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ABSTRACT

A probabilistic method for grouping data has been 

developed to incorporate measurement error into standard 

cluster analysis procedures. In the analysis, the data are 

perturbed using Monte Carlo techniques to simulate the 

experimental error, and the resultant data sets are 

clustered. By varying the number of clusters, a procedure 

is given to estimate the unknown number of groups. This 

technique and other standard procedures for determining the 

number of groups are described and compared for three 

different examples. The probabilistic method is shown to 

have advantages for determining the number of groups and the 

probabilities for a sample's membership in the hypothesized

groups.
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CHAPTER 1

INTRODUCTION

lil Summary

Cluster analysis is a mathematical method to subdivide 

data into meaningful groups. Two main purposes of cluster 

analysis are to determine the number of groups in a data set 

and to place each data sample or observation into the proper 

group. Many numerical technigues to perform cluster 

analysis have been developed over the past ten years 

[Everitt, 1974],

The purpose of this paper is to suggest a new method 

for determining the number of groups present in a data set 

and to compare it with current methods. Estimation of the 

number of groups is dependent on the definition of group or 

cluster; some investigation into this definition is 

necessary. Everitt [1974] reviews various previously 

proposed definitions and concludes that many are vague. 

They also use the terras "similarity," "alike," etc., which 

are not well defined. He suggests that perhaps one single 

definition cannot be all encompassing.

The definition of groups considered in this paper 

relies on the clustering of data. A group is a set of 

samples which are consistently clustered together, even when 

perturbed by experimental or measurement errors. A 

definition of consistent clusters and a more rigorous
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definition of groups is in Section 3.1. The unique features 

of this definition are not only the dependence on clustering 

but also the emphasis on experimental error. Both 

properties are useful for applying the definition to data.

The above definition of groups is the result of a 

Probabilistic Method for Grouping Data (PMG) developed in 

this paper. The basic steps included in the method are 

perturbing the observed data by hypothesized experimental 

error, clustering the resultant data sets, and summarizing 

the results. Osing three different examples, it is 

demonstrated that this method results in a practical and 

meaningful definition of groups.

The PMG method has several advantages. The number of 

groups is estimated, and instead of distinct clusters being 

defined, the probability of membership of a data point in a 

cluster is computed. The method can be used with any 

clustering technique and does improve the results of that 

technique in the examples considered. In addition, 

experimental error is incorporated to avoid results 

dependent on a single set of measurements.

General notation is described in the remainder of this 

chapter. Chapter 2 describes clustering methods and current 

methods for estimating the number of groups. The PMG method 

is described in Chapter 3 with application of the described 

methods in Chapter 4.
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1.2 Basic Definitions and Notation

Let x . = (x., , x .Q r x. ) denote the vector of- J Jl J2 r JP
p measurements on the j-th sample where j = 1, 2, . . .r n.

The quantity x. is observation j or sample j. The purpose 
J

of cluster analysis is to divide the data into g groups with 

n^ representing the number of samples in the i-th group. 

The basic steps in clustering include scaling and weighting 

of the data, selecting a distance measure, executing a 

cluster analysis algorithm, and interpreting the results. 

These steps are defined below.

Scaling of the data is necessary for some cluster 

analysis algorithms in order to use variables which have 

different scales of variation. An observation x^ is scaled 

if

where s. is a scale associated with the i-th measurement.i
Scaling can remove the different influences of the variable 

due to varying units and ranges. Usual methods of scaling 

include dividing each variable by its range or by its 

standard deviation:

s . = 1/(max x ,, - min x- --)
j J J . J

s.j = V ( S [ -xi ]2/(n-1)) where x^ = s x ^./n .
J J

The variables can also be weighted to stress certain 

variables or sets of variables using any a priori
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information about the variables:

x .. = w.x .. where
Ji i Ji

w^ is the weight for variable i. The usual method of 

weighting is to select the weights which sum to one.

A distance measure quantifies the "likeness” or 

"nearness" of two samples. Let d^ be the distance between 

samples k and j, then d ^ < d^, implies that samples k and j 

are closer or more alike than samples k and j*. Two 

commonly used measures are the square of the Euclidean 

distance

akj ■ (1’

and the Mahalanobis distance:

akj * ' <2'

where S is the covariance matrix of a sample population. In 

some clustering analysis techniques, it is necessary to 

extend the definition of distance between samples to 

distances between groups. The distance between groups I and

J, which will be denoted cL, , is usually a function of the
I J

distance between samples in the groups.

A clustering algorithm separates observations into 

groups. The selection of the technique is dependent upon

time, money, and computer core availability as well as upon
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theoretical considerations. Some comparisons of different 

techniques and their applicability to data are in the 

literature (e.g.r see Rand [1971], Slagle et al. [1974], 

and Gower [1967]). A comparison of techniques based upon 

their ability to separate bivariate normal populations has 

also been done to aid in selection of techniques [Bayne et 

al. , 1978].

Estimates for the number of groups and for the group 

memberships are the results of applying cluster analysis 

techniques. The analyst should be aware of all physical 

features of the data in order to interpret the groups 

realistically. These physical features include the error in 

the data, any secondary information on similarities of 

observations, and the purposes for clustering the data. 

Using a variety of clustering techniques can provide the 

user with different aspects of the data and their groupings 

[ Kittler, 1976].

The PMG procedure is an attempt at answering two 

questions of cluster analysis in this interpretive step: 

"What are the number of groups present in the data set?" and 

"What is the probability that each sample is in a group?". 

The number of groups and the observations that define those 

groups are estimated by incorporating random error. The 

probability of each observation's group membership is 

calculated, allowing for any one observation to have a 

probability of being in more than one group.
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CHAPTER 2

BACKGROUND

2.1 History

Clustering observations into different groups is a very 

intuitive thought process. For example, a small child 

learns the different animal groups: dogs, cats, cows, 

horses, etc. People are separated into groups on the basis 

of sex, age, origin, income level ; the list is endless. 

Although clustering observations using different 

measurements is a very natural process, the actual study of 

methods of clustering analysis has only been widespread 

since the availability of electronic computers.

Cluster analysis is considered a technique in the 

broader field of pattern recognition. The study of pattern 

recognition includes not only finding the groups in the 

data, but also defining the groups so that any new 

observations can be automatically placed into one of the 

existing groups. Pattern recognition methods which define 

the groups and classify new objects are implemented in 

programs such as RECOG-ORNL [Begovich and Larson, 1976] and 

ARTHUR [Duewer et al., 1975].

Cluster analysis techniques have been developed and 

applied to scientific fields ranging from artificial 

intelligence (A) to zoology (2) . Cluster analysis research 

has been done especially in the areas of biology.



10

psychology, and statistics. Sokal and Sneath [1963] have 

one of the first books dedicated to analyzing cluster 

analysis techniques. Everitt [1974] and Anderberg [1973] 

both have written useful general descriptive cluster 

analysis references. Other comprehensive references include 

Fukunaga [1972], Hartigan [1975], Cormack [1971], Lance and 

Williams [1967, 1968], Nagy [1968], and Dorofeyuk [1971]. 

The Pattern Recognition Society and the Classification 

Society, two associations which have developed during the 

last ten years, are concerned with cluster analysis.

2.2 Clustering Algorithms

Many different cluster analysis algorithms are 

available. A general classification of these techniques is 

the division into hierarchical and nonhierarchical methods. 

Hierarchical methods proceed in a step-wise fashion to 

combine the data from n single-member clusters to one 

cluster (agglomerative) or vice versa (divisive). 

Nonhierarchical techniques are usually optimization 

algorithms, where an initial set of clusters is updated 

until a set criterion is optimized.

Agglomerative hierarchical methods, which are the only 

hierarchical methods described here, consider each sample as 

a separate cluster at the first step. A distance measure is 

calculated for each pair of (single-member) clusters and the 

two samples with the smallest distance are combined to form 

a new cluster. The distances between the newly formed
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cluster and the other samples are calculated, and the two 

closest clusters are combined for the next step. This 

combination of clusters proceeds until all samples are in 

one cluster. A tree-like structure called a dendrogram 

graphically displays the results of the analysis; for 

example, a dendrogram of four samples is shown below where 

dT, is the distance between clusters.

Different hierarchical methods are derived by deciding 

how to define the distance between two clusters. The most 

direct method is known as single linkage, in which the 

distance between two clusters is taken to be the distance 

between their two closest members. Complete linkage is a 

slight variation; the distance between two clusters is 

defined as the largest distance between two of their 

members. Arithmetic functions of the distances between 

group members are incorporated in centroid, median, group 

and weighted average hierarchical clustering methods. 

Measures of the error sum of squares and the minimum 

increase in the variance are known as Ward's and variance 

methods. Descriptions of the various techniques are in 

Cormack £1971] and Larson et al. [1977]. All of the
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techniques described above are implemented in a FORTRAN 

program DENDRO [Larson et al.r 1977],

The other class of clustering techniques which will be 

considered here uses an optimization criterion to find the 

groups in the data. An initial partition is formed, usually 

by selecting a set of initial cluster centers and dividing 

the data points among these centers. Some criterion is 

selected to test the group memberships. Samples are 

reallocated to try to improve the criterion until there is 

no further change.

Optimization procedures differ in the optimization 

criterion used. One multivariate analysis method deals with 

dispersion matrices. If the total dispersion matrix.

n
T = Z X'X ,

j=1 j”j
(3)

then T = W + B, where

k=1 i=1
.<'■»)

g

(5)

with
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The matrix W is known as the within-group dispersion matrix 

and B is the between-group dispersion matrix. Four 

different clustering criteria are derived from these 

eguations [Friedman and Rubin, 1971]:

1) Minimizing the trace of W (maximizing trace B), 

equivalent to minimizing the total within group sum of 

squares.

2) Minimizing the determinant of Wf equivalent to 

minimizing Wilk's lambda statistic.

3) Maximizing the largest root ofB-\W=Or referred 

to as the largest root test.

4) Maximizing the trace of B, known as the 

Hotelling’s trace criteria.

McRae [1972] has implemented these optimization methods in a 

FORTRAN program, MICKA. The clustering in MICKA is 

performed in two steps. The first step uses a k-means 

procedure developed by MacQueen [Anderberg, 1973]. The 

second step uses one of the above criterion to test a 

sample's group membership.

An alternative optimization technique is NORMIX [Wolfe, 

1971], Here the data are assumed to be a mixture of 

multivariate normal populations. Thus, the optimal division 

is separation of the data in order to maximize the 

likelihood function. The iterative equations consist of
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nA
n = 1/n SPCG^ Xk) , 

k=1

C .- l (6)

2.i
n

vn^iak-c., (Jk-C.,.p(G.|Xk) r

where

/n = the mixing proportion for cluster ir 

C.j = the mean of cluster ir

= the covariance matrix of cluster i,

P (G^| X k) = estimated probability that sample k 

is in cluster i.

From an initial configuration, NOBMIX uses a simplified 

"Aitken" iterative scheme until convergence. Initial 

clustering is done using Ward's method with Mahalanobis 

distance; alternatively, the user may input an initial set 

of clusters.

A third optimization method for clustering multivariate 

data is the heuristic interactive program ISODATA [Ball, 

1965]. The set of input parameters, which a user can change 

at each step, includes an initial guess at the number of 

clusters, a smallest allowable cluster size, a cluster 

splitting parameter, and a cluster lumping parameter. 

Documentation for this procedure is given in Ball [1965],
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Tou and Gonzalez [1974] also give a description of the 

program with examples.

The four specific methods described above and 

implemented in DENDKO, MICKA, NOBMIX, and ISODATA were 

chosen to be included in this study because of their 

applicability to determining the number of groups. These 

diverse methods are also in widespread use. A summary of 

these methods is presented in Table 1. Procedures used to 

estimate the number of groups are in the next section.

2.3 Estimating the Number of Groups

Hierarchical clustering techniques group the 

observations from n to one groups. Optimization techniques 

require at least an initial guess for the number of groups. 

An estimate of the number of groups should be a result of 

these techniques, however.

The dendrogram described in Section 2.2 is useful for 

indicating the total structure of data. The number of 

clusters actually present in the data is left to the user's 

judgment. If there is a large separation of distances 

between two or more clusters shown in the dendrogram, then 

the clusters are distinct and well defined. However, a 

dendrogram on real data rarely displays large differences, 

giving little inference to the number of groups in the data.

Some of the optimization methods change the number of 

clusters while iterating; the resultant number of clusters 

as well as the cluster separation is optimized. The



Table 1 Summary of cluster analysis techniques 
described in this study

Technique

Hierarchical 

(Agglomerat ive)

Optimization

Clustering
method

Single linkage 

Complete linkage 

Group average 

Weighted average 

Centroid 

Median

Ward's method 

Variance 

Trace W 

Det W

Trace W-*B 

Root of W-1 B 

Maximum Likelihood 

Group separation

Program
used

DENDRO

MICKA

NORMIX

ISODATA
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majority of methods, however, optimize only on the group 

separations. In this case, the optimization criterion for 

different number of clusters can be compared to determine 

the number of clusters present in the data.

The clustering criteria available in MICKA are used 

only to optimize on the group membership and not the number 

of groups. A test for determining the number of groups is 

to plot the criteria versus the number of groups; a sharp 

change in the value of the criteria, followed by a small 

percentage change, can be used to indicate the correct 

number of groups. This procedure for estimating the number 

of groups has been found to be unsatisfactory [Everitt,

1974].

NORMIX does not change the number of clusters within an

optimization; however, a number of different guesses for the

number of clusters can be tried within one run. Wolfe

[1971] has determined a significance test for rejecting the

null hypothesis that fewer clusters, r, exist rather than

more clusters, r', using the maximum likelihood estimates,

L and L r r

■2(1/n) (n-1-p-r */2) log (ly/L ^ ) , (7)

2
which is a X distribution with 2p(r-r*) degrees of freedom.

The ISODATA procedure iterates on the number of 

clusters present in the data as well as the members of the 

clusters. ISODATA is a very elaborate procedure and
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requires user interaction [Anderberg, 1973], The parameters 

which determine if lumping or splitting of the groups is to 

occur are difficult to determine. Dubes [1976] concludes 

that the ISODATA procedure is very sensitive to the input 

parameters and requires several runs to get reasonable 

results.

Some mathematical indicators have been used to test the 

number of clusters present in the data independent of the 

method used to determine the clusters. Everitt [1974] 

describes three methods. The first, attributed to Beale, is 

an F statistic

F(r,r') = Sr -
---- 5 (8)

where Sr denotes the trace W for r groups, which tests the 

significance of r* over r groups with p(r-r*) and p(n-r') 

degrees of freedom. The second method, suggested by 

Calinski and Harabasz, is based on the variation of the 

ratio Kg

trace B / trace W
Kg - g-1 / n-g , (9)

where B and W are defined as in Eqs. (4) and (5) . The 

distribution of Kg determines the number of groups present: 

if Kg reaches a maximum for j, then there are j groups 

present; if Kg increases monotonically, there are no groups; 

and if Kg decreases monotonically, the samples have a
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hierarchical structure. The third indicator results from an 

investigation of the determinant of W criterion by Harriot 

[1971], He suggests that g2 (det W) should be at a minimum 

when g groups are present in the data.

Nonparametric mode-seeking [Fukunaga and Hostetler,

1975], valley-seeking [Koontz and Fukunaga, 1972], and graph 

theoretical algorithms [Koontz et al., 1976] are also 

methods for estimating the number of groups. These 

algorithms are iterative procedures which estimate the 

number of clusters by searching for regions of dense or 

sparse concentrations of observations. Graph theoretical 

techniques can be used to extend these methods to find 

irregular shaped clusters [Koontz et al., 1976].
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CHAPTER 3

A PROBABILISTIC METHOD FOR GROUPING DATA

The incentive for a new method to determine the number 

of groups is motivated by the desire to improve upon the 

current techniques and to incorporate experimental error 

into a clustering procedure. Data used in cluster analysis 

consists of observations; each measurement has experimental 

error associated with it. The experimental error is likely 

to affect the clustering results (Nagy, 1968]. Preliminary 

investigation of a data set can be used to find outliers and 

extreme experimental errors [i.e.r Kane et al.r 1977]; 

however, in typical clustering applications the dependence 

of the groups upon experimental error is unclear.

The Probabilistic Method for Grouping Data (PMG) uses 

Monte Carlo simulations to perturb the data within a 

specified range as the first step. The combination of Monte 

Carlo techniques and cluster analysis has been used 

previously to test the dependence of variables [Borucki et 

al., 1975], to test the significance of a technique (Ling, 

1971], and to compare cluster analysis techniques (Rand, 

1971 and Bayne et al., 1978]. The PMG procedure uses Monte 

Carlo techniques to approximate the experimental error. An 

earlier study by Kane and Larson (1976] also investigated 

the use of Monte Carlo perturbations in cluster analysis.
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The perturbed data sets, created with Monte Carlo 

techniques, are each clustered as the next step in the PMG 

algorithm. Any set of samples which groups together for a 

large percentage of the perturbed data sets is defined to be 

a group. The probability of each sample being in a group is 

given in terms of the number of times that a sample occurred 

with that defined group.

The number of groups estimated by this method, in some 

sense, is the maximum number of groups that an analyst 

should consider. Any larger number of groups is dependent 

on the experimental error. Any smaller number of groups, 

however, might make more sense in terms of the physical 

situation. For example, apples, oranges, potatoes, and peas 

are four groups of foods, but they can be combined into only 

two groups of fruits and vegetables.

The application of the PMG procedure is especially 

useful for data in which measurement errors are known, such 

as chemical analyses and biological tests. The procedure 

can also be used to find the significance of clusters or 

variables used in the clustering by defining the 

experimental error as significance bounds for the variables.

The PMG method is implemented in a set of FORTRAN 

programs documented in Appendix A. General formulas of the 

method are described in Section 3.1 and the details of their 

implementation are stated in Section 3.3. Comparisons of



23

this method with the techniques described in Section 2.3 are 

in Chapter 4.

3.1 Theory of the PMG Procedure

The notation in the development of the PMG procedure 

uses a capital letter to denote a random quantity, with a 

lower case letter denoting the realization of the 

corresponding upper case variable. Estimation of any 

variable will be denoted by a "a" superscript, i.e. g is 

the estimate of the number of groups in the data, g. The 

groups are represented by sets G ^ with n^ samples.

A perturbed sample, is formed by combining theJW
original sample measurement, X ., and a random vector, E •

~ J "" JU

¥ = X . + E. (10)
"ja J “ja

where E. is a random vector denoting the experimental error-ja
associated with X . for the a-th simulation. The collection

“ J
of n samples are perturbed to form data set a, for a = i, 

2, . . ., m. An example of the above error analysis is 

given by Kane and Larson [1976],

The justification of the PMG method is clustering of 

the perturbed data into c groups, for increasing values of 

c. The data are first grouped into the smallest number of 

groups which could possibly exist in the data. The value of 

c = 2 is used if no additional information about the 

smallest possible number is known. The number of groups 

that appear consistently through the clustering of the data
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is estimated and denoted by g (c). The value of c is 

increased by one and the clustering of the perturbed data 

sets is performed. Again the number of groups, g(c) is 

defined. The method continues until g(c) = g(c+1) = g(c+2) . 

The estimate of the number of groups is then g = g(c) .

The motivation for this technique is derived from 

considering the results of clustering g distinct groups into 

c groups where c<gorc>g. If c < g, then each group 

clustered will be either one of the g groups or a collection 

of two or more of the groups. None of the g groups will 

be subdivided to form the c clusters, considering that the 

intergroup distances are larger than the intragroup 

distances. For example, if the data have four groups. A, B, 

C, and D, and c is set to two, one of the groups formed by 

the clustering will be either A, B, C, D or a combination of 

groups AB, AC, AD, ABC, ABD, BCD. If c = g, the data will 

cluster into the g groups. If c > g, the groups in the data 

will be forced to subdivide in order to form c clusters. 

When clustering the perturbed data sets, the subdivision of 

the groups is due to fluctuations in the error, and the 

number of groups which appear consistently in the clustering 

will be the g groups, so g(c) = g.

The method for finding the groups which consistently 

appear when clustering the m different data sets for one 

value of c is given below. For each data set clustered, a 

Bernoulli random variable, A0,(j,j,)r is used to associate
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the sample pairs j and j' that appear in the same cluster

1 if Y . and Y .. are in the same cluster 
“J<* -ja (11)

0 if Y . and Y .. are in different clusters-ja -j'a

The value of Aa(jrj*) summarizes the clustering of one 

perturbed data set. The quantity Aa(jrj') is a Bernoulli 

random variable with PrCA^Cj^j') = 1) = Pr(Y- and Y are 

in the same cluster) = 6 .

The collection of Aa(j,j') for all sample pairs i and 

j* forms a symmetric matrix. Aa can be summed over all m 

iterations to form a frequency matrix of the number of times 

each sample pair occurred in the same cluster. The j,j' 

member of A, A(j,j')r can be considered a measure of 

distance between sample j and j' since A(j,1') > A(irj') 

implies that sample j was in a cluster with j* a greater 

number of times than i was in a cluster with j', i.e.r 

samples j and j' have a higher probability of being in the 

same cluster than samples i and j*. The individual elements 

of the frequency matrix are also binomially distributed 

variables resulting from the sum of m Bernoulli trials.

A distance measure between sample X . and X.. can be
“ J “J

defined as

djj, = 1 - A(j,j')/m (12)

The measure d^^ , a frequency measure, assumes the value 0 

if sample j and sample j' always occurred in the same
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cluster (i.e., = m) and the value 1 if sample j and

sample j* never occurred in the same cluster (i.e., A(j,j') 

= 0). This distance measure can be input to a clustering 

algorithm to form a dendrogram or to cluster into a 

specified number of groups. Examples of dendrograms formed 

from d .are in Chapter 4.
J J

Simply clustering the frequency measure does not 

improve upon an estimate for the number of groups since the 

number of groups and the group membership are still only 

interpretable using the available techniques of the methods 

used to cluster d .. However, it is possible to evaluateJ J
the number of groups and the probability of group membership 

by using the binomial distribution properties of A(j,j').

From the binomial properties of A(j,j')

E[A(j,j«) ] = md (13)

For A (j,j') close
and X are in the

“ J

to m, there is a h 

same group. For a

gh probability that 

given 6 ,

X . 
“J

m
* = Pr[ A (j, j') > a ] = S (v)0v(1-0)m-v (14)

u v=a o

A
from the binomial formula. Therefore, to find the groups 

and estimate g (c), select a particular X and probability 

level 6 , and calculate the resulting aQ. Then search all 

sample pairs and find all j and j* where a(j,j') > aQ.

Combine the pairs to form G^, where
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A l G , — r/x .r for some j = 1, 2, . . n,l 
l J kf

(15)

such that x . e implies that there exists x e & where
"J * “J Ik

a(jrj*> > a . The value of g (c) is set to the number of G,
0 K

formed.
AThe set G^ is one of the clusters which consistently 

appear throughout the clustering of the m data sets into c
Agroups, since each X. in G. appeared with at least one otherJ K

A Amember of G. a times. Note that X X e G does not imply 
k o “j -j k

- a but instead a(j,i) > a and aM*,!') > a , 
0 o o

for some X . and X in G. . This definition of G allows -1 - V k k
chaining; that is, if a(j,j') > a and a(i,j*) > a , sampleso ' o

AX •, X-, and X., are a member of G. even if a(i,j) < a .
~ 1 —J J k o

A probability measure can be defined to calculate the 
probability that sample j is in group G Let the data be

. . . . A A A .partitioned into g groups G_, G - . . ., G as given above.
1 2 9

Consider P(X .e G. ) for a fixed sample j, where P(X e G ) is “J k1 ^ j k
the probability that X . and X., are members of the same group

J J
for all X., in group k. The maximum likelihood estimate of J
the probability that X. and X., are in the same cluster is

J
Mjrj')/®* Using the approximation of the groups G , the

k
P(Z ,e K) is equal to the estimate that X and X are in the - j k -j -j1
same group times the probability of X^,, given G , summed

J k
over all members of G^, or

P(X je Gk) = s afj, j*)/« (Vnk) 
S * 6 k

(16)
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Note that the summation of P(X.e G.) over all k is not-j k
necessarily equal to one since a(jrj*)/m is an estimate of 

the probability that sample j and j' are in the same cluster 

and since the G are only estimates of the groups G . With
K K

normalization the probability that sample j is in any of the 

groups is one

P(2ic6k) = 2 4(1r j')/nk/2 2 A (j» j*) /nk
J K X .,eG. kk=1 X, 6 t K

-j' k ^
(17)

The above probability measure can be shown to satisfy the 

three axioms of probability:

g
D 2 

k=1

2)

2 §(jr j')/nk / 2 2a(j,j')/nkL% e §k k=1 % s
= 1

AP(X. e g ) < 1 , and (18)

3) P^. ) + P (X j e <;k) = P(Xd e or X^e^)

for G ^ n ^ k = 0 .

If X^e^ for some kr the calculation of P (Xj e ^k)

includes a(jrj) in the summation over all samples in the

group. Alternatively, sample j could be dropped as a member

of any group estimate when calculating P (X . e &, ). Any
J k

difference in the estimate of the probability is small since 

Xjegk implies that a(j,j*)/m is close to one. Therefore, 

including a(j,j)/m = 1 in the average has little effect. 

Equation (17) was used in the examples.
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The number of groups and the group membership have been

estimated for one value of c. The prediction results from

the definition of groups: ft group is a set of observations

where X. e G. implies that there exists a X eG. such that “j k r -f k
the probability that samples j and j* are in the same 

cluster is greater than or equal to 0. The number of 

groups is estimated using this definition by determining the 

groups G^ from Monte Carlo clustering of the data into c 

clusters. When an increase in c does not affect the groups 

formed, the groups are stable and additional splitting is 

dependent on experimental error.

3.2 ft Simple Example

Consider the eight samples as shown in Fig. 1 A) . A

step-by-step analysis of this data set using the PMG

procedure is described in this section. The data are

defined as a set of points in two-dimensional space with a 

normal error distribution with mean 0 and standard deviation 

O.ld. The dashed boxes in the figure represent the 99* 

confidence limit that each data point is within those 

boundaries.

The PMG is applied by perturbing the data within the 

error bounds m times. The m data sets are clustered into c 

groups; first consider c = 2. The optimum separation into 

two clusters is the combination of samples 1-5 in one group 

and samples 6-8 in a second group. Since even with error 

considerations, any pairwise distance between samples 1-5 is
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A) Plot of x versus y with dashed lines 
representing 99% measurement error confidence 
interval about the mean.

1.0 i—

B) Dendrogram of frequency measure for c = 2.

Figure 1 Example of eight two-dimensional observations
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less than 2d and the pairwise distances between samples 1-5 

and 6-8 are greater than 2d, this clustering will be 

consistent for all m data sets. Therefore,

M5x5 °5x3 

P3x5 M3x3
r

where H . . and 0 • . are i by j matrices with all elements
IXJ 1 XJ

equal to m and 0, respectively. For any 0 s aQ < m,

S1= a,,a 

G 2 = {x6»Z7rX8| with g (c) = 2.

In addition.

P(X . e &,) 
*

1 j = 1,2,3,4,or 5 

0 j=6,7,or8

(lj= 6,7,or 8 
P(X . e G ) = <

J * (0 j = 1,2,3,4,or 5

A dendrogram of d .is shown in Fig. IB).
3 3

Note that even though there are three distinct groups 

in the data in Fig. 1, g(2) =2. Obviously, this is

because the data were forced to separate into only two 

groups. However, if c is chosen to be three, the three 

groups 1-3, 4-5, and 6-8 will be clustered together to form
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h
?3x2 ®3x3 
!?2x2 ? 2x3 
°3x2 M 3x3

9

and

G1 i -i r~2 '-3’ '

62 = (J4.J5( •

§3 - '

with g(3) =3 and

P (I . e G )
J 1

1 j = 1r2,or 3 

0 j = 4,5,6,7ror 8

A (l j =4 or 5
P(Z, e G ) =

J ^ 0 j =1r2,3#6,7ror 8

P (Xj e 83)
1 j=6f7#or8

0 j =1,2,3,4,or 5

Now let c = 4. Since there are only three groups 

present in the data, a division of one of the groups will be 

necessary to form four clusters. The clusters formed will 

now depend on the individual sample error fluctuations. For 

example, if a perturbation of sample 8 is in the positive 

direction, and 6 and 7 are both perturbed negatively, the 

optimum group division would be 1-3, 4-5, 6-7, and 8. 

Because the clustering is affected by the error 

perturbations, the division of the three distinct groups is



33

random and g(4) = 3. The frequency matrix would be

equivalent to the matrix for c = 3, except the H submatrices

would have elements of m - e. and the 0 submatrices would nowi
have elements less than or equal to £ ^ where is the

number of times sample i was forced to separate from its 

group. For e^< a0 < m - the & are defined as:

5, = |S1.i2.J3| .

&2 = |24-s5! -

G3 = |l6,x7,x8l .

A similar analysis to the above can be used to show 

that g (5) =3 also. The number of groups g = 3 is estimated 

since g(3) = g(4) = g(5). Application of the procedure on 

test data is in Chapter 4.

3.3 The PMG Algorithm

The basic steps in the PMG algorithm are displayed in 

Fig. 2. This section briefly describes the steps used in 

implementing the PMG procedure. Flowcharts of the main 

routines appear in Appendix A.

Each sample Xj is perturbed by Ejtt to form Yjtt as in 

Eq. (10). To determine a distribution for the 

experimental error is estimated or assumed using knowledge 

of the measurement error of the cluster analysis variables. 

Three common families of distribution for the error are 

multivariate normal or Gaussian distribution, multivariate
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Start

"Has the number of groups 
present been eoual for the 
^last three values of c?^-

c=c+l

Input initial 
data set

The number of groups 
is that value

Perturb the data 
and create m 

data sets

Calculate the probability 
that each sample is in 

the defined groups

Find the number 
of groups present 
by investigating 

the frequency matrix

Let c = smallest 
number of possible 
groups in the data

Cluster the m data 
sets into c clusters 

storing the results 
in frequency matrix , a

Figure 2 Basic steps involved in the PMG procedure
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truncated normal distribution, and multivariate uniform 

distribution. The normal distribution is characterized by a 

mean vector and covariance matrix. The truncated normal 

distribution also requires an upper and lower bound, and the 

uniform distribution necessitates only a range. All three 

distributions are implemented in the PMG procedure.

The algorithm used for either of the normal 

distributions is

i J = X 1J

or

(19)

*ij tvixij£i. (20)

where £. is a random variable with mean m and covariance 

matrix 2 , and is the coefficient of variation of i-th 

variable. The transformation matrix used to generate 

normally distributed numbers is described by Bryan and Tebbe 

[1970]. The upper and lower limits of £ • are set if the 

truncated normal distribution is used. The uniformly 

distributed error is computed by generating uniform random 

numbers from a specified range.

Simulating the three distributions requires a uniform 

random number generator. Before choosing a method to 

generate the uniform randon numbers, a set of locally 

available generators was tested. Testing any random number 

generator before using it in a Monte Carlo simulation is
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important to prevent bias of the results [Halton, 1970]. A 

FORTRAN program written to test the generator, and the 

results of the testing, are described in Appendix E. Based 

on these results, a congruential uniform random number 

generator, URAND [McRae, 1970], was chosen; and a previously 

tested algorithm KR [Kinderman and Ramage, 1976] was used to 

transform the uniform numbers to a normally distributed set.

Each data set, Ya, is clustered into c clusters as the 

next step in the PMG procedure. Any algorithm can be 

selected to use in the clustering. Before clustering, the 

Ya can be transformed ( using logarithm, sguare root, etc.) 

and standardized (e.g., divide by range or standard 

deviation).

The PMG procedure described here incorporates a 

hierarchical clustering program, DENDRO [Larson et al.,

1976] because of its diversity in clustering algorithms, 

ease of determining the clustering at a specified range of 

groups, and speed of execution. The PMG procedure also 

includes options for transforming the data. The 

standardization options available in DENDRO are available in 

this procedure.

The computer code which is executed as the first step 

in the PMG procedure is called PMGPER. This routine 

includes the algorithm for generating the m data sets, 

preparing each one for clustering, and then clustering them 

and storing the results in the matrix A. This matrix is
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output for use in the next step of the PMG procedure.

Each A(jrj') can be transformed into the frequency 

measure between samples j and j* using Eq. (12). The 

program used to cluster the samples using this measure is 

also an altered form of DENDEO fLarson et al.r 1976] called 

PMGCLS. All of the hierarchical methods described in 

Chapter 2 are available for clustering; however, since d •J J
is a correlation-like measure, the methods which average or 

sum over the matrix are not realistic.

The frequency measure is already a distance measure, so 

no standardization or weighting is necessary. The arc-sin 

normalization can be performed on djj. to normalize the 

distribution [Brownlee, I960];

djj, = sin -» (djj,) . (21)

*
Clustering by using d-., instead of d^, provided little 

difference in the examples investigated. Both dendrograms 

can be output by PMGCLS.

The PMG procedure is implemented to find G^, k= 1, 

2, . . . , g(c) and to estimate P (Xj € * First, a search 

is performed to find all sample pairs j and j* such that 

A(j,j*) ^ aQ. Any set of samples where A(j,j') ^ a 0r 

A(i,j) > a0, and A(i,j') > ao are combined. After all these 

sets are formed, any two sets which have the same sample are 

combined to form the G^ in Eq. (15). The probability that 

each sample belongs to ^ is computed from Eq. (17) and the



38

basic algorithm is essentially complete for one value of c.

An interactive program PMGEST implements this part of the

procedure.

Additional consideration is necessary to find outliers

or one member groups occurring in the data. Since the

frequency matrix stores only the occurrence of sample pairs,

outliers will not appear as a group. However, if a sample

X. is a single member cluster at least a times in the 
-j o
clustering, it should be defined as a single member G.

Therefore, sample X. is considered a single member cluster
J

if A(j,j') < m - aQ for all j*.

Dendrograms of the frequency measure and determinations

of g (c) are output for increasing value of c. When g (c) =

g(c«-1) = g(c+2) then the number of groups is estimated as

g(c). The probabilities of sample membership are then those

defined by P(X. e G } when & are the g(c) groups estimated 
~ J K K

from Eq. (15).

The procedure recommended to find g(c) is to compute a0 

for 9 = .9, .85, .7, .75 for significance levels of 10%,

1%, and .1%. The binomial formula, Eq. (14), is used to 

determine a0 or the normal approximation is useful for large 

values of m [Lingren, 1976]:

(22)

where $ is the cumulative normal distribution. If for any 

combination of the significance levels and one value of 0,
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9 (c) = g(c+1) = g(c+2)r the number of groups estimated is 

g (c).

The number of times each sample is forced to split from 

its group will increase as c increases above g. In 

addition, it is possible that no value of c will be found 

where g(c) = g(c+1) = g (c+2) (see Section 4.2). This

indicates that either the error perturbations are as large 

as any cluster separation (no groups exist) or a 

hierarchical tree structure might better represent the data. 

An analysis for varying values of a© can still aid the user 

in determining group separations and group definitions at 

different probability levels 0.

A plot of the probabilities for each sample is useful 

for analyzing the data. The very distinct clusters are 

evident, as are samples which are almost equally likely to 

be members of two or more groups. Examples of these plots 

appear in Chapter 4.

The probabilities defined by the PMG procedure might 

vary from the groups suggested by clustering the frequency 

measure. Any differences are due to the algorithms used to 

calculate the distance between two clusters in clustering 

the frequency measure. In addition, not all a(j,j*) pairs 

are used in the determination of sample membership using the 

PMG procedure. Sample j and/or sample j* must be a member 

of a (a k f°r be used (Eq. (17)). The

probabilities of group membership determined by the PMG 
procedure should be and have been (see Section 4.2) better

estimates.
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CHAPTER 4

COMPARISON OF GROUPING METHODS

The PMG procedure is compared to the methods described 

in Section 2.3. The first data set discussed consists of 5 

distinct groups each having 10 samples. The second example 

uses 10 data sets generated from 2 normally distributed 

populations. Finally, the methods are applied to 

geochemical data [Kane and Larson, 1976] as an example of 

the application to real data.

4i_1 Five We 11-Separated Groups

The first example of 50 samples (Fig. 3) was selected 

to illustrate a set of obviously distinct two-dimensional 

groups. If grouping procedures do not estimate five groups 

for this data, it is not likely that they will perform well 

cn more complex data.

The dendrograms for each hierarchical method are shown 

in Fig. 4. Clearly, the five groups are indicated by each 

method. A large separation between the groups is shown by 

the longer lines adjoining each of the five separate groups.

A plot of g versus the optimisation value using W and B 

and separating the data into $ groups is displayed in Fig. 

5 for the four methods in MICKA. Both the trace W and the 

determinant W criteria show the smallest percentage change 

in values from g = 5 to g = 6 and 7. Neither of the 

criterion, however, reached an absolute minimum. The
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-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2

X

Figure 3 Example 1: 50 samples which form 5 groups
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Example 1.
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Figure 5. Plot of § versus optimization values using 
dispersion matrices criteria for Example 1.



45

largest root of has a maximum value at g = 6. The trace 

of does not show a significant maximum in the range 

investigated. Trace W and determinant W can be used to 

estimate 9=5, but the other two criterion give 

unsatisfactory results.

The maximum likelihood estimator, NORMIX, performed 

well on this test. A plot of the log likelihood is in Fig. 

6. A maximum was reached for g = 5. The probability for 

the null hypothesis of g versus g+1 groups was less than 

0.01 for g = 1 to 4. However, for g = 5 the probability of 

the null hypothesis was 86%, in which case H: § = 5 is not 

rejected. NORMIX predicts the correct values of g = 5.

For the ISODATA program, the number of groups output by 

the method was the same as the input number desired. Fig. 

7 shows the trace of W for the groups determined by ISODATA. 

This figure is similar to the plot produced by MICKA*s trace 

W criterion. The plot can be used to estimate g = 5.

Results of the mathematical indicators are shown in 

Fig. 8. Using Beale*s F statistic, the probability that § 

= 5 and not 4 is 1.0; whereas, the probability that $ = 6 

and not 5 is not significant at 0.45. The Calinski and 

Harabasz Kg is at a maximum for g = 5, correctly suggesting 

five groups. Marriot*s g2 (det W) is at a maximum for g = 6; 

it is the only one of these indicators that does not perform 

satisfactorily.
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Figure 6. Maximum likelihood estimate for increasing 

values of g for Example 1.
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Figure 7. Plot of £ versus trace W using ISODATA program.
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Results of Beale*s F statistic, Calinski and 
Harabasz's Kg and Harriot’s g* (det W) for 
Example 1.

Figure 8
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The PMG procedure was applied to this data set with the 

experimental error assumed to be normally distributed with 

mean 0 and standard deviation of 0.1. Twenty simulations 

were run using the minimum increase in variance hierarchical 

procedure as the clustering technique. The values of g(c) 

for c = 2 to 7 are in Table 2. The g (c) listed in the table 

is the value of g (c) for the probability of 0 = .9 for 

significance levels 10%, 1%, and .1%. In this table g(c) = 

g(c+1) = g(c+2) for c = 5, and the method correctly predicts 

five groups. The probability of group membership at g(c) = 

5 are shown in Fig. 9; the groups are delineated correctly. 

The dendrogram of the freguency measure for c = 5 is in Fig. 

10. The dendrogram also indicates five groups.

For the first trivial example, the dendrograms for all 

methods, NOEMIX, Beale's F statistic, the Calinski and 

Harabasz Kg, and the PMG method all clearly identify the 

five distinct groups. The trace W and determinant w 

criteria of MICKA marginally indicate the five groups, as 

does the ISODATA program. The trace of does not 

indicate any number of groups, and both the root of W^B and 

the g2 (det W) criterion predict the wrong value of g = 6.

4.2 Normally Distributed Data

Ten different data sets were generated from a normal 

distribution using means of (0,0) and (2,2) and a 

covariance matrix of 0.91 and normally distributed error 

with mean (0,0) and covariance matrix 0.11. The sample
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Table 2. Results of the PNG procedure 
for Example 1

Number of 
clusters,c

Values of g (c) for 0 = .9 
> =10.* X=1.0* X=0.1*

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 5 5 5

7 5 5 5
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Probabilities of group membership for each 
sample using the PMG procedure for Example 1.
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sample numbers

Dendrogram of frequency measure for Example ,1. 
Complete linkage is the clustering criteria.

Figure 10
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mean, standard deviation, and Shapiro-Wilk statistic 

[Shapiro and Wilk, 1965] for each data set, Y, is given in 

Table 3. The data form overlapping groups; the theoretical 

misclassification is 7.9* [Bayne et al., 1978]. Ten data 

sets were selected to allow a more general test of the 

methods.

The purpose of this example is not only to compare 

group estimation but also to compare misclassification of 

the PMG procedure. All of the procedures were applied to Y. 

Only the PMG method incorporates the consideration of the 

error (E) .

Dendrograms for the 10 data sets using the variance 

method as the clustering criterion appear in Fig. 11. Data 

sets 1, 2, 3, and 5 are subjectively separated into three 

groups. The rest of the sets appear to consist of two 

groups. The variance criterion was chosen above the others 

because of its theoretical appeal and its classification 

ability [Bayne et al., 1978].

All four optimization methods using dispersion matrices 

were tested on the 10 sets; results are in Fig. 12. The 

values of each optimization criterion do not show any 

indication of the number of groups in any of the 10 data 

sets. The first two criteria continue to decrease for g = 

2, 3, 4; whereas, the last two increase monotonically. None 

of the optimization methods even marginally indicates the 

existence of two groups.
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Table 3. Summary statistics of the 10 data sets
used in Example 2

Data
Mean

V ariable

Standard
deviation
Variable

Shapiro-Wilk
statistic
Variable

Set Class 1 2 1 2 1 2

1 1 0.12 0.10 1.28 1.20 0.61 0.09
2 2.02 2.00 1.02 0. 81 0. 56 0.21

2 1 0.36 -0.12 1.20 1.02 0.58 0.29
2 2.15 2.14 1.00 1.07 0. 92 0.27

3 1 0. 13 0.06 1.03 1.04 0.35 0.65
2 2.11 2.07 1.10 0.89 0.31 0.67

4 1 -0.34 0.00 0.75 1.06 0.31 0.67
2 1.80 2.54 0.78 0. 85 0. 08 0.39

5 1 -0.16 0.04 1.00 1.07 0. 22 0.68
2 1.77 2.14 0.90 0.90 0.21 0.46

6 1 -0.41 0.22 1.05 0.95 0.26 0.65
2 2.01 2.17 0.94 0.95 0. 42 0.20

7 1 -0.01 0.04 1.04 0. 69 0. 34 0.72
2 2.04 1.91 0.82 1. 17 0.62 0.85

8 1 -0.13 0.04 0.84 0.82 0. 34 0.91
2 2.07 2.16 0.86 1.06 0.70 0.57

9 1 -0.41 0.11 1.08 1.25 0.44 0.52
2 2.00 1 .25 1.09 0.90 0.24 0.42

10 1 0.06 -0.05 0.77 0.97 0.56 0.62
2 1.93 1.88 0.95 0.90 0.99 0.75
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Data Set 1

Data Set 3

Data Set 5

Data Set 2
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Data Set 10
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Figure 11. Dendrograms using variance criterion for 
Example 2.
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Figure 12. Plot of $ versus optimization values using 
dispersion matrices criterion for Example 2.
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The maximum log likelihood for g = 2 and g = 3 ranged 

between -80 and -64 with the maximum always occurring at $ = 

3. The probabilities of the null hypothesis of H0:$ = 3 

versus the alternative H :g = 2 groups is in Table 4. The 

hypothesis of two groups would normally not be rejected for 

all except data sets 1r 7, and 9. Therefore, the estimate 

for g is 70* correct for this example.

The ISODATA program was run on each of these sets. The 

number of groups desired was input as two, but in each case, 

the number of resultant groups output by ISODATA was four. 

The method always began with approximately the correct two 

groups and then split each of them into two groups. Varying 

parameters cause some differences, but no indication of two 

groups was suggested.

The results using the mathematical indicators are in 

Fig. 13; the predicted value of groups, g, is indicated in 

each case. Beale's F statistic has the highest probability 

of two groups in 9 of the 10 data sets; in data set 1 there 

is a larger probability for $ = 3. For many of the data 

sets, the probabilities that g = 2, g = 3, or g = 4 are not 

different by more than 0.2. The Calinski and Harabasz Kg 

miscalculates the number of groups twice; all except data 

sets 1 and 9 are found to have two groups. The g2(det W) 

criterion is at a minimum for g = 1 in 6 of the 10 cases and 

predicts g = 2 twice, g = 3 and g = 4 once.
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Table 4. Probabilities of the null hypothesis g = 3 
versus g = 2 using the maximum likelihood 

estimator for Example 2

Data
Set

Probability 
of null 

hypothesis

Likelihood 
estimate 
at fy=2

Likelihood 
estimate 
at $=3

1 0.97 -75.4 -69.6

2 0.10 -80.7 -79.4

3 0.03 -65.0 -64.7

4 0.33 -67.6 -66.3

5 0.00 -70.6 -70.6

6 0.00 -74.0 -74.0

7 0.73 -68.1 -65.3

8 0.37 -67.8 -66.4

9 0.52 -80.4 -78.5

10 0.10 -64. 5 -63.9
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Example 2. The value’ of $ shown is the number 
of groups estimated by the procedure.

Figure 13
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To test the PMG procedure the value of c was set to 

two, three, and four. Twenty-five iterations were run using 

the defined error matrix. The variance criterion was again 

used in the clustering.

A value of g (c) was computed for c at 0 = .9, .85, .8,

and .75 and X = 10%, 1%, and .1%. If g (c) was the same for

c = 2, 3, and 4, for any significance level at one

probability level, then § was set equal to g(c). The value

of g (c) and the probabilities 0, where g (c) = g(c+1) =

g (c+2), are listed in Table 5. A value of ^ = 2 is predicted

for 60% of the cases, and g = 1 is predicted for the other

40%. Dendrograms of the frequency measure are in Fig. 14.

Dividing the dendrograms into the number of groups joined at
*

the level where djj, = 0, there are 2 groups in all 10 cases. 

The groups are not as distinct as the dendrogram in

Example 1.

The properties of the data sets that caused the PMG 

procedure to miscalculate the number of groups are not 

apparent from Table 3 or even from the dendrograms in Fig. 

11. Fig. 15, however, indicates the difference between two 

of the data sets, 4 and 7. Data set 4 has a clear division 

between the two groups represented by the two symbols in the 

figure; however, data set 7 does not. The PMG procedure 

estimated only one group, because of the lack of any clear 

cut division between the two groups or any two groups. A 

plot of the probabilities of group membership for the
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Table 5. Values of g estimated by the PMG procedure
for Example 2

Data Number of Probability,
set groups estimated used for estimate

1

2

3

4

5

6

7

8

9

10

2 0.85

2 0.80

2

2

2

1

1

1

1

0. 85 

0. 85 

0. 80 

C. 85 

0.80 

0. 85 

0. 80

1 0= .9, .85, and .8 was tested for X = 10., 1.0, 0.1. 

2g(c) did not remain constant for three consecutive 

values of c for any tested value of 0.
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Figure 14. Dendrogram of frequency measure for Example 2.
Complete linkage is the clustering criterion 
used.
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Figure 15. Two-dimensional plots of Example 2, data 
sets 4 and 7.
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samples when g(c) = 2 for a0= 20 is in Fig. 16 for data 

set 7. There is a large number of samples which have a 

probability of being in both groups. When a lower value of 

aQ is used, these samples link the two groups into one.

A comparison of misclassification for the PMG method 

with the regular variance hierarchical method and with the 

linear discriminant function is in Table 6. The linear 

discriminant function (LDF) is the theoretical best division 

of data into groups given the groups* means and covariance 

matrices. The number misclassified by the LDF is calculated 

using Eg. (4.4-16) in Tou and Gonzalez [ 1974] for the error 

distorted data sets, Y. The number misclassified by the 

variance method is calculated for the error distorted set 

plus a collection of 10 data sets generated from means (0,0) 

and (2,2) and covariance matrix of .91. The number 

misclassified by both the freguency measure and the PMG 

procedure is given.

The PMG method improves the classification ability of 

the variance criteria. The improvement is better than the 

10 data sets generated from an error-free distribution. The 

PMG misclassification is almost as small as the theoretical 

misclassification of the perturbed data. That is, in this 

particular example, using the error improves the 

classification ability almost as much as knowing all the 

distribution parameters of the data.
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Figure 16. Probability of group membership for each sample 
using the PMG procedure for Example 2, 
data set 7.



66

Table 6. A comparison of the classification abilities of 
the PHG procedure with the hierarchical 

variance criterion (V) and the linear 
discriminant function (LDF)

Number misclassified

Data
Set

Experimental error 1!»o error

VLDF V
PMG

procedure
Frequency
measure

1 5 10 4 5 4

2 4 5 3 5 5

3 6 7 7 7 5

4 0 0 0 0 2

5 5 9 8 9 6

6 2 4 4 4 6

7 3 5 5 5 3

8 0 2 3 2 3

9 2 5 3 5 4

10 5 3 4 3 5

Average 3.2' 5.0* 4. 1 4.5 4.3

'Theoretical value = 3.7 from Bayne et al. [1978] 

theoretical value = 5.7 from Bayne et al. [ 1978 ]
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The second test reemphasizes the ability of the 

dendrograms, NOBMIX, Beale's F statistic, Calinski and 

Harabasz Kg, and the PMG method to select the proper number 

of groups in the data. The large standard deviation about 

the mean used in generating the data sets caused some 

difficulty. The division of the dendrograms was more 

subjective, the F statistic and the Kg misjudged some of the 

data sets, and the PMG procedure results are not as decisive 

as in the first example. The PMG procedure definitely 

improved the misclassification of variance criteria.

U.3 Practical Application

The third example is more difficult to analyze since no 

a priori information about the number of groups is 

available. It is given here to illustrate the practical 

application of the methods. The data consist of

concentration measurements of 10 different elements for 53 

stream sediment samples collected around Llano, Texas as 

part of the National Uranium Resource Evaluation Project 

[Nichols et al., 1976]. Before any cluster analysis is 

performed on the data, it is transformed by logarithms to 

approximately normalize the data. The variables are 

multiplied by subjective weights derived to emphasize 

measurements hypothesized to be important to uranium 

geochemistry.
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A dendrogram (again using variance criterion) of the 

data is in Fig. 17. No subgroups of samples are 

sufficiently distinct to warrant formation of a specific 

number of clusters. A subjective division is separation 

between pairs 153 and 1023; 64 and 1826; 1773 and 1851; 275 

and 73; and 157 and 1843, forming six clusters.

The optimization criteria of MICKA are in Fig. 18 for 

$ = 2, 3, 4, 5, 6, 7, and 8. The only apparent aid in 

determining the number of groups is the gradual increase for 

g = 1 to 7 and then the drastic decrease of the trace of B-lW 

at g = 8. Although this criterion has not helped in 

choosing the number of groups in the previous two examples, 

it suggests seven groups in the Llano data.

The NOBMIX results in Fig. 19 suggest five, seven, or 

eight groups in the data. The significance tests for 

accepting five groups over four, for accepting seven over 

six, and for accepting eight over seven are all above or 

egual to .50 with the highest probability at seven groups. 

The log likelihood estimate, however, has continued to 

increase for each increase in g.

The ISODATA procedure was also run on the Llano data. 

The input number of groups and parameters defining inter- 

and intragroup distances were varied, but the procedure did 

not converge. Whenever a higher number of groups was input, 

a higher number of groups was output, possibly signifying a 

hierarchical structure in the data.
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Figure 18.
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Figure 19. Maximum likelihood estimate and significance 
level for determining the number of groups in 
Example 3.
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Both Beale's F statistic and Calinski and Harabasz Kg 

agreed with the theoretical number of groups in the first 

two examples; they both suggest a hierarchical grouping or a 

number of groups greater than eight on the Llano data (Fig. 

20). The g2 (det W) indicator has a relative minimum at ^ = 

3, but does decrease below that minimum at $ = 6.

The PMG method was run for c= 3, 4r 5r 6, 1, and 8. 

Fifty iterations were used in each case, with the error in 

each variable determined using a coefficient of variation as 

given in Kane and Larson [1977] and a truncated normal 

distribution of M = (0,0) and I = .21 (Eg. 20). A 

dendrogram of the freguency measure for each result is given 

in Fig. 21.

Table 7 lists g (c) for each c and each value of 0 and 

X . The first section with 0 = .9 suggests 7 groups (g(5)

= g(6) = g(7) = 7 for X = 10%, U , and .1%) or 8 groups

(g (6) = g(7) = g(8) = 8 for X = 10%, 1%, and . 1 %) .

However, for 6 = .85, .8, and .75 , 7 groups are indicated

since g<6), g (7) and g(8) are all egual to 7 at one or more

levels of X. Note also that g(9) = 7 for 0 = .75 and X = 

. 1%. A very low aQ was necessary before g (9) =7 since the 

7 natural groups were forced to subdivide into 9 groups.

The value of g = 7 agrees with the results obtained by 

clustering the freguency measure since there are 7 groups in 

both the dendrograms for c = 7 and c = 8. The groups 

predicted by PMG procedure and the freguency measure are
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Figure 20. Results of Beale’s F Statistic, Calinski and 
Harabasz’s Kg and Harriot’s g2 (det W) for 
Example 3.
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Figure 21. Dendrogram of freguency matrix for c = 
to c = 8 for Example 3.
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Table 7. Values of g estimated by the PHG procedure
for Example 3

Probability Number of
clusters,c A=10.% A =1.0% A=0.1%

0. 90

0.85

0.80

0.75

3
4
5
6
7
8 
9

4
5
7
8 
8 
9
12

3
4
7
8 
8 
9
12

3
3
6
7
7
8
12

3
4
5
6
7
8 
9

3 3
4 3
7 6
8 7
8 7
9 7
12 9

3
3
6
7
7
7
9

3
4
5
6
7
8 
9

3
3
6
7
7
7
9

3
3
6
7
7
7
9

2
3
5
7
7
7
9

3
4
5
6
7
8 
9

3
3
6
7
7
7
9

2
3
5
7
7
7
8

2
3
4 
7 
7 
7 
7



identical. A plot of the probability of each group for each 

sample is in Fig. 22. Note that the sixth group is very 

distinct, consisting of only samples 189, 1832, and 1864. 

In addition, sample 275

76

is an outlier.



PR
O

Bf
iB

lU
Tt

ORNL DWG 78-6707

i i i i i i i

PROBABILITY OP EACH GROUP FOR EACH SAMPLE

3 3 3 3

2 2 2 2

222222 3
3

3

3 3

5 5 5 5 5
5 5 5 5

6 6 6 7

5

'-j

2

**4

5

5555555
cor^ncMOO^rs o ot^osco

4 4 4 4 4

■ H■•iliili taaaaiaiianflDQ^-io^flDOO*—rs(Ncs.^-OD—ojtncoro **aDa>a>40in'rintsom oii/)o«*o>a)oar)<Dio 
OO OOOOfvO oicMOirsif^rM— — —•

233333333
3

22222222
aaaaaiBBa
is oo o> «»> r> ad o» nyvo^oi — oisaiis

unuiillU

Figure 22 Probability of group membership for each sample 
using the PMG procedure for Example 3.
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CHAPTER 5

CONCLUSIONS

5.1 Results

The PMG method is as successful in determining the 

number of groups in a data set as the other methods given in 

the literature for the three different examples tried. The 

analysis method has the additional advantage of using the 

experimental error and of defining the groups using a 

probabilistic association measure. The PMG procedure and 

the frequency measure give two different methods of 

examining the output.

The procedure seems unaffected by group size and shape. 

The three mathematical indicators which correctly predicted 

the number of groups in the first two examples are based 

upon the trace or determinant of W. Everitt [1974] states 

that using a trace w criterion forces a spherical shape on 

the data and that the determinant W criterion assumes that 

all groups are of the same shape. In addition, these two 

parameters become very small for small groups and therefore, 

may not represent the groups accurately.

The definition and separation of the groups are also an 

advantage of the PMG procedure. The separation between 

group 6 and all other groups in Example 3 is apparent from 

the analysis (Fig. 22) ; whereas, to determine these results 

would require further calculations using other methods. In



80

addition, only the combination of error analysis with the 

grouping may be able to show this type of group separation.

The biggest disadvantage of the Honte Carlo analysis 

method is the. time reguired for clustering of all of the 

perturbed data sets instead of just one. In the first 

example set, the extra time spent in doing the extra 

calculations was not advantageous since the hierarchical 

analysis as well as most of the other methods gave the 

correct results. However, in the third example, although we 

cannot be certain that there are or are not seven groups in 

the data, a great deal more information about the group 

divisions and separations can be learned from the output of 

the analysis method than from any combination of the other 

methods.

5a2 Future Work

The PMG procedure could be applied to other clustering 

algorithms besides hierarchical clustering. A comparison of 

results between two algorithms using the procedure would 

show the difference in the clustering methods as well as the 

overall stability of the procedure. A study of the best 

combinations of 0 and A necessary for determining 

g(c)—especially when the data are forced into a larger 

number of groups than are present, would also aid the

method
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APPENDIX A

PMG PROGBAH DESCRIPTION

The program listings for the three programs PMGPER, 

PHGCLS, and PMGEST are included in this Appendix. 

Flowcharts of the programs are in Figs. A1r A2f and A3.

The PMGPER program runs on the IBM360/91, using a 

FORTRAN G compiler with optimization level two, and reguires 

approximately 270 K of core and 60 seconds execution time 

for the 50 iterations of the 53 sample data set of Example 

3. PMGCLS and PMGEST both run interactively on the PDP-10, 

each requiring less than 10 seconds execution time for the 

same problem and one value of c. A listing of the input 

required for each program follows.

The input required by PMGPER is similar to that 

required by DENDRO [Larson et al., 1977], The reader is 

referred to that report for a more detailed description of 

the parameters.

Card 1 VariableS=IFLAG, NORM, MET, INV, LOG, NGRPS, NTIMES,

ITRN, IERR Format=(3I5,10X,6l5)

IFLAG indicates which clustering criterion is to be used:

IFLAG=1 for single linkage clustering criterion.

IFLAG=2 for complete linkage clustering criterion.

IFLAG=3 for group average clustering criterion.

IFLAG=4 for weighted average clustering criterion.

IFLAG=5 for centroid clustering criterion.



90

input (.viivuru-ter- 
cuid wt up 

allxAtiun { jr array*

input the

Number of
iterations less than m?

TO A

Output a

Cluster the 
data set. x

Compute the 
distance matrix

Cluster data and 
store a(j . j’)

Compute distance-' 
matrix

Transform and 
normalize the 

data

Transform and normalize 
data,y

Generate random error 
vectors and add to x 

to obtain y

Read in error parameters 
and set up necessary 

information

ORNL DWG 78-6920

(MAIN)

(INPUT)

(NORMAL)

(METRIC)

(CLUST)

(INTGEN)

(NOISE)

(NORMAL)

(METRIC)

(CLUST)

(SUMMRY)

. Flowchart of PMGPEE. This program perturbs data 
set X, clusters the data sets Y , and stores the 
resulting cluster information in the frequency 
matrix.

Figure A1
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ORNL DWG 78-6921

Start

Cluster the data

Plot dendrogram

Read in the 
distance matrix

Read input parameters and 
set up storage allocation

Figure A2. Flowchart of PMGCLS. This program clusters the 
frequency matrix.
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ORNL DWG 78-6923

Start

Output results

data parameters
Read In

Combine groups 
which have any of 
the same samples

Calculate the 
probabilities of 
group membership

Find and group all sample 
pairs where a(j , j') > a

Check for any sample 
j where a(j . j') < m-a0

~11 — n it ~

Figure A3. Flowchart of PHGEST. This program performs the 
PMG procedure.
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IFLAG=6 for median criterion.

IFLAG=7 for Ward's method clustering criterion.

IFLAG=8 for variance method.

NORM indicates what to use to normalize the data:

NORM=0 for unnormalized data.

NORM=1 for divide by maximum.

N0FM=2 for divide by standard deviation.

N0RM=3 for multiply by input weights.

NORM=4 for divide by standard deviation and then 

multiply by input weights.

MET indicates what distance measure to be used:

MET=1 for the sguare of the Euclidean metric.

MET=2 for the Euclidean metric.

MET=3 for the sguare of a normalized Euclidean metric. 

MET=4 for normalized Euclidean metric.

MET=5 for Pearson correlation based metric.

MET=6 for Spearman correlation based metric.

MET=7 for city-block distance.

INV is used to indicate how the data is to be read:

INV=0 for all variables for a given sample . 

INV=anything else for all samples for a given variable. 

LOG is used with the correlation metrics to determine 

threshold values:

LOG=0 use a large negative threshold.

LOG=1 use a threshold of 0.

LCG=2 use a threshold of -10.
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L0G=3 read in a threshold value for all variables.

NGBPS is the number of values of c the data are to be 

clustered into for storing the frequency matrix.

NTIMES is the number of Monte Carlo iterations to be 

performed.

ITPN is the transformation to be used on the data:

ITRN=0 for no transformation.

ITRN=1 for transforming with logarithms.

ITBN=2 for transforming with exponentiation.

ITRN=3 for transforming with square root.

IERR determines the error distribution:

IERR=1 use normal distribution.

IERR=2 use normal distribution with coefficient of 

variation.

IERR=3 use uniform distribution.

Card 2 Variables=IGRPS Format=(1615)

IGRPS is the value of c, the number of clusters to use to 

determine the frequency matrix. There are NGRPS 

values; a frequency matrix is computed for each value.

Card 3 Variables= NAME, NFEAT, NSAMP, NSNAM, NVNAM 

Format= (A4,415)

NAME is a four-character name for the data set.

NFEAT is the number of variables.

NSAMP is the number of samples or observations.
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NSNAM is the number of four-character words in each sample 

name.

NVNAM is the number of four-character words in each variable 

name.

Card 4 Variables=FMT Format=(20A4)

FMT is either a format statement to be used to read all 

variables for one sample and then three descriptors: a 

floating point property, a class name and a sample name 

or it is the characters 'BCD '. If FMT is 'BCD ', then 

the next two cards are required.

Card 5 variables=FMT Format=(20A4)

FMT is a format to read only the variables for all samples. 

This card is required only if FMT of Card 4 is 'BCD '.

Card 6 Variables=FMT2 Format=(20A4)

FMT2 is a format to read only the three descriptors, a 

floating point property, a class name and a sample 

name. This card is required only if FMT of Card 4 is

'BCD '.

Card 7 Variables=TITLE Format= (20 A4)

TITLE is a three-line title used for identification 

purposes.

Card 8 Variables=DATA, PP, CL, SAMPLE Format=FMT (Card 4) or 

FMT and FMT2 (Cards 5 and 6)

DATA is the sample data.
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PP is a floating point property of the data which is used 

only for identity purposes.

CL is a class name which is used only for identity purposes.

SAMPLE is a sample name which is used only for identity 

purposes.

Card 9 Variables=VAR Format=(20A4)

VAR is the array containing the variables' names.

Card 10 Variables=CUT Format=(8F10.0)

COT is the lower bound of each variable. It is used to 

check the generated values of Y.

Card 11 Variables=WEIG Format= (8F10.0)

WEIG is the weights for each variable. This card is in the 

input deck only if NORM indicates that weights are 

going to be used.

Card 12 Variables=ICONST Format=(8110)

ICONST is the array containing initial seeds to be used for 

the uniform number generator. One seed is required for 

each variable.

Card 13 Variables=SIGMA or BLIM, ULIM Format=(8F10.0)

If IERR is equal to 1 or 2, then SlGMA is read in, where 

SIGMA is the lower diagonal form of the covariance 

matrix of the normal distribution of the error. If 

IERR is equal to 3, BLIM and ULIM are read in, where 

BLIM is the lower limit and ULIM is the upper limit of
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the uniform interval used to characterize the error. 

Card 14 Variables=CV Format=(8F10.0)

CV is the coefficient of variation of each variable, read in 

only if IERF = 2.

Card 15 Variables=TRON Format=(8F10.0)

TFUN is the upper limit of the noise allowed when a normal 

distribution is used for generating the random error. 

If TRUN is 0, TRTJN is set to be 100000.

The input reguired by PMGCLS is prompted by the program

upon execution. The user is asked for a value of IFLAG to

use for the clustering criterion of d ... . The options are
JJ

the same as given in PMGPER. The user is also asked to 

enter the number of samples in the data set. The only other 

reguired input is the data set output by PMGPER. These data 

consist of a title, a list of sample names, and the 

frequency matrix.

The input reguired by PMGEST is also prompted by the 

program. The first request is for the number of samples in 

the data set. The value of aQ or CRITNO is the next input. 

The number of Monte Carlo iterations is also requested. As 

in PMGCLS, the only other data required are the card output 

from PMGPER. The program listings for PMGPER, PMGCLS, and

PMGEST follow



on
 no

98

C PMGPER PROGRAM LISTING
C
C
C----------------------------------------------------------------------------------------------------------
C. CLUSTERING PROGRAM
C ORIGINAL VERSION (VERY DIFFERENT FROM THIS) OBTAINED
C FROM ERNIE HALL, DSC, LOS ANGELES
C
C THIS VERSION IS WRITTEN TO BE PART OF THE
C PMG PROCEDURE. THE DATA IS READ IN,
C PERTURBED BY EXPERIMENTAL ERROR, AND
C CLUSTERED INTO C CLUSTERS. THE
C OCCURENCE OF EACH SAMPLE WITH ANY OTHER SAMPLE
C IN THE SAME CLUSTER IS STORED IN A FREQUENCY
C MATRIX WHICH IS OUTPUT FOR FURTHER
C ANALYSIS BY PMGCLS OR PMGEST.
C----------------------------------------------------------------------------------------------------------
C

COMMON/ALWAYS/TITLE (30) ,DATE (5) ,TODAY (2) ,IFLAG,
> NORM,MET,NSQUAR,INV,LOG,NGRP,ITRN 

INTEGER DIMEN 
COMMON/HOLD/NSIZE,A(30000)
COMMON/NAM/NS KAM,NVNAM,TITS AM (5) ,TITPP(5) ,TITCLS(5) ,

A PTALK (20)

DIMENSION DDATE(5) ,IGRP(10)
DATA DDATE/**** TOD','AYS ','DATE',' IS '/

NSIZE=300 00 
C

DO 10 1=1,5 
10 DATE (I) =DDATE (I)

C
20 CALL LOOSE (1)

C
CALL IDAY (TODAY)
WRITE(6,10200)TODAY 

C 
C
C------------------------------------------------------- ------------------------------------------
c
C IFLAG=1 FOR SINGLE LINKAGE CRITERION
C IFLAG=2 FOR COMPLETE LINKAGE CRITERION
C IFLAG=3 FOR GROUP AVERAGE CRITERION
C TFLAG=4 FOR WEIGHTED AVERAGE CRITERION
C IFLAG=5 FOR CENTROID CRITERION
C IFLAG=6 FOR MEDIAN CRITERION
C IFLAG=7 FOR MINIMUM INCREASE IN (WITHIN-CLUSTER)
C SUM OF SQUARES
C IFLAG=8 FOR MINIMUM (WITHIN-CLUSTER)
C STANDARD DEVIATION
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C
C NORM=0 FOR ONNORMALIZED DATA
C NORM=1 FOR DIVIDE BY MAX
C NORM=2 FOR DIVIDE BY STANDARD DEVIATION
C NORM=3 FOR MULTIPLY BY INPUT HEIGHTS
C NORM= 4 FOR DIVIDE BY STANDARD DEVIATION
C AND MULTIPLY BY INPUT WEIGHT
C NORM= 5 FOR DIVIDE BY ROBUST STANDARD DEVIATION
C NORM=6 FOR DIVIDE BY ROBUST STANDARD DEVIATION AND
C MULTIPLY BY INPUT WEIGHT
C
C MET=1 FOR EUCLIDEAN METRIC (SQUARED)
C MET=2 FOR EUCLIDEAN METRIC (NOT SQUARED)
C MET=3 FOR NORMALIZED EUCLIDEAN METRIC (SQUARED)
C MET=4 FOR NORMALIZED EUCLIDEAN METRIC (NOT SQUARED)
C MET=5 FOR PEARSON CORRELATION - BASED METRIC
C . MET=6 FOR SPEARMAN CORRELATION - BASED METRIC
C MET=7 FOR CITY-BLOCK DISTANCE
C
C NGRP=NUMBER OF DIFFERENT CLUSTERS DIVISIONS
C FOR WHICH FREQUENCY MATRIX WILL BE OUTPUT.
C
c
C NTIMES=NUMBER OF MONTE CARLO ITERATIONS (M)
C
C ITRN=Or NO TRANSFORMATION OF THE DATA
C ITRN=1, USE LOGARITHM TO TRANSFORM THE DATA
C ITRN=2, USE EXPONENTIATION TO TRANFORM THE DATA
C ITRN=4r USE SQUARE ROOT OF THE DATA
C
c
C IERR=1, EXPERIMENTAL ERROR IS FROM
C NORMAL DISTRIBUTION
C IERR=2r EXPERIMENTAL ERROR IS FROM
C NORMAL DISTRIBTUTION, BUT USE COEFFICIENTS OF
C VARIATION
C IERR=3, EXPERIMENTAL ERROR IF FROM
C UNIFORM DISTRIBUTION
C
C IGRPS=NGRPS VALUE OF C, THE NUMBER OF CLUSTERS
C TO DIVIDE THE DATA INTO TO OBTAIN A,
C THE FREQUENCY MATRIX
C
C
C--------------------------------------------------------------------------------------------------------
c
C *** INPUT PARAMETERS

READ(5,10000,END=70)IFLAG,KNORM,MET,NSQUAR,KINV,
A LOG,NGRP,NTIMES,ITRN,IERR 

READ(5, 10000) (IGRP (I) ,1=1,NGRP)
IF (ITRN. EQ. 0) ITRN = 1
WRITE (6,10100) IFLAG, KNORM, MET, NSQUAR,KINV,

A LOG,NGRP,NTIMES,ITRN,IERR
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IF (IFLAG.EQ.O) IFL AG= 2 
IF (IPLOT.EQ.O) IPLOT= 1 
IF (MET.EQ.O) MET=1
IF (IFLAG. EQ. 5 . AND. MET.NE. 1) WRITE (6, 1 04 00) 
IF (IFLAG.EQ. 7. AND. MET.NE. 1) WRITE (6,10500) 
IF (IFLAG.EQ.8 .AND. MET.NE. 1) WRITE (6, 10600) 

C
NORM=KNORM 
INV=KINV 

C 
C
C *** READ DATA PARAMETERS 
C
C NAME IS THE DATA SET NAME
C (TO BE IGNORED AFTER READING IN)
C NFEAT IS THE NUMBER OF FEATURES,
C NVNAM THE NUMBER OF (FOUR-BYTE)
C WORDS USED TO DESCRIBE THE FEATURE
C NSAMP IS THE NUMBER OF SAMPLES,
C NSNAM THE NUMBER OF (FOUR-BYTE)
C WORDS USED TO DESCRIBE THE SAMPLE
C

READ(5,10300) NAME,NFEAT,NSAMP,NSNAM,NVNAM 
IF (NSNAM.EQ.O) NSNAM=1 
IF (NVNAM.EQ.O) NVNAM=1 

C
IF (INV.EQ.O) GO TO 30

C *** INVERT ORDER OF PARAMETERS IF INV .NE. 0 
N=NFEAT 
NFEAT=NSAMP 
NSAMP=N 
N=NVNAM 
NVNAM=NSNAM 
NSNAM=N

30 CONTINUE
CALL TALK (NFEAT,NSAMP)

C
C
C PREPARE ARRAYS FOR CALLS TO SUBROUTINES
C INPUT AND NORMAL (PLUS PREPARE OTHER
C ARRAYS THAT NEED KEEPING)
C

LLWEIG=DIMEN (NFEAT)
C WEIGHT

LLDIST=DIMEN (NSAMP)
C DISTAN OR DIST

NS2=NSNAM*NSAMP 
LLSAMP=DIMEN (NS2)

C SAMPLE (NAMES)
N=0
NF2=NVNAM*NFEAT
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LLVAK=DIMEN (NF2)
C VAR — VARIABLE NAMES

N=NSAMP*(NSAMP-1) /2 
LLSQtJA=DI MEN (N)

C SQDA — DISTANCE BETWEEN SAMPLES
LLEXTR=DIMEN(NSAMP)

EXTRA -- ARRAY FOR STORING OLD 
VARIANCES FOR MINIMUM 
STANDARD DEVIATION CRITERION

N=NSAMP*NFEAT 
LLDATA=DI MEN (N)

DATA
LLCUT=DIMEN(NFEAT+1)

TO STORE LOWEST MEASUREABLE VALUES 
LLHOLD=DIMEN(N)

TO STORE DATA 
LLCON=DIMEN (NFEAT)

TO STORE SEEDS FOR UNIFORM GENERATOR 
LLVAL=DIMEN (NFEAT)

TO STORE NORMAL VALUES 
LLXH=DIMEN (4+NFEAT)

TO STORE MEAN,SDrSKEWNESSrAND KURTOSIS 
N= (NFEAT* (NFEAT+1)/2+1)
LLTA=DIMEN (N)
LLSIG=DIMEN (N)
K=0
IF (IERR. EQ. 2) K= NFEAT 
LLCV=DIMEN (K)

TO STORE TRANSFORMATION ARRAY.
N=NFEAT

CALL INPUT (A(LLDATA) rA (LLSAMP) , A (LLVAR) , A (LLCUT) ,
A A (LLHOLD) r NFEAT, N SAMP)

LLX=DIMEN (NSAMP)
CALL NORMAL (A (LLWEIG) , A (LLDATA) , A (LLVAR) ,A(LLX) ,

A A (LLCUT) ,NFEATrNSAMP,1)

40 CONTINUE

PREPARE ARRAYS FOR CALL TO SUBROUTINE METRIC 

N=0
IF (MET.EQ.5.0R.MET.EQ.6) N=NSAMP 
LLTHRS=DIMEN(N)

THRESH — THRESHOLD FOR NOT COUNTING
THAT SAMPLE IN CORR-DISTANCES

N=0
IF (MET.EQ. 5. OR.MET.EQ. 6) N=NFEAT 
LLXX=DIMEN (N)

C XX
LLYY=DIMEN(N)
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C YY
LLIH=DIMEN (N)

C IR
ILR=DIMEN (N)

R

CALL METRIC (A (LLDATA) # A (LLSQUA) ,A (LLXY) , A (LLYY) , 
A A (LLIR) r A (LLR) , A (LLTHRS) , A (LLEXTR) r 
A A (LLSAMF) ,NSAMP,NFEAT)

PREPARE ARRAYS FOR CALLS TO SOBROOTINE CLUSTER

1LKLUS=DIMEN (NSAMP+1)
KLDSTR

N=NSAMP/2+1
LLMARR=DIMEN (N)

MARRAY
LLJARR=DIMEN (N)

JARRAY
NS=NSAM P/2+1
LLMCEL=DIMEN (NS)

MCEL
LLJCEL=DIMEN (NS)

JCEL
LLONCL=DIMEN(N)

ONDCL
LLINCL=DIMEN(N)

INDCL

NK=((NSAMP*(NSAMP-1))/2*NGRP)/2+1
LLKNT=DIMEN(NK)
DO 50 N=1,NK
A (LLKNT-1+N) =0.0 

50 CONTINUE
CALL CLUST (A(LLDIST) ,A (LLKLUS) ,A(LLMARR) ,A(LLJARR),

A A (LLDATA) ,A (LLMCEL) , A (LLJCEL) , A (LLONCL) , A (LLINCL) , 
B A (LLSQUA) , A (LLEXTR) , A (LLKNT) , IGRP,NFEAT, NSAMP)

PREPARE ARRAYS FOR CALL TO SUBROUTINE DENDRO

CALL INTGEN (A (LLTA) , A (LLCON) , A (LLSIG) , A (LLCV) ,
A TRUN,IERR,NFEAT,BLIM,ULIM)

DO 60 MTIME=2,NTIMES
CALL NOISE (A (LLVAR) , A (LLDATA) ,A (LLHOLD) ,A (LLCON) , 

A A (LLVAL) , A (LLTA) , A(LLXH) , A (LLCV) ,TRUN, IERR,
B MTIME,NFEAT,NSAMP,BLIM,ULIM)

CALL NORMAL (A (LLWEIG) , A (LLDATA) ,A (LLVAR) ,A(LLX) ,
A A (LLCUT) ,NFEAT,NSAMP,MTIME)

CALL METRIC (A (LLDATA) , A (LLSQUA) ,A(LLXX) , A (LLYY) ,
A A (LLIR) ,A (LLR) , A (LLTHRS) , A (LLEXTR) , A (LLSAMP) ,
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B NSAMP rNFEAT)
CALL CLOST (A (LLDIST) r A (LLKLUS) , A (LLMABR) r A (LLJAEB) f 

A A (LLDATA) r A (LLMCEL) , A (LLJCEL) ,A (LLONCL) ,
B A (LLINCL) , A (LLSQUA) , A (LLEXTR) r 
C A (LLKNT) rIGRFrNFEATrNSAMP)

60 CONTINUE
CALL SUMMRY (A (LLKNT) f A (LLSAMP) ,TITLE, NSAMP, NGRP)
GO TO 20 

70 STOP

10000 FORMAT(1615)
10100 FORMAT('OIFLAG,NORM,MET,NSQUAR,INV,«,

A 'LOG, NGRP, NTIMES, ITRN1,5X, 1615)
10200 FORMAT ('1TODAY IS *,2A4)
10300 F0RMAT(A4,2I5,15X,2I5)
10400 FORMAT(fOFOR CENTROID CRITERION,',

A • YOU HAVE CHOSEN NOT TO DO EUCLIDEAN METRIC,
B ' (SQUARED). THIS IS NOT A TRUE CENTROID.') 

10500 FORMAT('OFOR INCREASE-IN-VARIANCE CRITERION,',
A ' YOU HAVE CHOSEN NOT TO DO EUCLIDEAN METRIC ', 
B '(SQUARED). THIS IS NOT A TRUE ',
C 'INCREASE-IN-VARIANCE.')

10600 FORMAT('OFOR STANDARD-DEVIATION CRITERION,',
A ' YOU HAVE CHOSEN NOT TO DO EUCLIDEAN METRIC », 
B '(SQUARED). THIS IS NOT A TRUE STANDARD',
>' DEVIATION.')

END
SUBROUTINE SUMMRY(KNT,SAMP,TITLE,NSAMP,NGRP) 
INTEGER*2 KNT(NGRP,1)
DIMENSION SAMP (NSAMP) ,TITLE (20)
NN= ( (NSAMP-1)*NSAMP)/2
DO 10 K=1,NGRP
WRITE (07, 10000) TITLE
WRITE (07, 10000) SAMP
WRITE(07,10100) (KNT (K,I) ,1=1,NN)

10 CONTINUE 
RETURN

10000 FORMAT(20 A4)
10100 FORMAT(2014)

END
SUBROUTINE INTGEN(A,ICONST,SIGMA,CV,TRUN,IERR,

A NFEAT,BLIM,ULIM)
DIMENSION A (1) ,ICONST(1) ,SIGMA(1) ,CV(1)
READ(5, 10000) (ICONST(I) ,1=1,NFEAT)
GO TO (10,10,140),IERR 

10 NF= ((NFEAT+1) *NFEAT)/2
READ(5,10100) (SIGMA(I) ,1=1 ,NF)
IF (IERR. EQ. 2) READ (5,10100) (CV (I) ,1= 1, NFEAT) 
READ(5,10100) TRUN 
IF (TRUN. EQ.O.0) TRUN=1.E5 
NO=0
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20

30

40
50
60

70

80
90

100

110

120

130

DO 20 J=1,NFEAT 
DO 20 1=1,J 
NO=NO+1
IF (SIGMA (NO) .NE.O. O.AND.I. NE. J) GOTO 30 
A (NO) =SQRT (SIGMA (NO) )
CONTINOE 
GO TO 90
IF (SIGMA (1) .LT.0.0) GO TO 150 
A (1) = SQRT (SIGMA (1))
I = 1
DO 80 1=2,NFEAT
II = I - 1 
M = 0
Ml = L ♦ 1 
N = 1
DO 60 J=1,11 
N = N + J - 1
I = L + 1
A (L) = SIGMA (L)
IF (J. EQ. 1) GO TO 50
II = L - 1 
N1 = N
DO 40 K=M1,LI 
A (L) = A (L) - A (N1) *A (K)
N1 = N1 + 1
M = M + J
A(L) = A (L) /A (M)
K = L 
L = L + 1 
A (L) = SIGMA (L)
DO 70 J=M1,K 
A (L) = A (L) - A (J) * A (J)
IF (A (L) .LT.0.0) GO TO 150 
A (L) = SQRT (A (L))
WRITE(6,10300)
NOB=1
NOE=1
WRITE (6,1 0200) (SIGMA(J) ,J=NOB,NOE)
IF (NOE.EQ.NF) GO TO 110
NCE=NOB+1
NOE=NOE+2
IF (NOE.GT.NF) NOE=NF
GO TO 100
NOB=1
NOE=1
WRITE(6,10400)
WRITE (6,1 0200) (A (J) ,J=NOB,NOE) 
IF (NOE.EQ.NF) GO TO 130 
NOB=NOB+1 
NOE=NOE+2
IF (NOE.GT.NF) NOE=NF
GO TO 120
RETURN
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140 BEAD(5r10100) BLIM,ULIM 
BETBRN

150 WRITE(6,1 0500) (SIG MA (I) rI= 1 rNF)
STOP 104

10000 FOBMAT(8110)
10100 FOBMAT (8F10.3)
10200 FORMAT(»0»,10G10.3/(1X,10G10.3))
10300 FOBMAT('OCOVARIANCE MATRIX*//)
10400 FORMAT('OTRANSFORMATION MATRIX*//)
10500 FORMAT(' COVARIANCE MATRIX IS NOT 

A 'POSITIVE DEFINITE.'/ (10G10.3))
END
SOBROOTINE NOISE(VAR,DATA r HOLD,ICONST rVALOEr TA,Xr 

A CVrTRON,IERR,NO,NFEAT,NSAMP,BLIMrOLIM)
DIMENSION VAR (1) , DATA (NFEAT , 1) , HOLD (NFEAT, 1) ,

A ICONST (1) , V ALOE (1) ,TA(1) ,X (4,1), CV ( 1)
DO 10 J=1,NFEAT 
DO 10 K=1,4 
X(K,J)=0.0 

10 CONTINOE
DO 30 J=1,NSAMP
IF (IERR.NE.3) CALL NORM(ICONST,VALOE,

A TA,NFEAT,DATA(1,J) ,TRON)
IF (IERR. EQ. 3) CALL ONIF (ICONST , VALOE ,BLIM, OLIM ,NFEAT) 
DO 20 K=1,NFEAT 
V=VALOE (K)
X (1 , K) =X ( 1, K) +V 
X (2, K) =X (2, K) +V*V 
X (3, K) =X (3, K) +V*V*V 
X (4, K) =X (4, K) +V*V*V*V 
IF (IERR. EQ. 2) V=CV (K) *HOLD (K, J) *V 
DATA (K, J) =HOLD (K, J) +V 

20 CONTINOE 
30 CONTINOE

FN=1./FLOAT (NSAMP)
HRITE(6,10100) NO 
DO 50 K=1,NFEAT 
DO 40 L=1,4 
X (L, K) =X (L, K) *FN 

40 CONTINOE
EMB=X (2,K) -X(1 ,K) *X (1 ,K)
EMC=X(3,K)-3.*X (1,K)*X(2,K)+2.*X(1,K) *X (1, K) *X (1, K) 
EMD=X(4,K) - 4.*X(1,K)*X(3,K) +6. *X (1 , K) *X (1, K) *X ( 2, K)

A -3.*X(1,K) *X(1,K) *X (1,K)*X(1,K)
CORT=EMD/ (EMB*EMB)
SIG=SQRT( (EMB*NSAMP)/(NSAMP-1.) )
SKEW=EMC/(EMB*SQRT(EMB) )
WRITE(6,10200) K,X (1,K) , SIG , SKEN,CURT 

50 CONTINOE 
CDO 3000 J=1,NSAMP
CWRITE (6, 10200) (DATA(I,J) ,1=1,NFEAT)

60 CONTINOE 
RETORN
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10000 FOBMRT(1X,10G11.3)
10100 FORMAT(' FOR GROUPING NUMBER ',15/

A 4X,'VARIABLE',10X,'MEAN*,9X,
B 'STANDARD* ,9X, ' SKEWNESS* , 6X, • KURTOSIS'/
C 34X,'DEVIATION'//)

10 200 FORMAT (8X ,14,3 X,4 (F10. 3,5X) )
END
SUBROUTINE NORM(ICONST,VALUE,TA,NFEAT,X,TRUN) 
DIMENSION ICON ST (1) , VALUE (1) , TA (1) , X ( 1)
DOUBLE PRECISION KR 
COMMON/SEED/ISEED 
N1 = 1
DO 30 J=1,NFEAT 
ISEED=ICONST( J)

10 X (J) =KR (J)
ICONST (J) =ISEED 
V=0.0
DO 20 1=1 ,J 
V=V+TA(N1) *X(I)
N1=N1+1 

20 CONTINUE
IF (ABS (V) .GE.TRUN) GO TO 10 
VALUE (J)=V 

30 CONTINUE 
RETURN 
END
SUBROUTINE UNIF(ICONST,VALUE,BLEVEL,ULEVEL, NFEAT)
COMMON/SEED/I SEED
DIMENSION ICONST(1),VALUE(1)
DO 10 J=1,NFEAT 
ISEED=ICONST(J)
U=RAN(J)
VALUE (J) = (ULEVEL-BLEVEL) *U + BLEVEL 
ICONST (J) =ISEED 

10 CONTINUE 
RETURN 
END
SUBROUTINE TALK(NFEAT,NSAMP)

C
C PURPOSE — PRINT OUT INFORMATION REGARDING OPTIONS
C USED FOR THIS DENDROGRAM
C
C FEBRUARY 21, 1977
C
C

COMMON/ALWAYS/TITLE (30) ,DATE (5) ,TODAY (2) ,IFLAG,
> NORM,MET,NSQUAR,INV,LOG,NGRP,ITRN

WRITE(6,10000)NFEAT,NSAMP

GO TO (10,20,30,40,50,60,70,80),IFLAG 
10 WRITE(6,10100)

C
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GO TO 90
20 WRITE(6,10200)

GO TO 90
30 WRITE(6f1 0300)

GO TO 90
40 WRITE (6,10400)

GO TO 90
50 WRITE(6f10500)

GO TO 90
60 WRITE(6,10600)

GO TO 90
70 WRITE(6,10700)

GO TO 90
80 WRITE(6,10800)
90 CONTINUE

IF (NORM. EQ.O) GO TO 100 
GO TO (110,120,130,140,150,160),NORM 

100 WRITE(6,10900)
GO TO 170 

110 WRITE(6,11000)
GO TO 170 

120 WRITE(6,1 1100)
GO TO 170 

130 WRITE(6,11200)
GO TO 170 

140 WRITE(6,11300)
GO TO 170 

150 WRITE(6,11400)
GO TO 170

160 WRITE (6,1 1500)
170 CONTINUE

GO TO (180,190,200,210,220,230,240),MET 
180 IF (IFLAG .EQ. 7 .OR.IFLAG. EQ. 8) GO TO 250 

WRITE(6,11600)
GO TO 250 

190 WRITE (6,1 1700)
GO TO 2 50 

200 WRITE(6,11800)
GO TO 2 50 

210 WRITE (6,1 1900)
GO TO 250

220 WRITE(6,12000)
GO TO 250 

230 WRITE(6,12100)
GO TO 2 50 

240 WRITE(6,12200)
250 CONTINUE

IF (INV.NE.O) WRITE (6,12400) 
WRITE(6,12500)
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RETURN
C
10000 FORMAT('0THERE ARE',14,' VARIABLES AND*r 

A 14, • SAMPLES.')
T0100 FORMAT(• CLUSTERING CRITERION -- SINGLE LINKAGE')
10200 FORMAT(• CLUSTERING CRITERION — COMPLETE LINKAGE’) 
10300 FORMAT(' CLUSTERING CRITERION -- GROUP AVERAGE')
10400 FORMAT('CLUSTERING CRITERION — WEIGHTED AVERAGE') 
10500 FORMAT(' CLUSTERING CRITERION -- CENTROID')
10600 FORMAT (' CLUSTERING CRITERION — MEDIAN')
10700 FOR MAT(' CLUSTERING CRITERION — ',

A 'MINIMUM INCREASE IN (WITHIN-CLUSTER) ',
B 'SUM OF SQUARES')

10800 FORMAT(' CLUSTERING CRITERION — ',
A 'MINIMUM (WITHIN-CLUSTER) STANDARD DEVIATION')

10900 FORMAT (• NORMALIZATION — RAW DATA IS USED')
11000 FORMAT(' NORMALIZATION — ',

A 'EACH VARIABLE IS DIVIDED BY ITS MAXIMUM')
11100 FORMAT(' NORMALIZATION — ',

A 'EACH VARIABLE IS DIVIDED BY ITS ',
B 'STANDARD DEVIATION.')

11200 FORMAT(• NORMALIZATION — ',
A 'EACH VARIABLE IS MULTIPLIED BY AN INPUT WEIGHT.') 

11300 FORMAT(• NORMALIZATION ~ ',
A 'EACH VARIABLE IS DIVIDED BY ITS',
B 'STANDARD DEVIATION AND ',
C 'MULTIPLIED BY AN INPUT WEIGHT.')

11400 FORMAT(• NORMALIZATION —',
A 'EACH VARIABLE IS DIVIDED*,
> • BY ITS ROBUST STANDARD DEVIATION.')

11500 FORMAT(' NORMALIZATION --EACH VARIABLE IS DIVIDED
*

A 'BY ITS ROBUST STANDARD DEVIATION ',
B 'AND MULTIPLIED BY THE'
B * ABOVE WEIGHT.')

11600 FORMAT (• METRIC -- EUCLIDEAN (SQUARED) •)
11700 FORMAT(' METRIC — EUCLIDEAN ',

A • (NOT SQUARED) •)
11800 FORMAT(' METRIC — ',

A 'NORMALIZED EUCLIDEAN (SQUARED)')
11900 FORMAT(' METRIC — ',

A 'NORMALIZED EUCLIDEAN (NOT SQUARED)')
12000 FORMAT(• METRIC — ',

A '( 1.-ABS (PEARSON CORRELATION) )')
12100 FORMAT(» METRIC — ',

A '( 1.- ABS (SPEARMAN CORRELATION) )')
12200 FORMAT(' METRIC — CITY BLOCK')
12300 FORMAT('0DATA SET IS THE SAME AS THAT ',

A 'USED FOR THE PREVIOUS DENDROGRAM.')
12400 FORMAT('0(DATA SET IS INVERTED FROM THE USUAL.)')
12500 FORMAT CO')

END
C
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INTEGER FUNCTION DIMEN(MANY)

PURPOSE — KEEP TRACK OF DIMENSIONS 
FEBRUARY 21, 1977

COMMON/HOLD/N SIZEfA(1)
DATA KOUNT/1/
DIMEN=KOUNT 
KOUNT=KOUNT+MANY
IF (KOUNT.GT. NSIZE) WRITE (6,10000) NSTZE, KOUNT 
RETURN

ENTRY LOOSE (MANY)
KOUNT=MANY 
RETURN

0000 FORMAT(' AVAILABLE SIZE=',l5r
A • BUT YOU NEED* r16,*. ERROR!')

END

SUBROUTINE INPUT(DATA,SAMPLErVARrCUT,HOLD,
A NFEAT ,N SAMP)

PURPOSE — READ IN THE DATA SET (THE INTENTION IS TO 
BE COMPATIBLE WITH RECOG INPUT). ALSO PRINT THE 
DATA SET.

FEBRUARY 21, 1977

COMMON/ALWAYS/TITLE (30) ,DATE (5) ,TODAY (2) ,IFLAG,
> NORM,MET,NSQUAR,INV,LOG,NGRP,ITRN

COMMON/NA M/NS NAM, NV NAM, TITS AM (5) ,TITPP(5) ,TITCLS(5) ,
> PTALK (20)

DIMENSION DATA (NFEAT,1) ,SAMPLE(NSNAM,1) ,VAR(NVNAM,1) ,
> CUT (1) ,HOLD(NFEAT, 1)

DIMENSION FMT(20) ,FMT2 (20)
DATA BD/4HBCD /

IF (INV.NE.0) GO TO 50

*** READ FORMAT INFORMATION

READ(05,10000)FMT
IF (FMT (1) .NE .BD) GO TO 20
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C *** ONE VERSION OF RECOG'S INPOT 
READ(05r10000)FMT 
READ(05, 10000) EMT2 
READ(05r 10100) TITLE

NOTE THAT THIS IS ACTOALLY THREE CARDS

SORT OOT TITLE -- ELIMINATE BLANK SPACES — 
CALL SORT (TITLE)

DO 10 1 = 1r NSAMP
READ (05 rF MT) (DATA(J,I) rJ=1,NFEAT)
READ (0 5 ,F MT2) PPrCLr (SAMPLE (JrI) ,J=1,NSNAM)

10 CONTINUE 
GO TO HO

*** ANOTHER VERSION OF RECOG'S INPOT 
20 READ(05r 10100) TITLE 

CALL SORT (TITLE)
DO 30 1=1 ,NSAMP
READ (05r FMT) (DATA (J,I) r J=1 f NFEAT) rPPrCLr 

A (SAMPLE (J,I) ,J=1rNSNAM)
30 CONTINUE

40 WRITE (6,10800) TITLE
READ (05,1 0 000) ( (VAR (J,I) , J= 1 , NVNAM) ,1=1, NFEAT) 
READ(5, 10900) (COT (K) ,K=1 ,NFEAT)
GO TO 70

*** INVERTED READ 
50 READ(05, 10000) FMT 

READ(05,10000)FMT 
READ(05,10000)FMT2 
READ(05,10100)TITLE 
CALL SORT (TITLE)
WRITE (06, 10800) TITLE

DO 60 J=1,NFEAT
READ (05 ,FMT) (DATA(J,I) ,1=1,NSAMP)

60 READ (05,FMT2) PP,CL, (VAR(K,J) ,K=1,NVNAM)
READ (5, 10000) ( (SAMPLE (K,I) ,K=1,NSNAM) ,1=1,NSAMP)

*** PRINT OOT THE INPUT

70 IF (NVNAM.GT.1) GO TO 80
WRITE(6,10200) (VAR(1,1),1=1,NFEAT) 
GO TO 130

80 N=(NFEAT-1)/I 0 + 1 
MIN= 1



in
MAX=10
WEITE (6,10400)
DO 120 K= 1, N
IF (MAX.GT. NFEAT) M AX=NFEAT
HINL=1
MAXI=2
DO 00 KK=1,NVNAM,2
NEITE (6,10300) ( (7 AH (J,I) , J=MINL , HA XL) ,I=MIN, MAX)
MINL=MINL+2
MAXL=MAX+ 2
IF (MAXL.GT.NVNAM) GO TO 100 

90 CONTINUE 
GO TO 110

100 WRITE(6, 10200) (VAR(NVNAM,1) ,I=MIN,MAX)
110 CONTINUE 

MIN=MIN+1 0 
MAX=MAX+10 

120 CONTINUE 
130 CONTINUE

WRITE(6,10500)
IF (NSNAM.GT.1) GO TO 150 
DO 140 1=1,NSAMP

140 WRITE(6,10600) SAMPLE(1,I) , (DATA (J,I) ,J=1,NFEAT) 
GO TO 170

150 DO 160 1=1,NSAMP
160 WRITE(6,10700) (SAMPLE (K,I) ,K=1,2) ,

A (DATA (J,I) ,J=1 ,NFEAT)
170 CONTINUE

DO 180 1=1,NSAMP 
DO 180 J=1,NFEAT 
HOLD (J, I) =DATA (J,I)

180 CONTINUE 
C 
C

RETURN
C
c
c
10000 FORMAT (20A4)
10100 FORMAT(10A4)
10200 FORMAT(* 0 VARIABLES'/

A (10X,A4,7X,A4,7X,A4,7X,A4,7X,A4,7X,A4,
B 7X, A4,7X,A4,7X, A4,7X,A4) )

10300 FORMAT(12X,2A4,3X,2A4,3X,2A4,3X,2A4,3X,
A 2A4,3X,2A4,3X,2A4,3X,2A4,3X,2A4,3X,2A4)

10400 FORMAT('0 VARIABLES')
10500 FORMAT ('OSAMPLES»)
10 600 FORMAT(*0',A4,2X,10G11.3/(7X,10G11.3) )
10700 FORMAT('0',2A4,10G11.3/(9X,10G11.3))
10800 FORMAT(1X,10A4)
10900 FORMAT(8F10.0)

END
C
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.SUBROUTINE SORT (TITLE)
DIMENSION TITLE (30)
DATA BLANK/* •/

DO 10 J=1,10
IF (TITLE (J) .NE. BLANK) GO TO 60 

10 CONTINUE
DO 20 J=11r 20
IF (TITLE (J) .NE. BLANK) GO TO 40 

20 CONTINUE
DO 30 J=1r10
TITLE (J) =TITLE (J+20)

30 TITLE(J+20)=BLANK 
GO TO 90 

40 DO 50 J=1,20
TITLE (J) =TITLE (J+1 0)

50 TITLE (J + 1 0) =BLANK 
GO TO 90

60 DO 70 J=11,20
IF (TITLE (J) .NE.BLANK) GO TO 90 

70 CONTINUE
DO 80 J=11,20 
TITLE (J) = TITLE (J+10)

80 TITLE(J+10)=BLANK 
90 CONTINUE 

RETURN 
END

SUBROUTINE NORMAL(WEIGHT,DATA,VAR,X,CUT, 
A NFEAT,NSAMP,MTIME)

c PURPOSE — NORMALIZE THE DATA
c NORM=0 UNNORMALIZED
c NORM=1 DIVIDE BY MAX
c NORM=2 DIVIDE BY STANDARD DEVIATION
c NORM = 3 MULTIPLY BY INPUT WEIGHTS
c NORM=4 DO BOTH 2 AND 3
c NOP.M=5 DIVIDE BY ROBUST STANDARD
c DEVIATION
c
f*

NORM=6 DO 5 AND 3

c FEBRUARY 21, 1977

COMMON/ALWAYS/TITLE (30) ,DATE (5) ,TODAY (2) ,IFLAG,
> NORM,MET,NSQUAR,INV,LOG,NGRP,ITRN 

COMMON/NAH/NSNAM,NVNAM,TITS AM(5) ,TITPP(5) ,TITCLS(5) , 
A PTALK (20)
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DIMENSION WEIGHT (1) , DATA (NFEAT r 1) r V AF (NVNAM, 1) ,X (1) , 
A COT (1) ,WEIG (8)

DO 10 J=1,NSAMP 
DO 10 K=1,NFEAT
IF (DATA(K,J) .LT.CUT(K)) DATA (K, J) =CUT (K) 

10 CONTINUE
GO TO (80,20,40,60) ,ITBN 
GO TO 80

20 DO 30 J=1,NSAMP 
DO 30 K=1,NFEAT 
DATA (K, J) =ALOG (DATA (K,J) )

30 CONTINUE 
GO TO 80

40 DO 50 J=1,NFEAT 
DO 50 K=1,NSAMP 
DATA(K,J)=EXP(DATA(K,J))

50 CONTINUE 
GO TO 80

60 DO 70 J=1,NSAMP 
DO 70 K=1,NFEAT 
DATA (K, J) =SQRT (DATA (K,J))

70 CONTINUE 
80 CONTINUE

IF (NOBM.EQ.0) GO TO 90 
IF (NOBM.GT.6) GO TO 90 
GO TO (100,160,220,160,290,290),NORM

*** NC NORMALIZATION 
90 RETURN

*** NORMALIZE BY DIVIDING BY MAX 
100 WRITE(6,10000)

DO 130 IFEAT=1,NFEAT 
F=0 .
DO 110 ISAMP=1,NSAMP
IF (F.GT.DATA(IFEAT,ISAMP)) GO TO 110 
F=DATA(IFEAT,ISAMP)

110 CONTINUE 
F=1./F
WEIGHT (IFEAT) =F
WRITE(6,10100)IFEAT,F,(VAR(J,IFEAT),J=1,NVNAM) 
DO 120 IS AMP=1,NSAMP

120 DATA(IFEAT,ISAMP)=DATA (IFEAT,ISAMP)*F 
130 CONTINUE

F=1.0/NFE AT 
DO 150 IFEAT=1,NFEAT 
WEIGHT (IFEAT) =F 
DO 140 ISAMP=1,NSAMP
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140 DATA (IFEAT rIS AMP) =D ATA (IFEAT ,IS AMP) *F 
150 CONTINUE 

EETURN

*** NORMALIZE BY DIVIDING BY STANDARD DEVIATION 
160 WRITE(6,10400)

DO 190 IFEAT=1rNFEAT 
F=0 .
G=0.
DO 170 ISAMP=1,NSAMP 
F=F+DATA (IFEAT, ISAMP)

170 G=G+DATA(IFEAT,ISAMP) **2 
G=(G-F*F/NSAMP) /(NSAMP-1)
IF (G.LE. 1.E-6) G=1.0 
G=SQRT (G)
F=1./G
WRITE (6,10500) IFEAT,G,F, (VAR (J,IFEAT) ,J=1,NVNAM)
DO 180 ISAMP=1,NSAMP

180 DATA (IFEAT,I SAMP) =D ATA (IFE AT , IS AMP) *F 
190 CONTINUE

IF (NORM. EQ. 4) GO TO 220 
F=1.0/NFEAT 
DO 210 IFEAT=1,NFEAT 
WEIGHT (IFEAT) =F 
DO 200 ISAMP=1,NSAMP

200 DATA (IFEAT,ISAMP) =D ATA (IFEAT , IS AMP) *F 
210 CONTINUE 

RETURN

*** NORMALIZE BY MULTIPLYING BY INPUT WEIGHTS 
220 N= (NFEAT-1)/8 + 1 

IFEAT=0
IF (MTIME.NE.1) GO TO 260 
DO 250 11=1,N
READ(5,10200) (WEIG(I) ,1=1,8)
DO 240 1=1,8 
IFEAT=IFEAT+1
IF (IFEAT.GT. NFEAT) GO TO 240 
WEIGHT (IFEAT) =WEIG (I)
WRITE (6,10100) IFEAT,WEIG (I) , (VAR (J , IFEAT) ,J=1,NVNAM) 
F=WEIG (I)
DO 230 ISAMP=1,NSAMP

230 DATA(IFEAT,ISAMP) =DATA (IFEAT ,IS AMP) *F 
240 CONTINUE 
250 CONTINUE 

RETURN
260 DO 280 IFEAT=1,NFEAT 

F=WEIGHT(IFEAT)
DO 270 ISAMP=1,NSAMP
DATA(IFEAT,ISAMP) =DATA (IFEAT,ISAMP) *F 

270 CONTINUE 
280 CONTINUE 

RETURN
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*** N0EMALI2E BY DIVIDING BY ROBUST STANDARD DEVIATION 
290 IL=NSAMP/2

DO 450 1=1rNFEAT 
DO 300 J=1rNSAMP 
X (J) =DATA (I r J)

300 CONTINUE
DO 320 J=2,NSAMP 
M=J

310 IF (X (M) . GE.X (M-1) ) GO TO 320 
A=X(M-1)
X (M-1) =X(M)
X (M) = A 
M=M-1
IF (M.GT. 1) GO TO 310 

320 CONTINUE
WRITE (06, 10600)
DO 330 J=1,NSAMP 
IF (X (J) . GT.CUT (I) ) GO TO 340 

330 CONTINUE 
340 IC=J-1

IF (IC.GT.IL) GO TO 380
FN=NSAMP
IA=.05*FN
TB=.95*FN
ID=AMAX 0(IC,IA,1)
ID1=ID+1
IR=0

350 IR=IR+1
IF (ID1+IR.GT.NSAMP) GO TO 400 
IF (X(ID1) . EQ. X (ID1+IR) ) GO TO 350 
I=ID+IR
PB= FLOAT (L) /FLOAT (NSAMP+1)
IR=0

360 IR=IR+1
IF (IB-IR.LE.0) GO TO 410
IF (X (IB) .EQ.X (IB-IR) ) GO TO 360
IU=IB-IR
PT=FLOAT(IU)/FLOAT(NSAMP+1)
IUP=NSAMP-ID 
XMEAN=0.0 
DO 370 J=ID1,IUP 
XMEAN=XMEAN+X (J)

370 CONTINUE
FN=1./FLOAT (NSAMP-2*ID)
XMEAN=XMEAN^FN
CALL MDNRIS (PB,X1 ,IER)
B=-X 1
CALL MDNRIS (PT,X2,TER)
T=X2
STDV= ( (X (IU) +X (IU+1) )- (X(L) +X(L+1) ) )/(2.* (B + T) ) 
WRITE (6,10700) I, XMEAN, STDV, (VAR(J,I) ,J=1,NVNAM) 
WT=1./STDV
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GO TO 430
380 WKITE (6,10800) I, (VAE (J,I) , J=1 rNVNAM)

C CALCULATE REGULAR STANDARD DEVIATION WHEN THERE ARE
C NOT ENOUGH POINTS FOR ROBUST

F=0.
G=0.
DO 390 J=1,NSAMP 
F=F+X(J)
G=G+X (J) *X (J)

390 CONTINUE
XMEAN=F/NSAMP 
G= (G-F*F/NSAMP) /(NSAMP-1)
STDV=SQRT (G)
WT=1./STDV 
GO TO 430 

400 WRITE (6r10900)
GO TO 420 

410 WRITE(6r11000)
420 XMEAN=0.0 

STDV=0.0 
WT=0.0 
GO TO 430

430 DO 440 J=1r NSAMP
DATA (I, J) =DATA (I, J) *WT 

440 CONTINUE 
450 CONTINUE

IF (NORM. EQ.6) GO TO 220 
RETURN 

C 
C
c
10000 FORMAT COVARIABLE WEIGHT (DIVISION BY MAX)')
10100 FORMAT (lXrl4,10X,El 6.4,T7,2A4/(6Xr2A4) )
10200 FORMAT(8F10.2)
10300 FORMAT ('0VARIABLE WEIGHT (AS INPUT ON CARDS)')
10400 FORMAT('OVARIABLE STANDARD DEVIATION WEIGHT',

> •(1./ST.DEV.)•)
10500 FORMAT(1X,I3,6X,E16.4,3X,E15.4,T7,2A4/(6X,2A4))
10600 FORMAT ('0 VARIABLE MEAN ROBUST ST.DEV. NAME')
10700 FORMAT(I8,F12.3,F12.3,3X, (5A4))
10800 FORMAT(• TOO MUCH DATA BELOW DETECTION ',

A 'LIMIT FOR VARIABLE', I5,1X,5A4)
10900 FORMAT (• CANNOT FIND IR')
11000 FORMAT (' CANNOT FIND IU»)

END
C
C
C

SUBROUTINE METRIC (DATA,SQUA,XX,YY,IR,R,THRESH,EXTRA,
> SAMPLE,NSAMP,NFEAT)

C
C PURPOSE — INITIALIZE THE METRIC ARRAY "SQUA"
C (ALSO THE AUXILLIARY ARRAY "EXTRA" IF NEEDED)
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FEBRUARY 21, 1977

DIMENSION DATA (NFEAT, 1) ,SQUA (1) ,XX (1) , YY (1) , IR ( 1) ,
A R (1) ,THRESH (1) ,EXTRA (1) ,SAMPLE (NSNAM, 1)

COMMON/ALWAYS/TITLE(37),IFLAG,NORM,MET,NSQUAR,
A INV,LOG,NGRP,ITRN

COMMON/NAM/NS NAM,NVNAM,TITSAM(5),TITPP(5),TITCLS(5) , 
A PTALK (20)

INTEGER*2 IR

DATA EPS/0.01/
DIMENSION URE (7)
DATA URE/* PH *,'M-AK•,' BC,' U/U«,

A 'T-AK', 'P-AK* , ' PH^PV 
DATA N0L0G/7/

AMAX=0•
LOC=0
ILIMIT=NSAMP-1
GOTO (10,10,10,10,50,50,260),MET

*** EUCLIDEAN METRIC 
10 DO 30 1=1,ILIMIT 

ILIM=I+1
DO 30 J=ILIM,NSAMP 
DIST=0.
DO 20 K=1,NFEAT
DIST=DI ST+(DATA(K,I) -DATA (K, J) ) **2 

20 CONTINUE
IF (DIST.GT.AMAX) AMAX=DIST 
LCC=LOC+1 
SQUA (LOC) =DIST 

30 CONTINUE
SAMAX=SQRT (AMAX)
CALL CHANGE (SQUA,AMAX,SAMAX,NS AMP) 
WRITE(6,10000)AMAX 
IF (IFLAG.NE.8) GO TO 290 
DO 40 1=1 ,NSAMP 

40 EXTRA (I) =0 .
GO TO 290

*** CORRELATION-BASED METRICS 
50 CONTINUE

IF (LOG. NE. 0) GO TO 70 
DO 60 1=1,NSAMP 

60 THRESH(I) =-1.E25 
GO TO 150

70 GO TO (80,100,140),LOG
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80 DO 90 1 = 1vNSAHP 
90 THRESH(I)=0.

GO TO 150
100 DO 130 1=1rNSAMP 

DO 110 J=1,NOLOG
if (Sample (i»i).eq. ore (J)) go to 120

110 CONTINUE .
THRESH (I) =-10.
GO TO 130 

120 THRESH(I)=0.
130 CONTINUE 

GO TO 150
140 READ(05, 10100) (THRESH (I) r 1= 1 rNSAMP)
150 NRITE (06r 10200) (SAMPLE(1,I) ,THRESH (I) rI = 1rNSAMP) 

NSQUAR=1 
C

IF (MET.EQ.6) GO TO 200

*** PEARSON CORRELATION-BASED METRIC 
DO 190 1=1,ILIMIT 
ILIM=I+1
DO 190 J=ILIM,NSAMP 
NF=0
DO 160 K=1r NFEAT
IF (DATA (K, I) .LT. THRESH (I) ) GO TO 160 
IF (DATA (Kr J) .LT.THRESH(J) ) GO TO 160 
NF=NF+1
XX (NF) =DATA (K,I)
YY (NF) =DATA (Kr J)

160 CONTINUE
IF (NF.LT.10) GO TO 180 
A=0.
B=0 .
C=0.
D=0 .
E=0.
DO 170 K=1,NF 
A=A+XX (K) *YY (K)
E=B+XX (K) *XX(K)
C=C+YY (K) *YY(K)
D=D+XX(K)
E=E+YY (K)

170 CONTINUE 
B=B-D*D/NF 
C=C^EI)tE/NF 
A=A-D*E/NF 
A=A/SQRT (B*C)
IF (A.LT.0.) A=-A
LOC=LOC+1
DIST=1.-A
SQUA (LOC) =DIST
IF (DIST. GT. AMAX) A MAX=DIST
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GO TO 190 
180 ICC=10C+1

SQOA (LOC) =1-0 
190 CONTINUE

WRITE(6,10000)AMAX 
GO TO 290

*** SPEARMAN CORRELATION-BASED METRIC 
200 CONTINUE

DO 250 1=1,ILIMIT 
ILIM=I+1
DO 240 J=ILIM,NSAMP 
NF=0
DO 210 K=1,NFEAT
IF (DATA(K,I) .LT. THRESH (I) ) GO TO 210 
IF (DATA (K, J) .LT.THRESH(J) ) GO TO 210 
NF=NF+1
XX (NF) =DATA (K,I)
YY (NF) =DATA (K, J)

210 CONTINUE
IF (NF. LT .10) GO TO 230 
D=NF*(NF+1.)*(NF+1.)/4.
CALL RANK (XX, NF, IR, R , EPS)
CALL RANK(YY,NF,IR,R,EPS)
A=0.
E=0 .
C=0.
DO 220 K= 1, NF 
A=A+XX(K) *YY (K)
B=B+XX (K) *XX(K)

220 C=C+YY (K) *YY(K)
A=A-D
B=B-D
C=C-D
A=A/SQRT(B*C)
IF (A. LT. 0.) A=-A 
LCC=LOC+1 
DIST=1.-A 
SQUA (LOC) =DIST 
IF (DIST.GT. AMAX) AMAX=DIST 
GO TO 240 

230 I.OC=LOC +1
SQUA (LOC) =1.0 

240 CONTINUE 
250 CONTINUE

WRITE(6, 10000) AMAX 
GO TO 290

*** CITY BLOCK DISTANCE 
260 CONTINUE 

NSQOAR=1
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DO 280 1=1,ILIMIT 
ILIH=I+1
DO 280 J=ILIM,NSAMP 
DIST=0.
DO 270 K=1,NFEAT

270 DIST=DIST + ABS (DATA (K,I)-DATA (Kr J))
IF (DIST.GT. AMAX) A MAX=DIST 
IOC=LOC+1 
SQUA (LOC) =DIST 

280 CONTINUE 
SAMAX=A MAX 
WRITE(6r10000)SAMAX 

C
290 RETURN 

C 
C 
C
10000 FORMAT('OMAXIMUM DISTANCE IS',F10.4)
10100 FORMAT(8F10.2)
10200 FORMAT('0 NAME THRESHOLD'/(1X*A4,FI 0. 2) )

END
C
C
C

SUBROUTINE CHANGE (SQUA, AM AX , SAMAX , NSA MP)
C
C PURPOSE -- CHANGE FROM METRIC 1 TO METRIC 2, 3, OR 4
C
C FEBRUARY 21, 1977
C

DIMENSION SQUA (1)
C

COMMON/ALWAYS/TITLE(37),IFLAG,NORM,MET,NSQUAR,
A INV,LOG,NGRP,ITRN 

C
c
c

NT=NSAMP* (NSAMP-1) /2 
GOTO (10,40, 60,80) ,MET 

C
10 IF (IFLAG.EQ.7) GO TO 20

IF (NSQUAR.EQ.O) AM AX=SAMAX 
RETURN

20 DO 30 1=1,NT 
30 SQUA(I)=SQUA(I)*0.5 

AMAX=AMAX*0.5
IF (NSQUAR.EQ.O) AMAX=SQRT(AMAX)
RETURN

C
40 CONTINUE 

NSQUAR=1 
DO 50 1=1,NT 

50 SQUA(I)=SQRT(SQUA(I))
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C

C

c

c
c
c

c
c
c
c
c
c

c
c

c
c
c

c

AMAX=SQRT (AMAX)
RETURN

60 CONTINUE
DO 70 1 = 1f NT 

70 SQUA (I) =SQUA (I)/AMAX 
AMAX=1.
RETURN

80 CONTINUE 
NSQUAR=1 
DO 90 1=1,NT

90 SQUA (I) =SQRT (SQUA (I))/SAMAX 
AMAX=1.
RETURN

END

SUBROUTINE RANK (X,N,IR,P,EPS)

PURPOSE — ORDER THE SAMPLES ACCORDING TO RANK 

FEBRUARY 21, 1977

DIMENSION X (1) ,IR (1) ,R (1)
INTEGER*2 IR

SAVE X VECTOR AND INITIALIZE THE 
PERMUTATION VECTOR

DO 10 I = 1,N 
R(I) = X(I)

10 IR (I) = I
SORT ELEMENTS OF VECTOR R INTO 
ASCENDING SEQUENCE SAVING 
PERMUTATIONS 

CALL VSORTP (R,N,IR)
N1 = N-1 
L = 1

20 DO 60 J = L,N1 
JJ = J 
Y = R(J)
IF (ABS (Y-R (J + 1)) .GT.EPS) GO TO 60

COUNT THE NUMBER OF TIES
K = 1 
J2 = J+2
IF (J2.GT.N) GO TO 40 
DO 30 I = J2,N
IF (ABS (Y-R (I) ) .GT. EPS) GO TO 40 

30 K = K+1 
40 Y = J+.5+K 

K1 = K+1
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DO 50 I = 1,K1 
JJ = J+I-1 

50 X (IR (J J)) = Y 
GO TO 70 

60 X (IR(J) ) * J 
70 I = JJ+1

IF (L.LE.N1) GO TO 20 
IF (L. EQ. N) X (IR (N) ) = N 
RETURN 
END

SUBROUTINE VSORTP (A rLA,IR)

DIMENSION A (1) r IU (2 1) , IL (21) ,IR (1)
INTEGER*2 IR

M= 1 
1 = 1 
J=L A 
R=.375

10 IF (I. EQ. J) GO TO 100 
20 IF (R.GT. .5898437) GO TO 30 

R=R+3.90625E-2 
GO TO 40 

30 R=R-.21875 
40 K=I

SELECT A CENTRAL ELEMENT OF THE 
ARRAY AND SAVE IT IN LOCATION T

IJ=I+ (J-I) *R 
T=A (IJ)
IT=IR (I J)

IF FIRST ELEMENT OF ARRAY IS GREATER 
THAN Tt INTERCHANGE WITH T 

IF (A(I).LE.T) GO TO 50 
A(IJ)=A(I)
A(I)=T 
T=A (IJ)
IR (IJ) =IR (I)
IR (I) =IT 
IT=IR (I J)

50 L=J
IF LAST ELEMENT OF ARRAY IS LESS THAN 
T, INTERCHANGE WITH T 

IF (A (J) . GE. T) GO TO 70 
A (IJ) =A (J)
A(J)=T 
T=A (IJ)
IR (IJ) =IR (J)
IR (J) =TT 
IT=IR (IJ)

C IF FIRST ELEMENT OF ARRAY IS GREATER
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C THAN T, INTERCHANGE WITH T 
IE (A (I) .LE.T) GO TO 70 
A(IJ)=A(I)
A (I) =T 
T=A (IJ)
IR (U) =IR (I)
IR (I) =IT 
IT=IR (IJ)
GO TO 70 

60 TT=A (L)
A(L)=A(K)
A (K) =TT 
ITT=IR (L)
IR (L) =IR (K)
IR (K) =ITT

FIND AN ELEMENT IN THE SECOND HALF OF 
THE ARRAY WHICH IS SMALLER THAN T

70 L=L-1
IF (A (L) . GT. T) GO TO 70

FIND AN ELEMENT IN THE FIRST HALF OF 
THE ARRAY WHICH IS GREATER THAN T

80 K=K +1
IF (A (K) . LT. T) GO TO 80

INTERCHANGE THESE ELEMENTS 
IF (K.LE.L) GO TO 60

SAVE UPPER AND LOWER SUBSCRIPTS OF 
THE ARRAY YET TO BE SORTED 

IF (L-I.LE.J-K) GO TO 90 
IL (M) =1 
TU(M) =L 
I=K 
M=M+1 
GO TO 110 

90 IL (M) =K 
IU (M) =J 
J=L 
M=M+1 
GO TO 110

BEGIN AGAIN ON ANOTHER PORTION OF 
THE UNSORTED ARRAY

100 M=M-1
IF (M.EQ. 0) RETURN 
I=IL(M)
J=IU(M)

110 IF (M.GT.21) WRITE(6r10000)M 
IF (J-I.GE.1) GO TO 40 
IF (I. EQ. 1) GO TO 10 
1=1-1 

120 1=1+1
IF (I. EQ. J) GO TO 100 
T=A (1+1)
IT=IR (1 + 1 )
IF (A (I) .LE.T) GO TO 120
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K=I
130 A (K + 1) =A (K)

IR (K+1) =IR(K)
K=K-1
IF (T.LT. A(K)) GO TO 130 
A (K + 1) =T 
IR (K+ 1) =IT 
GO TO 120 

C
10000 FORMAT(« IN VSORTP, M=',I3) 

END

SUBROUTINE CLUST(DISTAN,KLUSTR,MARRAY,JARRAY, 
A DATA,MCEL,JCEL,ONDCL,INDCL,SQUA,EXTRA,
B KNT, IGRP, NNFEAT, NNS AMP)

PURPOSE — DO THE CLUSTER ANALYSIS !!

FEBRUARY 21, 1977

DIMENSION DISTAN (1) , KLUSTR (2,1) ,MARRA Y (1) , JARRAY (1) , 
A DATA (NNFEAT, 1) ,MCEL(1) ,JCEL (1) ,SQUA (1) ,EXTRA (1) ,
B ONDCL (1) ,INDCL (1) ,IGRP(1)

INTEGER*2 KLUSTR,MARRAY,JARRAY,MCEL,JCEL,
A ONDCL,INDCL,KNT(NGRP,1)

COMMON/ALWAYS/TITLE(37),IFLAG,NORM,MET,NSQUAR,
A INV,LOG,NGRP,ITRN

NSAMP=NNS AMP 
NFEAT=NNFEAT

INITIALIZE TO NSAMP CLASSES

NCL=NSAMP 
ITER=0 
NCLUST=0 
DO 10 1=1,NSAMP 
MCEL(I) =1 
JCEL(I)=0 
ONDCL (I) =1 
MARRAY (I) =1 
JARRAY (I) =0 
INDCL(I)=0 

10 CONTINUE

*** START LOOP
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C
20 CONTINOE 

ITEH=ITER+1

FIND CANDIDATES FOR CLUSTERING

ISUB=0 
JSUB=0 
AMIN=1.E35
CALL INTER (SQUA,EXTRArMARRAY,ONDCLrMCELr 

A NSAMP,XNI,XNJ,ISUB,JSUB,AMIN,IFLAG,NCt,JJJ,ITER) 
SAMIN=AMIN
IF (NSQUAR.EQ. 0) SAMIN=SQRT (AMIN)
KLUSTR(1,ITER)=ISUB 
KLUSTR(2,ITER)=JSUB 
DISTAN(ITER)=SAMIN

ISUB AND JSUB ARE THE CLUSTER NUMBERS WHICH MINIMIZE 
THE CRITERION.

FORM A CLUSTER

NCLUST=NCL0ST+1 
ILIM=MCEL (ISUB)
XNI=ILIM
INDIS=ONDCL (ISUB)

NUMBER OF SAMPLES IN CLUSTER ISUB 
JLIM=MCEL (JSUB)
XNJ=JLIM
IND JS=ONDCL (JSUB)

NUMBER OF SAMPLES IN CLUSTER JSUB 
JJJ=MARRAY (INDJS)

NUMBER OF THE FIRST SAMPLE IN JSUB 

LOAD INTO CLUSTER ARRAY 

INDEX=0
INDCL(NCLUST)=INDEX+1 
DO 30 1=1,ILIM 
INDEX=INDEX+1

30 JARRAY (INDEX) =MARRAY (INDIS+I-1)
DO 40 J=1,JLIM 
INDEX=INDEX+1

40 JARRAY(INDEX)=MARRAY (INDJS + J-1)
JCEL(NCLUST)=ILIM+JLIM

COPY REST OF MATRIX INTO JARRAY.

DO 60 1=1 , NCL 
IF (I. EQ. ISUB) GO TO 60 
IF (I. EQ. JSUB) GO TO 60 
NCLUST=NCLUST+1 
INDOLD=ONDCL (I)
INDCL (NCLUST) =INDEX+1
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ILIM=MCEL (I)
AMIN=0.
DO 50
INDEX=INDEX+1
JAEBAY (INDEX) =M ARE AY (INDOLD+J-1) 

50 CONTINUE
JCEL(NCLUST)=ILIM 

60 CONTINUE

IST=INDCL (I) -1 
70 CONTINUE

REINITIALIZE

DO 80 J = 1r NSAMP 
80 HARRAY (J) =0

COPY JARRAY INTO MARRAY

DO 90 1 = 1rNCLUST 
JLIM=JCEL (I)
MCEL(I) =JLIM 
JCEL (I) =0 
ONDCL (I) =INDCL (I)

90 CONTINUE
DO 100 J=1r NSAMP 
MARRAY (J) =JARRAY (J)
JARRAY (J) =0 

100 CONTINUE
NCL=NCLUST
NCLUST=0
DO 110 IN=1rNGRP 
IF (NCL.EQ.IGRP (IN) ) GO TO 120 

110 CONTINUE 
GO TO 20

*** END OF LOOP

120 CONTINUE 
JLIM=NSAM P
WRITE (06, 10400) (MCEL (I) ,1=1 ,NCL) 
WRITE (06,10500) (MARRAY (J) ,J=1,JLIM) 
1START=1 
DO 160 J=1,NCL 
KK=MCEL (J)
IF (KK.LT.2) GO TO 150 
IOK=MCEL(J)+1 START-1 
DO 140 K=2,KK 
NOJ=ISTART+K-1 
NMJ=MARRAY (NOJ-1)
DO 140 NOK=NOJ,IOK 
NMK=MARRAY (NOK)
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IF (NMJ.LT.NMK) GO TO 130 
NOA=((NMJ-1)*(NMJ-2))/2+NHK 
GO TO 140

130 NOA=( (NMK-1) * (NMK-2) )/2+NMJ 
140 KNT (INr NOA) =K NT (IN r NO A) ♦ 1 
150 ISTAFT=ISTART+KK 
160 CONTINUE

IF (IN.EQ.1) RETURN 
GO TO 20 
RETURN 

C 
C 
C
10000 FORMAT(1Xf«ITER='rI5r2X,2l5r' AMIN=•rF10.4)
10100 FORMAT ( ' ITERATION• f14 , ' NUMBER OF CLUSTERS ' rI4) 
10200 FORMAT(IX,* CLUSTER NUMBER'f14,

A • SAMPLES ',2514, /, (24Xr 2514))
10300 FORMAT (' ILIM = ',14)
10400 FORMAT(10X,'FINAL ORDERING '/

A • CLUSTERS END AT ',(1215))
10500 FORMAT (2015)

END
C
C

SUBROUTINE INTER(SQUA,EXTRA,MARRAY,ONDCL,MCEL,
A NSAMP,XNI,XNJ,ISUB,JSUB,AMIN,IFLAG,NCL,JJJ,ITER)

C
C PURPOSE — (1) UPDATE DISTANCE-BETWEEN-CLUSTER ARRAY
C SQUA AS REQUIRED BY PREVIOUS ITERATION
C (2) FIND WHICH TWO CLUSTERS ARE TO BE
C COMBINED NEXT (ISUB AND JSUB)
C
C FEBRUARY 21, 1977
C
c
c

DIMENSION SQUA (1) , MARRAY (1) ,MCEL(1) ,EXTRA (1) ,ONDCL(1) 
INTEGER*2 MARRAY,MCEL,ONDCL 

C 
C
c

IF (ITER. EQ. 1) GO TO 100
C IE, IF THIS IS THE FIRST ITERATION, GO TO 100
C

GO TO (10,20,30,40,50,60,160,190),IFLAG 
C 
C
C *** SINGLE LINKAGE CRITERION 
C

10 AI=.5 
AJ=. 5 
E=0.0 
G=-. 5
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GO TO 70

*** COMPLETE LINKAGE CRITERION

20 AI=.5

AJ=. 5 
B=0.0 
G=. 5
GO TO 70

*** GROUP AVERAGE CRITERION

30 AI=XNI/ (XNI+XNJ)
AJ=XNJ/ (XNJ+XNI)
B=0.0 
G=0.0 
GO TO 70

*** WEIGHTED AVERAGE CRITERION

40 AI=.5 
AJ=. 5 
B=0.0 
G=0.0 
GO TO 70

*** CENTROID CRITERION

50 AI=XNI/(XNI+XNJ)
AJ=XNJ/(XNI+XNJ)
B=- (XNI*XNJ)/( (XNJ+XNI) * (XNJ+XNI) ) 
G=0.0 
GO TO 70

*** MEDIAN CRITERION

60 AI=.5 
A J=. 5 
B=-.25 
G=0.0

*** (FOR THE FIRST SIX CRITERIA)
70 CONTINUE

IF (NCL.EQ.2) GO TO 150

COMPUTE DISTANCES TO NEWLY FORMED CLUSTER
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AND STORE DISTANCES IN SQUA 

DO 80 J=2 r NCL
CALL INT2 (MARRAY,ONDCL,NSAMP,JJJ,KIrKJ,IJrJ) 
DIE=SQDA(KI)-SQDA(KJ)
IF (DIF.LT. 0.0) DIF=-DIF
SQUA(KI)=AI*SQUA(KI)+AJ*SQUA(KJ)+B*SQUA(IJ) +G*DIF

CHECK FOR MINIMUM DISTANCES

IF (AMIN.LE.SQUA(KI) ) GO TO 80 
AMIN=SQUA (KI)
ISUB=1 
JSUB=J 

80 CONTINUE

90 IILOW=2 
GO TO 110

100 ITLOR=1
(FOR FIRST ITERATION)

IF (IFLAG.EQ. 8) GO TO 210

CHECK THE REST OF THE CLUSTERS FOR 
MINIMUM DISTANCES

110 LIMIT=NCL-1
DO 140 I=IILON, LIMIT 
ILOWER=I+1 
TN1=ONDCL (I)
DO 140 K=ILOWER,NCL 
IN2=ONDCL (K)
IF (MARRAY (INI) .LT. MARRAY (IN2) ) GO TO 120 
MA=MARRAY (TNI)
MI=MARRAY (IN2)
GO TO 130 

120 MA=MARRAY (IN2)
MI= MARRAY (INI)

130 IK= (MI-1)*NSAMP-MI*(MI + 1) /2 + MA 
IF (AMIN. LE. SQUA (IK) ) GO TO 140 
AMIN=SQUA (IK)
ISUB=I
JSUB=K

140 CONTINUE 
RETURN

*** LAST ITERATION FOR ALL BUT THE MINIMUM VARIANCE AND 
STANDARD DEVIATION 

150 CONTINUE
CALL INT2 (MARRAY,ONDCL,NSAMP,JJJ,KI,KJ,IJ,2) 
DIF=SQUA(KI)-SQUA(KJ)
IF (DIF.LT. 0.0) DIF=-DIF
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AMIN=AI*SQO A (KI) +AJ*SQ0A(KJ) +E*SQUA(IJ) +G*DIF
ISUB=1
JSUB=2
EETORN

*** MINIMUM VAEIANCE CRITERION

160 LIMIT=NCL-1 
XMIJ=XNI+XNJ 
IF (NCL.EQ.2) GO TO 180 
DO 170 J=2,NCL
CALL INT2(MARRAYrONDCL,NSAMPrJJJ,KI,KJfIJrJ) 
A=MCEL (J)
XM=XMI J+A
SQUA (KI) = ( (XNI + A) /XM) *SQUA (KI) ♦ ( (XNJ+A)/XM)

A *SQUA (KJ) - (A/XM) *SQUA (IJ)
IF (AMIN. IE. SQUA (KI) ) GO TO 170 
AMIN=SQUA (KI)
ISUB=1 
JSUB= J 

170 CONTINUE 
GO TO 90

*** LAST ITERATION FOR MINIMUM VARIANCE 
180 CONTINUE

CALL INT2 (MARRAY,ONDCL,NSAMP,JJJ,KI,KJ,IJ,2) 
A=MCEL (2)
XM=XMIJ+A
AMIN= ( (XNI + A) /XM) *SQUA (KI) + ( (XNJ+A) /X M) *SQUA (KJ) 

A (A/XM) *SQUA (I J)
ISUB=1
JSUB=2
RETURN

*** MINIMUM STANDARD DEVIATION CRITERION

190 LIMIT=NCL-1 
XMIJ=XNI+XNJ 
III=MARRAY (1)
X=EXTRA (III)+EXTRA (JJJ)
IF (NCL.EQ.2) GO TO 250 
DO 200 K=2,NCL
CALL INT2(MARRAY,ONDCL,NSAMP,JJJ,KI,KJ,IJ,K) 
A=MCEL(K)
D=A+XMIJ 
D=1./(D*(D-1.) )
IN1=ONDCL (K)
KKK=MARRAY (INI)
A=EXTRA (KKK)
SQUA(KI) =SQUA (KI) +SQUA (KJ) +SQUA (IJ) -A-X 
D=SQUA(KI)*D
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IF (AMIN.LE.D) GO TO 200
AMIN=D
ISUB= 1
JSUB=K

200 CONTINUE
EXTRA (III) =SQUA (I J)
II10W=2

CHECK REST OF CLUSTER PAIRS FOR MINIMUM 
STANDARD DEVIATION 

210 LIMIT=NCL-1
DO 240 I=IILONr LIMIT 
A=MCEL (I)
ILOWER=I+1 
INl=ONDCL (I)
DO 240 K=ILOWER,NCL 
IN2=ONDCL (K)
IF (MARRAY (INI) .LT. MARRAY (IN2) ) GO TO 220 
MA=MARRAY (INI)
HI=MARRAY (IN2)
GO TO 230 

220 MA=MARRAY (IN2)
MI=MARRAY (INI)

230 IK= (MI-1) *NSAMP-MI* (MI + 1)/2 + MA 
E=MCEL (K) +A 
B=1./(B*(B-1.))
B=B*SQUA(IK)
IF (AMIN. LE. B) GO TO 240
AMIN=B
ISUB=I
JSUB=K

240 CONTINUE 
RETURN

*** FINAL ITERATION FOR MINIMUM STANDARD DEVIATION 
250 CALL INT2(MARR AYr ONDCL* NSAMP,JJJ rKIrKJfIJr2) 

A=MCEL (2)
C=A+XMIJ 
D=1./(D*(D-1.) )
IN2=ONDCL (2)
KKK=MARRAY (IN2)
A=EXTRA (KKK)
EXTRA (III) =SQUA (I J)
AMTN=SQUA (KI) +SQUA (KJ) +SQUA (IJ) -A-X
AMIN=AMIN*D
ISUB=1
JSUB=2
RETURN

END
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SOBBOOTINE INT2(MAREAY,ONDCLrNS AMP,JJJrKIrKJ,IJ,J)
C
C PURPOSE — LOCATE POSITION IN DISTANCE ARRAY "SQUA” FOR 
C DISTANCE BETWEEN CLUSTERS III AND JJJ (IJ) ,
C DISTANCE BETWEEN CLUSTERS KKK AND III (KI) r
C AND DISTANCE BETWEEN CLUSTERS KKK AND JJJ (KJ).
C
C FEBRUARY 21, 1977
C
C

DIMENSION MARRAY(I) ,ONDCL (1)
INTEGER*2 MARRAY,ONDCL 

C
IN1=ONDCL (1)
IN2=ONDCL(J)
IF (MARRAY (INI) .LT. MARRAY (IN2) ) GO TO 10 
MA=MARRAY (INI)
MI=MARRAY (IN2)
GO TO 20

10 MA=MARRAY (IN2)
MI=MARRAY (INI)

20 KI=NSAMP*(MI-1)-MI*(MI + 1) /2 + MA 
IF (JJJ.LT.MARRAY (IN2) ) GO TO 30 
MA=JJJ
MI=MARRAY (IN2)
GO TO 40

30 MA=MARRAY (IN2)
MI=JJJ

40 KJ= (MI-1) *NSAMP-MI* (MI + 1) /2 + MA 
IF (MARRAY (INI) .LT.JJJ) GO TO 50 
MA=MARRAY (INI)
MI=JJJ 
GO TO 60 

50 MA=JJJ
MI=MARRAY (INI)

60 IJ= (MI-1) *NSAMP-MI* (MI+1) /2+MA 
RETURN

END
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C PMGCLS PROGRAM LISTING
COMMON/ALWAYS/STORY (30) rDATE (5),TODAY (2) ,IFLAG,NORMA,

> NORMB,MET,NSQUAR,LOG,NEWDAT,INV,NFACTR,
> IPLOT,MPLOT,NCLAS,ITDRN,IDELX,ISTORY,IPTALK.

INTEGER DIMEN
COMMON/HOLD/NSIZE,A(10000)
COMMON/NAM/NSNAM,NVNAM,TITSAM(5),TITPP(5),

> TITCLS (5) ,PTALK (20)

DIMENSION DD ATE (5)
BATA DDATE/**** TOD'^AYS * , * DATE* , ' IS •/

NSIZE=10000 
NUMBER=0 
CALL COMPRS

DO 10 1=1,5 
10 DATE (I) =DDATE (I) 

NSNAM=1

20 NUMBER=ND MBER+1

TYPE 10000 
ACCEPT 10100,IFLAG 
TYPE 10200 
ACCEPT 10300,NSAMP 
CALL BGNPL(NUMBER)
CALL LOOSE (1)
LLDIST=DIMEN (NSAMP)
N= ( (NSAMP-1) *NSAMP) /2 
LLSQUA=DIMEN(N)
LLSAMP=DIMEN (NSAMP)

C SQUA — DISTANCE BETWEEN SAMPLES
LLEXTR=DIMEN(NSAMP)

C
LLKLUS=DIMEN(2*NSAMP+1)

KLUSTR
N=N SAMP
ILMARR= DIMEN (N)

M ARRAY
LLJARR=DIMEN(N)

JARRAY
NS=NSAMP 
LLMCEL=DIMEN(NS)

MCEL
LLJCEL=DIMEN (NS)

J CEL
LLONCL=DIMEN ( N)

ONDCL
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LLINCL=DI MEN (N)
C INDCL
C

CALL INPUT (A(LLSQOA) , A (LLSAMP) rNSAMP)
CALL CLUST (A (LLDIST) , A (LLSQUA) , A (LLEXTP) ,

> A (LLKLUS) , A(LLMARR) r A (LLJARR) , A (LLMCEL) ,
> A(LLJCEL),A(LLONCL), A(LLINCL),NFEAT,NSAMP)

C
C
C *** PREPARE ARRAYS FOR CALL TO SUBROUTINE DENDRO 
C

CALL LOOSE (LLMARR)
LLIPOS=DI MEN ( NS)

C IPOS
LLNC=DIMEN (NS)

C NC
LLNC2=DIMEN (NS)

C NC2
N=NSAMP+N SAMP 
LLSTOR=DIMEN(N)

C STORE
LLSTR2=DIMEN(N)

C STORE2
N=5*NSAMP 
LLXXXX=DIMEN(N)

c xxxx
c

CALL DENDRO (A (LLDIST) , A (LLSAMP) ,A (LLKLUS) r
> A (LLIPOS ) , A (LLNC) , A (LLNC2) , A (LLSTOR) , A (LLSTR2)
> rA (LLXXXX) ,NFEATrNSAMP)

C
CALL ENDGR(O)
CALL ENDPL(O)
CALL DONE PL (0)

30 STOP 
C
c
10000 FORMAT(' CLUSTERING CRITERION?')
10100 FORMAT (I)
10200 FORMAT(' NO OF SAMPLES?')
10300 FORMAT(21)

END
C
C
c

SUBROUTINE TNPUT(SQUA,ISAMP,NSAMP)
C OM MON/TIL/TITL E(16)
DIMENSION SQUA(1) rISAMP(1)
NN= ( (NSAMP-1)*NSAMP)/2 
TYPE 10000 
ACCEPT 10100 rITER
div=i./iter
READ(45,10300) TITLE
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BEAD(45r 10400) (ISAMP(I) rI=1rNSAMP)
EEAD(45,10200) (SQOA(I) ,I=1rNN)
DO 10 J=1fNN
SQUA (J) =ASIN (SQRT (1 .-SQUA (J) *DIV) )

10 CONTINUE 
RETURN

10000 FORMAT(• NO OF ITERATIONS?')
10100 FORMAT (I)
10200 FORMAT (20F4.0)
10300 FORMAT(16A5)
10400 FORMAT(20 A4)

END
C
C
C
C
C
C

SUBROUTINE CLUST(DISTANrSQUA,EXTRArKLUSTR,HARRAYr
> JARRAY,MCEL,JCEL,ONDCL,INDCL,NNFEAT,NNSAMP)

C
C PURPOSE -- DO THE CLUSTER ANALYSIS !!
C
C JULY 22, 1977
C
C

DIMENSION DISTAN (1) , SQUA (1) , EXTRA (1) , KLUSTR (2,1),
> MARRAY (1) , JARRAY (1) ,MCEL(1) ,JCEL(1) ,ONDCL(1) ,INDCL(1) 

C
COMMON/ALWAYS/STORY (30) ,DATE (5) ,TODAY (2) ,

> IFLAG, NORMA,NORMB,MET,NSQUAR,LOG,NENDAT,INV,
> NFACTR,IPLOT,MPLOT,NCLAS,ITURN,IDELX,
> ISTORY,IPTALK

NSAMP=NNSAMP 
NFEAT=NNFEAT

INITIALIZE TO NSAMP CLASSES

NCL=NSAMP 
ITER=0 
NCLUST=0 
DO 10 1=1,NSAMP 
MCEL(I)=1 
JCEL (I) =0 
ONDCL(I)=1 
MARRAY(I)=1 
JARRAY (I) =0 
INDCL(I)=0 

10 CONTINUE 
C
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*** STABT LOOP

20 CONTINUE 
ITEB=ITER+1

FIND CANDIDATES FOR CLUSTERING

ISUB=0 
JSUB=0 
AMIN=1.El 0
CALL INTER(SQUA,EXTRA,MARRAYrMCEL,ONDCL,

> NSAMP,XNI,XNJ,ISUB,JSUB,AMIN,IFLAG,NCL,JJJ,ITER) 
SAMIN=AMIN
IF (NSQUAR.EQ.O) SANIN=SQRT (AMIN)
KLUSTR(1,ITER)=ISUB 
KLUSTR(2,ITER)=JSUB 
DISTAN(ITER)=SAMIN
WRITE(06,10000)ITER,ISUB,JSUB,SAHIN

ISUB AND JSUB ARE THE CLUSTER NUMBERS WHICH MINIMIZE 
THE CRITERION.

FORM A CLUSTER

NCLUST=NCLUST+1 
ILIM=MCEL (ISUB)
XNI=ILIM
INDIS=ONDCL (ISUB)

NUMBER OF SAMPLES IN CLUSTER ISUB 
JLIM=MCEL (JSUB)
XNJ=JLIM
IND JS=ONDCL (JSUB)

NUMBER OF SAMPLES IN CLUSTER JSUB 
JJJ=MARRAY (INDJS)

NUMBER OF THE FIRST SAMPLE IN JSUB 

LOAD INTO CLUSTER ARRAY 

INDEX=0
INDCL (NCLUST) =INDEX + 1 
DO 30 1=1,ILIM 
INDEX=INDEX+1

30 JARRAY (INDEX) =MARRA Y (INDIS+I-1)
DO 40 J=1,JLIM 
INDEX=INDEX+1

40 JARRAY (INDEX) =MARRAY (INDJS + J-1)
JCEL(NCLUST)=ILIM+JLIM

COPY REST OF MATRIX INTO JARRAY.

DO 60 1=1 , NCL 
IF (I.EQ. ISUB) GO TO 60 
IF (I.EQ.JSUB) GO TO 60
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NCLOST=NCLOST+1 
INDOLD=ONDCL (I)
INDC1 (NCLUST) =INDEX + 1 
ILIM=MCEL (I)
AMIN=0.
DO 50 J=1rILIM 
INDEX=INDEX+1
JARRAY (INDEX) = MARRAY (INDOLD +J- 1) 

50 CONTINUE
JCEL (NCLUST)=ILIM 

60 CONTINUE 
C

VRITE (06, 10100)ITER,NCLUST 
DO 70 1=1,NCLUST 
ILIM=JCEL (I)
IF (ILIM.LE.1) GO TO 70 
IST=INDCL (I) -1
IF (ILIM.GT.10) WRITE(06,10200)

> I, (JARRAY (IST+J) ,J=1 ,ILIM)
C WRITE(06,10300) ILIM

70 CONTINUE

REINITIALIZE

DO 80 J=1,NSAMP 
80 MARRAY (J)=0

COPY JARRAY INTO MARRAY

DO 90 1=1,NCLUST 
JLIM=JCEL (I)
MCEL (I) =JLIM 
JCEL (I) =0 
ONDCL (I) =INDCL (I)

90 CONTINUE
DO 100 J=1,NSAMP 
MARRAY (J) =JARRAY (J)
JARRAY (J) =0 

100 CONTINUE 
NCL=NCLUST 
NCLUST=0
IF (NCL.LE.1) GO TO T10 
GO TO 20

*** END OF LOOP

110 CONTINUE
JLIM= MCEL (1)
WRITE(06,10300)
WRITE (06, 10400) (MARRAY (J) ,J=1,JLIM) 
RETURN
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0000 FORMAT(IXr'ITER='rl5r2X,2I5r* AMIN=«,F10.4)
0100 FORMAT (' ITERATION'rI4r' NUMBER OF CLUSTERS *,14) 
0200 F0RMAT(1X,'CLUSTER NUMBER*fI4,

> ' SAMPLES ', 2514, /, (24X, 2514) )
0300 FORMAT(10Xr'FINAL ORDERING •)
0400 FORMAT (2015)

END

SUBROUTINE INTER(SQUA,EXTRArMARRAYrMCEL,ONDCLrNSAMP, 
> XNI,XNJ,ISUB,JSUB,AMIN,IFLAG,NCL,JJJ,ITER)

PURPOSE — (1) UPDATE DISTANCE-BETWEEN-CLUSTER ARRAY 
SQUA AS REQUIRED BY PREVIOUS ITERATION 

(2) FIND NHICH TWO CLUSTERS ARE TO BE COMBINED 
NEXT (ISUB AND JSUB)

JULY 22, 1977

DIMENSION SQU A (1) , EXTRA (1) , MARRAY ( 1) , MCEL(1) , ONDCL (1)

IF (ITER.EQ.1) GO TO 100
IE, IF THIS IS THE FIRST ITERATION, GO TO 100

GO TO (10,20,30,40,50,60,160,190),IFLAG

*** SINGLE LINKAGE CRITERION

10 AI=.5 
A J = . 5 
B=0.0 
G=-. 5 
GO TO 70

*** COMPLETE LINKAGE CRITERION

20 AI=.5

AJ=. 5 
B=0.0 
G=. 5
GO TO 70

*** GROUP AVERAGE CRITERION
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C
30 AI=XNI/(XNI+XNJ) 

AJ=XNJ/(XNJ+Xim 
B=0.0 
G=0.0 
GO TO 70

*** WEIGHTED AVEEAGE CRITERION

40 AI=.5 
AJ=. 5 
B=0.0 
G=0.0 
GO TO 70

*** CENTROID CRITERION

50 AI=XNI/(XNI+XNJ)
AJ=XNJ/(XNI+XNJ)
B=- (XNI*XNJ)/( (XNJ+XNI) * (XNJ+XNI) ) 
G=0.0 
GO TO 70

*** MEDIAN CRITERION

60 AI=.5 
A J= . 5 
E=-.25 
G=0.0

*** (FOR THE FIRST SIX CRITERIA)
70 CONTINUE

IF (NCL.EQ.2) GO TO 150

COMPUTE DISTANCES TO NEWLY FORMED CLUSTER AND 
STORE DISTANCES IN SQUA

DO 80 J=2,NCL
CALL INT2 (MARRAYrONDCLfNSAMPrJJJ.,KIrKJrIJ,J) 
DIF=SQUA(KI)-SQUA(KJ)
IF (DIF.LT.0.0) DIF=-DIF
SQUA (KI) =AI*SQUA (KI) +AJ*SQUA (KJ) +B*SQUA (IJ) +G*DIF 

CHECK FOR MINIMUM DISTANCES 

CTYPE *r KIr AMIN
IF (AMIN.LE.SQUA(KI)) GO TO 80 
AMTN=SQUA (KI)
ISUB= 1
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JSUB=J
80 CONTINUE

90 ITLOW=2
GO TO 110

100 IILON=1
(FOB FIBST ITERATION)

IF (IFLAG.EQ.8) GO TO 210

CHECK THE BEST OF THE CLOSTERS FOR 
MINIMUM DISTANCES

110 LIMIT=NCL-1
DO 140 I=IILOR, LIMIT
ILOWER=I+1
IN1 = ONDCL (I)
DO 140 K=ILOWER,NCL 
IN2=ONDCL(K)
IF (MARRAY (INI) .LT. MARRAY (IN2) ) GO TO 120 
MA=MARRAY (INI)
MI=MARRAY (IN2)
GO TO 130 

120 MA=MARRAY(IN2)
MI=MARRAY (INI)

130 IK=(MI-1)♦NSAMP-MI*(MI+1)/2+MA
130 IK= ((MA-2) * (MA-1) ) /2+MI 
YPE *rIKrSQUA(IK) rAMIN

IF (AMIN. LE. SQU A (IK) ) GO TO 140 
AMIN=SQUA (IK)
ISUE=I 
JSUB=K 

140 CONTINUE 
RETURN

*** LAST ITERATION FOR ALL BUT THE MINIMUM VARIANCE AND 
STANDARD DEVIATION 

150 CONTINUE
CALL INT2(MARRAYrONDCL,NSAMP,JJJ,KIrKJrIJr2)
DIF=SQU A(KI)-SQUA(KJ)
IF (DIF.LT.0.0) DIF=-DIF
AMIN=AI*SQUA(KI)+AJ*SQUA(KJ)+B*SQU A(IJ)+G*DIF
ISUB=1
JSUB=2
RETURN

*** MINIMUM VARIANCE CRITERION

160 LIMIT=NCL-1 
XMIJ=XNI+XNJ 
IF (NCL.EQ.2) GO TO 180
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DO 170 J=2r NCL
CALL INT2 (MARBAY,ONDCL,NSAHP,JJJrKIrKJ,IJ,J) 
A=MCEL (J)
XM=XMIJ+A
SQO A (KI) = ( (XNI + A) /XM) *SQUA(KT) + ( (XNJ+A) /XM)

> *SQUA (KJ) - (A/XM) *SQUA (IJ)
IF (AMIN.IE.SQOA(KI)) GO TO 170 
AMIN=SQOA (KI)
ISOB= 1 
JSOB=J

170 CONTINUE 
GO TO 90

*** LAST ITERATION FOR MINIMUM VARIANCE 
180 CONTINUE

CALL INT2 (MARRAYrONDCL,NSAMP,JJJrKIrKJrIJr2) 
A=MCEL (2)
XM=XMIJ+A
AMIN=( (XNI + A) /XM) *SQUA (KI) + ( (XN J+A)/X M) *SQU A (KJ)

> (A/XM) *SQUA(IJ)
ISUB=1
JSUB=2
RETURN

*** MINIMUM STANDARD DEVIATION CRITERION

190 LIMIT=NCL-1 
XMIJ=XNI+ XNJ 
III=MARRAY (1)
X=EXTRA (III)+EXTRA(JJJ)
IF (NCL.EQ.2) GO TO 250 
DO 200 K=2,NCL
CALL INT2(MARRAY,ONDCL,NSAMP,JJJ,KI,KJ,IJ,K) 
A=MCEL (K)
D=A+XMIJ 
D=1./(D*(D-1.) )
IN1=ONDCL(K)
KKK=MARRAY(IN1)
A=EXTRA (KKK)
SQUA (KI) =SQUA (KI) +SQUA (KJ) +SQUA (IJ) -A-X 
D=SQUA(KI)*D
IF (AMIN.LE.D) GO TO 200
AMIN=D
ISU B=1
JSUB=K

200 CONTINUE
EXTRA (III) =SQUA(IJ)
IILOW=2

CHECK REST OF CLUSTER PAIRS FOR MINIMUM 
STANDARD DEVIATION 

210 LIMIT=NCL-1
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DO 240 I=IIL0W, LIMIT 
A=MCEL (I)
ILOWER=I+1 
IN1=0NDCL (I)
DO 240 K=ILOWEErNCI 
IN2=ONDCL (K)
IF (MARRAY (INI) .LT.MARBAY(IN2) ) GO TO 220 
MA= MARRAY (INI)
MI=MARRAY (IN2)
GO TO 230 

220 MA=MARRAY (IN2)
MI=MARRAY (INI)

C 230 IK= (MI-1)*NSAMP-MI*(MT + 1)/2+MA
230 IK= ((MA-2)*(MA-1))/2 + MI 

E=MCEL(K) ♦ A
E=1./(B*(B-1.) )
B=B*SQDA(IK)
IF (AMIN. LE. B) GO TO 240 
AMIN=E 
ISDB=I 
JSDB=K

240 CONTINUE 
RETURN

*** FINAL ITERATION FOR MINIMUM STANDARD DEVIATION 
250 CALL TNT2(MARRAY,ONDCL,NSAMP,JJJ,KI,KJ,IJ,2) 

A=MCEL (2)
D=A+XMIJ 
D=1./(D*(D-1 .) )
IN2=ONDCL (2)
KKK=MARRAY (IN2)
A=EXTRA (KKK)
EXTRA (III) =SQUA (IJ)
AMIN=SQUA (KI) +SQUA (KJ)+SQUA (IJ) -A-X 
AMIN=AMIN*D 
ISUB=1 
JSUB=2 
RETURN

END

SUBROUTINE INT2 (MARRAY,ONDCL,NS AMP,JJJ,KI,KJ,IJ,J)
C
C PURPOSE -- LOCATE POSITION IN DISTANCE ARRAY ''SQUA" FOR 
C DISTANCE BETWEEN CLUSTERS III AND JJJ (IJ),
C DISTANCE BETWEEN CLUSTERS KKK AND III (KI),
C AND DISTANCE BETWEEN CLUSTERS KKK AND JJJ (KJ).
C 
C
c 
c

JULY 22, 1977
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DIMENSION MAREAY(1) rONDCL(1)
C

IN1=ONDCL (1)
IN2=ONDCL (J)
IF (MARRAY (INI) .LT. MARRAY (IN2) ) GO TO 10 
MA=MARRAY (INI)
MI=MARRAY (IN2)
GO TO 20

10 MA=MARRAY (IN2)
MI=MARRAY (INI)

C 20 KI=NSAMR* (MI-1)-MI* (MI + 1)/2 + MA 
20 KI=((MA-1)*(MA-2))/2+MI

IF (JJJ.LT. MARRAY (IN2) ) GO TO 30 
MA=JJJ
MI=MARRAY (TN2)
GO TO 40

30 MA=MARRAY (IN2)
MI=JJJ

C 40 KJ= (MI-1) *NSAMP-MI* (MI+1)/2 + MA 
40 KJ= ((MA-2)*(MA-1) )/2+MI

IF (MARRAY (TNI) .LT. JJJ) GOTO 50 
MA=MARRAY (INI)
MI=JJJ 
GO TO 60 

50 MA=JJJ
MI=MARRAY (INI)

C 60 TJ= (MI-1) *NSAMP-MI*(MI+1)/2 + MA 
60 IJ=((MA-2)*(MA-1))/2+MI 

RETURN 
C

IND

SUBROUTINE DENDRO(DIST,SAMPLE,KLUSTR,IPOS,NC,NC2f
> STORE,STORE2,XXXX,NFEAT,NSAMP)

C
C
C PURPOSE -- PLOT DENDROGRAMS !!!
C
C JULY 22, 1977
C
C

DIMENSION DIST (1) , SAMPLE (NSNAM, 1) ,KLUSTR(2,1) ,
> IPOS(1) , NC (1) , NC2 (1) , STORE (2, 1) , STORE 2 (2,1) ,
> XXXX (NSAMP,5)

C
COMMON/ALWAYS/STORY (30) ,DATE (5) ,TODAY (2) ,

> IFLAG,NORMA,NORMB,MET,NSQUAR,LOG,NEWDAT,
> INV,NFACTB,IPLOT,MPLOT,NCLAS,ITURN,IDELX,
> ISTORY,IPTALK

COMMON/NA M/NS NAM,NVNAM, TITS AM (5) ,TITPP (5) ,TITCLS(5) ,
> PT ALK ( 20)
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DIMENSION X(4)rY(4)

DELX=0.2 

XINC=0.
XTALK=XINC-2.0

*** INITIALIZE AEFAYS 
DO 10 J=1,NSAMP 

10 NC (J) =J

CALL VAESAM(SAMPLE,DIST,NFEAT,NS AMP,XINC,YINC,DELX)

*** WRITE SAMPLE NAMES ALONG X-AXIS 
*** VERTICAL SAMPLE NAMES 

XINC=XINC+DELX*1. 1 
SI7E=0. 12
IF (DELX. LE . SIZE) SIZE=DELX*0. 6
DSTZE=SIZE*0.8
YINC=-0.5
IF (NOS.G T.4) YINC=YINC-0.4 
YINC2=YINC-0.515 
YINCA=YINC2-0.035 
YINC3=YINC2-0.40 
CALL ANGLE (90.)
DO 20 J=1,NSAMP 
CALL HEIGHT (SIZE)
CALL MESSAG (SAMPLE (1 ,IPOS (J) ) , 4 ,XINC, YINC) 
XINC=XINC+DELX 

20 CONTINDE
CALL RESET («ANGLE*)

30 DO 40 J=1,NSAMP 
STORE (1 ,1POS ( J) ) =J 
STORE(2,J)=0.0 

40 CONTINUE

NSTEP=N SAMP-1 
DO 130 K=1,NSTEP

XXXX (K, 1) =STORE (1,KLUSTR (1 ,K) )
XXXX (K,2) =STORE(1,KLUSTR (2,K))
XXXX (K, 3) =STORE (2, KLUSTR (1,K))
XXXX (K , 4) =STORE (2 , KLUSTR (2 , K) )
XXXX (K, 5) =DIST (K)

*** REINITIALIZE ARRAYS FOR NEXT ITERATION
XN= (STORE (1,KLUSTR (1,K)) + STORE (1,KLUSTR (2,K) ) )/2. 
NO= 1
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M=KLUSTK(1 rK)
J=KLUSTR(2rK)
IXL=MIN0(MrJ)
IXG=HAX0 (M r J)
DO 110 M=1,NSAMP 
IF (NC(M)-IXL) 50,100,60 

50 NO=NC(M)+1 
GO TO 70 

60 N0=NC(M)
70 IF (NC(M)-IXG) 90,100,80 
80 N0= NC (M) ” 1 
90 CONTINUE

STORE2(1, NO) =STORE (1 ,NC (M) )
STORE2 (2, NO) =STORE ( 2,NC (M) )
NC2 (M) =NO 
GO TO 110 

100 CONTINUE
STORE2(1,1)=XN 
STORE2 (2, 1) =DIST (K)
NC2 (M) =1 

110 CONTINUE
DO 120 M=1,NSAMP 
NC (M) =NC2 (M)
STORE (1,M)=STORE2(1 ,M)
STORE (2 , M) =STORE2 (2 ,M)

120 CONTINUE 
130 CONTINUE

*** ORDER "UP-ACROSS-DOWN” LINES ON XXXX(K,1) 
N=NSTEP
DO 160 K=2,NSTEP 
NSW AP=0 
N=N-1
DO 150 KK=2,N
IF (XXXX ( KK-1, 1) .LE. XXXX (KK , 1) ) GO TO 150 
DO 140 J=1,5 
A=XXXX(KK,J)
XXXX(KK,J)=XXXX(KK-1,J)

140 XXXX(KK-1,J)=A 
NSW AP=N SW AP+1 

150 CONTINUE
IF (NSWAP.EQ. 0) GO TO 170 

160 CONTINUE

*** DRAW "UP-ACROSS-DOWN" LINES 
170 K= 1
180 X (1) =XXXX (K, 1)

X (2) =X (1)
X (3) =XXXX (K,2)
X (4) =X (3)
Y (1)=XXXX (K, 3)
Y (2) =XXXX (K,5)
Y (3) =Y (2)
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Y(4)=XXXX (Kr4)
GO TO 200 

190 X(1)=XXXX (K,2)
X (2) =X (1)
X (3) =XXXX (K r 1)
X (4) =X (3)
Y (1) =XXXX (K,4)
Y (2) =XXXX (Kr5)
Y (3) =Y (2)
Y (4) =XXXX (K,3)

200 CALL CORVE (XrY,4,0)
C
C *** PREPARE NEXT LINES 

K=K+1
IF (K. GT. NSTEP) GO TO 210
A= (X (4) -XXXX (Kr1))**2+(Y(4) -XXXX(Kr3) )**2 
B= (X (4) -XXXX(K,2))**2+(Y(4) -XXXX (K,4) ) **2 
IF (A.LE. B) GO TO 180 
GO TO 190 

C
210 CONTINDE 

C
WRITE (6,10000)
RETURN

C
C
10000 FORMAT('OPLOT COMPLETED')
10100 FORMAT (15A4)
10200 FORMAT(FI 0.3)

END
C
C
C

INTEGER FUNCTION DIMEN (MANY)
C
C PURPOSE -- KEEP TRACK OF DIMENSIONS
C JULY 22, 1977
C

COMMON/HOLD/NSIZE,A (1)
DATA KOUNT/1/
DIMEN=KOUNT 
KOUNT=KOUNT+MANY
IF (KOUNT.GT. NSIZE) WRITE (6,10000) NSIZE, KOUNT 
RETURN 

C
ENTRY LOOSE (MANY)
KOUNT=MANY 
RETURN 

C
10000 FORMAT(• AVAILABLE SIZE=',I5,

> ' BUT YOU NEED',16,'. ERROR!')
END
SUBROUTINE VARSAM(SAMPLE,DIST,NFEAT,NSAMP,XINC,
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> YINC,DELX)
C
c
C PURPOSE — TO WRITE VARIABLES AND SAMPLES TO
C LEFT OF PLOT
C
C NML
C JULY 22, 1977
C 
C

COMMON/ALWAYS/STORY (30),DATE(5) ,TODAY (2) ,
> IFLAG,NORMA,NORMB,MET,NSQUAR,LOG,NERDAT,
> INV,NFACTR,IPLOT,MPLOT,NCLAS,ITURN,IDELX,
> ISTORY,IPTALK

COMMON/NA M/NS NAM,NVNAM,TITSAM (5) ,TITPP (5) ,TITCLS(5) ,
> PTALK(20)

C
DIMENSION SAMPLE(I) ,DIST(1)

C
DATA LBLANK/' •/
COM MO N/TIL/TITLL(16)

10 CONTINUE 
CALL NOBRDR
XMAX=NS AMP*DELX+XINC+0.5
PAGEX=XMAX+1.0
CALL PAGE (PAGEX,11.0)
CALL HEIGHT (0.12)
CALL PHYSOR (0.,0.5)
CALL TITLE (LBLANK, 1 , LBLANK, 0 ,LBLANK , 0 , XMAX, 8.5) 

20 CONTINUE
NSTEP=NSAMP-1

FIND THE MAXIMUM IN THE Y DIRECTION.
YMAX=0.
DO 30 J=1,NSTEP
IF (YMAX. LT. DIST (J) ) YMAX=DIST(J)

30 CONTINUE 
YINC=0.0 

40 CONTINUE

*** INITIALIZE PLOT 
CALL ENDGR(O)
CALL OREL (XINC,YINC)
XMAX=NSAMP*DELX
CALL TITLE(LBLANK,1 ,LBLANK,0,LBLANK, 1,XMAX,8.9) 
CALL ANGLE (90.)

- XMAX=NSAM P
CALL GRAF (0.0,1.0,XMAX,0.0SCALE• ,YMAX)
CALL MESSAG (' CLUSTER DISTANCE* , 16 , -0. 5,3.0)
CALL RESET ('ANGLE')
CALL MESSAG (TITLL,59,0.0,9.0)
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CALL MESS AG(
> • CLOSTEP ANALYSTS ON MONTE CARLO RESULTS USING $* ,
> 100,0.0,9.3)

GO TO (50,60,70,80,90, 100,110,120) ,IFLAG 
50 CALL MESSAG(«SINGLE LINKAGE*,14,«ABUTABUT•)

GO TO 130
60 CALL MESSAG (*COMPLETE LINKAGE* ,16,•ABUT*,«ABUT*)

GO TO 130
70 CALL MESSAG(*GROUP AVERAGE*,13,«ABUT*,'ABUT•)

GO TO 130
80 CALL MESSAG(*WEIGHTED AVERAGE*,16,'ABUT*,'ABUT*)

GO TO 130
90 CALL MESSAG('CENTROID*,8,'ABUT*,*ABUT*)

GO TO 130
100 CALL MESSAGCMEDIAN*,6,'ABUT*,'ABUT')

GO TO 130
110 CALL MESSAG('WARDS METHOD*,11,'ABUT*,*ABUT*)

GO TO 130
120 CALL MESSAG('STANDARD DEVIATION*,19,'ABUT*,'ABUT')
130 CALL MESSAGC FOR THE CLUSTERING CRITERION$»,

> 100,'ABUT','ABUT')
RETURN

10000 FORMAT('1THERE ARE',13,' VARIABLES AND WEIGHTS,',
> ' WHICH IS TOO MANY TO WRITE ON THE PLOT./*
>• INSTEAD THEY ARE LISTED HERE FOR YOUR CONVENIENCE'/ 
>/'0VARIABLE WEIGHT')

10100 FORMAT (13X,E10.3,T5,2A4/(4X,18A4))
10200 FORMAT('OTHERE ARE',13,

> • SAMPLES, WHICH IS TOO MANY TO LIST ON THE PLOT.') 
END
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C PMGEST PROGRAM LISTING
DIMENSION KNT (3000) rCA (3000) rIGRPS (100,25) r NC (100) ,

> VEC (100) ,PROP (100, 25) ,TITLE(16) ,SAMNO(100) ,SCO (100) ,
> OOTL (100) ,IH (100)

C*** N IS THE NUMBER OF SAMPLES
TYPE 10100 
ACCEPT 10400,N

C*** CRITNO IS THE A0 TO OSE TO SET OP GROUPS.
TYPE 10700
ACCEPT 10800,CRITNO
PRINT 10900,CRITNO

C*** NIT IS THE NUMBER OF ITERATIONS USED 
C*** IN MONTE CARLO ITERATIONS (M)

TYPE 11000 
ACCEPT 10400,NIT 
DIVFAC=1./NIT 
NA= ( (N- 1) * (N) ) /2

C*** READ OUTPUT FROM PMGPER AS UNIT 25 
READ(26,1 1 500) TITLE 
READ(26,1 1600) (SAMNO (I) ,1= 1, N)
READ(26, 10600) (KNT (I) ,1= 1 ,NA)

10 PRINT 11700,TITLE
PRINT 11800, (SAMNO(K) ,K=1 ,N)
IOUT=0
OUTLC=NIT-CRITNO

C*** FIND THE SAMPLE PAIRS WHERE THE FREQUENCY IS 
C*** IS GREATER THAN A0.

DO 20 1=1,NA 
CA (I) =KNT (I) *DIVFAC 
IF (KNT (I) .GE.CRITNO) CA(I) = 1.0 

20 CONTINUE
C*** CHECK FOR ANY OUTLIERS (FREQUENCY LESS THAN M-A0)

DO 40 1=1,N 
DO 30 J=1,N 
IF (J.EQ. I) GO TO 30 
NO= ((1-1) * (1-2) )/2 + J 
IF (J.GT.I) NO=((J-1)*(J-2))/2 + I 
IF (KNT (NO) .GT.OUTLC) GO TO 40 

30 CONTINUE
C*** SAMPLE I IS AN OUTLIER.

IOUT=IOUT+1 
OUTL (IOUT) =1 

40 CONTINUE
C*** SET UP GEOUPS BY COMBINING SAMPLE 
C*** PAIRS WITH FREQUENCY GREATER THAN AO.

N0=0 
NGRPS=0 
DO 110 J=2, N 
L1=J-1
DO 100 L=1,LI 
NO=NO+1

C*** SKIP THE REST OF THIS LOOP IF FREQUENCY 
C*** OF OCCURENCE <A0.
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IF (CA (NO) . NE. 1.0) GO TO 100 
IMATCH=0
IF (NGBPS.EQ.O) GO TO 90 

C*** FIRST COMBINE ONLY THE SAMPLE PAIRS
C*** WHOSE FREQUENCY OF OCCURENCE > A0 FOR EVERY MEMBER 
C*** OF THIS GROUP.

DO 80 IG=1,NGRPS 
NG= NC (IG)
DO 50 IIG=1,NG 
IV=L
IF (IGRPS (IIGrIG) .EQ. J) GOTO 60 
IV=J
IF (IGRPS (IIG/IG) .EQ.L) GO TO 60 

50 CONTINUE 
GO TO 80

60 DO 70 IIG=1,NG 
IA=IGRPS(IIG,TG)
IF (IV.EQ.IA) GO TO 100 
INO=((IA-1)*(IA-2)) /2 + IV 
IF (IV. GT . IA) INO= ( (IV-1) * (IV-2)) /2+IA 
IF (CA (INO) .NE. 1.0) GO TO 50 

70 CONTINUE
C*** A MATCH WAS FOUND,
C*** THAT IS ADD SAMPLE IV TO GROUP IG.

IMATCH=1 
NC (IG) =NC (IG) +1 
IGRPS (NC (IG) , IG) =IV 

80 CONTINUE
IF (IMATCH.EQ.1) GO TO 100

C*** NO MATCH WAS FOUND FOR A PREVIOUSLY EXISTING GROUP, 
C*** SO FORM A NEW ONE.

90 NGRPS=NGRPS+1 
NC (NGRPS) =2 
IGRPS (1 ,NGRPS) =J 
IGRPS(2,NGRPS)=L 

100 CONTINUE 
110 CONTINUE

C*** THE GROUPS NOW FORMED HAVE ALL MEMBERS 
C*** WHOSE FREQUENCY OF OCCURENCE IS > A0 
C*** FOR ALL PAIRS. THIS IS FOUND FIRST,
C*** AND THEN THE GROUPS WITH COMMON SAMPLES
C*** ARE COMBINED TO FORM THE GROUPS DESCRIBED
C*** IN THE PMG PROCEDURE.

IF (IOUT.EQ.0) GO TO 130 
DO 120 1=1,IOUT 
NGRPS=NGRPS+1 
IGRPS (1,NGRPS) =OUTL (I)
NC (NGRPS) =1 

120 CONTINUE 
130 CONTINUE

IF (NGRPS.EQ.1) GO TO 220
C*** NOW COMBINE ALL GROUPS WITH SAMPLES IN COMMON.

DO 210 J=2,NGRPS
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J1=J-1
DO 200 K=1r J1
UNM=0
NG1=NC(K)
NG2=NC(J)
DO 150 N2=1,NG2 
IJ=IGPPS(N2rJ)
DO 140 N1=1,NG1
IF (IJ.EQ.IGRPS(N1rK)) GO TO 150 

140 CONTINDE 
SNM=NNM+1 
IH(NNM) =IJ 

150 CONTINDE
IF (NNM.EQ.NG2) GO TO 200
NGRPS=NGHPS-1
NC (K) =NC (K) +NNM
IF (NNM.EQ.0) GO TO 170
DO 160 NN=1rNNH
IGRPS(NG1+NN,K) =IH(NN)

160 CONTINDE 
170 CONTINDE

DO 190 LL=Jf NGRPS 
NN=NC (LL+ 1)
DO 180 NI=1,NN
IGRPS (NIr LL) =IGR?S (NIr LL+ 1)

180 CONTINDE 
NC(LL)=NN 

190 CONTINDE 
GO TO 130 

200 CONTINDE 
210 CONTINDE 
220 CONTINDE

PRINT 120 00 fNGRPS
C*** CALCDLATE THE PROBABILITIES OF SAMPLE MEMBERSHIP. 

230 DO 330 J=1r NGRPS 
PRINT 11200,J 
NND=0
DO 240 L=1 , N 

240 VEC (L) =0.0 
NG=NC (J)
DO 250 IG = 1,NG 
L=IGRPS (IG, J)
VEC (L) =1.
SCD (IG) =SAMNO (L)

250 CONTINDE
PRINT 1 1300, (SCD(NN) ,NN=1,NG)
DO 320 L= 1,N 
FROB (L, J) =0.0 
L 1=L-1 
SDM=0.0
IF (L1.LE.1) GO TO 270
DO 260 M=1,L1
NO= ( (L-1) * (L-2) )/2 + M
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SUM=SUH+VEC (H) *CA (NO)
260 CONTINOE

IF (L. EQ. N) GO TO 290 
270 L2=L+1

DO 280 M=L2,N 
NO=((M-1)*(M-2))/2 + L 
SUM=STJM+VEC(M) *CA(NO)

280 CONTINOE 
290 DIV=NC(J)

IF (VEC (L) .NE. 1) GO TO 300 
SOM=SOM+1.
DIV=DIV+1.

300 SOM=SUM/DIV 
FROB(L, J) =SU«

310 CONTINOE 
320 CONTINOE 
330 CONTINOE

DO 360 J=1,N 
SSOH=0.0
DO 340 K=1,NGBPS 
SSOM=SSOM + PROB (JrK)

340 CONTINOE
DO 350 K=1rNGBPS 
IF (SSOM. EQ.0.0) GO TO 350 
PROB (J, K) =PROB (J,K) /SSOM 

350 CONTINOE 
360 CONTINOE 

ICH=0
C*** WRITE OOT SOME INFORMATION TO ONIT 25 TO 
c*** PLOT THE SAMPLE MEMBERSHIP PROBABILITIES IF DESIRED. 

WRITE (2 5r 11500) TITLE 
WRITE (25, 10200) N, NGRPS,CRITNO 
WRITE (25, 11900) (SAMNO (I) ,I=1,N)

C*** WRITE OOT THE PROBABILITIES TO THE 
c*** LIllE PRINTER UNIT.

DO 370 K=1,NGRPS
PRINT 11100,K, (PROB (L,K) ,L=1,N)
WRITE (25, 10300) (PROB(L,K) ,L=1,N)

370 CONTINOE
TYPE 12200,NGRPS 
TYPE 10000 
ACCEPT 10500,ANS 
IF (ANS. NE. 1 Y') STOP 
TYPE 10700 
ACCEPT 10800,CRITNO 
GO TO 10 
STOP

10000 FORMAT(1 AGAIN?')
10100 FORMAT (' NUMBER OF SAMPLES?')
10200 FORMAT(215,2F10.3)
10300 FORMAT(8F10.3)
10400 FORMAT (I)
10500 FORMAT (A1)
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10600 FORMAT(2014)
10700 FORMAT(• CRITNO?')
10800 FORMAT(2G)
10900 FORMAT(' THE CRITICAL NO. USED FOR THIS RUN IS'rF10.3) 
11000 FORMAT (' NUMBER OF ITERATIONS?')
11100 FORMAT(' GROUP*rl5/10F9.2/(10F9.2))
11200 FORMAT(' CLUSTER UNIT ',15/)
11300 FORMAT( (1Xr10(A4rIX)))
11500 FORMAT (1 6A5)
11600 FORMAT(20 AU)
11700 FORMAT (IX r 1 6A 5)
11800 FORMAT(' SAMPLE NUMBERS'/ (10(3XrA4,2X)))
11900 FORMAT(* SAMPLE NUMBERS'/(20A4))
12000 FORMAT(• THE FOLLWING ARE PROBABILITIES FOR',

> ' THE ',15,' GROUPS FOUND.')
12200 FORMAT (» THE NO. OF GROUPS =',I5)

END
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APPENDIX B

GENERATING AND TESTING RANDOH NUMBERS

A uniform random number generator for an interval I is

defined as a method which selects points within I such that

each point has an equally likely possibility of occuring.

Actual methods for generating uniform numbers in use today

usually consist of using a recurrence relation on a digital

computer. These procedures specify an initial number a ro
each a', is calculated from ^ by some algorithm. The 

numbers generated by these methods are not truly random, but 

they can be shown to satisfy statistical tests for 

randomness and can be assumed to approximate true 

randomness. Such a generator is then called a pseudorandom 

number generator [Shreider, 1964].

Statistical testing plays an important part in 

determining the usefulness of pseudorandom number 

generators. It is not possible to prove that a generator is 

truly random since that would necessitate generating an 

infinite set. Statistical tests can give a qualitative 

comparison between tested sequences (Halton, 1970]. Such 

tests can be used to select a pseudorandom number generator 

for use in a particular system [Gorenstein, 1967],

A collection of six standard statistical tests is used 

to test the different attributes of locally available 

pseudorandom generators. These tests are implemented in
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TESTRN, a FORTRAN program. Each test is described below. 

The results of testing the four generators are given and 

discussed. A description of input and a listing of TESTRN 

are also contained in this Appendix.

Tests were applied to 10 sets of 5000 uniformly 

generated random numbers from the interval I from 0 to 1. 

The first four tests are performed for each set. The last 

two tests require longer sequences; the entire collection of 

generated numbers was used for them. In each case, expected 

values are compared with actual values. Test statistics are 

applied and the obtained significance level for the 

hypothesis that the sequence is uniformly random is 

computed.

The first test calculates the first, second, and third 

moments for each batch in order to test the uniformity of 

the sequences over the entire interval I. The calculated 

moments are then compared with the expected values of 

one-half, one-third, and one-fourth, respectively, for a 

uniformly distributed random variable in I [Gorenstein, 

1967]. The results are tabulated for each set.

The second test is a frequency test [Kendall, 1938] 

which is applied to test the uniformity of the generated 

numbers over small subintervals within I. One hundred equal 

subintervals were used in testing each batch. The 

calculated quantity of numbers occurring within each 

interval is compared to the expected value for a uniform
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distribution. The chi-square statistic was used to test the 

goodness-of-fit of the observed frequency to the expected 

frequency

100
t* = Z(qj -N/100) 2 , (B1)

i=i n/166

where N is the total number of random numbers in one set and 

q. is the quantity of generated numbers occurring in the 

i-th interval. The resultant t2 has approximately a 

chi-square distribution with 99 degrees of freedom.

In a set of generated numbers . . . r f a run 

up of length s is defined as a subsequence of s successive 

numbers starting at za such that

z i+a > Zj+a ’l >1’ 1 *1' 2.......................S-1 •

zq, < za i f (B2)

Z 5+0!+^ Z S + O *

The run down is defined similarly. Levene [1964] gives 

the expected number of runs of length s in a sequence of 

uniformly generated random numbers as

Efr 1 - 2N 52 + 3s + 1, _2(s3 -i- 3s2 - s -4) t
E (rs) - 2N (s + 3) ! (s + 3) ! (B3)

where N is the number of random numbers generated and s is 

the length of the run. The expected number of runs greater 

than or equal to s is
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E(r > rs) ?U S + 1 2(s2 ^ s - 1)
(s +2) ! is * 2) l (B4)

In TESTEN, runs of length four or less are tabulated, 

with the number of runs of length five or greater also being 

calculated. The total number of runs up and runs down can 

be compared to check for bias of the generator. The 

chi-square statistic can be used to test the significance of 

the results

where T (rs) is actual tabulation of runs of length s. The 

statistic t2 has approximately a chi-square distribution 

with four degrees of freedom.

The Cramer von Mises test was the fourth test used 

[Shreider, 1964], This test does not involve a grouping of 

the numbers, but instead compares the empirical and 

hypothetical cumulative distribution functions [Anderson, 

1952]. To apply the test, the generated numbers are ordered 

and the test statistic is computed

N
Nw« = 1/12N + [z(v) -( 2i>-1/2N) 2 (B6)

where is the ordered sequence of the generated numbers. 

The reported significance level in TESTRN is computed from 

the approximation in Anderson [ 1952, Eg. 4.35],
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The fifth test is a serial or gap test [Kendall, 1938], 

which computes the two-dimensional frequency of a pair of 

generated numbers separated by a specified gap. The 

resultant frequencies indicate the tendency of two generated 

numbers to occur together. The frequencies are tabulated as 

follows:

q.. = g.. + 11J 1J

if is in interval i and z^is in interval j where is 

the number of pairs occurring in the i-th and j-th interval, 

and p is the specified gap length. An interval size of 

0.10 was used in TESTRN. Op to five different gaps ( (3) can 

be specified as input to TESTRN. The chi-square statistic 

used to calculate a significance level for the serial test 

is

10 10
2 z 2 (qii-N/100)2 , <B7)
' " i=1 i=1 UH>100"

for 99 degrees of freedom.

The final test is one suggested by MacLaren and 

Harsaglia [1965] to evaluate the behavior of n-tuples

z2, • • • » zn) • If

n
z |v| — (max(z^-|, ^■j+2r •••* ) *

(B8)

then both z^ and zm should be uniformly distributed
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[HacLaren and Marsaglia, 1965]. In TESTRN, n-tuples (n = 5,

10, 15, 20) were tested by checking for the unifornity of

functions of the maximum and minimum of these vectors. For #

each set of 20 random variables generated, zM and z were

calculated for four 5-tuples, two 10-tuples, and one 15- and

20-tuple. The freguency of z and z in subintervals ofM m
size 0.01 was calculated for all sets. The statistic used 

for this test is Eg. (B1), where q indicates the 

frequency of z ^ or zm . The statistic is approximately a 

chi-square with 99 degrees of freedom.

The four pseudouniform random number generators tested 

include FLTRN [Westley and Watts,1970], GGOB [International 

Mathematical and Statistical Libraries, 1977], RANDU 

[International Business Machines, 1970], and ORAND [McRae,

1970]. GGOB and RANDO are package routines from the IMSL 

routine and IBM libraries, respectively. FLTRN is a 

generator available on the system at Oak Ridge National 

Laboratory. The generator ORAND is a 31* congruential 

uniform generator and is used in MICKA [McRae, 1970]. The 

results of the test are given in Figs. B1-B7. In Fig. B1 

the first, second, and third moments are compared. Figures 

B2-B4 compare significance levels for the tests indicated 

for each batch of uniform numbers generated. Figures B5,

B6, and B7 give the significance levels for the tests done •

on the entire set. All significance levels are for the 

hypothesis that the numbers generated are random. Table B1
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Table B1. Number of significance levels below 0.10
for four pseudorandom number 

generators*

Frequency Runs 
Name test test

Cramer
von Gap Maximum Minimum

Mises test n-tuple n-tuple Total

GGOB 2 3 2 3 0 3 13

RANDU 2 2 2 0 0 1 7

FLTRN 1 0 110 2 5

URAND 0 3 1 0 0 0 4

‘Testing H0:the sequences generated are uniformly 

random versus H:the sequences are not uniformly random.

*

#•
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> lists the order of the generators by the number of

significance levels which occurred below 0.10.

FLTBN and ORAND give the best results in the sequences 

tested. ORAND gave slightly better results in the tests 

shown in Fig. B6 and also required less time than FLTRN to 

generate 5000 numbers. Therefore, ORAND was chosen for use 

as a uniform number generator.

TESTRN is designed to evaluate an arbitrary number of 

pseudo-uniform random number generators using six 

statistical tests of uniformity. The input parameters to 

TESTRN are given below, followed by a description of the 

required subroutine RANDYR. Figure B8 is a flowchart of the 

' program.

* The first input card is a general data card; the next

four describe the generator and should be supplied for every 

one tested.

Card 1 Variables=NGEN, NR AN, NTIMES Format= (315)

NGEN is the number of generators to be tested.

NRAN is the size of each data set to be generated (<10,000). 

NTIMES is the number of times the data sets of size NRAN are 

to be generated.

Card 2 Variables=TITLE Format=(20A4)

k TITLE is the alphanumeric title for the pseudouniforra random

number generator.
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Figure B8. Flowchart of TESTRN. This program tests the *
hypothesis that a sequence of generated numbers 
is uniform.
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Card 3 Variables=NOPT Format=(I5)

NOPT=0 (default) means an initalization factor(seed) will be 

read in; if NOPT is not equal to 0 no initialization of 

the generator will be done.

Card 4 Variables=FMT Format^ (20A4)

FMT is the format to be used in reading in the initalization 

factor; the variable read in will be a double length 

word. This card should not be in the input if NOPT is 

not equal to 0.

Card 5 Variable=RINT Format=FMT

PINT is the initialization factor(seed). This card should 

not be in the input if NOPT is not equal to 0.

The user-supplied routine RANDYR should generate NRAN

random numbers for NG generators. RANDYR is called once for

every data set. The argument list of RANDYR is ORD, NRAN,

RINT, NG, and NT where

ORD is an array of NRAN pseudouniform random numbers upon 

return to RANDYR.

NRAN is the number of pseudorandom numbers to be generated.

RINT is the initialization factor read in if NOPT=0.

NG is the sequential number of the generator that is to be 

tested.

NT is the number of sets.

An example of RANDYR is given in the program listing.
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C TESTBN PBOGBAM LISTING
DIMENSION IFINT (1 00) r ISINT (10,10,10 ) r 

A IFMAX (4,100) , NB (10) , IFMIN ( 4, 100) ,
B OBD (10000) , OX (4) ,ON(4) ,TITLE(20) ,
C NBONO (7) ,NRDND (7) ,RONS (8) ,EXPB (8)

DATA EXPM1/0.5/,EXPM2/.33333333/,EXPM3/.25/
LOGICAL PLD 
DATA DF/99.0/
BEAD(5,10100) NGEN,NRAN,NTIMES 
NG= 1
FN=1. /FLOAT (NRAN)
FN1=1./FLOAT(NRAN-1)
READ(5, 10200) NS, (NR (M) ,M=1 ,NS)

2 NT=1
READ (5, 10000) TITLE 
READ(5,10100) NOPT 
WRITE(6,10010) TITLE 
WRITE (6,10020) NRAN,NTIMES 
NT= 1
DO 5 K=1,100 
DO 5 J=1,4 
IFMAX (J , K) =0 
IFMIN (J , K) =0 

5 CONTINUE
DO 15 J=1,10 
DO 15 K=1,10 
DO 15 L=1,10 
I SINT (L , K, J) =0 

15 CONTINUE
C*** SET UP EXPECTED NO. OF RUNS

FAC=6.
DO 20 J=1,7 
P=J
FAC=FAC* (P+3.)
P2=P*P
P3=P2*P
EXPR(J) =2. * (NRAN* (P2 + 3.*P + 1. ) - (P3+3. *P2-P-4.) )/FAC 

20 CONTINUE
TE= (4.* NR AN-2.) /6 .
EXPR (8) = (16. *NRAN-142.) *2. 755739 IE-7 

1 1=1
C*** ZERO OUT ALL STORAGE ARRAYS
C*** IFINT STORES COUNTS FOR THE INTERVALS OF
C*** FREQUENCY TEST
C*** IFMAX AND IFMIN STORE COUNTS FOR MAX
C*** AND MIN OF N TUPLES(N=5,10,15,20)
C*** ISINT STORES COUNTS FOR INTERVALS OF SERIAL TEST
C*** XM1,XM2,XM3 ARE THE FIRST,SECOND, AND THIRD MOMENTS
C*** NRUNU,NRUND STORE THE NUMBER OF 1-7 RUNS UP AND DOWN 
C*** ITRUNU,ITRUND, STORE TOTAL
C*** RUNS UP AND DOWN.

DO 10 K=1,100 
IFINT (K) =0
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10 CONTINUE
X M1=0.0 
XM2=0.0 
XM3=0.0 
DO 30 J=1,7 
NEUNU (J) =0 
NRUND (J) =0 

30 CONTINUE
TTRUND= 0 
MAXRUU=0 
PLU=.FALSE.
NRUN=0 
ITRUNU=0 
M AXRUD=0
CALL RANGET(ORDr NRAN,TIME,NOPTrNT,NTIMES, NG) 
XRL=ORD (1)
DO 100 1=1,NRAN 
XR=ORD (I)

c*** FIND MOMENTS 
110 XM1=XM1+XR

X M2=XM2 + XR*XR 
X M3=XM3+XR*XR*XR

C*** FIND INTERVAL FOR FREQUENCY TEST 
INF=XR*100+1 
IFINT (INF) =IFINT (INF) +1 

C*** CHECK FOR RUNS 
XF=XRL-XR
IF(XF) 200,205,21 0 

200 IF (PLU)GO TO 202
C*** IF RANDOM NUMBER>LAST RANDOM NUMBER
C*** BEGINNING OR CONTINUING
C*** A RUN UP
C*** IFPLU TRUE, BEGINNING A RUN UP
C*** IF PLU FALSE, CONTINUING A RUN UP

NRUN=NRUN+1 
GO TO 220

202 PLU=.FALSE.
ITRUND=ITRUND+1
IF (NRUN. LE. 7) NRUND (NRUN) =NRUND (NRUN) ♦1 
IF(NRUN.GT.MAXRUD) MAXRUD=NRUN 

205 NRUN=1
GO TO 220

C*** IF RANDOM NUMBER CLAST RANDOM NUMBER
C*** BEGINNING OR CONTINUING A RUN DOWN
c*** IF pIg FALSE, BEGINNING A RUN DOWN
c*** IF pLU TRUE, CONTINUING A RUN DOWN
210 IF(.NOT. PLU) GO TO 212

NRUN=NRUN+1 
GO TO 220 

212 PLU=.TRUE.
ITRUNU=ITRUNU+1
IF (NRUN .LE. 7) NRUNU (NRUN) =NRUNU ( NRUN) ♦ 1 
IF(NRUN.GT.MAXRUU) MAXRUU=NRUN
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NBUN=1
220 CONTINUE

XRL=XB 
INS=XH*10+1

C** CHECK FOB SERIAL TEST 
DO 300 M=1,NS 
IF (I.LT.NB(M)) GO TO 300 
JNS=ORD (I-NR(M) ) *10 + 1 
ISINT (JNS,INSrM)=ISINT (JNS rINSrM) +1 

300 CONTINUE
IF(MOD(I,20) .NE.0) GO TO 100 

C*** CHECK FOB MAX AND MIN OF N-TUPLES 
C*** OX CONTAINS MAXIMUM OF THE 4 5-TUPLES
C*** ON CONTANS MINIMUM OF THE 4 5-TUPLES
c*** IFMAX (1 ,*) AND FIMIN (1 ,*) STORES COUNTS OF
c*** MAX AND MIN OF 5-TUPLES
c*** IFMAX (2,*) AND IFMIN (2,*) STORES COUNTS OF
c*** MAX AND MIN OF 10-TUPLES
c*** IFMAX (3 , *) AND IFMIN (3,*) STORES COUNTS OF
c*** MAX AND MIN OF 15-TUPLES
c*** IFMAX (4 , *) AND IFMIN (4,*) STORES COUNTS OF
c*** MAX AND MIN OF 20-TUPLES
350 DO 500 M=1, 4

IADD=5* (M-1) +1-•20
OX (M) * AMAX1 (ORD ( 1 + IADD) f OBD (2+IADD) rORD (3+IADD) r 

A ORD (4+1 ADD) r ORD(5+IADD))
IOX= (OX (M) **5) *1 00. + 1 
IFMAX (1 ,IOX) =IFMAX (1 ,IOX) +1.
ON(M) = AMIN1 (ORD (1 + IADD) rORD (2+IADD) ,ORD(3 + IADD) , 

A ORD (4 + IADD) , ORD(5+IADD))
ION= (1. - (1. -ON(M) ) **5) *1 00 . +1 .
IFMIN (1 ,ION) =IFMIN (1 ,ION) +1 

500 CONTINUE
OlX=OX(1)
IF (OX (2) .GT.OIX) 01 X=OX (2)
02X=OX (3)
IF (OX (4) . GT. 02X) 02X=0X(4)
J1X=(O1X**10)*100.+1.
J2X=(02X**10)*100.+1.
IFMAX (2, J1X) =IFM AX (2rJlX) +1 
IFMAX(2 rJ2X)=IFM AX(2,J2X) +1 
01N=ON(1)
IF (ON (2) .LT. 01N) 01N=0N(2)
02N=0N (3)
IF (ON (4) .LT.02N) 02N=0N(4)
J1N= (1.- (1.-01N) **10)*100. +1.
J2N= (1. - (1. -02N) **10) *100. +1.
IFMIN (2r JIN) =TFMIN (2,J1N) +1 
IFMIN (2 , J2N) =IFMIN (2 r J2N) *1 
IF(OX (3) .GT.OIX) 01 X=OX (3)
IF(ON(3) .LT.01N) 01N=0N (3)
J1X= (01X**15) *100. + 1 .
J1N= (1. - (1. -01N) **15) *100. +1.
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IFMAX (3, J1X) =IFMAX (3, J1X) +1 
IFMIN (3, JIN) =IFMIN(3,J1N) +1 
IF (OX (4) .GT.OIX) 01 X=OX (4)
IF (ON (4) . LT. 01N) 01N=0N(4)
J1X= (OlX**2 0) *100.+ 1.
J 1N= (I.-(I.-OIN) **20) *100.+1.
IFMAX(4,J1X)=IFMA X(4,J1X) +1 
IFMIN (4r JIN) =IFMTN (4,JIN) +1 

100 CONTINUE
C*** FIND MOMENTS
1000 XM1=XM1*FN

XM2=XM2*FN 
XM3=XM3*FN 
CHI=0.0

C*** FIND CHI SQUARE DISTRIBUTION FOR FREQUENCY TEST
RN=0.01*NRAN 
DO 1100 N=1r100 
SUM=IFINT (N) -RN 
CHI=CHI+SUM*SUM 

1100 CONTINUE
CHI=CHI/RN
WRITE (6,11100) NT,XM1 ,EXPM1 ,XM2rEXPM2,XM3, EXPM3 
CALI MDCH (CHI rDF , P , IER)
P=1.-P
WRITE (6r11200)CHI,P 
WRITE (6,11300)
IF (PLU) GO TO 1120 
ITRUND=ITRUND+1
IF (NRUN. LE. 7) NRUND(NRUN) = NRUND (NRUN) +1 
IF (NRUN.GT. MAXRUD) MAXRUD=NRUN 
GO TO 1122

1120 IF(NRUN.LE.7) NRUNU(NRUN)=NRUNU(NRUN)+1
IF(NRUN.GT.MAXRUU) MAXRUU=NRUN 

1122 CONTINUE
ITRUNT=ITRUNU+ITRUND 
TR=0.0 
CHI=0.0 
DO 1150 L=1,7 
NTRL=NRUNU(L)+NRUND(L)
TR=TR+NTRL
SUM=NTRL-EXPR(L)
CHI=CHI+SUM*SUM

1150 WRITE (6,11350) L, NRUNU (L) ,NRUND (L) ,NTRL,EXPR (L) 
WRITE (6,11355) ITRUNU,ITRUND , ITRUNT , TE 
MAXRUN=MAXRUU
IF (MAXRUD.GT.MAXRUN)MAXRUN=MAXRUD 
WRITE (6, 11365) MAXRUU,MAXRUD,MAXRUN 
SUM=ITRUNT-TR-EXPR(8)
CHI=CHI+SUM*SUM 
CHI=CHI/7.
CALL MDCH (CHI,7. , P,IER)
P=1.-P
WRITE (6,11375) CHI, P
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c*** ORDER THE LAST NRAN RANDOM NUMBERS FOR 
C*** CRAMER VON MISES TEST

DO 1200 J=2 r NRAN 
M=J

1225 IF (ORD(M).GE.ORD(M-1)) GO TO 1200 
ORDH=ORD (M)
ORD (M)=ORD(M-1)
ORD (M-1) =ORDH 
M=M~ 1
IF(M.GT.I) GO TO 1225

1200 CONTINUE
C*** DO SUMMATION FOR CRAMER VON MISES TEST

FN2=1./FLOAT (2*NR AN)
SUM=0.0
DO 1300 J=1,NRAN 
FN1=J*2-1
FAC=ORD(J)-FN1*FN 2 
SUM=SUM+FAC*FAC 

1300 CONTINUE
OMEG=1./FLOAT (12*NRAN) +SUM 
CALL CUM (OMEGrP)
P=1.-P
WRITE(6,11400) OMEGr P 

C*** ANALYSIS COMPLETED FOR THIS PASS
c*** CHECK IF SHOULD DO ANOTHER PASS

NT=NT+1
IF (NT.LE. NTIMES) GO TO 1 

2000 CONTINUE
C*** FIND CHI-SQUARE DISTRIBUTION FOR SERIAL TEST

WRITE (6,11450)
DO 2200 J=1,NS 
CHI=0.0
NT=NRAN*NTIMES-NR(J) *NTIMES 
RNTD=0.01*NT 
DO 2100 K=1,10 
DO 2100 L=1,10 
SUM=I SI NT (L , K , J) -RNTD 
CHI=CHI+SUM*SUM 

2100 CONTINUE
CHI=CHI/RNTD
CALL MDCH(CHI,DF,P,IER)
P=1.-P
WRITE (6,11500) NR (J) ,CHI, P 

2200 CONTINUE
WRITE (6,11600)
DO 3000 L=1,4
LEN=L*5
IFAC=LEN
IF(L.EQ.3) IFAC=20 
RFAC=NTIMES*NRAN*0.0 1/FLOAT(IFAC)
CHI1=0.0 
CHI2=0.0 
DO 2500 J=1,100
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SUM=IFMAX (L , J) -FFAC 
CHI1 = CHI 1 + ST3W*SDM 
SDM=IFMIN (L, J) -BFAC 
CHI2=CHI2+SOM*SOM 

2500 CONTINOE
CHI1=CHI1/RFAC 
CHI2=CHI2/RFAC 
CALI MDCH (CHI1 rDFrP1 rTER)
CALL MDCH(CHI2rDFrP2rIEB)
P1=1. -PI 
P2=1.-P2
WRITE(6,11650) LEN,CHI1,P1,CHI2,P2 

3000 CONTINOE
WRITE (6,11800) NRAN,TIME 
NG=NG+1
IF (NG.LE.NGEN) GO TO 2 
STOP

10000 FORMAT(20A4)
10100 FORMAT (315) .
10200 FORMAT (1615)
10010 FORMAT('1TEST FOR QOALITY OF PSEODO 

A 'RANDOM NOMEERS'///
B ' GENERATOR NAME: • , 20A4///)

10020 FORMAT(' A DATA SET OF SIZE',15,' WAS GENERATED ',
A 15,' TIMES FOR THIS TEST.'//)

11100 FORMAT('0*************** RESULTS FROM DATA SET ',15,£ i ***************•//
B ' MOMENTS',10X,'CALCULATED',5X,'EXPECTED'/
C 5X,'FIRST',5X,F10.5,5X,F10.5/
D 5X,'SECOND',4X,F10.5,5X,F10.5/
E 5X,'THIRD*,5X,F10.5,5X,F10.5////)

11200 FORMAT(' FREQUENCY TEST (CHI-SQUARE)'//
A 5X,'STATISTIC = '
B 3X,F10.2/5X,«SIGNIFICANCE = »,F10.2////)

11300 FORMAT(' RESULTS OF RUN TEST'//
A 5X,'NUMBER OF RUN S',6X,'SUCESSIVE',
B 5X,'SUCCESSIVE',8X,'TOTAL'/
C 7X,'OF LENGTH',9X,'INCREASES',5X,
D 'DECREASES',9X,'RUNS',9X,
E 'EXPECTED'/)

11350 F0RMAT(16X,I5,4X,3(I7,8X) ,F10.2)
11355 FORMAT (4X,' TOTAL • ,1 5X ,3 (17,8X) , F10.2)
11365 FORMAT(4X,» LONGEST RUN* ,9X,3(17,8X)/)
11375 FORMAT(4X,' RESULTANT CHI-SQUARE STATISTIC= '

A ,FI 0.2/4X,' SIGNIFICANCE = ',F10.4////)
11400 FORMAT(' CRAMER VON MISES STATISTIC = ',F10.3/

A 5X,'SIGNIFICANCE = *,F10.3////)
11450 FORMAT (• OVERALL SERIAL TEST RESULTS:'/)
11500 FORMAT( 4X,' FOR GAP OF',15,

A ' CHI-SQUARE STATISTIC= ',F10.2/
A 4X,' RESULTANT SIGNIFICANCE = ',F10.4////)

11600 FORMAT(' OVERALL MAX AND MIN TEST RESULTS'//
A 4X,' LENGTH OF N-TUPLE*,6X,'CHI-SQUARE MAXIMUM*,12X,
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B
C
D

11650
11800

A
B

10

10100

• CHI-SQUARE MINIMUM*/
2 5Xr'STATISTIC,10Xr'SIGNIFICANCE'r 
9X, • STATISTIC ,1 OX,'SIGNIFICANCE*/)
FORMAT(15X,I5,3X,F10.2,3(10X,F10.2))
FORMAT('0'//» THE TIME REQUIRED TO GENERATE ',
16,' RANDOM NUMBERS NAS ON THE AVERAGE ',
F8.3, ' SECONDS.')
END
SUBROUTINE RANGET (ORD,NRAN,TIME,NOPT,NT,NTIMES,NG) 
REAL*8 RINT
DIMENSION ORD (1) , FMT (20)
IF (NT.GT. 1) GO TO 10 
ITT=0
RINT=0.0D0
IF(NOPT.NE.0) GO TO 10 
READ(5, 10100) FMT 
READ (5, FMT) RINT 
IT1=ICL OCK(0)
CALL RANDYR (ORD,NRAN,RINT,NG, NT)
IT2=ICL OCK(O)
ITT=IT2-IT1+ITT
IF (NT.LT.NTIMES) RETURN
TIME= (ITT/FLOAT (NTIMES) ) *0.01
RETURN
FORMAT(20A4)
END

A



DOOBLE PRECISION FUNCTION KP(N)
IMPLICIT BEAL*8(A-H,0-Z)
DATA PI,P2 rP3r P4,PM/.88 40 702 298758D0,

A .911312780288703D0,.958720824790 463D0,
B .973310954173898D0,.9866554770869488D0/

DATA C1,C2/.47972740422244IDO,2. 216035867166471 DO/ 
DATA B1r B2r B3/-.59550713801594D0,1.10547366102207DO, 

A 63083480192196D0/
DATA H1,H2r H3/.053377549506886D0r.0492644 9637 3128D0, 

A.03424050375011IDO/
DATA PI,B2,F3/.805577924423817D087283497667179D0r 

A .755591531667601D0/
DATA SL,SRTP/.180025191068563D0,.3989422804014327D0/ 
DATA CC,TC/1.1311316354441800,2.455407482284127D0/ 

C===MISING VAPIABLE 
U = RAN (1)

C===BIG TRIANGLE
IF(U.GT.PI) GO TO 10 
KR=C2* (PAN (1) +CC*U-1 .)
RETURN

C*** SMALL TRIANGLE 
10 IF (U. GT . P4) GO TO 50

IF (U. GT. P3) GO TO 30 
C=C1
IF(U.GT.P2) GO TO 20
B=B1
H=H 1
R=R 1
GO TO 40 

20 B=B2
H=H2 
R=R2
GO TO 40 

30 C=C2
B=B3 
H=H3 
P = R3

C***TRIANGLE REJECTION 
40 V=RAN(1)

W=R AN (1)
2=V-W
KR=DMIN1 (V,W)*B+C
IF (DMAX1 (V,W) .LE. R) GO TO 45
IF(KR.LT.0.) GO TO 40
IF (H*DABS (Z) . GT. SPTP*DEXP (-. 5*KR*KP) + SL* (KR-C2) )

A GO TO 40 
45 KF=DSIGN (KR , Z)

RETURN
C***TAIL 
50 V=RAN(1)

KR=TC-DLOG (RAN (1) )
IF (V*V*KR.GT.TC) GO TO 50 
KR=DSIGN (DSQPT(2.*KP),U-PM)
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RETURN
END
DOUBLE PRECISION FUNCTION RAN (N) 
IMPLICIT REAL*8 (A-HrO-Z) 
COMMON/SEED/IRAND 
IRAND=IRAND*1162261467 
IF(IRAND.LT.0) IR AND=-IRAND 
RAN=FLOAT (IRAND)*0.4656612873E-9 
RETURN 
END
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