ORNL/CSD/TM-65

UCC-IMD

A Probabilistic Method for
Grouping Data

C. L. Begovich
OPERATED BY
UNION CARBIDE CORPORATION
FOR THE UNITED STATES fITSTAIBUTION OF THIS DOCUMENT IS UNLIMITED

DEPARTMENT OF ENERGY



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily

. state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.



Printed in the United States of America. Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road, Springfield, Virginia 22161
NTIS price codes—Printed Copy: A09; Microfiche A01

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States nor any agency thereof, nor
any of their employees, makes any warranty, expressed or implied, or assumes
any legal liability or responsibility for any third party’s use or the results of such
use of any information, apparatus, product or process disclosed in this report, or

represents that its use by such third party would not infringe privately owned
rights.



ORNL/CSD/TM-65

Contract No. W-7405 eng 26

Computer Sciences Division

A PROBABILISTIC METHOD FOR GROUPING DATA

C. L. Begovich

Sponsor: V. E. Kane
Originator: C. L. Begovich

Date Published - November 1979

NOQTICE This document contains information of a preliminary nature.

It is subject to revision or correction and therefore does not represent a
final report.

UNION CARBIDE CORPORATION, NUCLEAR DIVISION
operating the
Oak Ridge Gaseous Diffusion Plant Oak Ridge National Laboratory
Oak Ridge Y-12 Plant Paducah Gaseous Diffusion Plant
for the
DEPARTMENT OF ENERGY

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor any agency thereof, nor any of their employees, makes any
warcanty, express or implied, or assumes any legal liability or responsibifity for the accuracy,
completeness, o usefulness of any information, apparstus, product. or process disctosed, or
represents that its use would not infringe privately owned rights, Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does

a0t necessarify constitute or imply its endorsement, recommendation, or favoring by the United nlm‘au‘nu“ DF T}“s DBCUM :E'T xs UNL‘M[TEB

States Government or any agency thereof. The views and opinions of authors expressed herein do not

rnecessarily State o reflect those pf the United States Government or any agency thereof, i)-l\






LIST OF TABLES . . . . .
LIST OF FIGURES . .

LIST OF SYMBOLS . . . .
ACKNOWLEDGMENTS . . . .
ABSTRACT « « « « + . . .

1. INTRODUCTION . . .
1.1 Summary . .

1.2 Basic Definiti

2. BACKGROUND . . . .
2.1 History

2.2 Clustering Alg .
2.3 Estimating the Number of Groups

TABLE

-

ons and Notation .

orithms

iii

OF CONTENTS

-

3. A PROBABILISTIC METHOD FOR GROUPING DATA . .
3.1 Theory of the PMG Procedure . . .
3.2 A Simple Example . . .+ ¢ « ¢« + + o« o
3.3 The PMG Algorithm . . . . . « « « « « .
4, COMPARISON OF GROUPING METHODS . . .. . .

4.1 TFive Well-Separated Groups

4.2 Normally Distributed Data
4.3 Practical Application

5. CONCLUSIONS . . .
5.1 Results . .
5.2 Future Work
LIST OF REFERENCES . . .
APPENDICES . « « « « + &

APPENDIX A.
APPENDIX B.

PMG PROGRAM
GENERATING AND TESTING RANDOM

DESCRIPTION .

PAGE

vii
ix

xi

1w W

10
15

21
23
29
33

41
L1
L9
67

79
9
80
81
87

89
155






TABLE

B1.

Summary
in this

Results

Summary
Example

LIST OF TABLES

PAGE

of cluster analysis techniques described
st udY * - * L] - L] L - - L] L ] - L] . - » - L] - 16

of the PMG procedure for Example 1. « « . . 50

statistics of the 10 data sets used in

2 - L] . - . - L] L] L] . - - . L] - - L] L] - ] - 511—

grobabilities of the null hypothesis G = 3 versus
= 2 using the maximum likelihood estimator
fOr EXampPle 2 . ¢ « o o « o o o o o o o« s s o o o« « 58

Value of 6 estimated by the PMG procedure for

Example

2 - - - L] . - - . L3 - - - - . L) . - L] - L] . 61

A comparison of the classification abilities

of the PMG procedure with the hierarchical

variance criterion (V) and the linear

discriminant function (IDF) + ¢ ¢ « ¢ o « « « o =« « 66

Value of 6 estimated by the PMG procedure for

Example

3 - ] - - L] L] - L] L] . - L) - L] - L] L] L] - LI 75

Number of significance levels below
0.10 for four pseudorandom number generators. . . . 168



'u



vii

LIST OF FIGURES

FIGORE
1. Example of eight two-dimensional observations .
2. Basic steps involved in the PMG procedure . . .
3. Example 1: 50 samples which form 5 groups . . .
4. Dendrograms for 10 hierarchical methods for
Example 1 - - L ] * L] - * - - L] - - . L] - - L] - -
S. Plot of 6 versus optimization values using
dispersion matrices criteria for Example 1. . .
6. Maximum ll&ellhood estimate for increasing
values of for Example 1 . . ¢ o ¢ ¢ o o o o &
7. Plot of q versus trace W using ISODATA progranm.
8. Results of Beale's F statistic, Calinski and
Harabasz's Kg and Marriott's g2(det W) for
Example 1 - - L ] - L] - - - - - L] - L] L] L] - - - L]
9, Probabilities of group membership for each
sample using the PMG procedure for Example 1. .
10. Dendrogram of frequency measure for
Example 1 - * - - - * L] - L] L] * L] L] - - - L] L] *
11. Dendrograms using variance criterion for
Example 2 - - - L - - - - * - L] L J L] L ] L ] L ] L L) L]
12. Plot of 6 versus optimization values using
dispersion matrices criterion for Example 2 . .
13. Results of Bealet!'s F statistic, Calinski and
Harabaz's Kg and Marriot's g2(det W) for
Example 2 - L ] L] L] L] L] L - - - L] - L ] » L] - L] L] *
14. Dendrogram of frequency measure for
Example 2 L ] . . * L] L] * L ] - . L] - - L ] L ] * L] - L
15. Two-dimensional plots of Example 2, data

Sets u and 7- L] L] L] L] - - - - - - L) [} L] . . - .

PAGE
30
34
4o

L3

L)

L6

L7

L8

51

52

25

56

59

62

63



viii

FIGURE PAGE
16. Probability of group membership for each

sample using the PMG procedure for Example 2,

data set 7 L ] - - . L] L ] L4 - - - * L] L] L] - L] - L ] - - 65

17. Dendrogram using variance criterion for
Example 3. L ] L] * - L] - L] L - L ] L] - L] L] L] L ] - - L 2 - 69

18. Plot of G versus optimization values using
dispersion matrices criteria for Example 3 . . . . 70

19. Maximum likelihood estimate and significance

level for determining the number of groups in

Example 3. ¢ ¢ ¢ ¢ o o o o o o o s o o a o e « s 71
20. Results of Beale's F statistic, Calinski and

Harabasz's Kg and Marriot's g2 (det W) for

Example 3. ¢ ¢ o ¢ ¢ o o o o o o o a o a o o o o o 73

21. Dendrogram of frequency matrix for ¢ = 3 to
c = 8 for Example 3. . ¢ ¢ ¢ o o ¢ o o o

22. Probability of group membership for each sample
using the PMG procedure for Example 3. . . « <« o« « T

A1. Flowchart Of PMGPERe &« ¢ o« o o« o 2 o o o o o o o o 90
A2. Plowchart of PMGCLS. &« ¢ ¢ o o « ¢ o « o o o o s o 91
A3. PFlowchart Of PMGEST:. 4 o « « ¢ o o o o o o o« s o = 92
B1. Moments of simulated data sets of 5000 . . . . . . 161

B2. Frequency test results of sample data sets
of size 5000 L] L] - L] - L ] -* L] L ] - L] L] - - L] L] L] - [ ] 162

B3. Significance level for runs test « « « . « « o o o 163
B4. Significance level for Cramer von Mises test . . . 16k
BS. Significance level for the gap test. . « « « « . . 165
B6. Significance level for the maximum of an n-tuple . 166
BR7. Significance level for the minimum of a n-tuple. . 167

BB. FlowChart of TESTRN‘ - L] L * - - - -* L] - o - * L] - 170



ix

LIST OF SYMBOLS

R,(3,j")Bernoulli random variable which represents
the occurrence of sample j and j' in the
same cluster for simulation «

A(j,J*') frequency of occurrence of sample j and j*' in the
same cluster for m iterations

a(j,j') realization of the random variable A(j, ")

B between-group dispersion matrix, Eq. (5)

c number of clusters

dij distance between sample i and sample j, Eq. (1)
419 distance between groups I and J

E; error vector associated with observation j

E(X) expected value of X

g number of groups in the population

g (c) number of groups predicted by PMG when data

are clustered into ¢ groups

G estimate of number of groups

Gk group k

ék estimate of Gy

jul number of Monte Carlo iterations

N number of generated pseudorandom numbers

n number of observations in data set

p number of variables or measurements of each sample
q number of random numbers occurring in an interval

s run of length s



scale of measurement i

total dispersion matrix, Eq. (3)

test statistic

within-group dispersion matrix, Eq. (4)

weight of measurement i

observation vector j of length p

j-th measurement on sample i

perturbed observation j of length p

i-th generated random variable

significance level for the binomial test
test statistic

probability that 2 samples are in the same

covariance matrix

mean

cluster



xi

ACKNOWLEDGMENTS

The writer wishes to acknowledge the support of the Computer Sciences
Division at the Oak Ridge National Laboratory, operated by Union Carbide
Corporation under contract number W-T405 eng 26 with the U. S. Department
of Energy.

The support, encouragement, and helpful suggestions of V. E. Kane
of the Computer Sciences Division are also sincerely appreciated. Thanks
are also due to N. M. Larson and R. C. Gonzalez for their review and
suggestions. This work was presented as a thesis for the Master of Science

Degree at the University of Tennessee, Knoxville.



ABSTRACT

A probabilistic method for grouping data has been
developed to incorporate measurement error iﬁto standarad
cluster analysis procedures. In the analysis, the data are
perturbed using Monte Carlo techniques to simulate the
experimental error, and the resultant data sets are
clustered. By varying the number of clusters, a procedure
is given to estimate the unknown number of groups. This
technique and other standard procedures for determining the
number of groups are described and compared for three
different examples. The probabilistic method is shown to
have advantages for determining the number of groups and the
probabilities for a sample's membership in the hypothesized

groups.






CHAPTER 1
INTRODUCTION

1.1 Summary

Cluster analysis is a mathematical method to subdivide
data into meaningful groups. Two main purposes of cluster
analysis are to determine the number of groups in a data set
and to place each data sample or observation into the proper
group. Many numerical techniques to perform cluster
analysis have been developed over the past ten vyears
[ Everitt, 1974].

The purpose of this paper is to suggest a new method
for determining the number of groups present in a data set
and éo compare it with current methods. Estimation of the
number of groups is dependent on the definition of group or
cluster; some investigation into this definition is
necessarvy. Everitt [ 1974] reviews various previously
proposed definitions and concludes that many are vague.
They also use the terms "similarity," "alike," etc., which
are not well defined. He suggests that perhaps one single
definition cannot be all encompassing.

The definition of groups considered in this paper
relies on the clustering of data. A group is a set of
samples which are consistently clustered together, even when
perturbed by experimental Or measurement errors. A

definition of <consistent clusters and a more rigorous



definition of groups is in Section 3.1. The unique features
of this definition are not only the dependence on'clusfering
but also the emphasis on experimental error. Both
properties are useful for applying the definition to data.

The above definition of groups is <the result of a
Probabilistic Method for Grouping Data (PMG) developed in
this paper. The basic steps included in the method are
perturbing the observed data by hypothesized experimental
error, clustering the resultant data sets, and summarizing
the results. Using three different examples, it is
demonstrated that this method results in a practical and
meaningful definition of groups.

The PMG method has several advantages. The number of
groups 1is estimated, and instead of distinct clusters being
defined, the probability of membership of a data point in a
cluster 1is computed. The method can be used with any
clustering technique and does improve the results of that
technique in the examples considered. In addition,
experimental error 1is incorporated to avoid results
dependent on a single set of measurements.

General notation is described in the remainder of this
chapter. Chaptef 2 describes clustering methods and current
methods for estimating the number of groups. The PMG method
is described in Chapter 3 with application of the described

methods in Chapter 4.



ons and Notation

Let x. = (xj], sz, e o ey } denote the vector of

*ip |
p measurements on the j-th sample where § =1, 2, . « ., n.
The quantity Ej is observation j or sample j. The purpose
of cluster analysis is to divide the data into g groups with
ni representing the number of samples in the 1i-th group.
The basic steps in clustering include scaling and weighting
of the data, selecting a distance measure, executing a
cluster analysis algorithm, and interpreting the results.
These steps are defined below.

Scaling of the data 1is necessary for some cluster
analysis algorithms in order to use variables which have

different scales of variation. An observation !j is scaled

if

where s, is a scale associated with the 1i-th measurement.
Scaling can remove the different influences of the variable
due to varying units and ranges. Usual methods of scaling
include dividing each variable by 3its range or by its

standard deviation:

n
]

1/(“\;1[ Xj.i - m1jn x’ji)

n
"

v/ (?[xji-ii]z/(n-1)) vhere x. = ? xji/n .

The variables can also be weighted to stress certain

variables or sets of variables wusing any a priori



information about the variables:
X.. = w.x.. where
Ji i~ i
s is the weight for variable 1i. The usual method of
weighting is to select the weights which sum to one.

A distance measure quantifies the "likeness" or
"nearness" of two samples. Let akj be the distance between
samples k and j, then dkj < dkjI implies that samples k and j
are closer or more alike ¢than samples k and j'. Two

commonly used measures are the square of the Euclidean

distance

P
Yy = 2 Fpi)® o ™

and the Mahalanobis distance:
dkj = (lk".!j)'s“ (Zk"ZJ) v (2)

where S is the covariance matrix of a sample population. 1In
some clustering analysis techniques, it 1is necessary to
extend the definition of distance between samples to
distances between groups. The distance between groups I and

J, which will be denoted 4 is usually a function of the

I
distance betvween samples in the groups.

A clustering algorithm separates observations into

groups. The selection of the technique is dependent upon

time, money, and computer core availability as well as upon



theoretical considerations. Some comparisons of different
techniques and their applicability to data are in the
literature (e.g., see Rand [1971], Slagle et al. (19741,
and Gower [19671). A comparison of techniques based upon
their ability +to separate bivariate normal populations has
also been done to aid in selection of techniques ([ Bayne et
al., 19781.

Estimates for the number of groups and for <the group
memberships are the results of applying cluster analysis
techniques. The analyst should be aware of all physical
features of <the data in order to interpret the groups
realistically. These physical features include the error in
the data, any secondary information on similarities of
observations, and the purposes for clustering £he data.
Using a variety of clustering techniques can provide the
user with different aspects of the data and their groupings
{Kittler, 1976].

The PMG procedure is an attempt at answering two.
questions of <cluster analysis in this interpretive step:
"what are the number of groups present in the data set?" and
"w#hat is the probability that each sample is in a group?".
The number of groups and the observations that define those
groups are estimated by incorporating random error. The
probability of each observation's group membership is
calculated, allowing for any one observation to have a

probability of being in more than one group.






CHAPTER 2

BACKGROUND

Clustering observations into different groups is a very
intuitive thought process. For example, a small child
learns the different animal groups: dogs, cats, cows,
horses, etc. People are separated into groups on the basis
of sex, age, origin, income level ; the 1list 1is endless.
Although clustering observations using different
measurements is a very natural process, the actual study of
methods of clustering analysis has only been widespread
since the availability of electronic computers.

Cluster analysis is considered a technique 3in the
broader field of pattern recognition. The study of pattern
recognition includes not only €finding the groups in the
data, but also defining the groups so that any new
observations can be automatically placed into one of thé
existing gr§ups. Pattern recognition methods which define
the groups and classify new objects are implemented in
programs such as RECOG-ORNL [ Begovich and lLarson, 1976] and
ARTHUR [ Duewer et al., 1975].

Cluster analysis techniques have been developed and
applied to scientific fields ranging from artificial
intelligence (A) to zoology (Z). Cluster analysis research

has been done especially in the areas of biology,
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psychology, and statistics. Sokal and Sneath {19631 have
one of the first Dbooks dedicated to analyzing cluster
analysis techniques. Everitt {19741 and Anderberg ({1973)]
both have written useful general descriptive cluster
analysis references. Other comprehensive references include
Fukunaga [ 1972], Hartigan [ 1975], Cormack [1971], lance and
Williams [ 1967, 19681, Nagy {19681, and Dorofeyuk ([1971].
The Pattern Recognition Society and the Classification
Society, two associations which have developed during the

last ten years, are concerned with cluster analysis.

Many different cluster analysis algorithnms are
available. A general classification of these techniques is
the division into hierarchical and nonhierarchical methods.
Hierarchical methods proceed in a step-wise fashion to
combine the data from n single-member clusters to one
cluster - (agglomerative) or vice versa (divisive).
Nonhierarchical techniques are usually optimization
algorithms, where an initial set of clusters is updated
until a set criterion is optimized.

Agglomerative hierarchical methods, which are the only
hierarchical methods described here, consider each sample as
a separate cluster at the first step. A distance measure is
calculated for each pair of (single-member) clusters and the
two samples with the smallest distance are combined to form

a new cluster. The distances between the newly formed
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cluster and the other samples are calculated, and the two
closest clusters are combined for the next step. This
combination of clusters proceeds until all samplés are 1in
one cluster. B tree-like structure called a dendroqranm
graphically displays the results of the analysis; for
example, a dendrogram of four samples is shown below where

dIJ is the distance between clusters.

"1yl

Different hierarchical methods are derived by deciding
how to define the distance between two clusters. The most
direct method is known as single 1linkage, in which the
distance between two <clusters is taken to be the distance
between their two closest members. Complete 1linkage is a
slight variation; the distance between two clusters is.
defined as the 1largest distance between +two of their
members. Arithmetic functions of the distances between
group members are incorporated in centroid, median, group
and weighted average hierarchical <clustering methods.
Measures of the error sum of squares and the minimum
increase in the variance are known as Ward's and variance
methods. Descriptions of the various techniqﬁes are 1in

Cormack f{1971] and Larson et al. [1977]1. All of the
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techniques described above are implemented in a FORTRAN
program DENDRO [larson et al., 1977]}. |

| The other class of clustering techniques which will be
considered here uses an optimization criterion to find the
groups in the data. An initial partition is formed, usually
by selecting a set of initial cluster centers and dividing
the data points among these centers. Some criterion is
selected to test the group memberships. Samples are
reallocated to try to improve the criterion until there is
nc further change.
| Optimization procedures differ in the optimization
criterion used. One multivariate analysis method deals with

dispersion matrices. If the total dispersion matrix,
'X. » ' (3)

then T = W + B, where

g n,i )
Wezo Slee)tmg) I3
g .
B=2 nClC | (5)
g KSKEK
with
M
[o >"X./n, .
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The matrix W is known as the within-group dispersion matrix
and B is the between-group dispersion matrix. Pour
different clustering criteria are derived from these
equations [Friedman and Rubin, 19713:

1) Minimizing the trace of ¥ (maximizing trace B),

equivalent <to minimizing the total within group sum of

squares.

2) Minimizing <the determinant of W, equivalent to

minimizing Wilk's lambda statistic.

3) Maximizing the largest root of B - A W = 0, referred

to as the largest root test.

4) Maximizing the +trace of W-1B, known as the

Hotelling's trace criteria. |
McRae [1972] has implemented these optimization methods in a
FORTRAN program, MICKA. The clustering in MICKA is
rerformed in two steps. The first step uses a k-means
procedure developed by MacQueen [Anderberg, 197337. The
second step uses one of +the above criterion to test a
sample's groub membership.

An alternative optimization technique is NORMIX [Wolfe,
1971]. .Here the data are assumed to be a mixture of
multivariate normal populations. Thus, the optimal division
is separation of the data in order to maximize the

likelihood function. The iterative equations consist of
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DA
ni/n = 1/DZP(G1|_X_k) ¢
k=1
NoA
n A
> = . - - '
; 1/nk§1(xk Si)(lk Ei) P(Gi‘zk) ’
where
n; /n = the mixing proportion for cluster i,
[oF = the mean of cluster i,
Z; = the covariance matrix of cluster i,
A
P(Gilgk) = estimated probability that sample k

is in cluster 1i.
From an initial configuration, NORMIX uses a simplified
"Ajitken" iterative scheme until convergence. Initial
clustering is done using Ward's method with Mahalanobis
distance; alternatively, the user may input an initial set
of clusters.

A third optimization method for clustering multivariate
datal is the heuristic interactive program ISODATA (Ball,
1965]. The set of input parameters, which a user can change
at each step, includes an inifial guess at the number of
clusters, a smallest allowable cluster size, a cluster
splitting parameter, and a cluster lumping parameter.

Documentation for this procedure is given in Ball [1965].
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Tou and Gonzalez [1974] also give a description of the
program with examples.

The four specific methods described ébove and
implemented in DENDRO, MICKA, NORMIX, and TISODATA were
chosen to be included in this study because of their
applicability to determining the number of groups. These
diverse methods are élso in videspread use. A summary of
these methods is presented in Table 1. Procedures used to

estimate the number of groups are in the next section.

2.3 Estipating the Number of Groups

Hierarchical clustering techniques group the
observations from n to one groups. Optimization techniques
require at least an initial guess for the number of groups.
An estimate of the number of groups should be a result of
these techniques, however.

The dendrogram described in Section 2.2 is useful for
indicating the +total structure of data. The number of
clusters actually present in the data is left to the user's
judgment. If <there 1is a 1large separation of distances
between two or more clusters shown in the dendrogram, then
the cluéters are distinct and well defined. However, a
dendrogram on real data rarely displays 1large differences,
giving little inference to the number of groups in the data.

Some of the optimization methods change the number of
clusters while iterating; the resultant number of clusters

as well as the «cluster separation is optimized. The
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Table 1. Summary of cluster analysis technigues
described in this study

Technique

Clustering
method

Pfogram
used

Hierarchical

(Agglomerative)

Optimization

Single linkage
Complete linkage
Group average
Weighted average
Centroiad

Median

Ward's method
Variance

Trace W

Det W

Trace WT1R

Root of W™1R
Maximum Likelihood

Group separation

DENDRO

MICKA

NORMIX

ISODATA
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majority of methods, however, optimize only on the group
separations. In this case, the optimization criterion for
different number of clusters can be compared té determine
the number of clusters present in the data.

The clustering criteria available in MICKA are used
only to optimize on the group membership and not the number
of groups. A test for determining the number of groups is
to plot the «criteria versus the number of groups; a sharp
change in the value of the criteria, followed by a small
percentage change, can be used to indicate the correct
number of groups. This procedure for estimating the number
of groups has been found to be unsatisfactory [Everitt,
19741].

NORMIX does not change the number of clusters within an
optimization; hovever, a number of different guesses for the
number of clusters can be tried within one run. Wolfe
{19711 has determined a significance test for rejecting the
null hypothesis that fewer clusters, r, exist rather than
more clusters, r', using the maximum likelihood estimates,

L and 1L
r

Y‘:
=2(1/n) (n-1-p-t*'/2)log(Ll. /L) (N

X . 2 .. . . X
which is a X distribution with 2p(r-r') degrees of freedonm.
The ISODATA procedure iterates on the number of
clusters present in the data as well as the members of the

clusters. ISODATA is a very -elaborate procedure and
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requires user interaction [Anderberg, 1973]. The parameters
wvhich determine if lumping or splitting of the groups is to
cccur are difficult to determine. Dubes [1976] concludes
that the ISODATA procedure is very sensitive to the input
parameters and requires several runs to get reasonable
results.

Some mathematical indicators have been used to test the
number of clusters present in the data independent of the
method used to determine the clusters. Everitt (1974]
describes three methods. The first, attributed to Beale, is

an F statistic

2
S, =S, / [n=-n, (n,\P
F(r,r') = fsr'L/[n-nﬂ'(Fi')p' ‘] / ®)

wvhere S, denotes the trace W for r groups, which tests the

significance of r' over r'groups with p(r-r?') and p(n-r?")
degrees of freedon. The second method, suggested by

Calinski and Harabasz, 1is based on the variation of the

ratio Kg

Kq = Ltrace B trace W

g g-1 n-g v 9
where B and W are defined as in Egs. (4) and (5). The

distribution of Kg determines the number of groups present:
if Kg reaches a maximum for Jj, then there are j groups
present; if Kg increases monotonically, there are no groups;

and if Kg decreases monotonically, the samples have a
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hierarchical structure. The third indicator results from an
investigation of the determinant of W criterion by Marriot
[19711]. He suggests that g2(det %) should be af a minimum
when g groups are present in the data.

Nonparametric mode-seeking ([Fukunaga and Hostetler,
197531, valley-seeking [Koontz and Fukunaga, 19721, and graph
theoretical algorithms (Koontz et al., 1976] are also
methods for estimating the number of groups. These
algorithms are iterative procedures which estimate the
number of clusters by searching for regions of dense or
sparse concentrations of observations. Graph theoretical
techniques can be used to extend these methods to find

irregular shaped clusters [Koontz et al., 1976].
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CHAPTER 3
A PROBABILISTIC METHOD FOR GROUPING DATA

The incentive for a new method to determine the nunmber
of groups is motivated by the desire to improve upon the
current techniques and to incorporate experimental error
into a clustering procedure. Data used in cluster analysis
consists of observations; each measurement has experimental
error associated with it. The experimental error is likely
to affect the clustering results {Nagy, 19681. Preliminary
investigation of a data set can be used to find outliers and
extreme experimental errors f{i.e., Kane et al., 19771;
however, in typical clustering applications the dependence
of the groups upon experimental error is unclear.

The Probabilistic Method for Grouping Data (PMG) uses
Monte Carlo simulations ¢to perturb <the data within a
specified range as the first step. The combination of Monte
Carlo techniques and cluster analysis has been used
previously to test the dependence of variables [ Borucki et
al., 1975], to test the significance of a technique [ling,
19711, aﬁd to compare cluster analysis techniques (Rangd,
1971 and Bayne et al., 1978]. The PMG procedure uses Monte
Carlo techniques to approximate the experimental error. An
earlier study by Kane and Larson [ 1976] also investigated

the use of Monte Carlo perturbations in cluster analysis.
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The perturbed data sets, created with Monte »Carlo
techniques, are each clustered as the next step‘in the PMG
algorithm. Any set of samples which groups together for a
large percentage of the perturbed data sets is defined to be
a group. The probability of each sample being in a group is
given in terms of the number of times that a sample occurred
with that defined group.

The number of groups estimated by this method, in some
sense, 1is the maximum number of groups that an analyst
should consider. Any larger number of groups 1is dependent
on the experimental error. Any smaller number of groups,
however, might make more sense in terms of the physical
situation. PFor example, apples, oranges, potatoes, and peas
are four groups of foods, but they can be combined into only
tvwo groups of fruits and vegetables.

The application of the PMG procedure is especially
useful for data in which measurement errors are known, such
as chemical analyses and biological tests. The procedure
can also be used to find the significance of clusters or
variables used 1in the clustering by defining the
experimental error as significance bounds for the variables.

The PMG method is implemented in a set of FORTRAN
programs documented in Appendix A. General formulas of the
method are described in Section 3.1 and the details of their

implementation are stated in Section 3.3. Comparisons of
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this method with the techniques described in Section 2.3 are

in Chapter u.

The notation in the development of the PMG procedure
uses a capital 1letter to denote a random quantity, with a
lower case letter denoting the realization of the
corresponding upper case variable. Estimation of any
variable will be denotsd by a "A" supergcript, i.e. 6 is
the estimate of the number of groups in the data, g. The

groups are represented by sets G, with n, samples.

k

A perturbed sample, Y. is formed by combining the

jo!
original sample measurement, Kj' and a random vector, Eja
Y =X. +E, (10)

where gja is a random vector denoting the experimental error
associated with Kj for the a-th simulation. The collection
of n samples are perturbed to form data set a, for a= 1,
2, « « «p M. An example of the above error analysis is
given by Kane and Larson [1976].

The justification of the PMG method is clustering of
the perturbed data into c groups, for increasing values of
C. The data are first grouped into the smallest number of
groups which could rossibly exist in the data. The value of
c =2 is used if no additional information about the
smallest possible number 1is known. The number of groups

that appear consistently through the clustering of the data
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is estimated and denoted by g(c). The value of ¢ is
increased by one and the clustering of the pertdrbed‘ data
sets 1is performed. Again the number of groups, g(c) is
defined. The method continues until g(c) = g(c+1) = g(c+2).
The estimate of the number of groups is then g = g(c).

The motivation for this technique 1is derived €from
considering the results of clustering g distinct groups into
c groups where c < gor c > g. If c <g, then each group
clustered will be either one of the g groups or a collection
of two or more of the groups. None of the g groups will
ﬁe subdivided to form the ¢ clusters, considering that the
intergroup distances are 1larger than the intragroup
distances. For example, if the data have four groups, A, B,
C, and D, and ¢ is set to two, one of the groups formed by
the clustering will be either A, B, C, D or a combination of
groups AB, AC, AD, ABC, ABD, BCD. If c = g, the data will
cluster into the g groups. If c > g, the groups in the data
will be forced to subdivide in order to form c¢ clusters.
When clustering the perturbed data sets, the subdivision of
the groups is due to fluctuations in the error, and the
number of groups which appear consistently in the clustering
will be the g gfoups, so g(c) = g.

The method for finding the groups which consistently
appear when bclustering the n different data sets for one
value of ¢ is given below. For each data set clustered, a

Bernoulli random variable, A, (j,J'), is used to associate
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the sample pairs j and j' that appear in the same cluster

1 if X.. and Y. are in the same cluster
A .3 = ) e (1)

0 if Y. and ¥, are in different clusters.
- Ja “Ja

The value of A ,(j,J') summarizes the <clustering of one
perturbed data set. The quantity A,(j,j') is a Bernoulli

random variable with Pr(A,(j,3*) = 1) = Pr(xja and Y are

= ja
in the same cluster) =9 .

The collection of A, (j,j') for all sample pairs § and
j* forms a symmetric matrix. A, can be summed over all m
iterations to form a frequency matrix of the number of times
each sample pair occurred in the same cluster. The j,j°
member of A, 1A(j,j'), can be considered a measure of
distance between sample Jj and j' since A(j,3') > A(i,F")
imrlies that sample j was in a cluster with §* a greater
number of times than i was in a cluster with j', i.e.,
samples § and j§' have a higher probability of being in the
same cluster than samples i and j*'. The individuval elements
of the frequency matrix are also binomially distributed
variables resulting from the sum of m Bernoulli trials.

A distance measure between sample X j and Ej can be

defined as

dJJI =1 - A(j,j')/m - (12)

The measure djj & frequency measure, assumes the value 0

if sample 3§ and sample j' always occurred in the sanme
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cluster (i.e., A(3,3') = m) and the value 1 if sample § and
sample j' never occurred in the same cluster (i.e., A(j,j')
= 0). This distance measure can be input ¢to a clustering
algorithm to form a dendrogram or to cluster into a
specified number of groups. Examples of dendrograms formed
from djjl are in Chapter 4.

Simply clustering the frequency measure does not
improve upon an estimate for the number of groups since the
number of groups and the group membership are still only
interpretable using the available techniques of the methods
ﬁsed to cluster djj" However, it is possible to evaluate
the number of groups and the probability of group membership

by using the binomial distribution properties of A(j,i").

From the binomial properties of A(j,j")

E(A(3,3")]) =mb . (13)

For A(j,Jj') close to m, there is a high probability that Kj

and gjlare in the same group. For a given 6 ,

. M m \' m-—v
A= Prfa(d, 3 za ] = = (e (1-0) (14)

v=a
0o

from the binomial formula. Therefore, to find the groups Gk
and estimate g(c), select a particular A and probability

level 6 , and calculate the resulting a Then search all

O-

sample pairs and €find all 4§ and §' where a(j,j%) = a -

A
Combine the pairs to form Gk' where
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A
Gk = {Zj' for some § =1, 2, « « <, nk} v {15)
such that gje ek implies that there exists X € ék where
J i A
a(ij.,i") = ao. The value of g{c) is set to the number of Gk
formed.

A

The set G, is cne of the clusters wvwhich consistently

appear throughout the clustering of the m data sets into ¢
A

groups, since each lj in Gk appeared with at least one other

A A
member of Gk a times. Note that Kj' gje Gk does not imply

a(j,j') = a, but instead a(j,i) = a and a(j',i'y > a ,
0

A A
for some 31 and Zi' in Gk. This definition of Gk allows

chaining; that is, if a(j,j') = a0 and a(i,j*) = ao, samples

A
X gj, and Zj are a member of G, even if a(i, 3 < a .

A probability measure can be defined to «calculate the
probability that sample § is in group Gk. Let the data be
A A .
1° GZ' e« « ¢ G as given above.
Consider P(zje Gk) for a fixed sample j, where P (X, € Gk) is
J

s 3 - /\
partitioned into g groups G

the probability that zj and XT are members of the same group
for all Kj in group k. The maximum likelihood estimate of
the probability that Kj and Kj are in the same cluster is
a(j,j*)/n. Using the approximation of the groups ék, the
P(gje ék) is equal to the estimate that gj and X are in the
same group times the probability of X, 6, given ék, summed

3

A
over all members of Gk’ or

A
P(X.€6) = zafj,i')/m (1/n) . (16)
J k X .eék k
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A
Note that the summation of P(zje G over all k is not

k’
necessarily equal +to one since a(j,j*)/m is an estimate of

the probability that sample j and j' are in the same cluster

A
and since the G, are only estimates of the groups G With

k k®
normalization the probability that sample § is in any of the

groups is one

(jvj',/nk - 17

g

A

P(X:€G ) = ZA(F.3V/n/Z z A
J k -X-J'eék kk=1 XJ' € ek

The above probability measure can be shown to satisfy the

three axioms of probability:

g g |
1) = Eg(j'j"/nk / = Za(jcj‘)/nk = 1 v
k=1|X. ¢ k=1 X, € @
=] k A k
2) 0 = P e é\k) < 1 , and (18)

A
1f thSG for some %k, the calculation of P(gje ek)

k
includes a(j,j) in the summation over all samples in the
group. Alternatively, sample j could be droéped as a member
of any group 'estimate when calculating P(gje ék). Any
difference in the estimate of the probability is small since
Z;jeck implies that a(j,j')/m is close to one. Therefore,

including a(j,j)/m = 1 in the average has 1little effect.

Equation (17) was used in the examples.



29

The number of groups and the group membership have been
estimated for one value of c. The prediction results from
the definition of groups: A group is a set of observations
where ‘gje Gk implies that there exists a ;f¢5Gk such that
the probability that samples j and j' are in the same
cluster 1is greater than or equal to 4. The number of
groups is estimated using this definition by determining the
groups ék from Monte Carlo clustering of the data into c
clusters. When an increase in c does not affect the groups

formed, the groups are stable and additional splitting is

dependent on experimental error.

3.2 A Sipple Example

Consider the eight samples as shown in Fiqg. 13). )Y
step-by-step analysis of this data set using the PMG
procedure is described in this section. The data are
defined as a set of points in two-dimensional space with a
normal error distribution with mean 0 and standard deviation
0.14. The <dashed boxes 1in the figure represent the 99%
confidence limit that each data point 4is within those
boundaries.

The'PMG is applied by perturbing the data within the
error bounds m times. The m data sets are clustered into ¢
groups; first consider c = 2. Ihe optimum separation into
two clusters is the combination of samples 1-5 in one group
and samples 6-8 in a second group. Since even with error

considerations, any pairwise distance between samples 1-5 is
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less than 24 and the pairwise distances between samples 1-5
and 6-8 are greater than 24, this <clustering will be

consistent for all m data sets. Therefore,

M 0
A = 5x5 5x3 ,

O3y5 M343

where LI and 0 are i by j matrices with all elements

J 1xJ
equal to m and 0, respectively. For any 0 < a, s m,

A
¢,= {51'52'53'34'35}' and

A .
G,= {56'57'38} with g(c) = 2.

In addition,

A 1 §=1,2,3,4,0r 5
P(X.e G,)) = v
i 0 j=6,7,0r 8
A 1 §=6,7,0or 8
P(X.€6G.) = v
i 2 0 j=1,2,3,4,0or 5
A dendrogram of djj‘ is shown in Fig. 1B).

Note that even though there are three distinct groups
in the "data in Figq. 1, g(2) = 2. Obviously, this is
because the data were forced to separate into only two
groups. However, if ¢ 1is chosen to be three, the three

groups 1-3, 4-5, and 6-8 will be clustered together to form
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/

2 < | hax3 Q3x2 J3x3
02x3 o2x2 M2X3 ’
3x3 "3x2 " 3x3

and

ez = {340_"5} ’
6\3 = {36'!7'-’[8} ’

with g(3) = 3 and

1 §=1,2,0or 3

(o]
(WX
)

= 4,5,6,7,0r 8

1 §=4or5

=3 2 o §=1,2,3,6,7,0r 8

1 j=6,7,0r 8

A
P(X; € G3)

0 4 =1,2,3,4,0r 5

Now let c = 4. Since there are only three groups
present in the data, a division of one of the groups will be
necessary to form four clusters. The clusters €formed will
nov depend on the individual sample error fluctuations. FPFor
example, if a perturbation of sampie 8 is in the positive
direction, and 6 and 7 are both perturbed negatively, the
optimum group division would be 1-3, 4-5, 6-7, and 8.
Because the clustering is affected by the error

perturbations, the division of the three distinct groups is
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random and gqg(4) = 3. The frequency matrix would be

equivalent to the matrix for c = 3, except the M submatrices

would have elements of m - eiand the 0 submatrices would now
have elements less than or equal to €, where €5 is the
number of times sample i was forced to separate from its

A .
group. For e;< ajzsm - €;, the G are defined as:

1= 0=
& =
IR EIT212 ST
A
G2 = {34135§ [4
A
G3 = {.!6'.’.{7738} h

A similar analysis to the above can be wused to show
that g(5) = 3 also. The number of groups g = 3 is estimated

since g(3) = g(4) = g(5). Application of the procedure on

test data is in Chapter 4.

3.3 The PMG Alqorithm

The basic steps in the PMG algorithm are displayed in
Fig. 2. This section briefly describes the steps used in
implementing the PMG procedure. Flowcharts of the main
routines appear in Appendix A. |

Each sample X. is perturbed by Ejo to form Yja as in

J

Eq. (10) . To determine E a distribution for the

ja!
experimental error is estimated or assumed using knowledge
of the measurement error of the cluster analysis variables.
Three common families of distribution for the error are

multivariate normal or Gaussian distribution, multivariate
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truncated normal distribution, and multivariate wuniform
distribution. The normal distribution is characterized by a
mean vector and covariance matrix. The truncated normal
distribution also requires an upper and lower bound, and the
uniform distribution necessitates only a range. All three
distributions are implemented in the PMG procedure.

The algorithm used for either of the normal

distributions is

Yij = x'ij + Si' (19)

or

Y

i = %y V¥ ' (20)

where Ei is a random variable with mean u and covariance
matrix X , and Vs is the coefficient of variation of i-th
variable. The transformation matrix wused to generate
normally distributed numbers is described by Bryan and Tebbe
[ 1€70]. The upper and lower limits of EiA are set 1if the
truncated normal distribution is used. The uniformly
distributed error is computed by generating uniform random
numbers from a specified range.

Simulating the three distributions requires a uniform
random number generator. Before <choosing a method to
generate the uniform randon numbers, a set of 1locally
available generators was tested. Testing any random number

generator before using it in a Monte Carlo simulation is
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important to prevent bias of the results [ Halton, 1970}. A
FORTRAN program written to test the 'generator; and the
results of the testing, are described in Appendix R. Based
on these results, a congruential uniform random number
generator, URAND [McRae, 1970], was chosen; and a previously
tested algorithm KR [Kinderman and Ramage, 1976] was used to
transform the uniform numbers to a normally distributed set.

Each data set, Y,, is clustered ihto Cc clusters as the
next step in the PMG procedure. Any algorithm can be
selected to use in the clustering. Before <clustering, the
Yo can be transformed ( using logarithm, square root, etc.)
and standardized (e.g., divide by range or standard
deviation).

The PMG procedure describedl here incorporates a
hierarchical clustering program, DENDRO {Larson et al.,
1976 ] because of its diversity in <clustering algorithms,
ease of determining the clustering at a specified range of
groups, and speed of execution. The PMG procedure also
includes options for transforming the data. The
standardization options available in DENDRO are available in
this procedure.

The computer code which is executed as the first step
in the PMG procedure is <called PMGPER. This routine
includes the algorithm for generating the m data sets,
preparing each one for clustering, and then clustering them

and storing the results in the matrix 1. This matrix is
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output for use in the next step of the PMG procedure,

Each A(j,3') can be transformed into the frequency
measure between samples Jj and J* using Eq. .(12). The
program used to cluster the samples using this measure is
also an altered form of DENDRO f{larson et al., 1976] called
PMGCLS., A1l of +the hierarchical methods described in
Chapter 2 are available for clustering; however, since djj
is a correlation-like measure, the methods which average or
sum over the matrix are not realistic.v

The frequency measure is already a distance measure, so
no standardization or weighting is necessary. The arc-sin
normalization can be performed on 4d.:. to normalize the

JJ
distribution [Brownlee, 196017:

d:n = sin—l(dj

53 D 21

J

*
Clustering by using djj

difference 1in the examples investigated. BRoth dendrograms

instead of djj provided 1little

can be output by PMGCLS.

The PMG procedure is implemented to find ék. k= 1,
2, « « « 4 g(c) and to estimate P(gje ék). First, a search
is performed to find all sample pairs § and j' such that
A(j,3") = a . Any set of samples vwhere A(j,3') = a
A(i,3J) > ap, and A(i,j') = ap are combined. After all these
sets are formed, any two sets which have the same sample are

combined to form the ek in Eq. (15). The probability that

each sample belongs to %_ is computed from Eq. (17) and the
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basic algorithm is essentially complete for one value of c.
An interactive program PMGEST impleménts this part 6f the
procedure,

Additional consideration is necessary to find owutliers
or one member groups occurring in the data. Since the
frequency matrix stores only the occurrence of sample pairs,
outliers will not appear as a group. However, if a sample
Zj is a single member cluster at least a, times in the
clustering, it should be defined as a single member é.
Therefore, sample Kj is considered a single member cluster
if A(j§,3') < m - a, for all j°*.

Dendrograms of the frequency measure and determinations
of g(c) are output for increasing value of c. When g(c) =
g(c+1) = g(c+2) then the number of groups 1is estimated as
g(c). The probabilities of sample membership are then those
defined by P(gje ek) when ék are the g(c) groups estimated
from Eq. (15).

The procedure recommended to find g(c) is to compute a,
for 6 = .9, .85, .7, .75 for significance levels of 10%,
1%, and .1%. The binomial formula, Eq. (14), 1is used to
determine a, or the normal approximation is useful for large

values of m {Lingren, 197617:

where & is the cumulative normal distribution. If for any

combination of the significance levels and one value of 6,
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g(c) = g(c+1) = g(c+2), the number of groups estimated is
g(c).

The number of times each sample is forced to split from
its group will increase as ¢ increases above q. In
addition, it is possible that no value of ¢ will be found
where g(c) = g(c+1) = g(c+2) (see Section 4.2). | This
indicates that either the error perturbations are as 1large
as any cluster saparation (no groups exist) or a
hierarchical tree structure might better represent the data.
An analysis for varying values of ay can still aid the user
in determining group separations and group definitions at
different probability levels 6.

A plot of the probabilities for each sample is useful
for analyzing the data. The very distinct clusters are
evident, as are samples which are almost equally 1likely to
be members of two or more groups. Examples of these plots
appear in Chapter 4.

The probabilities defined by the PMG procedure might
vary from the groups suggested by clustering the frequency
measure. Any differences are due to the algorithms used to
calculate the distance between two clusters in clustering
the frequency measure. In addition, not all a(j,3j') pairs
are used in the determination of sample membership using the
PMG procedure. Sample j and/or sample j* must be a member

A

of a G K for a(j,j') to be used (Eq. (1)) . The

probabilities of grcup membership determined by the PMG

procedure should be and have been (see Section 4.2) better

estimates.
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CHAPTER U
COMPARISON OF GROUPING METHODS

The PMG procedure is .compared to the methods described
in Section 2.3. The first data set discussed consists of 5
distinct groups each having 10 samples. The second example
uses 10 data sets generated from 2 normally distributed
ropulations. Finally, the methods are applied to
geochemical data [Kane and Larson, 19761 as an example of

the application to real data.

L

fa
]
{e
I3

=
1)

=
=

The first example of 50 samples (Fig. 3) was selected
to illustrate a set of obviously distinct two-dimensional
groups. If grouping procedures do not estimate five groups
for this data, it is not likely that they will perform well
cn more complex data.

The dendrograms for each hierarchical method are shown
in PFig. 4. Clearly, the five groups are indicated bi each
method. A large separation between the groups is shown by
the longer lines adjoining each of the five separate groups.

A piot of G versus the optimization value using ¥ and B
and separating the data into a groups is displayed in Fig.
5 for the four methods in MICKA., Both the trace W and the
determinant W <criteria shovw the smallest percentage_change

A

in values from 6 =5to g = 6 and 7. Neither of the

criterion, however, reached an absolute minimum. The
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Example 1:

50 samples which form 5 groups.
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largest root of W B has a maximum value at 8 = 6. The trace
of WIB does not show a significant maximum in the range
investigated. Trace W and determinant W can be used to
estimate 8 = 5, but the other ¢two criterion give
unsatisfactory results.

The maximum 1likelihood estimator, NORMIX, performed
well on this test. A plot of the log likelihood is in Pig.
6. A maximum was reached for 3 = 5, The probability for
the n1null hypothesis of 6 versus 6+i groups was less than
0.01 for 6 = 1 to 4. However, for 6 = 5 the probability of
the null hypothesis was 86%, in which case H: G = 5 is not
rejected. NORMIX predicts the correct values of 6 = 5.

For the ISODATA program, the number of groups output by
the method was the same as the input number desired. Fig.
7 shows the trace of W for the groups determined by ISODATA.
This figure is similar to the plot produced by MICKA's trace
W criterion. The plot can be used to estimate 3 = 5.

Results of the mathematical indicators are shown in
Fig. 8. Using Beale's F statistic, the probability that @
= 5 and not 4 is 1.0; whereas, the probability that 6 = 6
and not- 5 is not significant at 0.45. The Calinski and
Harabasz Kg is at a maximum for 8 = 5, correctly suggesting
five groups. Marriot's g2(det W) is at a maximum for 6 = 63
it is the only one of these indicators that does not perform

satisfactorily.
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The PMG procedure waé applied to this data set with the
experimental error assumed to be normally distributed with
mean 0 and standard deviation of 0.1. Twenty simulations
were run using the minimum increase in variance hierarchical
procedure as the clustering technique. The values of g(c)
for c = 2 to 7 are in Table 2. The g(c) listed in the table
is the value of g(c) for the probability of 0 = .9 for
significance 1levels 10%, 1%, and .1%. In this table g(c) =
g(c+1) = g(c+2) for c = 5, and the method correctly predicts
five groups. The probability of group membership at g(c) =
5 are shown in Fig. 9; the groups are delineated correctly.
The dendrogram of the frequency measure for ¢ = 5 is in Figq.
10. The dendrogram also indicates five groups.

For the first trivial example, the dendrograms for all
methods, NORMIX, Beale's F statistic, the Calinski and
Harabasz Kg, and the PMG method all clearly ideﬁtify the
five distinct groups. The trace W and determinant W
criteria of MICKA marginally indicate the five groups, as

&

does the TISODATA program. The trace of W B does not

indicate any number of groups, and both the root of WJB and

the g2 (det W) criterion predict the wrong value of 8 = 6.

4.2 Normally Distributed Data

Ten different data sets were generated from a normal
distribution using means of (0,0) and (2,2) and a
covariance matrix of 0.9 and normally distributed error

with mean (0,0) and covariance matrix 0.1I. The sample
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Table 2. Results of the PMG procedure
for Example 1

Number of Values of g(c) for 6 = .9
clusters,c A =10.% A=1.0% A=0.1%
2 2 2 2
3 3 3 3
() 4 ) )

~N
wm
»w
wn
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sample using the PMG procedure for Example 1.
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mean, standard deviation, and Shapiro-wilk statistic
[Sshapiro and Wilk, 1965] for each data set, Y, is given in
Table 3. The data form overlapping groups; the theoretical
misclassification is 7.9% (Bayne et al., 1978]. Ten data
sets were selected to allow a more general test of the
methods.

The purpose of this example 1is not only to compare
group estimation but also to compare misclassification of
the PMG procedure. All of the procedures were applied to Y.
Only +the PMG method incorporates the consideration of the
error (E).

Dendrograms for the 10 data sets using the variance
method as the clustering criterion appear in Figq. 11. Data
sets 1, 2, 3, and 5 are subjectively separated into three
groups. The rest of the sets appear to consist of two
groups. The variance criterion was chosen above the others
because of its theoretical appeal and its classification
ability [ Bayne et al., 1978].

A1l four optimization methods using dispersion matrices
were tested on the 10 sets; results are in Fig. 12. The
values of each optimization criterion do not show any
indication of the number of groups in any of the 10 data
sets. The first two criteria continue to decrease for g =
2, 3, 4: whereas, the last two increase monotonically. None
of the optimization methods even marginally indicates the

existence of two groups.
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Table 3. Summary statistics of the 10 data sets
used in Example 2

Standard Shapiro-Wwilk

Mean deviation statistic

Data Vvariable Variable Variable

Set Class 1 2 1 2 1 2
1 1 0.12 0.10 1.28 1.20 0.617 0.09
2 2.02 2.00 1.02 0.81 0.56 0.21
2 1 0.36 =-0.12 1.20 1.02 0.58 0.29
‘ 2 2.15 2.14 1.00 1.07 0.92 0.27
3 1 0.13 0.06 1.03 1.04 0.35 0.65
2 2.11 2.07 1.10 0.89 0.31 0.67
4 1 -0.34 0.00 0.75 1.06 0.31 0.67
2 1.80 2.54 0.78 0.8S5 0.08 0.39
5 1 -0.16 0.08 1.00 1.07 0.22 0.68
2 1.77 2.14 0.90 0.90 0.21 0.46
6 1 ~0.41 0.22 1.05 0.95 0.26 0.65
2 2.01 2.17 0.94 0.95 0.42 0.20
7 1 -0.01 0.04 1.04 0.69 0.3 0.72
2 2.04 1.91 0.82 1.17 0.62 0.85
8 1 -0.13 0.04 0.84 0.82 0.34 0.91
2 2.07 2.16 0.86 1.06 0.70 0.57
2 2.00 1.25 1.09 0.90 0.24 0.42
10 1 0.06 -0.05 0.77 0.97 0.56 0.62
2 1.93 1.88 0.95 0.90 0.99 0.75
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The maximum log likelihood for g = 2 and g = 3 ranged
between -80 and -64 with the maximum always occufring at @‘=
3. The probabilities of the null hypothesis of HO:G = 3
versus the alternative H :G = 2 groups is in Table 4. The
hypothesis of two groups would normally not be rejected for
all except data sets 1, 7, and 9. Therefore, the estimate
for 6 is 70% correct for this example.

The ISODATA program was run on each of these sets. The
number of groups desired was input as two, but in each case,
the number of resultant groups output by ISODATA was four.
The method always began with approximately the correct two
groups and then split each of them into two groups. Varyving
paramneters cause some differences, but no indication of two
groups was suggested.

The results using the mathematical indicators are in
Fig. 13; the predicted value of groups, 3, is indicated in
each case. Beale's F statistic has the highest ©probability
of two groups in 9 of the 10 data sets; in data set 1 there
is a larger probability for 6 = 3. For many of the data
sets, the probabilities that 8 = 2, G = 3, or 6 = 4§ are not
different by more than 0.2. The Calinski and Harabasz Kg
miscalculates the number of groups twice; all except data
sets 1 and 9 are found to have two groups. The g2(det W)

. . . s s A .
criterion is at a minimum for g = 1 in 6 of the 10 cases and

predicts 6 = 2 twice, 6 = 3 and G = 4 once.
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Table 4. Probabiljties of the null hypothesis G =3
versus é = 2 using the maximum likelihood
estimator for Example 2

Probability Likelihood Likelihood
Data of null estimate estimate
Set hypothesis at 6=2 at 6=3

1 0.97 -75.4 -69.6
2 0.10 -80.7 -79.4
3 0.03 -65.0 -64.7
4 0.33 -67.6 -66.3
5 0.00 -70.6 -70.6
6 0.00 -74.0 -74.0
7 0.73 -68.1 _ -65.3
8 0.37 -67.8 -66.4
9 0.52 -80.4 -78.5

10 0.10 -64.5 -63.9
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Figure 13. Results of Beale's F statistic, Calinski and
Harabasz's Kg, and Marriot's g2(det W) for
Example 2. The value of shown is the number
of groups estimated by the procedure.
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To test the PMG procedure the value of ¢ was set to
two, three, and four. Twenty-five iterations were run using
the defined error matrix. The variance criterion was again
used in the clustering.

A value of g(c) was computed for c at 4 = .9, .85, .8,
and .75 and A = 10%, 1%, and .1%. 1If g(c) was the same for
c= 2, 3, and 4, for any significance 1level at one
probability 1level, then 6 was set equal to g(c). The value
of g(c) and the probabilities 6, where g(c) = g(c+1) =
g(c+2), are listed in Table 5. A value of 6 = 2 is predicted
for 60% of the cases, and 6 = 1 is predicted for the other
40%. Dendrograms of the frequency measure are in Fig. 14,
Dividing the dendrograms into the number of groups joined at
the 1level where d;j = 0, there are 2 groups in all 10 cases.
The groups are not as distinct as the dendrogram in
Fxample 1.

The properties of the data sets that caused <the PMG
procedure to miscalculate +the number of groups are not
apparent from Table 3 or even from the dendrograms in Figqg.
11. Fig. 15, however, indicates the difference between twvwo
of the data sets, 4 and 7. Data set 4 has a clear division
between the two groups represented by the two symbols in the
figure; however, data set 7 does not. The PMG procedure
estimated only one group, because of the lack of any clear
cut division between the two groups or any two groups. A

plot of the ©probabilities of group membership €for the
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Table 5. Values of G estimated by the PMG procedure
for Example 2

Data Number of Probability, g1
set groups estimated used for estimate

1 2 0.85

2 2 0.80

3 - ———2

4 2 0.85

5 2 0.85

6 2 0.80

7 1 .85

8 1 0.80

9 1 0.85

10 1 0.80

1t 9= ,9, .85, and .8 was tested for A = 10., 1.0, 0.1.
2g(c) did not remain constant for three consecutive

values of c for any tested value of 6.
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samples when g(c) = 2 for a,= 20 is in Figqg. 16 for data
set 7. There 1is a large number of samples which have a
probability of being in both groups. When a lower value of
a, is used, these samples link the two groups into one.

A comparison of misclassification for ¢the PMG method
with the reqular variance hierarchical method and with the
linear discriminant function is in Table 6. The 1linear
discriminant fanction (LDF) is the theoretical best division
of data into groups given the groups' means and covariance
matrices. The number misclassified by the LDF is calculated
using Eq. (4.4-16) in Tou and Gonzalez [1974] for the error
distorted data sets, Y. The number misclassified by the
variance method is calculated for the error distorted set
plus a collection of 10 data sets generated from means (0,0)
and (2,2) and covariance matrix of .9I. The nuamber
misclassified by toth the frequency measure and the PMG
procedure is given.

The PMG method improves the classification ability of
the variance criteria. The improvement is better than the
10 data sets generated from an error-free distribution. The
PMG misclassification is almost as small as the theoretical
misclassification of the perturbed data. That is, in this
particular example, using the error improves the
classification ability almost as much as knowing all the

distribution parameters of the data.
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Table 6. A comparison of the classification abilities of
: the PMG procedure with the hierarchical
variance criterion (V) and the linear
discriminant function (LDF)

Number misclassified

- o wdd o o o

Experimental error No error

Data PMG Prequency
Set LDF v procedure measure v

1 S 10 u s 4

2 4 5 3 5 5

3 6 7 7 7 S

4 0 0 0 0 2

5 S 9 8 9 6

6 2 4 4 4 6

7 3 5 S 5 3

8 0 2 3 2 3

9 2 5 3 5 4

10 S 3 4 3 5
Average 3.2t 5.02 4.1 4.5 4.3

3.7 from Bayne et al. [1978]

1Theoretical value

2Theoretical value 5.7 from Bayne et al. {1978]
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The second test reemphasizes the ability of the
dendrograms, NORMIX, Beale's F statistic, Calinski and
Harabasz Kg, and the PMG method to select the proper number
of groups 1in the data. The large standard deviation about
the mean used in generating the data sets caused some
difficulty. The division of the dendrograms was more
subjective, the F statistic and the Kg misjudged some of the
data sets, and the PMG procedure results are not as decisive
as in the first example. The PMG procedure definitely

improved the misclassification of variance criteria.

The third example is more difficult to analyze since no
a priori information about <the number of groups is
available. It is given here to 1illustrate the practical
application of the methods. The data consist of
concentration measurements of 10 different elements for 53
stream sediment samples «collected around Llano, Texas as
part of the National Uranium Resource Evaluation Project
[Nichols et al., 1976]. Before any cluster analysis is
performed on the data, it is transformed by 1logarithms ¢to
approximately normalize the data. The variables are
mﬁltiplied by subjective weights derived to emphasize
measurements hypothesized to be important to wuranium

geochenistry.
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A dendrogram (again using variance «criterion) of the
data is in Fig. 17. No subgroups of samples are
sufficiently distinct to warrant formation of a specific
number of clusters. A subjective division is separation
betvween pairs 153 and 1023; 64 and 1826; 1773 and 1851; 275
and 73; and 157 and 1843, forming six clusters.

The optimization criteria of MICKA are in Fig. 18 for
@ = 2, 3, 4, 5, 6, 7, and 8. The only apparent aid in
determining the number of groups is the gradual increase for
A

g =1 to 7 and then the drastic decrease of the trace of Blw

at §

8. Although this criterion has not helped in
choosing the number of groups in the previous two examples,
it suggests seven groups in the lLlano data.

The NORMIX results in Fig. 19 suggest five, seven, or
eight groups in the data. The significance tests for
accepting five groups over four, for accepting seven over
six, and for accepting eight over seven are all above or
equal to .50 with the highest probability at seven groups.
The log 1likelihood estimate, however, has continued to
increase for each increase in 8.

The ISODATA procedure was also run on the Llano data.
The input number of groups and parameters defining inter-
and intragroup distances were varied, but the procedure d4did
not converge. Whenever a higher number of groups was input,
a higher number of groups was output, possibly signifying a

hierarchical structure in the data.
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Both Beale's F statistic and Calinski and Harabasz Kg
agreed with the theoretical number of groups in thebfirst
two examples; they both suggest a hierarchical grouping or a
number of groups greater than eight on the Llano data (Fig.
20). The g2(det W) indicator has a relative minimum at G =
3, but does decrease below that minimum at 3 = 6.

The PMG method was run for ¢ = 3, 4, 5, 6, 7, and 8.
Fifty iterations were used in each case, with the error in
each variable determined using a coefficient of variation as
given in Kane and Larson [1977] and a truncated normal
distribution of u = (0,0) and 2 = .21 (Eq. 20) . A
dendrogram of the frequency measure for each result is given
in Fig. 21.

Table 7 lists g(c) for each c and each value of 4 and
A The first section with 6 = .9 suggests 7 groups (g(5)

g(7) = 7 for » = 10%, 1%, and .1%) or 8 groups

= g(6)
(g (6) g(7)

However, for 6= .85, .8, and .75, 7 groups are 1indicated

g(8) = 8 for A = 10%, 1%, and .1%).

since g(6), g(7), and g(8) are all equal to 7 at one or more
levels of A. Note also that g(9) = 7 for @ = .75 and A=
. 1%, A very low a0 was necessa;y before g(9) = 7 since the
7 natural groups were forced to subdivide into 9 groups.

The value of 6 = 7 agrees with the results obtained by
clustering the frequency measure since there are 7 groups in
both the dendrograms for ¢ = 7 and ¢ = 8, The groups

predicted by PMG procedure and the fregquency measure are
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estimated by the PMG procedure

A
g
for Example 3

Values of
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identical. A plot of the probability of each group for each
sample is in Fig. 22. Note that the - sixth group is very
distinct, consisting of only samples 189, 1832, and 1864.

In addition, sample 275 is an outlier.
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CHAPTER 5

CONCLUSIONS

The PMG method is as successful in determining the
number of groups in a data set as the other methods given in
the literature for the three different examples tried. The
analysis method has the additional advantage of using the
experimental error and of defining the groups using a
probabilistic association measure. The PMG procedure and
the frequency measure give ¢two different methods of
examining the output.

The procedure seems unaffected by group size and shape.
The three mathematical indicators which correctly predicted
the number of groups in the first two examples are based
upon the trace or determinant of W. Everitt [1974] states
that using a trace W criterion forces a spherical shape on
the data and that the determinant W criterion assumes that
all groups are of the same shape. In addition, these two
parameters become very small for small groups and therefore,
may not represent the groups accurately.

The definition and separation of the groups are also an
advantage of the PMG procedure. The separation between
group 6 and all other groups in Example 3 is apparent from
the analysis (Fig. 22); whereas, to determine these results

would require further calculations using other methods. In
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addition, only the combination of error analysis with the
grouping may be able to show this type of group separation.
The biggest disadvantage 6f the Monte Carlo analysis
method is the time required for clustering of all of the
perturbed data sets instead of Just one. In the first
example set, the extra +time spent in doing the extra
calculations was not advantageous since the hierarchical
analysis as well as most of the other methods gave the
correct results. However, in the third example, although we
cannot be certain that there are or are not seven groups in
the data, a great deal more information about the group
divisions and separations can be learned from the output of
the analysis method than from any combination of the other

methods.

The PMG procedure could be applied to other clustering
algorithms besides hierarchical clustering. A comparison of
results between two algorithms using the procedure would
shovw the difference in the clustering methods as well as the
overall stability of the procedure. A study of the best
combinations of 0 and A necessary for determining
g (c) ~-especially when the dataA aré forced into a 1larger
number of groups than are present, would also aid the

method.
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APPENDIX A

PMG PROGRAM DESCRIPTION

The program listings for the three programs FEMGPER,
PMGCLS, and PMGEST are included in this Appendix.
Flowcharts of the programs are in Figs. A1, 22, and A3. |

The PMGPER program runs on the 1IBM360/91, using a
FORTRAN G compiler with optimization level two, and requires
approximately 270 K of core and 60 seconds execution time
for the 50 iterations of the 53 sample data set of Example
3. PMGCLS and PMGEST both run interactively on the PDP-10,
each rtequiring 1less than 10 seconds execution time for the
same problem and one value of c. A 1listing of <the input
required for each program follows.

The 1input required by PMGPER 1is similar to that
required by DENDRO ([lLarson et al., 19773]. The reader is
referred to that report for a more detailed description of

the parameters.

Card 1 Variables=IFLAG, NORM, MET, INV, LOG, NGRPS, NTIMES,
ITRN, IERR Format=(3I5,10X,6I5)

IFLAG indicates which clustering criterion is to be used:
IFLAG=1 for single linkage clustering criterion.
IFLAG=2 for complete linkage clustering criterion.
IFLAG=3 for group average clustering criterion.

IFLAG=4 for weighted average clustering criterion.

IFLAG=S5 for centroid clustering criterion.
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IFLAG=6 for median criterion.

IFLAG=7 for Ward's method clustering criterion.

IFLAG=8 for variance method.

NORM indicates what to use to normalize the data:

NORM=0
NORM=1
NORM=2
NORM=3

NORM=4

fo
fo
fo
fo

£

r unnormalized data.

r divide by maximunm.

r divide by standard deviation.
r multiply by input weights.

or divide by standard deviation and then

multiply by input weights.

MET indicates what distance measure to be used:

MET=1
MET=2
MET=3
MET=4
MET=5S
MET=6
MET=7
INV is used

INV=0

for
for
for
for
for
for
for

to

for

the square of the Fuclidean metric.

the Euclidean metric.

the square of a normalized Euclidean metric.
normalized Euclidean metric.

Pearson correlation based metric.

Spearman correlation based metric.
city-block distance.

indicate how the data is to be read:

all variables for a given sample .

INV=anything else for all samples for a given variable.

LOG is use

d

with <the <correlation metrics to determine

threshold values:

L0G=0 use a large negative threshold.

L0G=1 use a threshold of 0.

LCG=2 use a threshold of -10.
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L0G=3 read in a threshold value for all variables.,
NGRPS is the number of values of ¢ the dJdata are to be
clustered into for storing the frequency matrix.
NTIMES is the number of Monte Carlo iterations +to be
performed.
ITRN is the transformation to be used on the data:
ITRN=0 for no transformation.
ITRN=1 for transforming with logarithms.
ITRN=2 for transforming with exponentiation.
ITRN=3 for transforming with square root.
IERR determines the error distribution:
IERR=1 use normal distribution.
IERR=2 use normal distribution with coefficient of
variation.

IERR=3 use uniform distribution.

Card 2 Variables=IGRPS Format=(161I5)
IGRPS is the value of ¢, the number of clusters to use to
determine the frequency matrix. There are NGRPS

values; a frequency matrix is computed for each value.

Card 3 Variables= NAME, NFEAT, NSA MP, NSNAM, NVNAM
Forma£=(Au,uIS)

NAME is a four-character name for the data set.

NFEAT is the number of variables.

NSAMP is the number of samples or observations.
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NSNAM is the number of four-character words in each sample
name.
NVNAM is the number of four-character words in each variable

name.

Card 4 Variables=FMT Format= (2074)

FMT is either a format statement to be used to read all
variables for one sample and then three descriptors: a
floating point property, a class name and a sample name
or it is the characters 'BCD '. TIf FPMT is *BCD ', then

the next two cards are required.

Card 5 Variables=FMT Format=(20A4)
FMT is a format to read only the variables for all samples.

This card is required only if FMT of Card 4 is *BCD .

Card 6 Variables=FMT2 Format=(20A4)

FMT2 is a format to read only ¢the three descriptors, a
floating point property, a <class name and a sample
name. This card is required only if F¥MT of Card 4 is

*BCD .

Card 7 Variables=TITLE Format= (2014)
TITLE is a three-line title used for identification

purposes.

Card 8 Variables=DATA, PP, CL, SAMPLE Format=FMT (Card 4) or
FMT and FMT2 (Cards 5 and 6)

DATA is the sample data.
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PP is a floating point property of the data which is used
only for identity purposes.

CL is a class name which is used only for identity purposes.

SAMPLE is a sample name which is used only for identity

purposes.

Card 9 Variables=VAR Format=(20A4)

VAR is the array containing the variables' names.

Card 10 variables=CUT Format=(8F10.0)
COT is the lower bound of each variable. It is used to

check the generated values of Y.

Card 11 variables=WEIG Format=(8F10.0)
WEIG is the weights for each variable. This card is in the
input deck only if NORM indicates that weights are

going to be used.

Card 12 Variables=ICONST Format=(8I10)
ICONST is the array containing initial seeds to be used for
the uniform number generator. One seed is required for

each variable.

Card 13 variables=SIGMA or BLIM, ULIM Format=(8F10.0)

If IERR is equal to 1 or 2, then SIGMA 1is read in, where
SIGMA 1is the 1lower diagonal form of the covariance
matrix of the normal distribution of the -error. If
IERR is equal to 3, BLIM and ULIM are read in, where

BLIM is the lower limit and OULIM is the upper limit of
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the uniform interval used to characterize the error.

Card 14 Vvariables=CV Format=(8F10.0)
CV is the coefficient of variation of each variable, read in

only if IERR = 2.

Card 15 Variables=TRUN Format=(8F10.0)
TRUN is the upper limit of the noise allowed when a normal
distribution is used for generating the random error.

If TRUN is 0, TRUN is set to be 100000.

The input required by PMGCLS is prompted by the program
upon execution. The user is asked for a value of IFLAG to
use for the clustering criterion of d;j « The options are
the same as given in PMGPER. The user is also asked to
enter the number of samples in the data set. The only other
required input is the data set output by PMGPER. These data
consist of a title, a 1list of sample names, and the
frequency matrix.

| The input required by PMGEST is also prompted by the
program. The first request is for the number of samples in
the data set. The value of a, or CRITNO is the next input.
The number of Monte Carlo iterations is also requested. As
in PMGCLS, the only other data required are the card output
from PMGPER. The program listings for PMGPER, PMGCLS, and

PMGEST follow.
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PMGPER PROGRAM LISTING

CLUSTERING FROGRAM
ORIGINAL VERSION (VERY DIFFERENT FROM THIS) OBTAINED
FROM ERNIE HALL, USC, LOS ANGELES

THIS VERSION IS WRITTEN TO BRE PART OF THE

PMG PROCEDURE. THE DATA IS READ 1IN,

PERTURBED BY EXPERIMENTAL ERROR, AND

CLUSTERED INTO C CLUSTERS. THE

OCCURENCE OF EACH SAMPLE WITH ANY OTHER SAMPLE
IN THE SAME CLUSTER IS STORED IN A FREQUENCY
MATRIX WHICH IS OUTPUT FOR FURTHER

ANALYSTIS BY PMGCLS OR PMGEST.

COMMON/ALWAYS/TITLE (30) ,DATE(S) ,TODAY (2) ,IFLAG,

> NORM,MET,NSQUAR,INV,LOG,NGRP, ITRN

INTEGER DIMEN

COMMON/HOLD/NSIZE, R (30000)

COMMON/NAM/NS KAM,NVNAM,TITSAM(5) ,TITPP (5),TITCLS(5),
A PTALK (20)

DIMENSION DDATE(5),IGRP(10)
DATA DDATE/'*** ¢ ¢ TOD',*AYS ','DATE',*' IS '/

NSIZE=30000

DO 10 I=1,°%
10 DATE(I)=DDATE(J)

20 CALL LOOSE(1)

CALL IDAY (TODAY)
WRITE (6,10200) TODAY

IFLAG=1 FOR SINGLE LINKAGE CRITERION

IFLAG=2 FOR COMPLETE LINKAGE CRITERION

IFLAG=3 FOR GROUP AVERAGE CRITERION

IFLAG=4 FOR WEIGHTED AVERAGE CRITERION

IFLAG=5 FOR CENTROID CRITERION

IFLAG=6 FOR MEDIAN CRITERION

IFLAG=7 FOR MINIMUM INCREASE IN (WITHIN-CLUSTER)
SUM OF SQUARES

IPLAG=8 FOR MINIMUM (WITHIN-CLUSTER)

STANDARD DEVIATION
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NORM=0 FOR UNNORMALIZED DATA

NORM=1 FOR DIVIDE BY MAX

NORM=2 FOR DIVIDE BY STANDARD DEVIATION

NORM=3 FOR MULTIPLY BY INPUT WEIGHTS

NORM=4 FOR DIVIDE BY STANDARD DEVIATION

AND MULTIPLY BY INPUT WEIGHT

NORM=5 FOR DIVIDE BY ROBUST STANDARD DEVIATION

NORM=6 FOR DIVIDE BY ROBUST STANDARD DEVIATION AND
MULTIPLY BY INPUT WEIGHT

MET=1 FOR EUCLIDFAN METRIC (SQUARED)

MET=2 FOR EUCLIDEAN METRIC (NOT SQUARED)

MET=3 FOR NORMALIZED EUCLIDEAN METRIC (SQUARED)
MET=4 FOR NORMALIZED EUCLIDEAN METRIC (NOT SQUARED)
MET=5 FOR PEARSON CORRELATION - BASED METRIC

MET=6 FOR SPEARMAN CORRELATION - BASED METRIC
MET=7 FOR CITY-BLOCK DISTANCE

NGRP=NUMBER OF DIFFERENT CLUSTERS DIVISIONS
FOR WHICH FREQUENCY MATRIX WILL BE OUTPUT.

NTIMES=NUMBER OF MONTE CARLO ITERATIONS (M)

ITRN=0, NO TRANSFORMATION OF THE DATA

ITRN=1, USE LOGARITHM TO TRANSFORM THE DATA
TITRN=2, USE EXPONENTIATION TO TRANFORM THE DATA
ITRN=4, USE SQUARE ROOT OF THE DATA

TERR=1, EXPERIMENTAL ERROR IS FROM

NORMAL DISTRIBUTION

TERR=2, EXPERIMENTAL ERROR IS FROM

NORMAL DISTRIBRTUTION, RUT USE COEFFICIENTS OF
VARIATION

JERR=3, FXPERIMENTAL ERROR IF FROM

UNIFORM DISTRIBUTION

IGRPS=NGRPS VALUE OF C, THE NUMBER OF CLUSTERS

TO DIVIDE THE DATA INTO TO ORBRTAIN A,
THE FREQUENCY MATRIX

- D e = > PP~ D - D . D W W R WD YT WD W W WS TS W W W T > an -
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C *¥* INPUT PARAMETERS
READ (5, 10000, END=70) IFLAG,KNORM,MET,NSQUAR,KINV,
A 10G,NGRP,NTIMES,ITRN,IERR
READ (5, 10000) (IGRP (I),I=1,NGRP)
IF (ITRN.EQ.0) TITRN=1
WRITE (6,10100) IFLAG, KNORM,MET, NSQUAR, KINV,
A 10G,NGRP,NTIMES,ITRN,IERR
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IF
IF
IF
IF
IF
IF

100

(IFLAG.EQ.0) IFLAG=2

(IPLOT.EQ.0) IPLOT=1

(MET.EQ.0) MET=1

(IFLAG.EQ.5.AND.MET.NE. 1) WRITE(G 10409)
(IFLAG.EQ.7.AND. MET.NE. 1) WRITE(6,10500)
(IFLAG.EQ.8 .AND. MET.NE. 1) WRITE (6, 10600)

NORM=KNORM
INV=KINV

READ DATA PARAMETERS

NAME IS THE DATA SET NAME

(TO BE IGNORFD AFTER READING IN)
NFEAT IS THE NUMBER OF FEATUPRES,
NVNAM THE NUMBER OF (FOUR-BYTE)
WORDS USED TO DESCRIBE THE FEATURE
NSAMP IS THE NUMBER OF SAMPLES,
NSNAM THE NUMBER OF (FOUR-BYTE)
WORDS USED TO DESCRIBE THE SAMPLE

READ(S5, 10300) NAME, NFEAT,NSAMP,NSNAM,NVNAM

IF (NSNAM.EQ.O) NSNAM=1
IF (NVNAM.EQ.O0) NVNAM=1

IF (INV.EQ.0) GO TO 30

INVERT ORDER OF PARAMETERS IF INV _.NE. O
N=NFEAT

NFEAT=NSAMP

NSAMP=N

N=NVNAM

NVNAM=NSNAM

NSNAM=N

CONTINUE
CALL TALK (NFEAT,NSAMP)

PREPARE ARRAYS FOR CALLS TO SUBROUTINES
INPUT AND NORMAL (PLUS PREPARE OTHER
ARRAYS THAT NEED KEEPING)

LLWEIG=DIMEN (NFEAT)

WEIGHT
LLDIST=DIMEN (NSANP)

DISTAN OR DIST
NS2=NSNAM*NSAMP
LLSAMP=DIMEN (NS2)

SAMPLE (NAMES)
N=0
NF2=NVNAM*NFEAT
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LLVAR=DIMEN (NF2)

VAR -- VARIABLE NAMES
N=NSAMP* (NSAMP-1) /2
LLSQUA=DI MEN (N)

SQUA -- DISTANCE BETWEEN SAMPLES
LLEXTR=DTIMEN (NSAMP)

EXTRA -- ARRAY FOR STORING OLD

VARIANCES FOR MINIMOUM
STANDARD DEVIATION CRITERION

N=NSAMP*NFEAT
LLDATA=DI MEN (N)

DATA
LLCUT=DIMEN (NFEAT+1)

TO STORE LOWEST MEASUREABLE VALUES
IL1HOLD=DIMEN (V)

TO STORE DATA
LLCON=DIMEN (NFEAT)
' TO STORE SEEDS FOR UNIFORM GENERATOR
LLVAL=DIMEN (NFEAT)

TO STORE NORMAL VALUES
LLXH=DIMEN (4*NFEAT)

TO STORE MEAN,SD,SKEWNESS,AND KURTOSIS
N= (NFEAT* (NFEAT+1) /2+1)
LLTA=DIMEN (N)
LLSIG=DIMEN (N)
K=0
IF (IERR.EQ.2) K=NFEAT
LLCV=DIMEN (K)

TO STORE TRANSFORMATION ARRAY.
N=NFEAT

CALL INPUT (A(LLDATA),A (LLSAMP),A(LLVAR),A(LLCUT),
A (LLHOLD) , NFEAT,NSAMP)

1LX=DIMEN (NSAMP)
CALL NORMAL (A(LLWEIG),A(LLDATA),A(LLVAR) ,A(LLX),

A A(LLCUT) ,NFEAT,NSAMP,1)

U0 CONTINUE

PREPARE ARRAYS FOR CALL TO SUBROUTINE METRIC

N=0
IF (MET.EQ.5.0R.MET.EQ.6) N=NSAMP
LLTHRS=DIMEN (N)
THRESH =-- THRESHOLD FOR NOT COUNTING
THAT SAMPLE IN CORR-DISTANCES
N=0
IF (MET.EQ.5.0R.MET.EQ.6) N=NFEAT
LLXX=DIMEN (N)
XX
LLYY=DIMEN (N)
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YY
LLIR=DIMEN (N)
IR
ILR=DIMEN (N)
R

CALL METRIC (A (LLDATA),A(LLSQUA),A(LLXX),A(LLYY),
A (LLIR),A(LLR),A(LLTHRS),A (LLEXTR),
A (LLSAME) ,NSAMP,NFEAT)

PREPARE ARRAYS FOR CALLS TO SUBROUTINE CLUSTER

ILKLUS=DIMEN (NSAMP+ 1)
KLUSTR
N=NSAMP/2+1
LLMARR=DI MEN (N)
MARRAY
LLJIARR=DI MEN (N)
JARRAY
NS=NSAMP/2+1
LLMCEL=DIMEN (NS)
MCEL
LLJCEL=DIMEN (NS)
JCEL
LLONCL=DIMEN (N)
ONDCL
LLINCL=DIMEN (N)
INDCL

NK= ((NSAMP* (NSAMP-1) ) /2%¥NGRP) /2+1

LLKNT=DTIMEN (NK)

DO 50 N=1,NK

A(LLKNT-14N)=0.0

CONTINUE

CALL CLUST (A(LLDIST),A(LLKLUS),A(LLMARR) ,A(LLJARR),
A(LLDATA),A (LLMCEL),A(LLJICEL) ,A (LLONCL) ,A (LLINCL),
A(LLSQUA) ,A(LLEXTR) ,A(LLKNT) ,IGRP,NFEAT, NSAMP)

PREPARE ARRAYS FOR CALL TO SUBROUTINE DENDRO

CALL INTGEN (A (LLTA) ,2A(LLCON),A(LLSIG),A(LLCV),
TRUN,IERR,NFEAT,BLIM,ULIN)

DO 60 MTIME=2,NTIMES

CALL NOISE (A(LLVAR) ,A(LLDATA),A (LLHOLD),A (LLCON),
A(LLVAL) ,A(LLTA),A(LLXH),A(LLCV) ,TRUN, IERR,
MTIME,NFEAT, NSAMP,BLIM,ULIN)

CALL NORMAL (A (LLWEIG),A(LLDATA),A(LLVAR),A(LLY),
A (LLCUT),NFEAT,NSAMP,MTIME)

CALL METRIC (A (LLDATA),A(LLSQUR) ,A(LLXX),A(LLYY),
A (LLIR) ,A (LLR), A (LLTHRS),A (LLEXTR),A (LLSAMP),
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B NSAMP,NFEAT)
CALL CLUST (A(LLDIST),A (LLKLUS),A(LLMARR),A(LLJARR),
A A(LLDATA),A(LLMCEL) ,A(LLJCEL) ,A (LLONCL),
R A(LLINCL),A(LLSQUA),A(LLEXTR), '
C A(LLKNT),IGRP,NFEAT,NSAMD)
60 CONTINUFE
CALL SUMMRY (A (LLKNT),A (LLSAMP) ,TITLE,NSAMP, NGRP)

GO TO 20
70 STOP
C
C
C

10000 FORMAT (16I5)
10100 FORMAT (*OIFLAG,NORM,MET,NSQUAR,INV,?,
A 'LOG,NGRP,NTIMES,ITRN',5X,16I5)
10200 FORMAT ('1TODAY IS ',214)
10300 FORMAT (A4,2I5,15%X,21I5)
10400 FORMAT (*OFOR CENTROID CRITERION,',
A * YOU HAVE CHOSEN NOT TO DO EUCLIDEAN METRIC',
B ' (SQUARED). THIS IS NOT A TRUE CENTROID.')
10500 FORMAT {*OFOR INCREASE-IN-VARIANCE CRITERION,',
A ' YOU HAVE CHOSEN NOT TO DO EUCLIDEAN METRIC ¢,
B ' (SQUARED). THIS IS NOT A TRUE ',
C YINCREASE-IN-VARIANCE.')
10600 FORMAT (*OFOR STANDARD-DEVIATION CRITERION,',
A ' YOU HAVE CHOSEN NOT TO DO EUCLIDEAN METRIC °,
B *(SQUARED). THIS IS NOT A TRUE STANDARD®,
>* DEVIATION. ')
END
SUBROUTINE SUMMRY (KNT,SAMP,TITLE,NSAMP,NGRP)
INTEGER*2 KNT (NGRP, 1)
DIMENSION SAMP (NSAME),TITLE (20)
NN= ((NSAME-1) *NSAMP) /2
pc 10 K=1,NGRP
WRITE (07, 10000) TITLE
WRITE (07, 10000) SAMP
WRITE(07,10100) (KNT(K,I),I=1,NN)
10 CONTINUE
RETURN
10000 FORMAT (20 A#4)
10100 FORMAT (2014)
END
SUBROUTINE INTGEN (A,ICONST,SIGMA,CY,TRUN,IERR,
A NFEAT,BLIM,ULIN) _
DIMENSION A (1) ,ICONST(1),SIGMA(1),CV(1)
READ(5,10000) (ICONST(I),I=1,NFEAT)
GO TO (10,10,140),IERR
10 NF= ((NFEAT+1) *NFEAT) /2
READ(S,10100) (SIGMA(I),I=1,NF)
IF (IERR.EQ.2) READ(5,10100) (CV(I),I=1,NFEAT)
READ(S, 10100) TRON
IF (TRUN.EQ.0.0) TRUN=1.E5
NO=0
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DO 20 J=1,NFEAT

DO 20 I=1,J

NO=NO+1

IF (SIGMA (NO) .NE.0.0.AND.I.NE.J) GO TO 30
- A(NO)=SQRT (SIGMA (NO))
20 CONTINUE

GO TO 90
30 IF (SIGMA(1).LT.0.0) GO TO 150

A(1) = SORT(SIGMA (1))

L =1

DO 80 I=2,NFEAT
I1M=71 -1

M =0

M1 = L + 1

N = 1

DO 60 J=1,I1
N=N+J -1

1 =1+ 1

A(L) = SIGMA(L)
IF (J.EQ.1) GO TO 50
11 =1 - 1

N1 = X

DO 40 K=M1,1L1
A(L) = A(L) - A(N1)*A(K)
40 N1 = N1 + 1

50 M =M + J

60 A(L) = A(L)/A (M)
K=1
L=1+1

A(L) = SIGMA(L)
DO 70 J=M1,K
70 A(L) = A(L) - A(J)*A(J)
IF (A(L).1T.0.0) GO TO 150
80 A(L) = SQRT(A(L))
90 WRITE(6,10300)
NOB=1
NOE=1

100 WRITE(6,10200) (SIGMA(J),J=NOB,NOE)
IF (NOE.EQ.NF) GO TO 110
NCB=NOB+1
NOE=NOE+2
IF (NOE.GT.NF) NOE=NF
GO TO 100

110 NOB=1
NOE=1
WRITE (6,10400)

120 WRITE (6,10200) (A (J),J=NOB,NOE)
IF (NOE.EQ.NF) GO TO 130
NOB=NOB+1
NOE=NOE+2
IF (NOE.GT.NF) NOE=NF
GO TO 120

130 RETURN
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140 READ(5,10100) BLIM,OULIM
RETURN
150 WRITE(6,10500) (SIGMA(I),I=1,NF)
STOP 104
10000 FORMAT (8I10)
10100 FORMAT (8F10.3)
10200 FORMAT('0',10G10.3/(1%X,10610.3))
10300 FORMAT ('OCOVARIANCE MATRIX'//)
10400 FORMAT (*OTRANSFORMATION MATRIX'//)
10500 FORMAT (' COVARIANCE MATRIX IS NOT ¢,
A 'POSITIVE DEFINITE.'/ (10G10.3))
END
SURROUTINE NOISE(VAR,DATA,HOLD,ICONST,VALUE,TA,X,
A CV,TRUN,IERR,NO,NFEAT,NSAMP,BLINM,ULIN)
DIMENSION VAR(1),DATA(NFEAT,1),HOLD(NFEAT,1),
L ICONST(1) ,VALUE(1),TA(1),X(4,1),CV(1)
pO 10 J=1,NFEAT
DO 10 K=1,4
X (K,J)=0.0
10 CONTINUE
DO 30 J=1,NSAMP
IF (IERR.NE.3) CALL NORM(ICONST,VALUE,
A TA,NFEAT,DATA(1,J),TRON)
IF (IERR.EQ.3) CALL UNIF(ICONST,VALUE,BLIM,ULIM,NFEAT)
DO 20 K=1,NFEAT
V=VALUE (K)
X(1,K)=X(1,K) +V
X(2,K) =X (2,K) +V*y
X (3,K) =X (3,K) + V*V*vV
X (4,K) =X (4,K) +VEV*V*Y
IF (IERR.EQ.2) V=CV (K) *HOLD (K,J)*V
DATA (K, J) =HOLD (K, J) +V
20 CONTINUE
30 CONTINUE
FN=1./FLOAT (NSAMP)
WRITE(6,10100) NO
DO 50 K=1,NFEAT
DO 40 L=1,8
X (L,K) =X (L, K) *FN
40 CONTINUE
EMB=X (2,K) =X (1,K) *X (1,K)
EMC=X (3,K) -3.*X (1,K) *X (2,K) +2. *X (1,K) *X (1,K) *¥X (1, K)
EMD=X (4,K) -4.*X (1,K)*X (3,K) +6. %X (1,K) *X (1,K) *X (2,K)
A =3.%X(1,K) *X (1,K) *X (1,K) *X (1,K)
CURT=EMD/ (EMB*EMB)
SIG=SQRT { (EMB*NSAMP) / (NSAMP-1.))
SKEW=EMC/ (EMB*SQRT (EMB) )
WRITE(6,10200) K,X(1,K),SIG,SKEW,CUORT
50 CONTINUE
CPO 3000 J=1,NSAMP
CWRITE (6,10200) (DATA(I,J),I=1,NFEAT)
60 CONTINUE
RETURN
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10000 FORMAT (1X,10G611.3)
10100 FORMAT(* FOR GROUPING NUMBER ',I5/

A
B
C

4x, 'VARIABLE',10X,*MEAN',9X, _
'STANDARD',9X, 'SKEWNESS',6X,*KURTOSIS'/
34X, *DEVIATION'//)

10200 FORMAT (8X,I4,3X,4(F10.3,5X))

sNeNesNeNeKeKe]

OO0

10

20

30

10

END .

SUBROUTINE NORM(ICONST,VALUE,TA,NFEAT,X,TRUN)
DIMENSION ICONST(1) ,VALUE(1),TA (1) ,X(1)
DOUBLE PRECISION KR
COMMON/SEED/ISEED

N1=1

DO 30 J=1,NFEAT

ISEED=ICONST(J)

X (J) =KR (J)

ICONST (J) =ISEED

v=0.0

DO 20 I=1,J

V=V+TA (N1) *X (1)

N1=N1+1

CONTINOE

IF (ABS(V) .GE.TRUN) GO TO 10
VALUE (J) =V

CONTINUE

FETURYN

END

SURROUTINE UNIF(ICONST,VALUE,BLEVEL,ULEVEL, NFEAT)
COMMON/SEED/ISEED

DIMENSION ICONST(1) ,VALUE (1)

DO 10 J=1,NFEAT

ISEED=ICCNST(J)

U=RAN (J)

VALUE (J)=(ULEVEL-BLEVEL) *U+BLEVEL
ICONST (J) =ISEED

CONTINUE

RETURN

END

SUBROUTINE TALK(NFEAT,NSAMP)

PURPOSE -- PRINT OUT INFORMATION REGARDING OPTIONS
USED FOR THIS DENDROGRAM

FEBRUARY 21, 1977

COMMON/ALWAYS/TITLE (30) ,DATE(5) ,TODAY (2) ,IFLAG,

> NORM,MET,NSQUAR,INV,LOG,NGRP,ITRN

WRITE (6,10000) NFEAT,NSAMP

Go TO (10,20,30,40,50,60,70,80) ,IFLAG

10 WRITE(6,10100)



20
30
40
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70
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90

100
110
120
130
140
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170
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220
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GO TO 90
WRITE (6,10200)
GO TO 90
WRITE(6,10300)
GO TO 90
WRITE (6,10400)
GO TO 90
WRITE (6,10500)
GO TO 90
WRITE(6,10600)
GO TO 90
WRITE (6,10700)
GO TO 90
WRITE (6, 10800)
CONTINUE

IF (NORM.EQ.0) GO TO 100
Go To (110,120,130, 140,150, 160) ,NORM
WRITE (6,10900)

GO TO 170

WRITE (6, 11000)

GO TO 170

WRITE (6,11100)

GO TO 170

WRITE (6, 11200)

GO TO 170

WRITE (6,11300)

GO TO 170

WRITE(6,11400)

GO TO 170

WRITE (6,11500)

CONTINUE

50 To (180,190,200,210,220,230,240) ,MET
IF (IFLAG.EQ.7.0R.IFLAG.EQ.8) GO TO 250
WRITE (6,11600)

GO TO 250

WRITE (6,11700)

GO TO 250

WRITE (6, 11800)

GO TO 250

WRITE (6,11900)

GO TO 250

WRITE (6, 12000)

GO TO 250

WRITE (6,12100)

GO TO 250

WRITE (6, 12200)

CONTINUE

IF (INV.NE.O) WRITE(6,12400)
WRITE (6,12500)
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RETURN
C
10000 FORMAT('OTHERE ARE',I4,' VARTABLES AND',
A TI4," SAMPLES.')

10100 FORMAT(* CLUSTERING CRITERION -- SINGLE LINKAGE')
10200 FORMAT(* CLUSTERING CRITERION -- COMPLETE LINKAGE!)
10300 FORMAT(* CLUSTERING CRITERION -- GROUP AVERAGE?')
10400 FORMAT (' CLUSTERING CRITERION -- WEIGHTED AVERAGE')
10500 FORMAT(* CLUSTERING CRITERION ~-- CENTROID?')

10600 FORMAT(* CLUSTERING CRITERION -- MEDIAN')

10700 FORMAT(* CLUSTERING CRITERION --
A 'MINIMUM INCREASE IN (WITHIN- CLUSTER) ',
B 'SUM OF SQUARES')

10800 FORMAT(' CLUSTERING CRITERION -- ¢,

A "MINIMUM (WITHIN-CLUSTER) STANDARD DEVIATION?')
10900 FORMAT (' NORMALIZATION -- RAW DATA IS USED')
11000 FORMAT (' NORMALIZATION -—

A 'FACH VARIABLE IS DIVIDED BY ITS MAXIMUH')

11100 FORMAT(' NORMALIZATION -1,

A *EACH VARIABLE IS DIVIDED BY ITS ¢,
B *STANDARD DEVIATION.?')

11200 FORMAT(' NORMALIZATION -,
A 'EACH VARIABLE IS MULTIPLIED BY AN INPUT WEIGHT.')
11300 FORMAT (' NORMALIZATION -,

A 'EACH VARIABLE IS DIVIDED BY ITS'
B *STANDARD DEVIATION AND ¢,
C *MULTIPLIED BY AN INPUT WEIGHT.')
11400 FORMAT (' NORMALIZATION -1,
A 'EACH VARIABLE IS DIVIDED',
> ¢ BY ITS ROBUST STANDARD DEVIATION.')
11500 FORMAT(' NORMALIZATION --EACH VARIABLE IS DIVIDED

A *BY ITS ROBUST STANDARD DEVIATION °*,
B YAND MULTIPLIED BY THE®
B * ABOVE WEIGHT.')

11600 FORMAT(' METRIC -~ EUCLIDEAN (SQUARED) ')
11700 FORMAT (' METRIC -- EUCLIDEAN °*,

A ' (NOT SQUARED) ')
11800 FORMAT(' METRIC -1,

A  'NORMALIZED EUCLIDEAN (SQUARED) )
11900 FORMAT (' METRIC

A *NORMALIZED EUCLIDEAN (NOT SQUARED) )
12000 FORMAT (' METRIC --

A '( 1.-ABS(PEARSON CORRELATION) ) ')

12100 FORMAT (' METRIC -
A v( 1.-ABS(SPEARMAN CORRELATION) )*)
12200 FORMAT(* METRIC -- CITY BLOCK')

12300 FORMAT(*ODATA SET IS THE SAME AS THAT °*,
A 'USED FOR THE PREVIOUS DENDROGRAM.?)
12400 FORMAT ('O (DATA SET IS INVERTED FROM THE USUAL.) ')
12500 FORMAT(*'0')
END
C
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e Xl

INTEGER FUNCTION DIMEN (MANY)

PURPOSE -- KEEP TRACK OF DIMENSIONS
FEBRUARY 21, 1977

sNeNeKe]

COMMON/HQLD/NSIZE,A (1)

DATA KOUNT/1/

DIMEN=KOUNT

KOUNT=KOUNT+MANY

IF (KOUNT.GT.NSIZE) WRITE(6,10000) NSIZE,KOUNT
RETURN

ENTRY LOOSE (MANY)
KOUNT=MANY
FETURN

10000 FORMAT(' AVAILABLE SIZE=',IS5,
A ' BUT YOU NEED',I6,'. ERROR' ")
END

ann

SUBROUTINE INPUT(DATA,SAMPLE,VAR,COT, HOLD,
A NFEAT,NSAMP)

PURPOSE -~ READ IN THE DATA SET (THE INTENTION IS TO
BE COMPATIBLE WITH RECOG INPUT). ALSO PRINT THE
DATA SET.

FEBRUARY 21, 1977

sNeNeNeNeNeEeKe)

COMMON/ALWAYS/TITLE (30) ,DATE (5) ,TODAY (2) ,IFLAG,
> NORM,MET,NSQUAR,INV,LOG,NGRP,ITRN
COMMON/NAM/NSNAM,NVNAM,TITSAM(5) ,TITPP(5),TITCLS(5),
> PTALK (20)

DIMENSION DATA (NFEAT,1),SAMPLE (NSNAM,1),VAR(NVNAM,1),
> CUT(1) ,HOLD (NFEAT, 1)

DIMENSION FMT(20), FHTZ(ZO)

DATA BD/4HBCD /

sNeoNeNe]

IF (INV.NE.O) GO TO S0

%% READ FORMAT INFORMATION

aao

READ(0S, 10000) FMT
IF (FMT (1) .NE.BD) GO TO 20
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C *%% ONE VERSION OF RECOG'S INPUT

e NoNe]}

(@]

eReNeNg!

s NeNeNeNe]

10

ok
20

30
40

*kk
50

60

%2k %k

70

80

READ (05,10000) FMT
READ (05, 10000) FMT2
READ(05,10100) TITLE
NOTE THAT THIS IS ACTUALLY THREE CARDS

SORT 00T TITLE -- ELIMINATE BLANK SPACES --
CALL SORT(TITLE)

DO 10 I=1,NSAMP

READ (05,FMT) (DATA(J,I) ,J=1,NFEAT)
READ(05,FMT2) PP,CL, (SAMPLE (J,I),J=1, NSNAN)
CONTINUE

GO TO 40

ANOTHER VERSION OF RECOG'S INPUT
READ(05,10100) TITLE

CALL SORT(TITLE)

DO 30 I=1,NSAMP

READ(0S,FMT) (DATA(J,I),Jd=1,NFEAT),PP,CL,
A (SAMPLE(J,I),J=1,NSNAM)

CONTINUE

WRITE (6,10800) TITLE
READ(05,10000) ( (VAR (J,I),Jd=1,NVNAM),I=1, NPEAT)
READ (5, 10900) (CUT (K) ,K=1,NFEAT)

GO TO 70

INVERTED READ

READ (05, 10000) FMT
READ (05,10000) FMT
READ(05,10000) FMT2
READ (05, 10100) TITLE
CALL SORT (TITLE)
WRITE (06, 10800) TITLE

DO 60 J=1,NFEAT

READ (05,FMT) (DATA(J,I),I=1,NSAMP)

READ (05,FMT2) PP,CL, (VAR (K,J) ,K=1,NVNAM)

READ (5, 10000) ( (SAMPLE (K,I) ,K=1,NSNAM) ,I=1,NSAMP)

PRINT OUT THE INPUT

IF (NVNAM.GT.1) GO TO 80
WRITE(6,10200) (VAR(1,I),I=1,NFEAT)
GO TO 130

N= (NFEAT-1) /10+1

MIN=1
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MAX=10
WRITE (6, 10400)
DO 120 K=1,N
IF (MAX.GT.NFEAT) MAX=NFEAT
MINL=1
MAXL=2
DO 90 KK=1,NVNAM,2
WRITE (6,10300) ((VAR (J,I),J=MINL,MAXL) ,I=MIN, MAYX)
MINL=MINL+2
MAXL=MAX+2
IF (MAXL.GT.NVNAM) GO TO 100
90 CONTINUE
GO TO 110
100 WRITE (6, 10200) (VAR(NVNAM,T) ,T=MIN,MAX)
110 CONTINOUE
MIN=MIN+10
_ MAX=MAX+10
120 CONTINUE
130 CONTINUE
WRITE (6,10500)
IF (NSNAM.GT.1) GO TO 150
DO 140 I=1,NSAMP
140 WRITE(6,10600) SANPLE(1,I), (DATA (J,I) ,J=1,NFEAT)
GO TO 170 :
150 DO 160 I=1,NSAMP
160 WRITE(6,10700) (SAMPLE (K,I) ,K=1,2),
A (DATA(J,I),J=1,NFEAT)
170 CONTINUE
DO 180 I=1,NSAMP
DO 180 J=1,NFEAT
HOLD (J, I) =DATA (J, )
180 CONTINUE

RETURN
c
C
C
10000 FORMAT (20A4)
10100 FORMAT (10A4)
10200 FORMAT('0 VARIABLES'/
A (10X,A4,7X,A4,7%,Al,7X,AU,T7X,AL,TX, AL,
B 7X,A4,T7X,Al4,TX,AlL,TX,AL))
10300 FORMAT (12X,2A4,3X,2A4,3%X,2A4,3X,2A4,3X,
A 2A4,3X,2A4,3X,2A4,3%X,2A4,3X,2A4,3X,2A4)
10400 FORMAT (*0 VARIABLES')
10500 FORMAT (*0OSAMPLES?)
10600 FORMAT('0*,A4,2%,10G611.3/(7%X,10611.3))
10700 FORMAT('0*,2A4,10G11.3/(9X,10611.3))
10800 FORMAT (1X,10AU)
10900 FORMAT (8F10.0)
END
c
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.SUBROUTINE SORT(TITLE)
DIMENSION TITLE (30)
CATA BLANK/' vy

po 10 J=1,10

112

IF (TITLE(J).NE.BLANK) GO TO 60

CONTINUE
poe 20 J=11,20

IF (TITLE (J) .NE.BLANK) GO TO 40

CONTINUE
DY 30 J=1,10

TITLE (J)=TITLE (J+20)
TITLE (J+20) =BLANK
GO TO 90

DO S50 J=1,20

TITLE (J)=TITLE (J+10)
TITLE (J+10) =BLANK
GO TO 90

DO 70 J=11,20

IF (TITLE (J).NE.BLANK) GO TO 90

CONTINUE
Do 80 J=11,20

TITLE (J)=TITLE (J+10)
TITLE (J+10) =BLANK
CONTINUE

RETURN

END

SUBROUTINE NORMAL (WEIGHT,DATA,VAR,X,COUT,

A NFEAT,NSAMP,MTINE)

PURPOSE =-- NORMALIZE THE DATRA

NORM=0 UNNORMALIZED

NORM=1 DIVIDE BY MAX

NOERM=2 DIVIDE BY STANDARD DEVIATION

NORM=3 MULTIPLY BY INPUT WEIGHTS

NORM=U DO BOTH 2 AND 3

NORM=5 DIVIDE BY ROBUST STANDARD
DEVIATION

NORM=6 DO S AND 3

FEBRUARY 21, 1977

COMMON/ALWAYS/TITLE(30),DATE(5) ,TODAY (2) ,IFLAG,
> NORM,MET,NSQUAR,INV,LOG,NGRP,ITRN
COMMON/NAM/NSNAM,NVNAM,TITSAM(5),TITPP(5),TITCLS (5),

A PTALK (20)
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DIMENSION WEIGHT(1) ,DATA(NFEAT,1),VAR(NVNAM,1),X(1),
A CUT(1),WEIG(8)

DO 10 J=1,NSAMP

DO 10 K=1,NFEAT

IF (DATA(K,J).LT.CUT(K)) DATA (K,J)=CUT (K)
10 CONTINUE

GO TOo (80,20,40,60) ,ITRN

GO TO 80
20 DO 30 J=1,NSAMP

DO 30 K=1,NFEAT

DATA (K, J) =ALOG (DATA (K,J))
30 CONTINUE

GO TO 80
40 DO S0 J=1,NFEAT

DO 50 K=1,NSAMP

DATA (K, J) =EXP (DATA (K, J))
50 CONTINUE

GO TO 80
60 DO 70 J=1,NSAMP

DO 70 K=1,NFEAT

DATA (K, J) =SORT (DATA (K, J))
70 CONTINUE
80 CONTINUE

IF (NORM.EQ.0) GO TO 90
IF (NORM.GT.6) GO TO 90
GO TO (100,160,220,160,290,290),NORM

%*%*x NC NORMALIZATION
90 RETURN

*%*x NORMALIZE BY DIVIDING BY MAX
100 WRITE(6,10000)
DO 130 IFEAT=1,NFEAT
F=0.
DO 110 ISAMP=1,NSAMP
IF (F.GT.DATA(IFEAT,ISAMP)) GO TO 110
P=DATA (IFEAT, ISAMP)
110 CONTINUE
F=1./F
WEIGHT (IFEAT) =F
WRITE (6,10100) IFEAT,F, (VAR(J,IFEAT),J=1, NVNAN)
DO 120 ISAMP=1,NSAMP
120 DATA (IFEAT,ISAMP)=DATA (IFEAT,ISAMP)*F
130 CONTINUE
F=1.0/NFEAT
DO 150 IPEAT=1,NFEAT
WEIGHT (IFEAT) =F
DO 140 ISAMP=1,NSAME
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DATA(IFEAT,ISAMP)=DATA(IFEAT,ISAMP)*F
CONTINUE
FETURN

NORMALIZE BY DIVIDING BRY STANDARD DEVIATION
WRITE (6, 10400)

DO 190 IFEAT=1,NFPEAT
F=0.

G=o L ]

DO 170 ISAMP=1,NSAMP
F=F+DATA(IFEAT,ISAMP)
G=G+DATA(TFEAT,ISAMP) **2
G=(G-F*F/NSAMP) / (NSAME-1)
IF (G.LE.1.E-6) G=1.0
G=SQRT (G)

F=1./G

WRITE(6,10500) IFEAT,G,F, (VAR (J,IFEAT) ,J=1,NVNAY)

DO 180 ISAMP=1,NSAMP

DATA (IFEAT,ISAMP)=DATA (IFEAT,ISAMP) *F
CONTINUE

IF (NORM.EQ.U4) GO TO 220

F=1.0/NFEAT

DO 210 IFEAT=1,NPEAT

WEIGHT (IFEAT) =F

DO 200 ISAMP=1,NSAMP

DATA (IFEAT,ISAMP) =DATA (IFEAT,ISAMP) *F
CONTINUE

RETURN

NORMALIZE BY MULTIPLYING BY INPUT WEIGHTS
N=(NFEAT-1) /8+1

IFEAT=0

IF (MTIME.NE.1) GO TO 260

DO 250 IT=1,N

READ (5, 10200) (WEIG(I),I=1,8)

DO 240 TI=1,8

IFEAT=IFEAT+1

IF (IFEAT.GT.NFEAT) GO TO 240

WEIGHT (IFEAT) =WEIG (1)

WRITE (6,10100) IFEAT,WEIG (I), (VAR(J,IFEAT),J=1,NVNAN)

F=WEIG (I)

DO 230 ISAMP=1,NSAMP

DATA (IFEAT,ISAMP) =DATA (IFEAT,ISAMP) *F
CONTINUE

CONTINUE

RETURN

DO 280 IFEAT=1,NFEAT

F=WEIGHT (IFEAT)

DO 270 ISAMP=1,NSAMP

DATA (IFEAT,ISAMP) =DATA (IFEAT,ISAMP) *F
CONTINUE

CONTINUE

RETURN
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C **% NORMALIZE BY DIVIDING BY ROBUST STANDARD DEVIATION
290 IL=NSAMP/2
DO 450 I=1,NFEAT
DO 300 J=1,NSAMP
X(J)=DATA(I,J)
300 CONTINUE
DO 320 J=2,NSAMP
M=J
310 IF (X(M).GE.X(M-1)) GO TO 320
A=X (M-1)
X (M-1)=X(HM)
X (M)=A
M=M-1
IF (M.GT.1) GO TO 310
320 CONTINUE
WRITE (06, 10600)
DO 330 J=1,NSAMP
IF (X(J).GT.COT(I)) GO TO 340
330 CONTINUE
340 IC=J-1
IF (IC.GT.IL) GO TO 380
FN=NSAMP
IA=.05%FN
IB=.95%FN
ID=AMAXO(IC,IA,1)
ID1=ID+1
IR=0
350 IR=IR+1
IF (ID1+IR.GT.NSAMP) GO TO 400
IF (X(ID1).EQ.X(ID1+IR)) GO TO 350
I=TD+IR
PB=FLOAT(L) /JFLOAT (NSAMP+1)
IR=0
360 IR=IR+1
IF (IB-IR.LE.O) GO TO 410
IF (X(IB) .EQ.X(IB-IR)) GO TO 360
IN=IB-IR
PT=FLOAT(IU) /FLOAT (NSAMP+1)
JOP=NSAMP-ID
XMEAN=0.0
po 370 J3=1ID1,IUP
YMEAN=XMEAN+X (J)
370 CONTINUE
FN=1./FLOAT (NSAMP-2*1ID)
XMEAN=XMEAN*FN
CALL MDNRIS(PR,X1,IER)
B=-X1
CALL MDNRIS(PT,X2,1IER)
T=X2
STDV= ((X(IU) +X (I0+1))-(X(L)+X(1L+1)))/(2.% (B+T))
WRITE(6,10700) I,XMEAN,STDV, (VAR(J,I) ,J=1,NVNAN)
WT=1./STDV
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GO TO 430
380 WRITE(6,10800) I, (VAR(J,I),J=1,NVNAM)

c CALCULATE REGULAR STANDARD DEVIATION WHEN THERE ARE
c NOT ENOUGH POINTS FOR ROBUST
: F=0.
G=0 *
DO 390 J=1,NSAMP
F=F+X (J)

G=G+X (J) *X (J)
390 CONTINUE
XMEAN=F/NSAMP
G= (G-F*F/NSAMP) /(NSAMP=-1)
STDV=SQRT (G)
: WT=1./STDV
GO TO 430
400 WRITE (6, 10900)
GO TO 420
410 WRITE(6,11000)
420 XMEAN=0.0
STDV=0.0
WT=0.0
GO TO 430
430 DO 440 J=1,NSAMP
DATA (I, J) =DATA (I,J) *WT
440 CONTINUE
450 CONTINOE
IF (NORM.EQ.6) GO TO 220

RETURN
Cc
C
C
10000 FORMAT('OVARIABLE WEIGHT (DIVISION BRY MAX) ')

10100 FORMAT (1X,I4, 10X,E16.4,T7,2R4/ (6X,2A4))
10200 FORMAT (8F10.2)
10300 FORMAT ('OVARIABLE WEIGHT (AS INPUT ON CARDS) ')
10400 FORMAT (*OVARIABLE STANDARD DEVIATION WEIGHT',
> *(1./ST.DEV.) ")
10500 FORMAT(1X,I3,6%X,E16.4,3X,E15.4,T7,2A4/(6X,2A4))
10600 FORMAT ('0 VARIABLE MEAN  ROBUST ST.DEV. NAME')
10700 FORMAT(I8,F12.3,F12.3,3%X, (5A4))
10800 FORMAT(* TOO MUCH DATA BELOW DETECTION ',
A 'LIMIT FOR VARIABLE', IS, 1X,5Al)
10900 FORMAT (* CANNOT FIND IRY)
11000 FORMAT (' CANNOT FIND IU')

END
C
o
Cc
SUBROUTINE METRIC (DATA,SQUA,XX,YY,IR,R,THRESH, EXTRA,
> SAMPLE,NSAMP,NFEAT)
Cc
C PURPOSE -- INITYIALIZE THE METRIC ARRAY "SQUAY
C

(ALSO THE AUXILLIARY ARRAY "EXTRA" TP NEEDED)
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FEBRUARY 21, 1977

DIMENSION DATA(NFEAT,1),SQUA (1) ,XX(1),YY (1) ,IR(N),
A R(1),THRESH(1),EXTRA (1) ,SAMPLE (NSNAM,1)

COMMON/ALWAYS/TTITLE (37) ,IFLAG,NORM, MET,NSQUAR,
A  INV,LOG,NGRP,ITRN

COMMON/NAM/NS NAM,NVNAM,TITSAM(5),TITPP (5),TITCLS(S),
A PTALK (20) '
INTEGER*2 IR

DATA EPS/0.01/

DIMENSION URE(7)

DATA URE/' PH',*M-AK*®',' BC',' U/U*,
A 'T-AK', 'P-AK','PH~P'/

DATA NOLOG/T7/

AMAX=0,

L0C=0

ILIMIT=NSAMP-1

Go TO0 (10,10,10,10,50,50,260) ,MET

FUCLIDEAN METRIC

DO 30 I=1,ILIMIT

TLIM=I+1

DO 30 J=ILIM,NSAMP

DIST=0.

DO 20 K=1,NPEAT

DIST=DIST+ (DATA(K,I) ~DATA (K,J)) **2
CONTINUE

IF (DIST.GT.AMAX) AMAX=DIST
LOC=LOC+1

SQUA (LOC) =DIST

CONTINUE

SAMAX=SQRT (AMAX)

CALL CHANGE (SQUA,AMAX,SAMAYX,NSAMD)
WRITE (6, 10000) AMAX

IF (IFLAG.NE.8) GO TO 290

DO 40 I=1,NSAMP

EXTRA (I)=0.

GO TO 290

CORRELATI ON-BASED METRICS
CONTINUE

IF (LOG.NE.0) GO TO 70

DO 60 I=1,NSAMP
THRESH (I) ==1.E25

GO TO 150

GO TO (80,100, 140),L0G
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80 DO 90 I=1,NSAMP
90 THRESH (I) =0.
GO TO 150
. 100 DO 130 TI=1,NSAMP
DO 110 J=1,NOLOG
IF (SAMPLE(1,TI).EQ.URE(J)) GO TO 120
110 CONTINUE.
THRESH (I) =-10.
GO TO 130
120 THRESH(T) =0.
130 CONTINUE
GO TO 150 '
140 READ (05, 10100) (THRESH(I) ,I=1,NSAMP)
150 WRITE (06, 10200) (SAMPLE (1,I), THRESH (I) ,I=1,NSAMP)
NSQUAR=1

IF (MET.EQ.6) GO TO 200

*%* PEARSON CORRELATION-BASED METRIC
DO 190 I=1,ILIMIT
ILIM=T+1
DO 190 J=ILIM,NSAMP
NF=0
DO 160 K=1,NFEAT
IF (DATA(K,T) .LT.THRESH(I)) GO TO 160
IF (DATA(K,J) .LT.THRESH(J)) GO TO 160
NF=NF+1
XX (NF) =DATA (K, I)
YY (NF)=DATA (K, J)

160 CONTINUE '

: IF (NF.LT.10) GO TO 180
a=0.
B=0.
Cc=0.
D=0.
E=0.
DO 170 K=1,NF
A=A+XX (K) *YY (K)
B=B+XX (K) *XX (K)
C=C+YY (K) *YY (K)
D=D +XX (K)
E=E+YY (K)

170 CONTINUE
B=B-D*D/NF
C=C~E*E/NF
A=A-D*E/NF
A=A/SQRT (B*C)
IF (A.LT.0.) A=-1
LOC=LOC+1
DIST=1.-A
SQUA (LOC) =DIST
IF (DIST.GT.AMAX) AMAX=DIST
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GO TO 190
180 LCC=LOC+?
SQUA (LOC) =1.0
190 CONTINUE
WRITE (6,10000) AMAX
GO TO 290

e Ne]

C *%%x SPEARMAN CORRELATION-BASED METRIC
200 CONTINUE
DO 250 I=1,ILIMIT
ILIM=T+1
DO 240 J=ILIM,NSAMP
NF=0
DO 210 K=1,NFEAT
IF (DATA(K,I).LT.THRESH(I)) GO TO 210
IF (DATA(K,J) .LT.THRESH(J)) GO TO 210
NF=NF+1
XX (NF) =DATA (K, I)
YY (NF) =DATA (K, J)
210 CONTINUE
IF (NF.LT.10) GO TO 230
D=NF* (NP+1.) * (NF+1.) /L.
CALL RANK (XX,NF,IR,R,EPS)
CALL RANK (YY,NF,IR,R,EPS)
A=0.
B=0.
c=0.
DO 220 K=1,NF
A=A+XX (K) *YY (K)
B=B+XX (K) *XX (K)
220 C=C+YY (K) *YY (K)
A=A-D
B=B=D
C=C=D
A=A /SORT (B*C)
IF (A.LT.0.) A==}
1LCC=LOC+1
DIST=1.-A
SQUA (LOC) =DIST
IF (DIST.GT.AMAX) AMAX=DIST
GO TO 240
230 10C=LOC+1
SQUA (LOC) =1.0
240 CONTINUE
250 CONTINUE
WRITE (6,10000) AMAX
GO TO 290

e e

C ***x CITY BLOCK DISTANCE
260 CONTINUE
NSQUAR=1
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DO 280 I=1,ILIMIT

ILIM=I+1

DO 280 J=ILIM,NSAMP

DIST=0.

DO 270 K=1,NPEAT
DIST=DIST+ARS (DATA (K,I)-DATA(K,J))
IF (DIST.GT.AMAX) AMAX=DIST
LOC=L0C+1

SQUA (LOC) =DIST

CONTINUE

SAMAX=AMAX

WRITE (6, 10000) SAMAX

RETUORN

FORMAT (*OMAXIMUM DISTANCE IS',F10.4)
FORMAT (8F10.2)

FORMAT (*ONAME THRESHOLD'/(1X,AU4,FP10.2))
END

SUBRROUTINE CHANGE (SQUA,AMAX,SAMAX,NSAMP)
PURPOSE -- CHANGE FROM METRIC 1 TO METRIC 2,
FEBRUARY 21, 1977

DIMENSION SQUA (1)

COMMON/ALWAYS/TITLE(37),IFLAG,NORM,MET,NSQUAR,
INV,LOG,NGRP,ITRN

NT=NSAMP* (NSAMP-1) /2
GO TO (10,40,60,80) ,MET

IF (IFLAG.EQ.7) GO TO 20

IF (NSQUAR.EQ.0) AMAX=SAMAX
RETURN

po 30 I=1,NT

SQUA (I) =SQUA(I) *0.5
AMAX=AMAX*0.5

IF (NSQUAR.EQ.0) AMAX=SQRT (AMAX)
RETURN

CONTINUE

NSQUAR=1

DO S0 I=1,NT

SQUA (I) =SQRT (SQUA(I))

3,

OR 4
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AMAX=SQRT (AMAX)
RETURN

CONT
Do 7
SQUA
AMAX
RETU

CONT
NSQU
DO 9
SQUA

INUE
0 I=1,NT
(I) =SQUA (I) /AMAX

=1.

RN

INUE

AR=1

0 I=1,NT

(I) =SQRT (SQUA (I))/SAMAX

AMAX=1.

RETUO

END

RN

SUBROUTINE RANK (X,N,IR,R,EPS)

PO

FE

RPOSE -- ORDER THE SAMPLES ACCORDING TO RANK

BRUARY 21, 1977

DIMENSION X(1),IR(1),R (1)

INTEGER*2 IR
SAVE X VECTOR AND INITIALIZE THE
PERMUTATION VECTOR

DO 10 I = 1,N

R(I) = X(I)

IR(I) = I
SORT ELEMENTS OF VECTOR R INTO
ASCENDING SEQUENCE SAVING
PERMUTATIONS

CALL VSORTP (R,N,IR)

N1 = N-1

L =1

DO 60 J = L,N1

33 = J

Y = R{J)

IF (ABS(Y-R(J+1)).GT.EPS) GO TO 60
COUNT THE NUMBER OF TIES

K = 1

J2 = J+2

IF (J2.GT.N) GO TO 40
Do 30 I = J2,N
IF (ABS(Y-R(I)).GT.EPS) GO TO 40

K =
Y =
K1 =

K+1
J+.5%K

K+1
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DO 50 T = 1,K1

JJ = J+I-1

X(IR(IT)) =Y

GO TO 70

X(IR(J)) = J

L = JJ+1

IF (L.LE.N1) GO TO 20

IF (L.EQ.N) X(IR(N)) = ¥
EETURN

END

SUBROUTINE VSORTP (A,LA,IR)

DIMENSION A(1),IU(21),IL(21),IR (1)
INTEGER*2 IR

[ S 'Y

M
I
J=LA
R=.375
IF (I.EQ.J) GO TO 100
IF (R.GT..5898437) GO TO 30
R=R+3.90625E-2
GO TO 40
R=R-.21875
R=T
SELECT A CENTRAL ELEMENT OF THE
ARRAY AND SAVE IT IN LOCATTION T
TJ=T+ (J~I)*R
T=a (IJ)
IT=IR(1J)
IF FIRST ELEMENT OF ARRAY IS GREATER
THAN T, INTERCHANGE WITH T
IF (A(I).LE.T) GO TO 50
A (IJ) =A (T)
A(I)=T
T=2 (1J)
IR (IJ3)=IR (I)
IR(I)=IT
IT=IR(IJ)
L=J
IF LAST ELEMENT OF ARRAY IS LESS THAN
T, INTERCHANGE WITH T
IF (A(J).GE.T) GO TO 70
A (IJ) =A (J)
A(J)=T
T=A (IJ)
IR (IJ) =IR (J)
IR(J)=IT
IT=IR(IJ)
IF FIRST ELEMENT OF ARRAY IS GREATER
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THAN T, INTERCHANGE WITH T
IF (A(I).LE.T) GO TO 70
A(Id)=A (1)
A(I)=T
T=A (1J)
IR(IJ)=IR(I)
IR(I)=IT
IT=1IR (IJ)
GO TO 70
TT=A(1)
A(L)=A(K)
A(K)=TT
ITT=IR (L)
IR(L) =IR(K)
IR(K)=ITT
FIND AN ELEMENT IN THE SECOND HALF OF
. THE ARRAY WHICH IS SMALLER THAN T
L=L-1
IF (A(L).GT.T) GO TO 70
FIND AN ELEMENT IN THE FIRST HALF OF
THE ARRAY WHICH IS GREATER THAN T
K=K+1
IF (A(K).LT.T) GO TO 80
INTERCHANGE THESE ELEMENTS
IF (K.LE.1) GO TO 60
SAVE UPPER AND LOWER SURSCRIPTS OF
THE ARRAY YET TO BE SORTED
IF (L-I.LE.J-K) GO TO 90
IL(M)=I
I0(M) =L
I=K
M=M+1
GO TO 110
IL(M)=K
U (M) =J
J=1L
M=M+1
GO TO 110
BEGIN AGAIN ON ANOTHER PORTION OF
THE UNSORTED ARRAY
M=M-1
IF (M.EQ.0) RETURN
I=TL (M)
J=I0(M)
IF (M.GT.21) WRITE(6,10000)M
IF (J-I.GE.1) GO TO 40
IF (I.EQ.1) GO TO 10
I=1-1
I=T+1
IF (I.EQ.J) GO TO 100
T=A (I+1)
IT=IR(I+1)
IF (A(I).LE.T) GO TO 120
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K=1
130 A(K+1)=A(K)
IR(K+1) =IR(K)

K=K=-1
IF (T.LT.A(K)) GO TO 130
A(K+1) =T
IR(K+1) =IT
GO TO 120
C
10000 FORMAT (' IN VSORTP, M=',I3)
END
C
C
C
SURROUTINE CLUST(DISTAN,KLUSTR,MARRAY,JARRAY,
A DATA,MCEL,JCEL,ONDCL,INDCL,SQUA,EXTRA,
B KNT,IGRP,NNFEAT,NNSAMP)
Cc
C PORPOSE -- DO THE CLUSTER ANALYSIS !¢
C
C FEBRUARY 21, 1977
C
C
DIMENSION DISTAN(1) ,KLUSTR(2,1) ,MARRAY (1) ,JARRAY (1),
A DATA(NNFEAT, 1) ,MCEL(1) ,JCEL(1),SQUA (1) ,EXTRA (1),
B ONDCL(1),INDCL(1) ,IGRP (1)
INTEGER*2 KLUSTR,MARRAY,JARRAY,MCEL,JCEL,
A ONDCL,INDCL,KNT({NGRP,1)
C
COMMON/ALWAYS/TITLE (37) ,IFLAG, NORM,MET,NSQUAR,
A INV,LOG,NGRP,ITRN
C
C
NSAMP=NNSAMP
NPEAT=NNFEAT
C
o
C INITIALIZE TO NSAMP CLASSES
C
NCL=NSAMP
ITER=0
NCLUST=0
DO 10 I=1,NSAMP
MCEL (1) =1
JCEL (1) =0
ONDCL(I)=I
MARRAY (I) =T
JARRAY (I) =0
INDCL(I)=0
10 CONTINUE
C
C
C *%% START LOOP
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20 CONTINUE
ITER=ITER+1

FIND CANDIDATES FOR CLUSTERING

ISUB=0

JSUB=0

AMIN=1.E35

CALL INTER(SQUA,EXTRA,MARRAY,ONDCL,MCEL,
A NSAMP,XNT,XNJ,ISUB,JSUB,AMIN,IFLAG,NC?,JJJ,ITER)
SAMIN=AMIN

IF (NSQUAR.EQ.0) SAMIN=SQRT (AMIN)
KLUSTR (1, ITER) =ISUR

KLUSTR (2, ITER) =JSUB

DISTAN (ITER)=SAMIN

ISUB AND JSUB ARE THE CLUSTER NUMBERS WHICH MINIMIZE
THE CRITERION.
FORM A CLUSTER

NCLUST=NCLUST+1
ILIM=MCEL (ISUR)
XNI=ILIM
INDIS=ONDCL (ISUB)

NUMBER OF SAMPLES IN CLUSTER ISUB
JLIM=MCEL (JSUB)
INI=JLIM
INDJS=ONDCL (JSUB)

NUMBER OF SAMPLES IN CLUSTER JSUB
JJIJ=MARRAY (INDJS)

NOMBER OF THE FIRST SAMPLE IN JSUB

LOAD INTO CLUSTER ARRAY

INDEX=0
INDCL (NCLUST) =INDEX+1
DO 30 I=1,ILIM
INDEX=INDEX+1
30 JARRAY (INDEX) =MARRAY (INDIS+I-1)
DO 40 J=1,JLIM
INDEX=INDEX+1 :
40 JARRAY (INDEX) =MARRAY (INDJS+J-1)
JCEL (NCLUST) =ILIM+JLIM

COPY REST OF MATRIX INTO JARRAY.

DO 60 I=1,NCL

IF (I.EQ.ISUB) GO TO 60
IF (I.EQ.JSUB) GO TO 60
NCLUST=NCLUST+1
INDOLD=ONDCL (I)

INDCL (NCLUST) =INDEX+1
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ILIM=MCEL (I)

AMIN=0.

DO 50 J=1,ILIM

INDEX=INDEX+1

JARRAY (INDEX) =MARRAY (INDOLD+J-1)
CONTINUE

JCEL (NCLUST)=ILIM

CONTINUE

IST=INDCL (I) -1
CONTINUE

REINITIALIZE

80

DO 80 J=1,NSAMP
MARRAY (J) =0

COPY JARRAY INTO MARRAY

90

100

110

%k

120

DO 90 I=1,NCLUST
JLIM=JCEL (I)
MCEL(I) =JLIM

JCEL (I) =0
ONDCL (T) =INDCL (I)
CONTINUE

DO 100 J=1,NSAMP
MARRAY (J) =JARRAY (J)
JARRAY (J) =0
CONTINUE
NCL=NCLUST
NCLUST=0

DO 110 IN=1,NGRP
IF (NCL.EQ.IGRP(IN)) GO TO 120
CONTINUE

GO TO 20

END OF LOOP

CONTINUE

JLIM=NSAMP

WRITE (06, 10400) (MCEL(T),I=1,NCL)
WRITE (06,10500) (MARRAY (J) ,J=1,JLIM)
ISTART=1

DO 160 J=1,NCL

KK=MCEL (J)

IF (KK.LT.2) GO TO 150
TOK=MCEL (J) +ISTART-1

DO 140 K=2,KK

NOJ=I START+K~-1

NMJ=MARRAY (NOJ-1)

DO 140 NOK=NOJ,IOK

NMK=MARRAY (NOK)
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IF (NMJ.LT.NMK) GO TO 130
NOA= ((NMJI=-1) * (NMJ-2)) /2+NMK
GO TO 140 A
130 NOA=((NMK-1)* (NMK=2)) /2+NMJ
140 KNT (IN, NOA) =KNT (IN,NOA)+1
150 ISTART=ISTART+KK
160 CONTINUE
IF (IN.EQ.1) RETURN

GO TO 20
RETURN

C

Cc

C

10000 FORMAT(1X,*'ITER=',15,2X,2I5,' AMIN=',F10.4)
10100 FORMAT(®* ITERATIONG',I4,! NUMBER OF CLUSTERS
10200 FORMAT (1X,'CLNSTER NUMRER',T4,

A * SAMPLES t',251I4, /, (24X,251I4))
10300 FORMAT(*' ILIM = ',XI4)
10400 FORMAT(10X,*'FINAL ORDERING v/

A ' CLUSTERS END AT t,(121I5))
10500 FORMAT (2015)

', I4)

END
C
Cc

SUBROUTINE INTER(SQUA,EXTRA,MARRAY,ONDCL,MCEL,

A 'NSAMP,XNI,XNJ,ISUB,JSUB,AMIN,IFLAG,NCL,JJJ,ITER)

C
Cc PURPOSE -- (1) UPDATE DISTANCE-BETWEEN-CLUSTER ARRAY
C SQUA AS REQUIRED BY PREVIOUS ITERATION
C (2) FIND WHICH TWO CLUSTERS ARE TO BE
C COMBINED NEXT (ISUB AND JSUB)
C
C FEBRUARY 21, 1977
C
Cc
C

DIMENSION SQUA(7) ,MARRAY (1) ,MCEL(1),EXTRA (1) ,ONDCL (1)

INTEGER*2 MARRAY,MCEL,ONDCL
C
Cc
C

IF (ITER.EQ.1) GO TO 100
C IE, IF THIS IS THE FIRST ITERATION, GO TO 100
c :

Go TO (10,20,30,40,50,60,160,190) ,IFLAG
C
C
C *%% STINGLE LINKAGE CRITERION
C

10 AI=.
AJ=.5
E=0.0

G=-.5
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GO TO 70

COMPLETE LINKAGE CRITERION
AI=.5

AJ=.5
B=0.0
G=.5
GO TO 70

GROUP AVERAGE CRITERION

AI=XNI/ (XNI+XNJ)
AJ=XNJ/ (XNJ+XNT)
B=0.0

G=0.0

GO TO 70

WEIGHTED AVERAGE CRITERION

AI=.5
AJ=.5
B=0.0
G=0.0
GO TO 70

CENTROID CRITERION

AI=XNI/ (XNI+XNJ)
AJ=XNJ/ (XNI+XNJ)

B=- (XNI*XNJ) /( (XNJ+XNI) * (XNJ+XNT))
G=0.0

GO TO 70

MEDIAN CRITERION

o
(= T B I
e o
oN VU
(8]

@Q >

(FOR THE FIRST SIX CRITERTIA)
CONTINUE
IF (NCL.EQ.2) GO TO 150

COMPUTE DISTANCES TO NEWLY FORMED CLUSTER
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c AND STORE DISTANCES IN SQUA
c
DO 80 J=2,NCL
CALL INT2 (MARRAY,ONDCL, NSAMP,JJJ KI,KJ,1d,J)
DIF=SQUA (KI) -SQUA (KJ)
IF (DIF.LT.0.0) DIF=-DIF
SQUA (KI)=AI*SQUA (KI) +AJ*SQUA (KJ) +B*SQUA (IJ) +G*DIF
c
c CHECK FOR MINIMOUM DISTANCES
c
IF (AMIN.LE.SCUA(KI)) GO TO 80
AMIN=SQUA (KI)
ISUB=1
JSUB=J
80 CONTINUE
c
C _
90 ITLOW=2
GO TO 110
c
100 ITLOW=1
c (FOR FIRST ITERATION)
IF (IFLAG.EQ.8) GO TO 210
o
c CHECK THE REST OF THE CLUSTERS FOR
c MINIMUM DISTANCES
c
110 LIMIT=NCL-1
DO 140 I=ITLOW, LIMIT
ILOWER=I+1
IN1=ONDCL (T)
DO 140 K=ILOWER,NCL
IN2=ONDCL (K)
IF (MARRAY (IN1) .LT.MARRAY (IN2)) GO TO 120
MA=MARRAY (IN1)
MI=MARRAY (IN2)
GO TO 130
120 MA=MARRAY (IN2)
MI=MARRAY (IN1)
130 IK=(MI-1) *NSAMP-MI* (MI+1) /2+MA
IF (AMIN.LE.SCUA(IK)) GO TO 140
AMIN=SQUA (IK)
ISUB=I
JSUB=K
140 CONTINUE
RETURN
c
C *%* LAST ITERATION FOR ALL BUT THE MINIMUM VARIANCE AND
c STANDARD DEVIATION

150 CONTINUE
CALL INT2 (MARRAY,ONDCL,NSAMP,JJJ,KI,KJ,TIJ,2)
DIF=SQUA(KI)-SQUA (KJ)
IF (DIF.LT.0.0) DIF=-DIF
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AMIN=AT*SQUA(KT) +AJ*SQUA (KJ) +B*SQUA(TJ) +G*DIF
IS0B=1
JSUB=2
RETORN

MINTMUM VARIANCE CRITERION

LIMIT=NCL-1

XMIJ=XNT+XNJ

IF (NCL.EQ.2) GO TO 180

DO 170 J=2,NCL

CALL INT2 (MARRAY,ONDCL,NSAMP,JJJ,KI,KJ,IJ,J)

A=MCEL (J)

XM=XMTJ+A

SQUA (KI) = ((XNI+1) /XM) *SQUA (KI) + ((XNI+R) /X M)
*SQUR (KJ) - (A/XM) *SQUA (1J)

IF (AMIN.LE.SQUA(KI)) GO TO 170

AMIN=SQUA (KI)

ISUB=1

JSUB=J

CONTINUE

GO TO 90

LAST ITERATION FOR MINIMUM VARIANCE
CONTINUE
CALL INT2 (MARRAY,ONDCL,NSAMP,JJ3J,KI,KJ,IJ,2)
A=MCEL (2) .
XM=XMIJ+A
AMIN= ((XNI+A) /XM) *SQUA (KI)+ ((XNJ+A) /X M) *SQUA (KJ) -
(A/XM) *SQUA (1J)
ISUB=1
JSUB=2
BEETURN

MINIMUM STANDARD DEVIATION CRITERION

LIMIT=NCL-1

XMIJ=XNI+XNJ

IIT=MARRAY (1)

Y=EXTRA (III)+EXTRA (JJJ)

IF (NCL.EQ.2) GO TO 250

DO 200 K=2,NCL

CALL INT2 (MARRAY,ONDCL,NSAMP,JJJ,KI,KJ,IJ,K)

A=MCEL (K)

D=A+XMIJ .
D=1./(D*(D=1.))

IN1=ONDCL (K)

KKK=MARRAY (IN1) .
A=EXTRA (KKK)

SQUA(KTI)=SQUA (KI) +SQUA (KJ) + SQUA (IJ) -A-X

D=SQUA (KI) *D
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IF (AMIN.LE.D) GO TO 200
AMIN=D
ISUB=1
JSUB=K

200 CONTINUE
EXTRA (III)=SQUA(IJ)
ITLOW=2

CHECK REST OF CLUSTER PAIRS FOR MINIMUM
STANDARD DEVIATION
210 LIMIT=NCL-1
DO 240 I=TITILOW, LIMIT
A=MCEL (I)
ILOWER=T+1
IN1=0NDCL (I)
DO 240 K=ILOWER,NCL
IN2=0ONDCL (K)
IF (MARRAY (IN1) .LT.MARRAY(IN2)) GO TO 220
MA=MARRAY (IN1)
MI=MARRAY (IN2)
GO TO 230
220 MA=MARRAY (IN2)
MI=MARRAY (IN1)
230 IK=(MI-1) *NSAMP-MI* (MI+1)/2+MA
B=MCEL (K) +A
B=1./(B*(B-1.))
B=B*SQUA (IK)
IF (AMIN.LE.B) GO TO 240
AMIN=R
ISUB=T
JSUB=K
240 CONTINUE
RETURN

oo

C **% FINAL ITERATION FOR MINIMUM STANDARD DEVIATION
250 CALL INT2 (MARRAY,ONDCL,NSAMP,JJJ,KI,KJ,IJ,2)
A=MCEL (2)
C=A+XMIJ
D=1./(D*(D-1.))
IN2=ONDCL (2)
KKK=MARRAY (IN2)
A=EXTRA (KKK)
EXTRA (IIT)=SQUA (IJ) A
AMIN=SQUA (KI) + SQUA (KJ) +SQUA (IJ) -A-X
AMIN=AMIN®D
ISUB=1
JSUB=2
RETURN

(9]

END

e NeXg]
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SUBROUTINE INT2 (MARRAY,ONDCL,NSAMP,JJJ,KI,KJ,IJ,Jd)

PURPOSE -- LOCATE POSITION IN DISTANCE ARRAY "SQUA"™ FOR
DISTANCE BETWEEN CLUSTERS III AND JJJ (IJ),
DISTANCE BETWEEN CLUSTERS KKK AND III (KI),
AND DISTANCE BETWEEN CLUSTERS KKK AND JJJ (KJ).

FEBRUARY 21, 1977

DIMENSION MARRAY(1) ,ONDCL (1)
INTEGER*2 MARRAY,ONDCL

IN1=ONDCL (1)

IN2=ONDCL (J)

IF (MARRAY (IN1) .LT.MARRAY(IN2)) GO TO 10
MA=MARRAY (IN1)

MI=MARRAY (IN2)

GO TO 20

MA=MARRAY (IN2)

MI=MARRAY (IN1)
KI=NSAMP* (MI-1) -MI* (MI+1)/2+MA
IF (JJJ.LT.MARRAY(IN2)) GO TO 30
MA=JJJ

MI=MARRAY (IN2)

GO TO 40

MA=MARRAY (IN2)

MI=JJJ .

KJ= (MI-1) *NSAMP-MT* (MI+1) /2+MA
IF (MARRAY (IN1).LT.JJJ) GO TO 50
MA=MARRAY (IN1)

MI=JJJ

GO TO 60

MA=JJJ

MI=MARRAY (IN1)

TJ= (MI-1) *NSAMP-MI* (MI+1) /2+¢MA
RETURN

END
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PMGCLS PROGRAM LISTING
COMMON/ALWAYS/STORY (30) ,DATE(5) ,TODAY (2) ,IFLAG, NORMA,
> NORMR, MET,NSQUAR,LOG,NEWDAT,INV,NFACTR,
> IPLOT,MPLOT,NCLAS,ITURN,IDELX,ISTORY,IPTALK.
INTEGER DIMEN
COMMON/HOLD/NSIZE, A (10000)
"COMMON/NAM/NSNAM, NVNAM,TITSAM(S),TITPP(S),
> TITCLS(5),PTALK {20)

DIMENSION DDATE(5)
DATA DDATE/'**x ¢ 1t TOD!,'AYS ' ,*'DATE',' IS '/

NSIZE=10000
NUMBER=0
CALL COMPRS

po 10 I=1,5
CATE (I) =DDATE (I)
NSNAM=1

NUMBER=NUMBER+1

TYPE 10000
ACCEPT 10100,IFLAG
TYPE 10200
ACCEPT 10300,NSAMP
CALL BGNPL (NUMBER)
CALL LOOSE(1)
LLDIST=DIMEN (NSAMP)
N=((NSAMP-1) *NSAMP) /2
LLSQUA=DIMEN (N)
LLSAMP=DIMEN (NSAMP)
SQUA -- DISTANCE BETWEEN SAMPLES
1LEXTR=DIMEN (NSAMP)

LLKLUS=DIMEN (2%*NSAMP+1)

KLUSTR
N=NSAMP :
ILMARR=DIMEN (N) |

MARRAY
LLIARR=DI MEN (N)

JARRAY
NS=NSAMP
LLMCEL=DIMEN (NS)

MCEL
LLICEL=DIMEN (NS)

JCEL

LLONCL=DIMEN (N)
ONDCL
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LLINCL=DIMEN(N)
INDCL

CALL INPUT(A(LLSQUA) ,A(LLSAMP) ,NSAMP)
CALL CLUST(A(LLDIST),A(LLSQUA),A(LLEXTR),
> A(LLKLUS),A(LLMARR) ,A(LLJARR) ,A(LLMCEL),
> A(LLJCEL) ,A(LLONCL), A(LLINCL) ,NFEAT,NSAMP)

PREPARE ARRAYS FOR CALL TO SUBROUTINE DENDRO

CALL LOOSE (LLMARR)
LLIPOS=DIMEN(NS)

1POS
LLNC=DIMEN (NS)

NC
LLNC2=DIMEN (NS)

NC2
N=NSAMP+NSAMP
LLSTOR=DI MEN (N)

STORE
LLSTR2=DIMEN (N)

STORE2
N=S*NSAMP
LLXXXX=DIMEN (N)

XXXX

CALL DENDRO (A(LLDIST),A(LLSAMP),A(LLKLUS),
> A(LLIPOS),A(LLNC),A(LLNC2) ,A(LLSTOR) ,A(LLSTR2)
> ,A(LLXXXX) ,NFEAT,NSAMP)

CALL ENDGR (0)
CALL ENDPL (0)
CALL DONEPL (0)
STOP

FORMAT (* CLUSTERING CRITERION?')
FORMAT (I)

FORMAT(* NO OF SAMPLES?')

FORMAT (2I)

END

SURROUTINE INPUT(SQUA,ISAMP,NSAMP)
COMMON/TIL/TITLE(16)

DIMENSION SQUA(1),ISAMP(1)

NN= ((NSAMP-1) *NSAMP) /2

TYPE 10000

ACCEPT 10100,ITER

DIV=1./ITER

READ (45,10300) TITLE
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READ(45,10400) (ISAMP(I),I=1,NSAMP)
READ (45,10200) (SQUA(I) ,I=1,NN)
Do 10 J=1,NN
SQUA (J) =ASIN (SQRT (1.=-SQUA (J) *DIV))
10 CONTINUE
RETURN
10000 FORMAT (' NO OF ITERATIONS?')
10100 FORMAT (I)
10200 FORMAT (20F4.0)
10300 FORMAT (16A5)
10400 FORMAT (20AL)

END
c
o
c
c
c
c
SUBROUTINE CLUST(DISTAN,SQUA,EXTRA,KLUSTR,MARRAY,
> JARRAY,MCEL,JCEL,ONDCL,INDCL, NNFEAT, NNSAMP)
c
C PURPOSE -- DO THE CLUSTER ANALYSIS 1!!
c
C JULY 22, 1977
c
c
DIMENSION DISTAN(1),SQUA(1) ,EXTRA(1),KLUSTR(2,1),
> MARRAY (1) ,JARRAY (1) ,MCEL (1) ,JCEL(1) ,ONDCL(1) ,INDCL (1)
c
COMMON/ALWAYS/STORY (30) ,DATE (5) ,TODAY (2),
> IFLAG, NORMA, NORMB, MET,NSQUAR,LOG,NEWDAT,INV,
> NFACTR,IPLOT,MPLOT,NCLAS,ITURN,IDELX,
> ISTORY,IPTALK
c
o
NSAMP=NNSAMP
NFEAT=NNFEAT
C
c
C INITIALIZE TO NSAMP CLASSES
c
NCL=NSAMP
ITER=0
NCLUST=0
DO 10 I=1,NSAMP
MCEL (I) =1
JCEL(T) =0
ONDCL (I)=1

MARRAY (I) =T

JARRAY (I) =0

INDCL(I)=0
10 CONTINUE
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START LOOP

CONTINOE
ITER=ITER#+1

FPIND CANDIDATES FOR CLUSTERING

Is

FO

ISUB=0
JSUB=0
AMIN=1.E10

CALL INTER(SQUA,EXTRA,MARRAY,MCEL,ONDCL,
> NSAMP, XNY,XNJ,ISOUB,JSUB,AMIN,IFLAG,NCL,JJJ,ITER)

SAMIN=AMIN

IF (NSQUAR.EQ.O0) SAMIN=SQRT(AMIN)
KLUSTR(1, ITER) =ISUB
KLUSTR(2,ITER) =JSUB
DISTAN(ITER)=SAMIN

WRITE (06, 10000) ITER,ISUB,JSUB,SAMIN

UB AND JSUB ARFE THE CLUSTER NUMBERS WHICH MINIMIZE

THE CRITERION.
RM A CLUSTER

NCLUST=NCLUST+1
ILIM=MCEL (ISUB)
XNI=ILIM
INDIS=ONDCL (ISUB) \
NUMBER OF SAMPLES IN CLUSTER ISUB
JLIM=MCEL (JSUB)
XNI=JLINM
INDJIS=ONDCL (JSUB)
NUMBER OF SAMPLES IN CLUSTER JSUB
JJJI=MARRAY (INDJS)
NUMBER OF THE FIRST SAMPLE IN JSUB

LOAD INTO CLUSTER ARRAY

30

40

INDEX=0

INDCL (NCLUST) =INDEX+1

DO 30 T=1,ILIM

INDEX=INDEX+1

JARRAY (INDEX) =MARRAY (INDIS+I-1)
DO 40 J=1,JLIM

INDEX=INDEX+1

JARRAY (INDEX) =MARRAY (INDJIS+J-1)
JCEL (NCLUST) =ILIM+JLIM

COPY REST OF MATRIX INTO JARRAY.

DO 60 I=1,NCL
IF (I.EQ.ISUB) GO TO 60
IF (I.EQ.JSUB) GO TO 60
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NCLUST=NCLUST+1
INDOLD=ONDCL (1)
INDCL (NCLUST) =INDEX+1
ILIM=MCEL (I)
AMIN=0.
DO 50 J=1,ILIM
INDEX=INDEX+1 .
JARRAY (INDEX) =MARRAY (INDOLD+J- 1)
50 CONTINUE
JCEL (NCLUST) =ILIM
60 CONTINUE

WRITE (06, 10100) ITER,NCLUST
DO 70 I=1,NCLUST
ILIM=JCEL (I)
IF (ILIM.LE.1) GO TO 70
IST=INDCL (I) -1
IF (ILIM.GT.10) WRITE(06,10200)
> I, (JARRAY (IST+J),J=1,ILIN)
WRITE (06,10300) ILIM
70 CONTINUE

REINITIALIZE

DO 80 J=1,NSAMP
80 MARRAY(J) =0

COPY JARRAY INTO MARRAY

DO 90 I=1,NCLUST
JLIM=JCEL (I)
MCEL(I) =JLIM
JCEL (I) =0
ONDCL (I) =INDCL (I)

90 CONTINUE
DO 100 J=1,NSAMP
MARRAY (J) =JARRAY (J)
JARRAY (J) =0

100 CONTINUE
NCL=NCLUST
NCLUST=0
IF (NCL.LE.1) GO TO 110
GO TO 20 A

%% END OF 1LOOP

110 CONTINUE
JLIM=MCEL (1)
WRITE (06, 10300)
WRITE (06,10400) (MARRAY (J) ,J=1,JLIN)
RETORN
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c
c
10000 FORMAT (1X,'ITER=',I5,2X,2I5,' AMIN=',F10.4)
10100 FORMAT(* ITERATION',I4,' NUMBER OF CLUSTERS ',It)
10200 FORMAT (1X,'CLUSTER NUMBER',TU4,
> ¢ SAMPLES ',25T4, /,{24%X,25I4))
10300 FORMAT (10X, *FINAL ORDERING ')
10400 FORMAT (20I5)

END
C
C
SUBROUTINE INTER(SQUA,EXTRA,MARRAY,MCEL,ONDCL,NSAMP,
> XNI,XNJ,ISUB,JSUB,AMIN,IFLAG,NCL,JJJ,ITER)
C
C PURPOSE -- (1) UPDATE DISTANCE-BETWEEN-CLUSTER ARRAY
Cc SQUA AS REQUIRED BY PREVIOUS ITERATION
Cc (2) FIND WHICH TWO CLUSTERS ARE TO BRE COMBINED
Cc NEXT (ISOB AND JSUB)
C
Cc JoLy 22, 1977
C
Cc
C
DIMENSION SQUA(1),EXTRA(1) ,MARRAY (1), MCEL(1) ,ONDCL (1)
Cc .
C
C
IF (ITER.EQ.1) GO TO 100
C IE, IF THIS IS THE FIRST ITERATION, GO TO 100
C
Go To (10,20,30,40,50,60,160,190) ,IFLAG
C
Cc
C *** STINGLE LINKAGE CRITERION
C
10 AI=.5
AJ=.5
B=0.0
G==.5
GO TO 70
Cc
C
C *%**x COMPLETE LINKAGE CRITERION
C
20 AI=.5
C
AJ=.5
B=0.0
G=.5
GO TO 70
C
C
C *%% GROUP AVERAGE CRITERION
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30 ATI=XNI/ (XNI+XNJ)
AJ=XNJ/ (X NJ+XNT)
B=0.0
G=0.0
GO TO 70

*** YEIGHTED AVERAGE CRITERION

a0 n

40 AI=.S
AJ=.5
B=0.0
G=0.0
GO TO 70

*x%% CENTROID CRITERION

QOO0

50 ATI=XNI/ (XNI+XNJ)
AJ=XNJ/ (XNI+XNJ)
B=- (XNI*XNJ) / ( (XNJ+XNT) * (XNJ+XNT))
G=0.0
GO TO 70

*%x* MEDIAN CRITERION

anan

60 AI=.5
AJ=.5
B=-.25
G=0.0

(s NeKe!

*%* (FOR THE FIRST SIX CRITERIA)
70 CONTINUE
IF (NCL.EQ.2) GO TO 150

COMPUTE DISTANCES TO NEWLY FORMED CLUSTER AND
STORE DISTANCES IN SQUA

aaaon

DO 80 J=2,NCL

CALL INTZ(MARRAY ONDCL,NSAMP,JJJ,KI,KJ,IJ,J0)
DIF=SQUA (KI)-5QUA (KJ)

IF (DIF.LT.0.0) DIF=-DIF
SQUA(KI)=ATI*SQUA (KI) +AJ*SQUA (KJ)+B*SQUA (IJ) +G*DIF

C
C CHECK FOR MINIMUM DISTANCES
o
C

TYPE *,KI,AMIN
IF (AMIN.LE.SCUA(KI)) GO ™0 80
AMIN=SQUA (KI)

ISUB=1
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140

JSUB=J
CONTINUE

ITLOW=2
GO TO 110

ITLOW=1
(FOR FIRST ITERATION)
IF (IFLAG.EQ.8) GO TO 210

CHECK THE REST OF THE CLUSTERS FOR
MINIMUOM DISTANCES

LIMIT=NCL=-1
DO 140 I=IILOW, LIMTT
ILOWER=T+1
IN1=0NDCL (1)
DO 140 K=TLOWER,NCL
IN2=0NDCL (K)
IF (MARRAY (IN1) .LT.MARRAY (IN2)) GO TO 120
MA=MARRAY (IN1)
MI=MARRAY (IN2)
GO TO 130
MA=MARRAY (IN2)
MI=MARRAY (IN1)
IK= (MI-1) *NSAMP-MI* (MI+1) /2+MA
TIK= ((MA-2) * (MA=1)) /2+MI
*,TK,SQUA (IK) ,AMIN
IF (AMIN.LE.SQUA(IK)) GO TO 140
AMIN=SQUA (IK)
ISUB=1
JSUB=K
CONTINUE
RETURN

LAST ITERATION FOR ALL BUT THE MINIMOUM VARIANCE AND
STANDARD DEVIATION

CONTINUE

CALL INT2(MARRAY,ONDCL,NSAMP,JJJ,KI,KJ,IJ,2)

DIF=SQUA(KI)-SQUA (KJ)

IF (DIF.LT.0.0) DIF=-DIF

AMIN=ATI*SQUA (KI)+AJ*SQUA (KJ) +B*SQUA (IJ) +G*DIF

ISUB=1

JSUB=2

RETUORN

MINIMUM VARIANCE CRITERION
LIMIT=NCL-1

XMIJ=XNI+XNJ
IF (NCL.EQ.2) GO TO 180
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DO 170 J=2,NCL

CALL INT2 (MARRAY,ONDCL,NSAMP,JJJ, KI,KJ,IJ,J)
A=MCEL (J)

XM=XMIJ+A

SQUA (KI)= ((XNI+R) /X M) *SQUA (KT) + ((XNJ+A) /X M)

> *SQUA(KJ) - (A/XM) *SQUA (1IJ)

IF (AMIN.LE.SQUA(KI)) GO TO 170
AMIN=SQUA (KI)

ISUB=1

JSUB=J

CONTINUE

GO TO 90

LAST ITERATION FOR MINIMUM VARIANCE
CONTINUE

CALL INT2(MARRAY,ONDCL,NSAMP,JJJ,KI,KJ,IJ,2)
A=MCEL (2)

XM=XMIJ+A

AMIN=( (XNI+A) /XM)*SQUA (KI)+ ((XNJ+A) /X M) *SQUA (KJ) -

> (A/XM) *SQUR(IJ)

ISuB=1
JSUB=2
RETURN

MINIMOM STANDARD DEVIATION CRITERION

LIMIT=NCL-1
XMIJ=XNI+XNJ

ITT=MARRAY (1)
=EXTRA (IIT) +EXTRA (JJJ)

IF (NCL.EQ.2) GO TO 250

DO 200 K=2,NCL

CALL INT2 (MARRAY,ONDCL,NSAMP,JJJ,KI,KJ,IJ,K)
A=MCEL (K)

D=A+XMIJ

D=1./(D*(D-1.))

IN1=ONDCL (K)

KKK=MARRAY (IN1)

A=EXTRA (KKK)

SQUA (KT) =SQUA (KI) +SQUA (KJ) +SQUA (IJ) ~A-X
D=SQUA (KI) *D

IF (AMIN.LE.D) GO TO 200

AMIN=D

ISUB=1

JSUB=K

CONTINUE

EXTRA (ITI)=SQUA(IJ)

IILOW=2

CHECK REST OF CLUSTER PAIRS FOR MINIMUM
STANDARD DEVIATION
LIMIT=NCL-1
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DO 240 I=ITLOW, LIMIT
A=MCEL (I)
ILONER=TI+1
IN1=ONDCL (I)
DO 240 K=ILOWER,NCL
IN2=0NDCL (K)
IF (MARRAY (IN1) .LT.MARRAY (IN2)) GO TO 220
MA=MARRAY (IN1)
MI=MARRAY (IN2)
GO TO 230
MA=MARRAY (IN2)
MI=MARRAY (IN1)
TIK= (MI-1) *NSAMP-MI* (MI+1) /2+MR
IK= ((MA=-2) * (MA-1)) /2+M]
B=MCEL (K) +A
B=1./ (B*(B=1.))
B=B*SQUA (IK)
IF (AMIN.LE.B) GO TO 240
AMIN=R
ISUB=I
JSUB=K
CONTINUE
RETURN

FINAL ITERATION POR MINIMUM STANDARD DEVIATION
CALL INT2 (MARRAY,ONDCL,NSAMP,JJJ,KI,KJ,IJ,2)
A=MCEL (2)

D=A+XMIJ

D=1./(D*(D-1.))

IN2=0ONDCL (2)

KKK=MARRAY (IN2)

A=EXTRA (KKK)

EXTRA (III)=SQUA (IJ)

AMIN=SQUA (KI) + SQUA (KJ) +SQUA (IJ) -A-X
AMIN=AMIN*D

ISUB=1

JSUB=2

RETURN

END

SUBROUTINE INT2 (MARRAY,ONDCL,NSAMP,JIJ,KI,KJI,IJT,J)

PURPOSE -- LOCATE POSITION IN DISTANCE ARRAY "SQUA" FOR

DISTANCE BETWEEN CLUSTERS IIY AND JJJ (1IJ),
DISTANCE BETWEEN CLUSTERS KKK AND III (KI),
AND DISTANCE BETWEEN CLUSTERS KKK AND JJJ (KJ).

JoLy 22, 1977
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DIMENSION MARRAY(1) ,ONDCL (1)

IN1=0NDCL (1)
IN2=0ONDCL (J)

IF (MARRAY(IN1).LT.MARRAY(IN2)) GO TO 10
MA=MARRAY (IN1)

MI=MARRAY (IN2)

GO TO 20

MA=MARRAY (IN2)

MI=MARRAY (IN1)
KI=NSAME* (MI-1) -MI* (MI+1) /2+MA
KI= ((MA-1)*(MA=2)) /24MT

IF (JJJ.LT.MARRAY(IN2)) GO TO 30
MA=JJJ

MI=MARRAY (IN2)

GC TO 40

MA=MARRAY (IN2)

MI=JJ3J

KJ= (MI-1) *NSAMP-MI* (MI+1) /2+MA
KJ= ((MA=2) % (MA=1)) /24MT

IF (MARRAY(IN1).LT.JJJ) GO TO 50
MA=MARRAY (IN1)

MI=JJJ

GO TO 60

MA=JJJ

MI=MARRAY (IN1)

IJ= (MI-1) *NSAME-MT* (MI+1)/2+MA
TJ= ((MA=2) % (MA=1)) /2+MT

RETURN

END

SUBROUTINE DENDRO(DIST,SAMPLE,KLUSTR,IPOS,NC,NC?2,
> STORE, STORE2, XXXX, NFEAT, NSAMP)

PUORPOSE =-- PLOT DENDROGRAMS !1!!

JULYy 22, 1977

DIMENSION DIST(1),SAMPLE (NSNAM,1),KLUSTR(2, 1),
> IPOS (1) ,NC(1),NC2(1),STORE (2, 1},STORE2(2,1),
> XXXX (NSAMP,5)

COMMON/ALWAYS/STORY (30) ,DATE (5) ,TODAY (2),
> IFLAG, NORMA, NORMB, MET,NSQUAR,LOG, NEWDAT,
> INV,NFACTR,IPLOT,MPLOT,NCLAS,ITURN,IDELX,
> ISTORY,IPTALK

COMMON/NAM/NSNAM,NVNAM,TITSAM(5),TITPP(5) ,TITCLS(5) ,

> PTALK(20)
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DIMENSION X (4) ,Y(4)

DELX=0.2

XINC=0.
XTALK=XINC-2.0

INITIALIZE ARRAYS
DO 10 J=1,NSAMP
NC (J) =J

CALL VARSAM(SAMPLE, DIST,NFEAT ,NSAMP,XINC,YINC,DELX)

WRITE SAMPLE NAMES ALONG X-AXIS
VERTICAL SAMPLE NAMES
XINC=XINC+DELX*1.1

SIZE=0. 12

IF (DELX.LE.SIZE) SIZE=DELX*0.6
USIZE=SIZE*0.8

YINC=-0.5

IF (NOS.GT.4) YINC=YINC-0.4
YINC2=YINC-0.515
YINCA=YINC2-0.035
YINC3=YINC2-0.40

CALL ANGLE (90.)

DO 20 J=1,NSAMP

CALL HEIGHT (SIZE)

CALL MESSAG (SAMPLE (1,IPOS (J)),4,XINC, YINC)
XINC=XINC+DELX

CONTINUE

CALL RESET ('ANGLE')

DO 40 J=1,NSAMP

STORE (1,IP0OS(J))=J

STORE (2,J) =0.0

CONTINUE

NSTEP=NSAMP-1
Do 130 K=1,NSTEP

XXXX (K, 1) =STORE (1,KLUSTR (1,K))
XXXX (K, 2) =STORE (1,KLUSTR (2,K))
XXXX (K,3) =STORE (2,KLUSTR(1,K))
XXXX (K, 4) =STORE (2,KLUSTR (2,K))
XXXX (K, 5) =DIST (K)

REINITIALIZF ARRAYS FOR NEXT ITERATION
XN= (STORE (1,KLUSTR (1,K)) + STORE (1,KLUSTR (2,K))) /2.
NO=1
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M=KLUSTR(1,K)
J=KLUSTR(2,K)
IXL=MINO (M,J)
IXG=MAXO (M,J)
DO 110 M=1,NSAMP
IF (NC(M)-IXL) 50,100,60
50 NO=NC (M) +1
GO TO 70
60 NO=NC (M)
70 IF (NC(M)-IXG) 90,100,80
80 NC=NC (M) -1
90 CONTINUE
STORE2(1, NO) =STORE (1,NC (M) )
STORE2 (2, NO) =STORE (2,NC (M) )
NC2 (M) =NO
GO TO 110
100 CONTINUE
STORE2 (1, 1) =XN
STORE2 (2, 1) =DIST (K)
NC2 (M) =1
110 CONTINUE
DO 120 M=1,NSAMP
NC (M) =NC2 (M)
STORE (1,M) =STORE2 (1,M)
STORE (2,M) =STORE2 (2, ¥)
120 CONTINUE
130 CONTINUE

*%%x ORDER "UP-ACROSS-DOWN" LINES ON XXXX(K,1)
N=NSTEP
DO 160 K=2,NSTEP
NSHWAP=0
N=N-1
DO 150 KK=2,N
IF (XXXX(KK-1,1) .LE.XXXX(KK,1)) GO TO 150
DO 140 J=1,5
A=XXXX (KK, J)
XXXX (KK,J) =XXXX (KK~ 1,J)
140 XXXX (KK-1,J)=A
NSWAP=NSWAP+1
150 CONTINUE
IF (NSWAP.EQ.0) GO TO 170
160 CONTINUE

*%* DRAW "UP-ACROSS-DOWN®" LINES
170 K=1
180 X (1) =XXXX (K, 1)

X (2)=X (1)

X (3) =XXXX (K, 2)

X (4)=X(3)

Y (1) =XXXX (K, 3)

Y (2) =XXXX (X,5)

Y(3)=Y(2)
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Y (4) =XX XY (K, 4)
GO TO 200
190 X (1) =XXXX (K,2)
X (2) =X (1)
X (3) =XXXX (K, 1)
X(4)=X(3)
Y (1) =XXXX (K, 4)
Y (2) =XXXX (K,5)
Y (3)=Y(2)
Y (4) =XXXX (K, 3)
200 CALL CURVE(X,Y,4,0)

Cc

C *** PREPARE NEXT LINES
K=K+1
IF (K.GT.NSTEP) GO TO 210
A= (X (4) -XXXX(K,1) ) **2+ (Y (U) -XXXX(K,3) ) **2
B=(X (4) -XXXX(K,2)) **2+ (Y (4) ~XXXX(K,4)) **2
IF (A.LE.B) GO TO 180
GO TO 190

C

210 CONTINUE

C
WRITE (6,10000)
RETORN

C

C

10000 FORMAT (*OPLOT COMPLETED')
10100 FORMAT (15A4)
10200 FORMAT (F10.3)

END

a0nan

INTEGER FUNCTION DIMEN(MANY)

PORPOSE -~ KEEP TRACK OF DIMENSIONS
JoLy 22, 1977

anaan

COMMON/HOLD/NSIZE,A (1)

CATA KOUNT/1/

DIMEN=KOUNT

KOUNT=KOUNT+MANY

IF (KOUNT.GT.NSIZE) WRITE(6,10000) NSIZE,KOUNT
RETUORN

ENTRY LOOSE (MANY)
KOUNT=MANY
KETURN

10000 FORMAT (' AVAILABLE SIZE=',I5,
> ' BUOT YOU NEED',I6,'. ERROR! ')
END
SUBROUTINE VARSAM(SAMPLE,DIST,NFEAT,NSAMP,XINC,
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> YINC,DELYX)

o
c _
c PURPOSE -- TO WRITE VARIABLES AND SAMPLES TO
c LEFT OF PLOT
c
c NML
c JULY 22, 1977
c
c
COMMON/ALWAYS/STORY (30) ,DATE (5) ,TODAY (2) ,
> IFLAG, NORMA, NORMB, MET,NSQUAR,LOG, NEWDAT,
> INV,NFACTR,IPLOT,MPLOT,NCLAS,ITURN,IDELY,
> ISTORY,IPTALK
COMMON/NAM/NSNAM,NVNAM,TITSAM(5),TITPP (5) ,TITCLS(5),
> PTALK (20)
c
DIMENSTON SAMPLE(1) ,DIST(1)
o
DATA LBLANK/! vy
COMMON/TIL/TTTLL (16)
c
c
10 CONTINUE
CALL NOBRDR
XMAX=NSAME*DELX+XINC+0.5
PAGEX=XMAX+1.0
CALL PAGE (PAGEX,11.0)
CALL HEIGHT(0.12)
CALL PHYSOR(0.,0.5)
CALL TITLE (LBLANK,1,LBLANK,O0,LBLANK,O0,XMAX,8.5)
20 CONTINUE
NSTEP=NSAMP-1
o
C PIND THE MAXIMUM IN THE Y DIRECTION.
YMAX=0.
DO 30 J=1,NSTEP
IF (YMAX.LT.DIST(J)) YMAX=DIST(J)
30 CONTINUE
YINC=0.0
40 CONTINUE
c

C *** INTTIALIZE PLOT
CALL ENDGR(0)
CALL OREL (XINC,YINC)
XMAX=NSAMP*DELYX
CALL TITLE(LBRLANK,1,LBLANK,0,LBLANK, 1,XMAX,8.9)
CALL ANGLE(90.)
XMAX=NSAMP
CALL GRAF(0.0,1.0,XMAX,0.0,*SCALE',YMAX)
CALL MESSAG('CLUSTER DISTANCE!,16,-0.5,3.0)
CALL RESET('ANGLE')
CALL MESSAG(TITLL,59,0.0,9.90)
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CALL MESSAG(
> ¢ CLUSTEP ANALYSYS ON MONTE CARLO RESULTS USING $' ,
> 100,0.0,9.3)
6o TO (50,60,70,80,90,100,110,120) ,IFLAG
50 CALL MESSAG('*SINGLE LINKAGE',14,'ABUT',?ABUT')
GO TO 130
60 CALL MESSAG ('COMPLETE LINKAGE',16,*ABUT','ABUT')
GO TO 130
70 CALL MESSAG ('*GROUP AVERAGE',13,'ABUT','ABUT')
GO TO 130
80 CALL MESSAG(*WEIGHTED AVERAGE',16,'ARUT®', 'ABUT')
GO TO 130
90 CALL MESSAG(*CENTROYD',8,'ABUT','ABUT?)
GO TO 130
100 CALL MESSAG('MEDIAN',6,'ABUT','ABUT')
GO TOo 130
110 CALL MESSAG (*'WARDS METHOD',11,'ABUT',*ABUT')
GO TO 130
120 CALL MESSAG (*STANDARD DEVIATION',19,'ABOT',*ABUT')
130 CALL MESSAG(' FOR THE CLUSTERING CRITERIONS$?,
> 100, *ABUT', *ABUT"')
RETURN
C
C
10000 FORMAT('1THERE ARE',I3,' VARIARLES AND WEIGHTS,*,
> ' WHICH IS TOO MANY TO WRITE ON THE PLOT./®
>' INSTEAD THEY ARE LISTED HERE FOR YOUR CONVENIENCE'/
>/'0VARIABLE WEIGHT')
10100 FORMAT(13X,E10.3,T5,2A4/(4X,18A4))
10200 FORMAT (*OTHERE ARE',I3,
> ' SAMPLES, WHICH IS TOO MANY TO LIST ON THE PLOT.')
END
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o PMGEST PROGRAM LISTING
DIMENSION KNT (3000),CA (3000),IGRPS (100,25),NC (100),
> VEC(100) ,PROR (100, 25) ,TITLE(16) ,SAMNO (100) ,SCU (100) ,
> OUTL (100),IH (100)

Chx% N IS THE NUMBER OF SAMPLES
TYPE 10100
ACCEPT 10400, N

CX k% CRITNO IS THE A0 TO USE TO SET UP GROUPS.
TYPE 10700

ACCEPT 10800,CRITNO
PRINT 10900,CRITNO

C* %k NIT IS THE NUMBER OF ITERATIONS USED
C* *x IN MONTE CARLO ITERATIONS (M)
TYPE 11000

ACCEPT 10400, NTT
DIVFAC=1./NIT
NA= ((N=-1) *(N)) /2
Ck ek READ OUTPUT FROM PMGPER AS UNIT 25

RFAD(26,11500) TITLE
READ(26,11600) (SAMNO (I),I=1,N)
READ (26, 10600) (KNT (I),I=1,NA)

10 PRINT 11700,TITLE
PRINT 11800, (SAMNO (K) ,K=1,N)

I00T=0

OUTLC=NIT~-CRITNO
Ck*x FIND THE SAMPLE PAIRS WHERE THE FREQUENCY IS
Ck*kx IS GREATER THAN AO.

Do 20 I=1,NA
CA (I) =KNT (I) *DIVFAC
IF (KNT(I) .GE.CRITNO) CA(I)=1.0
20 CONTINUE
CH** CHECK FOR ANY OUTLIERS (FREQUENCY LESS THAN M-A0)
PO 40 I=1,N
DO 30 J=1,N
IF (J.EQ.T) GO TO 30
NO= ((I-1) *(I-2))/2+J
IF (J.GT.I) NO=((J-1)%(J-2))/2+I
IF (KNT (NO).GT.OUTLC) GO TO 40
30 CONTINUE
Ckx SAMPLE I IS AN OUTLTIER.
TOUT=IOUT+1
OUTL(IOUT) =T
40 CONTINOE

Chkxx SET UP GROUPS BY COMBINING SAMPLE
CHkx PATRS WITH FREQUENCY GREATER THAN AO0.
NO=0
NGRPS=0
DO 110 J=2,N
L1=J-1
Do 100 L=1,1L1
NO=NO+1
Cokrkxk SKIP THE REST OF THIS LOOP IF FREQUENCY

Ck*x OF OCCURENCE <aO0.



Ch*x
CHokk
CH Ak

50
60

70
Ck k%

C Ak

80

Ch*k
Cekk
90

100
110
Chekk

Chkxk
CH %k
CH ¥k
CH %k
Cok ok

120
130

Chkx

150

IF (CA(NO).NE.1.0) GO TO 100

IMATCH=0

IF (NGRPS.EQ.0) GO TO 90
FIRST COMBINE ONLY THE SAMPLE PAIRS
WHOSE FREQUENCY OF OCCURENCE > A0 FOR EVERY MEMBER
OF THIS GROUP.

DO 80 IYG=1,NGRPS

NG=NC (IG)

DO 50 IIG=1,NG

Iv=1L

IF (IGRPS(TIG,IG).EQ.J) GO TO 60

1v=J

IF (IGRPS(I1G,IG).EQ.L) GO TO 60

CONTINUE

GO TO 80

po 70 II6=1,NG

IA=IGRPS(IIG,IG)

IF (IV.EQ.IA) GO TO 100

INO=((IA-1)*(IA~-2)) /2+1IV

IF (IV.GT.IA) INO=((IV-1)*(IV-2))/2+IA

IF (CA(INO).NE.1.0) GO TO 50

CONTINUE

A MATCH WAS FOUND,

THAT IS ADD SAMPLE IV TO GROUP IG.

IMATCH=1

NC (IG) =NC (IG) +1

IGRPS (NC(IG),IG)=1IV

CONTINUE

IF (IMATCH.EQ.1) GO TO 100
NO MATCH WAS FOUND FOR A PREVIOUSLY EXISTING GROUP,
SO FORM A NEW ONE.

NGRPS=NGRPS+1

NC (NGRPS) =2

IGRPS (1,NGRPS) =J

IGRPS (2,NGRPS) =L

CONTINUE

CONTINUE
THE GROUPS NOW PORMED HAVE ALL MEMBERS
WHOSE FREQUENCY OF OCCURENCE IS > AO
FOR ALL PAIRS. THIS IS POUND FIRST,
AND THEN THE GROUPS WITH COMMON SAMPLES
ARE COMBINED TO FORM THE GROUPS DESCRIBED
IN THE PMG PROCEDURE.

IF (IOUT.EQ.0) GO TO 130

DO 120 ¥I=1,I0UT

NGRPS=NGRPS+1

IGRPS (1,NGRPS) =0UTL (1)

NC (NGRPS) =1

CONTINUE

CONTINUE

IP (NGRPS.EQ.1) GO To 220
NOW COMBINE ALL GROUPS WITH SAMPLES IN COMMON.

DO 210 J=2,NGRPS
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J1=J-1
DO 200 K=1,J1
NNM=0
NG1=NC (K)
NG2=NC (J)
DO 150 N2=1,NG2
I1J=IGRPS(N2,J)
DO 140 N1=1,NG1
IF (IJ.EQ.IGRPS(N1,K)) GO TO 150
140 CONTINUE
NNM=NNM+1
IH (NNM) =IJ
150 CONTINUE
IF (NNM.EQ.NG2) GO TO 200
NGRPS=NGRPS-1
NC (K) =NC (K) +NNM
IF (NNM.EQ.0) GO TO 170
DO 160 NN=1,NNM
IGRPS (NG14NN,K) =TH (NN)
160 CONTINUE
170 CONTINUE
DO 190 LL=J,NGEPS
NN=NC (LL#¢1)
DO 180 NI=1,NN
IGRPS (NI, LL)=TIGRPS (NI,LL+1)
180 CONTINUE
NC (LL) =NN
190 CONTINUE
GO TO 130
200 CONTINUE
210 CONTINUE
220 CONTINUE
PRINT 12000,NGRPS
Ch %% CALCULATE THE PROBABILITIES OF SAMPLE MEMBERSHIP.
230 DO 330 J=1,NGRPS
PRINT 11200,J
NNO=0
DO 240 L=1,N
240 VEC(L)=0.0
NG=NC (J)
DO 250 IG=1,NG
1=IGRPS (IG,J)
VEC (L) =1.
SCU (IG) =SAMNO (L)
250 CONTINUE
PRINT 11300, (SCU(NN),NN=1,NG)
DO 320 L=1,N
EROB(L,J) =0.0
L1=L-1
SUM=0.0
IF (L1.LE.1) GO TO 270
DO 260 M=1,L1
NO= ((L-1) *(L-2))/2+M



260
270

280
290

300

310
320
330

340

350
360

CH %k
C* %k

Ch %
Coke ko

370

10000
10100
10200
10300
10400
10500
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SUM=SUM+V EC (M) *CA (NO)

CONTINOE

IF (L.EQ.N) GO TOo 290

L2=L+1

DO 280 M=L2,N

NO= ((M=1) * (M=2)) /2+L

SUM=SUM+VEC (M) *CA (NO)

CONTINUE

DIV=NC (J)

IF (VEC(L).NE.1) GO TO 300

SUM=SUM+1.

DIV=DIV+1.

SUM=SOM/DIV

EROB (L, J) =SUM

CONTINUE

CONTINUE

CONTINUE

DO 360 J=1,N

SSOUM=0.0

DO 340 K=1,NGRPS

SSUM=SSTM+PROB (J,K)

CONTINUE

DO 350 K=1,NGRPS

IF (SSUM.EQ.0.0) GO TO 350

FROB (J, K) =PROR (J,K) /SSUM

CONTINUE

CONTINUE

ICH=0
WRITE OU™ SOME INFORMATION TO ONIT 25 TO
PLOT THE SAMPLE MEMBERSHIP PROBABILITIES IF DESIRED.

WRITE(25,11500) TITLE

WRITE (25, 10200) N,NGRPS,CRITNO

WRITE (25, 11900) (SAMNO(I),I=1,N)
WRITE OUT THE PROBARILITIES TO THE
LINE PRINTER UNIT.

DO 370 K=1,NGRPS

PRINT 11100,K, (PROB (L,K) ,1L=1,N)

WRITE (2S5, 10300) (PROB(L,K),L=1,N)

CONTINUE

TYPE 12200, NGRPS

TYPE 10000

ACCEPT 10500, ANS

IF (ANS.NE.'Y') STOP

TYPE 10700

ACCEPT 10800,CRITNO

GO TO 10

STOP

FORMAT (* AGAIN?Y)

FORMAT (' NUMBER OF SAMPLES?')

FORMAT (2I5,2F10.3)

FORMAT (8F10.3)

FORMAT (I)

FORMAT (A1)
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10600 FORMAT (20I4)
10700 FORMAT(* CRITNO?')
10800 FORMAT (26) : '
10900 FORMAT(* THE CRITICAL NO. USED FOR THIS ROUN IS',F10.3)
11000 FORMAT (' NUMBER OF ITERATIONS??!)
11100 FORMAT (' GROUP',I5/10F9.2/(10F9.2))
11200 FORMAT(®' CLUSTER UNIT ',I5/)
11300 FORMAT ((1X, 10 (Al, 1X)))
11500 FORMAT (1625)
11600 FORMAT (20 AY)
11700 FORMAT (1X, 16A5)
11800 FORMAT (' SAMPLE NUMBERS'/ (10 (3X,A4,2X)))
11900 FORMAT (' SAMPLE NUMBERS'/(2014))
12000 FORMAT(* THE FOLLWING ARE PROBABILITIES FOR',
> ¢ THE *,I5,' GROUPS FOUND.')
12200 FORMAT(' THE NO. OF GROUPS =!,I5)
END
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APPENDIX B
GENERATING AND TESTING RANDOM NUMBERS

A uniform random number generator for an interval I is
defined as a method which selects points within I such that
each point has an equally likely possibility of occuring.
Actual methods for generating uniform numbers in use today
usually consist of using a recurrence relation on a digital
computer. These procedures specify an initial number ao v
each a% is calculated from oL by some algorithm. The
numbers generated by these methods are not truly random, but
they can be shown to satisfy statistical tests for
randomness and can be assumed to approximate true
randomness. Such a generator is then called a pseudorandom
number generator [Shreider, 1964].

Statistical tes*ting plays an important part in
determining the usefulness of pseudorandom number
generators. It is not possible to prove that a generator is
truly random since that would necessitate generating an
infinite set. Statistical tests can give a qualitative
comparison between tested sequences [Halton, 19703. Such
tests can be used to select a pseudorandom number generator
for use in a particular system [Gorenstein, 1967].

A collection of six standard statistical tests is used
to test +the different attributes of 1locally available

pseudorandom generators. These tests are implemented in
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TESTRN, a FORTRAN program. Each test ié described below.
The results of testing the four generators are given and
discussed. A description of input and a listing of TESTRN
are also contained in this Appendix.

Tests were applied to 10 sets of 5000 uniformly
generated random numbers from the interval I from 0 to 1.
The first four tests are performed for each set. The last
tvwo tests require longer sequences; the entire collection of
generated numbers was used for them. In each case, expected
values are compared with actual values. Test statistics are
applied and the obtained significance level for the
hypothesis that the sequence is uniformly random is
computed.

The first test calculates the first, second, and third
moments for each batch in order to test the uniformity of
the sequences over the entire interval T. The calculated
moments are then compared with the expected values of
one-half, one-third, and one-fourth, respectively, for a
uniformly distributed random variable in I [Gorenstein,
19673. The results are tabulated for each set.

The second test is a frequency test ([Kendall, 1938]
which is applied +to test the uniformity of the generated
numbers over small subintervals within I. One hundred equal
subintervals were used in testing each batch. The
calculated quantity of numbers occurring within each

interval is compared to the expected value for a uniform
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distribution. The chi~square statistic was used to test the
goodness-of-fit of <the observed frequency to the expected

frequency

100

tz2 = (g -N/100)2 |, (B1)
i=1J—T7TUF

where N is the total number of random numbers in one set and
qi is the gquantity of generated numbers occurring in the
i-th interval. The resultant t2 has approximately a

chi-square distribution with 99 degrees of freedonm.

Z

In a set of generated numbers z a run

]' 2' o o - 9 ZN'

up of 1length s is defined as a subsequence of s successive

numbers starting at z, such that

z],+a >Zj+a 'i > j' j :1' 2' s e ep 5-1 v
Za  <Zyq (B2)
z

s+a+1< Zg+a

The run down is defined similarly. 1levene [1964] gives
the expected number of runs of length s in a sequence of
uniformly generated random numbers as

s2 + 3s + 1 _2(s3 + 3s2 - s -U) ¢
(s + 3)! (s + 3)!

E(r,) = 2N (B3)

where N is the number of random numbers generated and s is
the 1length of the run. The expected number of runs greater

than or equal to s is
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= oyS_*+ 1 2(s2 + s

-1)_
(s +2)! (s + 2)!? (B4)

In TESTRN, runs of length four or less are tabulated,
with the number of runs of length five or greater also being
calculated. The total number of runs up and runs down can
be compared to check for bias of the generator. The
chi-square statistic can be used to test the significance of

the results

4
t2 = X
s=1

(B(rg)-T(r;))2 ¢ E(r 2 5)-T(r = 5)
E(r;) S E(L, = 5) (E5)

vhere T(r;) is actual tabulation of runs of length s. The
statistic t2 has approximately a chi-square distribution
with four degrees of freedon.

The Cramer von Mises test was the fourth test used
{Shreider, 19641. This test does not involve a grouping of
the numbers, but instead compares the empirical and
hypothetical cumulative distribution functions [Anderson,
19521. To apply the test, the generated numbers are ordered
and the test statistic is computed

N
Nw2 = 1/12N + [Z(V) o | 2V'1/2N’2 v (BG)
v=1

where Zy) is the ordered sequence of the generated numbers.
The reported significance level in TESTRN is computed from

the approximation in Anderson {1952, Eq.4.35].
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The fifth test is a serial or gap test {Kendall, 19381,
which computes the ¢two-dimensional frequency of a pair of
generated numbers separated by a specified gap. The
resultant frequencies indicate the tendency of two generated
numbers to occur together. The frequencies are tabulated as

follows:

q.. =q,. +1
1] 1]
if z;, is in interval i and zbﬂsis in interval § where 95 is
the number of pairs occurring in the i-th and j-th interval,
and f 1is the specified gap length,. An interval size of
0.10 was used in TESTRN. Up to five different gaps (3) can
be specified as input to TESTRN. The chi-square statistic
used to <calculate a significance level for the serial test

1ls

10 10

2 ¥ =(qii-N/100)2 , (B7)
t= 327 {0 w00

for 99 degrees of freedonm.
The final ¢test is one suggested by Maclaren and

Marsaglia [1965] to evaluate the behavior of n-tuples (z],

221- o e ,Zn). If
n
ZM= (max(2i+]' Z1’+2' cee ey z-h_n) ) v (Bs)
. n
Zn= 1 - (1 - mln(th, Zi2r eeee zhn) ) ’

then both zy and z should be uniformly distributed
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{ Maclaren and Marsaglia, 1965)]. 1In TESTRN, n-tuples (n = 5,
10, 15, 20) were tested by checking for the nuniformity of
functions of the maximum and minimum of these vectors. For
each set of 20 random variables generated, Zy and zm were
calculated for four 5-tuples, two 10-tuples, and one 15- and
' 20-tuple. The frequency of zM and zm in subintervals of
size 0.01 was calculated for all sets. The statistic used
for this test is Eq. (B1), where qi indicates the

frequency of zy or z The statistic is approximately a

m
chi-square with 99 degrees of freedonm.

The four pseudouniform random number generators tested
include FLTRN [Westley and Watts,1970], GGUB {International
Mathematical and Statistical Libraries, 19771, RANDU
{International Business Machines, 19701, and URAND ([ McRae,
19701. GGUB.and RANDU are package routines from the IMSL
routine and IBM 1libraries, respectively. FLTRN is a
generator available on the system at Oak Ridge National
Laboratory. The generator URAND is a 319 congruential
uniform generator and is used in MICKA [ McRae, 1970]. The
results of the test are given in Pigs. B1-B7. 1In Pig. B1
the first, second, and third moments are compared. Figures
B2-B4 compare significance 1levels for the tests indicated
for each batch of uniform numbers generated. Figures BS,
B6, and B7 give the significance levels for the tests done

on the entire set. All significance 1levels are for the

hypothesis that the numbers generated are random. Table B1
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Table B1. Number of significance levels below 0.10
for four pseudorandom number

generators?
Cramer
Frequency Runs von Gap Maximum Minimum
Name test test Mises test n-tuple n-tuple Total
GGUB 2 3 2 3 0 3 13
RANDU 2 2 2 0 0 1 7
FLTRN 1 0 1 1 0 2 5
URAND 0 3 1 0 0 0 4

1Testing Hy, :the sequences generated are uniformly

random versus H:the sequences are not uniformly random.
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lists the order of <the generators by the number of
significance levels which occurred below 0.10.

FLTRN and URAND give the best results in the sequences
tested. URAND gave sliqghtly better results in the tests
shown in Fig. B6 and also required less time than FLTRN to
generate 5000 numbers. Therefore, URAND was chosen for use
as a uniform number generator.

TESTRN is designed to evaluate an arbitrary number of
pseudo-uniform random number generators using six
statistical tests of uniformity. The input parameters to
TESTRN are given below, followed by a description of the
required subroutine RANDYR., Figqure B8 is a flowchart of the
program.

The first input card is a general data card; the next
four describe the generator and should be supplied for every

one tested.

Card 1 Variables=NGEN, NRAN, NTIMES Format= (31I5)

NGEN is the number of generators to be tested.

NRAN is the size of each data set to be generated (<10,000).
NTIMES is the number of times the data sets of size NRAN are

to be generated.

Card 2 Variables=TITLE Format=(20AWl)
TITLE is the alphanumeric title for the pseudouniform random

number generator.
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[aput
parameters

;

[nitialize
storage arrays

2

Get array . .
generated numbers

[1=1]
X(1)2
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Card 3 Variables=NOPT Format=(I5)
NOPT=0 (default) means an initalization factor (seed) will be
read ins if NOPT is not equal to 0 no initialization of

the generator will be done.

Card 4 Variables=FMT Format=(20A4)

FMT is the format to be used in reading in the initalization
factor; the variable read in will be a double length
word. This card should not be in the input if NOPT is

not equal to 0.

Card 5 variable=RINT Format=FMT
RINT is the initialization factor(seed). This card should

not be in the input if NOPT is not equal to 0.

The user-supplied routine RANDYR should generate NRAN
random numbers for NG generators. RANDYR is called once for
every data set. The argument list of RANDYR is ORD, NRAN,
RINT, NG, and NT where
ORD is an array of NRAN pseudouniform random numbers upon

return to RANDYR.

NRAN is the number of pseudorandom numbers to be generated.

RINT is the initialization factor read in if NOPT=0.

NG is the sequential number of the generator that is to be
tested.

NT is the number of sets.

An example of RANDYR is given in the program listing.
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TESTRN PROGRAM LISTING

DIMENSION TFINT(100),ISINT(10,10,10),
TIFMAX (4, 100) ,NR(10) , IFMIN (4, 100),

ORD (10000) , 0X (4) ,ON(4) ,TITLE (20),

NRUNU (7) , NRUND (7) , RUNS (8) , EXPR (8)

DATA EXPM1/0.5/,EXPM2/.33333333/,EXPM3/.25/
LOGICAL PLU

DATA DF/99.0/

READ(5,10100) NGEN,NRAN,NTIMES

NG=1

FN=1./FLOAT (NRAN)

FN1=1./FLOAT (NRAN-1)

READ (5, 10200) NS, (NR (M) ,M=1,NS)

NT=1

READ (5, 10000) TITLE

READ (5, 10100) NOPT

WRITE(6,10010) TITLE

WRITE(6,10020) NRAN,NTIMES

NT=1

DO 5 K=1,100

DO S5 J=1,4

IFMAX (J,K) =0

IFMIN(J,K)=0

CONTINUE

Do 15 J3=1,10

DO 15 K=1,10

DO 15 L=1,10

ISINT(L,K,J)=0

CONTINUE

SET UP EXPECTED NO. OF RUNS

FAC=6.

po 20 J=1,7

pP=J

FAC=FAC* (P+3.)

P2=P*p

P3=P2%p

EXPR(J) =2.% (NRAN* (P2+43.%P+1.) - (P3+3.%P2-P-4.) ) /FAC
CONTINUE

TE=(4.*NRAN-2.) /6.

EXPR(8) =(16.*NRAN=-142.)*2.755739 1E-7

I=1 :

ZERO OUT ALL STORAGE ARRAYS

TFINT STORES COUNTS FOR THE INTERVALS OF
FREQUENCY TEST

IFMAX AND IFMIN STORE COUNTS FOR MAX

AND MIN OF N TUPLES (N=5,10,15,20)

ISINT STORES COUNTS FOR INTERVALS OF SERIAL TEST
XM1,XM2,XM3 ARE THE FIRST,SECOND, AND THIRD MOMENTS

NRUNU,NRUND STORE THE NUMBER OF 1-7 RUNS UP AND DOWN

ITRUNU,ITRUND, STORE TOTAL
RUNS UP AND DOWN.

DO 10 K=1,100

IFINT (K) =0
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CONTINUE
XM1=0.0
XM2=0.0
XM3=0.0
Do 30 J=1,7
NRUNU (J) =0
NRUND (J) =0
CONTINUE
ITRUND=0
MAXRUU=0
PLU=.FALSE.
NRUN=0
ITRUNU=0
MAXRU D=0
CALL RANGET (ORD,NRAN,TIME,NOPT,NT,NTIMES, NG)
XRL=0RD (1)
DO 100 I=1,NRAN
XR=ORD (1)
FIND MOMENTS
XM1=XM1+XR
XM2=XM2+XR*XR
XM3=XM3+XR*XR*XR
FIND INTERVAL FOR FREQUENCY TEST
INF=XR*100+1
IFINT (INF) =IFINT (INF) +1
CHECK FOR RUNS
XF=XRL-XR
IF(XF) 200,205,210
IF (PLU) GO TO 202
IF RANDOM NUMBER>LAST RANDOM NUMBER
BEGINNING OR CONTINUING
A RUN 0P
IFPLU TRUE, BEGINNING A RUN UP
IF PLU FALSE, CONTINUING A RUN UP
NRUN=NROUN+1
GO TO 220
PLU=.FALSE.
ITRUND=TITRUND+1
IF(NRUN.LE.7) NRUND (NRUN)=NRUND (NRUN) +1
IF (NRUN.GT.MAXRUD) MAXRUD=NRUN
NRON=1
GO TO 220 :
IF RANDOM NUMBER <LAST RANDOM NUMBER
BEGINNING OR CONTINUING A RUN DOWN
IF PLU FALSE, BEGINNING A RUN DOWN
IF PLU TRUE, CONTINUING A RUN DOWN
IF(.NOT. PLU) GO TO 212
NRON=NRUN+1
GO TO 220
PLU=.TRUE.
ITRUNU=TITRUNU+1
IF(NRUN.LE.7) NRUNU(NRUN)=NRUNU(NRUN)+1
IF(NRUN.GT.MAXRUU) MAXRUU=NRUN
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NRUN=1
CONTINOE
XRL=XR
INS=XR* 10+1

CHECK FOR SERIAL TEST

Do 300 M=1,NS
IF(I.LT.NR(M)) GO TO 300
JNS=ORD (I-NR(M)) *10+1
ISINT (JNS,INS,M)=ISINT (JNS,INS,M)+1
CONTINUE
IF(MOD(I,20) .NE.O) GO TO 100

CHECK FOR MAX AND MIN OF N-TUPLES
OX CONTAINS MAXIMUM OF THE 4 S5-TUPLES
ON CONTANS MINIMUM OF THE 4 S-TUPLES
IFMAX (1,%) AND FIMIN(1,*) STORES COUNTS OF
MAX AND MIN OF 5-TUPLES
IFMAX (2,%) AND IFMIN (2,%*) STORES COUNTS OF
MAX AND MIN OF 10-TUPLES
IFMAX (3,%) AND IFMIN(3,*) STORES COUNTS OF
MAX AND MIN OF 15-TUPLES
IFMAX (4,*) AND IFMIN(4,*) STORES COUNTS OF
MAX AND MIN OF 20-TUPLES
DO 500 M=1,4
TADD=5% (M-1) +I-20
OX (M) = AMAX1 (ORD (1+IADD) ,ORD (2+IADD) ,ORD (3+IADD),
ORD (4+IADD), ORD(5+IADD))
I0X= (OX (M) **5) *100. +1
IFMAX (1,I0X) =IPMAX (1,I0X) +1.
ON(M) =AMIN1 (ORD (1+IADD),ORD (2¢IADD),ORD (3+IADD),

A ORD(4+IADD), ORD(5+IADD))

TON=(1.-{1.-ON(M)) **5) *100.+1.
IFMIN (1,ION)=IFPMIN (1,TION) +1
CONTINUE

01X=0X (1)

IF (0X (2) .GT.01X) 01X=0X(2)
02X=0X (3)

IF(OX (4) .GT.02X) 02X=0X(4)
J1X= (01X*%10) *100.+1.

J2X= (02X*%*10) *100.+1.

IFMAX (2,J1X) =IFMAX (2,3 1X) +1
IFMAX (2,J2X) =IFMAX (2,32X) +1
01N=0N (1)

IF(ON(2) .LT.O1N) O1N=ON (2)
02N=0N ( 3)

IF (ON (4) .LT.02N) O2N=ON (4)
JIN=(1.=(1.=-01N) *%*10) *100. +1.
J2N=(1.=(1.~02N) *%*10)*100. +1.
IFMIN(2,J1N) =IPMIN (2,3 1N) +1
IFMIN (2,J2N) =IPMIN(2,J2N) +1
IF (0X (3) .GT.01X) O1X=0X (3)
IF(ON(3) .LT.01N) O1N=ON (3)
J1X=(01X**15) *100.+1.

JIN= (1. =(1.-01N) *¥%15) *100. +1.
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IFMAX (3,J1X) =IFMAX (3,J1X) +1
IFMIN(3,J1N) =IFMIN(3,J1N) +1
IF (OX (4) .GT.01X) O1X=0X(4)
IF (ON (4) .LT.O1N) O1N=ON (4)
J1X=(01X**20) *100.+1.
JIN=(1.=(1.-01N) *%*20) *100. +1.
IFMAX (4,J1X) =IFMAX (4,J1X) +1
IFMIN (4,J1N) =IFMIN (4,J1N) +1
CONTINUE

FIND MOMENTS

XM1=XM1%FN

XM2=X M2*FN

XM3I=XM3I*FN

CHI=0.0

FIND CHI SQUARE DISTRIBUTION FOR FREQUENCY TEST
RN=0.01*NRAN

DO 1100 N=1,100

- SUM=IFINT (N) -RN

CHI=CHI+SUM*SUNM

CONTINUE

CHI=CHI /RN

WRITE(6,11100) NT,XM1,EXPM1,XM2,EXPM2,XM3, EXPM3
CALL MDCH(CHI,DF,P,IER)

P=1.-P

WRITE (6,11200)CHI,P

WRITE (6,11300)

IF(PLU) GO TO 1120

ITRUND=ITRUND+1

IF (NRUN.LE.7) NRUND(NRUN)=NRUND (NRUN) +1
TF (NRUN.GT.MAXRUD) MAXRUD=NRON

GO TO 1122

IF (NRUN.LE.7) NRUNU(NRUN)=NRUNU(NRUN)+1
IF(NRUN.GT.MAXRUU) MAXRUU=NRUN
CONTINUE

ITRUNT=ITRUNU+ITRUND

TR=0.0

CHI=0.0

DO 1150 L=1,7

NTRL=NRUNU (L) +NRUND (L)

TR=TR+NTRL

SUM=NTRL-EXPR (L)

CHI=CHI +SUM*SUM _

WRITE(6,11350) L, NRUNU(L),NRUND(L),NTRL,EXPR(1L)
WRITE(6,11355) ITRUNU,ITRUND,ITRUNT,TE
MAXRUN=MAXRUU

IF (MAXRUD.GT.MAXRUN) MAXRUN=MAXRUD
WRITE (6, 11365) MAXRUU,MAXRUD,MAXROUN
SUM=ITRUNT-TR-EXPR (8)

CHI=CHI+SUM*SUM

CHI=CHI/T.

CALL MDCH(CHI,7.,P,IER)

P=1.-P

WRITE (6,11375)CHI,P
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ORDER THE LAST NRAN RANDOM NUMBERS FOR
CRAMER VON MISES TEST

DO 1200 J=2,NRAN

M=J

IF (ORD(M) .GE.ORD(M=1)) GO TO 1200
ORDH=ORD (M)

ORD (M) =ORD (M~1)

ORD (M-1) =ORDH

M=M-1

IF(M.GT.1) GO TO 1225

CONTINUE

DO SUMMATION FOR CRAMER VON MISES TEST
FN2=1./FLOAT (2*NRAN)

SUM=0.0

DO 1300 J=1,NRAN

FN1=J%2-1

FAC=ORD (J) - FN 1%FN 2
SUM=SUM+FAC*FAC

CONTINUE
OMEG=1. /JFLOAT (12%¥NRAN) +SUN

CALL CUM(OMEG,P)

pP=1.-P

WRITE(6,11400) OMEG,P

ANALYSIS COMPLETED FOR THIS PASS
CHECK IF SHOULD DO ANOTHER PASS
NT=NT+1

IF(NT.LE.NTIMES) GO TO 1
CONTINUE

FIND CHI-SQUARE DISTRIBUTION FOR SERIAL TEST
WRITE (6,11450)

DO 2200 J=1,NS

CHI=0.0
NT=NRAN*NTIMES-NR (J) *NTIMES
RNTD=0.01%NT

DO 2100 K=1,10

DO 2100 L=1,10
SUM=ISINT(L,K,J) -RNTD
CHI=CHI+SUM*SUN

CONTINUE

CHI=CHTI /RNTD

CALL MDCH(CHI,DF,P,IER)

P=1.-P

WRITE (6,11500) NR(J) ,CHI,P
CONTINUE

WRITE (6,11600)

DO 3000 L=1,4

LEN=L*5

IFAC=LEN

IF(L.EQ.3) IFAC=20
RFAC=NTIMES*NRAN*0.01/FLOAT (IFAC)
CHI1=0.0

CHI2=0.0

DO 2500 J=1,100
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SUM=IFMAX(L,J)-RFAC

CHIT=CHI1+SUM*SUM

SUM=IFMIN(L,J)~-RFAC

CHI2=CHI2+SUM*SUM

CONTINUE

CHI1=CHI1/RFAC

CHI2=CHI2/RFAC

CALL MDCH(CHI1,DF,P1,IER)

CALL MDCH(CHI2,DF,P2,IER)

P1=1.-P1

P2=1.-P2

WRITE(6,11650) LEN,CHI1,P1,CHI2,P2

CONTINUE

WRITE(6,11800) NRAN,TIME

NG=NG+1

IF(NG.LE.NGEN) GO TO 2

sTOoP

FORMAT (20A4)

FORMAT (315) .

FORMAT (1615)

FORMAT (*1TEST FOR QUALITY OF PSEODO °',
*RANDOM NUMRBRERS'///

' GENERATOR NAME: ', 20A4///)

FORMAT(' A DATA SET OF SIZE',I5,' WAS GENERATED ',
I5,' TIMES FOR THIS TEST.'//)

FORMAT (* O%*k*kkkkkkkkkkkx RESULTS FROM DATA SET *',IS,
U kkokokokokokokokkokkokokk 8 /g

* MOMENTS',10X,*CALCOLATED®*,5X,'EXPECTED'/
5X,'FIRST',5X,P10.5,5%X,F10.5/

5X,'SECOND' ,4X,F10.5,5X,F10.5/

5X, *THIRD',5X,?10.5,5%X,F10.5////)

FORMAT(' FREQUENCY TEST (CHI-SQUARE)'//
5X,'STATISTIC = ¢

3%,F10.2/5X,*SIGNIFICANCE = ' ,F10.2////)
FORMAT (' RESULTS OF RUN TEST'//

5X, *NUMBER OF RUNS',6X,'SUCESSIVE',

5X, *SUCCESSIVE',8X,'TOTAL'/

7X,'0F LENGTH',9X,'INCREASES?,5Y,
*DECREASES*,9X,'RUNS?,9X,

*EXPECTED' /)
FORMAT(16X,I5,u4%X,3(17,8X),F10.2)

FORMAT (4X,* TOTAL',15X,3(17,8X),F10.2)
FORMAT(4X,* LONGEST RUN' ,9Y,3(I7,8X)/)
FORMAT (4X,* RESULTANT CHI-SQUARE STATISTIC= !
+F10,2/4X," SIGNIFICANCE = ',FP10.4//7//)
FORMAT(' CRAMER VON MISES STATISTIC = ',F10.3/
5X,*SIGNIFICANCE = *,¥10.3////)

FORMAT(' OVERALL SERIAL TEST RESULTS:?!'/)
FORMAT( UX,' FOR GAP OF',I5,

* CHI-SQUARE STATISTIC= ' ,F10.2/ ‘
4X,' RESULTANT SIGNIFICANCE = ',F10.4////)
FORMAT (' OVERALL MAXY AND MIN TEST RESULTS'//
4X,* LENGTH OF N-TUPLE' ,6X,'CHI-SQUARE MAXIMUM',12X,
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*CHI-SQUARE MINIMUM'/
25X, *STATISTIC',10X,'SIGNIPICANCE",
9%, *STATISTIC', 10X, 'SIGNIFICANCE? /)
11650 FORMAT(15X,I5,3X,F10.2,3(10X,F10.2))
11800 FORMAT('0'//' THE TIME REQUIRED TO GENERATE ¢,
A I6,' RANDOM NUMBERS WAS ON THE AVERAGE ',
B FB8.3,' SECONDS.!)
END
SUBRROUTINE RANGET (ORD,NRAN,TIME,NOPT,NT,NTIMES, NG)
REAL*8 RINT '
DIMENSION ORD(1),FMT (20)
IF(NT.GT.1) GO TO 10
ITT=0
RINT=0.0DO
IF(NOPT.NE.O0) GO TO 10
READ(5, 10100) FMT
READ (5, FMT) RINT
10 IT1=ICLOCK (0)
CALL RANDYR (ORD,NRAN,RINT,NG,NT)
IT2=ICLOCK (0)
ITT=IT2-IT1+ITT
IF(NT.LT.NTIMES) RETURN
TIME=(ITT/FLOAT (NTIMES))*0.01
RETURN
10100  FORMAT (2024)
END

-NeN. -
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DOUBLE PRECISION FUNCTION KR (N)
TMPLICIT REAL*8 (A-H,0-2)
DATA P1,P2,P3,P4,PM/.8840702298758D0,
A .911312780288703D0,.958720824790463D0,
B .973310954173898D0,.9866554770869488D0/
DATA C1,C2/.479727404222641D0,2.216035867166471D0/
DATA B1,R2,R3/-.59550713801594D0,1.10547366102207D0,
A -.63083480192196D0/
DATA H1,H2,H3/.053377549506886D0,.049264496373128D0,
A.034240503750111D0/ '
DATA R1,R2,R3/.805577924423817D0,.87283497667179D0,
A .755591531667601D0/
DATA SL,SRTP/.180025191068563D0,.3989422804014327D0/
DATA CC,TC/1.13113163544418D0,2. 4554607482284127D0/
==MISING VARIABLE
U=RAN (1)
C===BIG TRIANGLE
’ IF(U.GT.P1) GO TO 10
KR=C2% (RAN (1) +CC*U-1.)
RETURN
CHrex SMALL TRIANGLE
10 IF(U.GT.P4) GO TO 50
IF(U.GT.P3) GO TO 30
c=C1
IF(0.GT.P2) GO TO 20
B=B1
H=H1
R=R1
GO TO 40
20 B=R2
H=H2
R=R2
GO TO 40
30 c=C2
B=B3
H=H3
R=R3
C***TRIANGLE REJECTION
40 V=RAN (1)
W=RAN (1)
2=V-%
KR=DMIN1(V, W) *B+C
IF (DMAX1(V,%) .LE.R) GO TO 45
IF(KR.LT.0.) GO TO 40
IF (H*DABS(Z) .GT. SRTP*DEXP (-. 5*KR*KR) +SL* (KR-C2))
A GO TO 40

Cc

us KR=DSIGN (KR, 7)
RETURN

CH**TATL

50 V=RAN (1)

KR=TC-DLOG (RAN (1))
IF (VXV*KR.GT.TC) GO TO 50
KR=DSIGN (DSQRT (2.*KR) ,U-PH)
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RETURN
END

DOUBLE PRECISION FUNCTION RAN (N)
IMPLICIT REAL*8S (A-H,0-2)
COMMON/SEED/IRAND
IRAND=TRAND*1162261467

IF (IRAND.LT.0) IRAND=-IRAND
RAN=FLOAT (IRAND)*0.4656612873E-9
RETURN

END
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