider the work of Tokoro et al. [TOKO77].
Just és was the case in [DASG76], they have a somewhat
more general model, involving "microtemplates", which
deals with many mofe options in microprogrammed machine
design than we are considering here. As such, the optimiza-

tion algorithm, as we would consider it, is somewhat obscured.

11



When projected down to our environment, however, their

|
algorithm is the same as that in [YAU74], with the excep-
tion that they select the microinstruction at each level
which has the most MOPs whose longest path distance to

| the bottom of the data dependency graph is greatest among

| .

the remaining MOPs. Ties are broken by simply picking.

the instruction with the most MOPs.

Beyond Block Optimization

We were only'able to find two references to optimiza-
tion beyond basic blocks, a subject about which we will
~have much to say in Chapter 8.

The first, again‘an algorithm of Dasgupta [DASG77],
only looks for pairs of basic blocks, (Bi,Bj),‘with the
property that Bj is exequted during a run of the code if
and only if B; is. (For basic block definitions, see
Chapter 8.) The'earlierblock; Bi ’ is‘pérallelized, using
‘the nonoptimal algorithm\in [DASG76]. Then MOPs in Bj whose
data dependencies allow are moved up into Bi , if they can
be fitted into holes in the already existing optimization
of Bi': (That is, without lengthening Bi.) Otherwise, they
are sc¢heduled in Bj according to the basic block algbrithm.

The other reference to beyond basic block optimization,
that of Tokoro et al. [TOKO78], 1is considerably more
ambitious. AlthOugh.a great many-details are omitted, we

can describe the spirit of their methods. They produce a

12 ‘




small catalog of the types of MOP motions from one block

to another, such as moving a MOP from a block into all of
the blocks that must follow it. (We have a catalog of that
sort in Chapter 8.) They then proceed in an upward direc-
tion, moving MOPs into holes in already optimized blocks.

Finally, the same thing is attempted in a downward direction.

13



CHAPTER 4: Practical Results in Processor Scheduling Theory

‘Our approach to this problem has been to identify
the main aspects of it with special cases of the processbr
scheduling problem with resource constraints. Processor
scheduling theory has received wide study (e.é. see
[COFF76]), and we have been able to use some of the
results and methods of attack used for the more general

problem.

Processor Scheduling

The processor scheduling problem we are interested in
can be describedlas fbllows: we are given a set of tasks
to be processed, tl,t2,~...,tS and an acyclic partial |
ordef on those tasks (the partial order specifies a time

precedence on the tasks, i.e. if ti < tj , then ti must

Qge completed before tﬁ begins). Each task takes some

iength of time to be processed, and we have m identical
processors, Pl""'Pm with which to process these tasks.
Furthermore, there is a set R = {rl,rz,...;rn} of resources
and a function U where U(ti,rj) is between 0 and 1 and
specifies the proportion of resource j which is used by task
ti in one time unit. In fact, we will restrict ourselves

to tésks with identical times (or unit execution time — UET
scheduling), but will in later sections mgke reference to |

situations in which tasks take longer than 1 unit (e.g.

14
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the PUMA's 2 cycle add).

A schedule 1is an assignment of the tasks to discrete
time units (this assignment is called partitioning; the
time units, partitions) such that:

(1) No more than m tasks are assigned to any time unit,
corresponding to the m processors available to
process them

(2) If ti < tj ’,ti is assigned to an earlier time unit
than tj

(3) Given any resource, r, and any time unit, the sum of
the U(t,r) for all t's assigned to the time unit is

less than 1; that is, we don't use up more of a resource

than there is.

_ We are generally interested in finding'schedules in
which the number of time units used:(the "length of the
schedule") is near optimally small. Finding the actual
minimum is np-complete; indeed it's np-complete under the
restriction that there are but 2 processors, and one
resource which tasks use either completely or not at all
(see Ullman's paper.in [COFF76]), and. under other, similar
restrictions [GARE74].

Our formal definitions for scheduling theory, given
in Figure 4.1, make no'mention of processors. . Indeed, if

we had an m-processor system, we could define a resource

rp such that U(ti,rp) = 1/m for all i, and rp would completely

15




Figure 4.1
A Formal Description of Task Scheduling with Resources

A. Schedule Definitions.

1. We have a set of tasks T = {tl,tz,---,ts} of size s
(intuitively, the tasks are jobs which we are going to process).

2. We have a partial order < on the tasks, and, thus an associated
dag. We distinguish some of the edges by writing <= rather than
simply < , and in any picture we draw of the dag we place an "="
next to any edge-diétinguished by.a <=.
(Intuitively, ti < tj means that we are required to process
ty before t.. -t <= tj means that we are required to process ti
no later than t )

3. We have a set of resources R = {rl,rz,---,ru} of size.u.
(Intuitively, the ri's are things used in the processing of the
tasks, We think of them as being present in limited amounts

and we think of the tasks as competing for their use.)

4. We have a map u: {T x R} » (0,1} speéifying the percentage
of each resource used by each task
(i.e. U(t3,r ) = .125 means that task 3 uses 1/8 of the

available amount of resource 7).

5. We define a partition as any subset of T, 'and a partztzonzng as
an ordered tuple of partitions which are mutually disjoint and
exhaustive. That is, if for each i, Pi c T, the Pi's are

partitions. If P = (Pl"“'Pk) such that Pj N Pi = @, unless
i = j, and such that v P = T, then P is a partitioning.

Note that the partltloning is determined not only by the P ’
but also their order. ’
wWhen we refer to a specific partitioning P = (Pl,...,Pk) ’
we say a task t is at level n when t € P ; we also may refer
to P as a level or level n, and call P a cycle.
6. We further say a partitioning P is a legaZ partitioning if both of
the following hold:
(a) Given any t and t' € T such that t < t' with t at level n and
t' at level m, then n < m. Similarly, if t <= t', then n <= m.
(b) Given any partition Pj in P, and any resource N € R,
tk‘;Pj Ut ry) <=1 .
A 1ega1-partitioning is more commonly called a schedule.
(Intuitively, we think of our tasks as each taking one time unit
to process. Each partition, then, is one time unit, and the
_tasks belonging to that partition are all thought of as being
done in parallel in that time unit. Condition (a) then assures
that the specified task precedence is not violated. Condition (b)
assures that in no time unit is more than the available amount
of any resource used.)

16




Figure 4.2

B. Directed Graph Definitions (used in describing algorithms)gs

1. 1f £ < tj or t, <= tj we say that t, is a prede;essor of tj and
that t. is a successor of ti. When we wish to distinguish between
the two types of precedence, we sometimes use the terms
strict predecessor and equal predecessor with the obvious meanings.
Similarly for successor.

2. We formally define the height of a task, HEIGHT(t), as follows:

(a) If a task has no successors, its height is 1.

(b) Otherwise, find the successors of the task whose height is
the largest, say height h. If one of those tasks is a strict
-successor, then the given task has height h + 1. Otherwise
the given task has height h.

(The height may be thought of as the smallest number of time units

required from the time proéessing starts on the given task to the

end of the shortest possible schedule, given infinite resources.)
3. A eritical task is any sequence of tasks such that:

(a) each task is a predecessor of the following task.

(b) the first task has no predecessors and is of the highest
height in T

(c) the last task has no successors

We will refer to C, the "critical path length"” in a graph, which is
the height referred to in (b). Note that a critical path may have
more than C tasks along it, due to = edges. Note also that C is a
theoretical lower bound on any schedule, and that the bound would be
achieved given infinite resources.
Any task which belongs to any critical path is called a critical task.
4. We define the depth of a task, DEPTH (t), precisely as height was
defined, with the word predecessor substituted for successor throughout.
5. The earliest partitioning is that in which the level of each task is
its depth. The latest partitioning is that in which each task is at
level (C - height) + 1, which we call LATEST(t). Note that each of
these partitionings has exactly C partitions.
(In the earliest partitioning, every task is done as early as
possible, with no regard for resource usage. In the latest, each task
is done as late as possible, without adding a lével, with no regard
for resource usage.)

6. Given a particular partitioning P, we say that task t is data ready
at level & if all of its strict predecessors are contained in levels
1,2,...,1—1 and all of its equal predecessors in levels i,2,...,¢2.

17



describe the processor constraint. Since the systems we
will be investigating do not in general have anything
corresponding to the processor set, we left it out of the
definitions. Also note that some partial order edges are
distinguished by equals signs in our definitions. We
will need the full generality of those.edges later, for
the purposes of this discussion, however, we may ignore

the "= edges".

Approximately Optimal Solutions and List Scheduling .

| We were not able to find anything iﬁ the literature
but the roughest upper bounds on approximate algorithms
for the full problem we are interested in. If one eliminates
the resources, however, or eliminates the precedence rela-
tion, experiments have been done to rank some suggested
strategies. 1In the case of no resources, a paper by
Adam , Chandy and Dickson [ADAM74] studied various "list
| scheduling" strategies. List scheduling, which is
summarized more formally in the last section of this chapter,
basically involves choosing a heuristic function to assign
‘ a priority value to each task. The first partition is
scheduled by choosing tasks, in order of their priorities,
from those that are data-ready. Each task is examined to
see if it can be placed in the time unit without any resources
being used above capacity, and it is so placed, if possible.

The partition is fixed when either no more data ready tasks

18




exist or all of the processors have been used up. Following

partitions are then filled in the same way; scheduling

is finished when no tasks remain. It is clear that a legal

schedule is formed in this manner.

(1)

(2)

(3)

five

(1)

(2)

(3)
(4)

The attractions of list scheduling include:

It is fast and straightforward; in particular, no
scheduled task is ever moVed by a later step.

The heuristic portion of it is totally isélatgd'from
the scheduling aspects.

It has a récord of good performance in some

environments.

Adam et al. studied the list schedules produced by
strategies, namely:

The priority is the length of the largest chain from
the given task to the exit. Sihce their model included
nonunit tésk times, the'priority is the total length
of all‘tasks on the chain. They referred to this as
HLfET kHighest levels first, estimated‘times)} in our
definitions (Fig. 4.2) wé have referred to this as the
height of a task, for UET scheduling.

As above, except ignoring tasks times, referred to as.
HLFNET (no estimated times).

Random priorities.

The priority ié the closeness to fhe entrance of the
graph, referred to as SCFET (Shortest‘co—levels). For

UET scheduling, we could use -DEPTH to get the same

ordering. 19
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(5) As above, with no tasks times - SCFNET.

These strategies were used to produce list schedules
for hundreds of precedence graphs, some containing hundreds
of edges or nodes; some of the graphs were‘randbmly
produced, some culled from.real programs.- In all cases (and
also when the same thing was done for tasks with stochastic
task times), the results were in the same order: HLFET,
HLFNET, SCFNET, RANDOM, SCFET with HLFET being the superior.
What's more, the best known lower bound for this case, that
of Fernandez-Bussel [FERN73], was rarely exceeded by HLFET
in any class tested by more than 0.2 percent, even for
" very large graphs (one case was 16 percent worse, one 4,
the rest under 2, and a great mény hit the lower bound).

As we will discuss in Chapters 6 and 7, we were able to

put the ideas in [FERN73] to several good uses, but, for

the moment, we note that these results demonstrate both

the effectiveness of highesf—level priorities and the
tightness of the boﬁnd in this environment. The good
performance of the highest level first strategies is not

a great surprise; it has been in the folklore for some time
-that that's the right way. The CDC FTN Fortran compiler
optimizes basic blocks this way, as does an optimizer for
the CRAY-1 written‘by Richard Sites, and for some restricted
classes of problems, optimal schedules can be formed using

highest level type lists (see, e.g., [COFFT721).
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Resource Constrained Problems

Naturally, such strategies could be applied directly
to resource constrained problems, but they would be what
we have dubbed "resource inconsiderate". It is certainly
true that one is often faced with a resource bottleneck
that indicates priorities opposed to what would be suggested
by a level heuristic; we shall see examples of that shortly.
There is,; as we have mentioned, a study [ECKE7§] which has
compared two ‘resource considgrate strategies, but in an
environment in which the precedence relétion wés empty.
Under such conditions, the problem is called "generalized
bin packing” and the heuristicg used generalize bin packing
strategies. We refer to the two strategies tested as RMAX
and NEIGHBORHOOD:
(1) RMAX: the priority of a task is the maximum component
in its resource usage vector, that is,
PRIORITY(ti) = MAX {d(ﬁi,rj)}.
(2) NEIGHBORHQOD: Nw; define a relation CLOSE as:
two tasks, ti and tj + are close if they could ever be
scheduled together without a resource being ovérused,
i.e. for all k, U(ti,r

) + U(tj,r < 1. Then the

k k)
priority of a task is the number of tasks it is CLOSE to.

Eckert chose his simulation parameters in such a way

that RMAX would seem to be favored, since individual resources

are not often pairwise overused. Nonetheless, the NEIGHBORHOOD
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strategy did noticably, though not decisively, better.
Our concern is with the full problem. ' In the néxt
two chapters the ideas of [ADAM74] and [ECKE78] are cpmbined
aﬁd extended, and many other ideas along similar and
~dissimilar lines are suggested and tested.
1 We close this chapter with a formal description of

' 1list scheduling.

A Formal.Description of List  Scheduling

'In the absence of = edges, we have what is called, in
the scheduling theory literature: unit execution time (UET)
scheduling with resources. The quality of schedules is

measured by the number of levels produced,-apd an aim of
schéduling theory is the derivation of methods which
produce short schedules. |

We now present a method of UET scheduling called
118t scheduling, the desirable properties of whicﬁ have
been Qutlined in the accompanying text. This will later

be modified to include = edges.

Algorithm:' List Scheduling

Input:. T, R, U, < _given as in Figures 4.1 and 4.2,
with accompanying definitions.
Uses: A separate routine — PRIORITYSET — forms a
function PRI: T » real numbérs. PRI(t;) is
" thought of as the priority that task t, be

:scheduled early.
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An ordered list of tasks, ﬁEADY.
A set of tasks, NOT READ?. NOT-READY C T,

Output: A schedule, namely a legal partitioning
P={P,,P,,...,P,}.

Method: Weiuse a list called READY, the daﬁa—ready list,
which initially contains all taskS'Without
predecessors and which is sorted by priority.

The first lével is formed'byvconsidering the
tasks on the list in order and placing each one
in that level if it doés not cause any resource
to be overused. A task so placed is deleted from
the data ready list. After no more tasks cén be
placed, the data ready list is updéted to contain
all tasks which will, as a result of their |
predecessors' being scheduled, be ready at the
né#t level. The next and following lévels are
-scheduled in the same way.

Algorithm:

1. Call PRIORITYSET, defining PRI(ti) for each task ty € T.

2. ¢ = 1, READY = empty, NOT-READY =T, P, = ¢

3. For each task t, € NOT-READY which is now data ready, do:

| Place titxi'READ¥'in order of PRI(ti)

Delete ti from NOT-READY

End.
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4. Scan the READY list top to bottom (i.e. in order. of

priority). For each ts on  READY, if
for all k U(t.,r,) + U(t.,r <1
7 t.gp 3’ k ll k) -
then do: 3 c
Place t. in P
i T
Delete ti ‘from READY
End.
5. If tasks remain on READY or NOT-READY,
‘then do:.

go to step 3
end.
Otherwise, ST0P. A schedule has been formed

from P1sPysee,P .

Note: The above algorithm was chosen for clarity. It appears

to require that |T|2 elements be scanned at step 4 in
a total run of thé algorithm, and this seems unlikely
to.be improvable. In practical.terms, hdwever, it
is probably a significant constant factor faster to:
- 1. Keep a count of the predecessors of each task |
2. Whenever a task is scheduled, decrement each of its

successor's counts by 1

3. Whenever a task's count reaches 0 during the scheduling

of some level, put the task on an ALMOST-READY list.
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4., After scheduling is completed for some level, insert the

the ALMOST-READY tasks onto the READY list.
Indeed, our implementation does this.
It is also worth noting that a sophisticated PRIORITYSET

routine is apt to dominate the efficiency considerations.



5. Optimizing Basic Blocks of Microcode -

| Formal' Identification between Optimizing and Scheduling

We now do what we have béen alluding to all along,
that is, we recast our problem as one of processor
scheduling with resource constraints. To make our
fbrmal identifiéation, we will need to specify what our
tasks are, how the partial order is defined, and what
the fesource mapping is to be. |

Suppose we are . given a baéic block of.sequential
microcode (which will be defined carefully in Chapter 8,
but which we informally say has no jumps out of thé block;

except at the end, and no jumps in, except at the beginning).

= we define as our tasks the individual MOPs. The resource
fﬁgsages of'each MOP willvbe completely machine dependent,
bﬁt will involve such resources as busses, ALU's, multi-
pieéers, etc.
our algorithm for determining the partial order on the
MOPs is given in Figure 5.2. The algorithm presupposes
that the registers read and written by éach MOP are known
and from those sets determines < , with some edges

distinguished by an =, as explained earlier.
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Formal Identification between Processor Scheduling

and Basic Block Microcode Optimization

Processor Scheduling

Microcode

Set of tasks

Acyclic partial order

Resources

One time unit in a task
processor resource

schedule

Figure 5.1
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Micro operations

Data precedence relation

preserving data validity
(see Figure 5.2)
Hardware resources in
computer (e.g., ALU,

BUSSES)

A horizontal microinstruction



Rules foi Formation of Partial Order on Micro-operations

Given: 1. A set of MOPs T = {tl,tz,...,ts}, where T
represents, with subscript order equél to
. : 'source order, a basic block of MOPs.
2. A set of registers A = {Al,Az,...,Av}
3. For each t, , two sets, READ(ti) and WRITE(ti) C A,

not necessarily disjoint. /

We produce a partial order < on T, with some edges distinguished

by writing <= , as follows:

For each pair of MOPs ti’tj With i< (i.é; ti comes before

tj'in the source code) :

1. If READ(ti) n WRITE(tj) # @, then ti <= tj
unless for each a € READ(ti) N WRITE(tj) there
is a k such that i < k < j and ¢ € WRITE(tk);

. ) A
2. if WRITE(ti) READ(tj) # @, then ti < tj '

unless for each a eIWRITE(ti) N READ(t;) there
is a k such that i < k < j and a € WRITE(t, ).
3. If WRITE(;) 0 WRITEKtj) # @ , then t; < t, .
Unless for each a € WRITE(ti) ﬂ-WRITE(tj)‘there
is a k such that i < k < j and a € WRITE(tk).
4. If by the above rules, both ti < tj'and ti <= t. .,

J
then we write ti < tj.

Figure 5.2
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Input:

Uses:

Cutput:

Method:

Algorithm for the above:

T, A, READ, WRITE as above, except T is augmented
with a dummy task, to.
A function LASTWRITE A -+ T initjally into a dummy
task to.

A function READS_SINCE_WRITE: A - subsets of T,
initially into the empty set.

A function STRICTPRED: T + subsets of T

ancd EQUALPRED:. T + subsets of T.

tj € STRICTPRED(ti) will mean that tj < ti , while
tj € EQUALPRED(ti) will mean that tj <= ti'

We consider the tasks in source order. For each
task t; we look at the set READ(ti). For each
element aj € READ(ti), that is for each register
that ti reads, we put the last task to write aj v

(that is, LASTWRITE(aj)), in the set STRICTPRED(ti).

We then add t; to READS_SINCE_WRITE(a;) .

Similarly, we consider each register a, € WRITE(ti).
For each we put all the tasks belonging io
READS_SINCE_WRITE(ak) on ﬁQUALPRED(ti). I1f
READS_SINCE_WRITE (a,) is empty, we put LASTWRITE (a,)
on STRICTPRED(ti). (If we did so even when
READé;sINCE_wRITE(ak) was not empty, it would still
be correctly following rule 3 above, but would
produce a redundant ("transitive") edge.) Finally

Figure 5.2
{Continued)
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we set READ_;INCE_WRITE(ak) = § and we set

LASTWRITE(ak) = ti.

'After processing each task, we "cleanup" by
removing all edges from to , by removing all
duplicate edges (resolving contentions in favor
of STRICTPRED), and. removing all edges from a

task to itself.

Algorithm:
INITIALIZE:
1. STRICTPRED(ti), EQUALPRED(ti) empty, for all t; € T.
2. vREADS_ﬁINCE_ﬁRITE(ak) = empty,
LASTWRITE(ak) = 0, for all a, € A.
FORM EDGES: : o
'3, For i =1tos DO:
4. DQ for each ay, € READ(ti): .
5. STRICTPRED(ti)=STRICTPRED(ti)U{LASTWRITE(ak)j
6. READs_sINCE_pRITE(ak)=READs_§INCE_wR1TE(ak)
' u {t;}
7. END 4

8. DO _FOR EACH a, € WRITE(ti):‘

K
9. IF READS_SINCE_WRITE(a,) = empty THEN
STRICTPRED(ti)=STRICTPRED(ti)U{LASTWRITE(ék)}

10. ELSE DO:

Figure 5.2
(Continued)

’




11. EQUALPRED(ti)=EQUALPRED(ti)

U READS_SINCE_WRITB(a, )
12. READS_SINCE_WRITE(a,) = empty
13. END 10

14. LASTWRITE(ak) = ti

15. END 8
CLEANUP: b
16. STRICTPRED(t ) = STRICTPRED(t,) - {to}
17. EQUALPRED(t,) = (EQUALPRED(ti)—STRICTPRED(ti))
- {to.ti}
18. END 3

NOTE: As implemented, the above avoids doing d(lle) of any
operation, the order of the most frequently executed steps
being o(E), the number of edges in the graph being formed.
This required that for the ti under consideration in
steps 3 through 18, an array ALREADY(tj) kept the status
of the edge (tj,ti), which was zero if no precedence
was found, 1 if only equal precedence was found, and
2 if strict (or both) precedence(s) were found.
(tj,tj)'was set back to zero after ALREADY was built.
Allit, € STRICTPRED(t;) U EQUALPRED(t;) were then scanned,
and a "cleaned~up" predecessor set was built from that
information, with.that step also taking o(E) steps.

As Figure 5.4 shows, E is o(]|T|) in this type of graph.

Figure 5.2
{Continued)
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An Example

We have provided an example, sO thet the application

of scheduling theory, and particularly list scheduling,

may be easily followed. Example 5.la contains a short

sequence of MOPs, written for the PUMA. We first identify
the individual MOPs as the tasks; there are 7 of them,

which we can refer to as tl’tz""’t7’ Our goal is to

. bunch them into microinstructions, which we think of as

~.the dlscrete partitions of a schedule. Corresponding tov
the precedence relation on the tasks we have data~prededence
requiiements on the MOPs, from the register usages in 'example
5.1b. The da£a—precedence requirements simply assure that no
MOP reads a register before it is valid or after it has
been erased, and we see in example 5.1lc the data-predecence
graph on tl,...,t7. Note that we use the term register
rather loosely here. For example, since we are unlikely
to be capable of a range analysis, we consider all of main
memory to be one register, and we say thet any MOP which reads
any memory locatiqn must follow any (earlier source) MOP
which writes any memory location and that ' two memory writes
may not be permuted. This is not likely to ke serious if
the code beipg optimized is a microcoded emulator, since
the memory feferences will strongly depend upon the algorithm
being interpreted, rather than that in the microcode, and a
rénge analysis_is unlikely to provide much help. This is,

however, a potentially serious deficiency when a given
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(1)
(2)
(3)
(4)
(5)
(6)
(7)

YO =
¥l =
Y2 =
MQ =
MQ =
MQ =

have

SEQUENTIAL

CODE

BUF

AC

AC

AC

-BUF

SHIFT (MQ,LLl)
SHIFT (MQ,L1)

5.1 a

one

(@)

REGISTER (S) REGISTER(S) RESOURCE (8S)
READ WRITTEN USED *
BUF AC ALU (1 unit)
AC YO XYREGBUS (1)
AC Y1l XYREGBUS (1)
AC Y2 XYREGBUS (1)
BUF MQ ALU (1)
'MQ MQ SHIFTER (1)
MQ MQ SHIFTER (1)

5.1 b

Using PRIORITY (t) =

5.1 &

unit of each of these resources available.

HEIGHT (t)

PRIORITY LIST: 516 2 3 4 7

BUF; MQ = SHIFT(MQ,L1)

YO = AC; MQ = SHIFT(MQ,L1)

" Schedule:
5 MQ = -BUF
16 AC =
2 7
3 Yl = AC
4 Y2 = AC
S.1e

Using PRIORITY LIST: 1 56 2 3 4 7

Schedule:
1
5 2
6 3
7 4

EXAMPLE 5.1 a-f
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applications program is compiied into microcode. The‘
programmer, Or a smarf compiier, may very well kﬁow that
references differ and that no data-dependency is implied.
Example 5.1 has been'chosen to‘have obvious data-
dependencies. It is worthwhile to note that one of the
characteristics of the miéroprogram level of a machine is
that it tends to have many hidden and surpriSing register
usages, refleéting some_of the subtle aspects of the
machine's design. While this complicat es all aspects
bf microcode generation, it can make hand optimizing
particularly difficﬁlt, especially when there has been
a time lapée between the producéion and optimizing — as
in debugging. This preSents little difficulty to the
automated optimizer, however. | i
Note that we mark some edges on our graph with an
equals si§n; this indiqatés that the following task can be
done no earlier than the preceding one, but they.may be done
simultaneously. In many machines, PUMA included,
master-slave flip-flops permit the valid reading of a
register up to the time that the register writes occur.
Thus a write to a registér following a read of that register
may be aone‘in the same cycle as the read, but no earlier.
Because of "= edges", a task may becomé data-ready in the
course of scheduling a miéroinstructiop if all of its
remaining unschedﬁled predecessors had "= edges" to it

at the start of the formation of the microinstruction
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and all were scheduled in the microinstruction. Figure 5.3
specifies the changes necessary to our list scheduling
algorithm, given at the end of Chapter 4, to allow for

"= edges".

Resource Constraints

We finally need to consider the resource constraints
on MOPs. In the PUMA, and we suspect in most machines,
the full generality of the resource usage function is .
never used. In most cases, each MOP uses a set of resoﬁrces,
usually one or two, and each resource it uses, it uses
completely. Thus we would expect function values of all.
zZeros, exceét for a few ones. A somewhat different form of
‘resource conflict occurs when one considérs hardware which
has mode settings. That is, an arithmetic—légic unit
might be able to operate in any of 2k modes, depending on
the values of some lines. Two MOPs which require the ALU to
"operate in the same mode might not conflict, yet they both
use the ALU, and would conflict with other MOPs using the ALU
ln different modes. A similar situation occurs when a
multiplexer selects data onto a data path; two MOPs might
seléct the same data, and we would say they have compatible
use of the resource. The possibility of compatible usage
makes efficient determinatioﬁ of whether a MOP conflicts

with already placed MOPs more difficult. An interesting and

efficient way of dealing with this is discussed elsewhere.
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Alterations of List Scheduling to Account for "= Edges"

In the algorithm for list scheduling at the end of Chapter 4,
replace step 4 with:

4a. NEXT-READY = @

4b. Find the highest priority task on the READY list,
call it ti.
If READY = @, then do:
READY = NEXT-READY N

GO TO STEP 5
end

4c. 1f for all k U(t.,r,.) + U(t,,r,.) <1
¢ ‘ ‘ 'tgP 3Tk 177k =
then do: J

Place ti in PQ.

c

For each equal successor .tj of ti on the
data precedence graph, :
if: (i) All of tj's strict predecessors
were scheduled in P,_, or
earlier
and (ii)All of t.'s equal predecessors
were scheduled in Pc or
earlier
then do: remove tj from NOT-READY
place Fj on READY
end

- else Place ti on NEXT-READY

4d. rermove t, from READY; go to step 4b.

Y
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In example 5.1d, we see that it is sufficient to
consider only three resources to determine the conflict
relations among the tasks — all other resources have been
left ou£ fof simplicity. If we ignore these resources
in forming our priorities and schedule wusing a highest
level first list, as in example 5.le, we see that five
microinstructions are generated. With a little reflec-
tion, though, we can see that ty té', and ty all form a
resource bottleneck, and tl must be given priority over t5
to get through this bottleneck quickly, even though t5
has a higker level. It isn't just resource'inconsideraéé
strategies which are unable to deal with this, though.
Neither RMAX nor NEIGHBORHOOD would distinguish between tl

and t since they both have precisely the same resource

5 v
usages. Even a strategy like taking the sum of 'a task
resource priority and level priority would fail here, since
t5 would still have priority over tl , and, as example 5.1f
shows, putting tl ahead of t5 would generate only four
microinstructions.

Natufally, one can invent a clever example which will
make any efficient strategy 1look bad and we.were qguite
curious about whether this is a common situation. In

Chapter 7 we report on experiments we have done to test

many strategies for the production of list priorities.
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A Note on Efficiency

List scheduling seems to be an n2 (in the number of tasks)
time complexity algorithm, but when coded efficiently.
appeéred ﬁo run linearly. After examination, a possible
explanation occurred to us; namély, the code seemed linear
in the number bf edges in the data-precedence graph. Wﬁile,
normally, the edges of a dag grow as n2 , the number of edges>
derived according to khe rules in Figure 5.2 is limited iﬁ
one dimension by the number of registérs used, which would
not grow with the number of. tasks (unless, possibly, if the
memory.locations were thbught of as individual registers
and a range analysis were.dohe, which does not seem relevant
to these optimizaﬁions). Thus the number of edges, and
the algorifhms used, grow linearly with the number of tasks.
The argument that the number of edges grows as the product
of the number of tasks and the number of registers_is
presented invFigure 5.4.

In summary, then, we see that the basic block problem is
very little different from the sdheduling probleh presented
in Section 4, but that the methods used on restrictions of
the problem are possibly not effective enough on the full
problem, even when combined.

Before presenting the results of our experiments we,
in the next chapter, concern ourselves with a lower bound
which will help us interpret the results of our experiments

and will provide a basis for some of the strategies tested.
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E is o(|T|) in Data Precedence Graph:

We. show here that the number of edges in the data dependency
graph of a set of MOPs grows linearly in the number of MOPs, despite
the fact that the in-degree and out-degree of any single MOP may
itself grow linearly with the number of MOPs.

We are given a set of MOPs of size s, and a set of v registers,
as in Figure 5.2. i :

According to Figure 5.2, there are three sources for edges (t.,t.)
defined on the MOPs: 1]

1. where ti reads a register which is next written by tj

2. where ti writes a register which is read by tj ’
before any other writes to the register

3. where ti writes a register which is written by tj ’
before any other reads or writes to the register
(we say that ti is an unreferenced write).

We claim that each of the above contributes at most v » s edges
to the graph. For edges of type 1, we maintain that at most v edges
could leave any task, since for each of the v registers that t, reads,
there will be at most one MOP which next writes that register.” Thus
each of s MOPs could follow t; via a type 1 edge, and only v * s of
them could exist. ' '

Similarly, if t; reads a register, then only one t; could be the
immediately preceding-write of that register, and only v type 2 edges
could -have tj as their target. Thus only v » s edges of type 2
could exist.

Finally, for each of the up to v registers that t. writes, only
one unreferred write could immediately precede it, and again only
v * s edges could exist.

We see, then, that fewer than 3 * v * s edges could be generated,
and the number of edges is o(s). This is somewhat surprising in light
of the fact that one MOP could have in-degree of v * (s~-1)/2 and out-
degree of v % (s-1)/2. This would happen, for example, if all MOPs
read all registers, the middle MOP was the only one to write any
register, and it wrote them all.

For a given machine, v is a small constant, but s, while possessing
a theoresical upper bound, can grow large enough that algorithms requir-

ing o(s“) operations or space can take significantly longer than those
srequiring/o(s).

. . , Figure 5.4
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A More Complex Example

We close this chapter with an actual example from

the PUMA's existing, hand-optimized, microcode; the code

is part of the emulation of the CDC 6600 central exchange

jump. The gxample is 6f interest because, although it is

not a frequently executed portion of code, much attention

was paid to.the hand optimization of the whole emﬁlator.

Most list schedules would produce code whicﬁ requires

| : eight cycles instead of the nine cycles found in the PUMA.
Upon-investigation, it is clear that the hand optimization
was defeated by the intricacies of MOP compatability, rather
than data-dependency. It is also of interest to note théﬁ
this is the only block iﬁ the PUMA code which wasn't done
in obvious minimum time, and it seems that any reasonable.
strategy would .produce minimum length code for every PUMA
block. We'll have more to say about the implications of
this in Chapters 7 and 8.

The exchange jump example is presented briefly and

- without comment as Example 5.2. Note thatit includes
two-cycle MOPs, which we consider in Chapter 9, and a jump
MOP, which we force to tﬁe end, but which we considef at

length in Chapter 8.
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SOURCE CODE (AS PARALLELIZED IN PUMA): TASKS :

CLEAR; AC = MQ; BUF = Y0 1; 2; 3 (i.e. 1 = CLEAR
Y2 = AC; AC = AC & \BUF A 4 ; etc.)
BM = AC; MQ = 0 6 ;

BUF = Y2 8

AC = SHIFT(BUF:MQ, R16) 9 :

AC = SHIFT(AC:MQ, R1) 10

AC = SHIFT(AC:MQ, R1); BUF = YO 11 ; 12

Y2 = AC; AC = AC & NBUF; P = P+1 13 ; 14 ; 15

AM = AC; = 7 + El; IF EALUPOUT. 16 ; 17

THEN XJEXTP !

DATA-PRECEDENCE GRAPH

PRIORITY LIST:

(::) 2 3 4 5 7 8 6

9 10 11 12 13 14

115 16 17

{(using PRIORITY (t) = HEIGHT (t))
SCHEDULE :

1; ;7 3 7 ; 15

4 ;

8

6 ; 9

10 ; 12

11

13 ; 14

16 ; 17

EXAMPLE 5.2
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6. A Lower Bound and its Uses

The Fernandez—Bussgl Lower Bound and How It Works

| Fernandez‘andABussel [FERN73] havé produced a lower
bound on the humber of cyclesdneeded to schedule a set of
tasks, given data—precedence, but no resource constraints.
This bound was ﬁsed ih [ADAM74] to bound the distance of
various list schedules from the optimal; the fact that
any schedule is aﬁ upper bound on the length of én optimal
schedule, and that the derived schedules were vefy near
the bound, show that the bound was very tight in that en-
Qironment. We have exténded their bound, greatly reduced
the computation neceésary’to calculate it, and have some
suggested uses for it, beyond the obvious‘usé as ‘an experi-
.mentél measure of the optimality of derived schedules. |

Before explaining how the lower bound is found, we

note that in [FERN?S] the bound is given for systems that
include tasks with.arbitrar& task times. Everything we do
'could,be_similarly presentéd, but we are primarily interested
in unit execution time systems, and will, for clarity,

restrict our presentation to such systems.

Finding the Bound
Given m processors, we look at'all‘intervals‘(i,j),
1 <i<j<C, where i and j are integers, and C is the

length of a critical path in the data-precedence graph.
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For any such interval, say (io,jo), we consider the set
of tasks t with the property that DEPTH(t) is io or later,
and LATEST(t) is j0 Or sooner. (For definitions, see
Figure 4-2). Those tasks could not, by the definitions
of DEPTH and LATEST, be scheduled any earlier than time

io in a schedule of length C, nor any later than time jo.
Thus if an optimal schedule were to be only C units long,

all‘of these tasks would have to be gcheduled in 1i +1

0"Jo
time units. But if there are T such tasks, then it will
take at least T/m timé units, and (T/m) - (io—jo+l) extra
units above C will be required. We look at all intervals
to find the one that contributes thevgreatest number of
.extra cycles, E. The shortest possible schedule will thén
be > (C+E) units long. We thus have the formula presented

in Figure 6-1 for our bound, which has been extended to

include resources, as explained in l, below.

How the Bound Loses Accuracy

The Fernandez-Bussel bound is excellent at finding
local bottlenecks. Unfortunately, we can only be sure
that the number of extra cycles is the largesf number found
for any one interval. That is, if intervals (i,j) and
(i',j;), with i < j < i' < j' each contributed three extra
cycles, one cannot, in general, be sure whether three,

six, or some intermediate number of extra cycles would

43 : - : \




The Fernandez-Bussel Lower Bound:

Given: R the sét of resources, C the length of a critical
path
EARLY, LATEST: T integers [1,C)
USAGE: T x R + [0,}}

all as defined previously.

/

then if
( 3. 3
USAGE (t,r)| - (j+1-i)
E = MAX 1
1<j<C t such that ' [
1<i<j || i<DEPTH(t) -
r € R LLATEST(t):j )
\ J

Then % the length of an optimal schedule LOPT is

Lopr 2 ¢+ E -

Figure 6z1 .
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suffice to relieve both bottlenecks. We searched rather
hard for a set of criterié to help measure that number,
but were unsuccessful. It is our belief that the number
is generally the sum of the two disjoint bottlenecks,
especially when the graph has many edges. As a result,
the greater the length of thé critical path, the less
accurate the bound is likely to be. In Chapter 7 our

experimental results will speak to that point.

Our Work On and Suggested Uses of the Bound

We have done the following in relation to this bound:
1. Extension to proceséor scheduling with resource con-
straints. It is possible, in the obvious way, to consider
each resource separately and to calculate the usage of
each resource in each interval. (Ip fact, the processors
themselves can be considered a resource of which each task
uses l/m.) The fesource-interval which contributes the
most extra cycles will determine the lower bound. Un-
- fortunately, the interaction of a se£ of tasks festricted
to a certain inﬁerval will generally involve seve;al
resources and, in bractice, the bound seems to miss the
heavy resource bottlenecks. If, however,_the.tasks tend
to use only one resource apiece; that is, if the fasks
form equivalence classes with respect to which resources

they'use, then we are much more likely to find the worst
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bottleneck. Microopérations seem to have approximately
this propefty; the relation of clashing is generally

transitive and is certainly reflexive. Some insight into

the utility of this extension may be gained from the re-

sults of the experiments reported on in Section 7.

2, Efficient computationvof the bound; The computa-
tional methods suggested ih fFERNi3] require looking at
all o(|T| ) 1ntervals and doing a set formation of com-
plexity at least o(|T|) for each 1nterval. Thus their
methods require o |T|3) operations, at least. Our methbds,
presented at the end of'this chapter, do a constant amount

of work for each of the o(|T|2) intervals, thus requiring

o(lT]z)_operations.

We report on the actual computation time used by an

implementation of our algorithm in Chapter 7.

3. Use of the bound as a guide to places to invest more

time. Although it is true that when a derived schedule is

"significantly longer than the bound -the fault may lie with

either, such cases give some\indicapion that an investment
of more time may be Qorthwhile. In particular, finding
spots in the list schedule where a»data—ready task was-
delayed‘due oniy to resource constraints and trying again
with a different task délayed may pay off. It may be

worthwhile, in view of the reason for the loss of accuracy
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of the bound, to sum up the extra cycles yielded by .some set
of disjoint intervals. If that sum were significahtly less
than the derived schedule length, further search would be

indicated.

!

4. Resource considerate heuristics. Were itvnot for the data-
precedence graph, scheduling with resources would be a genera-
lization of bin-packing to weight-vectors, rather than simple
weights. Various heuristics have been suggested for the
generalized bin-packing problém,[ECKE?S], but it is not clear
how to apply these heuristics to tasks on a data-precedence
graph. We have attempted to use the bottlenecks found by the
bound as an aid in the préduction bf resource considerate
schedules. Our method was successful, in that it consistgntly
ﬁroduced the shortest schedules of any method we tested, and
could probablyvbe "fine tuned" to do even better. Whether it
offers enough improvement over simpler strategies is environ-
ment dependent; Chapter 7 contains an experimental measure-
ment of that improvement.

Our method involves altering highest level priorities to
compensate for resource bottlenecks. Rather than use the
lower bohnd_to spot only the worst bottleneck,_we cohsider
all gesource—interval.pairs which need extra cycles. For
each such interval, we note which tasks contributed to the
resource bottleneck, and we boosf their priorities (and those

of their
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predecessors) beyond what is obtained from striptly data-
N precedence considerations. This would seem intuitively,

to zero in more firmly on thevresource constraints than

' strategies which permit the measurement, for example;.of

the resource contentions of tasks which would be unlikely

to compete for scheduled places. Again, Section 7 contains

a precise statement of the heuristics used, as well as a

| ’ summary of experiments done.

Efficient Calculation of the Bound
Algorithm: Efficient calcﬁlation of Fernandez—Bussel
Lower Bound, exfended to resources.
Input: T, set of tasks
LATEST,.DEPTH functions: T -+ integers [0.,C]
U function:T x R - [0,1] |
C length of critical path of dag defined on T
all as previously defined |
Output: 'E where C + E is a lowef bound on the length
of a schedule fér T
Uses: LPTR function: inteéers [1,Cc1 ~» subsé£s of T
where LPTR(i) is {tj e T such that LATEST(tj)=i}
SUME, SUML functions: integers [0,1] X R ~»> real numbers

where, initially,

SUME(l,rk) tjs.t. U (tj’rk)~ .

DEPTH(tj)=i
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That is, SUME(i,rk) is the amount of r, used by
all tasks whose "earliest issue time" (DEPTH) is 1i.

SUML is the same, with LATEST replacing DEPTH

TOTAL USAGE function: R -+ real numbers where

TOTALUSAGE(rk)’= E U(t,rk)
teT

B fixed right endpoint of the major and mlnor intervals
A varying left endpoint of the minor intervals
MAJOREXCESS the amount of the resource currently under
| consideration which is used by tasks constrained
to the major interval under consideration,
in excess of the amount that interval could
proéess.
MINOREXCESS Same as MAJOREXCESS, for minor intervals

MAXEXCESS the maximum of the MINOREXCESSes.

METHOD: For eaqh resourcé; we consider all of the o(C2)
intervals [i,j], with 1 <1<3j <, called the minor in-
tervals. For each minor interval we determine what the
excess resource requlrement is, that is, how much of a
resource, Tyr is used by tasks "critically constralned"
(see below) to [i,j], above the j+1-i units of Ty which

could be processed in [i,j] with no additional cycles., A

task t is critically constrained to [i,3]1 if i < DEPTH(t) <

LATEST(t) < j. We call those excesses the MINOREXCESSes,

and, from Figure 6-1, we are looking for the largest such
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excess. We will gather the minor intervals into C chains

in such a way that the excess for any interval is the ex-
cess of its predecessor minus some already known value.
The first interval on each chain is referfed to as the

major interval, and the chains are arranged as follows:

Major Intervals ' Minor Intervals
(1,Cl] > [2,c]1 > [3,C] > ... > [c—i,C} - [c,c]'
[1,C~1] C> [2,C-1) » ... - + [C-1,C-17
. '
(1,21 -~ [2,2]
[1‘,1] \

To process the minor intervals, we set ﬁp'a nested
loop. The ou£er'loop iterates through the majbr intervals
from {1,C] to [1,1]. The inner loop procesées the chain
headed by the majqr interval.

Consider the first chain. The MINOREXCESS of [1,C]
is TOTALUSAGE - C. For [2,C]:We need to eliminate the tasks
which are critically constrained to [1,C] (which all tasks
are) but whose DEPTH is 1. These tasks, however, have a
total resource usage of SUME(l r ), and so we need only
subtract SUME(1, rk) from MINOREXCESS, and then add 1l be-

cause we are losing one cycle and can process one unit

less of ry- We continue this way, subtracting SUME and
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‘adding 1 until we do [C,C].

We‘now consider the second chain. [1,C-1] has the same
excess as [1,C] had, minus SUML(C,rk), plus 1, by the same
reasoning as above. A problem arisgs, however, on the
transition from {1,C-1] to [2,C-1]. This transition cannot
be done by subtracting SUME(l,rk) because some of the tasks
which contributed to SUME(l,rk) had LATEST of C, and thus
were not critically constrained to [1,C-1] and were not
included in the excess. Thus, after we chob off an end
point to go from one major interval to the next, we must
update all of the SUME function values affected. This is
straightforward enough; when we go from [l,é] to [1,C-1],
we take all tasks t in LPTR(C) and, for each, subtract

its usage from SUME(DEPTH(t),rk).

The formal algorithm:
1. In one pass through T, Form LPTR, SUME, SUML, TOTALUSAGE
2. MAXEXCESS=0

3. Do for each r, € R

k

4. MAJOREXCESS = TOTALUSAGE (r - C

K
/*.MAJOREXCESS is likely to start negative */
5. Do B=C to 1 BY -1 |
6. MINOREXCESS = MAJOREXCESS
7. DO A=l TO B
8. MAXEXCESS = MAX(MAXEXCEss; MINOREXCESS)
9. MINOREXCESS=MINOREXCESS + 1 - SUME(A,r,)
10. END 7 |
11. MAJOREXCESS=MAJOREXCESS + 1 -~ SUML(B,ry)
) - 51 ‘



12. /* Update the SUME's to reflect new E */
FOR EACH‘ti e LPTR(B),

SUME(DEPTH(ti),rk)=SUME(DEPTH(ti),rk)fU(ti,rk)

13. END 5
14, END 3
15. E = MAXEXCESS

16. END

1 ' Notes on the Efficiency of the Above

{ : The loop at 3 is done a constant number of times, once
for each resource in the machine. Stép 5 defines a loop
which is iterated C (which is b(T)) times. Within the
loop, steps’7¥lO are done o(C) times. In step 12, each t
belongs to only one LPTR, so step 12 is itérated only

once per t no matter what. Thus the worst steps, 7—10,
are o(Cz); in fact, they are done C(C+1l)/2 times.

In any system in which many resources are sparsely
used, which is probably true of most systems, it would .
make sense to keep a running count of the SUM value at
the fixed endpoint, stbpping consideration of that endpoint
whenever the SUM vélue went.below 1. If the endpoint
does not contribute to the constraining of tasks enough
to overcome the additional unit of resoufce it makes

available, then one of its sub—intérvals is a worse bottle-
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neck than the interval with that endpoint.
Finally we note that if C2 units of storage were used,
we could just list all of the MINOREXCESSes, eliminating

step 8, and use a faster routine to find the max.
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Experimentally Obtained Measures of the
Effectiveness of Several Basic Block Optimizing

Strategies

Introduction and General Conclusions

In this chapter we describe experiments done to
measure the effectiveness of several évaluation functions
used to produce scheduling lists. The functions were
tested on random task sets chosen to have characteristics
similar to those we would expect to cull‘from a wide range
of basic blocks of microcode. The schedule lengths obtained
are compared to, the theoretical lower bound and.to schedules
produced using some previously suggestéd methods of op-
timizing microcode. |

We believe that our, results support the contention

that: Microcode optimization within basic blocks is not a

critical issue. Specifically, we maintain that:

1. The differences among_the'bcst strategies we
could find are-very small. One of those strategies
is the simple "highest levels first" mentioned
earlier which producesilists in O0(E) time. (Though'
any list method will be O(JTIZ), worst case, to
produce the schedule given the priority list.)

2. The best strategies were very close to optimal.
'In an environment meant to resemble the PUMA,
the four best strategies were within 8% of the

theoretical bound for task sets as large as 60
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tasks, "and within 4% for sets of size 20.

Indeed, it is our strong belief that the actual
difference between the strategies and the optimal
is much closer to zero. (Further experiments are
underway to test this hypothesis.)

3. The PUMA microcode emulating the CDC 6600 contains
about 360 basic blocks, and evidently any of the
four best strategies would produce;optimal code
for every one; Indeed, almost all of the blocks
are one microinstruction long, and so even a very
poor scheduler would do very well. By hand, |
two of the blocks were larger than dptimal by

one cycle apiece.

We do'not suggest that optimizing basic blocks is
unimportant. To the contrary, our beyond block methods,
presented in the next chapter, and whieh we believe to be
of critisal importance, produce task systems which are
formaily the same as basic blocks of code containing many
tasks (perhaps hundreds in some environments.) Thus
methods of solving the basic block problem do take on an
importance in that environment. Highest level lists,
however, would seem to do well enough.to make the effort
of more elaborate strategies not worthwhile. In particular,
we would suggest that research in micrecode optimization

be directed to issues beyond blocks, given these measure-

ments.
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We are not alone in having these opinions, despite :
the direction of the research to date. A‘short, refreshing
paper by Graham Wood [WOOD78] appeared in the Proceedings
of the 11th Annual Microprogramming Workshop in December,
1978. Wood does not report on the measurement of any

strategies, but did code an optimizer, and concludes:

On reading the referenced papers,
one unavoidably gains the impression
that the automatic packing of micro-
operations into micro-instruction words
is a critical area of research into
which a great deal of effort must be
invested before user- mlcroprogrammable
systems become feasible.

Experlence with the above program,
however, has led the author to conclude
that, in practical situations, very
little scope exists in which to prac-
tise the art of optimal packing.
Straight line segments of vertical
micro~operations typically are not
very long - sequences of more than
about ten statements without a jump
or a label are uncommon, and the data
inter-dependency in such cases is.
liable to be great. Scope for optimi-
sation increases with the degree of

- parallelism within the micro-instruction
word, but, in that case, resource con-
tention is reduced and packing them
becomes easy anyway.

In most practical situations, each
of the four algorithms compared above
would probably produce the same size of
output. Where one does produce a
smaller output than another, the
difference is quite likely not to be
significant compared to the possible
speed-ups which could be generated by
careful optimisation of the micro-
program itself.
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We maintain that, given efficient sequential code, it is

the beyond block optimization which is difficult and long.

The Model

In order to simulate the task sets which would be
produced by microcode, we produced randomly generated
simplified MOPs and then formed the task set'from them.

The parameters we used for a given run were:

#TASKS: the number of tasks per task set )

#RES: the number of resources available

#RESU: the number of resources used'by each task

#REGS: the number of registers available

#REGSR: the number of registers read per task

#REGSW: the number of registers written per task

#JOBS: the number of task sets generated
Thus we would, for each of the #TASKS MOPs, pick #RESU
integers uniformly from the set [l;#RES] and we would say
that the MOP used the one available unit of each picked
resource. Note that we allow repetition, so the MOPs
would use somewhat fewer than #RESU resources on average.
Similarly, we pick #REGSR registers from the set [1,#REG]
and we call that the set READ for that MOP; the same is
done for the write registers, using #REGSW. We then used
the algorithms from Chapter 5 to produce the data-precedence

graph.

A setting of the parameters which figured prominently
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in our experiments was:

#TASKS=40 #REGS=6 .

$#RES=4 $#REGSR=2
$#RESU=1 ) #REGSW=1
which was felt to resemble the PUMA. (40 tasks was con-

sidered a realistic large set producable using the beyond

basic block methods - see Chapter 8.)

Limitations of the Model

We intentionally kept our model simple; it seemed to
us that more information about the practicalities of the
situation could be gleaned from statistically sound funs
with many parameter settings'than‘fewer runs (due to the
time usage of a more complex model) on a moael which more
closely resembled an actual machine.

In particular, we did not allow arbitrary amounts
of each reéource to be used, feeling instead that in most
systems almost every resource is used entirely or not at
all by any task. Thus, while the model might not be able
to serve as part of an implementation of. a system, the
measures obtained from it would be likély to accurately
reflect the characteristics of the system. We similarly
did not allow general distributions of numbefs of regis-
ters read or written, nor any correlation between the
register and resource usages of neighboring MOPs, etc.,

again feeling that the simpler case accurately enough
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resembles the ectual-situation. 6ﬁr feelings along this
line are somewhat borne out by the fact, as we shall
discuss shortly, that the order among the strategies
tested remained.stable under rather dramatic shifts in
the values of the parameters, and even the percentage
differences from the theoretical thimal varied in an

unsurprising fashion with the changes in the parameters.

The Strategies Tested

We tested twelve strategies for producing list
schedules, and then considered the various methods of

optimizing microcode suggested in the literature.

The twelve list scheduling strategies: (The numbers
to the left are the keys for the strategy numbers in

Figures 7.1 and 7.2.)

1. & 2. Random. Each task is assigned a random integer

between 1 and 999.

4(t) = HEIGHT (t).

4. Highest levels. PRIORITY
|

5. . Criticality. PRIORITYS(t) = (1/(LATEST (t)-DEPTH(t)+1)) "

6. Dense neighborhoods. As defined in Chapter 4,

PRIORITY(t) is the number of

56 tasks which do not resource



11.

12.

13.

conflict with t.

Smallest co-levels. PRIORITYe(t) = -DEPTH(t).

Reverse source order. PRIORITY (t) = -t. Thus the

earlier a task, the higher

its priority.

Dense neighborhood plué highest levels. PRIORITle(t) =

PRIORITYG(t) + PRIORITY4(t)r

Dense neighborhood plus criticaiity. #9 with criticality

replacing highest

levels.

Dense neighborhood times highest levels. #9 with *

replacing 4.

Number of successors. The priority is the number of

(not necessarily direct)

successors of a task.

: i
Coffman-Graham. Given tasks t and t' - if one

.

precedes the other, it has higher
priority. Otherwise, suppose that
all of the successors of t and t'

have been assigned priorities.
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Then the higher priority is assigned
to the one whosé set of successors'
priorities has higher dictionary
ordering when sorted. If k tasks
have no successors, they are randomly
assigned priorities 1-k (we used
reverse source order). If one removes
transitiﬁe edges, this is optimal for
UET Scheduling with 2 processors and
no resources. We did not remove
transitive edges. See [COFF72] for

proof of optimality.

10. Resource bottleneck compensation. The tasks are first

assigned priority according to
method 4, highest levels. Each task
is checked, in reverse source order,
to see if it contributed to a
Fernandez-Busell bottleneck. If so,
then its priority is boosted by the
number of extra cycles implied by
the worst such bottleneck. Its
predecessorsllevels are then boosted,
if necessary, to keep them at a

higher level than the boosted task.
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More formally:  PRIORITY = HEIGHT:
DO T=NUMBTASKS TO 1 BY -1;
PRIORITY (T) =F IND-WORST-BOTTLENECK (T) +
PRIORITY (T) ;
CALL BOOST-PREDS-PRIORITIES (T) ;

END;

where: FIND-WORST-BOTTLENECK (T) considers all intervals
(i,j) and resources r
.such that: U(T,r)=1 (assuming all values of U are
| 0 or 1.)
T is critically restrained to (i,])
E (the extracycles for (i,Jj) and r)
is > 0

FIND-WORST-BOTTLENECK (T) returns the largest E so found.

and: BOOST-PREDS-PRIORITIES(T) looks at all predecessors,
T', of T.
if T' <=T then PRIORITY(T')=MAX(PRIORITY(T'),PRIORITY(T))'

if T'< T then PRIORITY(T')=MAX(PRIORITY(T'),PRIORITY(T)+1).

Other Suggested Basic Block Methods
The following are sources containing suggested methods
of basic block optimization, as obtained in Chapter 3. For

each we explain what action, if any, was taken to test the

method. : , ’
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[DASG76] Appears to be strategy 11, above, once the
| complications of "sub-micro cycles" are removed.
See also comments in [WOOD78] and [DASG78].
Strategy 11, as we shall see, does relatively

poorly.

[RAMA74] Generally recognized in literature as very likely
to produce non-optimal code even for simple

examples; we did not test it.

[YAU74] v When‘MOPs fall into equivalence classes of
resource usage, it can be shpwn that this
corresponds to strategy 7 above. We believe that,
even though an occasional MOP may break.the-pattern
on many machines, most basic block sets of MOPs
will have that property, and thus the YAy
. strategy is essentially equivalent to strategy

7. Nonetheless, we did code the YAU method and
tested it not only with the suggested weight (our
PRIORITY7), but with weights from 3, 4, and lO_
above. The surprising results of those tests

are reported later in this chapter.

fTOKO77] This method, once the concept of "micro-templetes"
is removed, roughly corresponds to the YAU
method,-wifh PRIORITY4 used to provide thevweights,
| and which we have tésted; We say roughly because

tasks below the highest level are not considered
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unless a tie exists among highesf level tasks.

Nonetheless, we feel that YAU with PRIORITY4

is a good measure of the [TOKO77] method; when

MOPs form resource equivalent classes, strategy

4 above represents it extremely well.

[TSUCT74] We were unable to get a clear enough picture of
the parallelization portion of this algorithm to

code and test it.

The Experiments

We now report on the various experiments done to test
the effectiveness of the above strategies. For each
experiment, we first explain what was done in terms of the
parameter settings and the strategies tested. We then
draw conclusions, with.references to thé accompanyiﬁg tables

and figures.
Experiment 1. Change in number of tasks.

MODEL: (a) The PUMA-like model: #RES=4 #REGS=6 #REGSW=1

/

4RESU=1 #REGSR=2 #JOBS=200

(b) We varied #TASKS from 5 to 200, using the

~values 5, 10, 15, ..., 75, 80, 85; also

140 and 200.
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STRATEGIES:

CONCLUSIONS:

For each task set size, and for each of the

200 task sets, we formed a list schedule

for each of the 13 priority list methods.

Thus 49,400 schedules were formed for this

experiment.

(a)

(b)

If we divide the strategies into groups

as follows: GROUP 1 34,9, 0013}

GROUP 2 1557 5% 12

GROUP 3 11,2,6,8)

then it is evident from Figure 7.1 and
Table 7.1 that for any size task set,

any strategy im group L is better than
any strategy in group 2 which 18 in

turn better than any strategy in group 3.
Notice that group 1 is those strategies
which are close to being highest level
lists, group 3 is those which have no
correlation to highest levels, whereas
group 2 has some, but not a strong,
correlation. |
The group 1l strategies are closely
bunched, and are all within 4% of optimal

for #TASKS < 20, within 8% of optimal

for #TASKS

| A

60, and within 12% of
optimal for #TASKS < 200. We remark
that due to the nature of the lower

bound, it is realistic to expect that
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L9

METHOD

0 & ~N N s W e

- e
N O~ O

13
CRIT PATH
LOWER BND

NUMBER OF TASKS:

5 10
3.470 6.550
3.490 6.530
3.395 . 6.385
3.400 6.390
3.410 6.420
3.510 6.555
3.420 6.405
3.495 - 6.550
3.400 6.390
3.395 6.385
3.445 6,490
3.410 6.410
.3-400 6.-390
3.060 5.750
3.385 6.270

Table 7.1la

9.670
9.660
9.380
9.395
9,430
9.660
9.430
9.680
9.390
9.390
9.560
9.425
9.395
8.370
9.135

12.810
12.800
12.375
12.395
12.480
12.750

'12.475

12.770
12,390
12.390
12.620
12.430
12.395
11.070

. 11.935

15,895 -

15.870
15.400
15.400
15.475
15.900
15.490
15.855
15.395

15.400

15.720

15.455
15.405
13.725
14.720

19.075
19.140
18.500
18.495
18.630
19.050
18.580
19.015
18.510
18.475
18.835

18.595
18.515

16.410

17.570

Lengths of list schedules for the PUMA-like model
and varying size task sets. .

21.450
21.605
22.070
21.535
22.015
21.465
21.435

21.830

21.555
21.ﬁ75
18.920
20.115

25.125

..25.210

24.390
24.365
24.615

$25.165

24.455
25.100
24.370
24.360
24.755
24.535
24.380
21.290
22.615
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METHOD

Y- I N

10:

11

13
CRfT PATH

LOWER BND

NUMBER OF TASn

28.185
28.190
27.310
27.285
27.475
28.180
27.405
28.140
27{250

27.285

27.805
27.435
27.310
24.010
25.340

31.235
31.320
30.365
30.350
30.555
31.330
30.555
31.280.
30.365
30.345
31.005
30.510
30.380
26.895
28.275

TABLE 7.1b

34.300

34.295
33.305
33.250
33.415
34.300
33.455

© 34.240

33.270
33.225
33.970
33.390
33.320
29.400
30.865

37.680 .

37.665
36.480
36.450
36.790
37.625

36.655

37.665

36.450
36.470
37.180
36.705
36.480
32,510
33.910

40.590
40.525
39.290
39.270
39.600
40.455

40.405
39.275
39.270
40.105
39.505
39.305
34.625

36.175

- — -

44,040
43.980
42.730
42.695
43.000

43.880

43.765
42.710
42.635
43,395
42,915
42.755
37.495
39.065
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METHOD

. w @© -~ -] (%]

10
11
12
13

CRIT PATH
LOWER BND

NUMBER OF TASKS:

44.990
45.370
46.390

46.32¢0
45.000

- 45,005

45.930
45.315
45.025
39.675
41.235

49.940

49.875

48.305
48.270
48.655
49.970

49.940
‘48.325
48.240
49,295
48.575
48,375
42.605
44.170

TABLE 7.1lc

53.090
53.035
51.51¢
51.425
51.800
53.000

52.945
51.465
51.400
52.275
51.710
51.485

' 45.250

47.005
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87.27
84.75

84.58

86.31

85.08
84.83
74.21
76.22

124.66
124.77
120.79
120.66
121.60
124,42

124.37
120.79
120.60
122.96
121.32
120.84
106.19
108.38



the actual percentages are much closer

to zero.

(c¢) As shown on Table 7.2, the times to form
the graph, calculate the priority and
‘- . schedule are very short. In particular,
all priorities which do not involve the
(obviously 0(|T|2))vdense heighborhoddsl
' are 0(|T|).. The number of successors
is only apparently 0(|T|), however, due
to the use of the CDC bit count instruc-
tion; The lower bound calculation, which
is O(ITL2), deserveslto be counted in as
part of strategy 10. Using highest levels,
(strategy 4,) a set of 4b MOPs, having
been read in along with the READ and
WRITE sets, and USAGE funetions, would
seem to be schedulable on the CDC
6600 in about 142 ms. ,(And that

measurement includes 4 system calls to

do the timing!)

Experiment 2. Changing'other parameters, keeping #TASKS

fixed at 40.

MODEL: All models have #TASKS=40. We test models 1-9,

with parameters as listed on Table 7.3. “#JOBS

again is set to 200.
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TIME TO

FORM PRIORITY 1
| 2

3

4

[-A TS |

10
11
12
13

SCHEDULE (GIVEN PRI)
FORM PRECEDENCE REL
CALCULATE LOWER BND

NUMBER OF TASKS

20

0.14
0.14
1.51
0.06
0.07
0.67
0.17

0.06

0.71
0.66
0.05
0.73
0.71

1.18
2.21
1.17

40

0.12

0.12

1.65
0.04
0.06
1.26
0.17
0.04
1.30
0.66

0.03

1.31
1.30

1.15
2.35
1.37

60
0.11
0.11
1.70
0.04
0.05
1.86
0.17
0.04
1.89
0.67
0.03
1.90
1.89

1.13

2.40
1.64

80 140 200
0.11  0.11  0.11
0.11 - 0.11  0.11
1.71  1.73  1.75
0.04 0.03 0.03
0.05 0.04 0.04
2.46  4.11 5.87
0.03  0.03 0.03
2.49 4.13  5.90
0.70  0.78  0.89
0.03  0.02 0.02
2.50 - 4.15 5.92
2.49 4.13 5.90
1.14 1.15 1.14
2.42 2.46 2.48
1.87 2.56 3.35

ALL TIMES ARE MILLISECONDS PER TASK

TABLE 7.2 TIMES TO FORM DATA-PRECEDENCE GRAPH, PRIORITY
LISTS, LOWER BOUNDS AND SCHEDULES FOR VARIOUS

TASK SET SIZES,.
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STRATEGIES: For each parameter setting and for each
.of the 200 jobs, we again fested ali 13
" list scheduling strategies. Thus 23,400

schedules were formed for this experiment.

CONCLUSIONS: (a) Except as noted below, the order of‘the

sirategies was essentially what it had
been for the full range of taék sizes.
(See Tables 7.3, 7.4, and 7.5). The
averages of the rankingswereremafkably
similar to that in Experiment 1.

{b) For most of the models, the best

strategies were again close to the bound.

|

\

| . S : '

‘ ‘ , : : Exceptions occurred, again, in places

| where we would predict the failure of

i the bound rather than the scheduling.

‘ (c) For models with very short critical
paths, that is, for very wide graphs,

" the number of:succeSSQrs was a strikingly

better priority measure than it had

been. See model 7, especially. We have

no explanation for this.

3
[

(d) Other strategies, notably 5 and 12,
seemed to do better for some settings
of the parameters than they had previously,

again for reasons unknown to us.

.
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Model 1 2 3 4 5 6 71 8
Paremeter
# RES : 4 3 2 11 3 11 4 4
# RESU a 1 1 1 2 1 2 1 1
# REGS ' 3 3 3 3 6 6 12 12
# REGSR 2 2 2 2 2 2 1 1
# REGSW 1 1 1 1 1 1 9

.
With equal probability.

TABLE 7.3. THE VARYING PARAMETERS FOR EXPERIMENT 2,

WITH NUMBER OF TASKS FIXED AT 40.
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METHOD MODEL NUMBER: (FROM TABLE 7.3)

1 2 3 4 5 I R
1 32.300 32.840 34.305 32.905 - 26.615 26.455 14.890  17.650  19.940

2 32.295  32.805 34.345 32;930 26.665 26.280 14.810 17.700 19.960

3 32.155 32.605 34.085 32.680 25.760 25.550 13.270  15.705  18.220

4 32.145 32-600 ©34.060 32.690 25.720 25.485 13.250 15.585 18.145

5 32.150 32.625 34.105 32.715  25.945 25.695 ~ 13.580  16.135 18.605

N 6 32.255 32.845 34.250 32.890 26.655 26.460 13.700 16.345 18.995
’ 7 32.180 32.640 34.075 32.740 25.760 25.570 13.225 15.660 18.315
8 32.250 32.815 34.290 32.880 26.525 26.310 14.360 " 16.875 19.390

9 32.145 32.615 34.055 32.760 25.745 25.780 13:250  15.595 18.150

10 32.145 32.590 . 34.055 32.690 25.645 25.420 13.260 15.660 18.145

11 32.245 32.720 34.210 32.835  26.175 26.025 13.700  16.290 18.965

12 32.155 32.640 34.095 32.740 25.880 25.685 13.370  16.350  18.565

13 o 32.145  32.615 34.055 32.840 25.760 26.090 13.265 15.635 18.200

CRIT PATH 30.425  30.365 30.435 30.610 21.690 21.720 6.085  10.680 14.140

LOWER BND : 31.345 31.425 32.080 31.555 23.480 22.930 13.185 14.160 16.355

Ay

TABLE 7.4 LENGTHS OF LIST SCHEDULES FOR THE MODELS
' OF TABLE 7.3




List Model .Number R Avg Rank Avg’ Rank |
Method (from Table 7.3) These Models Exp. 1 |
1 2 3 4 5 6 7 8 9
1 13 12 12 12 11 13 13 12 12 12,22 11.75
2 12 10 13 13 13 10 12 13 13 12.11 11.50
3 6.3 6 1 4 3 6 6 5 4.44 . 2.83
4 1 2 4 2 2 2 2 11 1.89 - 2.50
5 .5 6 8 4 8 6 8 7 8 6.67 7.50
6 11 13 10 11 1212 9 9 10 10.78 11.67
7 8 7 5 5 4 4 1 4 6 4.89 6.75
8 10 11 11 10 10 11 11 11 11 10.67 10.75
. 9 1 4 1 7 3 7 2 2 3 3.33 2.33
10 111 2 1 1 4 41 1.78 . 1.50
11 9 9 9 8 9 8 9 8 9 8.67 . 9.00
12 6 7 7.5 7 5 710 7 6.78 6.50
13 1 419 439 5 3 4 4.44 4,25
TABLE 7.5 RANKINGS OF PERFORMANCES OF LIST SCHEDULES
. FOR THE MODELS OF TABLE 7.3.
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(e), We would guess that the relatively
poor pefformance of the Coffman-
Graham Algorithm (strategy 3) for some
of the models is caused by transifive
edges, which ﬁheir algorithm mandates

the removal of. .

Experiment 3. Already suggested optimization methods.

MODEL :

We only tested YAU'sstrategy on graphs in which
the equal edges were considered to be strict

edges; this was the model for which it was suggested,

and the coding was considerably less difficult.

The #TASKS setting was kept at 40, and 7 sets of
200 jobs were run. Since models with equivalence
classes of resource usages (i.e. with #RESU=1)
will céuse the YAU methods to produce list
schedules, only one model with that property was

run. The models were:

Model Y1: #RES=3 #REGS=6 #REGSW=1

#RESU=1 #REGSR=2 #JOBS=200

Model Y2: #RES:11, #RESU=2, otherwise like 1.

(Run twice)

Model Y3: #RES=24, #RESU=3, otherwise like 1.
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Model Y4:

Model Y5:

Model Y6:

#RES=24 #REGS=6 #REGSW=0 or 1

#RESU=3 #REGSR=1 (with 0 or 1 equally likely)
#RES=24, #RESU=6, otherwise like 1.

#RES=24 #REGS=6 #REGSW=0 or 1

#RESU=6 #REGSR=1 (each equally likely)

Model 1 was used to verify that YAU schedules were indeed

list schedules with PRIORITY=WEIGHT when #RESU=1. Models

4 and 6 were chosen to have a short average critical path.

This would give the YAU method more to do, with many more

tasks data ready at each cycle. Thus we guessed its per-

formance would be best in such a situation, at the cost of

much more time used. The resource usages of 2 out of 11

and 3 out of 24 were carefully chosen to have the property

that two MOPs will clash with probability about .33, just

as was the case with 1 out of 3. We would expect the list

schedules to be about the same in all three cases, but we

expected the YAU method to be progressively better as the

number of resources used increased, since the interdepen-

dency among them also increased.

STRATEGIES:

The strategy of [YAU74] was tested on each of
the above models with WEIGHT equal to list
scheduling priority methods 3, 4, 7, and 10.
Thus an indication was also obtained of the

effectiveness of the mefhods of [TOKO77].
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For comparison, list schedules were also
formed for pribrities 3, 4, 7, and 10. This
was our first test of these methods in the
absence of equal edges. 1In tbtal, 11,200'

blocks were optimized.

\)

"CONCLUSIONS: (a) Although it might be reasonable to expect
| the YAU method to almost always be an improvement
over simple list scheduling with the séme weight,
the YAU method was slightly but unifofmZy'wofse
- than simple Zist.scheduling in the most realistié
models (2,3,4). Only.when we used the rather
artificial models (5,6), in which the resource.
interrelationships among MOPs are very complek,
were we able to get improvement from the added
'complekity of this kind of optimization.
Evidently it is generally worse to try to
 schedule more of the less criticél taéks than
fewer more imporﬁant tasks. The results of

Experiment 3 are summarized in Table 7.6.

(b) Evidently due to the removal of the

equal edges, PRIORITY the number of successors,

7’

was as good as the group l methods.

Experiment 4."Breaking priority ties via source order.

I3 . ) 7 8




METHOD B MODEL NUMBER
' Y1 Y2 Y2 Y3 Y4 Y5 Y6
LIST (3) 29.265  29.115 29.250  29.200  15.625 34.955 24405
YAU (3) '~ 29.265 29.130 29,275 29.200 15.930 34.925 24,275
LIST (4) 29.190 29.065 29.185  29.105 15.590 34.850  24.250
YAU (4) 29.190 29.080  29.200  29.120 15.735 34.810  24.145
LIST (7) 29.150 29.075  29.220  29.090 15.540 34.745  24.145
YAU (7) 29,150 29.095  29.250  29.100 15.600 34,710 23.g4s
LIST (10) 29.185 29.075  29.190  29.105 15.575  34.840  24.200
YAU (10) 29.185 29.090  29.205  29.120 15.695 34,790 24.035
CRIT PATH 26.895 27.065 27.100 27.040 12.615 . 27.060 12.190
LOWER BND - 28.050 27.980  27.980 27.860 13.690  28.380 15.690

LIST ‘(N) MEANS A LIST SCHEDULE FORMED USING PRIORITY .
METHOD - N.

YAU (N) MEANS A SCHEDULE FORMED USING YAU'S METHOD
WITH PRIORITY METHOD N AS A WEIGHT.

TABLE 7.6 LENGTHS OF SCHEDULES PRODUCED BY YAU'S ALGORITHM USING VARIOUS
WEIGHTS; LIST SCHEDULES FOR SAME WEIGHTS GIVEN FOR COMPARISON.
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MODEL: the PUMA-like model with #TASKS=4O
#RES=4 $REGS=6 #REGSW=1

#RESU=1 #REGSR=2 #JOBS=200

STRATEGIES: List schedules were formed using the 13

strategies; then, using the same seed, and thus
generating the same set, list schedules were
formed with eleven of the strategies altered
so that priority ties were broken in favor of
the earlier source task. Method 3 does not
produce ties, and we had already coded it in
such a way that if two tasks have identical
sets of successors, higher priority went to
the earlier source task. Method 11 is source
order, so is unaffected. The other methods
had/ties broken in scheduling in rather
arbitrary fashion. The test was done on four
sets of 200 jobs, so 20,800 schedules were

formed.

CONCLUSIONS: Among the strategies that did well, no signifi-

cant difference was noticeable. Many sets of
schedules were longer and many shorter. Some
of the poorer methods (e g. 6) which produces
Verg.many tles ) dld 1mprove a bit, this
‘seemed due to the 1mp051tlon of some good

strategy upon methods that were little better

than random.
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Experiment 5. Test of statistical significance.

MODEL:

As in Experiment 4.

STRATEGIES: Methods 1-13 of list 'scheduling, ties

CONCLUSION

broken arbitrarily. The 200 jobs were

run five times in the previous experiments,
plus once more for this; all runs used a
different seedlfor the random number
generator, thus different task sets were

4

produced.

The small differenées detected among even most

cZoseZy‘ranked strategies were statistically

significant. We used the well known Student's

t test as follows. The total schedule length
of 200 schedules is approximately normal, being

the sum of a large number of samples from a

1

multinomial distribution. Given any two

strategies, then, we have six pairs of totals,
one for each run. The paired elements are

not independent, being schedules for the same

nggﬁphs, SO we cannot test for the difference
:finvthe two means, as is usually done with the

Student t distribution.” However, the difference

between them should still be normal, and we

can use that test to see whether the difference

is zero. 81



The two best'strategies, 4 and 10, yielded
pairs with differences of 10, 3, 2, 1, 5;v
and 6 for a mean of 4.5. The Student t test
rejects the hypothesis that these could have
éome from a normél population with mean zero
at the .01 level. Indeed, not until the
average difference gets down to 1.92 does the
test fail to reject at the .05 level with the
tsample variance. We may thus be confident
that strategy 10 is slightly better than 4
for this m6del, despite the fact that their
difference was about .8% of the total schedule
length. |

Otﬁer pairs of strategies were almost all
farther apart than 10 and 4, and the test
showed significance to an even greater degree
for most pairs.. A few pairs of strategies
from within the same groups did fail to reject
at this leﬁel; however, beyond strategy
groups (that is, groups 1, 2, and 3 from
Ex?eriment 1) the differences were relatively
massive and the mean=0 hypothesis was oVef—.

whelmingly rejected.
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8. A Unified Approach to Interblock Optimization

In this chapter we will present a method of moving
microoperations past jumps into basic blocks other than
the one they started in. A small amount bf experience
hand optimizing convinces one that to optimize well, such
movements are necessary. In particular, blocks tend to be
short in microcode, and a MOP may very well be movéble from
a block in wﬁich it takes up a cycle to a block in which
it can be done for free.

It is not difficult to produce a catalog of the types
of allowable motions, see Figure 8.1. When we hand optimize
microcode, we generally produce horizontal code which we
then ijteratively imprové, using .motions like those
in: Figure 8.1. When wé first considered automatic optimiza-
tion, we imagihed that the same course would be followed.

We were not particularly optimistic about the effecfive¥
ness of this approach and, indeed, initia®’ investigation
bore out our feelings. This seemed a familiar situation;
one is given a étarting position (in this casé, the individual
blocks each separately optimized), and a very large tree of
possible changes. One then wants to travel the tree to
a final position which is more desiréble (in this casé,
with code speed and possibly spacexused somewhat comparable
to hand produced code). When these iterative methods don't

work well, they tend to fail for two strongly related reasons:
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Given blocks B1,B2,B3,B4,B5 with the following flow graph:

Bl B2

B3

B4 : N B5

It may be profitable to move a MOP as follows,
if it can be scheduled "for free" in at léast one
of the target blocks:
(a) From B3 to (B4 and B5) or to (Bl or B2)
(b) From (B4 and B5) or from (Bl or B2) to B3
if an identical MOP appéars in both source blocks
(c) - From B3 to B4 or from B4 to.§3 if all registers

written by the MOP are dead in BS.

FIGURE 8.1. CATALOG OF INTERBLOCK MOP MOTIONS.
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(a) Width of tree. There is a vast number of choices
at each position, and the cost of moving to and
evéluating the next position is large.

(b) Depth of tree. Real improvement can ohly be found
at a great distance from the starting position.
Worse yet, all paths to the improved positions
start by going through several poéitions in which

the situation appears worsened.

-

Working through PUMA code.by hand, it becomes obvious
that both of these problems would defeat an attempt to
produce code nearly as good as that produced by hand.
What was needed, then, was a more global view of all of
the code being optimized. After many false starts, we
- were able to come up with a radically different approach
which provides precisely such a view; when put to the test,
it efficiently (though somewhat complicatedly) generated
code which compares very well with hand optimized versions
of extremely complex code.

Our description of the method will again be done both
formally and informally. We will first present an
uhdetailed and hopefully clear description, starting with
how code with relatively simple flow structures would be
handled and explaininghow the methods geheralize to code‘
with an arbitrary flow of control. We then present the

algorithm in more detail, as follows:
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(a)

| - ! (c)

(ay

The definitions needed are given- formally.

The calling sequence for the algorithm is presented,
uncommented so that the flow of control may be seen.
The celling~sequence is repeated, with comments
designed to give a clear view of what each routiﬁe
accomplishes.

The algorithms are presented earefully, using
Pidgin PL/1 and English description when we wish

to avoid getting too caught up in details.

Finally, examples are presented which follow the algorithms

in some detail. : - L
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Our Method of Interblock Optimization

Our approach to beyénd—basic—block optimizing is
centered about embedding the information necessary to make

a’ large set of these optimizations into one very large
data-precedence graph. The. graph includes jumps and loops

as ordinary tasks, and uses the precedence relétion to
constrain or allow the motion of/MOPs past jumps. This

" permits us to again use the techniques and ideas of
scheduling theory to great advantage, and the above
mentioned problems of tree searches are both dealt with
rather deciéively.

To begin a deécription of our method, we note an
unfortunate, but unavoidable, fact aboﬁt'aus'kind of
optimization; one is often faced with the prospect of
shorteniﬂg one branch from a condition at the potential
- expense of our ability to shorten the other. The hand
optimizer is apt to be keenly aware of this, particularly
since most éonditions seem obviously and heavily weighted
‘-in one direction; and shortening the main branch seems
very_natural.' In any event, we Will assume that at eacﬁ
conditional jump, we have én estimate of the probabilities
- of each branch being‘taken. This may be obtained either
by programmer guess (some people, of course, might dub this-
the "guaranteed incorrect method"), by simulation, by running

the vertical code, modified to count branches (after all,

the vertical code is perfectly valid, if inefficient, hori-
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} zontal code, and can run as is), or by some other heuristic

1 method.

‘ ‘We now outline our method,_which is given more formally
later in the section. For the moment we deal withvsectidns
of code containing jumps forward, but not back — that is,
loop free code. Our‘first step is to follow one path of
the code from the entrance to the exit, choosing a_path

- which seems most likely to be followed in running typical
data. Plaqes where two branches join are, momentarily,.
ignored (that is, the join will be remade later, when possible;
| when not, the code is duplicated. This will be discussed

in more detail shortly.) We now build a data-precedence

graph consisting of all tasks (even the conditional,jumps)

on this path. Except for edges going to and from the jumps,

the graph building precedes as beforé, See Figure 5.2. |

Jumps tend to read the confents of certain régisters, and

so must follow thg tasks which wrote those registers.

Edges from the jumps are a more complicated matter; namely,

those tésks which would destroy registers read in the branch

not under consideration must not be permitted to go. above

| | the jump, and so we drew anbedge from the jump to all such
tasks. |
We havenow encoded our_MOP motion into a data precedence
graph, and the resource conflict rules are what they would
have been had this been one big basic block. Thus all the

pieces are there to allow us to schedule, just as we scheduled

basic blocks, and we do exactly that.
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Having obtained a schedule, certain adjustmenﬁs must
be made to legalize some of the motions'implied by the
schedule. Fof exaﬁ?le, suppose a task moved below a jump
which it was previously above — such a task would generally
have to be duplicated into _the branch that we haven't
considered. We look for all such inverted task-jump pairs,
and duplicate tasks where appropriate. Furtﬁermore, other
paths will need to be rejoined to the newly scheduled path, -
but there may be no point below which are those and only
those tasks which we would like to rejoin to. Thﬁs Qe
rejoin as far up as we possibly can, and all those tasks
which we have not.rejoined to are duplicated into the join-
ing branch before the splice. We mention that some of the
duplicated tasks will be conditional jumps — this presents
nb particular pfoblem, but care needs to be taken that the
right sequence of instructions is followed:

Before actuélly duplicating tasks, we 1ook‘at the
schedule produced and determine whether some tasks can be
moved down into holes in the schedule without lengthening
it. List scheduling puts tasks into early cycles,vand‘dften
space can. be recovered by undoing some arbitrary choices
made by the schéduler. Thus, inverted jump-task pairs may
often be wuninverted, and tasks which are above the legal
rejoin for a path may be placed below it.

In éarrying out . this épace recbvery phase, we suggest
precisely the sort of tree search procedure that we previ-

ously avoided. This is due to the fact that we regard space
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récovery as something of av"luxury‘item“, and we are glad

to grab whichever éavings'are easily done, but are

generally unwilling to_inVest a gréat amount of time.looking
very far or setting up an elaborate structure to éarry
this.out-well. Furthermore,‘in contrast to Speed optimiza-
tion, it seems that most of the space recovery lies rightb

near the surface. We reﬁark, however, that in a space-critical
environment, elabqrate reparallelizations and careful

measurements of the time/space tradeoffs may beﬁmost

worthwhile.
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Scheduling the Remainder of the Path

We are now in a position to schedule the remaining
tasks, i.e. those off the main path. From among the
remaining tésks we again select one well traveled path
to 6ptimize next, again ignoring all joins. Just as before,
we fqrm a data-precedence graph, using the conditionals as
gates to control the code motion, and we form a priority
list. However, instead of directly scheduling, we pull
data-ready tasks off the list, and try to move them up
into holes in the already scheduled path that this path
splits from. When this process is exhausted,‘ we schedule
the remaining tasks as before, complete‘with space recovéry
and task duplication. |

,When:this has finished, we choose another path and
repeat the.process, continuing this way until all tasks
have been optimized. We théﬁ hunt for duplicate lines of

code to eliminate, and we are finished optimizing.
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Code Containing a Single Loop

We.will shortly present a method of optimizing any
microcode, including that éontaining back branches. We
will assume, for this discussion( that we are dealing with
reducible flow graphs, although node-splitting
(@ctually duplicating blocks as suggested in the split node/
flow graph) 1is appropriate.here} since one Would not
expect to run into many irreducible flow graphs, and since
we have already seen that we are Willing to duplicate some
code.

We first deal with the situation of a single loop with
a single back branch contained in code which otherwise has
no back brancheé. We first optimize the loop itself, using
the basic block methods above. (We note that all normal
compiler optimizations are assumed to have been done during
produétion of the vertical code, thus moving tasks 6ut of
the loop is of no concern to us.) Having optimized the loop,
we now schedule the rest of the tasks. We form a data prece-
dence graph as before from the tasks not in the loop, but
our graph now contains a new node.called L, say, which
will represent the eﬁtire loop. Now, some of the other tasks,
due to data constréints, will have to precede I., and some
follow; this information is encoded in the graph in the usual
way,.and we are ready to begin scheduling. Until L is data-
ready, we proceed in the usual fashion, as if this were a

basic block. When L is data-ready and the next task to be
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considered for scheduling, however, special considerations
arise. We assume that some tasks have already been
scheduled in the current cycle. We then place L in £he
current cycle only if all of the tasks already in the cycle
are loop invariant, and only if all of them may be fitted
into.the loop's internal schedule without lengthening it.

If those conditions are not met, we act as though L had a
resource conflict with the tasks already placed. Eventually,
L will be placed, if only because it must get to the top of
the priority liSt'at the start of some cycle. Once L is
placed, we continue to try to schedule tasks in that cycle,
but now the situatioh is reversed. That is, tasks are scheduled
with L only if they are loop invariant and can fit.into
holes remaining in L;s internal schedule; When scheduling

is completed, we stop treating the loop as one task, and
write it out in full, according to. its already produced
schedule, filling in holes with tasks scheduled in the same
cycle, as required. We then duplicate taské and reccver
space as before.

In summary then, the method outlined above permits the
motion of tasks into, ahead of, and beyond loops, with the
motion again controlled by (hopefully) .appropriate scheduling
heuristics. We point out that several details have been left
out of this discussion but are co&ered more carefully in

the accompanying algorithm.
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Code with ‘a General Flow Structure

We now consider code with an arbitrary reducible flow
graph. Our method can generally be described as a recursive
descent; that is, given the flow.graph, we apply the process
we are describing to eachﬁoutermost loop, optimizing each
separately and with no regard for the optimiéation of the
others. Each such loop, naturally,_contains its own
outermost loops (since in reducible flow graphs two loops
are disjoint or else one completely contains the‘bther)y
and we attempt to optimize each of those. .Eventually, an
outermost loop must itselfvcontain no loops, and we optimize
it using the techniques just explored_for loop-free code.

Having optimized all}bf'the innermost loops, we may
work our way‘ouﬁward. At each stage, we have loop-free code
except for some disjoint, already optimized loops. ' This
situation is handled just as the code containing a single
. loop was. Thatlis, each loop is regarded as one task, and
the data-precedence graph is.formed and scheduling done so
as to allow métidn beypnd, above and within loops. The only
special consideration here is that one loop-task is.never
permitted to enter another. Thus we pick a path, schedule,
dﬁplicate tasks where necessary, pick another path, and sb
on, until all tasks are scheduled. Eventually, we will have
worked our way outward to the outermost code — when that is

N

scheduled, we are done.
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Definitions for the Interblock Optimization Problem

1.

b.

We have a set of microoperations,

M = {ml,m2,°~',ms}, and a set of exit nodes

E = {el'ezl...'en}"

The following functions are given:

READ, WRITE, U

and the sets A & R, all as defined for intrablock
bptimization. |

We have the pair of functions:

. TRUEJUMP, FALSEJUMP: M - (M U E)

/

and when TRUEJUMP (m.) # FALSEJUMP(mi) we say that m,
is a cénditional jump. We further call TRUEJUMP(mi)
and FALSEJUMP (m, ) targets of m,.
We also have the function

LVTOP: E - subsets of A, the set of registers,
where a, € LVTOP(ei) means that the exit e; from the

k

code we are optimizing has a reachable use of ay -

" We will, in the course of optimizing, extend LVTOP

to the set of basic blocks of microinstructions.

We now define a microinstruction as a set of MOPs with

the properties that:
\
No resource is overused (as defined earlier)

No more than one conditional jump appears in a micro-

‘instruction.
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5. We will be searching for a parallelization of M,

which will be the gathering of MOPs into micro-

instructions. The microinstructions will not generally
be disjoint, as they had been for intrablock code,
but we‘will again require that they be exhaustive.

‘ 6. Durinéxour algorithm, we will work with P, a sequence

|

of microinstructions, P = {Pl,Pz,---,P }, which we

k
will evéntually convert into our desired péralleliza-

tion.

We will start off with P = M, that is, each partition

will be a single MOP. We will define
TRUEJUMP and FALSEJUMP:® P » (P U E)

in the obvious way, given the definitions on M, and
some microinstructions will be referred to as conditional
jumps. The sets READ(Pi) and WRITE(Pi) will also be

obvious extensions of the definitions on M, that is:

READ (P.): U READ(m.), and similarly for WRITE.
1 m.ep, ]
j i
7. As we parallelize we will redefine the targets of the
Pi's as the order of the P's changes; as m.'s are added

to.Pi's, the READ and WRITE functions will change.

8. We gather the P's into disjoint, exhaustivé sets,
B = {Bl,Bz,---,Bt}, with; for each Bi , Bii {P5,~~~,P£}.
We call the Bi's basic blocks (or just BLOCKS) if all

-of the following are true:
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10.

The P.'s form a chain P' < ... < P.!' where P' < p'
‘1 ~ J k. m L

means that Pé is a target of P%. We call P5
the initial microinstruction and Pé the terminal

micfoinstruction of the block.

either i.. j =1
or ii. Pj is the target of a conditional jump
or iii. P! is the target of two or more micro-
instructions.
eitherx i. Pilis a conditional jump
or ii. the target of Pi is the target of another
microinstruction
or iii. the target of Pi is an exit'node.
There is no other partitioning of P into t or more

subsets with the above conditions being true.

We have a relation <_ on B, defined as

B

Bi <u Bj if the initial microinstruction of Bj is

a target of the terminal microinstruction of Bi'

We call the graph determined by <_, the flowgraph and

B
we call the element of B containing Py the entrance block.
We use the terms SUCCESSOR and PREDECESSOR in the ordinary
way. When the context is clear, we 7ill write

]
(Bi,Bj) for the arc corresponding to Bi < Bj'
Given a flowgraph, we define reducible flowgraph,
dominator, backedge, and natural loop as in Aho-Ullman

[AH77], Chapter 12. .
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‘Brieflyh we say:

a. Block Bi dominates block Bj if every path from the
entrapce block to Bj goes through Bi’

b. If block Bi dominates block Bj and Bj < Bi , then we
call the arc (Bj,Bi5 a back edge. |

c. For each back edge (Bj,Bi), we form a subset of B,
called the natural loop of the backedge, which is
ali nodes that’ can reach Bj without going through B.
plus B, itseif.

d. A floWgraph is reducible if the edges are partionable
into two disjoint classes:
i. forward edges; which form a dag in which every

block is reachable from the initial block, and

,
A

"ii. backedges, as above.

The key properties of‘reducibie flowgraphs, fér our

purposes, are that:

i.- Each loop has only one entrance — the Bi in c.
above

ii.i The loéps are nested, that is, two loops are either.
disjoint, or oné is included in the other; two

otherwise disjoint loops may share a header, however.
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Calling Sequencé

OPTIMIZE: PROC(M,E!LVTOP,READ;WRITE,U,TRUEJUMP,FALSEJUMP);
P = M;
CALL MAKE BASIC BLOCKS;
CALL MAKE FLOW GRAPH;
CALL LIVETOP ANALYSIS;
CALLlASSIGN_JUMP_PROBABILITIES;
CALL SCHEDULE (B)

END OPTIMIZE;

SCHEDULE: PROC (L)
DO FOR EACH L € OUTER LOOPS (L) ;
CALL SCHEDULE(L,);

END;

DO WHILE (UNOPTIMIZED BLOCKS REMAIN IN L)
CALL PICK A PATH;
CALL MAKE_TASKS;
CALL MAKE DATA PRECEDENCE GRAPH;
CALL FORM PRIORITY LIST;
. CALL TASK_LIFT;
| CALL,SCHEDULE_PATH;
CALL RECOVER SPACE;
CALL CUT AND PASTE;
END ; |

END SCHEDULE;
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Comments on the Optimizing Routines

OPTIMIZE: PROC(M,E,LVTOP,READ,WRITE,U,TRUEJUMP,FALSEJUMP);

P = M;

/* We start with the set of microinstructions equai to
the source MOPs and with the jump functions also
identified with the functions on M. */

CALL MAKE_BASiC_BLOCKS;

~/* Produces B ='{Bl,B2,B3,...,Bt}, the set of basic
blocks of P * / |

CALL MAKE FLOW_GRAPH;

/* MAKE_FLOW_GRAPﬁ:
1. Builds <, , the flowgraph' for B.

B

2. Determine if <B is reducible; if not, uses
node—splitting'torrevise P & B so that a
revised <y is reducible. Duplicates loop
headers where needed to assure loops are
disjoint;or nested.

3. Builds the setvLOOPS, which is originally a
set of subsets of B;_each element of LOOPS is
a natural loop; note that we include P in LOOPS
as it if were a loop.

4. Builds the function: OUTER LOOPS: LOOPS =+ subsets
of LOOPS, where OUTER_LOOPS(Li) is the setvof |

loops properly contained in Li but no smaller loop.

100




5. Builds EXITS, where EXITS(L,), L, € LOOPS,
is the set of names which follow blocks in Li
on <g but which aren't in Li'

6. Changes LOOPS so thét within each Li € LOOPS,
all blocks contained in some loop interior
to L, are removed and the set OUTER_LOOPS (L. )
is added. Thus, Li contains only némes of

objects contained in no smaller loop.

7. Builds < for each L, € LOOPS. < is <
Li 1 Li B
restricted to Li U EXITS(Li), except that

each arc (Bi’Bj) where Bj is the entrance of

some loop in *Ii is changed to (Bi,Lm), with

Lm € OUTER_LOOP(Li). Thus <L is a subset
: i
A *
of L, x (L, v EXITg(Li)). /
CALL LIVETOP_ANALYSIS;
/* For each Bi € B, we perform a live variable analysis,

to produce LVTOP(Bi), a subset of A, the set of

registers. a, € LVTOP(Bi) means that there is some

k
path through the source code, starting at the initial
microinstruction of Bi ’ which reaches a use of
register ay before'ak is written. Recall that part

of our input is the sét of LVTOP's for the exit nodes.

LVTOP is also extended to LOOPS; that is LVTOP (L)

LVTOP(Bi) where Qi is the entrance node of L.

We mark LVTOP VALID = true for each block. */
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CALL ASSIGN JUMP PROBABILITIES;

/* Forms two functions: ARC_PROB and EXPECT.

i ARC_PROB((Bi,Bj)) where Bi <L Bj,is the estimated |
probability that if control flows £o Bi it will next
flow to Bj'

EXPECT(Bi) is the(probabiliﬁy, calculated from ARCfPROB
and <L that, given that the entrance node of L' is
reached, Bi is traversed beforevan exit node.

We will have several suggested methods for

estimating ARC PROB. The estimate need not be very

tight, but occasionally will influence which sections

of code are shortened at the expense of others. */

CALI SCHEDULE (B):;

END OPTIMIZE;

.SCHEDULE: PROC (L) ;
DO FOR EACH L, € OUTER_LOOPS (L) ;
CALL SCHEDULE (L,);

END; ‘ .

DO WHILE (UNOPTIMIZED BLOCKS REMAIN IN L);
CALL PICK-A-PATH;
/* PICK-A-PATH selects a set of blocks in L.
These blocks are called PATH={B1,B2,...,BV} and have
the property that on <, , Bi < B2 < v.. < Bv.

The selection is made in such a way that blocks .

which are likely to be travelled are generally

préferred over less traveled ones, as determined by
N - _ 102
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CALL MAKE TASKS;

/* We form a set of tasks T = {tl,tz,...,tw}. Each loop
.Li € OUTER_LOOPS (L) which is in PATH is considered
one task li , and each element P € Bi € PATH, where
Bi is a block, is one task. These latter elements
will, in fact, be microinstructions containing

single MOPs, since no parallelization will yet have

‘been done to them. */

CALL MAKE_DATA_PRECEDENCE GRAPH;

/* Wé nbw must specify the successors and predecessors
(equal and sprict) for each element in T. We have
the register sets READ(ti)_ and WRITE(ti) when t,
is an ordinary microinstruction, just as we did in
the case of intrablock scheduling. When our tasks
are microiﬁstructions, fhen, our criteria for
the precedence relation are what they’were

before.

/

103



If a task ti represents a microinstruction which
was a conditional jump, however, we have'an
additional set of registers to concern oﬁrselves
with. There are two target nodes bn <L for

the jump from the block ending with ti.

Let Bj be:the one which is not the immediately
following node on our path (though’B.j may very well
be further down the path). The next tk which

writes one of the registers in LVTOP(Bj) and

which is on the path down from t; must be a

strict successor of ti'

When ti is a task represeﬁting one of the loops
(which have already been optimized), the situation
is ﬁore complex, and the details are léft to a
formal description of the algorithm. Essentially,
though, we note those tasks which read or write
registers which are read or written within the loop
or are live at one of the exits from it, and draw

an equal arc between such tasks and the loop task

to prohibit the invalidation of data; more careful

orecedence considerations are used during scheduling.*/
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CALL FORM PRIORITY LISTS;
/* We use any appropriate heuristic, as discussed in the
chapter on intrablock scheduling. This routine assigns

a vaiue PRI(tk) to each ti € 7. */

CALL TASK_LIFT;

/* TASK _LIFT attempts to move tasks which have no predecessors
up from the path being considered to some already
optimized blocks in IL. which have jumps to the beginning

of the path being considered.

Gene?ally, TASK_LIFT looks first at the blocks on L which
have jumps to the path being considered. Unless the
probability that control flows to the path via arcs
from already optimized blocks in L is greater than some
threshold (say 50%) no LIFTing is attempted. A task, ti ’
is eligible for LIFTing in priority order only if it meets
all of the following criteria:
(a) ti has ne predecessors on the‘path, or all of its
predecessors have been LIFTed.
(b) ti is not a conditional jump or a loop task.
(c) ti comes from a block which is above the first block
~ (other fhan the path entrance) to which there is an
arc frem a block off the path.
as tasks are LIFTed, their successors might satisfy (a)

above, and need to be considered when they do.

105



When a task is eligible for iiftiné, we call a routine,
TRY LIFT, once for each arc from an already optimized
block in L to our path entrance..TRY_LIFT(Pi,Bj) will
succeed (and will report the place(s) in blocks Bj

and above on L to insert agti into thevalready formed
parallelizatioh) if ti may be so inserted{without added
cycles being generated; otherwise, TRY_LIFT will fail,
The task will only be LIFTed if TRY LIFT succeeds on arcs
which total more than some threshold (again, say, 50%)
probability'of beiné the route by which control reaches

our path.

We temporarily insert a buffer block, initially empty,.
between each iﬁmediate predecessor block and the block we
are lifﬁing from. When a tésk is lifted, we actually insert
the MOP into tﬁose positions dictated by the calls.to

TRY LIFT. va there are immediate predecessor blocks the
task is not lifted into, either because TRY_ LIFT failed or
because of an unoptimized predecessor, we place the task

at the bottom of that block's buffer.

‘When lifting is completed, we eliminate all still empty
buffers, and make a single buffer for each set of identi- -

cal buffers, adjustingvaddresses accordingly. */
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CALIL SCHEDULE-PATH;

/* We now use our ordinary methods of forming list schedules,
as in intrablock scheduling, with the major exception of
the loop tasks. When a loop task is encountered, we look
at the partition being formed. If.the loop, li , 1s the
first task being placed in the partition, then we so place
it and continue as described below. If other tasks are
already scheduled in the partition, we call TRY DROP for
each tj in the partition, in reverse order of when they
were scheduled in the partition. TRY DROP attempts to
place tasks in loop Li (from the top) without adding a
cycle to Li's'already formed schedule, just as TRY LIFT
does from the bottom; If TRY DROP succeeds for all such

tj's, then each corresponding MOP is added to the loop

in P , and Qi is scheduled in the partition othérwise.

Qi is treated as if it had a resource conflict and is

delayed. Note that TRY DROP and TRY LIFT recognize loop

invariance and take it into account when considering
moving a task into a loop; also both routines balk at

moving conditional jumps or loops at all, so we do not

attempt to place either in a loop.

Eventually, Qi will be placed in some partition. Tasks
after Qi which are considered. for placement in the same
partition are passed to TRY_LIFT which tries to fit them
into the remaining holes in Li's schedule. If they can be
so placed, they are, and we consider them scheduled in

"that partition. */ o
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CALL RECOVER_SPACE;

/* A task whiéh moves below a conditional jump it was previ-
ously above will, generally, have to be copied into the
offfthe—péth target block of that jump in order to preserve

| data validity, as will a task which was below a join to

| the path, but is now above. the earliest spot for a legal

|

% , rejoin.

‘ RECOVER SPACE alters our temporary schedule

inian attempt to reduce the amount.of copying done.

In particular since, due to the nature of list scheduling,
we would not expect to be able to move tasks up from their
scheduled positions, we identify conditional jumps which
have been moved up past tasks they followed, and tasks
which are too far up to allow them to participate in a

'rejoin in which they are required, as candidates to be

. moved down into holes in PTEMP.

-

In the coﬁrse of trying to recover space, the routine
will notice that at certain arcs coming to or legving
the path, new blocks will have to be created to hold
tasks which must be duplicated.—— namely the space that
was unable to be recovered. If the arcs lead to or from
already'optimized blocké, we Lry to fit the tasks into
the blocks inla way analogoﬁs to TASK_LIFT. Thosé that
are not so fitted are régarded as single MOP or loop
microinstructions and PTEMP is updated to include these,

with the addresses adjusted appropriately.
*/
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CALL CUT_AND PASTE;

/* CUT_AND PASTE:
1. Updafes P and related functions to reflect the
new parallelization.
2. Finds the basic blocks of the parallelization
and adds the new names to L and B, removing the
elements of PATH from L.

3. Updates <L to reflect the new blocks. */
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Detailed Algorithmsfor Interblock Optimization

OPTIMIZE:

s

INPUTS: (1) M, a set of MOPs as defined earlier
(2) E, a set of exit node names
-,(3) The functions TRﬁEJUMP, FALSEJUMP, LVTOP,
READ, WRITE,.U as defined in Definitions 2 and 3
OUTPUT: A set P of microinstructions as defined in (45
. and (5),‘with revised functions TRUEJUMP and
FALSEJUMP.
USES: l(l).B, a set of.block names, with values basic
blocks of microinstructions as’ in definition (8)
v(2) LOOPS; a set of loop names, each with-value a -
subset of B U LOOPS | | |
(3).OUTER_LOOPS, a map: LOOPS -+ subsets of LOOPS
(4) EXITS, a map: LOOPS - B U E

(5) < for L. € LOOPS. A subset of LiX(LiUEXITS(Li))

L.
. 1
(6) ARC PROB, a map: { U <L } -+ [0,100]
. L, ELOOPS i
(7) EXPECT, a map: ,{ ; L.} > [0,100]
L, €LOOPS * _

t

(8)AT, " a set of taské, with data pfécedenée relation <i
(9) Predicates OPTIMIZED and LVTOP_VALIb on (B U LOOPS)
METHOD: Calls the routinesdescribed below as indicated by
| the previously given calling sequence. The above
variables are to be considered global to all follow-

ing procedures.
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MAKE_BASIC_ BLOCKS: g
INPUT: P, the set of microinstructions as defined
.in Definition (6).
OUTPUT: B = {Bl’B2'°"’Bt}' a set of basic block names,
with‘véiues basic biocks aé defined in
Definition (8). |

METHOD: See Algorithm 12.1, page 412, Aho-Ullman [AHO77].

MAKE _FLOW_GRAPH
INPUT; P, B
OUTeUT: (1) A revised P and B revised to accoﬁnt for
the property of LOOPS described. below.
(2) The set LOOPS = {Ll,Lz,...,LD} where each L,
- is a subset of LOOPS Y B. (That is, LOOPS
is a set of names with values a subset of
LOOPS U B.) The elements of LOOPS are
originally Subsets of B albne, and as such
any two loops are either disjoint or one
contains the other. After forming LOOPS,
however, this routine replaces all of the
‘blocks in L. ‘contained_in an outermost loop
'Lj of L,,with Lj itself. So then an element
L, € LOOPS will consist of ‘the names of all
~blocks which are in Li but no smaller 1loop,

plus all names of loops in L  but no smaller loop.
111 1



' (3) The functions OUTER_LOOPS, EXITS, <, for
L € LOOPS. OUTER LOOPS(L) is the set of
all names of LOOPS in the set L. EXITS is
| the set of all names of blocks (or
elements of the.initial E) jumped to by
microinstructions in blocks of L, but not
contained in.L. <. is a subset of

L
I. x (LL U EXITS (L)) where (Bi, Bj) € <[, Mmeans
that Bi is a predecessor block of.Bj in
the usual way.

METHOD : (l)-<B is built as in the algorithm on pp. 450-454

of [AHO77], those algorithms also determine
whether <B is irreducible.

(2a) If <B is irreducible, node splitting is used-

to produce a new P, B, and <p so that <B'is
reducible. For details on the transforma-
‘ | tions and duplications necessary to accomplish
‘ ﬁode splitting, see Chapters 4-6 of [HECH77].
(2b) If two loops Li and Lj share a header H, make
a copy of H, call it H', and have the back
edge from'Lj to H jump to H'.instead. Then
Li will be as before, but Lj will be |
(Lj - {H}) v {H'}. Now any two loops will
be either disjoint or nested. Update P, B.
and <, in the obvious way to reflect these

B

changes.
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(3) Form the skt LOOPS where L € LOOPS is a
set of block names C B, such that L is a
natural loop of B. Include B itself as an
element of LOOPS. Again use pp. 450-454
of [AHO77]. |

(4) Build OUTER _LOOPS, EXITS, change LOOPS, and

build <L for each Li € LOOPS. All weré
i ,

defined in the comments for this routine,
and all may be done in a completely

straightforward way.

/* Unfortunately, node-splitting is sometﬁing of a
headache, particularly considering the expected
rarity of its use. The algorithms known for finding
the fewest nodes necessary to duplicate to accomplish
node-splitting all use procedures known to be np-complete,
such as minimum covering [HECH77]. However, one would
assume that occasionally running an exponential program
would not be too great a burden, in practice. Further-
more, even if a few too many nodes were produced, we are
in an.environment where the running time of the produced

code is generally more critical than the space it uses.

One might very well expect an implementation, especi-
ally one which will not have wide, but will have
critical use to simply harass the programmer into
redoing code that produced an irreducible flow graph.

Certainly a routine to convert such code could be added
later. */
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LIVETOP ANALYSIS:

INPUT: (1) P, B, <B as before.

(2) The set E = {El,,Ez; .;., En} of exit nodes.
(3) The function LVTOP: E - .subsets of A, where A
is the set of reglsters
OUTPUT: LVTOP is extended so that it maps E U B into subsets
of A. LVTOP(B,) is the set of registers whose
values are live at the entrance to Bi.f LVTOP is
then further extended tq elements of LOOPS.
LVTOP;VALID is marked TRUE for each name LVTOP
is defined on. |
METHOD: Live vafiables can be found using Algorithm 146
and the accompanying discussion’on pp. 489-490
in [AH77].
/* The above algorithm uses the following definitions:
DEF(Bi) = the set of registers wfitten into by B,

before any uses of those registers.

USE(Bi) = the set of registers used in Bi beforé
any writes to those registers.
LVBOT(Bi)=‘ U LVTOP(B ) (they-use,IN and OUT"

B, < B

1 B3 for LVTOPgand LVBOT)
Then the formula used for LVTOP(Bi)“is e .

LVTOP (B;) = (LVBOT(B,) - DEF(B,)) U USE(B,) .
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To extend LVTOP to LOOPS, we just note that if

L € LOOPS,

LVTOP (L) = LVTOP(Bi) , where Bi is the entrance block

of L.*/

ASSIGN_JUMP_PROBABILITIES:

INPUT: LOOPS, <. for all L € LOOPS.

OUTPUT: Two

L
functions are produced: ARC PROB and EXPECT,

as defined earlier.

(1)

(2)

L
estimated probability that if control flows

ARC PROB( (B, ,B.)) where B, <. B. is the
- 1] 1 J

to B, it will next flow to Bj‘
EXPECT(Bi) is the probability, calculated from

ARC_PROB and <; that, given the entrance node

L

is reached, Bi is traversed before an exit node.

METHOD: For ARC_PROB we suggest several methods:

(1)
(2)
(3)
EXPECT

(1)
(2)

Programmer estimate

Simulation of unparallelized microcode on
sample data.
Running unparallelized microcode in the hardware

on sample data, with added code to trace branches.

can be calculated from ARC PROB as follows:
Consider the elements of LOOPS separately.

If L € LOOPS with entry node By s EXPECT(Bk) = 1.
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(3) For all other nodes, Bj € L,

EXPECT(Bj) = Y (EXPECT (B;) * ARC_PROB((B;,B;)))

. < .
By < Bj

Note that this calculates the probability of a node
being reached. It does. not measure the expected number
of iterations, in case the node 1is in a loop, although
we could do such a calculation. What we have is good
enough, since we will 6nly'want to compare nodes within

a loop.

/* As a further explanation of two of the methods

of deriving ARC_PROB estimates:

simulation. It is reasonable to expect that a microcode

optimizer would only be one part of a highly automated
design system. If such .a system contained a microcode
simulator, it would presumably take a shéll change to
the simulator to count jumps taken, Counting could be
done during the debug phase of code development, or if
that is too biased towafd pathological codé, by running
an appropriate mix of saméle code. We note that the
simulator would presumably not have to be altered to run
the vertical source code, as such code is legal, if

inefficient, horizontal code.

In the hardware. In a user microprogrammable system, already
- functioning, a preprocessor might insert a microcode

subroutine call before every jump. The subroutine would test
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the same condition, record its truth or falsity, and return
the machine to its previous state. This could be done on

a suitable mix of data far faster than option (b).

(A macro may be more appropriate on many machines than

a subroutine.)

SCHEDULE :

INPUT: (1) L, an element of LOOPS

(2) All global variables.

OUTPUT: (1) P is revised to reflect a parallelization of
all blocks contained in L.
(2) L, <L and all associated maps and functions

are similarly revised.

METHOD: Uses the routines described below as indicated

by the previously described calling sequence.

PICK A PATH:

INPUT: L, EXPECT, OPTIMIZED
OUTPUT: An ordered set PATH, a subset of L,

PATH = {Bl,Bz,...,Bn} and on <y ¢+ By € By < cer < B

METHOD: (1) Recall t™at when we refer to already optimized
elements of L, we mean in this call of SCHEDULE;
that is, the previously optimized loop nodes

have not yet had OPTIMIZED set to true; only
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their contents have on previous calls to
SCHEDULE.

(2) Examine all not yet optimized nodes, all of
whose successors are elements of EXITS (L),
already optimized nodes, or the entrance node
for L. '

(3) From among'the'nodes found in step (2); pick the
one whose EXPECT value is greatest, let PATH equal
the set containing that node. |

(4) Now work backwards. For each node placed on
PATH( pick phe predecessor whose EXPECT value
is greatest and add that to PATH, ignoring
predecessors which are already optimized.

(5) Stop when the entrance node for L is reached,

|
or when a node is picked which has all of its
1 predecessors already optimized.

| /* Our method of picking a path is rather arbitrarily éelected;
‘ . | one could surely produce flow graphs for which the path

so selected is rather poor. It is our strong belief,
though, that as long as one does not éet sidetracked

onto very lightly traveled paths, the method chosen

is not critical.

Nonetheless, we suggest two other selection methods:

!

'(l) Pick, from among the unoptimized nodes of L, the
one with the highest EXPECT. Work backwards, as

above, from that node, and similarly work forwards,
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always going to the node with the highest EXPECT.
(2) Pick the path backward and/or forward £from some
node (e.g., the highest EXPECT), in an attempt
to produce a high average EXPECT. This might be
done in a manﬁer similar to Dijkstra's Single Source

algorithm [AHO74], pp. 207-209.

Other methods could be imagined indefinitely — we have

no guide other than intuition to their performance. */

MAKE TASKS:

INPUT: P, L, OUTER_LOOPS (L), PATH

OUTPUT: A set T = {tl,tz,...,tw} of newly defined tasks.
METHOD: (1) T = @

(2) ‘Consider each Bi € PATH in turn.

(3) 1f Bi = Lj for some Lj € OUTER_LOOPS (L) then:
T=TU {zj} where Qj is a task created to
stand for the loop Lj' |

(4) Otherwise, Bi is a set of elements belonging
to P, and for each such element we create a

unique task tj . Let T =T U'{tj}.
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MAKE DATA PRECEDENCE GRAPH:

INPUT: T, the set of tasks with all associated sets
andvfunctions.

OUTPUT: A partial order on T.

METHOD : We alter the algorithm given in Figure 5.2 for

finding the data-precedence in a set of MOPs as
follqﬁs: |
(a) Conditional jump tasks

(1) For each conditional jump task ti_we have the
set LVTOP(Bj) where Bj is the target block of
the off the path jump at ti'

(2) With each register we have the set
COND READS SINCE WRITE which is treated
essentialiy like READS SINCE WRITE. When we
process ti in our graph formation, we add ti

to each COND_READS_SINCE_WRITE(a where

k) 14

a, € LVTOP(Bj).

k
(3) For each task tj that writes a register a, we
(1) Draw a STRICT edge from each element of
COND_READS_SINCE_WRITE(a,) to t,.
(ii) Clear COND_READS_SINCE_WRITE (a,)
(b) LOOP tasks
(1) Wwe defer consideration of loop invariance until
it is needed in specific situations, thus the

question of whether a task strictly or equally

follows a loop task is considered during schedul-
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(3)

(4)

ing, see SCHEDULE PATH. (This is done for
efficiency reasons.)
Given a loop task ti which represents the loop

Li , we define the sets

READ(t.) = U _ READ(P.) and
1 P.€L, J
] 1
WRITE(t.)= U WRITE(P.)
1 p.eLn, )
] 1

where by PjELi‘ we mean Pj is a microinstruction

in a block of Li,or some loop contained in Li'

If tj is another task in T, we use the rules in
Figure 5.2 to find edges (ti’tj) or (tj’ti)
in <, , except that we consider all such edges

T
to be equal edges.
If Li contains a conditional jump off (or
farther‘down) the PATH, we follow the rules
in (a) above to form strict edges.
If we wish to minimize microinstruction space
used, we may draw edges from-some tasks to ti

or from ti to some conditional jumps (see space

saving below).

FORM PRIORITY LIST:

INPUT:

OUTPUT:

T and the data precedence graph T.

Function PRI: T ~ Real numbers.
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METHOD : .Any appro?riate method as ﬁsed with intrablock
optimizetion may be applied here. Decisions must
be made, once a heuristic has been' chosen, about
extending the heuristic, particularly for loop tasks.
Loop tasks may or may not be‘considered unit-
ekecution tasks; and the queetion of resource
conflict between a 5nonloop task and a loop task
may be somewhat subtle and time consuming to apply.
Given the results of the experiments in Chapter 7,
howevef, it is probably nearly optimal to Jjust use
highest levels, considering loops to be unit

execution time tasks.

TASK_LIFT: PROC;

INPUT: (1) L, <L T, data-precedence graph <
(2) THRESKOLD1l, THRESHOLD2, real numbers in {0,117.
OUTPUT: A pessibly revised; L, <L , P, and T, revised to
reflect the lifting of tasks to optimized blocks
above PATH.
METHOD: (1) Form the set § C L..
Si € S means that Si < Bl ’ where Bl is the
first element enbthe chain of nodes chosen
for PATH.
(2) If ] [EXPECT (S,) * (ARC_PROB((S;,Bl)))]

S.€S
1 < EXPECT(B;) * THRESHOLDI1

then return.
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/* There are tgo few profitable candidate blocks to move
tasks into at the possible expense of the others. */
(3) Place an empty "header" block in L between
each element of S which has been optimized
and Bl' Place a single empty header node
between all unoptimized elements of S and Bl'
(4) Form a priority ordered list of tasks in T with

no predecessors on < ‘Eliminate all tﬁ such

T
that tj is:

(a) a loop task -
(b) a conditional jump ‘
(c) below a join to a block on PATH besides at B -
(5) DO for each tj on the list:
(6)‘Call TRY_LIFT(tj,si) for each si &€ g where
S; has been optimized and no predecessor

of tj is in the header after si.

(7) Iﬁ [EXPECT(si)
S; TRY_LIFT(tj,si)

*(ARC_PROB((Si,Bl)))]<EXPECT(B1)*THRESHOLD2

then remove tj from the list.
(8) Otherwise DO:
(9) Take the union of all indices returned
by TRY_LIFT(tj,si) and place'P,j in
each indicated.microinstruction,

revising L and P.
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10. For each sS4 which returned null or for
which we did not call TRY LIFT, place a
copy of Pj at the bottom of its header.

11. Eliminate tj from T and <pe

12. Place any tasks which no longer have prece-
predecessors on <p on the list in
priority bosition.
13. Remove tj from the list.
14. END 8.

15. END 5.

l6. From each set of identical headers; pick one, have
all jumps to any of the headers in the set jump to

the representative instead,\delete'the others.

17. END TASK_LIFT.
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TRY_LIFT: PROC(P;,Bj); /* called by task-lift */

INPUT:

’

OUTPUT:

METHOD :

Pi @ microinstruction containing a single MOP
which is not a conditional Jjump

Bj , a block € L,

The index of the highest P, € Bj that P, can

legally be moved up into from a block below Bj p

and null if no such  index exists.

(1) 1If Bj belongs to a member of OUTER_LQOPS(L),
and if Pi is not loop-invariant for that loop,
return null.

(2) Let Pn be the terminal microinstruction of Bj'
If Pn writes a register that Pi reads, or if
Pn is a conditional jump, and the-other block

* Pn targets has a live register in its LVTOP
that Pi writes, then return null.

(3) Otherwise, we try to back Pn up the chain of
microinstructions making up Bj , Starting with
Pn at the terminal instruction, until one of
the following happens:

(a) Pn is the initial microinstruction of Bj ’

(b) Pi writes a register that Pn reads ,

(c) Pi reads a register written by an immediate
predecessor of Pn

(4) If P, does not resource conflict with P o
we return n. |

(5) Otherwise, go forward 6n the chain towards the

terminal node. Return the index of the first
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microinstruction found which does not resource
conflict with P..

(6) Return null if step (5) fails.

/* A more sophisticated (by far) task lifting is possible:i

Somewhat

(1)

(2)

v (3)

(4)

(5)

informally:

We continue beyond Bj in this fashion, backing

past conditional jumps and checking loop

invariance before backing into loops.

If we find ourselves about to back past a join,

we temporérily stop and find the highest possible
legal index, as above, if any.

We now generate a new copy of this procedufe for
each block preceding our join. If they all succeed,
we return the union of the indices that they
returned.

If, at least one of them fails, and we. had found

an index in step (2), return that index. If step.(2)
also failed to find an index, return null..

Never try to back into an unoptimized block.

*/
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SCHEDULE PATH:

INPUT: T, the set of tasks ordered by a priority function.
OUTPUT: A parallelization of T, called PTEMP.
METHOD: Scheduling here proceeds using the list scheduling

algorithm given in Chapter 4.' At step (4), however,
resource conflict is determinea by checking that
no resource is overused.  That is unchanged here,
except if a loop task is being scheduled or has
been scheduled for the current partition. In that
case, we follow a totally different procedure;

(1) Our next ready task is a ' loop task, Qi B

a) If the current instruction already has a lobp task
or a conditional jump task, we reject Qi as if it
had a resource conflict.

b) We consider the set of tasks already scheduled in
the current instruction in source order latest-to-
earliest. For each, we TRY DROP it into the léop.
If TRY DROP finds that it is loop invariant and can
be placed in the already existing schedule for the
loop, it is temporarily so placed and the loop
characteristics used to determine loop invariance
are temporarily updated. LOOP invariance is
discussed in detail in [AHO77], see particularly
algorithm 13.4 on page 458.

c) If the whole set of tasks may be so placed, %&. is

1

‘'scheduled for the current instruction and the tasks
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are placed permanently in the positions found for
them in step (b); then P is appropriately updated.

(2) Our next ready task, t, , is being considered for

k

scheduling in an instruction which has a loop
task, Qi , already placed in it.

a) If tk is a loop task or. a conditional jump task

we reject tk as if it had a resource conflict with
the current instruction.

b) We attempt a TRY LIFT of tk into Zi via the

on-the-PATH exit from Qi. If successful, we
schedule tk in the current instruction and we record

tk in its lifted position in the permanent copy
of Li , updating the associated sets and P.
/* TRY DROP 1is identical in every respect to TRY LIFT,

which is given in detail, except that tasks are inserted

into blocks from above rather than from below. */
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RECOVER_SPACE ' -

INPUT:

OUTPUT:

METHOD:

PTEMP, L, <L ; P
A possibly revised PTEMP, P, L, and B. PTEMP is
changed to reflect task motions designed to reduce
copying. L may have tasks (removed from PTEMP)
added to its already optimized blocks, and may
have blocks of MOPs copied from PTEMP. B has new
buffer block names added.
/* We give first a relatively straightforward method
of doing this. We can paraphrase the method as:
-- Find the tasks we might want to move down
-- find the task from those which has the most
potential and may be legally moved down into
a hole in the schedule

-- move that task down to the hole which saves

the most space

-- update and go back to the beginning

-- when no mcre motion is possible, update L and P. */

1. Form the set TARGET. ti € TARGET if:

(a) t. € T is a conditional jump and there exists

i
a task tj such that:

(i) tjn was earlier than t;, on PATH; and

(ii) tj has Dbeen scheduled later than ti in PTEMP.

or
(b) There is a joining edge to a block Bk on PATH
from other than Bk-l such that
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or below bn PATH; and

(1) ti was in B

k

(ii) there is a tj which was above B on PATH
but has béen scheduled below ti in PTEMP
2. Assign PRIORITY(ti) fpr each ti € TARGET.

PRIORITY(ti) is the number of tasks thch need to be

copied due to fi's position in PTEMP.

(a) If ti is of the type described in 1(a),
PRIORITY(ti) is thévnumber of tasks tj as
‘described in 1l(a).

(b) If ti is of the type described in 1l(b), PRIORITY(ti)
is the number of edges described in 1(b).

(c) If t, is of both types, PRIORITY(ti) is' the sum

. ' of the PRIORITYs found in 2(a), (b).

3. DO UNTIL. (no changes are made by steps 4-9)

4, ti = element of TARGET with highest priority
5. Choose an already scheduled microinstruction
ianTEMP as follows:

(a) We consider microinstructioné scheduled
below the instruction in whichvti is
scheduled, but abovevthe first inétruction

] which must follow ti for déta—dependency
reasons. ’

(b) We further restrict ourselves to those.
instructions which ti could be scheduled

in without conflict. If no instructions

femain, let ti be the task with the next
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highest priority and return to the
beginning of step 5.

(c) For‘each instruction under consideration,
we calculatebthe number of tasks which
must be dupiicated if ti is placed there.

(d) Pick the mic:oinstructibn which provides

| the lowest such value, except that if all
such vaiues are higher than PRIORITY(ti)r
let t. be the task with the next highest
PRIORITY, and return to the beginning
of step 5.

(e) In case of a tie a£ step (d), favor fhe
earlier microinst;uction, unless ti has
pfedecessors in TARGET. In that case, we
want to give the predecessors more room,
so we pick the latestl

6. Move ti from its originally scheduled micro-
instruction to the new instruction chosen in step 5.

7. Remove ti from TARGET if a recalculation shows |
its PRIORITY to be zero.

8. Recalculate the PRIORITY values for members of
TARGET whose values may have changed by the
motion of ti.

9. Add to TARGET any elements which will now qualify

under 1(a) or (b), and calculate their priorities.

10. END 3.
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/*

We now do the necessary copying. *x/

11.

12.

13.

14.

15.

Find all tasks scheduled below a conditional
jump which they were earlier than in the

éource and identify the set of all such jumps.
For each jump identified in 11, place a buffer
block at the exit from PATH and place in\the
buffer copies of all tasks which moved below
that jump, except for those tasks which only
write registers -dead. in that branch.

For each such exit which leéds to an already
bptimized block, try a TRY DROP on the tasks

in the buffer (in reverse source order).

When successful, strikevthe task from the buffer
and add it to the'optimized block in L.

Do the analogue of 11-13 (using TRY LIFT)

for rejoins to the PATH.

Update L and P to contain the buffer blocks;
they will be included in future PATHs.

<L is similarly updated. Update the functions
TRUEJUMP and FALSEJUMP to account for the buffer
blocks and the rejoins. Mark OPTIMIZED and

LVTOP-VALID false for each of the new buffer blocks.
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/*

In the case of the last task (in PATH order), if it were
a conditional which has moved above another, we consider
the less likely branch to be the off-the-PATH one,

and we place our bﬁffer'after the less likely branch.

This choice is arbitrary, but must be consistent with

the address correction done in CUT_AND PASTE.

Notes on space saving:

1. In many environments, space saving is a luxury item.
As a‘result, a first implementationrmight well avoid it,
and any implementation for which space was not
critical or for which practice showed space did not
increase, might not want to add it at all.

In contrast, an on-chip ROM controlling a mass
produced microprocessor might be aﬁ environment in
which a much more sophisticated space saver than
this might be appropriate.

2. One can edsily produce a situation in which the above
élgorithm‘ performs miserably. For example, we might
have a test near the very end of a long sequence of
code which might be moved to the beginning and may not
be movable down due to the early placement of one‘
of its successors. As a result, more sophisticated (by
far) methods than these may be appropriate.

3. The problem somewhat resembles the chip placement
problem [HANA76]. Thatvis, the tasks have been initially.
placed in some location and may now be moved to slots
elsewhere, or may displace other tasks when moved
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to other microinstructions. This displacement would

set off a string of motions which would end when a

A_task was moved to an empty slot. If no such ending

occurred, the entire string would be rejected

(e.g. see "force-directed relaxation" in [HANA76]).

A form of space saving‘which we strongly recommend

concerns loops. If a loop is long, with a schedule

length of five or more microinstruqtions, say, we may

not want to duplicate it. We caﬁ avoid thé duplica-

tion in advance by, during the data precedence graph

formation:

(a) Draw an edge from the loop task to all conditionai
jumps Which follow it on PATH; and |

(b) Locate all rejoins ﬁo PATH which are above the loop.
For each task ti above the latest such rejoin,

draw an edge from ti to the loop.

*/' .

CUT _AND PASTE

INPUT:

OUTPUT:

(1)

PTEMP

A changed P, L, <

I, reflecting the para}lelization

of PATH.
Replace each element of PTEMP containing a loop
task with the fully scheduled loop contained in P.

This copy of the loop,already'contains all tasks

added to.thevloop during scheduling.
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(2)

(3)

(4)

(5)

(9)

'PATH and replace them with <

Do a flow analysis of PTEMP, producing blocks B'

and flow graph < , treating the loop'as one

B’
entity, as before.
Delete from L all elements of PATH. Each rejoin
jump from L is redirected to the spot found for
the rejoin in RECOVER_SPACE. (Many come from newly
created buffer blocks.) Add B' to L. |

Remove from <L the edges which came from blocks in

B' -

Mark all elements in L which were blocks in B'
OPTIMIZED.

Produce new ARC PROB, EXPECT for all revised elements
of B'. |
Mark the LVTOP_VALID of each new block false; any
future references to those LVTOPs will need a new

calculation.

Delete from P all microinstructions which correspond

to nonloop tasks in T, and add to P all new micro-
instructions implied by PTEMP.

If PATH contained the entrance node of L, we find all
instructions in P which.jumped Fo that node from out
of L and replace fhe target address with that of the‘
first element on PTEMP. All other.jumps to the PATH

were rejoins considered in RECOVER SPACE.

-
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(10) We now fix the functions TRUEJUMP and FALSEJUMP

to account for our new parallelization. Each
conditional jump along PATH has one jump target
which was to the next block on the PATH, except

that if the last Pi along PATH is a conditional

jump we define the more likely juﬁp as the on-the-
PATH jump. ‘Then.given a newly scheduled conditional
jump ti .+ we change the on-the-PATH jump to be

the microinstruction scheduled immediately after_ti ’
and we leave the off-the-PATH jump as is. If ti

has been scheduled in the last cycle, we change the
on-the-PATH jump to what was défined as the

on-the-PATH jump for the original last micro-

instruction.
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A Detailed Example

We next present Example 8.1, which is again code
written for the CIMS PUMA System. The vertical code,
shown in Example 8.la, converts a CDC‘Display Code decimal
integer to binary, compacting spaces. The code has a
moderately complex flow structure, and waé written for the
purpose of demonstrating this algorithm. We, however, did
not write the code, and the algorithms presented here were
not considered during its writing, although we did specify
some characteristiés of the flow structure.

The source code, which we hope is understandable even
to those not very familiar with the PUMA, is shown in
Ex. 8.1 a. We consider the flow graph to have four outer-
most loops, as shown in 8.1 b, and thus schedule is
called four times. The third call, shown in 8.1 £f to 8.1 i
is the most complex, with the bulk of the.optimization being
done there. The data precedence graph for the main path
is shown in Ex. 8.1 £, and we see that our largest schedule
for this example involves 19" tasks. The object code produced
is shown in Ex. 8.1 &, and‘éan be seen to contain 21 micro-
instructions. This 1is the same length as the code produced
by an experienced microprogrammer (who was asked just to
parallelize, not change, the MOPs used), and looks almost

identical to the code he produced.
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Note that two factors are considered here which were

not mentioned in this chapter but are discussed in

Chapter 9. Several of the MOPs are actually 2-cycle MOPs,

with both halves written out; 7 and 8 are an example of

such a pair. Chapter 9 mentions how these might be handled
and some difficultles associated w1th them; fortunately,

no special measures were necessarj here. The second |
con51deration was of tests such as line 8 of the source code.
Orlglnally, line 8 and several others, were 2 separate

llnes, one for the arlthmetlc operation and one for the

register test. PUMA permits the testing of the input lines

of some registers, and this code was preprocessed to specify

'that this be done. The preprocessing should be completely

straightforward. We discuss this further under "special

case precedence" in Chapter 9.
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* AT ENTRANCE, Y0=33, Yl=12, Y2=55, I.E. DISPLAY CODE(0);

* DISPLAY CODE(9) - ((0)+1}; DISPLAY CODE (SPACE).
* MQ HAS ORIGINAL NUMBER, AC=0, Y6=0,

1. ENTER E1=10 * 10 DIGIT NUMBER
2. OUTER E2=6 * 6 BITS PER DISPLAY CHAR
* SHIFT A NEW. DIGIT INTO RIGHT HAND 6 BITS
3. INNER AC:MQ=SHIFT (AC:MQ,Ll1)
4. E2=E2-1(F}; IF ~EALU(0-3)=0 THEN INNER

*NO PROPER INPUTS ARE BELOW 33

6. (INNER.l) BUF=Y0
. . =AC-BUF
fi 8. AC=AC-BUF; IF ALU(59) THEN ERROR
W
-0 * ALL DIGITS ARE BETWEEN 33 AND 44
10. (INNER.2) Y7=AC ,
11. BUF=Y1l
12. =AC-BUF
13, AC=AC-BUF; IF ~ALU(59) THEN NOTDIG

* SET UP MULTIPLY BY 10 - DONE INEFFICIENTLY
* TO PROVIDE .LOOP FOR EXAMPLE

15. (INNER.3) BUF=Y6

16. AC=BUF

17. E2=9

18. MULT =AC+BUF
19. AC=AC+BUF
20. E2=E2-1(F]; IF ~EALU(0-3)=0 THEN MULT

* ADD THE NEW DIGIT TO OLD VALUE TIMES 10
22. (MULT.1) BUF=Y7

3. =AC+BUF
24, AC=AC+BUF
25. Y6=AC
* ANY MORE DIGITS?
26. MERGE AC=0
27. E1=E1-1{F); IF ~EALU(0-3)=0

THEN OUTER ELSE EXIT

* IF NON-DIGIT IS A SPACE, IGNORE IT.
* OTHERWISE, ABORT.
28. NOTDIG BUF=Y2

29, . =AC~-BUF
30. AC=AC-BUF
31. IF AC=0 THEN MERGE
* STORE INFINITY IF ERROR IN INPUT
32. ERROR E0=1777
33. AC=0
34. Y6=E0:AC
GO EXIT

»

ALL REGS DEAD ON EXIT EXCEPT Y6
Y6 CONTAINS MQ CONVERTED FROM
DISPLAY CODE TO BINARY

* »

EXAMPLE 8.1A SOURCE CODE. SOME LINE NUMBERS NOT USED DUE TO
PRE-PROCESSING. BLOCK NAMES IN PARENTHESIS NOT

SPECIFIED BY PROGRAMMER,



EXAMPLE 8.1 b. BLOCK FLOW INFORMATION.

Set of basic blocks:

B = { ENTER,OUTER,INNER, INNER.1, INNER.2,INNER. 3,
| . MULT,MULT.1, MERGE, NOTDIG, ERROR}

The se? LOOPS = {ll,£2,23,24}

L}

{INNER}
{MULT}
"3 {OUTER, £

where

= o
—
]

INNER.l,INNER.Z,INNER.3,£2,MULT.11
MERGE, NOTDIG}

ll

2, = {ENTER,23,ERROR}
The map OUTER-LOOPS maps Ql - g,
P
23
Ly

The flowgraphs oo v Sp v

: 1 2
reduced to 1 node:
OUTER
< H NER <
f *3
CBANGE. 1>
<, 2
P!
< oz
24

**EXIT

* Note: We signify that two different exits exist from 23

to ERROR at instructions 8 and 31.
* %
EXIT is off the source code.

EXAMPLE 8.1




EXAMPLE 8.1 c¢. THE MAPS LVTOP, ARC_PROB, EXPECT.

The map LVTOP: (EXIT» {Y6}, given)

ERROR + @ INNER.2 + {Y0,Y1,Y2,Y6,AC,MQ,EL1}

MERGE ~{Y0,Y1,¥2,Y6,AC,MQ,E1l} INNER.1 -+ {YO,Y1l,Y2,Y6,AC,MQ,E1l}

NoTDIG » {YO,Y¥Y1,Y2,Y6,AC,MQ,E1} INNER -~ {YO,Yl,Y2,Y6,AC,MQ,El,E2}

murT.1 -+ {Y0,Y1l,Y2,Y7,AC,MQO,E1} OUTER -+ {vo0,Y1,Y2,Y6,AC, MQ,E1l}

murnt > {v0,Yl,Y2,Y7,AC,MQ,BUF, ENTER + {v0,Y1,Y2,Y6,AC,MQ}
El,E2}

INNER. 3+ {YO0,Y1l,Y2,Y6,Y7,MQ,EL}

The map ARC - PROB (programmer guess), extended to the
loop-reduced ‘flowgraphs within

<. : no arcs <2 : (ENTER,23) + 100%
1 4

<, ¢ no arcs (£3,ERROR) + 1 (via INNER.1)

(23,ERROR) -+ 1 (via NOTDIG)

within <2: (OUTER,Ql) - 100 {INNER.2,NOTDIG) - 10
3 .

(Ql,INNER.l) + 100 (INNER.3,22) =+ 100

(INNER.1,INNER.2) > 99 (&,,MULT.1) = 100

2’
(MULT.1,MERGE) ~ 100

(INNER. 2,INNER.3) » 90 (NOTDIG,MERGE) - 99

The map EXPECT on the loop-reduced blocks:

within 2,: INNER - 100% 2,: ENTER » 100
f,: MULT » 100 25 > 100
ERROR ~ 100
within 23: OUTER » 100 2, +89

2, + 100 MULT.1 + 89

INNER.1 ~ 100 NOTDIG + 10

INNER.2 + 99 MERGE -+ 99

INNER.3 + 89 ERROR =+ 1

EXAMPLE 8.1
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EXAMPLE 8.1 d. THE CALL SCHEDULE(Zl).

PATH = {INNER} T = {3,4}
Data-Precedence Graph: 3 4
Priority List: 3 4 (using priority(t) = height (t)

breaking ties using earliest source order)

Task Lifting: None possible

Schedule: 3 ,4

\

" Space Recovery: None necessary, TARGET = @

Cut and Paste: (1) New elements of P From old P's (removed)
5 3,4
(2) Updated function values:

P TRUEJUMP FALSEJUMP

s 5 6

2 5 5

(3) 2, = {B1} . where Bl = {5}

(4) <, = o {only one block)
EXAMPLE 8.1

142



EXAMPLE 8.1 e. THE CALL SCHEDULE(Qz).

PATH:={MULT}

T = {18, 19, 20} /

Data-Precedeﬁce Graph: ,
|
19

Priority List: 18 19 20

Task Lifting: None possible

"Schedule: 18,

19

20

Space Recovery: TARGET = {20}

20
to

Revised Schedule:

Cut and Paste: (1)

(2)

(3)
(4)

is moved down to the second cycle

get, improvement.

[4
18
19 20
no copying
New elements of P . From old P's (removed)
9 18
}4 19,20

Updated function values:

P TRUEJUMP FALSEJUMP

9 14 14
14 9 22
17 9 9
'12 = {B2} where B2 = {9,114}
<y = ¢ (only one block)
2 .

EXAMPLE 8.1
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EXAMPLE 8.1 £. THE CALL SCHEDULE(Z3);
MAIN PATH, TASK SET, DATA PRECEDENCE GRAPH.

PATH: {MERGE,MULT.1, %, ,INNER. 3,INNER.2,INNER.1, %, ,OUTER}

27 1’
T = {2,21,6,7,8,10,ll,12,l3,15,16,17(22,22,23,24,25,26,27}

‘ Data-Precedence Graph:

‘ Formed Using:
i _ TASK RDREGS WRREGS

2 @ E2
| 2, AC,MQ,E2 AC,MQ,E2
| 6 Y0 BUF
| 7 AC,BUF @
8 AC,BUF AC
10 AC Y7
11 Y1l BUF .
12  AC,BUF @
13 AC, BUF AC K
15 Y6 BUF
16 BUF AC
17 ? E2
2, AC,BUF,E2 AC,E2
22 Y7 BUF
23 AC,BUF 2
24 AC,BUF AC
| 25  AC Y6
| 26 2 AC
| 27 El El

Also, 13 has Y2,Y6,AC,El
live at the off-path jump.

EXAMPLE 8.1
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EXAMPLE 8.1 g. SCHEDULING THE MAIN PATH

Level List _H {t|HEIGHT (t) = H}
1 26, 27, 25
2 24, 23
3 22,8%,,16,17
4 15,13,12,10
5 11, 8, 7,81, 2
6 6

Priority List: 6 2 21 7 8 11 10 12 13 15

16 17 22 22 23 24 25 26 27
Task Lifting: None possible
(Doesn't split off an already optimized path.)
Schedule:
(New Delayed
Micro- Due to
Instruction)* Cycle Schedule Resource Conflict
(37) 1 6, 2 21
- 2 Rl 7, 17
(38) "3 7, 17 none
(39) 4 8, 1l none
(40) 5 10, 12 none
(41) 6 13, 15 none
(42) 7 16, 27 22
- 8 22 22
(43) 9 22 none
(44) 10 23 none
(45) 11 24 none
(46) 12 25, 26 none
* Used - in 8.1 i.
EXAMPLE 8,1
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EXAMPLE 8.1 h. MAIN PATH, SPACE SAVING AND TASK COPYING.

Space Saving: Type(a) - 27 has moved above 22,22,23,24,25,26

Type(b) - 25,26 prevents a rejoin to 26 and 27,

. so 26 and 27 will have to be copied.
Thus TARGET = {27,26} with PRIORITY(27) 8 (L, counts as 2)
PRIORITY (26) 1.
We attempt to move 27 down. 27 conflicts with cycle 8,

but not with any of 9-12. No other rejoins are affected,
and no conditional jumps become inverted, so the most space

is saved by moving 27 to cycle 12.

We cannot move 26 down, since it is already in the last cycle.
So the revisions are: cycle 7: 16 (42)
cycle 12: 25,26,27  (48)

Task Copying: The space saver was not able to permit a legal
rejoin to 26 and 27, so we create new micro-
instructions 35 and 36, with 35 identical to 26
and 36 identical to 27. We set
TRUEJUMP (31) = 35 to make the rejoin, and set
TRUEJUMP (35) ,FALSEJUMP (35) = 36
TRUEJUMP (36) =.2, FALSEJUMP (36) = EXIT
P =P U {3536} '
24= 24V {B,} where B, = {35,36}

3
and in < ’
23

1]

Delete (NOTDIG,MERGE)

Add (NOTDIG,B3) with ARC_PROB = 99
(B3,0UTER), ARC_PROB not necessary
(B3,EXIT), ARC_PROB not necessary
EXPECT (B3) = 10

EXAMPLE 8,1
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EXAMPLE 8.1 i. CUT_AND_PASTE FOR THE MAIN PATH.

CUT-AND-PASTE: (1) We form 10 new microinstructions 37-46,
with their values given in the schedule

table in 8.1 g and revised in space
saving, so '
P = (P - (T_ {‘Llrzz}))u {371381---,46}.

(2) Updated function values:

_g_ TRUEJUMP FALSEJUMP
36 37 - (unchanged)
46 - EXIT
20 . - o 43
5 - : 38
37 5 5
38 39 : 39
39 32 40
40 41 41
41 28 42
42 9 9
43 44 44
“44 45 45
45 ' 46 46
46 37 EXIT
(3) 2, = {B3,B4,...,38,%,,2,} where B4={37}, B5={38,39},

1742
: B6= {40,41},

B7= {42},B8={43,44,45,46}

(4) New arcs in 22 -A(B4,21), (%,,B5), (B5,B6), (B6,B7),
(B6,NOTDIG), (B7,12), (12,B8),
(B5,ERROR} , (B8,B4), (B3,B4)

3

EXAMPLE 8.1
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EXAMPLE 8.1 j. THE REMAINDER OF 23.

The next PATH = {B3,NOTDIG}, T = {28,29,30,31,35,36)}

Data-Precedence Graph:

@

&®

GH®

Priority List:. 28 29 30 31 35 36

Task Lifting: All branches to NOTDIG are optimized, so we
have exceeded TRESHOLD1l, and lifting may proceed.
| . 28 and 36 are possible tasks to lift, but we
eliminate 36 since it is a conditional jump.
28 may not be moved up, since it must follow 41.
Thus no lifting is possible.

Schedule
(47) 28, 36
(48) 29
(49) 30
(50) 31
(51) 35

Space Recovery: TARGET = .{36}.

The most improvement is obtained by moving it °
to (51), so now:

(47) 28
(51) 35,36 are the changes.

No tasks need be copied.

Cut_and_Paste: (1) We form 5 new microinstructions as given above,
s0
P= (P ~T) v {47,48,49,50,51}
{2) Changedjumps:

P TRUEJUMP  FALSEJUMP
41 47 -

47 48 48

48 49 49

49 50 50

50 51 32

51 37 EXIT

(3) 3= {2,,2,,B4,B5,,..,B10} where B9 = {47,48,49,50}, B10 ={51}
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EXAMPLE

8.1 k.

THE CALL SCHEDULE(24).

PATH:= {ENTER, ERROR, 23}

Data-Precedence Graph:

T = {1,2,,32,33,34}

PRIORITY: 1

TASK LIFTING:

SCHEDULE :

SPACE SAVING:

CUT_AND_PASTE:

(2)

P TRUEJUMP FALSEJUMP

L 32 33 34

3

None possible

(52) 1
- 23, 32 (Note: 32 temporarily placed in
microinstruction 50)
(53) 33
(54) 34
TARGET = {32}

(rejoin from an exit of 23)

We move 32 from 23 to 53, which makes a full
rejoin possible.
(32 data precedes 54.)
Revised schedule

- L
(53)
(1)

And we remove 32 from 50

3
33, 32

We form 3 new microinstructions 52}53,54.
P=(p - {1,32,33,34}) v {52,53,54}

(3) 24={23,B11,B12};

52 37 37 Bll= {52}, Bl2 = {53,54}

53 54 54

54 EXIT EXIT (4) new < (B11,2.,), (%,,Bl12) (via- 39),
39 53 - Ly o3 3

50 - 53 (23,Bl2)(via 50), (B12,EXIT)
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EXAMPLE 8.1 2% SYMBOLIC OBJECT CODE — FULLY PARALLELIZED
VERSION OF 8.1 a.

P - B SYMBOLIC

52 Bll El = 10

37 B4 E2 = 6; BUF = Y0
5 Bl AC:MQ = SHIFT(AC:MQ,L1)
+ E2 = E2-1[F]; IF ~EALU THEN Bl
\ 38 BS = AC - BUF; E2 = 9
39 AC = AC - BUF; BUF = Yl; IF ALU(59) THEN B12
40 B6 Y7 = AC; = AC - BUF
41 AC = AC - BUF; BUF = Y6; IF ~ALU(59) THEN B9
42  B7 AC = BUF
9 B2 = AC + BUF
14 AC = AC+BUF; E2=E2-1I[F]
+ ‘ IF VEALU(0-3) = 0 THEN B2
43 B8 BUF = Y7
44 = AC + BUF
45 AC = AC + BUF
46 Y6 = AC; AC=0; El=El-1(F]
+ " IF AEALU(0-3)=0 THEN B4 ELSE EXIT
47 B9 BUF = Y2 '
48 = AC - BUF
49 AC = AC - BUF
50 IF AC ='0 THEN B10 ELSE B12

51 B10 AC=0; E1=El-1([F]; IF “EALU(0-3)=0
' '~ THEN B4 ELSE EXIT

53 B12 AC=0; E0=1777

54 Y6 = EO0:AC

‘ EXIT

EXAMPLE 8.1
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Two Examples from the PUMA 6600 Emulator

We now pfesent, with most details left to the reader,
two examplés from the PUMA CDC 6600 emulator. In both
cases, the source code was written by the person who had
originally written the hand optimized object code, with
the aim being a clear exposition of the algorithm
used.

Example 8.2 is the code which sets up the'multiply
loop. 8.2a contains the uncommented source code.

Since the code contains no loops, there is only one call
to SCHEDULE; the main path of which, along with the
associated data-precedence graph, is shown in §.2.b.

Note that the main path includes 34 of the 38 source tasks,
so is almost all of the optimizatipn.

8.2 ¢ and d show the derived object code, and for
comparigion, the original hand optimized_gode. Note that
both use 19 lines of céde, and that to set up a floating
point multiply, both take 14 cycles for positive or negative
arguments. The derived integer multiply takes 16 cycles
instead of the 14 cycles in 8.1 d. This is the result of
the space saver; the first schedule produced also took 14
cycles for an integer multiply set-up, but required 5 extra
lines of microcode. The space.saving algorithm as presented
here will never lengthen the main path, but may move an off-

the-path jump down and then possibly lengthen a non-main-path.
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A more sophisticated space saver would presumably have
decided on the extra space rather than time for so important
a path; real effort might have located code that used
neither, as in the hand optimized version. We note in

passing that the first 5 lines of the hand optimized

. version contain an elaborate trick which allows the shift

to proceed beforexk is loaded into the MQ. The
straightforward.ve;sion produced by our algorithms did
just as well.

Examplé 8.3 is the OP CODE 24 (normalize) instruction
from the emulator. 8.3 a shows the unoptimized source code,
while_8.3 b,c are the derived object code and the hand
optimized vérsion used in the emulator. Note that these
two sections‘of coae were chosen to be tests of these
algorithms, with the feeling that they are the hardest sections
of the emulator code to optimize. While the methods were
changed élightly after we had gained experience with OP CODE 24,
the earlier versions of the algorithms performed eésentially
as well.

Ouf estimates of the time and space requirements of
the three examples for our angrithms vs. the hand optimized

code are as follows.

MULTIPLY SET-UP: Algorithms are 4% slower than PUMA

(expected cycles). No extra space used.
OP CODE 24: Algorithms are 10% slower than PUMA.
16% more space used than PUMA.
CODE CONVERSION: Time and space identical to that used

in the hand optimized version.
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9
19

11
12
13
14
15
lo
17
1y
ly
2
21
22
23
24
25
26
27
28
29
30
31

32

35
34

35
30
31

3o

40

(40.1)
40XJINEG

40GETXK

(40GETXK.1)
4UXKNEG
40TESTILL
(40TESTILL.1)

(40TESTILL.2)

(40TESTILL. 3)

(4UTESTILL.4)

4UINTHUL

40XJZERO

{4UXJZERO. 1)

WXIZERO
FLRESFLO

- EXIT

40ILLEXP

EXAMPLE

* ¥ % *

E1l:BUF=XJ
IF BUF (59)

AC=BUF; GO
AC=-BUF

E2:BUF=XK
IF BUF(59)

MQ=BUF; GO
MQ=-BUF

IF ILL(El)
IF ILL(EZ2)

Y1=AC.

AC=0, EO=
IZED TO COUNT THE NUMBER OF CYCLES IN THE LOOP.

SETS UP MAIN MULTIPLY LOOP. AT EXIT, Y REGISTERS
CONTAIN APPROPRIATE MULTIPLES OF ABS(XJ), MQ=ABS(XK),

EXPONENT OF PRODUCT. E2=15 HAS BEEN INITIAL-

THEN 40XJNEG

40GETXK

THEN 4UXKNEG

40TESTILL

THEN 4UILLEXP

THEN 4UILLEXP

AC=SHIFT (AC:MQ,L1)

Y2=AC

AC=SHIFT(AC:MQ,Ll)

Y4=AC

AC=SHIFT (AC:MQ,L1)

YU=AC
BUF=Yl
=AC-BUF
AC=AC-BUF
Y7=AC
BUF=Y2
=AC-BUF
AC=AC-BUF
Y5=AC
=AC-BUF
AC=AC-BUF
¥3=AC

AC=SHIFT (AC:MQ,Ll)

Yo=AC.
IF ZERO(E1l)

THEN 4UXJZERO

IF ZERDO(EZ2) THEN WXIZEROD

=E1+E2

Eu=El+EZ2; If XFOFL THEW FLRESFLO

AC=u

EZz=1ib5; GO EXIT

IF #ZERO(EZ2) THEN WXIZERO

E0=6000; GO 4UINTMUL

* % ¥ %

8.2 A

LIVE VARIABLES: NONE
" LIVE VARIABLES: EO (ALSO AC DUE TO BUG IN PUMA CODE)
LIVE VARIABLS: Y0-Y7, MQ, AC, EO, E2

LIVE VARIALBES: XJ, XK, El, E2

MULTIPLY SET-UP SOURCE CODE
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PATH = {40INTMUL, 4OTESTILL.4, 4UTESTILL.3, 40TESTILL.2,

‘40TESTILL.1, 4UTESTILL, 4UGETXK.l, 40GETXK, 40.1, 40}

T =141, 2, 3, 5 6, 7,9, 10, 11, 12-31, 32, 33, 34, 35, 36}

EXAMPLE 6.2 B : THE MAIN PATH
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XJ; IF REG(5Y) THEN 40XINEG

40 E1:BUF =
AC=BUF; E2:BUF = XKj IF REG(5Y) THEN 4UXKNEG
JOXKPOS MQ=BUF; Y1=AC; IF ILL(E1l) THEN 40ILLEXP
JUTESTE2 AC=SHIFT (AC:MQ,L1); BUF=Yl; IF ILL(E2) THEN 4UILLEXP
Y2=AC; AC=SHIFT(AC:MQ,Ll1)
AC=SHIFT (AC:MQ,L1); Y4=AC
YU=AC; =AC-BUF
AC=AC-BUF; BUF=Y2
=AC-BUF; Y7=AC
AC=AC-BUF; =El+4E2 »
Y5=AC; =AC-BUF; EU=E1+E2; IF XFOFL THEN FLRESFLO
AC=AC-BUF; IF ZERO(E2) THEN WXIZERO
AC=SHIFT (AC:MQ,L1); ¥Y3=AC; IF ZERO(E1) THEN 40XJZERO
Y6=AC; AC=0; E2=15; GO EXIT
4UXJINEG AC=-BUF; E2:BUF=XK; IF #REG(59) THEN 40XKPOS
MQ=-BUF; Y1=AC; IF ILL(El) THEN 40ILLEXP ELSE 4UTESTE2
40XJZERO - AC=0; IF #ZERO(E2) THEN WXIZERO
E0=6000
E2=15; GO EXIT
EXAMPLE 8.2 C
40 E1$BUF=XJ; #Q=0; IF REG(5Y) THEN 40XJNEG ELSE 40XJPOS
4UXJPOS AC=BUF; E23BUF=XK; IF ILL(El) THEN 40ILLEXP ELSE 40FORMMP
4UXJNEG AC=-BUF; E2%BUF=XK; IF ILL(E1l) THEN 40ILLEXP
40FORMMP Y1=AC;. AC=SHIFT(AC¥MQ,L1l); IF ILL(E2) THEN 40ILLEXP
y2=AC; AC=SHIFT(AC$MQ,Ll); 1F BUF(59) THEN 40XKNEG
BUF=Yl; MQ=BUF; GO 408
4UXKNEG BUF=Yl; MQ=-BUF
40B Y4=AC; AC=SHIFT(AC%MQ,L1)
- Yyo=AC; =AC~BUF
BUF=Y2; AC=AC-BUF -
y7=AC; =AC-BUF !
AC=AC-BUF; IF ZERO(E1l) THEN 40XJZERO
- Y5=AC; =AC-BUF; IF ZERO(E2) THEN WXIZERON
AC=AC-BUF; =El+E2
. Y3=AC; AC=SHIFT{(AC%MQ,Ll); EU=El1+E2; IF XFOFL THEN FLRSFLON
4UINTMUL Y6=AC; AC=0; E2=15 .
4UXJZERO Y5=AC; =AC-BUF; IF "ZERO(E2) THEN WXIZERON

.EXAMPLE 8.2 C AND D

AC=AC-BUF; 1F "“OPCODE (1) THEN WXIZERON

¥Y3=AC; AC=SHIFT (AC3¥MQ,L1l); EU=6000; GO 4UINTMUL

EXAMPLE 8.2 D

: _ DERIVED SYMBOLIC OBJECT CODE AND
CODE AS HAND PRODUCED FOR PUMA
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24
24TESTXK

24 XKNEG

248

NORMLOOP

24SHFTDW

ZQNXI

24 ABJ

NORMUFLO
24ZERO
24A%X12

24PLUS1

24ILL

EXAMPLE 8.3 A

EU:BUF = XK
IF ILL(EO) THEN 241ILL

IF BUF(5Y9) THEN 24XKNEG
AC=BUF; GO 248

AC=-BUF

MQ=0U
IF AC=0 THEN 24ZERO

E2=v
IF AC(47) THEN 24SHFTDN

AC:MQ = SHIFT (AC:MQ,L1)

IF AC(47) THEN 24PLUS1

AC:MQ=SHIFT (AC:MQ,Ll1)

=E2+2

E2=E2+2

IF AC(47) THEN 24SHFTDN ELSE NORMLOOP

=EU-E2
EU=EU-E2; IF FOFL THEN NORMUFLO ELSE Z4SHFTDW.1

IF #BUF(5Y) THEN 24WXI
AC=-AC

XI=E0:AC

IF J=0 THEN NEWINSLO
EU=E2

AC=EV

BJ=AC

NEWPARCEL; GO NEWINSTR
AC=U; GO 24WXI2

E2=60

X1=AC

=E2+1
E2=E2+1; GO 24SHFTDN

E2=0

AC=BUF; GO 24WXI

OP CODE 24 SOURCE CODE
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LST

24

248
24SHFTDN
24WX1
24XKNEG
24SHFTDN, 2
NORMLOOP
NORMLOOP, 2

+

+
24PLUS1

24SHFTDN. 3

24ZERO
24WBJ.1

241ILL

NORMUFLO

7

" IF AC=0

EU:BUF = XK;IF REG(59) THEN 24XKNEG
AC=BUF; IF ILL{Ev) THEN 24ILL

E2=0; MQ=y; IF ~AC(47) THEN NORMLOOP
=EU-E2; IF AC=U THEN 24ZEROQ

EO=EU-E2; IF FOFL THEN NORMUFLO

IF BUF(59) THEN 24SHFTDN.2

XI=EU:AC; IF J=0 THEN NEWINSLO ELSE 24WBJ.1

AC=-BUF; IF ILL(EU) THEN 24ILL ELSE 24B

AC=-AC; GO 24WXI

THEN 24ZERO

tMQ = SHIFT(AC:MQ,Ll1);
IF AC(46) THEN 24PLUSI
:MQ = SHIFT(AC:MQ,Ll);E2=E2+2

IF AC(46) THEN 24SHFTDN.3 ELSE NORMLOOP.2
=E2+1

E2=E2+1

=EU+-E2; GO 24SHFTDN

=E2+2

E2=00; XI=AC; IF J=0 THEN NEWINSLO
EO=E2

AC=EUV

BJ=AC; NEWPARCEL; GO NEWINSTR
E2=0;AC=BUF; GO 24WXI

AC=0 .
XI=AC; IF J=0 THEN NEWINSLO ELSE 24WBJ.1l

EXAMPLE 6.3 B

EXAMPLE 8.3 8 AND C

MQ=0; IF REG(59) THEN NORMNEG
IF ILL(EU) THEN 24ILL ELSE NORMZT

24 EVU$BUF=XK;
AC=BUF;

NORMNEG AC=-BUF; IF ILL(E0) THEN 24ILL ELSE NORMZT
NORMZT E2=60; IF AC=0 THEN NORMWXI2
NOSHTEST E2=0; IF AC(47) THEN 24SHFTDN
NORMLOOP AC¥MQ=SHIFT(AC¥MQ,L1); =E2+2; IF AC(46)
AC¥MQ=SHIFT (AC¥MQ,L1l); E2=E2+2;
24SHFTDN =EO0-E2; 1IF BUF(59) THEN 24RECOMP
EU=E0-E2; 1IF FOFL THEN NORMUFLO
NORMWXI XI=EO$%AC; IF J=0 THEN NEWINSLO
24WBJ EU=E2
24WBJ2 AC=E0
BJ=AC; NEWPARCEL; GO NEWINSTR
24RECOMP AC=-AC; EU=EU-E2; IF FOFL
NORMUFLO AC=0
NORMWXI2 E0=E2; XI=AC; IF J=0 THEN NEWINSLO ELSE 24WBJ2
24PLUS1 =E2+1
E2=E2+1; GO 24SHFTDN
241LL AC=BUF; E2=0; GO NORMWXI
EXAMPLE 8.3 C

DERIVED SYMBOLIC OBJECT CODE AND
CODE AS HAND PRODUCED FOR PUMA

THEN 24PLUS1
IF "AC(46) THEN NORMLOOP

THEN NORMUFLO ELSE NORMWXI




9. Extensions for More General Models of

Microprogramming

Non-conforming Models

In doing this investigation,we had to choose between
using a relatively simple (and usually unrealistic) model
of microprogramming langﬁages, and a more complex model
into which many machine structures could probably be
mapped. We chose a simple structure with the aim of
investigating the parallelization algorithms in as pure
a light as possible, hoping, then, that the methods which
proved'productive here could be adapted to more complex
situations. . We were_also aidéd in our choice by the fact
that the PUMA nearly matches our model, by our belief
that many cémplexities of microprogrammed central unit
design are actuallg-the result of outmoded tricks designed
to save hardware, and by the fact that the bulk of the
previous investigations into microprogram optimization
have used this simple model.

In this somewhat anecdotal chapter we list the exten-
sions to our model which we feel would cover many, if not
ﬁost, microprogrammed machines. For each such extension
we comment on how serious a problém extending our methods
to a machine with such a structure would be, and we make

" general comments on the extension.
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Compatible Uses of Resources

As mentioned in Chapter 5, the resource usage model
is not adequate to describe the situation when two MOPé
both use a resource, but those uses are "compatible" and
the MOPs do not clash. The mode settings of an ALU or a
multiplexer are two common examples of compatible uses;
MOPs with different required settings would clash, but those
with the same would not. To describe our method of dealing
with this situation effectively, we present our suggested

method for dealing with resource conflict in general.

The Left and Right Resource Bit String

The innermost loop of a list scheduler might be
expected to spehd most of its time determining whether a
MOP under C6hsideration may be placed in the current
partition. To do this, we propose that each MOP t have
associated with it tWo bit strings, a "left resource
string," LRES(t), and a "right resource string,"
RRES (t) . The strings would have a field associated with
each resource used, and would have to be fofmed only once
per MOP, then never changed.

If a resource has Qné unit available which a MOP
either uses or not, then we set a single bit field iﬁ
both LRES and RRES for aﬁy MOP which uses it, and we clear

the field for MOPs which don't use it. Then given a
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)

paftition P, we can define PAﬁTITIONRES(P) = tgeP LRES(tj).
A MOP, ti’ will conflict with P in the use of %esources of
this type if PARTITIONRES (P) N RRES (t;) # @ , otherwise

we can add t; to P and union LRES(t;) in with PARTITIONRES (P)

to ﬁpdate it.

Resburces with Non-unit Availability
When we have a resource with d units available, and

a task which uses c units of it, the situation is somewhat
motre complex. We use a d bit wide field, and we set the
right hand most c bits in RRES of the MOP, while élearing
the other d-c bits in the field. For LRES, we set the left
hand most c bits while clearing the rest. The field in
PARTITIONRES (P) has the left hand most e bits set, where e
is the sum of the usages of the resource of the- MOPs aiready
ih P. Then, once again, for fields of this nature, a MOP ti
will conflict with P if PARTITIONRES (P) ﬂ‘RRES(ti) # @.

Note that the case d=1 corresponds to the special case
described in the previous paragraph. We point out that
adding a MOP to a partition is a relatively éomplex_operé—
tion, but need be done only.once per_MOP, whereas testing
for conflicts requiies only the simple (on most machines) |
bit intersection operation, but may be done much more

frequently.
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Testing for Compatible Resources

Testing for compatible resource usage presents added
difficulties. Two MOPS.which, say, read the same register,
might want the same select bit setting on a multiplexer.
It would be convénient to again be able to code fields
corresponding to the multiplexer - or whatever resource -
so that incompatible usages would cause the bit intersection
to be non-zero, but compatible usages would produce a field
of all zeros when intersected. At first glance, this would
appeaf to be impossible. Indeed, the PUMA microassembler,
which checks the legality of ail microinstructions specified
by the programmer, laboriously checks all such fields against
the already placed ones; though, fortunately, to assemble
this need be done only once per MOP.

We were able to come up with a trick for this, using
an expansion of the exclusive or. In particular, suppose
the resource state can be specified by n bits. We set aside
a 2n bit field for the resource. For a task ti which does
not use this resource, we clear all 2n bits in the field
in both LRES and RRES. If ti does require a bit string, B,
for the resource, we let the left hand most n bits in the
field in LRES be B,.and the right hand be not B, the bit-
by-bit complement of B. In RRES, we reverse them, letting
the right hand n bits be B. VPARTITIONRES(P), then, will

be the union of the LRES for those fields for all MOPs in
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“the partition, and once again, a MOP t; will conflict with P
if PARTITIONRES (P) N RRES(t;) # @. This works because bits
Bj and Bg.are different only.if (Bj and not Bj) or'(B5 and
not Bj) is 1, that is, if their exclusive or is 1. If one
fieldlis all zeros, then it will pass the test with any
other string. |
The discerning reader may have noticed that except

for the case of multiple units of a resource, the pérti—

- tion's total resource can be found by simply taking the
union of the LRES of each of its components. The PUMA
is a machine with several "compatible" resource usages,
but no multiple units; thus for the PUMA, and probably
many other machines, both total resource usage for the
microinstruction being formed and resource conflicgt éan be
determined very quickly. This may require more than one
word of bits, even on a wide-word machine, but still would.

'be far faster than field-by-field checking.

Many-cycle MOPs

' Ouf model assumes that all MOPs fake the same amount

of time to execute, and thus that all MOPs have a resource
and dependency effect during only one cycle of our ,schedule.
In many machines, though, the difference between the féstest
and slowest MOPs is gréat enough that aliotting all MOPs

the same cycle time would slow down the machine considerably.
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The PUMA, for example, allows two cycles for ADDs longer
than 4 bits; if combinatorial multiply chips were incOrporated
into the design, thé longest operation would be longer sfill.
This is more an intrinsic function of the range of complexity'
of the MOPs available at the microprbgram level of the
- machine, rather than something which is liable to change
with improved hardware. |

The presence of MOPs taking m>1 cycle presents little
difficulty to the within basic block methods suggested ﬁere.l
The priority calculations all extend naturally to longer
MOPs; in particulér, one can break thé MOP into an one-
cycle subMOPs, with the obvious adjustments to the g;aph,
and calculéte priorities accordingly. Scheduling is also
very straightforwafd; indeed, one of the attractions of
list scheduling 'is that m~cycle MOPs are handled so naturally.
When an m cycle MOP is’scheduled‘at level 2, we also §chedule
it for levels 2 + 1, £ + 2, ..., & + m-1. (If it conflicts
with other 1long MOPs already in éome of those cycles,‘we
treat it as if it has a conflict in the cycle in which we
are trying to séhédule‘it.). The resource usages need not
be constant for.each of the m cycles; the more geﬁeral
case is a simple exteﬁsion of our resource calculations -
that is, usage-may be defined différently fqr each cycle
of the MOP. | |

Our beyond basic block methods have some difficulties
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with long MOPs, though. Within a PATH, there again seems
to be no problem(.but suppose a two cycle MOP, with subMOPs
ti and ti is scheduled so that ti is. at the same level as
a conditional jump that was previously below t; and ti-
Then t} would have to be copied into the off the path
branch at the jump. ti however, would have to be in the
first cycle of the branch not taken, and the cycle containing
ti would have to remain the first”cycle. Without going
deeply into details, this would require changes‘to and/or
restrictions on the algorithms presented to account for
copyihg into already optimized blocks, other ﬁasks copied

past the same conditional jump, etc.

Polyphase MOPs

In some systems, the MOPs represented at the micro-
progrém.language level may be further regarded as having
sﬁb—microcycles. This has the advantage that while two
MOPs may both ﬁse the same resource, typically a bus, they
may use it duriﬁg different sub—micro—cycies; thus the
apparent resource conflict may not exist, and the MOPs
could be scheduled in the same cycle. This has no effect
on our scheduling methods other than to complicate the
resource conflict. relation. We remark that the PUMA has no

sub-microcycles.
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Variable Instruction Formats

Some microprogrammable machines have more than one
micro-instruction format. The format chosen for an instruc-
tion will allow certain subsets of the MOPs to be chosen
for that instruction. 1In pafticukug each field of an
instruction may allow any of several MOPs to be placed in
the field, and each MOP may be placed in any of several
fields.

To deal with this, we suggest first that immediatély
choosing one format in which to place, the first MOP sche-
duled for the cycle.seems too risky. We suggest instead
that a iist be kept of the formats for which the so far
selected MOPs are resource compatible and that each time
a hew MOP is added, the formats which could not accommodate
the MOP be deleted. The choice of which field to bind a MOP
to within a format, however, greatly resembles the resource
allocation we have been considering right along. Indeed,
one would expect that the MOPs form equivalence classes
with respect to which fields they may occupy, and that
selecting a field for a MOP is equivalent to assigning.

it one unit of resource. For a discussion of this, see [WOOD78].

Necessarily Simultaneous MOPs

At the microcode level it is often possible to specify
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operations which; when perform%d in parallel, have no
-sequential equivalent. A common example is the register
swap: If two registers are both made of master-slave'f}ip—
flops, and each feeds one of the inputs of thevothe;, the
two may be able.to exchange contents in one cycle, using
no intérmediate registers._ That is, if A=B~and B=A aré.
both legal MOPs, the microinstruction A=B, B=A would express
an operatioﬁ not epressible ;s a sequénCe of single MOPs.
To accommodate the abové, we éuggeSt simply that the
source code»be allowed to contain lineé which are sets of
MOPs. . Throughout optihization the set is treated as one

MOP, and never broken apart.

Special Case Precedence
Our model uses the registers read and written to
determine .the precedence relation on the MOPs. One cduld
expect this to be an inadequate descrip%iﬁn of the relation
on most machines. As a result, if is likely that in any
implementaﬁion spécial procedures would add edges to the
dag produced by the routines described herein.
A'significant example of this exists in the PUMA.
In the PUMA, tests of some data may be done either before
or after the data enters the register simply by specifying
the appropriate test. Thus if MOP ti writes the tested

data, and tj tests it, we can say ti < = tj rather than
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ti < tj’ as long as we are careful, during object code
generation, to specify the correct condition code.

We have ordinarily not been interested in code.trans—
formations of this sort, requiring instead that they be
programmer specified. This pafticular situation is éuite
common however, and since it adds no difficulty to our
methods, other than some simple pre- and post-processing,
it would seem worth implementing in a PUMA optimizer.

(Or, in general, ih any environment in which such a trans-

formation'may be specified within the informational limits

of the data-precedence gfaph.)‘

Flow Control Extensions and Restrictions

Our model assumes that, as is true of the PUMA, each
instruction may specify two address as potential successoré,
one to jump to if the specified test is true, the other if
it is false. oOur peyond block methods use this flexibility
in the rearrangement of the order of conditional jumps;
without it the .situation is a bit more difficult.

va a machine has a single jump address, with a fall
thrbugh as the altérnatiVe, the methods in the previous
chapter could lead to a situation in which several instruc-
tions want to fall through to the same instruction, which
would not be permitted.i In that case; one of thé contending

instructions would be permitted to fall through to the
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intended target and the others would fall through to copies
of the intended target. If the intended target were also

a conditional jump, then the copies would again contend
with the original, and copies of the next intended fall
through instruction would have to be made and so on. When
a non-conditional jump occurred, we would have all the.
streams use the branch address mechanism to fejoin.

Despite the dramatic sound of the above, it is( our
belief that, for most code, Qery few copies would be gen-
erated. This would be particularly so if the machine per-
mitted reversible conditions, that is, a branch on the
negation of each condition. Since this would require only
one gate (an xor, say), and one extra condition field bit
in the microprogram memory, it would seem worth doing. In
the PUMA, the‘tradeoff of microprogram width versus height
is not clear, and we were not able to convince ourselves
whether the two address jumps were economical or not.

Finally, we mention the extension of the flow mechanism
to include microprogram subroutine calls; wevsimély note
that our recursive descent seems appropriate for handling
the calls. Calls could be treated as one task which some-
what resembles the combination of a loop and a jump.: That
is, one task on the dag of a PATH containing a call would
stand er the call, its data dependency dependent upon what

registers were live entering and exiting the call. Tasks
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would probably not be allowed into the subroutine, but tasks
scheduled in the same cycle as the call would be processed
before the call was made at the end of the cycle:

Subroutine calls are of particular interest here
because the_microprogram sequencer chips now being made

have reﬁurn address stacks built into them.
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