UCRL-ID-118065 Rev. 1

Radiative Forcing Calculations for CH3Cl

A.S. Grossman
K.E. Grant
D.J. Wuebbles

January 1995

This is an informal report intended primarily for internal or limited external
distribution. The opinions and conclusions stated are those of the author and may or
may not be those of the Laboratory.

Work performed under the anspices of the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.



DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor the University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or the University of California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information
P.O. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401, FTS 626-8401

Available to the public from the
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd.,
Springfield, VA 22161



Radiative Forcing Calculations
for CH3Cl1
Allen S. Grossman
Keith E. Grant
Donald J. Wuebbles* -

Global Climate Research Division, L-262
Lawrence Livermore National Laboratory
P.O. 808, Livermore CA 94551
June 1994

Abstract

Methyl chloride, CH3Cl, is the major natural source of chlorine to the stratosphere.
The production of CH3Cl is dominated by biological sources from the oceans but it also has
smaller anthropogenic sources, such as biomass burning. Production has a seasonal cycle
which couples with the short lifetime of tropospheric CH3Cl to produce nonuniform global
mixing. As an absorber of infrared radiation, CH3Cl is of interest for its potential affect on
the tropospheric energy balance as well as for its chemical interactions. In this study, we
estimate the radiative forcing and global warming potential (GWP) of CH3Cl. Our
calculations use an infrared radiative transfer model based on the correlated k-distribution
algorithm for band absorption. A radiative forcing value of 0.0053 W/m2 /ppbv was obtained
for CH3Cl and is approximately linear in the background abundance. This value is about 3
percent of the forcing of CFC-11 and about 300 times the forcing of CO2, on a per molecule
basis.The radiative forcing calculation for CH3Cl is used to estimate the global warming
potential (GWP) of CH3Cl . The results give GWPs for CH3Cl of about 30 at a time of 20
years(CO2 = 1). This result indicates that while CH3Cl has a GWP similar to that of CHy, the
emission rates are too low to meaningfully contribute to atmospheric greenhouse heating

effects.
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L Introduction

Methyl chloride, CH3Cl, is the most abundant halocarbon in the earth’s atmosphere
(Elkins et al., 1984), representing approximately 30 percent of the total chlorine content.
Typical concentrations on the order of 600 parts per trillion have been determined
(Rasmussen et al., 1980, Singh et al., 1983, WMO, 1991, Kaye et al., 1994). Volconic
activity, biological production, automobile exhaust, and biomass burning have been
considered to be CH3Cl sources (Crutzen et al. 1979). The total budget is currently
dominated by natural sources. The principal sink for CH3Cl is the reaction with OH in the
troposphere (Howard and Evenson, 1976). The atmospheric lifetime for CH3Cl is 1.5 years,
(Prather, 1989, WMO, 1991, 1994). According to Elkins et al. (1984), CH3Cl has strong
infrared absorption bands at 732, 1015, 1355, 1455, 2879, 2966 and 3042 cm-1. As a result of
these strong absorption bands the potential exists for possible, anthropogenically based,
greenhouse heating of the atmosphere that could result in climate changes.

The mechanism usually used for comparison of the greenhouse potential of trace
gases is the global warming potential or GWP as defined by IPCC (1990). The GWP is the
ratio of the time integrated radiative flux change at the tropopause caused by the introduction
of a unit mass impulse of a trace gas into the atmosphere to the time integrated radiative flux
change at the tropopause caused by the introduction of a unit mass impulse of CO2. An
essential part of the GWP determination is the calculation of the radiative forcing, which is
defined as the radiative flux change at the tropopause produced by a unit change in the
number of molecules of a particular gas with all other abundances held constant. Usually the
amount of abundance change used in a radiative forcing calculation is chosen such that the
change is just enough to produce a numerically significant flux change value at the
tropopause. Parameterized experiments for radiative forcing have been published, for
example, in IPCC (1990, 1992, 1994), and by Ramanathan et. al. (1987). A detailed radiative
transfer model is required in order to calculate the radiative forcing for the GWP

determination. Grant et al. (1992, “GGFP”") and Grossman and Grant (1992a) have used a



correlated k-distribution model for the absorption by the major atmospheric molecular
absorption species (H20, CO2, O3, CH4, and N2O) to calculate the fluxes and heating rates in
the 0-2500 cm-1 wavenumber range. The fluxes and heating rates obtained for this model are
accurate to well within ten percent when compared to line by line calculations. The altitude
range covered by these calculations was 0—60 km.

The main purpose of this paper is to calculate the tropospheric radiative forcing of
CH3Cl using the correlated k-distribution radiative transfer model and the line by line data in
the HITRAN91 data base (Rothman et al., 1991) and the spectroscopic line data of Brown
(1994). The calculation will be' done for a globally and annually averaged model atmosphere
with a representative cloud distribution. GWP calculations for CH3Cl will be made and
compared to other trace gas GWPs given in IPCC (1992, 1994).

II. Global Warming Potential

The GWP of a gas is defined as,
t
[ AF(c;, t)dt
GWP(c;) = 2 , 1
’ j AF(cc,,2 , t)dt

o

where AF is the change in radiative forcing with time as a function of the species

concentration (ci). An approximate form of Equation 1 was published in IPCC (1990) and is

given by the expression;

J acdt
GWP (¢,)= —— , )

‘,J" Gy, Co, 8
where a; is the instantaneous radiative forcing (per unit mass) due to a unit increase in the
concentration of trace gas i and ci is the concentration of the trace gas i remaining at time t
after its release. The corresponding values for carbon dioxide are in the denominator. In the

discussion below we describe a technique for approximating the direct GWP for any



greenhouse gas relative to the GWP for CCIsF (CFC-11). This technique follows directly
from the IPCC definition for GWPs. This approximation assumes that the emission impulse
is small enough that the radiative forcing of c; is linear with concentration. The GWP of a gas

¢; referred to as (GWP(cy) can be expressed as,

4
j acds
]
14

GWP(c,) = ——2
J acre-nCere-ndt

. GWP(CFC-11).

The quantity cj can be approximated by the relation,
¢; =Co; exp (—t/ T, ) @
and Equation 3 becomes,

J’ a,co, exp (—t/ 7;)dt

GWP (c;) = —;
J Brc-11C0rc-11 €XP (~t/ Tepeyy )t

. GWP(CFC-11). (5)

Assume ac;; and ac; 1, are constant and, by definition, cog4 = COcpc.11 (since both assume the

same mass emission impulse into the atmosphere). Equation 5 becomes

GWP(C) = MeFC-1L._ & . _ G . (1 - exp(-1/%)) GWP(CFC - 11)
i m;  acrc-11 TcFc-11 (1 - exp(~t/Tcrc11))
(6)

where the a’s are the radiative forcing values at the tropopausé in W/m2 per ppbv, the m’s are
“the molecular mass, and the 7°s are the atmospheric lifetimes. The radiative forcing term g;
in Equation 2 is defined as the difference in the net radiative flux at the tropopause due to a
change in the composition by 1 ppbv of a single molecular species while, at the same time,
keeping the composition of all other species constant.
As a test of the approximate model, the GWP of CCloF; (CFC-12) is calculated and
compared to the values given in IPCC (1992). Equation 6 is used to calculate the GWP(CFC-
12) for times of 20, 100, and 500 years and the results are given along with the values

published in IPCC, (1992) and the percentage of error in Table 1.
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Table 1. GWP Model Comparison

GWP (COz=1)

CFC-11 50 4500 3400 1400
CFC-12 (IPCC, 1992) 116 7100 7100 4100
CFC-12 (derived) 7152 7174 4226
% error ‘ 0.7 1.0 3.1

I Correlated K-Distribution Radiative Transfer Model

The correlated k-distribution method utilizes a mapping of the absorption coefficient
vs. wavenumber relation into an absorption coefficient vs. probability relation within a
particular wavenumber interval. The probability variable g(k), the cumulative distribution
function, is defined as

k
g(k) = [ f(k)dk' , ™
! |

where f(k’)dk’ is the fraction of the frequency interval occupied by absorption coefficients
between k’ and k’+dk’(Goody and Jung, 1989, “G1”; Goody et al., 1989, “G2”; and West et
al., 1990, “W17”). The limits of g(k) range between 0 and 1 within the frequency interval. The
inverse of Equation 7, k(g), the k-distribution, has been shown by G2, and W1 to be a
monotonic function across the frequency interval for a particular atmospheric layer. The
correlated k-distribution method can mathematically provide an exact procedure for
calculating the transmission, fluxes, and heating rates in a homogeneous atmosphere. For the
case of inhomogeneous atmospheric paths the method is, in practice, inherently inexact since

somewhat different sets of frequencies will associate with a given ordering of the k terms as



the pressure and temperature vary over the path. Numerous tests of the model for various
atmospheric trace gases and atmospheric temperature - pressure profiles, Grossman and
Grant (1992a, b, 1994) and Grossman et al. (1993), show that the method produces fluxes
that are accurate to well within ten percent when compared to line by line calculations.

The calculation of the transmission can be expressed in the three physically

equivalent forms:

T(u)

1/ avf, exp (~kw)dv ,

O ey b D ey §

f(k')exp(=k'u)dk' , ®

exp (—k(g) u)dg ,

where u is the absorber column density. Using the k -distribution form, the calculation can be
performed with far fewer k-g points than the same calculation using k-wn (wavenumber)
points.

The direct calculation of the molecular k-distributions contains the following steps
(GGFP). First the HITRAN database (Rothman et. al., 1991) is utilized to determine the line
transitions and physical properties of the selected lines. These line properties are merged with
the line properties of CH3Cl provided in the data base of Brown (1994) to give a complete set
of CH3Cl lines. Second, a modified version of the FASCODE2 code (Clough et. al., 1986) is
used to calculate a finely gridded set of monochromatic absorption coefficients, with full
allowance for the overlap of neighboring lines, for each layer in the atmosphere. Third, a
sorting code, ABSORT, is used to calculate the f(k), g(k), and k(g) functions for each
homogeneous layer. The modified FASCODE program takes the line data and fits an
absorption line profile (Voigt profile) to each line and calculates the absorption coefficient k
(cm2/air mol) as a function of wavenumber. The normal cutoff point in the line profile is set
at 25 cm-1 from line center. This is done for reasons of economy (beyond 25 cm-! a given

line contributes little absorption). The ABSORT code takes the absorption coefficient files



generated by the FASCODE program and sorts the absorption coefficients into bins of equal
logarithmic width, Alog k, to produce a distribution function, f(k), based on the relative
probability of occurence within the wave number interval (proportional to the number of
entries in each bin). The cumulative distribution function, g(k) (c.f. Equation 7), is obtained
by numerical integration of the f(k) function. The k-distribution, k(g), is obtained by a
reverse interpolation of the g(k) relation using a spline function. For the calculations in this
paper a 401 bin model was used to insure an adequate number of points at g values between
0.9 and 1.0. This g value region is important for heating rate calculations at high altitudes.
The output from ABSORT is the 401 point k(g) relation for each layer. At low pressures the
k(g) curves can show opacity variations of up to five orders of magnitude at g values greater
than ~0.9. This kind of behavior at low pressures is thought to be due to the absence of
pressure broadening on the absorption lines in the wave number band; i.e. the lines are
dominated by doppler broadening near line center. These variations in the k-distributions
require a careful numerical integration strategy in the transmission expression, Equation 8, in
order to accurately reproduce the k(g) functions. The integration strategy which was adopted
after test calculations was an 85 point variable spaced trapezoidal model with g spacings of
0.0025 for g values between 0.9 and 1.0 and larger g spacings at lower g values.

IV. CH3Cl Data

Inspection of the HITRAN91 database reveals that only the lines of the V1, V4, and
3V6 bands of CH3Cl between 2907 and 3173 cm-! have been included in the compilation.
According to Elkins et al. (1984) the strength of these bands represent approximately 40
percent of the total line strength of all CH3Cl bands. Furthermore this spectral region
contains water vapor bands and the CH3Cl contributions to the radiative forcing may be
small due to overlapping water vapor absorption. A database for the properties of the CH3;CL
lines in the V2, V3, and V5 bands has been developed by Brown (1994) and Brown et al.
(1987) in the wavenumber regions 661 to 772 cm-1 (V3) and 1261 to 1646 cm-1 (V2, V5).

This is an IR window region and thus these bands should contribute the majority of the



radiative forcing. According to Elkins et al. (1984) the V2, V3, and V5 bands represent
approximately 55 percent of the total line strength of the CH3Cl bands. The V6 band at 1015
cm-1 is not presently tabulated on any database and cannot be included in the radiative
forcing calculation. The effect of the V6 band omission would be on the order of 5 percent.
The combined strength of the V2, V3, and V5 bands should be approximately 1.34 times the
combined strength of the V1, V4, and 3V6 bands, Elkins et al. (1984). The ratio of the
combined line strength of the V2, V3, and V5 bands in the Brown (1994) to the combined
line strength of the V1, V4, and 3V6 bands in the HITRAN91 data base is 3.92 indicating
that the HITRAN line strengths may be too low by a factor of 2.92. Radiative forcing
calculations will be done for the HITRANO1 line strengths as given and for the case where
the line strengths have been multiplied by a factor of 3. Both the Brown (1994) and the
HITRAND1 batabases were numerically merged in the calculation of the k-distributions
outlined in GGFP (1992) in order to calculate the complete radiative forcing of CH3Cl.
| V. Parameters of The Calculations

Flux and radiative forcing éaléulations were made for a globally and seasonally
averaged model atmosphere (Wuebbles et al., 1994). The mixing ratio vs. altitude profiles for
H70, O3 and CHg4 are shown in Figure 1. CO, was assumed to have a mixing ratio of 350
ppmv, constant with altitﬁde. N0 was assumed to have a mixing ratio of ~0.3 ppmv in the
| troposphere and then decrease to a mixing atio of ~1.2 ppbv at 60 km altitude. The
temperature-pressure profile for model atmoéphere is shown in Figure 2. The wropopause in
the globally-averaged atmosphere is specified as the altitude at which the temperature
gradient in the troposphere decreases to 2K/km. This occurs at a pressure of 166 mb (~13.2
km). Altitude resolution in the model atmosphere was 1 km at altitudes between 0 and 20 km,
and 2 km at altitudes between 20 and 60 km. The ground temperature was 291 K. The clear
sky radiative transfer model outlined in GGFP was modified to accept a cloud distribution
model using an algorithm based on Harshvardhan et al. (1987). In this algorithm the

transmission between atmospheric layers is multiplied by the probability of a clear line of



sight between the layers. The clouds are considered to be radiatively black at the thermal
wavelengths. For the case of random overlap of the cloud layers, which is the case adopted in

this paper, the probability of a clear line of sight between two layers i and j is given as,

Cj = (I-N.D(1-Nj D)oo (I-ND ©
where the N’s represent the fractional cloud cover of the particular layers. The transmission

is then given as,

Tij=TaCyj (10
where Ty is the clear sky transmission. The cloud distribution in the globally averaged
atmosphere consists of three layers, each 1km thick, with bases at 2 km (low), 4 km (iniddle),
and 10 km (high). Fractional cloud cover amounts are 0.31 (low), 0.09 (middle), and ).17
(high). The radiative transfer c;alculations to determine the tropospheric radiative forcing
were carried out over the wavenumber range of 500 - 3000 cm-1, in 25 cm-1 subintervals. In
addition to CH3Cl absorption, absorption due to H20, CO2, O3, CHg, and N2O was included
in the calculations. CH3Cl mixing ratios of 0.0 (ambient), 1 ppbv (forced), and 100 ppbv
(forced), constant with altitude were used.

V1. Results and Discussion
The tropospheric radiative forcing calculations for CH3Cl are shown in Table 2.
Table 2. Tropospheric radiative forcing calculations for CH3CL

INCLUDEDBANDS ______RADIATIVEFORCING(W/mZ/ppbv)
vl,v2,v3, v4, v5, 3v6 (100 ppbv forcing) 5.30e-03
vl, v2,v3, v4, V5, 3v6 (1 ppbv forcing) 6.08e-03
vl, v4, 3v6 (HITRAN91) ’ 2.71e-06

vl, v4,3v6) X 3 15e-06 ‘

The results of Table 2 show that the tropospheric radiative forcing of CH3Cl is due entirely to
the V2, V3, and V5 bands. The contribution of the V1, V4, and 3V6, bands, even with a

factor of 3 increase in the line strengths, is most likely heavily overlapped by water vapor
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lines. Calculations were performed using both 1 ppbv and 100 ppbv forcing to insure that the
1 ppbv forcing result was numerically significant and to determine the linearity effects in the
forcing as a result of increased CH3Cl abundance. It appears that the radiative forcing is
linear to within approximately 13 percent in the abundance of CH3Cl between 1 and 100
ppbv. Using the radiative forcing formulae given in IPCC (1990), the radiative forcing of
CH3Cl is about 3 percent of that of CFC-11 and about 300 times that of CO;, on a per
molecule basis. CH3Cl also has a larger radiative forcing than CHy (21 times CO2) and N2O
(206 times CO), IPCC (1990).

Aithough a trace gas can have a strong radiative forcing per molecule, its greenhouse
heating potential of the atmosphere depends also on the lifetime of an impulse of the trace
gas to the atmosphere as well as its time dependent anthropogenic emission into the
atmosphere. The GWP for the trace gas addresses the net effect of the combination of the
radiative forcing and the lifetime of the gas by calculating the time integrated radiative
forcing of a unit mass impulse to the atmosphere. Table 3 shows the results of a calculation
of the GWP for CH3Cl at times of 20, 100, and 500 years based on CFC-11 GWPs as
determined in IPCC (1994) (c.f. Equation 6). The lifetime of CH3Cl used in the calculation
was 1.5 years.

Table 3. Global warming potential for CH3CL

29.9 9.1 2.8

For CFC-11, with a lifetime of 50 years, the GWP at 20, 100, and 500 year integration
periods are 5000, 4000, and 1400 respectively IPCC (1994). The GWPs of CH3Cl given in
Table 3 are approximately 37 to 48 percent of GWPs of CH4, on a per kilogram basis (IPCC,
1994). Wuebbles et al. (1994) calculate GWP values calculate GWP values for CH4 which
are 31 to 45 percent larger than the IPCC (1994) values due to larger CHy response times.
With regard to these larger GWP values, the CH3Cl GWP values range from 25 - 37 percent
of the CH4 GWPs. Kaye et al. (1994) give the abundance of CH3Cl as approximately 600
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parts per trillion in the troposphere, decreasing to approximately 20 parts per trillion at
altitudes around 30 km, with an annual emission of approximately 3.5 million tons per year.
Kay et al. (1994) estimate an anthropogenic CH3Cl emission rate of between 15 and 30
percent of the total emission rate, principally 4due to biomass burning. Given a methane
emission rate of approximately 500 Tg/year (WMO, 1991), with approximately 50 percent of
the total due to anthropogenic sources (IPCC,1990), the global warming effects of CH3Cl are
about 0.07 to 0.2 percent of the methane contribution contribution using IPCC (1994)
methane GWP values. The global warming effects of CH3Cl are about 0.04 fo 0.14 percent of
the methane contribution contribution using the Wuebbles et al. (1994) methane GWP
values. Thus, at present, serious greenhouse problems are not a current problem and will not

become a problem unless very large anthropogenic releases of this gas occur.
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/' Figure Captions



Figure 1. Globally and annually averaged profiles of water vapor, ozone, and methane as a
function of altitude for the ambient atmosphere.
Figure 2. Pressure-temperature profile for the ambient atmosphere. The temperatures are

globally and anually averaged.
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Figure 1

Globally- and annually-averaged profiles of water vapor, ozone,
and methane as a function of altitude for the ambient atmosphere.
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