
COO-3077-161

Courant Mathematics and

Computing
Laboratory ' U.S. Department of Energy

The Optimization of Horizontal Microcode
Within and Beyond Basic Blocks:
An Application of Processor Scheduling with Resources '1

Joseph A. Fisher

U.S. Department of Energy Report

Prepared under Contract EY-76-C-02-3077
...with the Office of Energy Research

,

j

Mathematics and Computing 1

October 1979

New York University

I.

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

UNCLASSIFIED

Courant Mathematics and Computing Laboratory

New York University

Mathematics and Computing. COO-3077-161

THE OPTIMIZATION OF HORIZONTAL MICROCODE

' WITHIN AND BEYOND BASIC BLOCKS:
R

AN APPLICATION OF PROCESSOR SCHEDULING WITH RESOURCES

li

Joseph' A. .Fisher
It

hi'2 October 1979
11

tl

1

1

nier, 4IMER) i This book was prepared as an account of work sponsored by er I Ycy of the United Swres Government.1

Neither the United gates Government /or any Wercy Thereof. nor any of their employees. m/kes any
' warrantv, ..press or implied. or essumes any legal 11ab1lity or responsibility for the accuracy.

complainess, or usefulness & any information, apparatus, prOCILICt, or proces$ disclosed, or
represents that ils use vmult not infringe privately owned rights. Reference herein to any specific

I cir....181 product, process, or servke by trade name, trademark. manufacturer, or IheMise, does \

not necessarily consti(ute or imply its endorsement, Hcommendation, ar fovoring by the U/ilee
Smtes Government or any agency thereof. The views and opinion,of authors expressed tike·In do not ,
necessarily state or re flect those of the United States Government or any „ency thereol.$1 1

h
1

I'l

U. S. Department of Energy

Contract EY-76-C-02-30771 .UNCLASSIFIED

DISTRIBUTION QE THIS DOCUMENT IS W.NUMIT.ED

J

© 1979 Joseph A. Fisher

TABLE OF CONTENTS

1. Abstract and Summary 1

2. Introduction to the Problem 3
Why This is Important

3. Previous Investigations of This Problem 6
Optimal Solutions
Approximate Solutions
Beyond Block Optimization

4. Practical Results in Processor Scheduling Theory 14
Processor Scheduling
Approximately Optimal Solutions and List Scheduling
Resource Constrained Problems

5. Optimizing Basic Blocks of Microcode 26
Formal Identification Between Optimizing and Scheduling
An Example
Resource Constraints
A Note on Efficiency

6. A Lower Bound and Its Uses 42
The Fernandez-Bussel Lower Bound

and How it Works
Finding the Bound
How the Bound Loses Accuracy
Our Work On and Suggested Uses of the Bound
Efficient Calculation of the Bound

7. Experimentally Obtained Measures of the Effectiveness 54
of Several Basic Block Optimizing Strategies

Introduction and General Conclusions
The Model
Limitations of the Model
The Strategies Tested
Other Suggested Basic Block Methods
The Experiments

8. A Unified Approach to Interblock Optimization 83
Our Method of Interblock Optimization
Scheduling the Remainder of the Path
Code Containing a Single Loop
,Code With a General Flow Structure
Definitions for the Interblock Optimization Problem
Calling Sequence
Comments on the Optimizing Routines
Detailed Algorithms for Interblock Optimization
A Detailed Example
Two Examples From the PUMA 6600 Emulator

9. Extensions for More General Models of Microprogramming 158

Non-conforming Models
Compatible Uses of Resources
The Left and Right Resource Bit String
Resources with Non-unit Availability
Testing for Compatible Resources
Many-cycle MOPs
Polyphase MOPs
Variable Instruction Formats
Necessarily Simultaneous MOPs
Special Case Precedence
Flow Control Extensions and Restrictions

Annotated Bibliography 170

.

FIGURES, TABLES AND EXAMPLES

Chapter 4

Figure 4.1 A Formal Description of Task Scheduling
With Resources 16

4.2 Directed Graph Definitions 17

Chapter 5

Figure 5.1 Formal Identification Between Processor 27

Scheduling and Basic Block Microcode
Optimization

5.2 Rules for the Formation of a Partial Order 28

on Micro-operations

5.3 Alterations of List Scheduling to Account 36
for "= Edges"

5.4 E is 0(|T|) in Data-Precedence Graphs 39

Example 5.1 Short Basic Block Optimized in Detail 33

5.2 The Optimization of a PUMA Basic Block 41

Chapter 6

Figure 6.1 The Fernandez-Bussel Lower Bound 44

Chapter 7

Figure 7.1 The Performance of the Three List 66
Scheduling Strategy Groups

Table 7.1 Lengths of list schedules for the PUMA- 67

like model and varying size task sets.

7.2 Times to form data-precedence graph, priority 71
lists, lower bounds, and schedules for
various task set sizes.

7.3 The varying parameters for Experiment 2, 73
with number of tasks fixed at 40.

7.4 Lengths of list schedules for the models 74
of Table 7.3.

7.5 Rankings of performances of list schedules 75
for the models of Table 7.3.

Table 7.6 Lengths of schedules produced by YAU's 79
algorithm using various weights; list sche-
dules for same weights given for comparison.

Chapter 8

Figure 8.1 Catalog of Interblock MOP Motions 84

Example 8.1 An Example Using the PUMA 143

8.2 The Multiply Set-Up From the PUMA 6600 153
Emulator

8.3 The Normalize (Op CODE 24) From the PUMA 156
6600 Emulator

,

1. Abstract and Summary

Microprogram optimization is the rearrangement of micro-

code written vertically, with one operation issued per step,

into legal horizontal microinstructions, in which several

operations are issued each instruction cycle. The rearrange-

ment is to be done in a way that approximately minimizes the

running time of the code.

We identify this problem with the problem of processor

scheduling with resource constraints. As a result of this

identification, the problem of optimizing basic blocks of

microcode can be seen to be np-complete; however, we are able

to use approximate methods for basic blocks which have good

records in other, similar, scheduling environments. We use a

method of scheduling called "priority list scheduling" in which

the tasks are ordered according to some evaluation function,

\ and then schedules are found by repeated scans of the list.

Several evaluation functions are shown to perform very well

on large samples of various classes of random data-precedence

graphs with characteristics similar to those derived from

microprograms. An evaluation function we produced is sensitive

to both the.data-precedence graph and the resource constraints;

it performed best of those tested, though the differences

among the four best functions, while statistically significant,

were small.

A method of spotting resource bottlenecks in the derived

data-precedence graph is adapted from a lower bound suggested

by Fernandez and Bussel [FERN73]. This method permits us to

produce the above-mentioned "resource considerate" evaluation
1

 --*

function, in which tasks which contribute directly to or

precede bottlenecks have their priorities raised. We were

also able to greatly reduce the complexity of the calculations

necessary to compute the lower bound, thus making the above

strategy more practical. The lower bound is further used to

bound the percentage differences between the lengths of

schedules produced and the optimal.

A method is suggested for optimizing beyond basic blocks.

We treat groups of basic blocks as if they were one block,

encoding the information necessary to control the motion of

tasks between blocks as data-precedence constraints on the

conditional tasks. We are thus able to optimize long paths

of code, with no back branches, using the same methods used
2

for basic blocks. These methods are efficient (order n),

and are capable of handling the long blocks obtained this way*

quite.well.. When loops are encountered, the contents of the

loop are optimized, and then the loop is treated as a unit,
}

with its own data-precedence constraints, permitting other

tasks to move past, ahead of, or into'the loop, as is appro-

priate. The code obtained seems as optimized as, and remark-

ably similar to, that obtained by hand.

2

2. Introduction to the Problem

Microprograms are sequences of microperations (MOPs)

which control the most fundamental resources of the com-

puter. A MOP might,'for example, control whether a reg-

ister is written into during a particular clock cycle, or

select which of several possible data paths might be fed

into an adder. In many microprogrammable computers, the

fact that several different parts of the hardware can

operate simultaneously may be taken advantage of in the

microprogram, and a collection of MOPs may be specified

for a single microprogram cycle, rather than just one.

Such microprograms are said to be horizontal (rather than

vertical) and a collection of MOPs specified for a single

cycie is called a microinstruction.

This is an investigation into the practicality of taking

a sequential microprogram written for a horizontal machine

and gathering the MOPs into microinstructions in a way

that approximately optimizes the running time of the micro-

program. Within basic blocks (no transfers of control),

this corresponds to gathering the MOPs into as few micro-

instructions as possible; subjact to, of course, the

data-precedence requirements on the MOPs..and the resource

usage constraints, which will prohibit certain combinations

of MOPs from being specified in the same microinstructions.

Beyond basic blocks dynamic considerations apply and we

3

can no longer guarantee that improvements that shorten

some branches of code at the expense of others will improve

running time. We investigate such improvements at length

but, as is the case with some compiler optimizations, it

is difficult to measure their effectiveness except empiri-

cally. We remark here that the problem at hand does not

otherwise bear much resemblance to compiler optimization,

except in the use of some flow graph techniques. Indeed,

we assume that all ordinary compiler optimizations have

already been applied to the vertical code before the

gathering into microinstructions.

The reader is invited to look at the source and object

codes in the examples presented in Chapters 5 and 8. The

code is written for the Courant Institute PUMA System,

and, with proper documentation, the source code could be

easily understood, having the flavor of assembly language

level code. The corresponding horizontal code, however,

is usually quite obscure.

Why This Is Important

After extensive experience with the highly horizontal

PUMA microcode, it is clear that this aspect of micropro-

gramming, producing parallel code, is most unpleasant,

very time consuming, and very error prone. Furthermore,

those not very familiar with the techniques would seem

4

essentially prevented from producing any practical micro-
code at all. Even for a skilled programmer, writing a

large interpreter would be a most formidable task without

automatic parallelization.

The same consideration appears to be true when one is

compiling high level languages (machine dependent or inde-

pendent) into horizontal microcode. While most compilation
tasks involve the same concepts as compilation into machine

language, it is essential that the compiler be able to make

reasonably full use,of the machine's resources. If user

microprogramming of horizontal machines is going to become

somewhat common, and this appears likely, it seems clear
that the techniques investigated herein will be important.

It is often mentioned in the literature that automatic

parallelization is a necessary and missing systems aid;

however, it is also felt that finding practical methods of

parallelizing is a difficult problem toward which little

progress has been made [AGER76] , and is regarded as "next

to impossible" [ROSS75].

5

CHAPTER 3. Previous Investigations of This Problem

Fortunately, an excellent survey of methods of optimiz-

ing microprograms exists, Agerwala [AGER 76]. That survey,

updated in March 1976, refers to the gathering of MOPs into

microinstructions as "word dimension reduction" and generally

considers it to be the most promising area of optimization.

Nonetheless, the first paragraph of the conclusions section

states

"Most of the important work to date on microprogram
optimization has been surveyed in this paper and,
unfortunately, the results are disappointing. Very'
few techniques exist that can be profitably applied
in any practical environment."

The survey presented here supports that conclusion. It

seems to be unknown whether any of the work done to date

can provide enough help to the microprogramming systems

designer to enable the writing of large programs using

sequential code.

We now survey all the parallelization methods we were

able to find. The main reduction algorithms are presented

in some detail and an annotated bibliography contains all

relevant references. The references are generally from

two sources: the IEEE Computer Society 'Transactions on

Computers and the SIGMICRO Yearly Workshop preprints. The

SIGMICRO papers, unfortunately, are very loosely edited, and

the algorithms are often imprecise. Despite that,

they are the best source of current information.

6

In our descriptions of the algorithms we will use

terminology from processor scheduling theory; indeed, in

Chapter 5 we will formalize an identification between

optimizing microcode and scheduling processors. Most

terms should be clear enough from their contexts to provide

a general understanding of the algorithms, but all terms

used are defined carefully in the next chapter. For the

time being, we may think of the MOPs as having a data-

dependency relation upon them; that is, some MOPs will

have to be placed in earlier microinstructions than others

to preserve data validity. Using this relation, we form

the data dependency graph referred to below. The tasks

referred to in the following chapter definitions (Fig. 4.1)

will be representing the MOPs, as we will explain·in

Chapter 5.

Optimal Solutions

We can break the work done into two categories,

algorithms which always find the optimal solution, and those

which might not. We consider the former first; though

none of them seems useful in a practical environment.

Evidently, the first algorithm was proposed bY Astopas

and Plukas [ASTO 71]. They consider all possible gather-

ings of MOPs (partitionings) which don't violate the data

dependencies; they then accept the shortest one which

doesn't violate the resource conflict criterion.

7

.1

An improvement upon this algorithm is made by Yau,

et al. [YAU 74]. They generate only valid microinstruc-

tion partitionings, and not all of those; they then select

the shortest, or stop if they obtain one which is provably

minimal. Unfortunately, this still seems to use far too

much time to be of much use. Of interest in that paper,

though, is the fact that they use heuristics to guide the

order in which the operations are grouped, stopping if

they reach a provably minimal partition. Since they then

present a not necessarily minimal algorithm which uses

much the same heuristics, this paper is referred to later

in this section.

 Finally, an algorithm is given by Tabandah and

Ramamoorthy [TABA74]. It is considered in the context

of the SIMPL compiler (see the next reference) and is

similar in style to the nonoptimal algorithm of

Ramamoorthy and Tsuchiya, which is presented.next. Again,

this algorithm requires immense amounts of time and space

and is not suggested as a practical solution.

Approximate Solutions

We now consider algorithms which produce suboptimal 1

results but are possibly practical. The most important work

seems to be that connected with the SIMPL compiler,

Ramamoorthy and Tsuchiya [RAMA74]. SIMPL is a high level

microprogramming language using the rather restrictive

8

h

1

single identity principle, in which variables may be

assigned values only once. It is first compiled into

sequential microcode and is the-n parallelized. Briefly,

their parallelizing algorithm is as follows:

Ignoring resource constraints, they identify critical

MOPs as those on the critical path(s), which are paths of

maximal length on the data-precedence graph. The natural

partitioning of these MOPs is taken, in which MOPs the

same distance from the top are in the same partition.

Each of these is then split up into the minimum number

necessary to avoid resource conflict. (Here a potentially

large loss of optimality is evident, as data and resource

independent MOPs from adjacent partitions are never placed

in the same new intermediate partition.) Finally the non-

critical MOPs are placed in this scheme from earliest to

latest; occasionally a new partition is formed for one of

them when it would delay its successors too much to place

it legally in an existing partition.

The next algorithm we consider is that of Tsuchiya and

Gonzalez [TSUC74], also developed in relation to the SIMPL

compiler and meant to be an improvement over the one given

above. Briefly, they do the following:

The latest partitioning is formed, in which MOPs are placed

as late as possible without increasing the number of parti-

tions over the minimum, and with no regard paid to resource

conflict. Individual partitions are then considered earliest

9

71

to latest. If no resource conflicts exist, as man MOPs

as can be brought in legally from later partitions are

and this becomes a permanent microinstruction. If

conflicts do exist, all possible MOPs whose data dependencies

will allow are brought into the partition and a choice. of

a permanent set of MOPs for this microinstruction is made.

The remaining MOPs are pushed into the next partition,

where they may have a ripple effect on their successors,

possibly causing new instructions after what had been

the last.

Unfortuntately, the algorithm was not given in enough

detail for us to resolve conflicts between the criteria

given for choosing which MOPs to delay, and those actually

delayed in a rather detailed example.

Next we consider the previously mentioned algorithm

·of Yau, Schowe, and Tsuchiya [YAU74] . This is rather

different in spirit from the previous two in that it

constructs microinstructions an instruction at a time,

rather than starting with a more global partitioning

and then altering it. Thdir algorithm is essentially:

The weight of a MOP is defined as its number of

descendants (not necessarily direct descendants),

and the weight of a microinstruction as the sum of

the weights of its constituent MOPs. Microinstructions

are formed one at a time, from the earliest to the

latest, by considering every possible legal micro-

10

instruction producable from the MOPs not yet used

and selecting the one with the greatest weight. We

remark that only microinstructions which cannot have I

another MOP legally added to them need be considered

for maximal weight.

As will be explained in more detail later, we found this

the most interesting of the algorithms here, and investigated

it in some detail.

Dasgupta and Tartar [DASG76] present an algorithm

which they claimed to be optimal; however, it simply considers

MOPs in their source order and places them each as early

as possible without violating resource and data-dependency

rules. Its nonoptimality is evident from very short

examples [DASG78], but it is difficult to ascertain that

from the algorithm, which is quite complex due to their

handling of "poly-phase" microinstructions (which we

will briefly discuss in Chapter 9, and which we feel would

not present a great deal of difficulty in an implementation).

Finally, we consider the work of Tokoro et al. [TOK077].

Just as was the case in [DASG76], they have a somewhat

more general model, involving "microtemplates", which

deals with many more options in microprogrammed machine

design than we are considering here. As such, the optimiza-

tion algorithm, as we would consider it, is somewhat obscured.

11

When projected down to our environment, however, their

algorithm is-the same as that in [YAU74], with the excep-

tion that they select the microinstruction at each level

which has the most MOPs whose longest path distance to

the bottom of the data dependency graph is greatest among

the remaining MOPs. Ties are broken by simply picking-

the instruction with the most MOPs.

Beyond Block Optimization

We were only able to find two references to optimiza-

tion beyond basic blocks, a subject about which we will

have much to say in Chapter 8.

The first, again an algorithm of Dasgupta [DASG77],

only looks for pairs of basic blocks, (Bi'B), with the

property that B. is executed during a run of the code if
J

and only if Bi is. (For basic block definitions, see

Chapter 8.) The earlier block, Bi , is parallelized, using

the nonoptimal algorithm in [DASG76]. Then MOPs in B. whose
J

data dependencies allow are moved up into Bi , if they can

be fitted into holes in the already existing optimization

of Bi. (That is, without lengthening Bi.) Otherwise, they

are sdheduled in B according to the basic block algorithm.
The other reference to beyond basic block optimization,

that of Tokoro et al. [TOK078], is considerably more

ambitious. Although a great many details are omitted, we

can describe the spirit of their methods. They produce a

12

small catalog of the types of MOP motions from one block

to another, such as moving a MOP from a block into all of

the blocks that must follow it. (We have a catalog of that

sort in Chapter 8.) They then proceed in an upward direc-

tion, moving MOPs into holes in already optimized blocks.

Finally, the same thing is attempted in a downward direction.

13

CHAPTER 4: Practical Results in Processor Scheduling Theory

Our approach to this problem has been to identify

the main aspects of it with special cases of the processor

scheduling problem with resource constraints. Processor

scheduling theory has received wide study (e. g. see

[COFF76]), and we have been able to use some of the

results and methods of attack used for the more general

problem.

Processor Scheduling

The processor scheduling problem we are interested in

can be described as follows: we are given a set of tasks

to be processed, tl't2'...'ts and an acyclic partial

order on those tasks (the partial order specifies a time

precedence on the tasks, i.e. if t. < t. , then t. must1 J 1

be completed before t begins). Each task takes some

length of time to be processed, and we have m identical

processors, Pl,.··,Pm with which to process these tasks.

Furthermore, there is a set R = {rl'r2'...'r } of resourcesn

and a function U where U(ti'r) is between 0 and 1 and

specifies the proportion of resource j which is used by task

t. in one time unit. In fact, we will restrict ourselves
1

to tasks with identical times (or unit execution time - UET

scheduling), but will in later sections make reference to

situations in which tasks take longer than 1 unit (e.g.

14

the PUMA's 2 cycle add).

A schedule is an assignment of the tasks to discrete

time units (this assignment is called partitioning; the

time units, partitions) such that:

(1) No more than m tasks are assigned to any time unit,

corresponding to the m processors available to

process them

(2) If ti < t ,-ti is assigned to an earlier time unit

than t.
J

(3) Given any resource, r, and any time unit, the sum of

the U(t,r) for all t's assigned to the time unit is

less than 1; that is, we don't use up more of a resource

than there is.

We are generally interested in finding schedules in

which the number of time units used (the "length of the

schedule") is near optimally small. Finding the actual

minimum is np-complete; indeed it's np-complete under the

restriction that there are but 2 processors, and one

resource which tasks use either completely or not at all

(see Ullman's paper in [COFF76]), and under other, similar

restrictions [GARE74].

Our formal definitions for scheduling theory, given

in Figure 4.1, make no mention of processors. Indeed, if

we had an m-processor system, we could define a resource

r such that U(ti'r) = 1/m for all i, and r would completely

15

Figure 4.1

A Formal Description of Task Scheduling with Resources

A. Schedule Definitions.
1

1. We have a Bet of taakB T = {tl't2,",,ts of size s
(intuitively, the tasks are jobs which we are going to process).

2. We have a partia Z order < on the tasks, and, thus an associated

dag. We distinguish some of the edges by writing <= rather than

simply < , and in any picture we draw of the dag we place an "="

next to any edge distinguished by a <=.

(Intuitively, ti < t means that we are required to process

t. before t.. t. <= t means that we are required to process ti1]1
no later than t..)

]

3. We have a set of resourefs R = {rl'r2,"''ru of size-u.
(Intuitively, the ri's are things used in the processing of the
tasks, We think of them as being present in limited amounts

and we think of the tasks as competing for their use.)

4. We have a map U: {T X.R} + [0,11 specifying the percentage

of each resource used by each task

(i.e. U(t3'r7) = .125 means that task 3 uses 1/8 of the
available amount of resource 7).

5. We define a partition as any subset of T, and a partitioning as

an ordered tuple of partitions which are mutually disjoint and

exhaustive. That is, if for each i, Pi c T, the Pi's are

partitions. If P = (Pl,···,Plc) such that P. n P. - 0, unless]1
i = j, and such that u Pi = T, then P is a partitioning.

Note that the partition ng is determined not only by the Pi's ,

but also their order.

When we refer to a specific partitioning P = (Pl'...'Pk) '

we say a task t i s a t ZeveZ n when t€P ; we also may refern
to P as a Zevel or ZeveZ n, and call Pn a eyeZe.n

6. We further say a partitioning P is a ZegaZ partitioning if both of

the following hold:

(a) Given any t and t' € T such that t < t' with t at level n and

t' at level m, then n < m. Similarly, if t <= t', then n <= m.

(b) Given any partition P in P, and any resource fi € R,

I u(tk;ri) <= 1 .

tk€Pj

-A legal partitioning is more commonly called a scheduZe.

(Intuitively, we think of our tasks as each taking one time unit
to process. Each partition, then, is one time unit, and the

tasks belonging to that partition are all thought of as being

done in parallel in that time unit. Condition (a) then assures

that the specified task precedence is not violated. Condition (b)

assures that in no time unit is more than the available amount

of any resource used.)

16

Ii--

Figure 4.2

B. Directed Graph Definitions (used in describing algorithms):

1. If ti < t or ti <= t we say that ti is a predecessor of
t and

that t. is a successor of t.. When we wish to distinguish between
J 1

the two types of precedence, we sometimes use the terms

Btriet predecessor and equaZ predecessor with the obvious meanings.

Similarly for successor.

2. We formally define the height of a task, HEIGHT(t), as follows:

(a) If a task has no successors, its height is 1.

(b) Otherwise, find the successors of the task whose height is
the largest, say height h. If one of those tasks is a strict

successor, then the given task has height h + 1.

Otherwise Ithe given task has height h.

(The height may be thought of as the smallest number of time units
required from the time processing starts on the given task to the

end of the shortest possible schedule, given infinite resources.)
3. A criticaL task is any sequence of tasks such that:

(a) each task is a predecessor of the following task.

(b) the first task has no predecessors and is of the highest
height in T

(c) the last task has no successors

We will refer to C, the "critical path length" in a graph, which is
the height referred to in (b). Note that a critical path may have
more than C tasks along it, due to = edges. Note also that C is a
theoretical lower bound on any schedule, and that the bound would be
achieved given infinite resources.
Any task which belongs to any critical path is called a criticaZ task.

4. We define the depth of a task, DEPTH(t), precisely as height was

defined, with the word predecessor substituted for successor throughout.
5. The earZiest partitioning is that in which the level of each task is

its depth. The latest partitioning is that in which each task is at

level (C - height) + 1, which we call LATEST(t). Note that each of
these partitionings has exactly C partitions.
(In the earliest partitioning, every task is done as early as

possible, with no regard for resource usage. In the latest, each task
is done as late as possible, without adding a level, with no regard

for resource usage.)

6. Given a particular partitioning P, we say that task t is data ready
at ZeveZ 1 if all of its strict predecessors are contained in levels

1,2,...,1-1 and all of its equal predecessors in levels 1,2,...,£.

17

describe the processor constraint. Since the systems we

will be investigating do not in general have anything

corresponding to the processor set, we left it out of the

definitions. Also note that some partial order edges are

distinguished by equals signs in our definitions. We

will need the full generality of those edges later, for

the purposes of this discussion, however, we may ignore

the "= edges".

Approximately Optimal Solutions and List Scheduling

We were not able to find anything in the literature

but the roughest upper bounds on approximate algorithms

for the full problem we are interested in. If one eliminates

the resource s, however, or eliminates the precedence rela-

tion, experiments have been done to rank some suggested

strategies. In the case of no resources, a paper by

Adam , Chandy and Dickson [ADAM74] studied various "list

scheduling" strategies. List scheduling, which is

summarized more formally in the last section of this chapter,

basically involves choosing a heuristic function to assign

a priority value to each task. The first partition is

scheduled by choosing tasks, in order of their PFiorities,

from those that are data-ready. Each task is examined to

see if it can be placed in the time unit without any resources

being used above capacity, and it is so placed, if possible.

The partition is fixed when either no more data ready tasks

18

exist or all of the processors have been used up. Following

partitions are then filled in the same way; scheduling

is finished when no tasks remain. It is clear that a legal

schedule is formed in this manner.

The attractions of list scheduling include:

(1) It is fast and straightforward; in particular, no

scheduled task is ever moved by a later step.

(2) The heuristic portion of it is totally isolated from

the scheduling aspects.

(3) It has a record of good performance in some

environments.

Adam et al. studied the list schedules produced by

five strategies, namely:

(1) The priority is the length of the largest chain from

the given task to the exit. Since their model included

nonunit task times, the priority is the total length

of all tasks on the chain. They referred to this as

HLFET (Highest levels first, estimated times); in our

definitions (Fig. 4.2) we have referred'to this as the

height of a task, for UET scheduling.

(2) As above, except ignoring tasks times, referred to as

HLFNET (no estimated times).

(3) Random priorities.

(4) The priority is the closeness to the entrance of the

graph, referred to as SCFET (Shortest co-levels) . For
.

UET scheduling, we could use -DEPTH to get the same

ordering.
19

\

(5) As above, with no tasks times - SCFNET.

These strategies were used to produce list schedules

for hundreds of precedence graphs, some containing hundreds

of edges or nodes; some of the graphs were randomly

produced, some culled from real programs. In all cases (and

also when the same thing was done for tasks with stochastic

task times), the results were in the same order: HLFET,

HLFNET, SCFNET, RANDOM, SCFET with HLFET being the superior.

What's more, the best known lower bound for this case, that

of Fernandez-Bussel [FERN73], was rarely exceeded by HLFET

in any class tested by more than 0.2 percent, even for

very large graphs (one case was 16 percent worse, one 4,

the rest under 2, and a great many hit the lower bound).

As we will discuss in Chapters 6 and 7, we were able to

put the ideas in [FERN73] to several good uses, but, for

the moment, we note that these results demonstrate both

the effectiveness of highest-level priorities and the

tightness of the bound in this environment. The good

performance of the highest level first strategies is not

a great surprise; it has been in the folklore for some time

that that's the right way. The CDC FTN Fortran compiler

optimizes basic blocks this way, as does an optimizer for

the CRAY-1 written by Richard Sites, and for some restricted

classes of problems, optimal schedules can be formed using

highest level type lists (see, e.g., [COFF72]).

20

Resource Constrained Problems

Naturally, such strategies could be applied directly

to resource constrdined problems, but they would be what

we have dubbed "resource inconsiderate". It is certainly

true that one is often faced with a resource bottleneck

that indicates priorities opposed to what would be suggested

by a level heuristic; we shall see examples of that shortly.

There is, as we have mentioned, a study [ECKE78] which has

compared two resource considerate strategies, but in an

environment in which the precedence relation was empty.

Under such conditions, the problem is called "generalized

bin packing" and the heuristics used generalize bin packing

strategies. We refer to the two strategies tested as RMAX

and NEIGHBORHOOD:

(1) RMAX: the priority of a task is the maximum component

in its resource usage vector, that is,

PRIORITY(t.) = MAX {U(t.,r.)}.1
j 1

J

(2) NEIGHBORHOOD: .we define a relation CLOSE as:

two tasks, t. and t. , are close if they could ever be1 J

scheduled together without a resource being overused,

i.e. for all k, U(t.,r.) + U(t.,r) < 1. Then the1 K Jk_

priority of a task is the number of tasks it is CLOSE to.

Eckert chose his simulation parameters in such a way

that RMAX would seem to be favored, since individual resources

are not often pairwise overused. Nonetheless, the NEIGHBORHOOD

21

dissimilar lines are suggested and tested.

strategy did noticably, though not decisively, better.

Our concern is with the full problem. In the next

two chapters the ideas of [ADAM74] and [ECKE78] are combined

and extended, and many other ideas along similar and

We close this chapter with a formal description of

list scheduling.

A Formal Description of List Scheduling

In the absence of = edges, we have what is called, in

the scheduling theory literature: unit execution time (UET)

seheduZing with resources. The quality of schedules is

measured by the number of levels produced, and an aim of

scheduling theory is the derivation of methods which

produce short schedules.

We now present a method of UET scheduling called

Zist scheduting, the desirable properties of which have

been outlined in the accompanying text. This will later

be modified to include = edges.

Algorithm: List Scheduling

Input: T, R, U, < given as in Figures 4.1 and 4.2,

with accompanying definitions.

Uses: A separate routine -- PRIORITYSET -- forms a

function PRI: T + real numbers. PRI(ti) is

thought of as the priority that task ti be

scheduled early.

22

An ordered list of tasks, READY.

A set of tasks, NOT READY. NOT-READY C T.

Output: A schedule, namely a legal partitioning

 = <Pl'P2""'Pi '
Method: We use a list called READY, the data-ready list,

which initially contains all tasks without

predecessors and which is sorted by priority.

The first level is formed by considering the

tasks on the list in order and placing each one

in that level if it does not cause any resource

to be pverused. A task so placed is deleted from

the data ready list. After no more tasks can be

placed, the data ready list is updated to contain

all tasks which will, as a result of their

predecessors' being scheduled, be ready at the

next level. The next and following levels are

scheduled in the same way.

Algorithm:

1. Call PRIORITYSET, defining PRI(ti) for each task ti E T.

2. c = l, READY = empty, NOT-READY = T, Pl = 0

3. For each task t. E NOT-READY which is now data ready, do:1

Place ti On READY in order of PRI (ti)
Delete t. from NOT-READY

1

End.

23

4. Scan the READY list top to bottom (i.e. in order of

priority). For each t. on READY, if1

for all k, I u (t j, rk) + U (t i 'r k) 1 1

t.EP
then do: J c

Place t. in P
1 C

Delete t. from READY
1

End.

5. If tasks remain on READY or NOT-READY,

then do:

c=c+1

P=0
C ·

go to step 3

end.

Otherwise, STOP. A schedule has been formed

from Pl,P 2' " ' c'

Note: The above algorithm was chosen for clarity. It appears

to require that IT12 elements be scanned at step 4 in

a total run of the algorithm, and this seems unlikely

to be improvable. In practical terms, however, it

is probably a significant constant factor faster to:

1. Keep a count of the predecessors of each task

2. Whenever a task is scheduled, decrement each of its

successor's counts by 1

3. Whenever a task's count reaches 0 during the scheduling

of some level, put the task on an ALMOST-READY list.

24

4. After scheduling is completed for some level, insert the

the ALMOST-READY tasks onto the READY list.

Indeed, our implementation does this.

It is also worth noting that a sophisticated PRIORITYSET

routine is apt to dominate the efficiency considerations.

25

-

5. Optimizing Basic Blocks of Microcode

Formal Identification between Optimizing and Scheduling

We now do what we have been alluding to all along,

that is, we recast our problem as one of processor

scheduling with resource constraints. To make our

formal identification, we will need to specify what our

tasks are, how the partial order is defined, and what

the resource mapping is to be.

Suppose we are,given a basic block of sequential

microcode (which will be defined carefully in Chapter 8,

2 but which we informally say has no jumps out of the block,

except at the end, and no jumps in, except at the beginning).

We define as our tasks the individual MOPs. The resource

'usages of each MOP will be completely machine dependent,

but will involve such resources as busses, ALU's, multi-

plexers, etc.

Our algorithm for determining the partial order on the

MOPs is given in Figure 5.2. The algorithm presupposes

that the registers read and written by each MOP are known

and from those sets determines < , with some edges

distinguished by an =, as explained earlier.

26

Formal Identification between Processor Scheduling
and Basic Block Microcode Optimization

Processor Scheduling Microcode

Set of tasks Micro operations

Acyclic partial order Data precedence relation

preserving data validity

(see Figure 5.2)

Resources Hardware 'resources in

computer (e.g., ALU,

BUSSES)

One time unit in a task A horizontal microinstruction

processor resource

schedule

Figure 5.1

,.

27

Rules for Formation of Partial Order on Micro-operations

Given: 1. A set of MOPs T = {tl't2'...'tsj' where T

represents, with subscript order equal to

source order, a basic block of MOPs.

2. A set of registers A = {Al'A2'00,'Av

3. For each ti ' two sets, READ(ti) and WRITE(ti) E A,

not necessarily disjoint.

We produce a partial order < on T, with some edges distinguished

by writing <= , as follows:

For each pair of MOPs ti 't with i < j (i.e. ti comes before

t in
the source code) :

1. If READ(ti) n WRITE(t) 0 0, then ti <= tj

unless for each a E READ(ti) n WRITE(t) there

is a k such that i<k<j and a€ WRITE(tk).

2. If WRITE(ti) n READ(t.) 0 0, then t. < t.,1 1 1

unless for each a € WRITE(ti) n READ(t) there

is a k such that i<k<j and a€ WRITE(tk).

3. If WRITE(ti) n WRITE(t) 0 0, then ti <t j.

Unless for each a E WRITE(ti) A WRITE(t) there

is a k such that i<k<j and a€ WRITE(tk).

4. If by the above rules, both ti < t and ti <= tj ,

then we write ti < tj.

Figure 5.2

28

Algorithm for the above:

Input: T, A, READ, WRITE as above, except T is augmented

with a dummy task, tl.

Uses: A function LASTWRITE A+T initially into a dummy

task t .
0

A function READS_SINCE_WRITE : A + 'subsets of T,

initially into the empty set.

Output: A function STRICTPRED: T + subsets of T

and EQUALPRED:. T + subsets of T.

t. € STRICTPRED(ti) will mean that t. < t. , while
J]1

t € EQUALPRED(ti) will mean that t <= ti.
Method: We consider the tasks in source order. For each

task t. we look at the set READ(t.). For each
1 1

element a € READ (ti), that is for' each register

that ti reads, we put the last task to write a ,

(that is, LASTWRITE(a)), in the set STRICTPRED(ti).

We then add ti to
READS_SINCE_WRITE(a) .

Similarly, we consider each register ak E WRITE(ti).

For each we put all the tasks belonging Lo

READS_SINCE_WRITE(ak) on EQUALPRED(ti). If

READS_SINCE_WRITE(ak) is empty, we put LASTWRITE(ak)

on STRICTPRED(ti)· (If we did so even when

READS_SINCE_WRITE(ak) was not empty, it would still

be correctly following rule 3 above, but would

produce a redundant ("transitive") edge.) Finally

Figure 5.2
(Continued)

29

we set READ_SINCE_WRITE (ak) = 0 and we set

LASTWRITE (a) = t. .k 1

After processing each task, we "cleanup" by

removing all edges from t , by removing all

duplicate edges (resolving contentions in favor

of STRICTPRED), and removing all edges from a

task to itself.

Algorithm:

INITIALIZE:

1. STRICTPRED(t), EQUALPRED(ti) empty, for all ti € T.

2. READS_SINCE_WRITE(ak) = empty,

LASTWRITE (a) = 0, for all ak € A.
FORM EDGES:

3. For i=l t o s DO:

4. DO for each ak € READ(ti):

5. STRICTPRED(ti)=STRICTPRED(ti)U{LASTWRITE(ak)3

6. READS_SINCE_WRITE(ak)=READS_SINCE_WRITE(ak)

u {ti

7. END 4

8. DO FOR EACH ak E WRITE(ti):

9. IF READS_SINCE_WRITE(ak) = empty THEN

STRICTPRED (ti) =STRICTPRED (ti) U{LASTWRITE (ak)

10. ELSE DO:

Figure 5.2
(Continued)

30

11. EQUALPRED(ti)=EQUALPRED(ti)
U READS SINCE WRITE(a)- -k

12. READS_SINCE_WRITE (ak) = empty

13. END 10

14 . LASTWRITE (ak) = ti

15. END 8

CLEANUP:

16. STRICTPRED(ti) = STRICTPRED(ti) - tl

17. EQUALPRED(ti) = (EQUALPRED(t.)-STRICTPRED(ti))1

- {t ,ti

18. END 3

NOTE: As implemented, the above avoids doing 0(IT'2) of any

operation, the order of the most frequently executed steps

being 0(E), the number of edges in the graph being formed.

This required that for the ti under consideration in

steps 3 through 18, an array ALREADY(t) kept the status

of the edge (t ,ti), which was zero if no precedence

was found, 1 if only equal precedence was found, and

2 if strict (or both) precedence(s) were found.

(t.,t.) was set back to zero after ALREADY was built.J J

Alli t € STRICTPRED (ti) U EQUALPRED (ti) were then scanned,

and a "cleaned-up" predecessor set was built from that

information, with that step also taking 0(E) steps.

As Figure 5.4 shows, E is 0(|TI) in this type of graph.

Figure 5.2
(Continued)

31

An Example

We have provided an example, so that the application

of scheduling theory, and particularly list scheduling,

may be easily followed. Example 5.la contains a short

sequence of MOPs, written for the PUMA. We first identify

the individual MOPs as the tasks; there are 7 of them,

which we can refer to as tl't2'...'t7. Our goal is to

bunch them into microinstructions, which we think of as

the discrete partitions of a schedule. Corresponding to

the precedence relation on the tasks we have data-prededence

requirements on the MOPs, from the register usages in 'example

5.lb. The data-precedence requirements simply assure that no

MOP reads a register before it is valid or after it has

been erased, and we see in example 5.lc the data-predecence

graph on tl'...'t7. Note that we use the term register

rather loosely here. For example, since weare unlikely

to be capable of a range analysis, we consider all of main

memory to be one register, and we say that any MOP which reads

any memory location must follow any (earlier source) MOP

which writes any memory location and that 'two memory writes

may not be permuted. This is not likely to be serious if

the code being optimized is a microcoded emulator, since

the memory references will strongly depend upon the algorithm

being interpreted, rather than that in the microcode, and a

range analysis is unlikely to provide much help. This is,

however, a potentially serious deficiency when a given

32

\

SEQUENTIAL REGISTER(S) REGISTER(S) RESOURCE(S)
CODE READ WRITTEN USED *

(1) AC = BUF BUF AC ALU (1 unit)

(2) YO = AC AC YO XYREGBUS (1)

(3) Yl = AC AC Yl XYREGBUS (1)

(4) Y2 = AC AC Y2 XYREGBUS (1)

(5) MQ = -BUF BUF MQ ALU (1)

(6) MQ = SHIFT(MQ,Ll) MQ MQ SHIFTER (1)

(7) MQ = SHIFT(MQ,Ll) MQ MQ SHIFTER (1)

5.1 a 5.1 b 5.1 d

* We have one unit of each of these resources available.

Using PRIORITY(t) = HEIGHT(t)

«
f

PRIORITY LIST: 5 1 6 2 3 4

5.1 C Schedule:

5 MQ = -BUF
1 6 AC = BUF; MQ = SHIFT(MQ,Ll)
2 7 YO = AC; MQ = SHIFT(MQ,Ll)
3 Yl = AC

4 Y2 = AC

5.1 e
Using PRIORITY LIST: 1 5 6 2 3 4 7

Schedule:

1
5 2
6 3
7 4

5.1 f
EXAMPLE 5.1 a-f

33

applications program is compiled into microcode. The

programmer, or a smart compiler, may very well know that

references differ and that no data-dependency is implied.

Example 5.1 has been chosen to have obvious data-

dependencies. It is worthwhile to note that one of the

characteristics of the microprogram level of a machine is

that it tends to have many hidden and surprising register

usages, reflecting some of the subtle aspects of the

machine's design. While this complicat es all aspects

of microcode generation, it can make hand optimizing

particularly difficult, especially when there has been

a time lapse between the production and' optimizing -- as

in debugging. This presents little difficulty to the

automated optimizer, however.

Note that we mark some edges on our graph with an

equals sign; this indicates that the following task can be

done no earlier than the preceding one, but they may be done

simultaneously. In many machines, PUMA included,

master-slave flip-flops permit the valid reading of a

register up to the time that the register writes occur.

Thus a write to a register following a read of that register

may be done in the same cycle as the read, but no earlier.

Be'cause of "= edges", a task may become data-ready in the

course of scheduling a microinstruction if all of its

remaining unscheduled predecessors had "= edges" to it

at the start of the formation of the microinstruction

34

and all were scheduled in the microinstruction. Figure 5.3

specifies the changes necessary to our list scheduling

algorithm, given at the end of Chapter 4, to allow for

" = edge s" .

Resource Constraints

We finally need to consider the resource constraints

on MOPs. In the PUMA, and we suspect in most machines,

the full generality of the resource usage function is
*

never used. In most cases, each MOP uses a set of resources,

usually one or two, and each resource it uses, it uses

completely. Thus we would expect function values of all.

zeros, except for a few ones. A somewhat different form of

resource conflict occurs when one considers hardware which

has mode settings. That is, an arithmetic-logic unit

kmight be able to operate in any of 2 modes, depending on

the values of some lines. Two MOPs which require the ALU to

operate in the same mode might not conflict, yet they both

use the ALU, and would conflict with other MOPs using the ALU

in different modes. A similar situation occurs when a

multiplexer selects data onto a data path; two MOPs might

select the same data, and we would say they have compatible

use of the resource. The possibility of compatible usage

makes efficient determination of whether a MOP conflicts

with already placed MOPs more difficult. An interesting and

efficient way of dealing with this is discussed elsewhere.

35

Alterations of List Scheduling to Account for "= Edges"

In the algorithm for list scheduling at the end of Chapter 4,

replace step 4 with:

4a. NEXT-READY = 0

4b. Find the highest priority task on the READY list,
call it t..1
If READY = 0, then do:

READY = NEXT-READY
GO TO STEP 5
end

4c. If.for all k, I U(tj,rk) + U(ti,rk) i 1t.€P
0 J cthen do:

Place t. in PE.1

For each equal successor t4 of t. on the3 1

data precedence graph,

if: (i) All of t.'s strict predecessors
J

were scheduled in Pc-1 or
earlier

and (ii)All of t.'s equal predecessors
]

were scheduled in P or
C

earlier

then do: remove t. from NOT-READY
J

place t. on READY
]

end

eTse Place t. on NEXT-READY1

4d. remove ti from READY; go to step 4b.

Figure 5.3

36

In example 5.ld, we see that it is sufficient to

consider only three resources to determine the conflict

relations among the tasks -- all other resources have been

left out for simplicity. If we ignore these resources

in forming our priorities and schedule using a highest

level first list, as in example 5.le, we see that five

microinstructions are generated. With a little reflec-

tion, though, we can see that t2 , t. and t all form a3' 4

resource bottleneck, and tl must be given priority over t5

to get through this bottleneck quickly, even though t5

has a higher level. It isn't just resource inconsiderate

strategies which are unable to deal with this, though.

Neither RMAX nor NEIGHBORHOOD would distinguish between tl

and t5 ' since they both have precisely the same resource

usages. Even a strategy like taking the sum of'a task

resource priority and level priority would fail here, since

t5 would still have priority over tl ' and, as example 5.lf

shows, putting tl ahead of t5 would generate only four

microinstructions.

Naturally, one can invent a clever example which will
make any efficient strategy look bad and we were quite

curious about whether this is a common situation. In

Chapter 7 we report on experiments we have done to test

many strategies for the production of list priorities.

37

A Note on Efficiency

2
List scheduling seems to be an n (in the number of tasks)

time complexity algorithm, but when coded efficiently

appeared to run linearly. After examination, a possible

explanation occurred to us; namely, the code seemed linear

in the number of edges in the data-precedence graph. While,

2
normally, the edges of a dag grow as n , the number of edges

derived according to the rules in Figure 5.2 is limited in

one dimension by the number of registers used, which would

not grow with the number of tasks (unless, possibly, if the

memory locations were thought of as individuil registers

and a range analysis were done, which does not seem relevant

to these optimizations). Thus the number of edges, and

the algorithms used, grow linearly with the number of tasks.

The argument that the number of edges grows as the product

of the number of tasks and the number of registers is

presented in,Figure 5.4..

In summary, then, we see that the basic block problem is

very little different from the scheduling problem presented

in Section 4, but that the methods used on restrictions of

the problem are possibly not effective enough on the full

problem, even when combined.

Before presenting the results of our experiments we,

in the next chapter, concern ourselves with a lower bound

which will help us interpret the results of our experiments

and will provide a basis for some of the strategies tested.

38

E is 0(ITI) in Data Precedence Graph:

We show here that the number of edges in the data dependency
graph of a set of MOPs grows linearly in the number of MOPs, despitethe fact that the in-degree and out-degree of any single MOP may
itself grow linearly with the number of MOPs.

We are given a set of MOPs of size s, and a set of v registers,
as in Figure 5.2.

According to Figure 5.2, there are three sources for edges (ti'tj)defined on the MOPs:

1. where ti reads a register which is next written by tj
2. where ti writes a register which is read by tj ,

before any other writes to the register

3. where ti writes a register which is written by tj ,
before any other reads or writes to the register

(we say that ti is an unreferenced write).

We claim that each o f the above con tributes at most v*s edgesto the graph. For edges of type 1, we maintain that at most v edges
could leave any task, since for each of the v registers that t. reads,there will be at most one MOP which next writes that register.+ Thus
each of s MOPs could follow ti via a type 1 edge, and only v*s o fthem could exist.

Similarly, if tj reads a register, then only one ti could be the
immediately preceding write of that register, and only v type 2 edges
could·have tj as their target. Thus only v*s edges of type 2could exist.

Finally, for each of the up to v registers that tj writes, onlyone unreferred write could immediately precede it, and again only
v * s edges could exist.

We see, then, that fewer than 3*v*s edges could be generated,
and the number of edges is 0(s). This is somewhat surprising in lightof the fact that one MOP could have in-degree of v * (s-1)/2 and out-degree of v * (s-1)/2. This would happen, for example, if all MOPs
read all registers, the middle MOP was the only one to write anyregister, and it wrote them all.

For a given machine, v is a small constant, but s, while possessing
a theore5ical upper bound, can grow large enough that algorithms requir-ing o (s operations or space can take significantly longer than those
,requiring 0(s).

Figure 5.4

39

A More Complex Example

We close this chapter with an actual example from

the PUMA's existing, hand-optimized, microcode; the code

is part of the emulation of the CDC 6600 central exchange

jump. The example is of interest because, although it is

not a-frequently executed portion of code, much attention

was paid to the hand optimization of the whole emulator.

Most list schedules would produce code which requiras

eight cycles instead of the nine cycles found in the PUMA.

Upon.investigation, it is clear that the hand optimization

was defeated by the intricacies of MOP compatability, rather

than data-dependency. It is also of interest to note that

this is the only block in the PUMA code which wasn't done

in obvious minimum time, and it seems that any reasonable

strategy would produce minimum length code for every PUMA

block. We'll have more to say about the implications of

this in Chapters 7 and 8.

The exchange jump example is presented briefly and

- without comment as Example 5.2. Note that it includes

two-cycle MOPs, which we consider in Chapter 9, and a jump

MOP, which we force to the end, but which we consider at

length in Chapter 8.

40

SOURCE CODE (AS PARALLELIZED IN PUMA): TASKS:

CLEAR; AC = MQ; BUF = YO 1;2;3 (i.e. 1 E CLEAR
Y2 = AC; AC = AC & ruBUF 4;5 etc.)

BM = AC; MQ = 0 6;7
BUF = Y2 8

AC = SHIFT(BUF:MQ, R16) 9 '
AC = SHIFT(AC:MQ, Rl) 10

AC = SHIFT(AC:MQ, Rl); BUF = YO 11 ; 12
Y.2 = AC; AC = AC & 0BUF; P = P+1 13 ; 14 ; 15
AM = AC; = 7 + El; IF EALUPOUT- 16 ; 17

THEN XJEXTP '

DATA-PRECEDENCE GRAPH

PRIORITY LIST:

. ®3 2 34 5786
9 10 11 12 13 14

1 15 16 17

7 (using PRIORITY(t) = HEIGHT(t))

5
SCHEDULE:

e

6
1; 2;3;7; 15

4;5g =
8

6;9

9 10 ; 12
11

-

io 13 ; 14

1 16 ; 17

"

,3
EXAMPLE 5.2

'4

I

16

41

L

6. A Lower Bound and its Uses

The Fernandez-Bussel Lower Bound and How It Works

Fernandez and Bussel [FERN73] have produced a lower
0

bound on the number of cycles needed to schedule -a set of

tasks, given data-precedence, but no resource constraints.

This bound was used in [ADAM74] to bound the distance of

various list schedules from the optimal; the fact that

any schedule is an upper bound on the length of an optimal

schedule, and that the derived schedules were very near

the bound, show that the bound was very tight in that en-

vironment. We have extended their bound, greatly reduced

the computation necessary to calculate it, and have some

suggested uses for it, beyond the obvious use as an experi-

mental measure of the optimality of derived schedules.

Before explaining how the lower bound is found, we

note that in [FERN73] the bound is given for systems that

include tasks with arbitrary task times. Everything we do

could be similarly presented, but we are primarily interested

in unit execution time systems, and will, for clarity,

restrict our presentation to such systems.

Finding the Bound

Given m processors, we look at all intervals (i,j),

1<i<j<C, where i and j are integers, and C i s the- - -

length of a critical path in the data-precedence graph.

42

For any such interval, say (i ,j), we consider the set

of tasks t with the property that DEPTH(t) is i or later,
and LATEST(t) is j or sooner. (For definitions , see

Figure 4-2). Those tasks could not, by the definitions

of DEPTH and LATEST, be scheduled any earlier than time

i in a schedule of length C, nor any later than time j .
Thus if an optimal schedule were to be only C units long,

all of these tasks would have to be scheduled in iO-jl+1
time units. But if there are T such tasks, then it will

take at least T/m time units, and (T/m) - (i -j +1) extra

units above C will be required. We look at all intervals

to find the one that contributes the greatest number of

extra cycles, E. The shortest possible schedule will then

be > (C+E) units long. We thus have the formula presented

in Figure 6-1 for our bound, which has been extended to

include resources, as explained in 1, below.

How the Bound Loses Accuracy

The Fernandez-Bussel bound is excellent at finding

local bottlenecks. Unfortunately, we can only be sure

that the number of extra cycles is the largest number found

for any one interval. That is, if intervals (i,j) and

(i',j'), with i<j<i' <j' each contributed three extra

cycles, one cannot, in general, be sure whether three,

six, or some intermediate number of extra cycles would

43

The Fernandez-Bussel Lower Bound:

Given: R the set of resources, C the length of a critical

path

EARLY, LATEST: T + integers [l,C]

USAGE: Tx R + [0,1 1

all as defined previously.

then if

..

USAGE(t,r) - (j+1-i)
E=MAX ·

1<j<C t such that

1<i<j i<DEPTH(t)

r e R :LATEST (t) <j

Then 1 the length of an optimal schedule L0pT is

L *C+EOPT -

Figure 6:1

44

suffice to relieve both bottlenecks. We searched rather

hard for a set of criteria to help measure that number,

but were unsuccessful. It is our belief that the number

is generally the sum of the two disjoint bottlenecks,

especially when the graph has many edges. As a result,

the greater the length of the critical path, the less

accurate the bound is likely to be. In Chapter 7 our

experimental results will speak to that point.

Our Work On and Suggested Uses of the Bound

We have done the following in relation to this bound:

1. Extension to processor scheduling with resource con-

straints. It is possible, in the obvious way, to consider

each resource separately and to calculate the usage of

each resource in each interval. (In fact, the processors

themselves can be considered a resource of which each task

uses 1/m.) The resource-interval which contributes the

most extra cycles will determine the lower bound. Un-

fortunately, the interaction of a set of tasks restricted

to a certain interval will generally involve several

resources and, in practice, the bound seems to miss the

heavy resource bottlenecks. If, however, the tasks tend

to use only one resource apiece, that is, if the tasks

form equivalence classes with respect to which resources

they use, then we are much more likely to find the worst

45

bottleneck. Microoperations seem to have approximately ' Ithis property; the relation of clashing is generally

transitive and is certainly reflexive. Some insight into

the utility of this extension may be gained from the re-

suits of the experiments reported on in Section 7.

2. Efficient computation of the bound. The computa-

tional methods suggested in [FERN73] require looking at

all 0(T 12) intervals and doing a set formation of com-

plexity at least 0(TI) for each interval. Thus their

methods require 0(|T 13) operations, at least. Our methods,

presented at the end of this chapter, do a constant amount

of work for each of the 0(|T 12) intervals, thus requiring

0(IT12) operations.

We report on the actual computation time used by an

implementation of our algorithm in Chapter 7.

3. Use of the bound as a guide to places to invest more

time. Although it is true that when a derived schedule is

significantly longer than the bound the fault may lie with

either, such cases give some,indication that an investment

of more time may be worthwhile. In particular, finding

spots in the list schedule where a data-ready task was-

delayed due only to resource constraints and trying again

with a different task delayed may pay off. It may be

worthwhile, in view of the reason for the loss of accuracy

46

rilll-Ill

of the bound, to sum up the extra cycles yielded by some set

of disjoint intervals. If that sum were significantly less

than the derived schedule length, further search would be

indicated.

4. Resource considerate heuristics. Were it not for the data-

precedence graph, scheduling with resources would be a genera-

lization of bin-packing to weight-vectors, rather than simple

weights. Various heuristics have been suggested for the

generalized bin-packing problem ,[ECKE78], but it is not clear

how to apply these heuristics to tasks on a data-precedence

graph. We have attempted to use the bottlenecks found by the

bound as an aid in the production of resource considerate

schedules. Our method was successful, in that it consistently

produced the shortest schedules of any method we tested, and

could probably be "fine tuned" to do even better. Whether it

offers enough improvement over simpler strategies is environ-

ment dependent; Chapter 7 contains an experimental measure-

ment of that improvement.

Our method involves altering highest level priorities to

compensate for resource bottlenecks. Rather than use the

lower bound to spot only the worst bottleneck, we consider

all resource-interval pairs which need extra cycles. For

each such interval, we note which tasks contributed to the

resource bottleneck, and we boost their priorities (and those
of their

47

71

:

predecessors) beyond what is obtained from strictly data-

\ precedence considerations. This would seem intuitively,

to zero in more firmly 6n the resource constraints than

strategies which permit the·measurement, for example, of

the resource contentions of tasks which would be unlikely

to compete for scheduled places. Again, Section 7 contains

a precise statement of the heuristics used, as well as a

summary of experiments done.

Efficient Calculation 9f the Bound

Algorithm: Efficient calculation of Fernandez-Bussel

Lower Bound, extended to resources.

Input: T, set of tasks

LATEST, DEPTH functions: T + integers [O,C]

U function:T x R+ [0,1]

C length of critical path of dag defined on T

all as previously defined

Output: E where C+E i s a lower bound on the length

of a schedule for T

Uses: LPTR function: integers [l,C] + subsets of T

where LPTR(i) is {t c T such that LATEST(t)=i}

SUME, SUML functions: integers [0,1] x R+ real numbers

where, initially,

I U (tj,rk).SUME(i,rk)
=

t.s.t.
J

DEPTH(t.)=i
J

48

That is, SUME(i,rk) is the amount of rk used by
all tasks whose "earliest issue time" (DEPTH) is i.

SUML is the same, with LATEST replacing DEPTH

TOTAL USAGE function: R + real numbers where

TOTALUSAGE(rk) = -- U(t,rk)
t€T

B fixed right endpoint of the major and minor intervals

A varying left endpoint of the minor intervals
MAJOREXCESS the amount of the resource currently under

consideration which is used by tasks constrained

to the major interval under consideration,

in excess of the amount that interval could

process.

MINOREXCESS Same as MAJOREXCESS, for minor intervals
MAXEXCESS the maximum of the MINOREXCESSes.

METHOD: For each resource, we consider all of the 0(C)
2

intervals [i,j], with 1<i l j<C, called the minor in-
tervals. For each minor interval we determine what the

excess resource requirement is, that is, how much of a

resource, rk' is used by tasks "critically constrained"

(see below) to [i,j], above the j+1-i units of rk which

could be processed in [i,j] with no additional cycles. A
task t it critically constrained to [i,j] if i 1 DEPTH(t) 1

LATEST(t) S j. We call those excesses the MINOREXCESSes,

and, from Figure 6-1, we are looking for the largest such

49

excess. We will gather the minor intervals into C chains

in such a way that the excess for any interval is the ex-

cess of its predecessor minus some already known value.

The first interval on each chain is referred to as the

major interval, and the chains are arranged as follows:

Major Intervals Minor Intervals

[l,C] + [2,c] + [3,C] + ... + [C-1,21 + [C,C]

[l,C-1] + [2,C-1] + ... + [C-l,C-1]'

[1,2] + [2,2]

[1,1]

To process the minor intervals, we set up a nested

loop. The outer·loop iterates through the major intervals

from [l,C] to [1,1]. The inner loop processes the chain

headed by the major interval.

Consider the first chain. The MINOREXCESS of [l,C]

is TOTALUSAGE - C. For [2,C] we need to eliminate the tasks

which are critically constrained to [l,C] (which all tasks

are) but whose DEPTH is 1. These tasks, however, have a

total resource usage of SUME(1 ,rk), and so we need only

subtract SUME(l,rk) from MINOREXCESS, and then add 1 be-

cause we are losing one cycle and can process one unit

less of rk. We continue this way, subtracting SUME and

50

\

adding 1 until we do [C,C].

We now consider the second chain. [l,C-1] has the same

excess as [l,C] had, minus SUML (C,rk)' plus 1, by the same

reasoning as above. A problem arises, however, on the

transition from [l,C-1] to [2,C-1]. This transition cannot

be done by subtracting SUME(l,rk) because some of the tasks

which contributed to SUME(1 ,rk) had LATEST of C, and thus

were not critically constrained to [l,C-1] and were not

included in the excess. Thus, after we chop off an end

point to go from one major interval to the next, we must

update all of the SUME function values affected. This is

straightforward enough; when we go from [l,C] to [l,C-1],

we take all tasks t in LPTR(C) and, for each, subtract

its usage from SUME(DEPTH(t),rk).

The formal algorithm:

1. In one pass through T, Form LPTR, SUME, SUML, TOTALUSAGE

2. MAXEXCESS=0

3. Do for each rk € R

4. MAJOREXCESS = TOTALUSAGE(rk) - C

/* MAJOREXCESS is likely to start negative */

5. Do B=C to 1 BY -1

6. MINOREXCESS = MAJOREXCESS

7. DO A=1 TO B

8. MAXEXCESS = MAX(MAXEXCESS, MINOREXCESS)

9. MINOREXCESS=MINOREXCESS +1- SUME(A ,rk

10. END 7

11. MAJOREXCESS=MAJOREXCESS +1- SUML(B ,rk
-/-

51

12. /* Update the SUME's to reflect new B */

FOR EACH t. € LPTR(B),
1

SUME(DEPTH(ti) ,rk)=SUME(DEPTH(ti)'rk)-U(ti ,rk

13. END 5

14. END 3

15. E = MAXEXCESS

16. END

Notes on the Efficiency of the Above

The loop at 3 is done a constant number of times, once

for each resource in the machine. Step 5 defines a loop

which is iterated C (which is 0(T)) times. Within the

loop, steps 7-10 are done o (C) times. In step 12, each t

belongs to only one LPTR, so step 12 is iterated only

once per t no matter what. Thus the worst steps, 7-10,
2

are 0(C); in fact, they are done C(C+1)/2 times.

In any system in which many resources are sparsely

used, which is probably true of most systems, it would

make sense to keep a running count of the SUM value at

the fixed endpoint, stopping consideration of that endpoint

whenever the SUM value went below 1. If the endpoint

does not contribute to the constraining of tasks enough

to overcome the additional unit of resource it makes

available, then one of its sub-intervals is a worse bottle-

52

neck than the interval with that endpoint.

Finally we note that if (2 units of storage were used,

we could just list all of the MINOREXCESSes, eliminating

step 8, and use a faster routine to find the max.

53

7. Experimentally Obtained Measures of the

Effectiveness of Several Basic Block Optimizing

Strategies

Introduction and General Conclusions

In this chapter we describe experiments done to

measure the effectiveness of several evaluation functions

used to produce scheduling lists. The functions were

tested on random task sets chosen to have characteristics

similar to those we would expect to cull from a wide range

of basic blocks of microcode. The schedule lengths obtained

are compared to< the theoretical 1bwer bound and to schedules

produced using some previously suggested methods of op-

timizing microcode.

We believe that ou results support the contention

that: Microcode optimization within basic blocks is not a

critical issue. Specifically, we maintain that:

1. The differences among the best strategies we

could find are-very small. One of those strategies

is the simple "highest levels first" mentioned

earlier which produces lists in 0(E) time. (Though

any list method will be 0(|T 12), worst case, to

produce the schedule given the priority list.)

2. The best strategies were very close to optimal.

In an environment meant to resemble the PUMA,

the four best strategies were within 8% of the

theoretical bound for task sets as large as 60

54

tasks, and within 4% for sets of size 20.

Indeed, it is our strong belief that the actual

difference between the strategies and the optimal

is much closer to zero. (Further experiments are

underway to test this hypothesis.)

3. The PUMA microcode emulating the CDC 6600 contains

about 360 basic blocks, and evidently any of the

four best strategies would produce·optimal code

for every one. Indeed, almost all'of the blocks

are one microinstruction long, and so even a very

poor scheduler would do very well. By hand,

two of the blocks were larger than optimal by

one cycle apiece.

We do not suggest that optimizing basic blocks is

unimportant. To the contrary, our beyond block methods,

presdnted in the next chapter, and which we believe to be

of critical importance, produce task systems which are

formally the same as basic blocks of code containing many

tasks (perhaps hundreds in some environments.) Thus

methods of solving the basic block problem do take on an

importance in that environment. Highest level lists,

however, would seem to do well enough to make the effort

of more elaborate strategies not worthwhile. In particular,

we would suggest that research in microcode optimization

be directed to issues ·beyond blocks, given these measure-

ments.

55

We are not alone in having these opinions, despite ;

the direction of the research to date. A short, refreshing

paper by Graham Wood [WOOD78] appeared in the Proceedings

of the 11th Annual Microprogramming Workshop in December,

1978. Wood does not report on the measurement of any '

strategies, but did code an optimizer, and concludes:

On reading the referenced papers,
one unavoidably gains the impression
that the automatic packing of micro-
operations into micro-instruction words
is a critical area of research into
which a great deal of effort must be
invested before user-microprogrammable
systems become feasible.

Experience with the above program,
however, has led the author to conclude
that, in practical situations, very
little scope exists in which to prac-
tise the art of optimal packing.
Straight line segments of vertical
micro-operations typically are not
very long - sequences of more than
about ten statements without a jump
or a label are uncommon, and the data
inter-dependency in such cases is.
liable to be great. Scope for optimi-
sation increases with the degree of
parallelism within the micro-instruction
word, but, in that case, resource con-
tention is reduced and packing them
becomes easy anyway.

In most practical situations, each
of the four algorithms compared above
would probably produce the same size of
output. Where one does produce a
smaller output than another, the
difference is quite likely not to be
significant compared to the possible
speed-ups which could be generated by
careful optimisation of the micro-
program itself.

56

We maintain that, given efficient sequential code, it is

the beyond block optimization which is difficult and long.

The Model

In order to simulate the task sets which would be

produced by microcode, we produced randomly generated

simplified MOPs and then formed the task set from them.

The parameters we used for a given run were:

#TASKS: the number of tasks per task set

#RES: the number of resources available

#RESU: the number of resources used by each task

#REGS: the number of registers available

#REGSR: the number of registers read per task

#REGSW: the number of registers written per task

#JOBS: the number of task sets generated

Thus we would, for each of the #TASKS MOPs, pick #RESU

integers uniformly from the set [1,#RES] and we would say

that the MOP used the one available unit of each picked

resource. Note that we allow repetition, so the MOPs

would use somewhat fewer than #RESU resources on average.

Similarly, we pick #REGSR registers from the set [1,#REG]

and we call that the set READ for that MOP; the same is

done for the write registers, using #REGSW. We then used

the algorithms from Chapter 5 to produce the data-precedence

graph.

A setting of the parameters which figured prominently

57

- -

in our experiments was:

#TASKS=40 #REGS=6

'

#RES=4 #REGSR=2

#RESU=1 #REGSW=1

which was felt to resemble the PUMA. (40 tasks was con-

sidered a realistic large set producable using the beyond

basic block methods - see Chapter 8.)

Limitations of the Model

We intentionally kept our model simple; it seemed to

us that more information about the practicalities of the

situation could be gleaned from statistically sound runs

with many parameter settings than fewer runs (due to the

time usage of a more complex model) on a model which more

closely resembled an actual machine.

In particular, we did not allow arbitrary amounts

of each resource to be used, feeling instead that in most

systems almost every resource is used entirely or not at

all by any task. Thus, while the model might not be able

to serve as part of an implementation of a system, the

measures obtained from it would be likely to accurately

reflect the characteristics of the system. We similarly

did not allow general distributions of numbers of regis-

ters read or written, nor any correlation between the

register and resource usages of neighboring MOPs, etc.,

again feeling that the simpler case accurately enough

58

resembles the actual ·situation. Our feelings along this

line are somewhat borne out by the fact, as we shall

discuss shortly, that the order among the strategies

tested remained stable under rather dramatic shifts in

the values of the parameters, and even the percentage

differences from the theoretical optimal varied in an

unsurprising fashion with the changes in the parameters.

The Strategies Tested

We tested twelve strategies for producing list

schedules, and then considered the various methods of

optimizing microcode suggested in the literature.

The twelve list scheduling strategies: (The numbers

to the left are the keys for the strategy numbers in

Figures 7.1 and 7.2.)

1. & 2. Random. Each task is assigned a random integer

between 1 and 999.

4. Highest levels. PRIORITY4(t) = HEIGHT(t).

5. Criticality. PRIORITYS(t) = (1/(LATEST(t)-DEPTH(t)+1))

6. Dense neighborhoods. As defined in Chapter 4,

PRIORITY6(t) is the number of

5& tasks which do not resource

conflict with t.

8. Smallest co-levels. PRIORITY8(t) = -DEPTH(t).

11. Reverse source order. PRIORITY (t) = -t. Thus the

earlier a task, the higher

its priority.

9. Dense neighborhood plus highest levels. PRIORITY (t)12

PRIORITY6(t) + PRIORITY4(t).

12. Dense neighborhood plus criticaiity. #9 with criticality

replacing highest
levels.

13. Dense neighborhood times highest levels. #9 with *

replacing +.

7. Number of successors. The priority is the number of

(not necessarily direct)

successors of a task.

3. Coffman-Graham. Given tasks t and t' - if one

precedes the other, it has higher

priority. Otherwise, suppose that

all of the successors of t and t'

have been issigned priorities.

60

Then the higher priority is assigned

to the one whose set of successors'

priorities has higher dictionary

ordering when sorted. If k tasks

have no successors, they are randomly

assigned priorities 1-k (we used

reverse source order). If one removes

transitive edges, this is optimal for

UET Scheduling with 2 processors and

no resources. We did not remove

transitive edges. See [COFF72] for

proof of optimality.

10. Resource bottleneck compensation. The tasks are first

assigned priority according to

method 4, highest levels. Each task

is checked, in reverse source order,

to see if it contributed to a

Fernandez-Busell bottleneck. If so,

then its priority is boosted by the

number of extra cycles implied by

the worst such bottleneck. Its

predecessors levels are then boosted,

if necessary, to keep them at a

higher level than the boosted task.

61

More formally: PRIORITY = HEIGHT:

DO T=NUMBTASKS TO 1 BY -1;

PRIORITY(T)=FIND-WORST-BOTTLENECK(T)+

PRIORITY(T);

CALL BOOST-PREDS-PRIORITIES(T);

END;

where: FIND-WORST-BOTTLENECK(T) gonsiders all intervals

(i,j) and resources r

such that: U(T,r)=1 (assuming all values of U are

0 or 1.)

T is critically restrained to (i,j)

E (the extracycles for (i,j) and r)

is > 0

FIND-WORST-BOTTLENECK(T) returns the largest E so found.

and: BOOST-PREDS-PRIORITIES(T) looks at all predecessors,

T', of T.

if T' <=T then PRIORITY(T')=MAX(PRIORITY(T'),PRIORITY(T))

if T'< T then PRIORITY(T')=MAX(PRIORITY(T'),PRIORITY(T)+1).

Other Suggested Basic Block Methods

The following are sources containing suggested methods

of basic block optimization, as obtained in Chapter 3. For

each we explain what action, if any, was taken to test the

method.

62

[DASG76] Appears to be strategy 11, above, once the

complications of "sub-micro cycles" are removed.

See also comments in [WOOD78] and [DASG78].

Strategy 11, as we shall see, does relatively

poorly.

[RAMA74] Generally recognized in literature as very likely

to produce non-optimal code even for simple

examples; we did not test it.

[YAU74] When MOPs fall into equivalence classes of

resource usage, it can be shown that this

corresponds to strategy 7 above. We believe that,

even though an occasional MOP may break the pattern

on many machines, most basic block sets of MOPs

will have that property, and thus the YAU

strategy is essentially equivalent to strategy

7. Nonetheless, we did code the YAU method and

tested it not only with the suggested weight (our

PRIORITY7), but with weights from 3, 4, and 10

above. The surprising results of those tests

are reported later in this chapter.

[TOK077] This method, once the concept of "micro-templetes"

is removed, roughly corresponds to the YAU

method, with PRIORITY4 used to provide the weights,

and which we have tested. We say roughly because

tasks below the highest level are not considered

63

unless a tie exists among highest level tasks.

Nonetheless, we feel that YAU with PRIORITY4

is a good measure of the [TOK077] method; when

MOPs form resource equivalent classes, strategy

4 above represents it extremely well.

[TSUC74] We were unable to get a clear enough picture of

the parallelization portion of this algorithm to

code and test it.

The Experiments

We now report on the various experiments done to test

the effectiveness of the above strategies. For each

experiment, we first explain what was done in terms of the

parameter settings and the strategies tested. We then

draw conclusions, with references to the accompanying tables

and figures.

Experiment 1. Change in number of tasks.

MODEL: (a) The PUMA-like model: #RES=4 #REGS=6 #REGSW=1

#RESU=1 #REGSR=2 #JOBS=200

(b) We varied #TASKS from 5 to 200, using the

values 5, 10, 15, ..., 75, 80, 85; also

140 and 200.

64

STRATEGIES: For each task set size, and for each of the

200 task sets, we formed a list schedule

for each of the 13 priority list methods.

Thus 49,400 schedules were formed for this

experiment.

CONCLUSIONS: (a) If we divide the strategies into groups

as follows: GROUP 1 = {3,4,9,10,13}

GROUP 2 = {5,7,11,12}

GROUP 3 = {1,2,6,8}

then it is evident from Figure 7.1 and

Table 7.1 that for any size task set,

any strategy in group Z ia better than

any strategy in group 2 which is in

turn better than any strategy in group 3.

Notice that group 1 is those strategies

which are close to being highest level

lists, group 3 is those which have no

correlation to highest levels, whereas

group 2 has some, but not a strong,

correlation.

(b) The group Z strategies are (Zosety

bunched, and are aZZ within 4% of optimaZ

for #TASKS 1 20, within 8% of optimaZ

for #TASKS 1 60, and within 12% of

optimal for #TASKS < 200. We remark

that due to the nature of the lower

bound, it is realistic to expect that

65

1-···"- i I
16

1

'5 -

-8-

% 4,9 ,-1- =-IM

'* 0

-,...55* 1 -----
=.
-

G.E

I

=-r./.I-/..1.' . / ., 1 , r
R 11 4 . - .-'

1

.. 1

4 ''I A- 7 ' 11-1-...1
-

L
0 -;

1

' .- 5. 4 . 1 0%-1
'

. 7

-I------
-7..

., / 1 . *.1. ---- -« ---

+++++++44- - - I...------- / , --
4 . T

'...

E -f-1 1 /
- - ,1 1,

10 -

6 000 r 3, 4, -
, lit. 1

-·.-·,--M.213246---jp*U,»»----,-' .-i: . 1
Cn B 411----1----T: t==-

:!, 4

m 9- 0 -i \ 1 4
i \../77
.- -1-- AJ /: 1 --tit-Tri-: :, -I ' 1 ' '_ ' ' _. __ ,

g N -1- .

1 1-1 7 1 1 '11»-2111.133«»f i
D

71
7 --

-· GROUP STRATEGY NUMBERS

6 1-,1 re 9- '1\ 3,4,9,10,13L' t, 1It #
S !

1- IGicve
 2 5

,7,11,12

4 % 3 1,2,6,8

t

3.-1

1 · - --i
1

1- 1 1 --r- -1 1

-

1-1-11 1 1
 NUMBER OF TASKS

5 10 15 20 Qi. 30 31 40 49 50 59 60 65 7# 16
9 0 25

 • o · 1
' 0

·aol

FIGURE 7.1 THE PERFORMANCE OF THE THREE LIST

SCHEDULING STRATEGY GROUPS.

METHOD NUMBER OF TASKS:

5 10 15 20 25 30 35 40
------ ------ ------ ------

1 3.470 6.550 9.670 12.810 15.895 · 19.075 22.190 25.125

2 _ 3.490 6.530 9.660 . 12.800 15.870 19.140 22.045 .25.210

3 3.395 6.385 9.380 12.375 15.400 18.500 21.480 24.390

- 4 3.400 6.390 9.395 12.395 15.400 18.495 21.450 24.365

5 3.410 6.420 9.430 12.480 15.475 18.630 21.605 24.615

6 3.510 6.555 9.660 12.750 15.900 19.050 22.070 25.165

7 3.420 6.405 9.430 12.475 15.490 18.580 21.535 24.45501

--1 8 3.495 ·6.550 9.680 12.770 15.855 19.015 22.015 25.100

9 3.400 6.390 9.390 12.390 15.395 18.510 21.465 24.370

10 3.395 6.385 9.390 12.390 15.400 18.475 21.435 24.360

11 3.445 6.490 9.560 12.620 15.720 18.835 21.830 24.755

12 3.410 6.410 9.425 12.430 15.455 18.595 21.555 24.535

13 3.400 6.390 9.395 12.395 15.405 18.515 21.475 24.380

CRIT PATH 3.060 5.750 8.370 11.070 13.725 16.410 18.920 21.290

LOWER BND 3.385 6.270 9.135 11.935 14.720 17.570 20.115 22.615

--

Table 7.la Lengths of list schedules for the PUMA-like model
and varying size task sets.

METHOD NUMBER OF TASr,

45 50 55 60 65 70------ ------ ------------

1 28.185 31.235 34.300 37.680 40.590 44.040

2 28.190 31.320 34.295 37.665 40.525 43.980

3 27.310 30.365 33.305 36.480 39.290 42.730

4 27.285 30.350 33.250 36.450 39.270 42.695

5 27.475 30.555 33.415 36.790 39.600 43.000

6 28.180 31.330 34.300 37.625 40.455 43.880

27.405 30.555 33.455 36.655

8 28.140 31.280 34.240 37.665 40.405 43.765

(71· '
Co 9 27.280 30.365 33.270 36.450 39.275 42.710

10 27.285 30.345 33.225 36.470 39.270 42.635

11 27.805 31.005 33.970 37.180 40.105 43.395

12 27.435 30.510 33.390 36.705 39.505 42.915

13 ,. 27.310 30.380 33.320 36.480 39.305 42.755

CRIT PATH 24.010 26.895 29.400 32.510 34.625 37.495

LOWER BND 25.340 28.275 -

30.865 33.910 36.175 39.065

TABLE 7.lb

METHOD NUMBER OF TASKS:

75 80 85 140 200------ ------ ------ ----- ------

1 46.590 49.940 53.090 87.63 124.66

2 46.480 49.875 53.035
'

87.42 124.77

3 45.040 48.305 51.510 84.73 120.79

4 44.990 48.270 51.425 84.68 120.66

5 45.370 48.655 51.800 85.32 121.60

6 46.390 49.970 53.000 87.32 124.42

7

8 46.320 49.940 52.945 87.27 124.37

9 45.000 48.325 51.465 84.75 120.79

10 45.005 48.240 51.400 84.58 120.60

11 45.930 49.295 52.275 86.31 122.96

12 45.315 48.575 51.710 85.08 121.32

13 45.025 48.375 51.485 84.83 120.84

CRIT PATH 39.675 42.605 45.250 74.21 106.19

LOWER BND 41.235 44.170 47.005 76.22 108.38

TABLE 7.lc

0.'.. '

69

the actual percentages are much closer

to zero.

(C) As shown on Table 7.2, the times to form

the graph, caZeuZate the priority and

scheduZe are. very short. In particular,

all priorities which do not involve the

(obviously 0 (|T 12)
) dense neighborhoods

are 0(|T|). The number of successors

is only apparently 0(|T|), however, due

to the use of the CDC bit count instruc-

tio'n. The lower bound calculation, which

is O(IT'2), deserves to be counted in as

part of strategy 10. Using highest levels,

(strategy 4,) a set of 40 MOPB, having

been read in aZong with the READ and

WRITE sets, and USAGE functions, would

seem to be scheduZabZe on the CDC

6600 in about Z42 ma. ,(And that

measurement includes 4 system calls to

do the timing!)

Experiment 2. Changing other parameters, keeping #TASKS

fixed at 40.

MODEL: All models have #TASKS=40. We test models 1-9,

with parameters as listed on Table 7.3. #JOBS

again is set to 200.
70

TIME TO NUMBER OF TASKS

-21 -10 60 80 140 2 0 0

FORM PRIORITY 1 0.14 0.12 0.11 0.11 0.11 0.11

2 0.14 0.12 0.11 0.11 0.11 0.11

3 1.51 1.65 1.70 1.71 1.73 1.75

4 0.06 0.04 0.04 0.04 0.03 0.03

5 0.07 0.06 0.05 0.05 0.04 0.04

6 0.67 1.26 1.86 2.46 4.11 5.87

7 0.17 0.17 0.17

8 0.06 0.04 0.04 0.03 0.03 0.03

9 0.71 1.30 1.89 2.49 4.13 5.90

10 0.66 0.66 0.67 0.70 0.78 0.89

11 0.05 0.03 0.03 0.03 0.02 0.02

12 0.73 1.31 1.90 2.50 4.15 5.92

13 0.71 1.30 1.89 2.49 4.13 5.90

SCHEDULE (GIVEN PRI) 1.18 1.15 1.13 1.14 1.15 1.14

FORM PRECEDENCE REL 2.21 2.35 2.40 2.42 2.46 2.48

CALCULATE LOWER BND 1.17 1.37 1.64 1.87 2.56 3.35

ALL TIMES ARE MILLISECONDS PER TASK
--- ----

TABLE 7.2 TIMES TO FORM DATA-PRECEDENCE GRAPH, PRIORITY
LISTS, LOWER BOUNDS AND SCHEDULES FOR VARIOUS
TASK SET SIZES.

71

STRATEGIES: For each parameter setting and for each

of the 200 jobs, we again tested all 13

list scheduling strategies. Thus 23,400

schedules were formed for this experiment.

CONCLUSIONS: (a) Except as noted beTow, the order of the

strategies was essentiaZZy what it had

been for the fuZZ range of task sizes.

(See Tables 7.3, 7.4, and 7.5). The

averages of the rankings were remarkably

similar to that in Experiment 1.

(b) For most of the modeZs, the best

strategies Were again cZose to the bound.

Exceptions occurred, again, in places

where we would predict the failure of

the bound rather than the scheduling.

(c) For models with very short critical

paths, that isi for very wide graphs,

the number of -auccessors was a strikingZy

better priority measure than it had

been. See model 7, especially. We have

no explanation for this.

(d) Other strategies, notably 5 and 12,

seemed to do better for some settings

of the parameters than they had previously,

again for reasons unknown to us.

72

Model
1 2 3 4 56789Number

Paremeter

RES 4 3 2 11 3 11 4 4 4

RESU 1 1 1 2 1 2 111

REGS 3 3 3 3 6 6 12 12 12

REGSR 2 2 2 222 112

REGSW 1 1 1 1 1 1 1 1
0*
1*

*
With equal probability.

TABLE 7.3. THE VARYING PARAMETERS FOR EXPERIMENT 2,

WITH NUMBER OF TASKS FIXED AT 40.

73

METHOD MODEL NUMBER: (FROM TABLE 7.3)

1 2 3 4 5 6 7 8 9

1 32.300 32.840 34.305 32.905 26.615 26.455 14.890 17.650 19.940

2 32.295 32.805 34.345 32.930 26.665 26.280 14.810 17.700 19.960

3 32.155 32.605 34.085 32.680 25.760 25.550 13.270 15.705 18.220

4 32.145 32.600 34.060 32.690 25.720 25.485 13.250 15.585 18.145

5 32.150 32.625 34.105 32.715 25.945 25.695 13.580 16.135 18.605

-1 6 32.255 32.845 34.250 32.890 26.655 26.400 13.700 16.345 18.995
A

7 32.180 32.640 34.075 32.740 25.760 25.570 13.225 15.660 18.315

8 32.250 32.815 34.290 32.880 26.525 26.310 14.360 16.875 19.390

9 32.145 32.615 34.055 32.760 25.745 25.780 13.250 15.595 18.150

10 32.145 32.590 34.055 32.690 25.645 25.420 13.260 15.660 18.145

11 32.245 32.7-20 34.210 32.835 26.175 26.025 13.700 16.290 18.965

12 32.155 32.640 34.095 32.740 25.880 25.685 13.370 16.350 18.565

13 32.145 32.615 34.055 32.840 25.760 26.090 13.265 15.635 18.200

CRIT PATH 30.425 30.365 30.435 30.610 21.690 21.720 6.085 10.680 14.140

LOWER BND 31.345 31.425 32.080 31.555 23.480 22.930 13.185 14.160 16.355

TABLE 7.4 LENGTHS OF LIST SCHEDULES FOR THE MODELS
OF TABLE 7.3

List Model.Number Avg Rank Avg Rank
Method (from Table 7.3) These Models Exp. 1

1 2 3 4 5 6 7 8 9

1 13 12 12 12 11 13 13 12 12 12.22 11.75

2 12 10 13 13 13 10 12 13 13 12.11 11.50

3 6 3 6 1 4 3 6 6 5 4.44 2.83

4 1 2 4 2 2 2 2 1 1 1.89 2.50

5 56 8486878 6.67 7.50

6 11 13 10 11 12 12 9 9 10 10.78 11.67

7 8 7 5 5 4 4 1 4 6 4.89 6.75

8 10 11 11 10 10 11 11 11 11 10.67 10.75

9 14 1 7 3 7 2 2 3 3.33 2.33

10 1 1 1 2 1 1 4 4 1 1.78 1.50

11 9 9 9 8 9 8 9 8 9 8.67 9.00

12 6 7 7 5 7 5 7 10 7 6.78 6.50

13 1 4 1 9 49534 4.44 4.25

TABLE 7.5 RANKINGS OF PERFORMANCES OF LIST SCHEDULES

FOR THE MODELS OF TABLE 7.3.

75

(e), We would guess that the relatively

poor performance of the Coffman-

Graham Algorithm (strategy 3) for some

of the models is caused by transitive

edges, which their algorithm mandates

the removal of.

Experiment 3. Already suggested optimization methods.

MODEL: We only tested YAU' S strategy on graphs in which

the equal edges were considered to be strict

edges; this was the model for which it was suggested,

and the coding was considerably less difficult.

The #TASKS setting was kept at 40, and 7 sets of

200 jobs were run. Since models with equivalence

classes of resource usages (i.e. with #RESU=1)

will cause the YAU methods to produce list

schedules, only one model with that property was

run. The models were:

Model Yl: #RES=3 #REGS=6 #REGSW=1

#RESU=1 #REGSR=2 #JOBS=200

Model Y2: #RES:11, #RESU=2, otherwise like 1.

(Run twice)

Model Y3: #RES=24, #RESU=3, otherwise like 1.

76

Model Y4: #RES=24 #REGS=6 #REGSW=0 or 1

#RESU=3 #REGSR=1 (with 0 or 1 equally likely)

Model Y5: #RES=24, #RESU=6, otherwise like 1.

Model Y6: #RES=24 #REGS=6 #REGSW=0 or 1

#RESU=6 #REGSR=1 (each equally likely)

Model 1 was used to verify that YAU schedules were indeed

list schedules with PRIORITY=WEIGHT when #RESU=1. Models

4 and 6 were chosen to have a short average critical path.

This would give the YAU method more to do, with many more

tasks data ready at each cycle. Thus we guessed its per-

formance would be best in such a situation, at the cost of

much more time used. The resource usages of 2 out of 11

and 3 out of 24 were carefully chosen to have the property

that two MOPs will clash with probability about .33, just

as was the case with 1 out of 3. We would expect the list

schedules to be about the same in all three cases, but we

expected the YAU method to be progressively better as the

number of resources used increased, since the interdepen-

dency among them also increased.

STRATEGIES: The strategy of [YAU74] was tested on each of

the above models with WEIGHT equal to list

scheduling priority methods 3, 4, 7, and 10.

Thus an indication was also obtained of the

effectiveness of the methods of [TOK077].
77

Fof comparison, list schedules were also

formed for priorities 3, 4, 7, and 10. This

was our first test of these methods in the

absence of equal edges. In total, 11,200

blocks were optimized.

CONCLUSIONS: (a) Although it might be reasonable to expect

the YAU method to almost always be an improvement

over simple list scheduling with the same weight,

the YAU method was stightZy but uniformty worse

than simpZe Zist scheduZing in the most reaZiatia

models (2,3,4). Only when we used the rather

artificial models (5,6) , in which the resource

interrelationships among MOPs are very complex,

were we able to get improvement from the added

complexity of this kind of optimization.

Evidently it is generally worse to try to

schedule more of the less critical tasks than

fewer more important tasks. The results of

Experiment 3 are summarized in Table 7.6.

(b) Evidently due to the removal of the

equal edges, PRIORITY 7' the number of successors,

was as good as the group Z methods.

Experiment 4. Breaking priority ties via source order.

78

METHOD MODEL NUMBER

Yl Y 2 Y 2 Y 3 Y4 Y 5 Y6

LIST (3) 29.265 29.115 29.250 29.200 15.625 34.955 24.405
YAU (3) 29.265 29.130 29.275 29.200 15.930 34.925 24.275

LIST (4) 29.190 29.065 29.185 29.105 15.590 34.850 24.250
YAU (4) 29.190 29.080 29.200 29.120 15.735 34.810 24.145

LIST (7) 29.150 29.075 29.220 29.090 15.540 34.745 24.145
YAU (7) 29.150 29.095 29.250 29.100 15.600 34.710 23.845

LIST (10) 29.185 29.075 29.190 29.105 15.575 34.840 24.200
YAU (10) 29.185 29.090 29.205 29.120 15.695 34.790 24.035

CRIT PATH 26.895 27.065 27.100 27.040 12.615 27.060 12.190
LOWER BND 28.050 27.980 27.980 27.86'0 13.690 28.380 15.690

LIST ' (N) MEANS A LIST SCHEDULE FORMED USING PRIORITYMETHOD N.

YAU (N) MEANS A SCHEDULE FORMED USING YAU'S METHOD
WITH PRIORITY METHOD N AS A WEIGHT.

TABLE 7.6 LENGTHS OF SCHEDULES PRODUCED BY YAU'S ALGORITHM USING VARIOUSWEIGHTS; LIST SCHEDULES FOR SAME WEIGHTS GIVEN FOR COMPARISON.

79

l

MODEL: the PUMA-like model with #TASKS=40

#RES=4 #REGS=6 #REGSW=1

#RESU=1 #REGSR=2 #JOBS=200

STRATEGIES: List schedules were formed using the 13

strategies, then, using the same seed, and thus

generating the same set, list schedules were

formed with eleven of the strategies altered

so that priority ties were broken in favor of

the earlier source task. Method 3 does not

produce ties, and we. had already coded it in

such a way that if two tasks have identical

sets of successors, higher priority went to

the earlier source task. Method 11 is source

order, so is unaffected. The other methods

had ties broken in scheduling in rather

arbitrary fashion. The test was done on four

sets of 200 jobs, so 20,800 schedules were

formed.

CONCLUSIONS: Among the strategies that did weZZ, no .signifi-

cant difference was noticeabZe. Many sets of

schedules were longer and many shorter. Some

of the poorer methods (e.g. 6, which produces

very many ties.) did improve a bit, this

seemed due to the imposition of some good
......

strategy upon methods that were little better

than random.
80

Experiment 5. Test of statistical significance.

MODEL: As in Experiment 4.

STRATEGIES: Methods 1-13 of list 'scheduling, ties

broken arbitrarily. The 200 jobs were

run five times in the previous experiments,

plus once more for this; all runs used a

different seed for the random number

generator, thus different task sets were

produced.

CONCLUSION The small differences detected among even most

ctosety ranked strategies were statisticaZZy

significant. We used the well known Student's

t test as follows. The total schedule length

of 200 schedules is approximately normal, being

the sum of a large number of samples from a

multinomial distribution. Given any two

strategies, then, we have six pairs of totals,

one for each run. The paired elements are

not independent, being schedules for the same

.2 '-gsaphs, so we cannot test for the difference
.

2

'in the two means, as is,usually_done with the. . I ..,· . ,/ :..; '...=
L .-/ f . , - -»

- Student t distribution-.- However, th6 difference
between them should still be normal, and we

can use that test to see whether the difference

is zero. 81

- --

The two best strategies, 4 and 10, yielded

pairs with differences of 10, 3, 2, 1, 5,

and 6 for a mean of 4.5. The Student t test

rejects the hypothesis that these could have

come from a normal population,with mean zero

at the .01 level. Indeed, not until the

average difference gets down to 1.92 does the

test fail to reject at the .05 level with the

sample variance. We may thus be confident

that strategy 10 is slightly better than 4

for this model, despite the fact that their

difference was about .8% of the total schedule

length.

Other pairs of strategies were almost all

farther apart than 10 and 4, and the test

showed significance to an even greater degree

for most pairs. A few pairs of strategies

from within the same groups did fail to reject

at this level; however, beyond strategy

groups (that is, groups 1, 2, and 3 from

Experiment 1) the differences were relatively

massive and the mean=0 hypothesis was over-

whelmingly rejected.

82

a

8. A Unified Approach to Interblock Optimization

In this chapter we will present a method of moving

microoperations past jumps into basic blocks other than

the one they started in. A small amount of experience

hand optimizing convinces one that to optimize well, such

movements are necessary. In particular, blocks tend to be

short in microcode, and a MOP may very well be movable from

a block in which it takes up a cycle to a block in which

it can be done for free.

It is not difficult to produce a catalog of the types

of allowable motions, see Figure 8.1. When we hand optimize

microcode, we generally produce horizontal code which we

then iteratively improve, using motions like those

in Figure 8.1. When we first considered automatic optimiza-

tion, we imagined that the same course would be followed.

We were not particularly optimistic about the effective-

ness of this approach and, indeed, initia' investigation

bore out our feelings. This seemed a familiar situation;

one is given a starting position (in this case, the individual

blocks each separately optimized), and a very larg4 tree of

possible changes. One then wants to travel the tree to

a final position which is more desirable (in this case,

with code speed and possibly space used somewhat comparable

to hand produced code). When these iterative methods don't

work well, they tend to fail for two strongly related reasons:

- 83

I i

Given blocks Bl,B2,B3,B4,BS with the following flow graph:

'Blk.* „/182 1
 > 83 K

B5

It may be profitable to move a MOP as follow
s,

if it can be scheduled "for free" in at least one

of the target blocks:

(a) From B3 to (B4 and BS) ·or to (Bl or B2)

(b) From (B4 and B5) or from (Bl or B2) to B 3

if an identical MOP appears in both source blo
cks

(C) From B3 to B4 or 'from B4 to B 3 if all registers

written by the MOP are dead in BS.

FIGURE 8.1. CATALOG OF INTERBLOCK MOP MOTIONS.

84

(a) Width of tree. There is a vast number of choices

at each position, and the cost of moving to and

evaluating the next position is large.

(b) Depth of tree. Real improvement can only be found

at a great distance from the starting position.

Worse yet, all paths to the improved positions

start by going through several positions in which

the situation appears worsened.

Working through PUMA code by hand, it becomes obvious

that both of these problems would defeat an attempt to

produce code nearly as good as that produced by hand..
What· was needed, then, was a more g Zobat view of all of

the code being optimized. After many false starts, we

were able to come up with a radically different approach

which provides precisely such a view; when put to the test,

it efficiently (though somewhat complicatedly) generated

code which compares very well with hand optimized versions

of extremely complex code.

Our description of the method will again be done both

formally and informally. We will first present an

undetailed and hopefully clear description, starting with

how code with relatively simple flow structures would be

handled and explaining how the methods generalize to code

with an arbitrary flow of control. We then present the

algorithm in more detail, as follows:

85

a 1

(a) The definitions needed are given formally.

(b) The calling sequence for the algorithm is presented,

uncommented so that the flow of control may be seen.

, (C) The calling·sequence is repeated, with comments

designed to give a clear view of what each routine

accomplishes.

(d) The algorithms are presented carefully, using

Pidgin PL/1 and English description when we wish

to avoid getting too caught up in details.

Finally, examples are presented which follow the algorithms

in some detail.

86

Our Method of Interblock Optimization

Our approach to beyond-basic-block optimizing is

centered about embedding the information necessary to make

a large set of these optimizations into one very large

data-precedence graph. The graph includes jumps and.loops

as ordinary tasks, and uses the precedence relation to

constrain or allow the motion of MOPs past jumps. This

permits us to again use the techniques and ideas of

scheduling theory to great advantage, and the above

mentioned problems of tree searches are both dealt with

rather decisively.

To begin a description of our method, we note an
.

unfortunate, but unavoidable, fact about this kind of

optimization: one is often faced with the prospect of

shortening one branch from a condition at the potential

expense of our ability to shorten the other. The hand

optimizer is apt to be keenly aware of this, particularly

since most conditions seem obviously and heavily weighted

in one direction, and shortening the main branch seems

very natural. In any event, we will assume that at each

conditional jump, we have an estimate of the probabilities

of each branch being taken. This may be obtained either

by programmer guess (some people, of course, might dub this

the "guaranteed incorrect method"), by simulation, by running

the vertical code, modified to count branches (after all,

the vertical code is perfectly valid, if inefficient, hori-

87

zontal code, and can run as is), or by some other heuristic

method.

-We now outline our method, which is given more formally

later in the section. For the moment we deal with sections

of code containing jumps forward, but not back -- that is,

loop free code. Our first step is to follow one path of

the code from the entrance to the exit, choosing a path

- which seems most likely to be followed in running typical

data. Places where two branches join are, momentarily,

ignored (that is, the join will be remade later, when possible;

when not, the code is duplicated. This w'ill be discussed

in more detail shortly.) We now build a data-precedence

. graph consisting of all tasks (even the conditional jumps)

on this path. Except for edges going to and from the jumps,

the graph building precedes as before, see Figure 5.2.

Jumps tend to read the contents of certain registers, and

so'must follow the tasks which wrote those registers.
\

-

Edges from the jumps are a more complicated matter; namely,

those tasks which would destroy registers read in the branch

not under consideration must not be permitted to go above

the jump, and so we drew an edge from the jump to all such

tasks.

We have now encoded our MOP motion into a data precedence

graph, and the resource conflict rules are what they would

have been had this been one big basic block. Thus all the

pieces are there to allow us to schedule, just as we scheduled

basic blocks, and we do exactly that.

88

Having obtained a schedule, certain adjustments must

be made to legalize some of the motions'implied by the

schedule. For example, suppose a task moved below a jump

which it was previously above -- such a task would generally

have to be duplicated into.the branch that we haven't

considered. We look for all such inverted task-jump pairs,

and duplicate tasks where appropriate. Furthermore, other

paths will need to be rejoined to the newly scheduled path,

but there may be no point below which are those and only

those tasks which we would like to rejoin to. Thus we

rejoin as far up as we possibly can, and all those tasks

which we have not rejoined to are duplicated into the join-

ing branch before the splice. We mention that some of the

duplicated tasks will be conditional jumps -- this presents

no particular problem, but care needs to be taken that the

right sequence of instructions is followed.

Before actually duplicating tasks, we look at the

schedule produced and determine whether some tasks can be

moved down into holes in the schedule without lengthening

it. List scheduling puts tasks into early cycles, and often

space can be recovered by undoing some arbitrary choices

made by the scheduler. Thus, inverted jump-task pairs may

often be uninverted, and tasks which are above the legal

rejoin for a path may be placed below it.

In carrying out this space recovery phase, we suggest

precisely the sort of tree search procedure that we previ-

ously avoided. This is due to the fact that we regard space

89

recovery as something of a "luxury item", and we ard glad

to grab whichever savings are easily done, but are

generally unwilling to invest a great amount of time looking

very far or setting up an elaborate structure to carry

this out well. Furthermore,, in contrast to speed optimiza-

tion, it seems that most of the space recovery lies right

near the surface. We remark, however, that in a space-critical

environment, elaborate reparallelizations and careful

measurements of the time/space tradeoffs may be most

worthwhile.

\

90

Scheduling the Remainder of the Path

We are now in a position to schedule the remaining

tasks, i.e. those off the main path. From among the

remaining tasks we again select one well traveled path

to optimize next, again ignoring all joins. Just as before,

we form a data-precedence graph, using the conditionals as

gates to control the code motion, and we form a priority

list. However, instead of directly scheduling, we pull

data-ready tasks off the list, and try to move them up

into holes in the already scheduled path that this path

splits from. When this process is exhausted, we schedule

the remaining tasks as before, complete with space recovery

and task duplication.

When this has finished, we choose another path and

repeat the process, continuing this way until all tasks

have been optimized. We then hunt for duplicate lines of

code to eliminate, and we are finished optimizing.

91

Code Containing a Single Loop

We will shortly present a method of optimizing any

microcode, including that containing back branches. We

will assume, for this discussion, that we are dealing with

reducible flow graphs, although node-splitting

(actualIy duplicating blocks as suggested in the split node

flow graph) is appropriate here, since one would not

expect to run into many irreducible flow graphs, and since

we have already seen that we are willing to duplicate some

code.

We first deal with the situation of a single loop with

a single back branch contained in code which otherwise has

no back branches. We first optimize the loop itself, using

the basic block methods above. (We note that all normal

compiler optimizations are assumed to have been done during

production of the vertical code, thus moving tasks out of

the loop is of no concern to us.) Having optimized the loop,

we now schedule the rest of the tasks. We form a data prece-

dence graph as before from the tasks not in the loop, but

our graph now contains a new node called L, say, which

will represent the entire loop. Now, some of the other tasks,

due to data constrain-ts, will have to precede L, and some

follow; this information is encoded in the graph in the usual

way, and we are reddy to begin scheduling. Until L is data-

ready, we proceed in the usual fashion, as if this were a

basic block. When L is data-ready and the next task to be

92

considered for scheduling, however, special considerations

arise. We assume that some tasks have already been

scheduled in the current cycle. We then place L in the

current cycle only if all of the tasks already in the cycle

are loop invariant, and only if all of them may be fitted
into the loop's internal schedule without lengthening it.

If those conditions are not met, we act as though L had a

resouxce conflict with the tasks already placed. Eventually,

L will be placed, if only because it must get to the top of

the priority list at the start of some cycle. Once L is

placed, we continue to try to schedule tasks in that cycle,

but now the situation is reversed. That is, tasks are scheduled

with L only if they are loop invariant and can fit into

holes remaining in L's internal schedule. When scheduling

is completed, we stop treating the loop as one task, and

write it out in full, according to. its already produced

schedule, filling in holes with tasks scheduled in the same

cycle, as required. We then duplicate tasks and recover

space as before.

In summary then, the method outlined above permits the

motion of tasks into, ahead of, and beyond loops, with the

motion again controlled by (hopefully)-appropriate scheduling

heuristics. We point out that several details have been left

Out of this discussion but are covered more carefully in

the accompanying algorithm.

93

Code with a General Flqw Structure

We now consider code with an arbitrary reducible flow

graph. Our method can generally be described as a recursive

descent; that is, given the flow graph, we apply the process

we are describing to each outermost loop, optimizing each

separately and with no regard for the optimization of the

others. Each such loop, naturally, contains its own

outermost loops (since in reducible flow graphs two loops

are disjoint or else one completely contains the other),

and we attempt to optimize each of those. Eventually, an

outermost loop must itself contain no loops, and we optimize

it using the techniques just explored for loop-free code.

Having optimized all o f the innermost loops, we· may

work our way outward. At each stage, we have loop-free code

except for some disjoint, already optimized loops. This

situation is handled just as the code containing a single

, loop was. That is, each loop is regarded as one task, and

the data-precedence graph is formed and scheduling done so

as to allow motion beyond, above and within loops. The only

special consideration here is that one loop-task is never

permitted to enter another. Thus we pick a path, schedule,

duplicate tasks where necessary, pick another path, and so

on, until all tasks are scheduled. Eventually, we will have

worked our way outward to the outermost code -- when that is

scheduled, we are done.

94

Definitions for the Interblock Optimization Problem

1. We have a set of microoperations,

M = {ml'12'"''ms3' and a set of exit nodes

E = {el'e2,"',en "

2. The following functions are given:

READ, WRITE, U

and the sets A & R, all as defined for intrablock

optimization.

3.a. We have the pair of functions:

TRUEJUMP, FALSEJUMP: M + (M U E)

and when TRUEJUMP(mi) 0 FALSEJUMP'(mi) we say that mi

is a conditionaZ jump. We further call TRUEJUMP(m.)1

and FALSEJUMP(mi) targets of mi-

b. We also have the function

LVTOP: E + subsets of A, the set of registers,

where ak E LVTOP(ei) means that the exit ei from the

code we are optimizing has a reachable use of ak.

We will, in the course of optimizing, extend LVTOP

to the set of basic blocks of microinstructions.

4. We now define a mieroinstruction as a set of MOPs with

the properties that:

a. No resource is overused (as defined earlier)

b. No more than one conditional jump appears in a micro-

instruction.

95

5. We will be searching for a paratieZ€zation of M,

which will be the gathering of MOPs into micro-

instructions. The microinstructions will not generally

be disjoint, as they had been for intrablock code,

but we will again require that they be exhaustive.

6. During. our algorithm, we will work with P, a sequence

of microinstructions, P = {Pl'P2' ''Pk3' which we

will eventually convert into our desired paralleliza-

tion.

We will start off with P = M, that is, each partition

will be a single MOP. We will define

TRUEJUMP and FALSEJUMP: P + (P U E)

in the obvious way, given the definitions on M, and

some microinstructions will be referred to as conditional

jumps. The sets READ(P.) and WRITE(P.) will also be
1 1

obvious extensions of the definitions on M, that is:

READ(P.): U READ(m.), and similarly for WRITE.1 Jm.EP.
1 1

7. As we parallelize we will redefine the targets of the

P.'s as the order of the P's changes; as m.'s are added
1 1

to P.'s, the READ and WRITE functions will change.
1

8. We gather the P's into disjoint, exhaustive sets,

B = {81'82'"''Btl' with, for each Bi , Bi= {Pj,"',Pk}

We call the B.'s basic bZocks (or just BLOCKS) if all1

of the following are true:
1

96

a. The Pi's form a chain P < ... < Pk where Pm < PZ

means that P is a target of P . We call P'
J

the initiaZ micpoinstruction and P the terminaZ

microinstruction of the block.

b. either i. j=1

or ii. P. is the target of a conditional jump
J

or iii. P is the target of two or more micro-

instructions.

c. either i. P is a conditional jump

or ii. the target of P is the target of another

microinstruction

or iii. the target of P is an exit node.

d. There is no other partitioning of P into t or more

subsets with the above conditions being true.

9. We have a relation <B on B, defined as

Bi <B B if the initial microinstruction of B is
a target of the terminal microinstruction of B..1

We call the graph determined by <B the flowgraph and

we call the element of B containing Pl the entrance bZock.

We use the terms SUCCESSOR and PREDECESSOR in the ordinary

way. When the context is clear, we --ill write

(Bi,Bj) for the arc corresponding to Bi <B Bj.

10. Given a flowgraph, we define reducib Ze flowgraph,

dominator, backedge, and natural Zoop as in Aho-Ullman

[AH77], Chapter 12.

97

Briefly, we say:

a. Btock B. dominates btock B if every path from the w1

entrance block to B goes through Bi.

b. If block B. dominates block B. and B. < B. , then we
1 J] 1

call the arc (B ,Bi) a
back edge.

c. For each back edge (B ,Bi), we form a subset of B,

called the naturaZ Zoop of the backedge, which is

all nodes that'can reach B without going through Bi '

plus Bi itself.

d. A flowgraph is reducib-Ze if the edges are partionable

into two disjoint classes:

i. forward edges, which form a dag in which every

block is reachable from the initial block, and

ii. backedges, as above'.

The key properties of reducible flowgraphs, for our

purposes, are that:

i. Each loop has only one entrance -- the B. in c.
1

above

ii. The loops are nested, that is, two loops are either

disjoint, or one is included in the other; two

otherwise disjoint loops may share a header, however.

.

98

'
I.

Calling Sequence

OPTIMIZE: PROC(M,E,LVTOP,READ,WRITE,U,TRUEJUMP,FALSEJUMP);

P = M;

CALL MAKE BASIC BLOCKS;- -

CALL MAKE FLOW GRAPH;.--

CALL LIVETOP ANALYSIS;

CALL ASSIGN JUMP PROBABILITIES;- -

CALL SCHEDULE(B)

END OPTIMIZE;

SCHEDULE: PROC(L)

DO FOR EACH L E OUTER LOOPS(L);

CALL SCHEDULE(Li);

END;

DO WHILE (UNOPTIMIZED BLOCKS REMAIN IN L) ;

CALL PICK A PATH;--

CALL MAKE TASKS;

CALL MAKE DATA PRECEDENCE GRAPH;
- I -

CALL FORM PRIORITY LIST;
I -

CALL TASK LIFT;

CALL SCHEDULE PATH;

CALL RECOVER SPACE; '

CALL CUT AND PASTE;
- -

END;

END SCHEDULE;

99

Comments on the Optimizing Routines

OPTIMIZE: PROC(M,E,LVTOP,READ,WRITE,U,TRUEJUMP,FALSEJUMP);

P = M;

/* We start with the set of microinstructions equal to

the source MOPs and with the jump functions also

identified with the functions on M. */

CALL MAKE BASIC BLOCKS;
- -

/* Produces B = {Bl '82,83' ..'Bt ' the set of basic

blocks of P */

CALL MAKE FLOW GRAPH;
- -

/* MAKE FLOW GRAPH:
-

1. Builds <B ' the flowgraph for B.

2. Determine if <B is reducible; if not, uses

node-splitting to revise P&B s o that a

revised <B is reducible. Duplicates loop

headers where needed to assure loops are

disjoint or nested.

3. Builds the set LOOPS, which is originally a

set of subsets of B; each element of LOOPS is

a natural loop; note that we include B in LOOPS

as it if were a loop.

4. Builds the function: OUTER LOOPS: LOOPS + subsets

of LOOPS, where OUTER_LOOPS(Li) is the set of

loops properly contained in Li but no smaller loop.

100

5. Builds EXITS, where EXITS(Li), Li E LOOPS,

is the set of names which follow blocks in L.
1

on < but which aren't in L..8 1

6. Changes LOOPS so that within each L. € LOOPS,
1

all blocks contained in some loop interior

to L. are removed and the set OUTER LOOPS(Li)1 -

is added. Thus, Li contains only names of

objects contained in no smaller loop.

7. Builds < for each L. E LOOPS. < is <L. 1 L. B
1 1

restricted to Li U EXITS(Li), except that

each arc (Bi'B) where B is the entrance of

some loop in A'Li is changed to (Bi,Lm)' with
L E OUTER_LOOP(Li). Thus

< is a subset
L.1

of Li X (Li U EXITS(Li))· */

CALL LIVETOP ANALYSIS;

/* For each B. €B, we perform a live variable analysis,1

to produce LVTOP(Bi), a subset of A, the set of

registers. ak E LVTOP(B.) means that there is some
• 1

path through the source code, starting at the initial

microinstruction of B. , which reaches a use of1

register ak before ak is written. Recall that part

of our input is the set of LVTOP's for the exit nodes.

LVTOP is also extended to LOOPS; that is LVTOP(L)

= LVTOP(Bi) where B. is the entrance node of L.1

We mark LVTOP VALID = true for each block. */

101

CALL ASSIGN JUMP PROBABILITIES;
- -

/* Forms two functions: ARC_PROB and EXPECT.

ARC PROB((Bi'B)) where B. < B.,is the estimated- /L J
probability that if control flows to B. it will next1

flow to B..
J

EXPECT (Bi) is the 'probability, calculated from ARC_PROB

and <L that, given that the entrance node o f L' is

reached, B. is traversed before an exit node.1

We will have several suggested methods for

estimating ARC PROB. The estimate need not be very

tight, but occasionally will influence which sections

of code are shortened at the expense of others. */

CALL SCHEDULE(B);

END OPTIMIZE;

,SCHEDULE: PROC(L);

DO FOR EACH L. E OUTER LOOPS(L);
1 -

CALL SCHEDULE(L);

END;

DO WHILE (UNOPTIMIZED BLOCKS REMAIN IN L) ;

CALL PICK-A-PATH;

/* PICK-A-PATH selects a set of blocks in L.

These blocks are called PATH={B B B } and have1' 2""' v

the property that on < B <B <.. <B.
L'l 2 v

The selection is made in such a way that blocks

which are likely to be travelled are generally

preferred over less traveled ones, as determined by
EXPECT. */

102

CALL MAKE TASKS;

/* We form a set of tasks T = {tl't2'...'twl. Each loop

Li E OUTER LOOPS(L) which is in PATH is considered

one task 2. , and each element P E B. E PATH, where1 1

B. is a block, is one task. These latter elements
1

will, in fact, be microinstructions containing

single MOPs, since no parallelization will yet have

been done to them. */

CALL MAKE DATA PRECEDENCE GRAPH;- -

/* We now must specify the successors and predecessors

(equal and strict) for each element in T. We have

the register sets READ(ti) and WRITE(t.) when t.1 1

is an ordinary microinstruction, just as we did in

the case of intrablock scheduling. When our tasks

are microinstructions, then, our criteria for

the precedence relation are what they were

before.

103

k -

If a task ti represents a microinstruction which

was a conditional jump, however, we have an

additional set of registers to concern ourselves

with. There are two target nodes on <L for

the jump from the block ending with ti.

Let B. be the one which is not the immediately
J

following node on our path (though B. may very well
J

be further down the path). The next tk which

writes one of the registers in LVTOP(B.) and
J

which is on the path down from t. must be a1

strict successor of t..1

When ti is a task representing one of the loops

(which have already been optimized), the situation

is more complex, and the details are left to a

formal description of the algorithm. Essentially,

though, we note those tasks which read or write

registers which are read or written within the loop

or are live at one of the exits from it, and draw

an equal arc between such tasks and the loop task

to prohibit the invalidation of data; more careful

precedence considerations are used during scheduling.*/

104

.it

CALL FORM PRIORITY LISTS;
- %

/* We use any appropriate heuristic, as discussed in the

chapter on intrablock scheduling. This routine assigns

a value PRI(t) to each t. ET. */k 1

CALL TASK LIFT;

/* TASK_LIFT attempts to move tasks which· have no predecessors

up from the path being considered to some already

optimized blocks in L which have jumps to the beginning

of the path being considered.

Generally, TASK_LIFT looks first at the blocks on L which

have jumps to the path being considered. Unless the

probability that control flows to the path via arcs

from already optimized blocks in L is greater than some

threshold (say 50%) no LIFTing is attempted. A task, ti '

is eligible for LIFTing in priority order only if it meets

aZZ of the following criteria:

(a) t. has no predecessors on the path, or all of its
1

predecessors have been LIFTed.

(b) t. is not a conditional jump or a loop task.
1

(c) t. comes from a block which is above the first block1

(other than the path entrance) to which there is an

arc from a block off the path.

as tasks are LIFTed, their successors might satisfy (a)

above, and need to be considered when they do.

105

When a task is eligible for lifting, we call a routine,

TRY_LIFT, once for each arc from an already optimized

block in L to our path entrance. TRY_LIFT(Pi,B) will

succeed (and will report the place(s) in blocks B.
J

and above on L to insert a t. into the already formed1

parallelization) if ti may be so inserted without added

cycles being generated; otherwise, TRY_LIFT will fail.

The task will only be LIFTed if TRY LIFT succeeds on arcs

which total more than some threshold (again,' s a y, 5 0%)

probability of being the route by which control reaches

our path.

We temporarily insert a buffer block, initially empty,

between each immediate predecessor block and the block we

are lifting from. When a task is lifted, we actually insert

the MOP into those positions dictated by the calls to

TRY LIFT. If there are immediate predecessor block·s the

task is not lifted into, either because TRY_LIFT failed or I
because of an unoptimized predecessor, we place the task

at the bottom of that block's buffer.

When lifting is completed, we eliminate all still empty

buffers, and make a single buffer for each set of identi- -

cal buffers, adjusting addresses accordingly. */

;

106

CALL SCHEDULE-PATH;

/* We now use our ordinary methods of forming list schedules,

as in intrablock scheduling, with the major exception of

the loop tasks. When a loop task is encountered, we look

at the partition being formed. If the loop, 2. , is the

first task being placed in the partition, then we so place

it and continue as described below. If other tasks are

already scheduled in the partition, we call TRY_DROP for

each t. in the partition, in reverse order of when they
J

were scheduled in the partition. TRY DROP attempts to

place tasks in loop Li (from the top) without adding a

cycle to Li's·already formed schedule, just as TRY_LIFT

does from the bottom. If TRY DROP succeeds for all such

t 's, then each corresponding MOP is added to the loop

in P , and Z. is scheduled in the partition othdrwise.1

2. is treated as if it had a resource conflict and is
1

delayed. Note that TRY DROP and TRY LIFT recognize loop- -

invariance and take it into account when considering

moving a task into a loop; also both routines balk at

moving conditional jumps or loops at all, so we do not

attempt to place either in a loop.

Eventually, Zi will be placed in some partition. Tasks

after i. which are considered.for placement in the same1

partition are passed to TRY_LIFT which tries to fit them

into the remaining holes in L.'s schedule. If they can be
1

so placed, they are, and we consider them scheduled in

that partition. */ *$.I-*

107

CALL RECOVER SPACE;

/* A task which moves below a conditional jump it was previ-

ously above will, generally, have to be copied into the

off-the-path target block of that jump in order to preserve

data validity, as will a task which was below a join to

the path, but is now above the earliest spot for a legal

rejoin.

RECOVER_SPACE alters our temporary schedule

in an attempt to reduce the amount of copying done.

In particular since, due to the nature of list scheduling,

we would not expect to be able to move tasks up from their

scheduled positions, we identify conditional jumps which

have been moved up past tasks they followed, and tasks

which are too far up to allow them to participate in a

rejoin in which they are required, as candidates to be

, moved down into holes in PTEMP.

In the course of trying to recover space, the routine

will notice that at certain arcs coming to or leaving

the path, new bloJks will have to be created to hold

tasks which must be duplicated -- namely the space that

was unable to be recovered. If the arcs lead to or from

already optimized blocks, we try to fit the tasks into ·

the blocks in a way analogous to TASK LIFT. Those that

are not so fitted are regarded as single MOP or loop

microinstructions and PTEMP is updated to include ·these,

with the addresses adjusted appropriately.
*/

108

CALL CUT AND PASTE;
- -

/* CUT AND PASTE:
--

1. Updates P and related functions to reflect the

new parallelization.

2. Finds the basic blocks of the parallelization

and adds the new names to L and B, removing the

elements of PATH from L.

3. Updates <L to reflect the new blocks. */

109

1

Detailed Algorithms for Interblock Optimization

OPTIMIZE:

INPUTS: (1) M, a set of MOPs as defined earlier

(2) E, a set of exit node names

(3) The functions TRUEJUMP, FALSEJUMP, LVTOP,

READ, WRITE, U as defined in Definitions 2 and 3

OUTPUT: A set P of microinstructions as defined in (4)

and (5), with revised functions TRUEJUMP and

FALSEJUMP.

USES: (1) B, a set of block names, with values basic

blocks of microinstructions as' in definition (8)

(2) LOOPS, a set of loop names, each with value a .

subset of B U LOOPS

(3) OUTER_LOOPS, a map: LOOPS + subsets of LOOPS

(4) EXITS, a map: LOOPS +B U E

(5) <L· for Li E LOOPS. A subset of Lix(LiUEXITS(Li))
1

(6) ARC PROB, a map: U <L + IO'100]
LL. ELOOPS 11

(7) EXPECT, a map: u Li + [O,100]
L.ELOOPS
1

(8) T, a set of tasks, with data precedence relation <

(9) Predicates OPTIMIZED and LVTOP_VALID on (B U LOOPS)

METHOD: Calls the routinesdescribed below as indicated by

the previously given calling sequence. The above

variables are to be considered global to all follow-

ing procedures.

110

MAKE BASIC BLOCKS: '
-

INPUT: P, the set of microinstructions as defined

in Definition (6).

OUTPUT: B = {B 82'...'Bt ' a set of basic block names,1'

with values basic blocks as defined in

Definition (8).

METHOD: See Algorithm 12.1, page 412, Aho-Ullman [AH077].

MAKE FLOW GRAPH

INPUT: P, B

OUTPUT: (1) A revised P and B revised to account for

the property of LOOPS described below.

(2) The set LOOPS = {Ll'L2'...'L } where each Li

is a subset of LOORS U B. (That is, LOOPS

is a set of names with values a subset of

LOOPS U B·) ghe elements of LOOPS are

originally subsets of B alone, and as such

any two loops are either disjoint or one

contains the other. After forming LOOPS,

however, this routine replaces all of the

blocks in L. contained in an outermost loop1

L. of L..with L. itself. So then an element
J l' J

L. E LOOPS will consist of-the names of all1

blocks which are in L. but no smaller loop,1

plus all names of loops in L but no smaller loop.
111 1

(3) The functions OUTER LOOPS, EXITS, <L for
L E LOOPS. OUTER LOOPS(L) is the set of

all names of LOOPS in the set L. EXITS is

the set of all names of blocks (or

elements of the.initial E) jumped to by

microinstructions in blocks of L, but not

contained in L. < is a subset ofL

L x (L U EXITS(L)) where (Bi, Bj) E <L means

that B. is a predecessor block of B. in
1 J

the usual way.

METHOD: (1)-<B is built as in the algorithm on pp. 450-454

of [AH077], those algorithms also determine

whether <B is irreducible.

(2a) If <B is irreducible, node splitting is used-

to produce a new P, B, and <B so that <B is

reducible. For details on the transforma-

tions and duplications necessary to accomplish

node splitting, see Chapters 4-6 of [HECH77].

(2b) If two loops Li and L share a header H, make

a copy of H, call it H', and have the back

edge from 'L. to H jump to H' instead. Then
J

L. will be as before, but L. will be
1 J

(L. - {H}) U {H'}. Now any two loops will
J

be either disjoint or nested. Update P, B

and <B in the obvious way to reflect these

chang6s.

112

(3) Form the s4t LOOPS where L E LOOPS is a

set of block names E B, such that L is a

natural loop of B. Include B itself as an

element of LOOPS. Again use pp. 450-454

of [AH077].

(4) Build OUTER LOOPS, EXITS, change LOOPS, and

build < for each L. E LOOPS. All wereL. 11
defined in the comments for this routine,

and all may be done in a completely

straightforward way.

/* Unfortunately, node-splitting is something of a

headache, particularly considering the expected

rarity of its use. The algorithms known for finding

the fewest nodes necessary to duplicate to accomplish

node-splitting all use procedures known to be np-complete,

such as minimum covering [HECH77]. However, one would

assume that occasionally running an exponential program ,

would not be too great a burden, in practice. Further-

more, even if a few too many nodes were produced, we are

in an environment where the running time of the produced

code is generally more critical than the space it uses.

One might very well expect an implementation, especi-

ally one which will not have wide, but will have

critical use to simply harass the programmer into

redoing code that produced an irreducible flow graph.

Certainly a routine to convert such code could be added
later. */

113

LIVETOP ANALYSIS:
-

INPUT: (l) P, B, <B as before.

(2) The set E = {El' 'E2, ..., Enl of exit nodes.

(3) The function LVTOP: E + subsets of A, where A

is the set of registers.

OUTPUT: LVTOP is extended so that it maps E U B into subsets

of A. LVTOP(Bi) is the set of registers whose

values are live at the entrance to B.. LVTOP is1

then further extended to elements of LOOPS.

LVTOP VALID is marked TRUE for each name LVTOP

is defined on.

METHOD: Live variables can be fouhd using Algorithm 146

and the accompanying discussion on pp. 489-490

in [AH77].

/* The above algorithm uses the following definitions:

DEF(B.) = the set of registers written into by Bi1

before any uses of those registers.

USE(Bi) = the set of registers used in B. before1

any writes to those registers..
-1

LVBOT(Bi)= .U LVTOP (B.).(·they use IN and OUT
B < B. J
i B i-' for LVTOP, and LVBOT)

Then the formula used for LVTOP (B .) -is
1

LVTOP(B.) = (LVBOT(Bi) r DEF(B.)) U USE (Bi)1 1

114

To extend LVTOP to LOOPS, we just note that if

L E LOOPS,

LVTOP(L) = LVTOP(B.) , where B. is the entrance block1 1
of L.*/

ASSIGN JUMP PROBABILITIES:
- -

INPUT: LOOPS, <L for all L E LOOPS.

OUTPUT: Two functions are produced: ARC PROB and EXPECT,

as defined earlier.

(1) ARC_PROB((Bi,B)) where Bi <L B is the

estimated probability that if control flows

to B. it will next flow to B..
1 1

(2) EXPECT(Bi) is the probability, calculated from

ARC_PROB and <L that, given the entrance node

is reached, B. is traversed before an exit node.1

METHOD: For ARC PROB we suggest several methods:

(1) Programmer estimate

(2) Simulation of unparallelized microcode on

sample data.

(3) Running unparallelized microcode in the hardware

on sampre data, with added cod-e to trace branches.

EXPECT can be calculated from ARC PROB as follows:

(1) Consider the elements of LOOPS separately.

(2) If L E LOOPS with entry node Bk' EXPECT(Bk) = 1.

115

(3) For all other nodes, B.EL,
J

EXPECT(B.) = I (EXPECT(Bi) * ARC_PROB((Bi,Bj)))J B. < B.1LJ

Note that this calculates the probability of a node

being reached. It does not measure the expected number

of iterations, in case the node is in a loop, although

we could do such a calculation. What we have is good

enough, since we will only want to compare nodes within

a loop.

/* As a further explanation of two of the methods

of deriving ARC PROB estimates:

Simulation. It is reasonable to expect that a microcode

optimizer would only be one part of a highly automated

design system. If such a system contained a microcode

simulator, it would presumably take a small change to

the simulator to count jumps taken. Counting could be

done during the debug phase of code development, or if

that is too biased toward pathological code, by running

an appropriate mix of sample code. We note that the

simulator would presumably not have to be altered to run

the vertical source code, as such code is legal, if

inefficient, horizontal code.

In the hardware. In a user microprogrammable system, already

functioning, a preprocessor might insert a microcode

subroutine call before every jump. The subroutine would test

116
-

the same condition, record its truth or falsity, and return

the machine to its previous state. This could be done on

a suitable mix of data far faster than option (b).

(A macro may be more appropriate on many machines than

a subroutine.)

SCHEDULE:

INPUT: (1) L, an element of LOOPS

(2) All global variables.

OUTPUT: (1) P is revised to reflect a parallelization of

all blocks contained in L.

(2) L, <L and all associated maps and functions

are similarly revised.

METHOD: Uses the routines described below as indicated

by the previously described calling sequence.

PICK A PATH:
--

INPUT: L, EXPECT, OPTIMIZED

OUTPUT: An ordered set PATH, a subset of L,

PATH = {81'82'...'B } and on < B <B < ... < Bn L' 1 2 n

METHOD: (1) Recall t''at when we refer to already optimized

elements of L, we mean in this call of SCHEDULE;

that is, the previously optimized loop nodes

have not yet had OPTIMIZED set to true; only

117

their contents have on previous calls to

SCHEDULE.

(2) Examine all not yet optimized nodes, all of

whose successors are'elements of EXITS(L),

already optimized nodes, or the entrance node

for L.

(3) From among the nodes found in step (2), pick the

one whose EXPECT value is greatest, let PATH equal

the set containing that node.

(4) Now work backwards. For each node placed on

PATH, pick the predecessor whose EXPECT value

is greatest and add that to PATH, ignoring

predecessors which are already optimized.

(5) Stop when the entrance node for L is reached,

or when a node is picked which has all of its

predecessors already optimized.

/* Our method of picking a path is rather arbitrarily selected;

one could surely produce flow graphs for which the path

so selected is rather poor. It is our strong belief,

though, that as long as one does not get sidetracked

onto very lightly traveled paths, the method chosen

is not critical.

Nonetheless, we suggest two other selection methods:

(1) Pick, from among the unoptimized nodes of L, the

one with the highest EXPECT. Work backwards, as

above, from that node, and similarly work forwards,

118

always going to the node with the highest EXPECT.

(2) Pick the path backward and/or forward from some

node (e.g., the highest EXPECT), in an attempt

to produce a high average EXPECT. This might be

done in a manner similar to Dijkstra's Single Source

algorithm [AH074], pp. 207-209.

Other methods could be imagined indefinitely -- we have

no guide other than intuition to their performance. */

MAKE TASKS:

INPUT: P, L, OUTER LOOPS (L) , PATH

OUTPUT: A set T = {tl't2'...'tw of newly defined tasks.

METHOD: (1) T = 0

(2) Consider each B. E PATH in turn.1

(3) If B. = L. for some L. E OUTER LOOPS(L) then:
1 1 1 -

T=TU{£.} where £. is a task created to
J J

stand for the loop L..
J

(4) Otherwise, Bi is a set of elements belonging

to P, and for each such element we create a

unique task t. . Let T=T u {t.}.
J J

119

MAKE DATA PRECEDENCE GRAPH:

INPUT: T, the set of tasks with all associated sets

and functions.

OUTPUT: A partial order on T.

METHOD: We alter the algorithm given in Figure 5.2 for

finding the data-precedence in a set of MOPs as

follows:

(a) Conditional jump tasks

(1) For each conditional jump task ti we have the

set LVTOP(B.) where B. is the target block of
J J

the off the path jump at ti.

(2) With each register we have the set

COND READS SINCE WRITE which is treated
- - -

essentially like READS SINCE WRITE. When we
- -

process ti in our graph formation, we add t.1

to each COND_READS_SINCE_WRITE (ak) ' where

ak E LVTOP(B).

(3) For each task t. that writes a register ak we
J

(i) Draw a STRICT edge from each element of

COND READS SINCE WRITE(ak) to t..- - - J

(ii) Clear COND READS SINCE WRITE(ak)I - -

(b) LOOP tasks

(1) We defer consideration of loop invariance until

it is needed in specific situations, thus the

question of whether a task strictly or equally

follows a loop task is considered during schedul-

120

ing, see SCHEDULE_PATH. (This is done for

efficiency reasons.)

(2) Given a loop task ti which represents the loop

L. , we define the sets1

READ (t i)
= U READ (P .) and

P.€L. J
J 1

WRITE(ti)- U WRITE(P.)
p.EL. J
J 1

where by Pj€Li we mean P. is a microinstruction
J

in a block of L. or some loop contained in Li.1'

(3) If t. is another task in T, we use the rules in
J

Figure 5.2 to find edges (ti't) or (t ,ti)

in < , except that we consider all such edges

to be equal edges.

(4) If L. contains a conditional jump off (or1

farther down) the PATH, we follow the rules

in (a) above to form strict edges.

(5) If we wish to minimize microinstruction space

used, we may draw edges from some tasks-to t.1

or from t. to some conditional jumps (see space
1

saving below).

FORM PRIORITY LIST:
- -

INPUT: T and the data precedence graph T.

OUTPUT: Function PRI: T + Real numbers.

121

METHOD: Any appropriate method as used with intrablock

optimization may be applied here. Decisions must

be made, once a heuristic has been' chosen, about

extending the heuristic, particularly for loop tasks.

Loop tasks may or may not be considered unit-

execution tasks, and the question of resource

conflict between a nonloop task and a' loop task

may be somewhat subtle and time consuming to apply.

Given the results of the experiments in Chapter 7,

however, it is probably nearly optimal to just use

 highest levels, considering loops to be unit

execution time tasks.

TASK LIFT: PROC;

INPUT: (1) L < T data-precedence graph <TL " '

(2) THRESHOLDl, THRESHOLD2, real numbers in [0,1].

OUTPUT: A possibly revised, L, <L ' P' and T, revised to

reflect the lifting of tasks to optimized blocks

above PATH.

METHOD: (1) Form the set S C L.

S. E S means that S < B . where B is the
i i Ll' 1

first element on the chain of nodes chosen

for PATH.

(2) If I [EXPECT ySi) * (ARC PROB((Si,Bl)))]
S.ES1

< EXPECT(Bi) * THRESHOLDl

then return.
122 -

/* There are too few profitable candidate blocks to move

tasks into at the possible expense of the others. */

(3) Place an empty "header" block in L between

each element of S which has been optimized

and Bl. Place a single empty header node

between aZZ unoptimized elements of S and B .
1

(4) Form a priority ordered list of tasks in T with

no predecessors on < · Eliminate all t such
that t. is:

J

(a) a loop tagk

(b) a conditional jump

(c) below a join to a block on PATH besides at Bl.

(5) DO for each t. on the list:
J

(6) Call TRY_LIFT(t ,si) for each si E S where

s. has been optimized and no predecessor1

of t. is in the header after s..
1 1

(7) I I [EXPECT(s.)1
si| TRY_LIFT(t ,si)

*(ARC_PROB((si'Bl)))]<EXPECT(Bl)*THRESHOLD2

then remove t. from the list.
J

(8) Otherwise DO:

(9) Take the union of all indices returned

by TRY_LIFT(t ,si) and place Pj in

each indicated microinstruction,

revising L and P.

123

10. For each s. which returned null or for1

which we did not call TRY LIFT, place a

copy of P at the bottom of its header.

11. Eliminate t. from T and <T.J

12. Place any tasks which no longer have prece-

predecessors on < on the' list in
priority position.

13. Remove t. from the list.
J

14. END 8.

15. END 5.

16. From each set of identical headers, pick one, have

all jumps to any of the headers in the set jump to

the representative instead, delete the others.

17. END TASK LIFT.

124

TRY LIFT: PROC(P.,B.); /* called by task-lift */- 1 J
INPUT: P. , a microinstruction containing a single MOP1

which is not a conditional jump

B. , a block E L.
J

OUTPUT: The index of the highest Pk € B. that P. can
1 1

legally be moved up into from a block below B. ,
J

and null if no such index exists.

METHOD: (1) If B. belongs to a member of OUTER LOOPS (L),J -

and if P. is not loop-invariant for that loop,1

return null.

(2) Let P be the terminal microinstruction of B..n J
If P writes a register that P. reads, or if
n 1

P is a conditional jump, and the other blockn

P targets has a live register in its LVTOP

that Pi writes, then return null.

(3) Otherwise, we try to back Pn up the chain of

microinstructions making up B , starting with

P at the terminal instruction, until one ofn
the following happens:

(a) Pn is the initial microinstruction of B. ,J

(b) Pi writes a register that Pn rea·ds ,

(c) P. reads a register written by an immediate1

predecessor of Pn

(4) If P. does not resource conflict with P
1 n

we return n.

(5) Otherwise, go forward on the chain towards the

terminal node. Return the index of the first

125

microinstruction found which does not resource

conflict with P..1

(6) Return null if step (5) fails.

/* A more sophisticated (by far) task lifting is possible:

Somewhat informally:

(1) We continue beyond B. in this fashion, backing
J

past conditional jumps and checking loop

invariance before backing into loops.

(2) If we find ourselves about to back past a join,

we temporarily stop and find the highest possible

legal index, as above, if any.

, (3) We now generate a new copy of this procedure for

each block preceding our join. If they all succeed,

we return the union of the indices that they

returned.

(4) If, at least one of them fails, and we had found

an index in step (2), return that index. If step (2)

also failed to find an index, return null.

(5) Never try to back into an unoptimized block.

*/

126

SCHEDULE PATH:

INPUT: T, the set of tasks ordered by a priority function.

OUTPUT: A parallelization of T, called PTEMP.

METHOD: Scheduling here proceeds using the list scheduling

algorithm given in Chapter 4. At step (4), however,

resource conflict is determined by checking that

no resource is overused. That is unchanged here,

except if a loop task is being scheduled or has

been scheduled for the current partition. In that

case, we follow a totally different procedure:

(1) Our next ready task is a loop task, Zi :

a) If the current instruction already has a loop task

or a conditional jump task, we reject Ei as if it

had a resource conflict.

b) We consider the set of tasks already scheduled in

the current instruction in source order latest-to-

earliest. For each, we TRY DROP it into the loop.

If TRY_DROP finds that it is loop invariant and can

be placed in the already existing schedule for the

loop, it is temporarily so placed and the loop

characteristics used to determine loop invariance

are temporarily updated. LOOP invariance is

discussed in detail in [AH077], see particularly

algorithm 13.4 on page 458.

c) If the wliole set of tasks may be so placed, Zi is
scheduled for the current instruction and the tasks

127

are placed permanently in the positions found for

them in step (b); then P is appropriately updated.

(2) Our next ready task, tk ' is being considered for

scheduling in an instruction which has a loop

task, Zi ' already placed in it.

a) If tk is a loop task or.a conditional jump task

we reject tk as if it had a resource conflict with

the current instruction.

b) We attempt a TRY_LIFT of tk into Zi via the

on-the-PATH exit from £i. If successful, we

schedule tk in the current instruction and we record

tk in its lifted position in the permanent copy

of Li ' updating the associated sets and P.

/* TRY DROP is identical in every respect to TRY LIFT,

which is given in detail, except that tasks are inserted

into blocks from above rather than from below. */

128

RECOVER SPACE _

INPUT: PTEMP, L. < .PL'

OUTPUT: A possibly revised' PTEMP, P, L, cand B. PTEMP is

changed to reflect task motions designed to reduce

copying. L may have tasks (removed from PTEMP)

added to its already optimized blocks, and may

have blocks of MOPs copied from PTEMP. B has new

buffer block names added.

METHOD: /* We give first a relatively straightforward method

of doing this. We can paraphrase the method as:

-- Find the tasks we might want to move down

-- find the task from those which has the most

potential and may be legally moved down into

a hole in the schedule

-- move that task down to the hole which saves

the most space

-- update and go back to the beginning

-- when no mcre motion is possible, update L and P. */

1. Form the set TARGET. t. E TARGET if:1

(a) t.ET is a conditional jump and there exists1

a task t. such that:
J

(i) t. was earlier than t. on PATH; and
1 1

(ii) t. has been scheduled later than t. in PTEMP.
1 1

or

(b) There is a joining edge to a block Bk on PATH

from other than Bk-1 such that

129

(i) t. was in Bk or below on PATH; and1

(ii) there is a t. which was above B on PATH
J

but has been scheduled below t. in PTEMP
1

2. Assign PRIORITY(ti) for each t. € TARGET.1

PRIORITY(t.) is the number of tasks which need to be1

copied due to ti's position in PTEMP.

(a) If t. is of the type described in 1 (a),
1

PRIORITY(t.) is the number of tasks t. as1 J
described in 1(a).

(b) If t. is of the type described in 1(b), PRIORITY(t.)1 1

is the number of edges described in 1(b).

(c) If t. is of both types, PRIORITY(ti) is'the sum1

of the PRIORITYs found in 2(a),(b).

3. DO UNTIL (no changes are made by steps 4-9)

4. t. = element of TARGET with highest priority
1

5. Choose an already scheduled microinstruction

in PTEMP as follows:

(a) We consider microinstructions scheduled

below the instruction in which t. is1

scheduled, but above the first instruction

i which must follow ti for data-dependency

reasons.

(b) We further restrict ourselves to those

instructions which t. could be scheduled1

in without conflict. If no instructions

remain, let t. be the task with the next1

130

highest priority and return to the

beginning of step 5.

(c) For each instruction under consideration,

we calculate the number of tasks which

must be duplicated if ti is placed there.

(d) Pick the microinstruction which provides

the lowest such value, except that if all

such values are higher than PRIORITY[ti),

let t. be the task with the next highest1

PRIORITY, and return to the beginning

of step 5.

(e) In case of a tie at step (d), favor the

earlier microinstruction, unless t. has1

predecessors in TARGET. In that case, we

want to give the predecessors more room,

so we pick the latest.

6. Move t. from its originally scheduled micro-1

instruction to the new instruction chosen in step 5.

7. Remove t. from TARGET if a recalculation shows
1 -

its PRIORITY to be zero.

8. Recalculate the PRIORITY values for members of

TARGET whose values may have changed by the

motion of t..
1

9. Add to TARGET any elements which will now quali fy

under 1(a) or (b), and calculate their priorities.

10. END 3-

131

/* We now do the necessary copying. */

11. Find all tasks scheduled below a conditional

jump which they were earlier than in the

source and identify the set of all such jumps.

12. For each jump identified in 11, place a buffer

block at the exit from PATH and place in the

buffer copies of all tasks which moved below

that jump, except for those tasks which only

write registers dead in that branch.

13. For each fuch exit which leads to an already

optimized block, try a TRY_DROP on the tasks

in the buffer (in reverse source order).

When successful, strike the task from the buffer

and add it to the optimized block in L.

14. Do the analogue of 11-13 (using TRY LIFT)

for rejoins to the PATH.

15. Update L and P to contain the buffer blocks;

they will be included in future PATHs.

< is similarly updated. Update the functions

TRUEJUMP and FALSEJUMP to account for the buffer

blocks and the rejoins. Mark OPTI4IZED and

LVTOP-VALID false for each of the new buffer blocks.

132

In the case of the last task (in PATH order), if it were

a conditional which has moved above another, we consider

the less likely branch to be the of f-the-PATH one,

and we place our buffer after the less likely branch.

This choice is arbitrary, but must be consistent with

' the address correction done in CUT_AND_PASTE.

/* Notes on space saving:

1. In many environments, space saving is a luxury item.

As a result, a fiFst implementation might well avoid it,

and any implementation for which space was not

critical or for which practice showed space did not

increase, might not want to add it at all.

In contrast, an on-chip ROM controlling a mass

produced microprocessor might be an environment in

which a much more sophisticated space saver than

this might be appropriate.

2. One can easily produce a situation in which the above

algorithm performs miserably. For example, we might

have a test near the very end of a long sequence of

code which might be moved to the beginning and may not

be movable down due to the early placement of one

of its successors. As a result, more sophisticated (by

far) methods than these may be appropriate.

3. The problem somewhat resembles the chip placement

problem [HANA76]. That is, the tasks have been initially

placed in some location and may now be moved to slots

elsewhere, or may displace other tasks when moved

133

to other microinstructions. This displacement would

set off a string of motions which would end when a

task was moved to an empty slot. If no such ending

occurred", the entire string would be rejected

(e.g. see "force-directed relaxation" in [HANA76]) .

4. A form of space saving which we strongly recommend

concerns loops. If a loop is long, with a schedule

length of five or more microinstructions, say, we may

not want to duplicate it. We can avoid the duplica-

tion in advance by, during the data precedence graph

formation:

(a) Draw an edge from the loop task to all conditional

jumps which follow it on PATH; and

(b) Locate all rejoins to PATH which are above the loop.

For each task t. above the latest· such rejoin,1

draw an edge from t. to the loop.1

*/

CUT AND PASTE
-

INPUT: PTEMP

OUTPUT: A changed P, L, <L reflecting the parallelization

of PATH.

(1) Replace each element of PTEMP containing a loop

task with the fully scheduled loop contained in P.

This copy of the loop already contains all tasks

added to the loop during scheduling.

134

(2) Do a flow analysis of PTEMP , producing blocks B'

and flow graph <B' ' treating the loop as one

entity, as before.

(3) Delete from L all elements of PATH. Each rejoin

jump from L is redirected to the spot found for

the rejoin in RECOVER SPACE. (Many come from newly

created buffer blocks.) Add B' to L.

(4) Remove from <L the edges which came from blocks in

PATH and replace them with <B' .

(5) Mark all elements in L which were blocks in B'

OPTIMIZED.

(6) Produce new ARC PROB, EXPECT for all revised elements

of B'.

(7) Mark the LVTOP VALID of each new block false; any

future references to those LVTOPs will need a new

calculation.

(8) Delete from P all microinstructions which correspond

to nonloop tasks in T, and add to P all new micro-

instructions implied by PTEMP.

(9) If PATH contained the entrance node of L, we find all

instructions in P which jumped to that node from out

of L and replace the target address with that of the

first element on PTEMP. All other jumps to the PATH

were rejoins considered in RECOVER_SPACE.

135

conditional jump along PATH has one jump target

(10) We now fix the functions TRUEJUMP and FALSEJUMP

to account for our new parallelization. Each

which was to the next block on the PATH, except

that if the last Pi along PATH is a conditional

jump we define the more likely jump as the on-the-

PATH jump. Then given a newly scheduled conditional

jump ti 'j we change the on-the-PATH jump to be

the microinstruction scheduled immediately after ti ,

and we leave the off-the-PATH jump as is. If t.1

has been scheduled in the last cycle, we change the

on-the-PATH jump to what was defined as the

on-the-PATH jump for the original last micro-

instruction.

136

A Detailed Example

We next present Example 8.1, which is again code

written for the CIMS PUMA System. The vertical code,

shown in Example 8.la, converts a CDC Display Code decimal

integer to binary, compacting spaces. The code has a

moderately complex flow structure, and was written for the

purpose of demonstrating this algorithm. We, however, did

not write the code, and the algorithms presented here were

not considered during its writing, although we did specify

some characteristics of the flow structure.

The source code, which we hope is understandable even

to those not very familiar with the PUMA, is shown in

Ex. 8.1 a. We consider the flow graph to have four outer-

most loops, as shown in 8.1 b, and thus schedule is

called four times. The third call, shown in 8.1 f to 8.1 i

is the most complex, with the bulk of the optimization being

done there. The data precedence graph for the main path

is shown in Ex. 8.1 f, and we see that our largest schedule

for this example involves 19 tasks. The object code produced

is shown in Ex. 8.1 2, and can be seen to contain 21 micro-

instructions. This is the same length as the code produced

by an experienced microprogrammer (who was asked just to

parallelize, not change, the MOPs used), and looks almost

identical to the code he produced.

137

Chapter 9. Several of the MOPs are actually 2-cycle MOPs,

1

Note that two factors are considered here which were

not mentioned in this chapter but are discussed in

with both halves written out; 7 and 8 are an example of

such a pair. Chapter 9 mentions how these might be handled

and some difficulties associated with them; fortunately,

no special measures were necessary here. The second

consideration was of tests such as line 8 of the source code.

Originally, line 8, and several others, were 2 separate

lines, one for the arithmetic operation and one for the
.'

'

register test. PUMA permits the testing of the input lines

of some registers, and this code was preprocessed to specify

that this be done. The preprocessing should be completely

straightforward. We discuss this further under "special

case precedence" in Chapter 9.

138

* AT ENTRANCE, YO=33, Yl=12, Y2=55, I.E. DISPLAY CODE(0); 18. MULT =AC+BUF
* DISPLAY CODE(9) - 1(0)+11; DISPLAY CODE(SPACE). 19. AC=AC+BUF
* MQ HAS ORIGINAL NUMBER, AC=0, Y6=0. 20. E2=E 2-1 [F] ; IF -EALU(0-3)=0 THEN MULT

1. ENTER El=10 * 10 DIGIT NUMBER * ADD THE NEW DIGIT TO OLD VALUE TIMES 10
22. (MULT.1) BUF=Y7

2. OUTER E2=6 * 6 BITS PER DISPLAY CHAR 23. =AC+BUF
24. AC=AC+BUF* SHIFT A NEW DIGIT INTO RIGHT HAND 6 BITS 25. Y6=AC

3. INNER AC:MQ=SHIFT(AC:MQ,Ll)
4. E2=E 2-1 [F] ; IF -EALU(0-3)=0 THEN INNER * ANY MORE DIGITS?

26. MERGE AC=0*NO PROPER INPUTS ARE BELOW 33 27. El=El-1[F]; IF -EALU(0-3)=06. (INNER.1) BUF=YO THEN OUTER ELSE EXIT7. =AC-BUF
p 8. AC=AC-BUF; IF ALU (59) THEN ERROR
W * IF NON-DIGIT IS A SPACE, IGNORE IT.
£0 * OTHERWISE, ABORT.* ALL DIGITS ARE BETWEEN 33 AND 44 28. NOTDIG BUF=Y210. (INNER.2) Y7=AC 29. =AC-BUF- 11. BUF=Yl 30. AC=AC-BUF12. =AC-BUF 31. IF AC=0 THEN MERGE13. AC=AC-BUF; IF -ALU(59) THEN NOTDIG

* STORE INFINITY IF ERROR IN INPUT* SET UP MULTIPLY BY 10 - DONE INEFFICIENTLY 32. ERROR EO=1777* TO PROVIDE,LOOP FOR EXAMPLE 33. AC=015. (INNER.3) BUF=Y6 34. Y6=EO:AC16. AC=BUF GO EXIT17. E 2=9

* ALL REGS DEAD ON EXIT EXCEPT Y6
* Y6 CONTAINS MQ CONVERTED FROM
* DISPLAY CODE TO BINARY

EXAMPLE 8.lA SOURCE CODE. SOME LINE NUMBERS NOT USED DUE TO
PRE-PROCESSING. BLOCK NAMES IN PARENTHESIS NOT
SPECIFIED BY PROGRAMMER.

EXAMPLE 8.1 b. BLOCK FLOW INFORMATION.

Set of basic blocks:

B= { ENTER, OUTER, INNER, INNER.1, INNER.2, INNER.3,
MULT,MULT.1, MERGE , NOTDIG, ERROR}

The set LOOPS = {21 'E2'E3'24
where £1 = {INNER}

2 = {MULT}
2

'.3 = {OUTER,£1' INNER. 1,INNER.2,INNER. 3,£2'MULT.1,
MERGE, NOTDIG}

£4 = {ENTER,£3'ERROR}

The map OUTER-LOOPS maps £1 +0,

£2+0'

£3 + <21'82
1 + {£ }43

The flowgraphs <

9*1 ' <22 ' <E3 ' <24
-- each contained loop

reduced to 1 node:

OUTER ENTER

N /». *=)
<21 <23

LANGEji
(ZINNER.D

< 3=. - ERROR

»-1
<22: <IMULT CINNER-. 2-)

cliDET 4 +7.-C MEER.:i>,1.- -ENTRANCE -7-NOTDIG)

< 4
ENTER

Ct'/1--*-

RROR

1 *
*

RROR
**EXIT \MERGED>Le -ir

**EXIT

* Note: We signify that two different exits exist from £3

to ERROR at instructions 8 and 31.
**

EXIT is off the source code.

EXAMPLE 8.1

140

EXAMPLE 8.1 c. THE MAPS LVTOP, ARC_PROB, EXPECT.

The map LVTOP: (EXIT+ {Y6}, given)

ERROR + 0 INNER.2 + {YO,Yl,Y2,Y6,AC,MQ,El}
MERGE +{YO,Yl,Y2,Y6,AC,MQ,El} INNER.1 + {YO,Yl,Y2,Y6,AC,MQ,El}
NOTDIG + {YO,Yl,Y2,Y6,AC,MQ,El} INNER + {YO,Yl,Y2,Y6,AC,MQ,El,E 2}

MULT.1 + {YO,Yl,Y2,Y7,AC,MQ,El} OUTER + {YO,Yl,Y2,Y6,AC,.MQ,El}
MULT + { YO, Yl, Y 2, Y 7,AC,MQ, BUF, ENTER + {YO,Yl,Y2,Y6,AC,MQ}

El,E2}

INNER.3+ {YO,Yl,Y2,Y6,Y7,MQ,El}

The map ARC - PROB (programmer guess), extended to the

loop-reduced -flowgraphs within

<£ : no arcs < : (ENTER,£) + 100%£ 3
1 4

<£ :
no arcs

(£3,ERROR) + 1 (via INNER. 1)
2

(£3,ERROR) + 1 (via NOTDIG)

within < : (OUTER,£) + 100 (INNER.2,NOTDIG) + 102 1
3

(£ ,INNER.1) + 100 (INNER.3,£) + 100
1 2

(INNER.1,INNER.2) + 99 (£2'MULT.1) + 100

(MULT.l,MERGE) + 100

(INNER.2,INNER.3) + 90 (NOTDIG,MERGE) + 99

The map EXPECT on the ioop-reduced blocks:

within 21: INNER + 100% g : ENTER + 100
4

2 : MULT + 100 8 + 100
2 3

ERROR + 100

within 13 : OUTER + 100 1 +89
2

g + 100 MULT.1 + 89
1

INNER.1 + 100 NOTDIG + 10
INNER.2 + 99 MERGE + 99
INNER. 3 + 89 ERROR + 1

EXAMPLE 8.1

141

EXAMPLE 8.1 d. THE CALL SCHEDULE(£).1

PATH = {INNER} T = {3,4}

Data-Precedence Graph: 3 4

Priority List: 3 4 (using priority(t) = height(t)

breaking ties using earliest source order)

Task Lifting: None possible

Schedule: 3 ,4

Space Recovery: None necessary, TARGET = 0

Cut and Paste: (1) New elements of P From old P's (removed)

5 3,4

(2) Updated function values:

P TRUEJUMP FALSEJUMP

5 5 6

2 5 5

(3) £1 = {Bl} where Bl = {5}

(4)
<ll

= 0 (only one block)

EXAMPLE 8.1

142

EXAMPLE 8.1 e. THE CALL SCHEDULE(£).
2

PATH:={MULT} T = {18, 19, 20} '

Data-Precedence Graph: (19)l e
@

Priority List: 18 19 20

Task Lifting: None possible

Schedule: 18, 20

19

Space Recovery: TARGET = {20}

20 is moved down to the second cycle

to
get< improvement.

Revised Schedule: 18

19 20

no copying

Cut and Paste: (1) New elements of P From old P's (removed)

9 18
14 19,20

(2) Updated function values:

P TRUEJUMP FALSEJUMP

9 14 14
14 9 22
17 9 9

(3) 22 = {82} where B2 = {9,14}

(4) <£ = 0 (only one block)
2

EXAMPLE 8.1

143

EXAMPLE 8.1 f. THE CALL SCHEDULE(£);
3

MAIN PATH, TASK SET, DATA PRECEDENCE GRAPH.

PATH:
{MERGE,MULT.1,£2'INNER.3,INNER.2,INNER.1,21,OUTER}

I = {2,21,6,7,8,10,11,12,13,15,16,17,£2'22,23,24,25,26,27}
Data-Precedence Graph: 2 6

Formed Using:
2 7

TASK RDREGS WRREGS

2 0 E2 17 8
f AC,MQ,E2 AC,MQ,E21
6 YO BUF 10 11
7 AC,BUF 0
8 AC,BUF AC 12
10 AC Y7

11 Yl BUF . 13
12 AC,BUF 0
13 AC,BUF AC 15
15 Y6 BUF

16 BUF AC 16

17 0 E2 -

£ AC,BUF,E2 AC,E22 2
2

22 Y7 BUF

23 AC,BUF 0 22
24 AC,BUF AC

25 AC Y6 23 27
26 0 AC
27 El El 24

25
Also, 13 has Y2,Y6,AC,El

live at the off-path jump.
26

EXAMPLE 8.1

144

EXAMPLE 8.1 g. SCHEDULING THE MAIN PATH

Level List H {t IHEIGHT(t) = H}

1 26, 27, 25
2 24, 23
3 22,22,16,17
4 15,13,12,10
5 11, 8, 7,El, 266

Priority List: 6 2 21 7 8 11 10 12 13 15

16 17 E 22 23 24 25 26 27
2

Task Lifting: None possible

(Doesn't split off an already optimized path.)
Schedule:

(New Delayed
Micro- Due to

Instruction)* Cycle Schedule Resource Conflict

(37) 1 6, 2 2
1

- 2 2 7, 171
(38) 3 7, 17 none

(39) 4 8, 11 none

(40) 5 10, 12 none

(41) 6 13, 15 none

(42) 7 16, 27 12
- 8 2 22

2
(43) 9 22 none

(44) 10 23 none

(45) 11 24 none

(46) 12 25, 26 none

* Used - in 8.1 i.

EXAMPLE 8,1

145

EXAMPLE 8.1 h. MAIN PATH, SPACE SAVING AND TASK COPYING.

Space Saving: Type(a) - 27 has moved above 12'22,23,24,25,26

Type(b) - 25,26 prevents a rejoin to 26 and 27,
so 26 and 27 will have to be copied.

Thus TARGET = {27,26} with PRIORITY(27) = 8 (22 counts as 2)
PRIORITY(26) = 1.

We attempt to move 27 down. 27 conflicts with cycle 8,

but not with any of 9-12. No other rejoins are affected,

and no conditional jumps become inverted, so the most space
is saved by moving 27 to cycle 12.

We cannot move 26 down, since it is already in the last cycle.
So the revisions are: cycle 7: 16 (42)

cycle 12: 25,26,27 (46)

Task Copying: The space saver'was not able to permit a legal
rejoin to 26 and 27, so we create new micro-

instructions 35 and 36, with 35 identical to 26
and 36 identical to 27. We set

TRUEJUMP(31) = 35 to make the rejoin, and set

TRUEJUMP(35),FALSEJUMP(35) = 36

TRUEJUMP(36) = 2, FALSEJUMP(36) = EXIT

P=P U {35,36}

£3= 23 u {83} where 83 = {35,36}
and in <

2.

3 Delete (NOTDIG,MERGE)

Add (N6TDIG,B3) with ARC_PROB = 99
(B3,OUTER), ARC_PROB not necessary

(B3,EXIT), ARC PROB not necessary

EXPECT(B3) = 10

EXAMPLE 8,1

146

/

EXAMPLE 8.1 i. CUT_AND_PASTE FOR THE MAIN, PATH.

CUT-AND-PASTE: (1) We form 10 new microinstructions 37-46,

with their values given in the schedule

table in 8.1 g and revised in space

saving, so

P = CP - CT - £l,£2})) u {37,38,...,46}.

(2) Updated function values:

P TRUEJUMP FALSEJUMP

36 37 (unchanged)

46 EXIT

20 43

5 38

37 5 5

38 39 39

39 32 40

40 41 41

41 28 42

42 9 9

43 44 44

44 45 45

45 46 46

46 37 EXIT

(3) £3 = {83,84,...,38,11'22} where 84={37}, 85={38,39},
B6= {40,41},

B7= {_42},B8={43,44,45,46}

(4) New arcs in < (84,£1), (El'85), (85,86), (86,87),£
3

(B6,NOTDIG), (87,£2), (£2'88),
(BS,ERROR), (BB,B4), (B3,B4)

EXAMPLE 8.1

147

EXAMPLE 8.1 j. THE REMAINDER OF Z .
3

The next PATH = {B3,NOTDIG}, T = {28,29,30,31,35,36}

Data-Precedence Graph: 28

e
29

=

30

31

35

Priority List: 28 29 30 31 35 36

Task Lifting: All branches to NOTDIG are optimized, so we
have exceeded TRESHOLDl, and lifting may proceed.
28 and 36 are possible tasks to lift, but we
eliminate 36 since it is a conditional jump.
28 may not be moved up, since it must follow 41.
Thus no lifting is possible.

Schedule

(47) 28, 36

(48) 29

(49) 30

(50) 31

(51) 35

Space Recovery: TARGET = {36}.

The most improvement is obtained by moving it '
to (51), so now:

(47) 28
(51) 35,36 are the changes.

No tasks need be copied.

Cut_and_Paste: (1) We form 5 new microinstructions as given above,SO
P = (P - T) u {47,48,49,50,51}

(2) Changedjumps:
P TRUEJUMP FALSEJUMP

-51- 47
47 48 48
48 49 49
49 50 50
50 51 32
51 37 EXIT

(3) £3= {11'£2'84,85,0..,810} where 89 = {47,48,49,50}, 810 ={51}

148

EXAMPLE 8.1 k. THE CALL SCHEDULE(£4).

PATH:= {ENTER, ERROR, 23} T = {l,£3'32,33,34}

Data-Precedence Graph: 13

=

£

=

33

4

PRIORITY: 1 2 32 33 34
3

TASK LIFTING: None possible

SCHEDULE: (52) 1

£3' 32 (Note: 32 temporarily placed in
microinstruction 50)

(53) 33

(54) 34

SPACE SAVING: TARGET = {32} (rejoin from an exit of 23)

We move 32 from £3 to 53, which makes a full
rejoin possible.

(32 data precedes 54.) And we remove 32 from 50
Revised schedule

- E
3

(53) 33, 32

CUT AND PASTE: (1) We form 3 new microinstructions 52,53,54.- -

P = (P - {1,32,33,34}) u {52,53,54}

(2) P TRUEJUMP FALSEJUMP
(3) £4=(£3'Bll,812};

52 37 37 811= {52}, 812 = {53,54}53 54 54
54 EXIT

EXIT (4)new <£ (Bll,£3). (£3'812)(via·39),39 53 - 4
50 - 53 (13'812)(via 50),(812,EXIT)

149

EXAMPLE 8.1 2 SYMBOLIC OBJECT CODE - FULLY PARALLELIZED

VERSION OF 8.1 a.

PB SYMBOLIC

52 Bll El = 10

37 B4 E2 = 6; BUF = YO

5 Bl AC : MQ = SHIFT(AC:MQ,Ll)

+ E2 = E2-1[F]; IF xEALU THEN Bl

38 BS = AC - BUF; E2 = 9

39 AC = AC - BUF; BUF = Yl; IF ALU(59) THEN B12
40 B6 Y7 = AC; = AC - BUF

41 AC = AC - BUF; BUF = Y6; IF 0ALU(59) THEN 89
42 B7 AC = BUF

9 B2 = AC + BUF

14 AC = AC+BUF; E2=E2-1[F]

+ IF LEALU(0-3) = 0 THEN 82
43 B8 BUF = Y7

44 = AC + BUF

45 AC = AC + BUF

46 Y6 = AC; AC=0; El=El-1[F]

+ IF 0EALU(0-3)=0 THEN 84 ELSE EXIT
47 B9 BUF = Y2

48 = AC - BUF

49 AC = AC - BUF

50 IF AC ='0 THEN B10 ELSE B12

51 B10 AC=0; El=El-l[F]; IF LEALU(0-3)=0
THEN B4 ELSE EXIT

53 B12 AC=0; EO=1777
54 Y6 = EO:AC

EXIT

EXAMPLE 8.1

150

Two Examples from the PUMA 6600 Emulator

We now present, with most details left to the reader,

two examples from the PUMA CDC 6600 emulator. In both

cases, the source code was written by the person who had

originally uritten the hand optimized object code, with

the aim being a clear exposition of the algorithm

used.

Example 8.2 is the code which sets up the multiply

loop. 8.2a contains the uncommented source code.

Since the code contains no loops, there is only one call

to SCHEDULE; the main path of which, along with the

associated data-precedence graph, is shown in 8.2.b.

Note that the main path includes 34 of the 38 source tasks,

so is almost all of the optimization.

8.2 c and d show the derived object code, and for

comparision, the original hand optimized code. Note that

both use 19 lines of code, and that to set up a floating

point multiply, both take 14 cycles for positive or negative

arguments. The derived integer multiply takes 16 cycles

instead of the 14 cycles in 8.1 d. This is the result of

the space saver; the first schedule produced also took 14

cycles for an integer multiply set-up, but required 5 extra

lines of microcode. The space saving algorithm as presented

here will never lengthen the main path, but may move an off-
.

the-path jump down and then possibly lengthen a non-main-path.

151

A more sophisticated space saver would presumably have

decided on the extra space rather than time for so important

a path; real effort might have located code that used

neither, as in the hand optimized version. We note in

passing that the first 5 lines of the hand optimized

version contain an elaborate trick which allows the shift

to proceed before Xk is loaded into the MQ. The

straightforward version produced by our algorithms did

just as well.

Example 8.3 is the OP CODE 24 (normalize) instruction

from the emulator. 8.3 a shows the unoptimized source code,

while 8.3 b,c are the derived object code and the hand

optimized version used in the emulator. Note that these

two sections of code were chosen to be tests of these

algorithms, with the feeling that they are the hardest sections

of the emulator code to optimize. While the methods were

changed slightly afterwe had gained experience with OP CODE 24,

the earlier versions of the algorithms performed essentially

as well.

Our estimates of the time and space requirements of

the three examples for our algorithms vs. the hand optimized

code are as follows.

MULTIPLY SET-UP: Algorithms are 4% slower than PUMA
(expected cycles). No extra space used.

OP CODE 24: Algorithms are 10% slower than PUMA.
16% more space used than PUMA.

CODE CONVERSION: Time and space identical to that used
in the hand optimized version.

152

* SETS UP MAIN MULTIPLY LOOP. AT EXIT, Y REGISTERS
* CONTAIN APPROPRIATE MULTIPLES OF ABS(XJ), MQ=ABS(XK),
* AC=0, EO=EXPONENT OF PRODUCT. E 2=15 HAS BEEN INITIAL-
* IZED TO COUNT THE NUMBER OF CYCLES IN THE LOOP.

1 40 ' El:BUF=XJ
2 IF BUF(59) THEN 40XJNEG

3 (40.1) AC=BUF·; GO 40GETXK

4 40XJNEG AC=-BUF

5 40GETXK E 2:BUF=XK
6 IF BUF(59) THEN 40XKNEG

/ (40GETXK.1) MQ=BUF; GO 40TESTILL

8 40XKNEG MQ=-BUF

9 40TESTILL IF ILL(El) THEN 40ILLEXP

10 (40TESTILL.1) IF ILL(E2) THEN 40ILLEXP

11 (40TESTILL.2) Yl=AC
12 AC=SHIFT(AC:MQ,Ll)
13 Y 2=AC
14 AC=SHIFT(AC:MQ,Ll)
15 Y 4=AC
16 AC=SHIFT(AC:MQ,Ll)
17 YO=AC
18 BUF=Yl
19 =AC-BUF
20 AC=AC-BUF
21 Y 7=AC
22 BUF=Y2
23 =AC-BUF
24 AC=AC-BUF
25 Y5=AC
26 =AC-BUF
27 AC=AC-BUF
28 Y3=AC
29 AC=SHIFT(AC:MQ,Ll)
30 Y6=AC
31 IF ZERO(El) THEN 40XJZERO

32 (40TEST1LL.3) IF ZERO(82) THEN WXIZERO

30 (4UTESTILL.4) =El+E2
34 Eu=El+62; IF XFOFL THEN FLRESFLD

35 401Ni'MUL AC=U
30 Ez=i5; GO EXIT

3/ 40XJZERO IF #ZERO(E 2) THEN WXIZERO

30 (40XJZERO. 1) EO=6000; GO 4UINTMUL

WXIZERO * LIVE VARIABLES: NONE
FLRESFLO * LIVE VARIABLES: EO (ALSO AC DUE TO BUG IN PUMA CODE)
EXIT * LIVE VARIABLS : YO-Y 7, MQ, AC, EO, E 2
40ILLEXP * LIVE VARIALBES: XJ, XK, El, E 2

EXAMPLE 8.2 A : MULTIPLY SET-UP SOURCE CODE

-h

153

PATH = 14OINTMUL, 40TESTILL.4, 40TESTILL.3, 4OTESTILL.2,

4OTESTILL.1, 40TESTILL, 40GETXK.1, 40GETXK, 40.1, 40}

T - 11, 2, 3, 5, 6, 7, 9, 10, 11, 12-31, 32, 33, 34, 35, 36}

1

3 2 9 31
I.

5

11 6 7 32 33

16 12 10 34

13 jo

t

14

15

16

19 17

0

20

S

21 22

m 23

.

24

25 26

*
27

2d

EXAMPLE 8.2 B THE MAIN PATH -

29

3u

35

154

40 El:BUF = XJ; IF REG(59) THEN 40XJNEG

AC=BUF; E2:BUF = XK;· IF REG(59) THEN 4 UXKNEG

40XKPOS MQ=BUF; Yl=AC; IF ILL(El) THEN 40ILLE
P

40TESTE2 AC=SHIFT(AC:MQ,Ll); BUF=Yl; IF ILL(£2
) THEN 40ILLEXP

72=AC; AC=SHIFT(AC:MQ,Ll)
AC=SHIFT(AC:MQ,Ll); Y4=AC
YO=AC; =AC-BUF
AC=AC-BUF; BUF=Y 2
=AC-BUF; Y7=AC
AC=AC-BUF; =El+E 2
YS=AC; =AC-BUF; EO=El+E2; IF XFOFL TH

EN FLRESFLO

AC=AC-BUF; IF ZERO(E2) THEN WXIZERO

AC=SHIFT(AC:MQ,Ll); Y)=AC; IF ZERO(El
) THEN 40XJZERO

Y 6=AC; AC=O; £2=15; GO EXIT

40XJNEG AC=-BUF; E2:BUF=XK; IF #REG(59) THEN 4
0XKPOS

MQ=-BUF; Yl=AC; IF ILL(El) THEN 40ILLE
XP ELSE 40TESTE2

40XJZERO AC=0; IF #ZERO(E2) THEN WXIZERO
EO=6000
E2=15; GO EXIT

EXAMPLE 8.2 C

40 El%BUF=XJ; MQ=0; IF REG(59) THEN 40
XJNEG ELSE 40XJPOS

40XJPOS AC=BUF; E 2 iBUF=XK ; IF ILL(El) THEN 40ILLEXP ELSE 40FORMMP

40XJNEG ·AC=-BUF; E2%BUF=XK; IF ILL(El) THEN 40ILLEXP

40FORMMP Yl=AC;. AC=SHIFT(ACiMQ,Ll); IF ILL(E2) THEN 40ILLEXP

Y 2=AC; AC=SHIFT(AC%MQ,Ll); IF BUF(59) THEN 40XKNEG

BUF=Yl; MQ=BUF; GO 408

40XKNEG BUF=Yl; MQ=-BUF
4OB Y 4=AC; AC=SHIFT(AC%MQ,Ll)

YO=AC; =AC-BUF

BUF=Y2; AC=AC-BUF
Y 7.=AC; =AC-BUF
AC=AC-BUF; IF ZERO(El) THEN 40XJZERO

Y 5=AC; =AC-BUF; IF ZERO(£2) THEN WXIZERON

AC=AC-BUF; =El+£2

Y)=AC; AC=SHIFT(ACWMQ,Ll); EU=El+E 2; IF XFOFL THEN FLRSFLON

40INTMUL Y6=AC; AC=0; E 2=15

40XJZERO YS=AC; =AC-BUr; IF TZERO(6
2) THEN WXIZERON

AC=AC-BUF; IF OPCODE(1) THEN WXIZERON
Y 3=AC; AC=SHIFT(ACfMQ,Ll); Eo=6000; GO 40INTMUL

EXAMPLE 8.2 D

EXAMPLE 8.2 C AND D:-DERIVED SYMBOLIC OBJECT CODE AND
CODE AS HAND PRODUCED FOR PUMA

155

24 EU:BUF = XK
IF ILL(EO) THEN 24 ILL

24TESTXK lF BUF(59) THEN 24XKNEG
AC=BUF; GO 248

24XKNEG AC=-BUF

24B MQ=0
IF AC=0 THEN 24ZERO

E 2=0

IF AC(47) THEN 24SHFTDN

NORMLOOP AC:MQ = SHIFT(AC:MQ,Li)
IF AC(47) THEN 24PLUSl

AC:MQ=SHIFT(AC:MQ,Ll)
=E 2+2
E 2=E 2+2

IF AC(47) THEN 24SHFTDN ELSE NORMLOOP

24SHFTDN =EO-E2
EO=EO-E2; IF FOFL THEN NORMUFLO ELSE 24SHFTDN.1

IF *BUF(59) THEN 24WXI

AC=-AC

24 WXI XI=EO:AC

24ABJ IF J=0 THEN NEWINSLO

EU=E2
AC=EO
BJ=AC
NEWPARCEL; GO NEWINSTR

NORMUFLO AC=0; GO 24WXI2

24ZERO E2=60

24WXI2 XI=AC

24PLUSl =E 2+1
E2=E 2+1; GO 24SHFTDN

24ILL E 2=0

AC=BUF; GO 24WXI

EXAMPLE 8.3 A : OP CODE 24 SOURCE CODE

156

24 , EU:BUF = XK;IF REG(59) THEN 24XKNES 24 EO*BUF=XK; MQ=0; IF REG(59) THEN NORMNEGAC=BUF; iF ILL<EU) THEN 24 ILL AC=BUF; IF ILL(EO) THEN 24ILL ELSE NORMZT248 &2=0; MO=0; IF -AC(47) THEN NORMLOOP NORANEG AC=-BUF; IF ILL(EO) THEN 24ILL ELSE NORMZT=EU-E 2;IF AC=0 THEN 24 ZERO NORMZT E2=60; IF AC=0 THEN NORMWXI224 SHFTDN EO=EU-E 2; IF FOFL THEN NORMUFLO
NOSHTEST E2=0; IF AC(47) THEN 24SHFTDNIF BUF(59) THEN 24SHFTDN.2 NORMLOOP AC%MQ=SHIFT(AC*MQ,Ll); =82+2; IF AC(46) THEN 24PLUSl24WXI XI=EO:AC; IF J=0 THEN NEWINSLO ELSE 24WBJ.1

AC%MQ=SHIFT(AC%MQ,Ll); E 2=E 2+2 ; IF -AC(46) THEN NORMLOOP
24 SHFTDN =EO-E 2; IF BUF(59) THEN 24RECOMP24XKNEG AC=-BUF; IF ILL(EO) THEN 24ILL ELSE 248 EO=EO-E 2; IF FOFL THEN NORMUFLO
NORMWXI XI=EU*AC; IF J=0 THEN NEWINSLO24SHFTDN.2 AC=-AC; GO 24WXI 24WBJ EO=E 2
24WBJ2 AC=EONORMLOOP IF AC=0 THEN 24ZERO

BJ=AC; NEWPARCEL; GO NEWINSTRNORMLOOP.2 AC:MQ = SHIFT(AC:MQ,Ll); =E 2+2 24 RECOMP AC=-ACJ EO=EO-62; IF FOFL THEN NORMUFLO ELSE NORMWXI+ IF AC(46) THEN 24PLUSl NORMUFLO AC=0AC:MQ = SHIFT(AC:MQ,Ll);E 2=E2+2 NORMWXI 2 EU=E 2; XI=AC; IF J=0 THEN NEWINSLO ELSE 24WBJ2+ IF AC(46) THEN 24SHFTDN.3 ELSE NORMLOOP.2
24PLUSl =E 2+124PLUSl =E 2+1

E 2=E 2+1 E 2=E 2+1 ; GO 24SHFTDN
24 ILL AC=BUF; E 2=0; GO NORMWXI24SHFTDN.3 =EO+-E2; GO 24SHFTDN

24 ZERO E2=60; XI=AC; IF J=0 THEN NEWINSLO
p 24 WBJ.1 EO=E2
Ul AC=EU EXAMPLE 8.3 C*J

BJ=AC; NEWPARCEL; GO NEWINSTR

24 ILL E 2=0;AC=BUF; GO 24WXI

NORMUFLO AC=0
XI=AC; IF J=0 THEN NEWINSLO ELSE 24WBJ.1

EXAMPLE 8.3 B

EXAMPLE 8.3 8 AND C : DERIVED SYMBOLIC OBJECT CODE AND
CODE AS HAND PRODUCED FOR PUMA

9. Extensions for More General Models of

Microprogramming

Non-conforming Models

In doing this investigation we had to choose between

using a relatively simple (and usually unrealistic) model

of microprogramming languages, and a more complex model

into which many machine structures could probably be

mapped. We chose a simple structure with the aim of

investigating the parallelization algorithms in as pure

a light as possible, hoping, then, that the methods which

proved productive here could be adapted to more complex

situations. We were also aided in our choice by the fact

that the PUMA nearly matches our model, by our belief

that many complexities of microprogrammed central unit

design are actually the result of outmoded tricks designed

to save hardware, and by the fact that the bulk of the

previous investigations into microprogram optimization

have used this simple model.

In this somewhat anecdotal chapter we list the exten-

sions to our model which we feel would cover many, if not

most, microprogrammed machines. For each such extension

we comment on how serious a problem extending our methods

to a machine with such a structure would be, and we make

general comments on the extension.

158

Compatible Uses of Resources

As mentioned in Chapter 5, the resource usage model

is not adequate to describe the situation when two MOPs

both use a resource, but those uses are "compatible" and

the MOPs do not clash. The mode settings of an ALU or a

multiplexer are two common examples of compatible uses;

MOPs with different required settings would clash, but those

with the same would not. To describe our method of dealing

with this situation effectively, we present our suggested

method for dealing with resource conflict in general.

The Left and Right Resource Bit String

The innermost loop of a list scheduler might be

expected to spend most of its time determining whether a

MOP under consideration may be placed in the current

partition. To do this, we propose that each MOP t have

associated with it two bit strings, a "left resource

string," LRES(t), and a "right resource string, "

RRES (t) . The strings would have a field associated with

each resource used, and would have to be formed only once

per MOP, then never changed.

If a resource has one unit available which a MOP

' either uses or not, then we set a single bit field in

both LRES and RRES for any MOP which uses it, and we clear

the field for MOPs which don't use it. Then given a

159

partition P, we can define PARTITIONRES(P) = U
 LRES(t.).t.€P J

J

A MOP, ti, will conflict with P in the use of resources of

this type if PARTITIONRES(P) n RRES(ti) 0 0, otherwise

we can add t. to P and union LRES(ti) in with PARTITIONRE
S(P)1

to update it.

Resources with Non-unit Availability

When we have a resource with d units available, and

a task which uses c units of it, the situation is somewhat

mote complex. We use a d bit wide field, and we set the

right hand most c bits in RRES of the MOP, while clearing

the other d-c bits in the field. For LRES, we set the left

hand most c bits while clearing the rest. The field in

PARTITIONRES(P) has the left hand most e bits set, where e

is the sum of the usages of the resource of the_ MOPs already

in P. Then, once again, for fields of this nature, a MOP t.1

will conflict with P if PARTITIONRES(P) n RRES(ti) 0 0.

Note that the case d=1 corresponds to the special· case

described in the previous paragraph. We point out that

adding a MOP to a partition is a relatively complex opera-

tion, but need be done only once per MOP, whereas testing

for conflicts requires only the simple (on most machines)

bit intersection operation, but may be done much more

frequently.

160

A

Testing for Compatible Resources

Testing for compatible resource usage presents added

difficulties. Two MOPs which, say, read the same register,

might want the same seldct bit setting on a multiplexer.

It would be convenient to again be able to code fields

corresponding to the multiplexer - or whatever resource -

so that incompatible usages would cause the bit intersection

to be non-zero, but compatible usages would produce a field

of all zeros when intersected. At first glance, this would

appear to be impossible. Indeed, the PUMA microassembler,

which checks the legality of all microinstructions specified

by the programmer, laboriously checks all such fields against

the already placed ones; though, fortunately, to assemble

this need be done only once per MOP.

We were able to come up with a trick for this, using

an expansion of the exclusive or. In particular, suppose

the resource state can be specified by n bits. We set aside

a 2n bit field for the resource. For a task t which does
i

not use this resource, we clear all 2n bits in the field

in both LRES and RRES. If t. does require a bit string, B,1

for the resource, we let the left hand most n bits in the

field in LRES be B, and the right hand be not B, the bit-

by-bit complement of B. In RRES, we reverse them, letting

the right hand n bits be B. PARTITIONRES(P), then, will

be the union of the LRES for those fields for all MOPs in

161

B and B are different only if (B and not B) or (B and

the partition, and once again, a MOP ti will conflict with P

if PARTITIONRES (P) n RRES(ti) 0 0· This works because bits

not B.) is 1, that is, if their exclusive or is 1. If one
J

field is all zeros, then it will pass the test with any

other string.

The discerning reader may have noticed that except

for the case of multiple units of a resource, the parti-

tion's total resource can be found by simply taking the

union of the LRES of each of its components. The PUMA

is a machine with several "compatible" resource usages,

but no multiple units; thus for the PUMA, and probably

many other machines, both total resource usage for the

microinstruction being formed and resource conflict can be

determined very quickly. This may require more than one

word of bits, even on a wide-word machine, but still would.

be far faster than field-by-field checking.

Many-cycle MOPs

Our model assumes that all MOPs take the same amount

of time to execute, and thus that all MOPs have a resource

and dependency e ffect during only one cycle o f our ,schedule.

In many machines, though, the difference between the fastest

and slowest MOPs is great enough that allotting all MOPs

the same cycle time would slow dowb the machine considerably.

162

The PUMA, for example, allows two cycles for ADDs longer

than 4 bits; if combinatorial multiply chips were incorporated

into the design, the longest operation would be longer still.

This is more an intrinsic function of the range of complexity

of the MOPs available at the microprogram level of the

machine, rather than something which is liable to change

with improved hardware.

The presence of MOPs taking m>1 cycle presents little

difficulty to the within basic block methods suggested here.

The priority calculations all extend naturally to longer

MOPs; in particular, one can break the MOP into an one-

cycle subMOPs, with the obvious adjustments to the graph,

and calculate priorities accordingly. Scheduling is also

very straightforward; indeed, one of the attractions of

list scheduling is that m-cycle MOPs are handled so naturally.

When an m cycle MOP is scheduled at level £, we also schedule

it for levels 2 + 1, 2 + 2, ..., 8 + m-1. (If it conflicts

with other long MOPs already in some of those cycles, we

treat it as if it has a conflict in the cycle in which we

are trying to schedule it.) The resource usages need not

be constant for each of the m cycles; the more general

case is a simple extension of our resource calculations -

that is, usage may be,defined differently for each cycle

of the MOP.

Our beyond basic block methods have some difficulties

163

with long MOPs, though. Within a PATH, there again seems

to be no problem, but suppose a two cycle MOP, with subMOPs

t. and t: is scheduled so that ti is at the same level as1 1

a conditional jump that was previously below ti and t'·1

Then ti would have to be copied into the off the path

branch at the jump. t' however, would have to be in the
i

first cycle of the branch not taken, and the cycle containing

t' would have to remain the first cycle. Without going1

deeply into details, this would require changes to and/or

restrictions on the algorithms presented to account for

copying into already optimized blocks, other tasks copied

past the same conditional jump, etc.

Polyphase MOPs

In some systems, the MOPs represented at the micro-

program language level may be further regarded as having

sub-microcycles. This has the advantage that while two

MOPs may both use the same resource, typically a bus, they

may use it during different sub-micro-cycles; thus the

apparent resource conflict may not exist, and the MOPs

could be scheduled in the same cycle. This has no effect

on our scheduling methods other than to complicate the

resource conflict relation. We remark that the PUMA has no

sub-microcycles.

164

Variable Instruction Formats

Some microprogrammable machines have more than one

micro-instruction format. The format chosen for an instruc-

tion will allow certain subsets of the MOPs to be chosen

for that instruction. In particular, each field of an

instruction may allow any of several MOPs to be placed in

the field, and each MOP may be placed in any of several

fields.

To deal with this, we suggest first that immediately

choosing one format in which to place, the first MOP sche-

duled for the cycle seems too risky. We suggest instead

that a list be kept of the formats for which the so far

selected MOPs are resource compatible and that each time

a new MOP is added, the formats which could not accommodate

the MOP be deleted. The choice of which field to bind a MOP

to within a format, however, greatly resembles the resource

allocation we have been considering right along. Indeed,

one would expect that the MOPs form equivalence classes

with respect to Which fields they may occupy, and that

selecting a field for a MOP is equivalent to assigning

it one unit of resource. For a discussion of this, see [WOOD78].

Necessarily Simultaneous MOPs

At the microcode level it is often possible to specify

165

operations which, when performed in parallel, have no

sequential equivalent. A common example is the register

swap: If two registers are both made of master-slave flip-

flops, and each feeds one of the inputs of the other, the

two may be able to exchange contents in one cycle, using

no intermediate registers. That is, if A=B and B=A are

both legal MOPs, the microinstruction A=B, B=A would express

an operation not expressible as a sequence of single MOPs:

To accommodate the above, we suggest simply that the

source code be allowed to contain lines which are sets of

MOPs. Throughout optimization the set is treated as one

MOP, and never broken apart.

Special Case Precedence

Our model uses the registers read and written to

determine .the precedence relation on the MOPs. One could

expect this to be an inadequate description of the relation

on most machines. As a result, it is likely that in any

implementation special procedures would add edges to the

dag produced by the routines described herein.
\

A significant example of this exists in the PUMA.

In the PUMA, tests of some data may be done either before

or after the data enters the register simply by specifying

the appropriate test. Thus if MOP t. writes the tested
1

data, and t. tests it, we can say ti < = t. rather than
J J

166

t. < t., as long as we are careful, during object code1 J

generation, to specify the correct condition code.

We have ordinarily not been interested in code trans-

formations of this sort, requiring instead that they be

programmer specified. This particular situation is quite

common however, and since it adds no difficulty to our

methods, other than some simple pre- and post-processing,

it would seem worth implementing in a PUMA optimizer.

(Or, in general, in any environment in which such a trans-

formation may be specified within the informational limits

of the data-precedence graph.)

F16w Control Extensions and Restrictions

Our model assumes that, as is true of the PUMA, each

instruction may specify two address as potential successors,

one to jump to if the specified test is true, the other if

it is false. Our beyond block methods use this flexibility

in the rearrangement of the order of conditional jumps;

without it the,situation is a bit more difficult.

If a machine has a single jump address, with a fall

through as the alternative, the methods in the previous

chapter could lead to a situation in which several instruc-

tions want to fall through to the same instruction, which

would not be permitted. In that case, one of the contending

instructions would be permitted to fall through to the

167

intended target and the others would fall through to copies

of the intended target. If the intended target were also

a conditional jump, then the copies would again contend

with the original, and copies of the next intended fall

through instruction would have to be made and so on. When

a non-conditional jump occurred, we would have all the

streams use the branch address mechanism to rejoin.

Despite the dramatic sound of the above, it isc our

belief that, for most code, very few copies would be gen-

erated. This would be particularly so if the machine per-

mitted reversible conditions, that is, a branch on the

negation of each condition. Since this would require only

one- gate (an xor, say), and one extra condition f ield bit

in the microprogram memory, it would seem worth doing. In

the PUMA, the tradeoff of microprogram width versus height

is not clear, and we were not able to convince ourselves

whether the two address jumps were economical or not.

Finally, we mention the extension of the flow mechanism

to include microprogram subroutine calls; we simply note

that our recursive descent seems appropriate for handling

the calls. Calls could be treated as one task which some-

what resembles the combination of a loop and a jump. That

is, one task on the dag of a PATH containing a call would

stand for the call, its data dependency dependent upon what

registers were live entering and exiting the call. Tasks

168

'

would probably not be allowed into the subroutine, but tasks

scheduled in the same cycle as the call would be processed

before the call was made at the end of the cycle:

- Subroutine calls are of particular interest here

because the microprogram sequencer chips now being made

have return address stacks built into them.

169

[AST071] ASTOPAS, F.; AND PLUKAS, K. I. "Method of-

Annotated Bibliography

(# marks sources not referenced in text)

Papers concerning microprogram optimization

[AGER76] AGERWALA, T. "Microprogram optimization: a survey." A
Trans. Comp. 25,(Oct. 76), 962-973.

This paper surveys four broad categories of micro-
program optimization: word dimension reduction, bitdimension reduction, heuristic reduction, and
state reduction. The author surveys most of the
papers surveyed here (on microprogram optimiza-tion), and concludes that "very few techniquesexist that can be profitably applied in any
practical environment."

minimizing computer microprpgrams, "Automatic
Control 5,4 (1971) 10-16

This paper is evidently the first to present an
algorithm for an enumerative parallelization.

[DASG76] DASGUPTA, S.; AND TARTAR, J. "The identification
of maximal parallelism in straight-line micro-'programs," IEEE Trans. Comp. 25,10 (Oct. 76)986-991.

This paper claims (falsely) to present an optimal,polynomial time parallelizer. For counterexamplesto the optimality, see the March 1978 corres-pondence in the same journal. The non-6ptimalalgorithm does not appear useful, as even very
simple cases can produce extra cycles.

[DASG77] DASGUPTA, S. "Parallelism in loop-free micro-programs," in Information Processing 77, North-
Holland (1977) 745-750.

An algorithm is given for moving MOPs from onebasic block to another, but only when the twoblocks have the property that one is executed if
and only if the other is.

[DASG78] DASGUPTA, S. "Comment on the identification of
maximal parallelism in straight-line microprogkams,"IEFE Trans. Comp., C-27, 3 (March 78) 285-286.

Letter clarifying the non-optimality of thealgorithm in [DASG76].

170

[GRIS78]# GRISHMAN, R. "The structure of the PUMA Computer
System, "U.S. Department of Energy Report,
Courant Mathematics and Computing Laboratory,
New York University, N.Y., N.Y. 1978.

An overview of the PUMA system and the structure
of the central processor are presented in detail.
A chapter is devoted to microprogramming the PUMA
and the entire CDC 6600 emulator microprogram
is reproduced. (All references to PUMA are
actually to this report.)

[KLEI 71]# KLEIR, R. L.; AND RAMAMOORTHY, C. V. "Optimization
strategies for microprograms," IEEE Trans. Comp.
20, 7 (July 71) 783-794.

Only optimization of sequential microprograms is
discussed here. Standard compiler techniques
are extended to microprograms and various micro-
programming system aids and techniques are explored.

[RAMA74] RAMAMOORTHY, C.V.; AND TSUCHIYA, M. "A high-
level language for microprogramming," IEEE
Trans. Comp. 23, 8 (Aug. 74) 791-801.

This paper concerns the development of a high
level microprogramming language, SIMPL. AIong
the way, a non-optimal parallelizing algorithm
is presented, evidently the first polynomial time
such algorithm. Although it has since been
recognized as being too likely to lead to non-
optimal code, this algorithm laid the groundwork
and set the terminology for others.

[ROSS75] ROSSMAN, G.E.; FLYNN, M.J.; McCLURE, R.M.; AND
WHEELER, N.D. "The technical significance of
user microprogrammable systems," in Microprogramming,
IEEE Catalog No. 75CH098-1-1C, 249-294, IEEE NY,
1975.

A survey of various user microprogrammable systems
is accompanied by an investigation into the
features of user microprogramming and their
effects on performance and usability. Includes
useful tables, a bibliography which includes
references to manuals, and a survey of user
experiences with such systems.

171

[TABA74] TABANDEH, M.; AND RAMAMOORTHY, C.V. "Execution
time (and memory) optimization in the microprogram, "
(SIGMICRO) 7th Annu. workshop on microprogramming
preprints supplement (Sept. 30-Oct. 2, 1974)

This paper continues the discussion of the high
level microprogramming language SIMPL [RAMA74].
More details of the compiler are given, along
with a non-polynomial time algorithm for producing
optimal parallelism. Reference is made to, and a
sketchy description given to a non-optimal
heuristic algorithm.

[TOK077] TOKORO, M.; TAMURA, E; TAKASE,K; AND TAMARU, K.
"An approach to microprogram optimization con-
sidering resource occupancy and instruction
formats," in (SIGMICRO) 10th Annual Workshop on
Microprogramming (1977) 92-108

A rather involved algorithm considers micro-
operations to be represented in two dimensions,
resources vs. cycles.

[TOK078] TOKORO, M.; TAKIZUKA, T; TAMURA, E; AND YAMAURA,I.
"A technique of global optimization of micro-
grams,n in (SIGMICRO) 1lth Annual Microprogramming
Workshop (Nov. 19-22, 1978) 41-50.

A method of optimization beyond blocks is
suggested. The method involves optimizing
blocks and then trying to improve via a small
catalog of interblock motions.

[TSUC74] TSUCHIYA, M.; AND GONZALEZ, M.J. "An approach to
optimization of horizontal microprograms,"
(SIGMICRO) 7th Annu. workshop on microprogramming
preprints (SEPT. 30-OCT. 2, 1974) 85-90.

This paper discusses a polynomial time non-
optimal method of parallelization. While a
careful algorithm is presented for the general
problem, including the updating of a least upper
bound, the actual details of the parallelizing
are omitted.

[WOOD78] WOOD, G. "On the packing of micro-operations
into microinstruction words, " (SIGMISRO) 1lth
Annual Microprogramming Workshop (Nov. 19-22,
1978) 51-55.

Short paper compares a few already suggested
strategies for optimization and suggests a simpler
alternative which amounts to list scheduling using
the number of successors as a priority function.

Most interesting for comments which show a
different perspective on the problem from that
taken in previous investigations.

172

[YAU74] YAU, S.S.; SCHOWE, A.C.; AND TSHUCHIYA, M. "On
storage optimization of horizontal microprograms,"(SIGMICRO) 7th Annu. workshop on microprogramming
preprints (Sept. 30-Oct. 2, 1974) 98-106.

Two parallelizing algorithms are given, oneenumerative, the other not (the latter simply
uses a heuristic function to select one path ofthe former). The paper appears more careful and
thought out than many others presenting such
algorithms.

Papers and books on processor scheduling

[ADAM74] ADAM, T.L.; CHANDY, K.M.; AND DICKSON, J.R. "A
comparison of list schedules for parallel processingsystems, "Comm. ACM 17,12 (Dec. 74) 685-690.
The authors use precedence graphs (from programs
and randomly produced) to test various list
schedule producing strategies against optimal
schedules, against a computed lower bound [FERN73],
and against each other. Schedules are produced
for systems of 2-5 identical processors. Among
those tested, the latest partitioning is the best,
and is nearly optimal. No significant difference
in performance is noted for strategies when random
graphs are used instead of "real" graphs.

[COFF72] COFFMAN, E.G. Jr.; AND GRAHAM, R.L. "Optimal
scheduling for two processor systems," Acta
Informatica 1 (1972) 200-213.

Among other results, particularly bounds, the
authors produce an algorithm for generating optimal
list schedules for tasks of equal duration done on
two identical processors. The algorithm is faster
than 0(n-cubed) on the number of tasks.

[COFF76] COFFMAN, E.G. Jr. (Ed.), Computer and job-shop
"

scheduling theory," John Wiley & Sons, N.Y., 1976.

This book contains chapters on most of the important
topics in determidistic processor scheduling. An
introductory.chapter (by Coffman) sets the defini-
tions for the rest of the book and presents a survey
of results through 1976; the results are also very
conveniently tabulated.

173

[CONW67] CONWAY, R.W.; MAXWELL, W.L.; AND MILLER, L.W.
"Theory of scheduling," Addison-Wesley Publ. Co.
Inc., Reading, Mass., 1967.

An earlier work which predates most of the
difficult work done, thus mostly useful for
historical and definitional purposes. The problem
is viewed from a management science perspective,
and various applications are discussed.

IECKE78] ECKER, K. "Analysis of a simple strategy for
resource constrained task scheduling," 1978
International Conference on Parallel Processing,
181-183.

A simulation compares two simple strategies for
resource constrained scheduling without data-
precedence.

[FERN73] FERNANDEZ, E.B.; AND BUSSEL, B. "Bounds on the
number of processors and time for multiprocessor
optimal schedule," IEEE Trans. Comp. C22, 8
(Aug. 73) 745-751.

Lower bounds are calculated both on the number of
cycles a schedule for a precedence graph of tasks
will take given n processors, and on the number
of processors necessary to process the graph in
critical path time. Both bounds are improvements
over all previously known bounds.

[GARE75] GAREY, M.R.; AND JOHNSON, D.S. "Complexity
results for multiprocessor scheduling under
resource constraints," SIAM J. Comput. 4,4
(Dec. 1975) 397-411.

Various narrow restrictions of processor scheduling
with resource constraints are shown to be NP-
complete; thus almost all cases are. '

[GONZ77] GONZALEZ, M.J. Jr. "Deterministic processor
scheduling," Computing Surveyb 9,3 (Sept. 77)
173-204.

[ULLM73] ULLMAN, J.D. "Polynomial complete scheduling
problem, " in Fourth Symposium Operating System
Principles, 1973, 96-101. (Published as Operating
Systems Rev. 7,4 ACM N.Y.)

174

Two scheduling problems are shown to be np-hard.
The first is scheduling unit time tasks on a

system of identical processors where the number
of identical processors is not fixed but is an
input to the.algorithm. The second is scheduling
one and two unit time tasks on two identical
processors.

Other references

[AH074] AHO, A.V.; HOPCROFT, J.E.; AND ULLMAN, J.D.
"The design and analysis of computer algorithms, "
Addison-Wesley, Reading, Ma., 1974.

Standard algorithms text.

[AH077] AHO, A.V.; AND ULLMAN, J.D. "Principles of
compiler design," Addison-Wesley, Reading, Ma.,
1977.

Standard compiler reference. Chapters 12-14
contain much information on data-flow analysis. -

[HANA76] HANAN, M.; WOLFF, P.K. Sr.; AND AGULE, B.J.
"A study o f placement techniques, " Journal o f
Design Automation and Fault-Tolerant Computing,
1,1 (Oct. 76) 28-61.

Seven chip placement algorithms are applied to
six large problems and the results compared.

[HECH77] HECHT, M.S. "Flow analysis cf computer programs,"
Elsevier North-Holland, NY, NY, 1977.

A definitive reference on data-flow analysis;
includes a short chapter on node splitting.

175

This report was prepared as an account of
Government sppnsored work. Neither the
United States, nor the Administration,
nor any person acting on behalf of the
Administration:

A. Makes any warranty or representation,
express or implied, with respect to the
accuracy, completeness, or usefulness of
the information contained in this report,
or that the use of any information,
apparatus, method, or process disclosed
in this report may not infringe privately
owned rights; or

B. Assumes any liabilities with respect to
the use of, or for damages resulting from
the use of any information, apparatus,
method, or process disclosed in this
report.

As used in the above, "person acting on behalf
of the Administration" includes any employee
or contractor of the Administration, or
employee of such contractor, to the extent
that such employee Or contractor of the
Administration, or employee of such contractor
prepares, disseminates, or provides access to,
any information pursuant to his employment or
contract with the Administration, or his
employment with such contractor.

