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SYNOPSIS 

Materials systems have been formulated for  the i n  s i t u  conversion of -- 
water-based bentonite d r i l l i n g  f lu ids  in to  cementitious los t -c i rcu la t ion  

control materials (CLCM) fo r  use i n  geothermal wells a t  temperatures up to 

300OC. The formulations cons is t  of a cement hardener, a borax admixture, 

and a f i b e r  glass  bridging material which a re  added to  the bentonite f luids .  

Evaluations of the propert ies  of the s lur ry  and the cured CLCMs revealed 

tha t  the ions supplied by dissociat ion of the borax i n  the CLCM s lur ry  acted 

2.0 suppress the bentonite hydration and retarded the hardening r a t e  of the 

cement a t  elevated temperatures. 

during curing of the CLCM play essent ia l  ro les  i n  improving the qual i ty  of 

the hardened CLCMs. It was *observed tha t  xonot l i te - t ruscot t i te  transforma- 

t ions resulted i n  s t rength reductions and increased water permeability. The 

plugging a b i l i t y  of f ibe r  glass  depends on the concentration and f ibe r  size.  

The s i l i c a t e  ions dissolved by hot a lka l ine  dis integrat ion of the f i b e r  

g lass  were chemisorbed with Ca2+ ions from the cement and led to the preci- 

p i t a t ion  of C-S-H compounds on the f ibe r  surfaces,  which improved bond 

s t rength a t  the matrix-fiber interfaces .  

The CaO-Si02-H2O (C-S-H) phases formed 

. .  1 
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INTRODUCTION 

Idea l ly ,  it should be possible to solve los t -c i rcu la t ion  problems in  
geothermal wells by the d i r e c t  addi t ion to water-based d r i l l i n g  f lu ids  of a 

material  tha t  forms a s l u r r y ,  which is pumpable a @  hydrothermal conditions 

up t o  300OC, and thus can be circulated to a formulation i n  which loss  of 

f lu id  occurs. In addition, the material should be capable of converting the 

d r i l l i n g  mud in to  a hardened mass which has adequate s t rength within appro- 

ximately two hours a f t e r  plugging the cavernous and highly fractured zones. 

It has been estimated tha t  the so l id i f i ed  material must have the following 

minimum charac te r i s t ics  a t  3OOOC to  a c t  a s  an e f fec t ive  seal  in a cementi- 

t ious los t -c i rcu la t ion  control material (CLCM)l: (1) compressive s t rength 

>3.45 MPa (500 psi)  a t  an autoclaving age of two hours, (2) permeability to 

water <1 x 10'2 darcys, and (3) an increase in volume upon curing, 

In oil wells in which the bottom hole temperature never exceeds 150OC, 

conventional portland cements are  frequently used for  10s t -c i rcu la t ion  con- 
t r o l  materials.2 T h i s  is convenient since cement is readi ly  available a t  

a l l  well s i t e s .  Unfortunately, the common cement plugging systems, which 

cons is t  of p e r l i t e ,  cement, and s i l i c a  f l w r ,  of ten give unsatisfactory re- 

s u l t s ,  par t icu lar ly  on the f i r s t  attempt, primarily because the downhole 

temperature is not known accurately enough to determine the needed amount of 

re tarder  .3 

Diesel oil-bentonite-cement gunk s q u e e ~ e s ~ ' ~  a re  used successfully by 

the petroleum industry to control t o t a l  l o s t  c i rcu la t ion ,  but not generally 

in geothermal d r i l l i n g  because of environmental objections to the diesel  o i l  

component. 7 

The use of the sodium s i l i c a t e ,  which is environmentally acceptable, is 
very a t t r ac t ive  since cementing equipment and cement placement procedures 

are not needed with th i s  method. The sodium s i l i c a t e  gel is generally pump- 

ed into the los t -c i rcu la t ion  zone ahead of the cement to form a ba r r i e r  

which r e t a ins  the s l u r r y  while it se ts .  Unfortunately, as with the conven- 

t ional  portland cement systems, d i f f i c u l t i e s  a r i s e  a t  temperatures >2000C.7 
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T& d i r e c t  addi t ion of conventional portland cement to a highly con- 

centrated bentonite d r i l l i n g  f l u i d  produces a lower-strength material. 

is considered to be due to the strongly thixotropic gel and swelling of the 

bentonite hydration products brought about by chemisorption of the f r ee  

water i n  the neat cement pastes. Hence, the disadvantage of commercial 

cement-bentonite-water systems fo r  u t i l i z a t i o n  as CLCMs include the lack of 

knowledge on the actual  degree of bentonite hydration, and the d i f f i c u l t y  of 

mixing the thick s lu r ry  into:  the ac t ive  mud systems. Nevertheless, the use 

of hydraulic cement as a seal ing agent o f f e r s  the following advantages; (1)  

wide ava i l ab i l i t y ,  (2) ease of d i r e c t  addition to water-based d r i l l i n g  

f l u i d ,  and (3) r e l a t i v e l y  low cost. 

This 

The current  Brookhaven National Laboratory (BNL) e f f o r t  emphasized the 

development of cement-based sealing sys tems tha t  can be added d i r ec t ly  to 

the conventional water-based bentonite f luids .  The goal was to ident i fy  

cementitious seal ing sys tems tha t  when added to hydraulic cement w i l l  have 

control lable  se t t i ng  times and w i l l  develop adequate mechanical s t rength 

a f t e r  exposure to temperatures up to 300OC. 

the research was to s e l e c t  a retarding admixture that could be used i n  con- 

junction with the conventional cement formulations to yield a CLCM, which 

meets the above c r i t e r i a .  The desired admixture would a l so  have to be 

ef fec t ive  i n  improving the con t ro l l ab i l i t y  of the bentonite hydration as 

well as expansion of the CLCM upon curing. 

Therefore, the f i r s t  par t  of 

Inorganic- type admixtures, which a re  not susceptible to hydrothermal 

d is in tegra t ion  a t  high temperatures, were employed i n  th i s  study. Types of 

materials  considered included chlorine,  sodium s i l i c a t e ,  sodium phosphate, 
and boron compounds. The react ion products formed du autoclave exposure 

of the CLCM i n  the presence of the most su i tab le  admixture, and the CaO- 

-H20 formations which a re  primarily responsible fo r  s t rength development 

a t  elevated temperatures, were ident i f ied  by means of x-ray powder diffrac-  

t ion  (XRD) and scanning e lec t ron  microscopy (SEMI. 

Although it i s  expected tha t  a pumpable CLCM could eas i ly  penetrate 

i n to  a wide s i ze  range of los t -c i rcu la t ion  zones, i t  is probable tha t  

a large amount of the cementing s l u r r y  would be l o s t  into large-sized 
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f r ac tu res  before the se t t i ng  of the CLCM. Therefore, screening t e s t s  using 

commercially avai lable  bridging materials which were added to the CLCMs7were 

a l s o  performed i n  an attempt to  enhance seal ing and improve the mechanical 

properties of the hardened plug. 

EXPERIMENTAL 

The general properties of a standard dri1,ing f,uid consisting of 6% 

Wyoming bentonite, supplied by NL Baroid, Inc., and 94% water, as measured 

using a Model 35 A Faun Direc t  Indicating Viscometer, a re  given below: 

Newtonian Viscosity (vu), P l a s t i c  v i scos i ty  (vpv) Yield Point  (Up) 
CP CP Rb/lOO f t 2  

11.0 6 .O 5.0 

vu was computed using the following formula; 

9 
0 
N 

300 - 
where 8 is the Fann viscometer reading, and N (rpm) i s  the ro ta t ion  r a t e  of 

the outer cylinder. v , which represents a fineness spec i f ica t ion  fo r  

so l id  dispersions i n  an aqueous medium, was obtained from the difference be- 

tween the values of the viscometer readings a t  600 and 300 rpm. The yield 

point (UP), expressed as lb/100 f t2,  represents the magnitude of clay act iv-  

i t y  created primarily by the charged surfaces and is given as follows8: 

PV 

The value of 11.0 CP for  the Newtonian viscosi ty  which was measured for  the 

standard f lu id ,  corresponds to the value specif ied i n  American Petroleum 

Ins  ti t u  t e  (API) S tandard 13A.  

API c l a s s  H and c l a s s  J cements were used as  the matrix fo r  the CLcpIs, 

since they have good s t rength charac te r i s t ics  a t  bottom-hole s t a t i c  tempera- 

tu re s  > l l O O C .  Typical chemical analyses of the c l a s s  H and c l a s s  J cements 

tha t  were supplied by the Lehigh Portland Cement Company are given below. 
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Composition, w t %  

Loss on 

A120Q Fe209 M g O  Ign i t ion  -s"3 SiOp CaO 

Class H 22.40 64.40 4.29 4.92 0.80 2.20 0.40 

Class J 50.97 40.68 0.86 0.70 1.01 0.29 4.75 

Class J is  a silica-lime cement system tha t  is  not described by an API 

chemical specification. Unlike other  API cements, c l a s s  J does not require  

addi t ional  s i l i c a  to prevent s t rength retrogression a t  temperatures above 

1100C. A s  a r e su l t ,  react ive silica f lour  having a particle s i z e  <44 pm w a s  

added to only the c lass  H cement system. This system consisted of 60 par t s  

cement to  40 par ts  s i l i c a  f lour .  

The specimens were prepared according to the following procedures. 

F i r s t  the bentonite f lu ids  were thoroughly mixed with the proper amount of 

the various cement retarding admixtures. 

systems were then incorporated in to  the chemically treated f lu ids ,  and sub- 

sequently mixed using a Hamilton Beach Mixer. The CLCM mixes used i n  these 

s tudies  were composed of 60% t reated f lu id ,  24% cement, and 16% s i l i c a  f lou r  

fo r  the class H cement-based systems, and 60% treated f lu id ,  40%; cement f o r  

the class J systems. The density of both slurries was -1.45. g/cm3 as deter- 

mined with a Baroid Four Scale Mud Balance. The assumption that the plugg- 

ing materials w i l l  have to  be placed in to  water-f i l led fractures ,  a l l  the 

CLCM s l u r r i e s  were placed in to  water-f i l led t e s t  tubes and maintained a t  
room temperature u n t i l  the s lu r ry  se t t led  completely to  the boqtom of the 

aqueous media. After s e t t l i ng ,  the s lur ry- f i l l ed  test tubes were exposed i n  

an autoclave for  two hours a t  temperatures up to 300OC. 

The c l a s s  J and c l a s s  H cement 

RESULTS AND DISCUSSION 

Admixtures 

A search was conducted to ident i fy  admixtures that would yield a s lu r ry  

pumpable a t  elevated temperatures, which, upon curing, would have the re- 

q u i r e d  strength charac te r i s  tics. I n  t h i s  work, the various inorganic chemi- 

ca l  compounds l i s t e d  i n  Table 1 were evaluated on the basis of the i r  changes 
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i n  viscosi ty  and the thickening temperature for  the CLCM s lur ry ,  and the re- 

su l t an t  compressive s t rength a f t e r  curing f o r  two hours i n  an autoclave a t  

300OC. 

cometer, Model 35A. 

a 7.5-cm-diam x 23.8-cm-long stirred autoclave in  a manner similar to that 

reported ear1ier . l  

The v i scos i t i e s  were measured using a Faun Direct  Indicating V i s -  

The thickening temperature dasurements were made using 

The CLCM formulation employed i n  th i s  s e r i e s  of experiments was com- 

posed of 60 par ts  bentonite f lu id  (6x bentonite - 94X water) and 40 p a r t s  

c l a s s  J cement. The admixtures were added d i r ec t ly  to the bentonite mud 

before mixing the c lass  J cement. It should be noted that a l l  reported 

admixture concentrations a re  by weight of the bentonite-cement mix slurry.  

A l l  the chemical agents were supplied by the Fisher S c i e n t i f i c  company, 

except fo r  the commercial-grade boron compounds, which were obtained from 

the United S ta tes  Borax Chemical Corpora tion. 

Data from t h i s  series of t e s t s  are  summarized i n  Table 1. In the ab- 

sence of any admixtures, the control s l u r r i e s  had a v iscos i ty  of 135 cP, a 

thickening temperature of -160OC, and a compressive s t rength of 2.27 MPa 

(329 ps i )  a t  an age of two hours. The r e l a t ive ly  high viscosi ty  r e s u l t s  

i n  the formation of a thixotropic gel of bentonite hydration caused by 

chemisorbing the water i n  the neat cement pastes. A s  r e su l t ,  the onset of 

s e t t i n g  is a t  a r e l a t ive ly  low value of -16OOC. The data a l so  indicate  tha t  

the addition of admixtures which a re  soluble i n  the alkal ine bentonite f l u i d  

reduces the viscosi ty  and increases the thickening temperature of the s l u r -  

r i e s .  A l l  the admixtures used i n  th i s  s tudy appear to  be hydrolyzed by the 

a lka l ine  solut ion to dissociate  uni- , di- ,  and t r iva l en t  ions, and these 

ions a c t  to i n h i b i t  the r a t e s  of bentonite and cement hydrations. It ap- 

pears from the data tha t  univalent cations such as  Na+ and 

ef fec t ive  i n  reducing the s l u r r y  consistency a t  24OC than a re  the d i -  and 

t r iva l en t  cations such as  Ca2+, Ba2+, and A13+. 

taining AlCl3 and CaC12 had v i scos i t i e s  ranging from 93 t o  100 cP, while 

those containing sodium phosphate, sodium borate compounds, and boric acid 

had values from 70 to 35 cP. Of the various univalent cation-dissociating 

admix tures tested , sodium phosphate anhydra t e  (Na3P04) was the most effect-  

a r e  more 

For example, slurries con- 
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ive  i n  reducing the v iscos i ty  of the control s lu r ry .  With a 5% concentra- 

t ion of NagPOq, the v iscos i ty  was 35 cP, -74% l e s s  than tha t  of the control. 

Slurry v i scos i t i e s  ranging between 70 and 62 cP can be obtained by adding a 

7% concentration of anhydrous and hydrated sodium t e  traborate reagents. 

The thickening temperature for  the s lu r r i e s  is also dramatically ra ised 

w i t h  an increase i n  the Na3P04 admixture concentration. The thickening tem- 

perature of the control was extended t o  >300OC by the addi t ion of 7% Na3PO4, 

but  unfortunately the 2-hr compressive s t rength fo r  the cured formulation 

was too low to  be measured. 

not r e s u l t  i n  s t rength improvements. S i m i l a r  r e s u l t s  were obtained from 

specimens containing the boric  acid admixture. It is speculated t h a t  Na3P04 

and H3BO3 admixtures which l i be ra t e  large numbers of P043’ and B033’ ions as 

the counterions of Na+ and H+ indef in i te ly  re tard the se t t i ng  and hardening 

of hydraulic cement a t  temperatures up to 300OC. 

Reducing the Na3P04 concentration to  0.5% d i d  

The best  admixtures for  retarding the hydration of the cement but ye t  

meeting the ear ly  s t rength c r i t e r i a  were the borax compounds such as  borax 

10 mol, borax 5 mol, and anhydrous borax. Of these various borax addi t ives ,  

the borax 10 mol gave the grea tes t  enhancement i n  thickening temperatures 

and compressive strength. Specimens containing 7% of the borax 10 mol ex- 

hibi ted a thickening temperature of 280OC, 120% over t h a t  of the control ,  

and the autoclaved specimens had a 2-hr s t rength of 1.93 MPa (280 ps i ) .  A 
fur ther  increase i n  the borax concentration up to 10% resulted i n  an appre- I 

c iab le  s t rength reduction. 

The a b i l i t y  of Na+ and B 4 0 ~ ~ -  ions released by dissolut ion of the borax 

10 mol to  improve the con t ro l l ab i l i t y  of the hydration d i s t r ibu t ion  of 

bentoni te-cement composite systems i s  of par t icu lar  in te res t .  Since the 

borax admixtures were usually added to the bentonite f lu ids  before mixing 

the cement, the chemical a f f i n i t y  between the dissociated ions ‘and the 

bentonite muds was studied f i r s t .  Reasons for these ions act ing to re tard 

the hardening r a t e  of the cements were then investigated. 

work was performed i n  accordance w i t h  the following procedures: 100 g of the 

bentonite f lu id  were placed i n  a 300-ml glass  beaker and 7 g of the borax 10 

The experimental 

I ,  

mol were then added to the f lu id .  The beaker was then sealed and the f lu ids  
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were mixed a t  room temperature for  up to 24 hours. The aqueous phase w a s  

then extracted by a centr i fugal  separation. 

and s i l i c a t e  ions i n  the extracted l iqu ids  were then determined using Atomic 

Absorption Spectrophotometry (AA) and High Performance Anion Chromatography 

(HAC). 

a l so  performed on treated bentonite flllids tha t  were exposed i n  the auto- 

clave a t  300OC for  2 hours, and then dried. These data yield information 

regarding the react ion products formed by the autoclaving. 

Concentrations of Na+, B4072-, 

X-ray powder dif  f rac  t ion  analyses (XRD) w i t h  CuKa rad ia t ion  were 

A s  shown i n  Figure 1, the amount of Na+ ions i n  solut ion increases with 

mixing time u n t i l  the concentration reaches a peak value of -4.3 x 10-1 

mole/R a f t e r  -300 min. 

10-1 mole/R a f t e r  1440 min. 

centrat ion of -1.9 x 1 O - I  mole/R within -300 min and then remained constant. 

This implies tha t  the f lu ids  became saturated with both ions during a mixing 

period of -300 min. In  cont ras t  the concentration of s i l i c a t e  ions dissoci-  

ated from the montmorillonite tends to increase with elapsed time, ranging 

from 4.5 x moles/R a f t e r  10 min to  3.1 x lom3 moles/% a f t e r  1440 min. 

These values a re  approximately two orders of magnitude l e s s  than those for  

Na+ and B4072-. 

The concentration than decreases gradually to  -3.5 x 

I n  contrast ,  the B4072- reached a maximum con- 

The s t r u c t u r e  of anhydrous montmorillonite which consis ts  of a 

[A12(OH4) In2* sheet  layer sandwiched between two ( S i 2 0 5 ) ~ ~ ~ -  sheet  layers ,  

is composed of superposed lamellae which have an edge absorption a t  a d i f -  

fuse negative s i l i c a  sheet with various cations balancing unsaturated oxygen 

ions a t  the edges of the c rys ta l  l a t t i c e  of the lamellae. 

k n ~ w a ~ ' ~ ~  tha t  the negative charge a r i s ing  on th i s  layer  as the r e s u l t  of 

the subs t i tu t ion  i s  balanced by chemisorption of cations such as  H+, Na+, 

K+, ea2+, Mg2+, and A13+ ions located between the sheets together w i t h  

molecules of water. The XRD pat terns  of the dried borax treatment montmo- 

r i l l o n i t e s  were characterized by strong l ines  a t  17.7, 4.41, and 3.29 g, and 

medium in t ens i t i e s  a t  3.58 and 3.11 61. 

It  was well 

These spacings can be ascribed to  

the Na-saturated montmorillonite hydrate formed by. hydrothermal reactions 

between the negatively charged s i l i c a t e  plates  of montmorillonite 
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and the Na+ ions l ibera ted  from the  borax.12 The Na+ ions a re  more l i ke ly  

to be chemisorbed onto the cation-absorbing s i l i c a t e  surface of montmoril- 

l o n i t e  by proceeding to  neutral izat ion,  ra ther  than to the dissolved sil- 

i ca t e  ions. 

remain as a react ive ion species i n  the bentonite f lu ids .  

The B4O72- ions which a re  substant ia l ly  i n e r t  t o  Si-0' surfaces 

On the basis of the above experiments, it is possible to speculate on 

possible in te rac t ion  mechanisms between the Na+ ions and the hydrated mont- 
mori l loni te  sheet layers as  follows: 

with water, the diffuse negative s i l i c a  sheets a t  the edges of the montmo- 

r i l l o n i t e  c rys t a l  l a t t i c e  strongly chemisorb large numbers of water mole- 

cules to  i n i t i a t e  the hydration of bentonite. Simultaneously, s i l i c a t e  ions 

a r e  released from the montmorillonite surfaces. This separation between the 

clay p la tes  tha t  is  brought about by water adsorption of bentonite plays an 

e s sen t i a l  ro le  i n  increasing the f l u i d  viscosi ty ,  resu l t ing  i n  the swelling 

of the bentonite. 

the addi t ion of the borax to the hydrated bentonite f lu ids ,  and the maximum 

concentrations of these ions i n  the f lu ids  occur within -300 min. Subse- 

quently, the Na+ which can be expressed i n  terms of the compensation ions, 

is chemisorbed on the Si-0' located between the intersheets.  Once the nega- 

t i ve  s i l i c a  sheets a re  neutral ly  balanced by the compensative Na+ ions, the 

water-adsorbing capacity of the in te r layers  becomes very small. 

ion-saturated in te rshee ts  lead d i r ec t ly  to reductions i n  the consis tency of 

the bentonite f lu id  as a r e s u l t  of the reduced swelling of the bentonite. 

Hence, when hydraulic cement is introduced in to  the neutralized bentonite 

pa r t i c l e s ,  the r a t e  of thixotropic gel formation of the bentonite f lu id  

caused by chemisorption of the water ex is t ing  in+ the neat cement pastes is 

considerably 1 ower. 

when the bentonite powder is mixed 

Both the Na+ and B4072' ions dissociate  immediately a f t e r  

These Na+ 

On the other hand, the e f f e c t  of B4072' ions on the re tardat ion of 

s e t t i n g  cement was studied on the basis  of results from s lu r ry  samples 

prepared by mixing class J cement with the borax-treated bentonite f lu id .  

For the analysis  of Ca2+, B4072' 

the aqueous phase was extracted using a centr i fugal  separator, and the 

and s i l i c a t e  Ions a t  a given mixing t i m e ,  
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concentration of these ions w a s  then determined using AA and HAC. The 

bentonite-cement mix slurries contained a treated bentonite fluid/cement 

r a t i o  of 3.06. For purposes of comparison with the changes i n  the dis- 

sociated Ca2+ and sil icate ions i n  the bentonite-borax-cement-water systems, 

ionic concentration analyses *of ordinary class J kerneat pastes having a 

water/cement r a t i o  of 2.69 were a l so  performed. 

J 

The analyzed r e su l t s  fo r  dissolved Ca2+, B4072', and s i l i c a t e  ions from 

these material systems are  shown i n  Figure 2. I n  the l iqu id  phase of neat 

cement pastes, the concentration of Ca2+ increases with s t i r r i n g  t i m e  u n t i l  

a concentration of -2.6 x mole/& is  reached a f t e r  200 min. After tha t  

it decreases slowly. The quant i ta t ive level  of s i l icate  ions dissociated 

from the cement is extremely low, typically two orders of magnitude l e s s  

than tha t  of Ca2+. 

by several other inves tigators.13-15 

The observation is i n  agreement with the r e s u l t s  given 

Compared to the Ca2+ or Si concentration vs stirring t i m e  r e l a t ion  for 

the cement paste systems, very d i f f e ren t  curves were obtained for  the 

bentonite-borax-cement-water s lurry systems. 

centrat ion in  the aqueous phase of the cement-bentonite s lurry systems was 

only 3.2 x 10-5 mole/$ a f t e r  10 m i a .  This is approximately three orders of 

magnitude lower than tha t  fo r  the cement paste systems. This extremely low 

level  of Ca2+ dissolution i n  the induction period for  cement hydration is 

probably due to a rapid adsorption of B40~~' counterions by the Ca2+ ions 

which form the posit ively charged surface of hydrating cement grains. The 

concentration of B4072- ions with time, therefore, tends to decrease as the 

concentration of Ca2+ ions increases. The quantity of s i l i c a t e  ions should 

be the sum of the ions dissolved from the bentonite (see Figure 1) and the 

cement grains (shown i n  Figure 2). However, the values between 10 and 300 

min are appreciably higher than the sum of values obtained from the individ- 

u a l  cement paste and bentonite-borax f lu id  systems. Although there is some 

discrepancy i n  the to t a l  quantity of soluble s i l i c a t e  species, the curve 

indicates tha t  the s i l i c a t e  ions reach a peak concentration of 2.0 x 

mole/% a f t e r  a s t i r r i n g  time of 300 min, and then drops to 1.6 x 

a f t e r  1440 min. 

For example, the Ca2+ ion con- 

mole/& 

- 10 - 



I n  an attempt to develop a cor re la t ion  between the Ca2+, B4072-, and 

s i l i c a t e  ion dissolut ions,  the changes i n  viscosi ty  and pH of the s lur ry  

samples were plotted againt  the s t i r r i n g  time. A s  seen i n  Figure 3, the 

v iscos i ty  of the s l u r r y  increases gradually f o r  -100 min a f t e r  the cement 

i s  added to the borax-treated bentonite f lu ids ,  and then rapidly r i s e s .  

S i m i l a r  trends were obtained fo r  the pH values. The rap id  increase i n  vis-  

cos i ty  and pH a f t e r  -100 min is due to the increased prec ip i ta t ion  of col- 

lo ida l  calcium s i l i c a t e  hydrate (CSH) formed i n  the v i c in i ty  of the cement 

grains.  

t r a t i o n  of s i l i c a t e  ions a f t e r  -300 min. 

This would be associated with the previously discussed peak concen- 

From the above information, a possible explanation for  the retarding 

a c t i v i t y  of B4072- ions is as follow: 

borax appears to be hydrolyzed by the a lka l ine  solut ion to l i be ra t e  B 4 0 ~ ~ -  
ions which a c t  as Ca2+ cation-accepting anions. 

cement powder, the B4072- ions reac t  rapidly w i t h  Ca2+ ions released from 

the cement grains i n  the col loidal  bentoni te-borax-cement-wa t e r  phase . This 

react ion with Ca2+ ions r e s u l t s  i n  the prec ip i ta t ion  of a calcium-depleted 

s i l i c a  gel and the conversion in to  an semipervious film of Ca2+ - B4072- 
compounds covering the cement grain surfaces. A 1  though the cement-retarding 

mechanisms a re  due to e i t h e r  the prec ip i ta t ion  or  the conversion membrane 

coating, these e f f ec t s  a re  thought to delay the nucleation processes of 

C-S-H ge l  formation and to provide an e f fec t ive  barrier to  the fur ther  

hydration react ion between the cement and water u n t i l  i t  is gradually des- 

troyed by c a l c i u m  dissociated from the cement paste. The prec ip i ta t ion  of a 

col lo ida l  C-S-H gel produced by the ionic  react ion between the Ca2+ in sola- 

t ion  and the hydrolyzed s i l i c a t e - r i c h  surface of the cement grains is  l i k e l y  

to begin a f t e r  -100 min hydration. 

of borax have a moderate a b i l i t y  to  bind the ca l c ium ions i n  a lkat ine bento- 

n i t e  f luids .  

when mixed w i t h  bentonite f lu id ,  

After the addi t ion of 

It appears t ha t  the hydrolyzed products 

Consequently, the borax 10 mol admixture appears to have a high poten- 

t i a l  f o r  use a s  an inh ib i tor  fo r  both the bentonite and the cement hydration 

i n  these spec i f i c  CLCM systems. 

functions was found to be the hydrolytically degraded products of the borax. 

The key element .governing the retarding 
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Further information regarding the a b i l i t y  of borax to  re tard the set- 

t ing of cement is given i n  Figure 4. D a t a  f o r  the thickening time of 

bentoni te-cement-water s lur ry  sys tems as a function of temperature and borax 

concentration are given. The major a i m  i n  th i s  t e s t  w a s  to  gain information 

regarding the actual Workability of the bentoni te-borax-water class H and 

class J cement systems a t  hydrothermal temperatures of 200OC, 25OoC, and 

300OC, under a pressure of 10.34 MPa (1500 psi) .  A t  2OO0C, the lowest - 
temperature investigated, the thickening time f o r  non-borax-containing 

bentonite class H or  J s lu r ry  systems was too shor t  to be measured. The 

workability of the class H and class J systems was dramatically extended t o  

-145 min and -80 min, respectively,  by the addition of 3% borax. A fur ther  

increase i n  borax concentration t o  7% extended the thickening times fo r  both 

systems to - >200 min. 

250% and 300OC. However, a t  a temperature of 300OC, the workability of the 

class J system containing 7% borax could not be measured because of the 

rapid hardening. 

Similar trends were noted fo r  s lur ry  specimens a t  

It is a l so  evident from Figure 4 tha t  the thickening times fo r  the 

borax-treated class H systems are longer than for  the class J systems. 

Thus, the proper choice of cement is l i ke ly  to  be one of the key fac tors  

assoc$ated with extending the thickening times for  CLCMs. Since the  CLCMs 

must be capable of safely accommodating interruptions i n  pumping operations 

due to mechanical trouble, o r  i f  regions of unpredictably high geothermal 

temperature are encountered, it is assumed tha t  the required thickening 

times should be a t  l e a s t  100 min. For the class H systems in the 200OC 

to  250OC range, the addition of -7.0% borax meets th i s  c r i te r ion .  Unfortu- 

nately,  a t  300OC the thickening t i m e  was only -15 min. Therefore, fur ther  

work i n  which the borax-based composite system is used i n  conjunction with 

other  boron-type reagents is necessary before the CCCM can be considered fo r  

placement a t  tempera tures - >3OO0C. 

It was a l so  found tha t  the borax is ef fec t ive  as a swelling agent. 

Although i t  is not shown i n  the f igures  or the tables,  the l i nea r  expansion 

increased with the amount of borax up t o  a concentration of 7%. Specimens . 
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without borax exhibited a shrinkage of -1.6% a f t e r  exposure fo r  2 h r  a t  

300OC. Formulations containing 3% and 7% borax showed expansions of -1.9% 

and -2.22, respectively. This s l i g h t  expansion charac te r i s t ic  might help to 

yield an effect ive seal  a f t e r  placement. 

Effect of C-S-H on Compressive Strength and Water Permeability 

Tests were performed to determine i f  changes i n  the compressive 

strength and water permeability of borax-modified CLCMs occur upon continued 

exposure i n  an autoclave. 

s lur ry  systems containing 7% borax were cas t  into 3.5-cm-diam by 7.0-cm-long 

glass  tubes for  use i n  compressive strength measurements, and i n  3.0-cm-diam 

by 4.0-cm-thick tubes for  water permeability tes t s .  The specimens were then 

exposed in  an autoclave for  up to 10 days a t  temperatures of 200°, 250°, and 

300OC. The data were then correlated w i t h  the phase analyses of reaction 

products ident i f ied using XRD and the morphological features of the c rys t a l  

forms using scanning electron microscopy (SEM). 

In  t h i s  work, bentonite c l a s s  H and c l a s s  J 

The compressive strength and water pemeabi l i ty  r e su l t s  are shown i n  

Figures 5 and 6, respectively. Phases detected by XRD i n  several specimens 

a re  summarized i n  Table 2. It  was found that  a t  300OC the compressive 

strength of c lass  H cement composites increased with exposure time up t o  

-24 hr. 

tinued autoclave exposure resulted i n  strength reductions. 

meability exhibited an i n i t i s l  decrease, reaching a minimum a t - 6  hr. 

then gradually increased. However, a f t e r  10 days the permeability was s t i l l  

a t  a sa t i s fac tory  value of 5.7 x 

A t  th i s  age, a strength of 3.3 MPa (479 psi)  was developed. Con- 

The water per- 

It 

darcys. 

The r e su l t s  from XRD analyses revealed dramatic changes i n  the phases 

of the C-S-H compounds formed as a function of the autoclave exposure time. 

The hydration products formed within the f i r s t  two hours were primarily 11 2 
tobermorite [Cag(Si6018H2)*4H20]. 

i n  conjunction with a small amount of xonotli te [Ca6Si6017(OH)2] was present 

&s the major c rys ta l l ine  product af t e r  a 10-day exposure to the hydrothermal 

environment. 

Truscot t i te  [ C€i14Si24058(OH)8 '2H201 

Electron micrographs of fractured surfaces of 2-hr and 10-day 
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specimens are shown i n  Figures 7 and 8 ,  respectively. In  Figure 7 it  can be 

seen tha t  the morphology of the tobermorite yielded from a CLCM formulation 

composed of 56% bentonite f lu id ,  4% borax, 24% class H cement, and 16% sili- 

ca f lour  a f t e r  exposure fo r  2 hr a t  300OC is cha*cterized by an interlock- 

ing s t ructure  of f ine fibrous crystals .  In  contrast ,  the microcrystalline 

feature  of the mixture of t ru sco t t i t e  and xonot l i te  produced during the 10- 

day autoclave exposure is an intermixture of fibrous plates  and f ine  need- 

les. The former are present i n  the form of t ru sco t t i t e  crystals .  The 

transformation of tobermori t e  in to  xonotli  t e  and subsequently in to  truscot- 

t i t e  yields  an excess of s i l i c a  and water a t  the elevated temperatures. 

These phase changes can be deduced from the pronounced reduction of the l i ne  

in tens i ty  a t  3.34 61 spacing which ascribes to the presence of unreactive 

s i l i c a .  

t ruscot t i te .  

transformation of xonot l i te  in to  t ruscot t i te .  However, the xonotli te-trus- 

c o t t i t e  transformation was s t i l l  incomplete a f t e r  a 10-day exposure. The 

formation to t ru sco t t i t e  i n  the hardened CLCM seems to resu l t  i n  a s t rength 

decrease and enhanced water permeability. Truscot t i te ,  therefore, is a low- 

strength binder. In  contrast ,  a well-crystall ized tobermorite formation 

would yield improvements i n  strength and a decrease i n  permeability. A 
xonotl i te  binder would be l i ke ly  to y i e l d  properties intermediate between 

those of the tobermorite and t ruscot t i te .  The observed s t rength decrease 

and permeability increase i n  the cementitious materials caused by the 

formation of t ru sco t t i t e  are i n  agreement with results published by other 

authors . l7 9 l* 

The s i l i c a  remaining i n  the samples is very reactive and forms 

Despite the work by Luke and Taylor16, there does appear 

Specimens autoclaved a t  200% and 250OC exhibited progressive increases 

i n  strength with aging times of up to 10 days. However, the 2500C 2-hr and 

200OC 6-hr specimens did not develop suf f ic ien t  strength to be measured. 

This was due to the remarkable retarding a b i l i t y  of the borax. The 200OC 

10-day specimens developed a s t rength of 3.8 MPa (551 ps i ) ,  the highest  f o r  

a l l  of the specimens tested thus far.  

a b i l i t y  values. 

They a l so  yielded the lowest perme- 
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As expected, XRD data  for  the 25OOC aged samples indicated tha t  tober- 
morite and si l ica were the major consti tuents a f t e r  a 1-day exposure. 

a 10-day exposure, xonot l i te  and s i l i c a  were present a s  the major phase i n  

conjunction with tobermorite and t r u s c o t t i t e  as minor products. 

t a l l i z a t i o n  from xonot l i te  to  t r u s c o t t i t e  a t  250OC was apparently much slower 

than fo r  the samples a t  30OoC. Thus, continued s t rength development could be 

ant ic ipated by fur ther  autoclave curing. The XRD pat terns  a t  200% showed 

tha t  the tobermorite formed during the 72-hr exposure was converted in to  

wel l -crystal l ized tobermorite formulations a f t e r  10-day autoclaving. This 

binder appears to r e s u l t  i n  the high magnitude of s t rength development. 

After 

The recrys- 

For the CLCM containing c l a s s  J cement a t  300OC, the s t rength within 

the f i r s t  two hours of autoclaving decreased gradually with increased expo- 

sure time. The s t rength of -0.5 MPa (-73 ps i )  for  the 10-day aged specimens 

corresponds to a reduction of -71%, as compared to tha t  f o r  the 2-hr auto- 

claved specimens. For the l a t t e r ,  the predominant reaction products were 

found to  be a mixture of tobermorite and xonot l i te  i n  the presence of the 

unreactive s i l i c a  as a minor phase. Extended autoclave time tended to favor 

the formation of t ru sco t t i t e .  Xonotl i te- t ruscot t i te  transformation is l ike ly  

to occur progressively during exposure periods of -72 hr, and simultaneously 

forms a small. amount of scawtite [Ca7si6(Co3)ol8*2~201. This can be de- 

tected by the noteworthy decreases i n  the peak in t ens i t i e s  a t  3.08 and 

3.34 spacings which represent the xonot l i te  and s i l i c a ,  respectively,  and 

the growth of a new peak a t  -3.00 1 which is representative of the formation 
of scawtite. Since scawtite contains a s m a l l  amount of C02 i n  i t s  molecular 

s t ruc ture ,  the formation is associated with the presence of C02 i n  cements.19 

Extending the exposure time to  10 days r e s u l t s  i n  an increase i n  the conver- 

sion r a t e  to t r u s c o t t i t e  ra ther  than xonotli te.  

Figure 9 shows scrol l - tubular  c rys t a l s  of t r u s c o t t i t e  produced from a 

mixture of 56% bentonite f lu id ,  4% borax, and 40% class J cement a f t e r  10 

days a t  300OC. From the standpoint of the space f i l l i n g  charac te r i s t ics  and 
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morphological features  of the microcrystall ine forms, the t r u s c o t t i t e  s t ruc-  

ture  produced from c l a s s  J cement can be categorized as a porous binder i n  

the form of th in  plates  -5p i n  length, and is  an in fe r io r  binder t o  tha t  

produced from c l a s s  H. The low density of the c rys t a l  formations r e l a t e s  

d i r ec t ly  to  poor s t rength development and high water permeability. Again, 

an increase i n  the quantity of t r u s c o t t i t e  i n  the systems r e s u l t s  i n  in- 

creased water permeability. A t  250OC, an increase i n  s t rength was noted 

over exposure periods ranging from 2 to 24 hr. Further exposures up t o  3 

days had l i t t l e  e f f e c t  on strength,  which remained a t  -1.7 MPa (-247 psi) .  

Specimens tested a f t e r  exposure fo r  10 days exhibited appreciable reductions 

i n  strength,  due mainly to the formation of t ru sco t t i t e .  

A s  discussed e a r l i e r ,  the major react ion products of c l a s s  H and c l a s s  

J systems a t  the same temperature and age a re ,  respectively,  xonot l i te  and 

t rusco t t i t e .  I t  appears tha t  the xonot l i te - t ruscot t i te  transformation pro- 

cesses i n  c l a s s  J systems a re  much f a s t e r  than those i n  class H systems con- 

ta ining a large amount of s i l i c a  flpur.  I n  the manufacture of commercially 

avai lable  c l a s s  J cement, react ive s i l i c a  is added to  the cement. There- 

fore ,  the differences between the transformation r a t e s  i n  c l a s s  H and class 

J systems may account fo r  the charac te r i s t ics  of c r y s t a l l i n i t y ,  surface 

area,  pa r t i c l e  s i ze ,  and concentration of s i l i c a  added to  cement. 

As is evident from the decrease i n  permeability of samples autoclaved 

a t  200% and 250% (see Figure 6 ) ,  the c l a s s  J CLCM s l u r r i e s  were converted 

in to  high-density cements during exposure fo r  up to 10 days i n  the auto- 

clave. The basal spacings of 2OOOC 10-day-aged specimens revealed the pre- 

sence of a large amount of a well-crystall ized tobermorite and a very small 

amount of scawtite and s i l i c a .  

The above r e s u l t s  suggest tha t  the major fac tors  determining the qual- 

i t y  of the hardened CLCMs depend primarily on the C-S-H species formed under 

the hydrothermal conditions. The phase transformations of C-S-H groups pro- 

duced i n  these par t icu lar  CLCM systems over temperatures ranging from 200OC 

to  300% for  10 days a r e  estimated to be i n  the order of tobermorite > 
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xonot l i te  > scawtite and t rusco t t i t e .  The s t rength retrogression and perme- 

a b i l i t y  increase which occur gradually during the 10-day exposure a t  3000C, 

therefore,  were rat ional ized to  be due to the transformation from tobermor- 

itt? to xonotl i te  and from xonot l i te  to t ru sco t t i t e .  

Bridging Additives 

Although small f rac ture  los t -c i rcu la t ion  zones might be s a t i s f a c t o r i l y  

sealed using non-particulate-containing CLCM,plugging materials,  i t  is a l so  

necessary to address the problem of sealing large fractures .  To solve t h i s  

important problem, the a b i l i t y  of commercially avai lable  bridging mater ia ls  

used i n  conjunction with the CLCM formulations to plug various s i ze  f rac-  

tures was estimated. I n  these s tudies ,  compressive s t rength and s l o t  tests 
using an American Petroleum I n s t i t u t e  (API) los t -c i rcu la t ion  t e s t  c e l l  t h a t  

had been modified by Sandia National Laboratories, were undertaken to evalu- 

a t e  s i x  bridging materials,  f iberg lass ,  crushed granular nuthulls,  processed 

cane f ibe r s ,  crushed miscovite mica f lakes ,  shredded hardwood f iber ,  and 

shredded organic f ibe r .  The f i r s t  s e r i e s  of screening t e s t s  consisted of 
compressive s t rength measurements f o r  CLCMs containing the various addi t ives  

a f t e r  exposure i n  an autoclave fo r  24 hours a t  30OOC. 

provide information on the hydrothermal s t a b i l i t y  of the bridging materials 

i n  strong alkal ine envir.onments and t h e i r  a b i l i t y  to enhance the mechanical 

propert ies  of the CLCMs a t  an ear ly  autoclaving age.' 

The specimens used contained various concentrations of bridging addi- 

These t e s t  r e s u l t s  

, 1  

t ives  i n  a CLCM formulation consisting of 56% bentonite f l u i d ,  4% borax, 24% 

c la s s  H cement, and 16% s i l i c a  flour.  

Owens-Corning Fiberglass Corporati was 6.25 mm long, and con 

chopped E-type glass.  

a l k a l i s  a t  boil ing tempetature.20 

The f iberg lass  (supplied by the 

This type of g lass  generally d is in tegra tes  i n  strong 

A l l  the other addi t ives  were obtained 
from NL Barold Indus t r ies ,  Inc: . .  

ed specimens as a fu 

igure 10. bridging material  , concentra t ion  a r e  

f igure,  the strengths of the hardened CLCMs depend primarily on the type and 

A s  see; i n  the 
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concentration of the partic'ulates added to the CLCM. The highest strength 

obtained i n  th i s  t e s t  s e r i e s  [3.7 MPa (537 ps i ) ]  was achieved by adding 

-0.2% f iberglass ,  which represents an improvement of -76% over that  of the 

specimens without bridging materials. Further increases i n  the concentra- 

t ion of f ibe r  glass resulted i n  strength r e d u c t i h s ,  probably due to poor 

compaction of the CLCM as  a r e s u l t  of the increased s lurry viscosity. S imi-  

l a r  trends were obtained with the crushed granular nethull- and processed 

cane fiber-containing CLCMs. The other bridging additives evaluated d i d  not 

produce strength increases, and are therefore considered unsuitable. From 

these i n i t i a l  tests, i t  was concluded that  f iberglass  is the additive most 

e f fec t ive  i n  improving the mechanical properties of the autoclaved CLCMs. 

A s  mentioned ea r l i e r ,  the f iberglass  used is  susceptible to chemical 

decomposition i n  strong alkal ine media. Thus, it was anticipated that  ex- 

posure of the fiberglass-containing CLCM i n  an autoclave a t  3 0 0 0 C  would 

r e s u l t  i n  rapid deter iorat ion of the mechanical properties because of d i s -  

in tegrat ion of the f iberglass  due to the alkaline nature of the matrix. To 

study the r a t e  of deterioration, samples containing 0.5% f iberglass  were 

exposed i n  the autoclave for  up to 7 days a t  30OOC. For comparison, control 

specimens were a l so  examined. 

The t e s t  resu l t s  are  l i s t e d  i n  Table 3. An unexpected result was noted 

for  the bridged specimens, namely, the i r  strength as  a function of exposure 

time was almost equal to tha t  for  the controls. The strengths for  both 

materials increased within the f i r s t  24 hours, and then decreased slowly. 

After exposure for  7 days, the strength of the bridged specimen was 2.89 

MPa (419 ps i ) ,  -16% less than tha t  of the 2-hr-aged specimens. The controls 

showed a similar reduction. 

XRD analyses of the specimens were performed to identify the reaction 

products. The r e su l t s  for both the unbridged and bridged CLCMs indicated 

the presence of tobermorite a s  a major phase within the f i r s t  2 hours and 

a mixture of xonotli te,  tobermorite, and t rusco t t i t e  a f t e r  7 days. The 
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quant i t ies  of these hydration products i n  the bridged CLCMs were found to be 

approximately equal to those i n  the controls.  This proves tha t  the decrease 

i n  s t rength of the bridged specimens is due mainly to the phase transfor- 

mation of C-S-H products ra ther  than to the alkal ine degradation of the 

f iberglass .  

The energy-dispersive x-ray (EDX) spectrometer coupled with SEX w a s  

used to study the morphological features  and chemical compositions of the 

f iberg lass  surfaces a f t e r  exposure to Ca(OH)2 - oversaturated solut ions fo r  

24 hours a t  300%. Figure 11 shows the microstructures and selected element 

counts of the f i b e r  surfaces before and a f t e r  exposure to the hot Ca(OH)2 

solutions.  The abscissa of the spectrum is the x-ray energy cha rac t e r i s t i c  

of the element present, and the in tens i ty  of a gross peak count is re la ted  

d i r ec t ly  to the amount of each element present. The f iberg lass  before ex- 

posure discloses  a smooth surface nature, and the predominant element as 

shown i n  the EDX spectrum is the S i  atom. Dramatic changes i n  the surface 

morphology of the f ibe r  were observed on the samples exposed to the Ca(OH)2 

solution. 

s t r u c t u r e  consisting of f i n e  needlelike c rys t a l s  resembling tobermorite and 

xonot l i te  precipi ta ted on the f ibe r  surfaces. EDX exhibited tha t  the count 

i n t ens i ty  of S i  was appreciably lower than tha t  of Ca. In  addition, M 

analysis  of the strong a lka l ine  solut ion a f t e r  removal of the f i b e r  indicat-  

ed the presence of a large amount of silicate ions which were dissolved by 

a lka l ine  degradation of the f ibers .  It is inferred tha t  the s i l i c a t e  ions 

dissociated from the f i b e r  surfaces r eac t  w i t h  Ca2+ ions in Ca(OH)2- s a tu -  

rated aqueous media. This hydrothermal react ion leads to the prec ip i ta t ion  

of C-S-H compounds i n  the v i c in i ty  of the f i b e r  surface. The precipi ta ted 

react ion product was ident i f ied  using XRD. 

belong to the C-S-H phase which is known to form with a needle habit. The 

basal spacings a t  3.09, 2.98, and 2.85 a r e  ascribed to the poss ib i l i t y  of 

the presence of tobermorite. 

with the well-crys t a l l i zed  tobermorite formations, the precipi ta ted c rys t a l  
layer  may act as a protective layer  which prevents the fur ther  a lka l ine  dis-  

in tegra t ion  of the f ibers .  Further work w i l l  be needed to study i n  d e t a i l  

the i a t e r f  a c i  a1 na t u r e  awl the bonding behavior be tween the precipi ta ted 

From Figure 11 (B), the surface was characterized by a micro- 

The resu l t ing  x-ray l i nes  could 

When the f i b e r  surfaces a re  completely covered 
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c rys t a l s  and the f iberglass .  Nevertheless, the formed c rys t a l s  serve a 

crosslinking function to connect the hydrated cement and the f iber .  The 

bond s t rength a t  the cement matrix-fiber interfaces  can be p red ic t ed  to be 

a t  l e a s t  as  good a s  the s t rength of the c rys ta l s  themselves. However, the 

in t e r f ac i a l  shear s t rength is high because of the large sol id  matrix-fiber 

contact area. 

S lo t  Tests 

Since the maximum sealing p res su res  are observed to be highly var iable ,  

i t  i s  desirable to  view these pressures r e l a t ive  to those tha t  w i l l  ac tual ly  

occur i n  the wellbore. The wellbore pressure w i l l  have several components 

associated with it. The difference between the hydrostatic f lu id  head of 

the d r i l l i n g  f lu id  and the formation pore pressure is  >3.45 MPa (500 ps i )  

for  many geothermal formations which a re  typically underpressured. The 

dynamic pressure associated with the f l u i d  surge when the d r i l l  pipe is run 

i n t o  the hold is also of the order of 3.45  MPa (500 ps i )  so tha t  downhole 

pressures tha t  a re  6.89 MPa (1000 ps i )  greater  than the formation pressure 

a re  not uncommon. Hence, for  a los t -c i rcu la t ion  material to be useful i n  

geothermal formations, it mus t  be capable of sealing 6.89 MPa (1000 ps i )  i n  

the modified API tester.21 

Using the above information, s l o t  tests were performed a t  room tempera- 

ture to provide preliminary data regarding the a b i l i t y  of f iberg lass  to plug 

f rac tures  of various sizes.  In these t e s t s ,  150-mm-long s l o t s  were used i n  

place of the standard API s lo t s .  A s  a r e s u l t  of the screening t e s t s  des- 

cribed e a r l i e r ,  the one bridging material evaluated i n  t h i s  test se r i e s  was 

the 6.25-mm-long chopped f iberglass.  The concentration was varied i n  the 

range of 1 to  5%. T e s t  procedures were a s  follows: With the o u t l e t  valve 

closed and a s l o t  of specified width i n  place, 3500 m l  of the fiber-mud mix- 

t u r e  were poured in to  the reservoir.  A piston to separate nitrogen-driving 

pressure from the d r i l l i n g  f lu id  mixture was then emplaced. The cap was 

then screwed onto the reservoir  and the o u t l e t  valve w a s  opened. With only 

hydrostatic p re s su re  acting, the amount of f lu id  passing was recorded. The 

pressure on the fiber-mud s lur ry  was then gradually increased a t  a r a t e  of 
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-0.03 MPa (-4.5 ps i ) / sec  u n t i l  6.89 MPa (1000 psi)  was reached. 

sea l  r u p t u r e d  before t h i s  pressure was reached, the pressure a t  f a i lu re  w a s  

recorded, and the volume of e f f luent  f l u id  was measured. I f  the seal  held 

a t  6.89 MPa (1000 ps i ) ,  the pressure was maintained for  10 minutes before 

the t e s t  was terminated. 

I f  the s l o t  

Tes t  r e s u l t s  from these slurries a t  an ambient temperature of 27OC a re  

summarized i n  Table 4. As indicated in the table,  i t  appears tha t  the seal-  

ing a b i l i t y  of f iberg lass  is  d i r ec t ly  re la ted  to the concentration of f i b e r  

added to the mud s lurry.  When the crack was only 1.5 mm wide, a 1% fiber -  

bridged s l u r r y  exhibited i n i t i a l  leakage a t  0.14 MPa (20 ps i )  and f i n a l l y  

f a i l e d  under a pressure of 0.69 MPa (100 psi) .  

increased by a factor  of -7.0 by the addi t ion of 3% f iber .  Although t h i s  

subs tan t ia l ly  increased the mud viscosity,  a 5% increase i n  the concentra- 

t ion resul ted i n  no f i l t r a t e  losses  a t  the required sealing pressure of 6.89 

MPa (1000 ps i ) .  

4.0-mm s l o t  s ize ,  a large f i l t r a t e  loss  occurred a t  a pressure of only 0.14 

MPa (20 psi) .  Consequently, the f i b e r  length of 6.25 mm appears to be in- 

s u f f i c i e n t  to fu l ly  seal large-size f ractures .  These r e su l t s  suggest tha t  

fur ther  s l o t  t e s t s  a re  necessary to evaluate longer f ibers .  In addi t ion,  

the plugging a c t i v i t y  of hydraulic cement in conjunction with the bridging 

materials should be studied a t  temperatures elevated up to  3OOOC. 

The pressure a t  f a i l u r e  was 

However, when t h i s  mixture was used i n  conjunction with a 

CONCLUSIONS 

Mixtures of hydraulic cement and water-based bentonite d r i l l i n g  f l u i d s  

have a high potent ia l  f o r  use i n  cementitious los t -c i rcu la t ion  control mate- 

rials (CLCM) i n  geothermal wells a temperatures up to 30OoC. Pr ior  to the 

current  BNL work, when cement was added d i r ec t ly  to bentonite f lu ids ,  the 

v iscos i ty  of the r e su l t an t  s l u r r y  shor t  thickening time a t  elevated 

temperatures made i t  very d i f f i c u l  ump. In our current work, i t  was 

determined tha t  the addi t ion of a 10 mol (Na2B407.10 H20) admixture 

t o  the bentonite f l u i d  before mixing with the cement, s ign i f icant ly  a c t s  to 
suppress the r a t e  of complexations and bentonite hydrations and to re tard 

the se t t i ng  of the cement a t  elevated temperatures. The effectiveness of 
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borax is due primarily to the ,Na+ and B4072- ions dissociated by hydrolysis 

of borax i n  the bentonite f lu ids .  

chemisorbed on the Si-0' located between the intersheets  of montmorillonite. 

Once the negative s i l i c a  sheets a re  neutral ly  balanced by Na+ ions, the 

water-adsorbing capacity of the in te r layers  becomes 

saturated intershee ts contribute to res  t r a i n  the cement-bentoni t e  complex 

coagulation and reduce the swelling of bentoni te ,  thereby decreasing the 

viscosi ty  of the mud slurries, After incorporation w i t h  cement, large num- 

bers of B L , O ~ ~ -  counterions reac t  rapidly with Ca2+ ions released from cement 

grains i n  col loidal  bentoni te-borax-cement-wa t e r  phases . This nucleophilic 

a t t r a c t i o n  i s  associated with prec ip i ta t ion  of a calcium-depleted silica gel 

and an impervious f i l m  of Ca2+-B4072' complexation which covers the cement 

grain surfaces. These precipi ta t ions appear to  provide an e f fec t ive  ba r r i e r  

which suppresses the propagation of cement hydrations. The great  re tarding 

a c t i v i t y  of B4072' a t  temperatures up to 3OO0C was proven by the dramatic 

extension of the thickening time of the s lur ry  following the addition of 

borax. It was a lso  observed tha t  the borax a c t s  to expand the hardened 

CLCMs. A 7% borax-treated s l u r r y  exhibited a l i nea r  expansion of -2.2%, 

a s  compared to  the shrinkage cha rac t e r i s t i c s  of the control s lu r ry  a f t e r  

autoclaving. 

The compensation Na+ ions a re  strongly 

t r y  small . Thus, Na+- 7 

In  hardened bentonite-cement-borax-wa t e r  systems, the major factor  con- 

t r o l l i n g  both the compressive s t rength and water permeability was found to 

be the CaO-Si02-H$ (C-S-H) species formed under the hydrothermal condi- 

tions. The qua l i ta t ive  ranking of C-S-H groups a f fec t ing  the properties 

of the autoclaved specimens i n  the temperature range of 200OC to 300W was 

estimated to  be i n  order of tobermorite > xonot l i te  > scawtite and truscot- 

t i t e .  The well-crystall ized tobermorite responsible f o r  the high-quality 

CLCM is essent ia l ly  s tab le  a t  a temperature around 2OOOC. Increasing the 

temperature to  300OC leads to the tobermori te-xono tli t e  and xonot l i  te- 

t r u s c o t t i t e  transformations. 

Without the addition of a bridging additive material to the CLCM, a 
loss  of a large amount of the s lur ry  can be expected before the cement s e t s  

i f  l a rge  f rac tures  a re  encountered i n  a los t -c i rcu la t ion  zone. The use of a 

bridging material could e f fec t ive ly  reduce flow through or  seal  off the 

. 
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f r ac tu re  un t i l  the CLCM hardens. Chopped f iberg lass  was ident i f ied  as an 

e f fec t ive  material  fo r  t h i s  use. Although the f iberg lass  used was suscept- 

i b l e  to chemical d i s in tegra t ion  i n  the hot a lkal ine solution, the C-S-H 

c rys t a l  formation precipi ta ted by a nucleophilic reaction between the si l i-  

ca te  ions dissolved from the f i b e r  surface and the Ca2+ ions from the cement 

under the hot a lka l ine  conditions were shown to be e f fec t ive  as a protect ive 

layer  to suppress fur ther  a lkal ine damage to the f ibe r  and as a crosslinking 

function which acts to improve the bond s t rength a t  the cement matrix-fiber 

interfaces .  The a b i l i t y  of f iberg lass  to plug f rac tures  of d i f f e ren t  s izes  

seems related to the concentration and the dimensions of the f i b e r  added t o  

the mud s lu r r i e s .  
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Table 1 
Properties of 60% Eentodte F l d d  - 4OZ CLass J Cement Slurry 

Systems Treated Ccmtainirg Various Admixtums 

canpressive 

viscosity Thickfxdrg inautoclaw! 

strergth after 
exposure for 2 Ihr 

RCaCtiVe a twrpn,  bemperature, at=, 
group Admixturea Fonmila CP % MPa, (psi) 

- - - 135 160 2.27<329) 
0.14 ( 20) 

c a a 2  100 185 1.93 (280) 

AlCl3 93 - 

-7.0% sodim flwffopbsphate 
7.m Sodium phosphate 
0.5% s o d h  phosphate *&ate 
1.m Sodium phosphate anhydrate 
2.0% Sodium pllosphate dydrate 
3.0% Sodim phosphate ashydrate 
5.0% Sodium p h p h a t e  adydrate 

-7.0% sodim phosphate adydrate 

70 
49 
95 
44 
37 
36 
35 
35 

170 
170 
175 
180 
195 
210 
250 
>300 

0.28 ( 41) 
b 
b 
b 
b 
b 
b 
b 

-7.m sodium teetrabotate &2&07.1W$ 70 mo 1.93 (280) 

1O.a sodium tetraborate Na2B407.lOHs 55 mo 1.72 (250) 

7.m sodiun tetrabotate Na2B407SH2O 62 230 1.79 (260) 

7.m sodim tetraborate &2%07 65 200 1.65 (239) 

-ate (borax 10 mol) 

-&ate (borax 10 mol) 

pentahydrate (borax 5 mol) 

(a*- borax) 
0.5Z Boric acid H3Bo3 
1.011: Boric acid H3Bo3 
-2.0% Baric acid H3J333 

110 210 b 
94 240 b 
81 >300 b 

0.14 ( 20) 

7.0% brim sulfate -4 112 180 2.27 (329) 

Otfrer c"m sodium silicate NqSIO3.9H20 80 - 

a X by weight of bentmite-cement mix slurry. 
b Too ltx t~ be meamred. 

I 
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Table 2 
ce[)-SiO+l@ Phase Assunblages Crystallizitg in Benton€te-Class H a d  -J 

Cemeat System as a Functioa of Aua~claving Temperatures and Time 

Temperature, Time, 
System % hr 

Phases PreseM 
Minor 

C l a s s  H cement 

Class  H cement 
Class H cement 
C l a s s  H oement 
Class H oement 

C l a s s  H cement 

Class H cement 

C l a s s  J cement 

Class J cement 

C l a s s  J cement 

C l a s s  J cement 
Class J cement 

Class J amnt 

Class J cement 

300 2 

300 24 

300 240 

250 24 

w)  240 

200 72 

200 240 

300 2 

300 72 

300 240 

250 24 

250 240 

200 24 

200 240 

1g ~obenoor i te  + Quartz 

19 T o b e m r i t e  + Xomtlite + Quartz 

Ruscottite 

la lbbenmrite + Quartz 
Xonotlite + Quartz 
1111 ~obennor i te  + Quartz 
lfi Toberm>rite 

1111 Tobermrite + Xonotlite 

Ruscottite 

Truscottite 

xockotlite + Wrtz 
Truscot t i te  + X o m t l i  te 

19 ~ohrmorite + scawtite + Quartz 
llf Tobermorite 

- 
- 

xanotli te + Quartz 
xonotlite 

Ilk Tobermorite + Truscottite 
- 
Quare 

Quartz + scewtite 

xanotlite + scawtite + Quartz 
xaaotlite + Scawtite 

- 
SoaWtite 
- 

Scawtite + Quartz 
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Table 3 
Comparison of Compressive Strength Between Unbridged and Glass Fiber - 

Bridged CLCMs as a Function of Autoclaving Age a t  3OO0C 

Compressive Strength, MPa (ps i ) ,  of Specimens After Exposure 
i n  Autoclave a t  3OOOC 

2 hr  1 day 3 day 7 day 

Unbridged CLCM 2.80 (406) 3.18 (461) 2.88 (418) 2.35 (341) 

Glassfiber-bridged CLCM 3.46 (502) 3.95 (573) 3.30 (479) 2.89 (419) 
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Table 4 
Effect  of Fiberglass Concentration on Sealing Abi l i ty  

Fiberglass concentration, S l o t  s ize ,  Sealing pressure, Accumulated 
% mm MPa (ps i )  f i l t r a t e , a  

m l  

1 1.5 0 0 

1 1.5 0.14 ( 2 0 )  200 

1 1.5 0.35 ( 51) 2750 

1 1.5 0.69 ( 100) 3200 

3 1.5 3.79 ( 550) 5 00 

3 1.5 4.82 ( 699) 3000 

1.5 6.89 (1000) , 0 

4 .O 0 0 

4.0 0.14 ( 20) 2900 

4.0 0.35 ( 51) 3200 

Maximum f i l t r a t e  is 3500 m l .  
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Figure 1. Changes in concentration of Na', B4072-, and silicate ions in the 
liquid phase of bentonite fluids mixed with borax. 
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Figure 2. Ionic concentration in the extracted liquid of cement paste and 

borax-treated bentonite fluids containing cement. 
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Figure 3. Variations in viscosity and pH of bentonite - borax - cement - water 
slurry systems as a function of stirring time. 
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Comparison of thickening times,between class H and class J cement systems 
treated with borax at isothermal temperatures of 200°C, 250°C, and 300OC. 
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Figure 5. Changes in compressive strength of 7% borax-modified CLCMs as a function 
of exposure times at isothermal temperatures of 300°C, 250°C, and 2OO0C, 
1 MF'a = 145.1 psi. 
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Figure 6. Water permeability of CLCMs containing 7% borax as a function 
of exposure time at 3OO0C, 25OoC, and 200OC. 
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I 

Figure 7. Electron micrograph of tobermorite formed in two hours at 300°C 
from bentonite-borax-class H cement silica flour - water systems. 
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5 

Figure 8 .  Fibrous p l a t e s  of t r u s c o t t i t e  blended with f i n e  needles  of x o n o t l i t e  

produced from class H systems autoclaved at  300°C f o r  10 days. 
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Figure 9. Scroll-tubular crystals of truscottite formed in 10 days at 300°C 
from bentonite-borax - class J cement-water systems. 
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Figure 10. Changes in compressive strength of 300°C 2-hr specimens as 

a function of concentration of various bridging additives, 

1 MPa = 145.1 psi. 
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Figure 11. SEM micrographs and EDX spectra of fiberglass surfaces (A) before 
and (B) after exposure to a Ca(OH)* solution for 24 hours at 300°C. 
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