@ I DR-O368S

LBL-21121
UcC-70

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA
EARTH SCIENCES DIVISION

Radionuclide Migration through Fractured Rock:
Effects of Multiple Fractures and Two-Member
Decay Chains

J. Ahn, P.L. Chambré, and T.H. Pigford

September 1985

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00038



DISCLAIMER
LBL--21121

g
GOVCIIIII'ICI" nor any a, cncy !hc'm’- nor any of their 8 00 laa

RADIONUCLIDE MIGRATION THROUGH
FRACTURED ROCK:
EFFECTS OF MULTIPLE FRACTURES AND
TWO-MEMBER DECAY CHAINS

J. Ahn, P, L. Chambré, and T. H. Pigford
Earth Sciences Division, Lawrence Berkeley Laboratory
and
Department of Nuclear Engineering
University of California
Berkeley, CA 94720

Manuscript completed September 1985

b N
ARQTED
Vi B hari

Work supported in pait by U. S. Department of Energy contract DE-AC03-76SF00098

[P



II

The authors invite comments and would
appreciate being notified of any errors in the report.

T. H. Pigford

Department of Nuclear Engineering
University of California

Berkeley, CA 94720

ACKNOWLEDGEMENT

This research was supported in part by the U. S. Department of
Energy, Office of Civilian Radioactive Waste Management,
Repository Technology Program. The conclusions of the authors are

not necessarily endorsed or approved by the U. S. Department of
Energy.



111

REPORT OUTLINE
RADIONUCLIDE MIGRATION THROUGH FRACTURED ROCK:
EFFECTS OF MULTIPLE FRACTURES AND TWO-MEMBER DECAY CHAINS

. Infroduction and Summary

. Evaluation of the Sudicky and Frind's Solutions

2.1 Analytical Solutions for a System of Parallel Fractures

2.2 Analytical Solutions for a Two-member Decay Chain in a Single Fracture
. Superposition Approximation for Parallel Fracture System

3.1 Formulations

3.2 Validity of the Superposition Approximation

. Numerical Evaluations of the Solutions for a Two-member Decay Chain with a Step

Release

4.1 Formulations

4.2 Results and Discussions
. Concluding Remarks

. References



1. Introduction and Summary

This report presents the results of an analytical study of the hydrological transport of
a radioactive contaminant through fractured, porous rock. The purpose is to evaluate the
time-, and space-dependent concentration of the contaminant in the ground-water in the
fractures and in the rock pores.

In a previous report1 we presented analytical solutions for transport of a sorbing
radionuclide with no decay precursors through a single fracture, with and without dispersion.
The importance of matrix diffusion was shown. Diffusion from the fracture into the rock
matrix retards contaminant transport through the fracture even without sorption in the
medium. In the present report we extend the previous work in two directions: multiple
parallel fractures and a two-member decay chain. In some instances the contaminant
penetrates 5o deeply into the rock matrix that concentration fields from adjacent fractures
overlap, requiring consideration of multiple fractures in predicting contaminant transport.
Migrating decay presursors can affect the concentration field of their daughters because the
daughters are generated inside the rock and the fracture as well as in the repositcry.

Sudicky and Frind®* also gave analytical solutions for these problems, but their
solutions for a system of multiple parallel fractures’ contain several apparently incorrect
expressions. Their analytical solution for the concentration in the fractures does not satisfy
the boundary condition at the fracture entrance. And their analytical solution for the
concentration in a porous matrix does not satisfy the boundary condition at the rock/fracture
interface, either.

We provide corrected version of the Sudicky and Frind solutions, and we propose a
simplified analytical method that superposes two single-fracture solutions for the
concentration in the rock matrix with a system of parallel fractures. The exact sofutions
require multiple integrals and suiimation of an infinite series, which converges slowly

because of its oscillating nature. The convergence of the series becomes slower for strongly-
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sorbing media, large spacing of two fractures, and early times. The superposition is valid, on
the other hand, for these three cases. We show the validity of the approximation in terms of
the Fourier modulus and (t, Rp) space, where t is time and Rp the pore retardation coefficient.
Validity is also a function of the assumed release mode. The approximation is valid for a
larger domain for the step release than for the band release mode in (t, Rp) space.

Since the Sudicky and Frind's solutions for a two-member decay chain are obtained
for an impulse release at the repository boundary, we can use them as Green's functions in
convolution integrals to obtain solutions for arbitrary release modes. We calculate, for
example, the concentrations for the exponentially decaying step release by making the
convolution of their solutions and the step function. We compare these results with our
previous numerical results® approximated by neglecting decay in the rock matrix, and find
that this approximation introduces considerable errors especially in the case of the daughter
nuclide at far field from the repository.

In summary, we made extension to the theory of radionuclide penetration into

multiply fractured rock, and provided solutions for a two-member decay chain.



2. Evaluation of the Sudicky and Frind's Solutions

In a series of papers, Tang, Sudicky and Frind>>+ presented solutions for
contaminant transport in multiple rock fractures. The system they considered is shown in

Figure 2.1. We first present a review and evaluation of their work.
2.1 Analytical solutions for a System of Parallel Fractures

Tang, Sudicky and Frind showed analytical solutions for contaminant transport
through equally-spaced, parallel fractures by advection and dispersion, and diffusion into
the rock matrix. Sorption retardation of the movement of the contaminant in both
fractures and rock pores is considered. Radioactive decay is considered without any

precursors. Each fracture is identical. The governing equations are:

N v oN D_azN

q
—t —+ e s+ ——— + AN +—— =0, 0 <z < oo, 2.1)
at Rf aZZ Rf azz be
oM D, oM
_M-_E.a__.+7tM=0, b <y < 2§ -b, (2.2)
gt R 2
p dy
where N(z,t) : concentration in the water in fractures, kg/m?,

M(y,z,t) : concentration in rock pores, kg/m3,
groundwater velocity, m/yr,

: dispersion coefficient in fractures, kg/mz-yr,
: diffusion coefficient in rock pores, kg/m3-yr,

decay constant, yr -1,

T > gu <

: half width of fractures, m,
S : half spacing of fractures, m.
R £ and Rp are the retardation coefficient definied as

Kf
Rf= 1+-T)- (2.3)
a
R =1+-£-K (2.4)
P € P



Fig. 2.1

» Z

Parallel fractures and porous rock. The system is

symmetric with respect to y = S plane because each fracture is
identical.



where Kf and Kp are the distribution coefficients for fracture and the pore surfaces

([kg/m?]/[kg/m3]), respectively. ap is the pore surface area per unit volume of rock matrix

(m2-pore surface/m3-rock volume). € is porosity of rock excluding the pores which are not
connected to the fractures. Rock penetration is represented by q in (2 1), the rate of diffusion

from a fracture into pores, per unit area of fracture surface (kg/m?yr), and is defined as:

oM

q(z,t):-er-a_yy=b, z>0, t>0. 2.5

If the dispersion coefficient is zero, (2.1) becomes a first-order equation, which may be

treated as a special case.

The side conditions are:

N(z,0) =0, z>0, (2.6a)
M(y,z,0) =0, b<y<S§,z>0, (2.6b)
N(O,1) = W(©), t>0, (2.6¢)
N(eo,t) =0, t>0, (2.6d)
M(b,z,t) = N(z,t) z>0,t>0, (2.6e)
%—l\y/l y=S=O’ z>0,t>0, (2.6f)

(2.6f) is the difference from the single-fracture probleml. In our previous analysis, an
infinite amount of rock was assumed to surround a fracture. Side condition (2.6f) limits the
amount of rock surrounding each fracture. y(t) represents the release characteristics at the
repository. Sudicky and Frind have applied the step release:

W(t) = N°h(t), Q.7
where N° is the concentration at the repository. They have made use of Laplace transforms
and obtained the following solutions. However, these solutions contain apparently incorrect

expressions. We show below the corrected version and note the corrected parts with boxes.



For non-zero D:
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T=t-YA, Y= R v=%, B2 = ¥
o Rz bR

T=t-ZA, Z=—, A=;‘[-?:_.,ﬁ;,
eae e, p=ElXew e=Xopw,
u§=-§-Pl(m, u2=”72t-§-1’2(u), Q°=§-P2(u),

sinh(op) - sin(cl)
P.()=
cosh(op) + cos(G}L)

hene—

P.() = 4 sinh(op) + sin(csu)]
’ 2 cosh(op) + cos(op) |
. R z |R (241
G=B(3-b), B=\/_-7—D§, g=5--\/D:‘t‘, 0= T (2.12)

These errors shown in eqs. (2.8) to (2.11) may come from the incorrect time

integration. In order to obtain the solution for N/N° they apparently applied the identity:
aF -vap ~
L lle Ap-ﬁp)] =h(t- YA)f(t- YA), YA>0 (2.13)
where p and L-1{ ] stand for the variable and inverse Laplace transform, respectively. In

Sudicky and Frind's solution to N/N° for non-zero D, the Heaviside step function, h(t-YA),

has been taken into account by changing the integration with respect to § in

2.8) from toJ' =Z. Rf
(-) 1g_5 —'t.

By this manipulation, T =t - YA remains non-negative in the interval, &€ 21. ForD =0, h(t-
ZA) is included in (2.10). Then they obtained the solution for M/N° by taking the inverse
transform of

cosh( By p+A. (5-1))

My, z, p) = N(z, p) .
cosh( p+A (S-b))

(2.14)

with the convolution theorem:



t
L“[f](p)- f"z(p)] = Ifl (Vf,(t- D, (2.15)
0

where, in their case,

f(M=N(@p), ad f(O=Nz1 (2.16)
cosh 131/ 2 - (S- = _
£p) = (B/pin Y)), and fz(t)=_E__Z(—l)n(2n+l)e'(m)‘cgs[93w]
2, 12 %S-b)
cosh(B‘/p+x.(s_b)) B7(S-b) n=0
2.17)

In case of non-zero D, they have made the time integration in (2.15) after substitution of

(2.16) and (2.17), ignoring the fact that the lower limit of the integral with respect to £ in

, R,
(2.8) becomes a function of 1, i.e., g(t) = % . —L. Inthecase of D =0, they apparently
Dt

ignored the presence of h(t-ZA) in (2.10) on substitution of (2.10) into (2.15).
Even after these corrections, equations from (2.8) to (2.12) require further

consideration.

First, let us consider whether or not egs. (2.8) and (2.10) satisfy the boundary
condition (2.7). Substituting z = 0 into (2.10), for example, yields

o] e ) ()}

which cannot be reduced to h(t). This error arose when the order of two integrations was
interchanged: As a result of the inversion of Laplace-transformed solutions, Sudicky and
Frind obtained solutions of the following forms:
For non-zero D:

22
2 vz

LB e 2YAT o0
2 vz : 4&2

N -
e j e "j e s (e ) dudi, (2.8)
'J 1!3 0 0

[ -]



For D = 0:
T oo

A —ZA) j e “_[ 0 euﬂcos(u(g’lT)dudT. (2.10)
0 c

N 1 .
N° &
They exchanged the order of the integration of i and T in the above equations, resulting in
egs. (2.8) and (2.10), respectively. However, this operation is valid only if the following
conditions are met9 (We write the conditions for (2.8"); equivalent ones can be written for
(2.109)-
(1) exp(— lT)-cos(ugIT) is continuous and bounded for T and it on the intervals C: 0 <1< T
andT: 0 <p<eoo
(2) the integral

n
_“u-ekdu
0

must converge absolutely.

The second condition cannot be met if z = 0 because with z = 0, we have Hp = 0,
and the integral does not converge at all. Hence, (2.8) is not valid for z = 0. By the same
reason, (2.10) is not valid for z = 0, either. Thus we must still use (2.8'") and (2.10") to satisfy

the boundary condition (2.7). To check if (2.8") and (2.10") actually satisfy (2.7), let us

substitute z = () into (2.8"), for example, obtaining

oo t oo
2 2 2
N;(I)O n__2 J e " J‘ e Mj u- cos[-u?E] dpdtd
‘/ % 0 0 0
Considering the identities
< 2
—Z-J‘e—gd?;:l, and
o

“g. ﬁl _ucos(xt) _ | sin(xT) m_. sin(xt) _
.(!‘n cos[ Z]du—b[ - dx—[——m ] =lim p— =08(1)

0 X 3o



where 8(7) is Dirac's delta function, we can obtain the identical form to the boundary

condition (2.7) as follows:
t

NOD |

e e "3(t)dr=1, fort> 0.

0

By setting y = b, (2.9) and (2.11) should give the same forms as (2.8) and (2.10),
respectively, by the boundary condition (2.6e). But they do not. This is because the inverse
transform of (2.17) is valid only in the region b<y < 28-b’ . Hence (2.9) and (2.11) are
correct ouly in this region. In order to avoid this difficulty, we write the Laplace-
transformed solution for M/N° explicitly by substituting the Laplace-transformed solution
for N/N° into (2.14):

S Y=y T R e AR

M (y.zp)=N"¢" e (218)

p-cosh(BJp_R -(S-b))

Then we take f-(p) and f~(p) in(2.15), instead of (2.16) and (2.17), as follows:

“ ccsh(BJpTx' (S-y))

(219)
P oosh(B,/ p+A (S b))
J 1 [_J,,T nh{ o) + M]
2(p) =N’e"% , for non-zero D, (2.20a)
_ _((pm +——-lanl{ oy pth ])
f(M=N"-e forD =0, (2.20b)

and apply the convolution theorem. Then tﬁe correct solutions that are valid forb<y <28S-

b are:

10



(i) non-zero D:

. v7z .
M_ 2 vz-h g - COSh(BJ A '(S-Y)) 2 . n{ 2

(12+J;_4) cosh(fy)

(-1) (In+1) 1 (Zn+1)n(S-y) 2 .
+A-cos(82) ] —4r . cos[ ] [L-s in(p [ )+wcos (i |
} ;(bnl) T+ 02 o L 2(S-b) 2 el 27

+e o, {Jé_zsin(Q) - -cos(Q) } ] } dudf, b<y<2S-b z>0, 20, (2.21)

(i) D =0:

PR cosh( BY% -(S-y)
%:Le‘%t-m)ju-e““{ (/1 ) [e‘”p{llz—z-sin(u‘;l ) heoostl) |
4 T BT
0 (12+-ll—)cosh(oJ_')
(1) (2n+1) e _COSI (2n+1)n(S—Y)].

70 (2n+1)°n’+ 4A02 okt T 2S-b)
4

+ %2- sin(€P) + A:-cos()

o R 2. o 0
[.%2 sin(ugl T)+u, cos(ugl_r) +e o’ (_[é_sm(ﬂ ) - wrcos(Q ))] } di, b<y<28-b,z>0,120 (222)

Note that for eqgs. (2.21) and (2.22), z = 0 is carefully excluded from their domain of
definition because the concentration in the porous rock is considered only in the region z >
0,b<y<2S -1, t20. Therefore, we can exchange the order of integration with respect to
- W and T in the preceding forms of (2.21) and (2.22), which contain very similar forms to
(2.8") and (2.10".
Finally, equations (2.8") and (2.10", (2.21) and (2.22)‘ are the correct solutions for
the concentration in the fractures and for the concentrations in the rock matrix, respectively.
In (2.8", (2.10", (2.21) and (2.22), the multiple integrals and the infinite series must
be evaluated numerically for the M/N° calculation. In order to achieve reasonable accuracy

for numerical evaluation of infinite series, many terms must be summed because the series
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has oscillating behaviour. The series converges very slowly especially for strongly-sorbing
media (large Rp), large spacing of two fractures (large S), and early time (small t). This
could be one of the reasons why Sudicky and Frind have not shown any numerical results for
M/N°. In Chapter 3 we will show a simplified analytical method for the evaluation of M/N°

and its validity to overcome such difficulties.
2.2 Analytical Solutions for a Two-member Decay Chain in a Single Fracture

Sudicky and Frind* provided analytical solutions for the transport of a two-member
decay chain through a single fracture (Fig. 2.2). Dispersion in the fracture is neglected
because its effects were shown not to be importantl‘2 and the solutions can be reduced to
simpler functions. They considered an impulse release at the repository. Although general
solutions for radioactive chains of more than two members can be derived by the same
method, Sudicky and Frind have not obtained them because the solution form might be so
complicated that the numerical evaluation is impractical.

In our previous reportG, we presented exact analytical solutions for an n-member
decay chain, for any release mode, in recursive forms. From the standpoint of numerical
evaluation, however, it is desirable to derive nonrecursive solutions, which is rather
difficult for higher n. To ease the numerical evaluation, we neglected radioactive decay in
the rock pores in previous calculations. 1. this sectionn we will check the Sudicky and
Frind's solutions and show how their solutions can be applied for obtaining the solutions for
a general release.

The governing equations are:

_aN‘+ Y _aN‘+xN b0 0<z<om 150 2.23)
xR % U W aem it
1 1

12



M(y, z, 1)

Nf-(7 1)

| RAC S > 7

Fig. 2.2 A single fracture surrounded by a porous rock (the velocity v, the
retardation coefficient R, the diffusion coefficient D, the rate of
diffusion into the matrix q, porosity €, and concenirations N(z,t),
M(y,z,t). Subsctipts 1 and 2, f and p stand for the mother and the

daughter nuclides, and fracture and pore, respectively)

13



aszaN NR‘xN % 00 0, 2.24
= R = lzzg bR_ <z<oo, t> (2.24)
2
oM, D, M,
?-.R_p‘- +KM =0, y>b, z>0, t>0, (2.25)
! P ay
M, R,
1 —_
at E;- v +12M -Aan-O, y>b, z>0,1>0, (2.26)

where the nomenclature is as defined in the previous section. Subscripts 1 and 2 are for the
mother and daughter nuclides, respectively. Dispersion in the fracture is neglected. The side

conditions are:

N @ 0)=0, z>0, 2.27a)
M@,z 0)=0, y>b,z>0, 2.27b)
N, 0, 9= N3¢0), t>0, 2.27c)
N, (0, 9 =0, >0, (2.27d)
Mi(b, z, )=N (z,t), t>0,z>0, (2.27¢)
M.(, 2, )=0, t>0,z>0, (2279

where i = 1,2 and 8(t) is a delta function. Ni°, i = 1, 2 are the strengths of the impulses at the

repository at t =0,
Sudicky and Frind apparently applied Laplace transforms for the governing
equations and obtained the solutions. However, these solutions contain several apparently

incorrect expressions as indicated in the following by boxes:

N, @ =N, W,(b,z,0, 220,120, (2.28)

M,(y,2, 0 =NW (3.2, 1), y2b,z>0,t20, | @29)

N(z ) =NU, (b, z1) + N;W2(b. z,1), z20,t20, (2.30)

My, 2 =N {U,(5. 2, ) +U,(y, 2 )} +NSW, (.2, D, y2b,z>0,120, (2.31)
where

14
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RY,{15+B, b)) R [Ysz(z-§)+Bl{72§+B2(y—b)} _BB,O

EG.u)=

FG,wy.zt)= +
G y.zY) vy e

V2 \I RPzDPz

)
v [E. % o o ) 1 {0E+B (b)) (H)  O(y,B,(z-5+B, [1,5+B,(y-b)l)
o
Bl B2 (T + d))
+ poe: : 2.35)
<
z bR
Yi:f? DR, - Zﬁz%' A= : B, = EE"' i=12, (2.36)

R(z-® R
- +—, 2.37)

g v

0= Y,B,@0 . [, 5+B,(y-D)IB,

o Newg) (2.38)
B, B

Ul(y,z,t) has three different forms depending upon the parameter values:

.
()B,#B,



2D, (B3 - B}) LA

MR I . Z+B (y-b)
UG —— e {(IZ Ae BN [c o 2By "”af{——’———,/a(t-z,Al)

t-Z,A,

J"‘ . Zl+B( -b)
e o ] | R vy

2 2
By(y-b)
Aupat-Z A ) T T g e J oz _i_ - Ja(t-Z, A -u)
e e exf 1M +
2 , +Z,A-u
Yo Z, ,
o Z‘ﬂf Y tJutZ AL Ly P, _ (2.40)

Ll 22 (2.41)
B'). Bl

(2.40) is valid for negative o as well as non-negative .
R S
(i) B, =B, and 7\.1#: 7&.2
L4 A zZ

AD (y- T3 Z A
AVER) =;—i—"i— Wiz - ——-j I
Y w(EZ, A )

- (l-n)

e duf. (2.42)

<xay 2 2
i) B} =By and & =},

Dp AZiA
U] (Y!zﬂt) = llB l(Y'b)D

P, 2J—

The Heaviside step function which comes from the identity (2.13) has been ignored

-BOZ, A)(+Z,A) B [2] B D), 12,8, ) @-43)
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in several places. When Sudicky and Frind took the inverse Laplace transform of the term,

B,y-b p+7~2
€

3

which exists in the Laplace-transformed soluticn for U 1(y, z, t), they apparently made use of

the identity:
2

k
L“[e'k5]= K o™ (2.44)

3
it

which is vatid® only for k > 0. In their case k = Bz(y—b). Therefore, Ul(y, z, t) is applicable

in the region y > b; and the solution for M(y, z, t), A, # A, does not satisfy the boundary

condition (2.27¢). This difficulty can be avoided by considering the limit:

2

k
N
lim e *=8-0). (2.45)
t—0 3
k-0 PAVE

Another way is to regroup the terms in (3 ) (y, z, p), the Laplace transformed U 1,and to

apply the identity:
: . - « - K
L‘I[-p—_;- e kﬁ]:%g‘{ckﬁed’c { a—;‘ﬁ; } + ekrﬂfc { '2'J-';+J;{ } ] (2.46)

which is valid fork 2 0.

From the standpoint of numerical evaluation there are two major difficulties in their

solutions: to perform the double integral in U2(y,z,t) and to evaluate the complementary

error function erfc(z) for a complex value z , which occurs in the case }‘1 < }‘2' The latter

. . - e . 8
requires the summation of infinite series":
2

n
e ¢ 2 2% (; z
erf(x+1y) = erf(x) + —{ (1 - cos2xy) + isin2xy} + =¢ 2 — (£ (xy) + ig, (x.y)}+(remader),
2mx T n=in +4x
where fn(x, y) = 2x - 2x-cosh(ny)-cos(2xy) + n-sinh(ny)-sin(2xy),

gn(x, y) = 2x-cosh(ny)-sin(2xy) + n-sinh(ny)-sin(2xy),
17



i is the imaginary unit, x , y real. 247N
By using the solutions (2.28) to (2.31), we can write the solutions for a general

releasc:

N0, ) =y,(0, i=1,2, t>0, (2.48)

by taking the convolution of \pi(t) and Wl(y,z,t), W2(y,z,t), Ul(y,z,t), and U2(y,z,t) with

respect to time:
t
N,z 0= [w,(OW, 0, 2, s, 2.49)
0
t
M3 2.0 = [y,6OW,0, 7 D, @50
0
t t
N, (2 9 = [y, 00,0, 7 e+ [uoW,, 2 de 2.51)
0 0
t t
M.z 9= J'\yl(t-ft){Ul(y, z, )+U\(y, z, D)dt + Iwz(t-'t)wz(y, z, 1)dr, (2.5D)
0 0

which means that Ui(z, t), Wi(y, z,t)i=1, 2 can be used as Green's functions. In Chapter 4

we make numerical evaluations for Ni(z, t) with wi(t) obeying the Bateman equations, and

compare the results with our previous evaluation obtained by neglecting the decay in the

porous rock.

18



3. Superposition Approximation for Parallel Fracture System

As shown in Section 2.1, the exact solutions for a system of parallel fractures are
rather complicated, and no numerical evaluations for the concentration in the rock pores
were given by Sudicky and Frind. Here we show the numerical results of the concentration
in the rock pores by applying a simplified analytical method that superposes single-fracture

solutions. And we consider the validity of the superposition approximation.

3.1 Formulations

Consider the system of parallel fractures depicted in Fig. 2.1. Single-fracture
solutions have been derived based upon the assumption that the fracture spacing is such that
there is no overlap of two conceniration fields produced by the adjacent fractures. If the
contaminant penetrates so deeply into the rock matrix that concentration fields from adjacent
fractures overlap, consideration of multiple fractures in predicting contaminant transport is
required. However, the single-fracture solutions are applicable if the overlap is acceptably
small. In Figure 3(a), the overlap of two profiles in the rock matrix is almost negligible.
This means that the single-fracture solutions satisfy the boundary condition, (2.6e), at the
rock/fracture interface with negligible errors. This situation will occur if it is early time, if
the rock has strong sorption capacity, if the diffusion coefficient is small, or if the spacing of
two fractures is large. In Figure 3(b), on the contrary, the overlap is significant. The
influence of the adjacent fractures is so large that the boundary condition, (2.6¢), is no longer
satisfied by the single-fracture solutions. This situation will occur in cases of long time,
weakly-sorbing rock, large diffusion coefficients, or small spacings. In the former case, we

can approximate the concentration in the rock pores by superposing two profiles:
M.(y, z, ) = M(y, z, t) + M(2§-y, z, 1) 3.1
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Fig. 3.1 Illustration of the overlap of two concentration fields. The top figure
depicts valid superposition, which occurs in cases of small t and Dp and

large Rp and S. The bottom figure shows invalid superposition. Note

that, in the bottom figure, significant overlap takes place such that the
profile by each fracture shows considerably large concentration beyond



where Mt(y, z, t) is the approximation of the concentration in the rock pores for finite

fracture spacing, 2S, and M(y, z, t) is the single-fracture solution. (For M(y, z, t), several

1,2,6

analytical solutions have been obtained depending on the source boundary conditions

and the presence of the dispersion in the fracture.)
Based upon the above observation, we impose the condition for valid superposition

solutions :
M(25-b, 2, 1)

—_— <
MO D - 0.01, (3.2

so that the influence of the concentration field by the neighboring fracture is less than one
percent of the concentration produced by the fracture of interest (Fig. 3.2). Then the

boundary condition at y = b can be satisfied by the single-fracture solutions within 1 percent

accuracy.
This condition can be expressed more clearly in terms of the Fourier number,
pole. ! (3.3)
Ro (287

The Fourier number measures the time in which the diffusion proce-s is continuing. A large
Fourier number means that long time has passed since the diffusion process started. Hence,

the diffusion front has penetrated deeply into the medium.
M

M(b,z,t)

M(2S-b,z,1)
M(b,z.t)

M(2S-b,z,t) —"
b S 258-b

y

Fig. 3.2. Mlustration of the validity condition imposed on the single-fracture solution.
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Turning to our problem, since thevalid superposition can be interpreted as shallow

penetration by diffusion, we could find an upper bound of the Fourier number for a valid
superposition. Since taking a large Dp or a small 28 is equivalent to taking a small Rp’ we

survey the range of the Fourier number, where (3.2) is satisfied, by changing t and R D fixing
the values of Dp and 28, and express the validity domain in (t, Rp) space. This validity
domain can be expressed by an inequality for t/Rp:

E‘_s B, (.4)
P

where P is a constant obtained from the numerical evaluations. Then the condition which

the Fourier number must satisfy becomes:

D
F<—E-.8. G.5)
(28)

To illustrate, we consider the step and band releases for the boundary con-
centration at z = ( in the fractures:
W0 =N Mh(y), md (3.6a)
WD) = N° M {h() - h(t-T)}, (3.6b)

where T is the leach time and h(t) is a Heaviside step function. We do not consider the
dispersion in the fracture because its effect is negligible1 for expected values of the

dispersion coefficient. Then the single-fracture solutions, M(y, z, t), for (3.2a) and (3.2b)
can be written as’:

M(y, z,t) =f,(y, z, 1), fora step release (3.7a)

AT
M(y, z,t) = fl(y, zZ,t) —e fl(y, z,1—T), forabandrelease (3.7b)
respectively, where

f(y,2,1) =N’h(t - ZA) € Merfc [EM] (3.8)

2 ZA
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R bR R
- A=—_T B=_ [-2. (3.9)

A ’ D
v £ ,DPRp P

The nomenclature is the same as defined in Section 2.1.
3.2 Validity of the Superposition Approximation

We calculate the single-fracture solution, M(y, z,t)aty =b and y =25 - b for R
and t ranging from 1 to 10° and from 10° to 10 years, respectively, with the common

parameter values:

=1, 10% 10* m, v =10 m/yr
e=0.01, 2b=0.01m
— 2 —
Dp =0.01 m“/yr, Re= 1
A=324%x10"" 1/yr, T = 30,000 yr for band release.

We performed numerical calculations for 27

Np. Because of the imposed condition for
validity (3.2), the decay constant does not affect the validity. (The factor exp(-At) in f . (y, z,
t) cancels when (3.7a,b) are substituted into (3.2).)

The inequality (3.2) is checked atz = 1, 102, and 10* m for various (t, Rp) points,
resulting in Fig. 3.3. This figure shows the domain of (t, Rp) that satisfies (3.2). Super-
nosition is valid to the left of each line. For a band release there is a stepwise change at the
end of the leach time; thereafter the constraints on t and Rp are more limited. For large z the
change at the end of the leach time is small, and at z = 10* m the stepwise change disappears.
For a step release t/ Rp must be smaller than 3000 yr forz=1mand z = 10® m and smaller
than 8000 yr for z = 10* m. From (3.3), therefore, the Fourier number must be less than
0.075 for z = 1 m and 10° m and can be as large as 0.2 for z = 10* m. For a band release and
at times greater than the leach time, we require F < 0.02 forz =1 m, 0.033 for z = 10 m,
and 0.2 for z = 10* m. Different constraints on F will be obtained for different R, values.
One can see the advantage of the approximation method from this figure. The exact

solutions obtained by Sudicky and Frind require the summation of an infinite series, which

converges very slowly especially at early times. However, it is in the early time region that
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the approximation is valid regardless of R p values.

We can confirm the observation in Fig.3.3 by calculating the actual concentration
profiles in the rock matrix for several t and Ry, values with a step or a band release, which
are depicted in Figs. 3.4 to 3.6. In Table 3.1, summarized are the calculation conditions and
the validity of the resultant profiles. Figure 3.4 shows the calculated concentration profiles
for z=10"m, a step release. One can observe that the concentration profile is extending
into the rock matrix as time increases. The three early time profiles yield valid
superposition; the later profile shows considerable overlap from adjacent fractures, resulting
in invalid superposition.

Figure 3.5 shows the concentration profiles calculated for z = 10 m, Rp = 102, a
band release. As can be deduced from Fig. 3.3, with t = 2 x 10° yr and Rp = 10 the
superposition is valid for a step release, but not for a band release. Before and after the end
of the leach time, the concentration in the fractures decreases quickly. So does the
concentration at the rock/fracture interface by the boundary condition, (2.6e), i.e., M(b,z,t) =
N(z,t). Then the concentration profile in the rock produced by each fracture has a maximum
in the y-direction. Because the denominator of the condition (3.2) becomes smaller after the
leach time, it becomes more difficult to meet the condition (3.2), and the constraint on the
Fourier number becomes more limited. Two early time profiles yield valid superposition.
Att=10* yr, the profile is the same as that for the step release (see Fig. 3.4). Att=6x 10*
yr, greater than the leach time, the superposed profile shows two peaks in the y-direction
because the two fracture-induced profiles, each of which has a maximum in the y-direction,
are about to overlap at the midpoint (y = 10 m). Two later profiles show invalid
superposition. Att=2 x 10° yr and 108 yr, the fracture-induced profiles become very
broad, and the diffusion front of each profile exceeds the adjacent fracture location. We can
no longer distinguish the peak of each fracture-induced profile in the superposed profile.
Thus the single-peak superposed profile implies invalid superposition.

Figure 3.6 shows the concentration profiles calculated for z = 102 m, Rp =2, for
24



both band and step releases. Before the end of the leach time, both release modes give the
same profiles (t =2 x 10° yr and 10* yr). The superposition becomes invalid even before the
leach time (att = 10* yr). Att= 10° yr, greater than the leach time, for a step release, the
concentration at the rock/fracture interface is significantly higher than unity. This means at
once invalid superposition because the maximum probable concentration is unity. For a

band release, we observe a single-peak profile, which means invalid superposition.

Table 3.1 Calculation conditions and validity of resultant profiles

Figure  Distance Leachtime Release  Pore Time Superposition
(z), m (T), year mode Retardation (t), year technique
w(t) Rp) valid or invalid(1)
34 100 - @ Step 100 1x10* VALID

6x 10° VALID
2x 10° VALID(3)
1x 10° NOT VALID

35 100 30,000 Band 100 1x 10 VALID
6x 10 VALID
2x 10° NOT VALID®3)
1x10° NOT VALID

3.6 100 30,0004)  Step/Band 2 2x10° VALID
Step/Band 2 1x 10 NOT VALID
Step 2 1x 10° NOT VALID
Band 2 1x 10° NOT VALID

Note: (1) Validity is judged by Fig. 3.3.
(2) For a step release, the leach time can be considered infinite.
(3) These two show that the constraint for valid superposition is more limited for
a band release than for a step release.
(4) Before the leach time (30,000yr), the profiles are identical for both release
modes. After the leach time, (1 x 105 yr is the only case), they becomes
different, but both of them are invalid superposition.
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Fig. 3.3 Validity domain for superposed solutions, step and band releases
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Fig. 3.4 Concentration profiles in the rock matrix (z=100 m, Rp= 100), a
step release.
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Fig. 3.5 Concentration profiles in the rock matrix (z = 100 m, Rp = 100),
a band release with a leach time of 30,000 yr
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Fig. 3.6 Concentration profiles in the rock matrix (z=100 m, Rp = 2), step and band releases

(T = 30,000 yr). Before t = 30,000 yr both release modes give the same profiles=
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4. Numerical Evaluation of the Solutions for a Two-Member Decay Chain

with a Step Release
4.1 Formulations

We consider here the problem described through (2.23) to (2.27f) for a general

release mode. The govcming equations and side conditions are:

M D A 0, 0 0
_at_+El- az — N ﬁf_— <zZ<Loo, t>0), (4'1)
N, aN \ R,‘ A 0.
2
oM, D, a'M,
TR +7LM =0, y>b, z>0, t>0, (4.3)
t R

| 41 ay
™M, D, 'm, Ry

Py ay P2
subject to the side conditions:
N(z,0)=0, >0, (4.53)
M(y,z,0)=0, y>b,z>0, 4.5b)
N, h=y. ®), t>0, @.50)
N(e=,) =0, t>0, (4.5d)
M, z,9=N(z1), t>0,z>0, (4.5¢)
M, 2, 1) =0, £>0,2>0, 4.56)

where \yi(t), i =1, 2 express the general release at the repository. Dispersion in the fracture

is neglected. This problem can be solved by considering the subsidiary problem where the
boundary condition (4.5c¢) is replaced by

N;(0,t) = 8(t-0) (4.6
We write the solutions of the subsidiary problem, Nig(z, t) and Mig(y, z, t), by setting N°l =
N"2 =1 in egs. (2.28) to (2.31), as:
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N8z ) =W (b, 21, 220,120, @.7)

M B(y, z,0) =W, (1, 2, 1), y2b,z>0,t20, (4.8)
N E(z, 1) = U,(b, 2, 1) + W, (b, 2, 1), 220,120, 4.9)
M5y, 2, ) =U (5.2, ) + U, (y, 2,0 + W.(y, 2, 1), y2b,z>0,t20, (4.10)

where Ul(y,z,t), U2(y,z,t), Wl(y,z,t), and Wz(y,z,t) have been defined in Section 2.2. Then,

solutions to the original problem can be cbtained by applying the convolution theorem with

respect to time:

t
Nl(z, t)= J.\;Il (t-'t)Wl(b, z, vdr, 4.11)
0
1
M@, 20 = [y, COW,0, 7 0, 412
0
t t
N2(7, )= J.\yl(t—'c)UZ(b, z,)dt + J.\;fz(t-'c)WZ(b, z, 1)dr, 4.13)
0 0
t t
M0 2.0 = [V, DU, Dt + [ oW, 0, 7 e, “.14)
0 0

To illustrate, we take the step release for two members for y;j(t):

0 3 }‘1‘
¥, =Nhe 4.15)
-ap NOA I
Wz(t) =N(2)h(t)e M_‘_ 171 (t) ) { e— A ) e- At } . (4 16)
A- M

4.2 Results and Discussions

In the previous rf:port6 we showed the results of an approximate model neglecting
radioactive decay in (4.2) and (4.4). It has been shown that for the mother nuclide of the

three-member chain the approximation gives fairly good results for the concentration in the
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fracture for long half-life mother nuclides such as 237Np and

U. But there has been no
demonstration of the accuracy of the results for the daughter nuclides. We compare the
results obtained by the exact model, i.e., (4.11) and (4.13) with those of the approximate

model.

27Np — 23U chain with a

Figure 4.1 shows the concentration in the fracture for the
step release at t = 10,000 yr. Parameter values are shown in the figure. For 23 7Np the
approximate and exact solutions give the almost same results, while for B3 the approxima-
tion has introduced considerable error at a distance from the source with the approximate
results different from the exact ones by several orders of magniture. There is a discontinuity
in the 2°U profile at z = 100 m, which results from the two contributions: the By gener-
ated at the repository and the By generated in the medium. The former forms the near-field
plateau and the latter the far-field plateau in the concentration profile. The neglected terms
in the governing equation (4.4) for the concentration M, would have given the positive
contribution at far field because

7\.1Rle1 - lszzMz = 0.0000324M - 0.0642M,
and M 1 is about 10 times larger than Mz‘ The orders of M1 and M2 can be roughly esti-
mated from those of N, and N, in the figure. Therefore, neglecting the decay chain in the
rock matrix makes the concentration in the rock pores lower, resulting in the overestimated
gradient and diffusion flow at the rock/fracture interface. Thus the concentration of B in
the fracture has been underestimated by neglecting the decay in the rock matrix.

Figure 4.2 shows the concentration in the fracture for the 247 - 2%Th chain with a
step release at t = 10,000 yr. Parameter values are shown in the figure. Also in this case the
approximation gives smaller results that the exact at far field. The neglected terms in the
governing equation (4.4) for M2 would have given the positive contribution because

A 1Rle1 - A.szzM2 =0.04215M - 0.433M,
and M, is about 30 times larger than M,. Then by the same argument it can be said that the

29T} in the fracture is underestimated by neglecting decay in the rock.
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Fig. 4.1 Concentration profiles at t = 10,000 yr for
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5. Concluding Remarks

We presented in this report the analytical study of the radionuclide transport through
fractured, porous rock. Based upon the previous studies, where radionuclide transport was
intensively studied on the assumptions of a single planar fracture and no precursors, we
studied the analytical methods to evaluate the time-space-dependent concentrations for
multiply-fractured rock and a two-member decay chain.

For multiply-fractured rock, we checked Sudicky and Frind's analytical solutions,
and found apparently incorrect expressions. We gave the corrected versions of their
solutions. The exact analytical solutions, however, require a summation of an infinite series
and multiple integrations. The convergence of the infinite series is quite slow in case of
shallow penetration into the rock matrix. We showed the superposition method to evaluate
the concentration in the rock matrix. Solutions for multiply fractured rock are obtained by
superposing two single-fracture solutions. The superposed solution gives fairly good
approximation in case of shallow penetration into the rock matrix, for which numerical
evaluation is difficult with the exact solutions. The constraint for valid superposition was
given in terms of Fourier number. By this method we could extend the applicability of the
single-fracture solutions.

For a two-member decay chain, we showed the solutions for a general release
mode in the form of the convolution integrals of the release characteristics functions and the
Green's functions. Sudicky and Frind obtained the solutions for an impulse release, which
contain apparent by incorrect expressions. We corrected their solutions, and derived the
Green's functions for this problem from Sudicky and Frind's solutions. Numerical evaluation
was performed for an exponentially decaying step release. The convolution integrals were
numerically evaluated by Gauss quadratures. This results were compared with our previous
numerical results approximated by neglecting decay in the rock matrix. We found that for

the mother nuclide the exact and the approximate solutions give very close results, while for
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the daughter nuclide, the approximation introduces considerable errors at far field from the

repository.
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