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TEMPERATURE DEPENDENCE OF THE ELASTIC BEHAVIOR OF STRUCTURALLY 
DISORDERED METALLIC SUPERLATTICES

J. A. JASZCZAK AND D. WOLF
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439

ABSTRACT

The structure and elastic properties of superlattices composed of high-angle twist grain 
boundaries on (100) planes of copper are investigated as a function of both the modulation 
wavelength and temperature via molecular dynamics simulations. Comparison is made with zero- 
temperature results, where a stiffening of the Young's modulus normal to the interfaces and a 
softening of the modulus for shear parallel to the interfaces has previously been observed. The 
differences between the effects of homogeneous (temperature-induced) and inhomogeneous 
(interface-induced) structural disorder on the elastic properties is explored.

INTRODUCTION

The elastic anomalies of metallic superlattices, including a strengthening of certain moduli 
and a softening of others, have been the subject of investigation of numerous experimental [1-9] 
and theoretical studies [10-13]. In particular, the anomalous enhancements of Young's and 
biaxial moduli (supermodulus effect) [1,5-8] at small modulation wavelengths. A, (defined in 
Fig. 1) have motivated continued research in hopes of being able to engineer desired elastic 
properties into layered materials.

Fig. 1. Periodic arrangement of materials A 
and B forming a superlattice modulated along 
z. The modulation wavelength is A. In the 
grain-boundary superlattices of this study, A 
and B are the same material, but rotated with 
respect to each other about the (001) plane 
normal (llz) to form a periodic array of high- 
angle twist grain boundaries.
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A series of computer simulations of well-characterized metallic superlattices at zero 
temperature has helped to elucidate the origin of the elastic anomalies. Perfectly coherent 
(strained-layer), composition-modulated superlattices, with very little structural disorder at the 
interfaces, have been studied in a number of papers [17-21], and have shown little or no 
anomalous elastic behavior. However, incoherent superlattices, with significant structural 
disorder in the form of misfit dislocations at the interfaces, have shown an enhancement of the 
Young's and biaxial moduli, as well as a softening of the moduli for shear parallel to the interfaces 
[20-21], Larger elastic anomalies in the incoherent superlattices have been correlated to greater 
structural disorder via a larger lattice-parameter mismatch [20-21]. Incoherent, composition- 
modulated superlattices with alternating materials rotated with respect to each other about the 
interface normals, have also been studied. These superlattices, with the largest degree of 
structural disorder at the interfaces of the systems studied, showed greatest elastic anomalies [21].

Grain-boundary superlattices (GBSLs), composed of a periodic arrangement of high-angle 
twist grain boundaries (Fig. 1), also show enhancements in the Young's and biaxial moduli, and a 
softening of the shear moduli [13-15]. These simple model systems show an excellent correlation 
between the amount of structural disorder at the interfaces and the degree of the elastic anomalies 
[16], and are appropriate model systems for disordered composition-modulated superlattices [21], 
These studies have made it clear that the supermodulus effect is primarily an interface effect whose 
magnitude is controlled by the degree of inhomogeneous structural disorder and the anharmonicity 
of the potential, but not the homogeneous (albeit anisotropic) lattice-parameter changes.

In this study we further investigate the different, and sometimes competing effects of 
inhomogeneous and homogeneous disorder on elastic behavior by investigating the effects of



temperature on GBSLs and perfect crystals under conditions of constant stress and also constant 
volume. Whereas thermal vibrations increase the degree of homogeneous structural disorder and 
might be expected to lead to elastic strengthening, under constant-stress conditions there are 
subsequent lattice-parameter increases which ultimately lead to elastic softening. We choose, for 
this study, GBSLs composed of high-angle twist grain boundaries (GBs) on (001) planes of an 
fee metal, with a twist angle of 36.87° [the so-called 15 (001) symmetrical twist grain boundary]. 
Such GBSLs are advantageous for study since they are relatively simple systems, they exhibit 
interesting elastic anomalies even at zero temperature, and they are directly comparable to perfect 
crystals of the same material. Furthermore, they are appropriate models for disordered, 
composition-modulated metallic superlattices [21] and possibly nanocrystals [22],

SIMULATION METHOD

In many of the previous simulation studies of supermodulus behavior, both Lennard-Jones 
(LJ) and embedded-atom-method (EAM) [23] potentials were used for comparison. Although the 
LJ potential satisfies the Cauchy relation at zero temperature, both the LJ and EAM potentials 
yield qualitatively the same physical behavior in these systems. Consequently, for this study we 
have chosen a LJ potential fitted to have the zero-temperature lattice parameter (a=3.616A) and 
zero-pressure melting temperature of copper (approximately 1200K) by choosing the usual LJ 
parameters to be G=2.315lA and £=0.167 eV [24]. To avoid discontinuities in the energies and 
forces, the potential was smoothly shifted to zero at the cut-off radius of 1.49a. Zero-temperature 
structures with various numbers of (001) planes between GBs (and thus various A values) were 
relaxed under zero applied stress using an iterative energy-minimization technique with strictly 
three-dimensional periodic border conditions [25]. In the present study, the simulation cell 
contained 20 atoms per (001) plane to prevent atoms from interacting with themselves through the 
periodic borders. In the previous studies of the (001) GBSLs, the average elastic-constant tensors 
were calculated at zero temperature via a lattice-dynamics method that included the "relaxation 
term" arising from the intrinsic inhomogeneities of the superlattices [14,15,26]. In this study, the 
structures and elastic properties at non-zero temperatures were obtained by constant-temperature 
molecular dynamics (MD) simulations, where the temperature was adjusted by uniform velocity 
rescaling. The time step used was O.OS^m/e)1/2 (0.0018 psec.). Equilibrated structures at each 
temperature were used as input structures for the next higher temperature. For each value of A 
and T, the unit-cell dimensions under zero-stress conditions were first determined by constant- 
stress equilibrations of 10,000 time steps. The unit-cell dimensions were then fixed for the 
elastic-constant determinations.

The isothermal elastic constants were determined for both perfect crystals and GBSLs usi:.;. 
the so-called fluctuation formula [27,28]. Averages were computed over anywhere from 40,000 
to 190,000 time steps, depending on the system. For testing and later comparison with GBSLs, 
the temperature dependence of the elastic constants of a perfect fee crystal with, 108 atoms in the 
simulation cell, under zero stress was evaluated via the fluctuation formula. As expected, under 
zero stress the elastic constants show a dramatic softening with increasing temperature (by over 
60% at 1000K).

Since in principle, the fluctuation formula, is not strictly applicable to inhomogeneous 
systems, we have tested its validity by determining the elastic constants from stress-strain curves 
for the highly inhomogeneous GBSL consisting of four (001) planes between GBs at T=100K. 
These stress-strain curves were computed via MD simulation by applying a series of fixed strains, 
from -0.001 to +0.001, to the simulation cell, while monitoring the resulting stresses. The latter 
were averaged over 15,000 to 25,000 time steps after an initial 5,000 to 10,000 time-step 
equilibration under the applied strain. A comparison of the fluctuation-formula results with stress- 
strain results shows that elastic constants Cjj, for i,j<3, can reliably be calculated by the 
fluctuation formula to within 1% or better. Other elastic constants could not reliably be calculated 
via the fluctuation formula for reasons which are as yet unclear, and are therefore not presented in 
the following discussion.

RESULTS

For each value of the modulation wavelength and temperature, a GBSL was equilibrated 
under zero applied stress, and the average lattice parameters were determined. The anisotropic 
thermal expansion of one superlattice is illustrated in Fig. 2, which shows the average lattice



parameter normal (a^ and parallel (ax) to the interfaces. The isotropic thermal expansion of the 
lattice parameter of a perfect crystal is shown for comparison. As one might expect from the 
enhanced anharmonicity associated with the large volume expansion at the GBs at zero 
temperature, the thermal expansion of az is 50% larger than that of ax. Also, due to the expanded 
and disordered interfaces, ax itself shows an almost 200% larger thermal expansion than that of a 
perfect crystal.

Fig. 2. Thermal expansions of the lattice 
parameters parallel (ax) and perpendicular 
(az) to the interfaces in an (001) GBSL of 
four planes between GBs. Shown for 
comparison (dashed line) is the thermal 
expansion of the perfect-crystal lattice 
parameter. All changes in lattice 
parameters are normalized to the zero- 
temperature lattice parameter.
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Fig. 3. Isothermal Young's modulus Yz, 
as a function of A at T=0, 100 and 400K. 
The biaxial modulus and C33 behave 
similarly. The values are normalized to the 
T=0 values in the A—limit (Table I).
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Table I. Selected zero-temperature elastic constants and moduli (in units of 1012dyn/cm2) for a 
perfect fee crystal and for the GBSLs in the A—»«> limit, using the Lennard-Jones Cu potential. 
For the perfect crystal, the x, y and z axes are aligned with the <001> symmetry axes. For the 
GBSL, z is parallel to [001], while the x and y axes are rotated from the symmetry axes by half 
the CSL angle (i.e. 18.44°).

Elastic Constant or Modulus (001) Grain-Boundary 
Superlattice in the A-4°° limit

C11 = C22 2.025
C12 0.789

C13 = C23 1.016
C33 1.808

C44=C55=Gxz=GyZ 1.016
1.681

Yz 1.076

The variation of a representative elastic modulus,Yz, with temperature and modulation 
wavelength is shown in Fig. 3, normalized to the corresponding value in Table I. Immediately



clear is that even at non-zero temperatures, the GBSLs show the same generic behavior as a 
function of A as they did at zero temperature. In particular, despite the large thermal expansions, 
there remains an enhancement, at small A, of the Young’s modulus, Yz (Fig. 3), biaxial modulus, 
Ybz, and elastic constant C33, over their respective values at large A. The in-plane Young's 
moduli, Yx=Yy, and elastic constants, Cn=C22. show only a softening with decreasing A. 
However, for affixed A, and therefore fixed inhomogeneous structural disorder, the effect of 
increasing the temperamre at zero stress is to soften all moduli and elastic constants.

DISCUSSION

By normalizing the results in Fig. 3 to the corresponding finite-temperature values of Yz in 
the A—limit, instead of those at T=0, it becomes evident (see Fig. 4) that the effects of the 
thermal disorder and subsequent volume expansion largely soften the elastic moduli by the same 
degree, independent of the amount of inhomogeneous structural disorder (i.e. A). The most 
inhomogeneous systems (at smaller A), however, do soften faster than those at larger A.

(001) GBSL
Zero Stress

T=100K

T=400K
■■—1—r

A / a

Fig. 4. Isothermal Young's modulus Yz as 
a function of A at T=0, 100 and 400K. 
The moduli are here normalized to their 
A—limit values at the same temperature: 
Y~(T)=1.0762, 1.0199, and 0.8264 
xlO12 dyn/cm2 at T=0, 100, 400K, 
respectively.

In order to further compare the effects of temperature on the GBSLs and perfect crystals, 
Fig. 5(a) illustrates the radial distribution function, G(r), for both a perfect crystal and a GBSL 
composed of four (001) planes between the GBs at T=400K. As noted earlier, this GBSL shows 
the most anomalous elastic behavior (see Fig. 3). While the centers of the GBSL peaks are at the 
same positions as the perfect crystal peaks, the GBSL peaks are slightly broader. Indicative of the 
structural disorder, the GBSL shows a significant number of pair separations distinct from 
perfect-crystal separations. With increasing temperature under zero stress, the GBSL peaks 
broaden further and shift to larger separations [Fig. 5(b)], similar to behavior in perfect crystals.

As shown in Fig. 6, the combined effects of the broadening and shifting of the peaks in G(r) 
on the elastic constants and moduli of the GBSLs is a linear softening with increasing 
temperature, just as for a perfect crystal. Since the broadening of these peaks should lead to a 
stiffening of certain elastic moduli, while the volume expansion induced shifts in the peaks should 
cause a softening [13], it is of interest to deconvolute these two competing effects induced by 
increasing temperature. This is easily accomplished by fixing the simulation-cell size to that 
corresponding to zero stress at T=0. Due to the system's anharmonicity, this results in an 
increase in the stresses with increasing temperature. The radial distribution functions at fixed 
volume are very similar to those at zero stress, showing a broadening of the peaks with increasing 
temperature, but not a shift in the peaks to larger separations with increasing temperature. As 
shown in Fig. 7, there is indeed a slight strengthening of Yz over the zero-temperature value with 
increasing temperature due to the thermal disorder. The strengthening over the zero-stress-state 
values at the same temperature, however, is quite significant, and is due to the constraint of no 
volume expansion.
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Fig. 5. Radial distribution 
function of (a) a perfect 
crystal and a GBSL with four 
(001) planes between GBs at 
T=400K and zero stress, and 
(b) the same GBSL at T=100 
and 400K under zero stress. 
G(r) is normalized such that 
at T=0 the nearest-neighbor 
peak would be a delta 
function of height 12 for the 
perfect crystal.
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Fig. 6. Selected isothermal elastic moduli 
as a function of temperature of a GBSL 
composed of four (001) planes between 
GBs under zero stress. The elastic 
constants Cu and C33 soften similarly. 
Moduli are normalized to the T=0 values 
for this GBSL: Y°=1.371xl012 dyn/cm2, 
and Yb°z=1.873xl012 dyn/cm2.

Fig. 7. Isothermal Young's modulus, Yz, 
as a function of temperature of a GBSL 
with four (001) planes between GBs under 
zero stress (open circles) and also at the 
volume fixed to the T=0 zero-stress 
volume (solid squares). The the biaxial 
modulus and the elastic constant C33 
behave similarly. Values are normalized to 
the zero temperature values, as in Fig. 6.

ELASTIC STRENGTHENING OF PERFECT CRYSTALS?

The competing thermal effects of broadened G(r) peaks and the shifting of their centers to 
larger separations should also be observed in the elastic properties of perfect crystals under zero 
stress. The radial distribution function of a perfect fee crystal under zero stress shows both a 
broadening and a shifting of the peaks with increasing temperature. The overall effect on the 
elastic behavior is a softening of all of the elastic constants with increasing temperature (by over 
60% at 1000K). Based on the GBSL results, however, we expect that if the volume were held 
fixed to the T=0, zero-stress volume, even the perfect crystal should show elastic stiffening with 
increasing temperature due to the disorder. Indeed, at fixed volume the elastic constants C^ and 
C12 °f a perfect crystal are enhanced up to 8% at T=1000K over the T=0 values, and all three 
elastic constants are enhanced over the zero-stress values at a given temperature.

CONCLUSIONS

By investigating the elastic behavior of superlattices of grain boundaries as a function of 
temperature under both constant stress and constant volume conditions, we have shown that



structural disorder and volume expansion play competing roles in the "supermodulus effect". 
Whereas the structural disorder, be it inherent (inhomogeneous) or due to thermal fluctuations 
(homogeneous), can lead to a stiffening of certain elastic properties, subsequent volume 
expansions under constant-stress conditions lead to elastic softening. By suppressing the volume 
expansion in both perfect crystals and in grain-boundary superlattices, we have shown that 
thermal disorder, like inhomogeneous structural disorder, can cause elastic stiffening. Volume 
expansions do not always dominate over disorder, however, as is evident by the enhanced moduli 
of small-A, highly inhomogeneous, disordered metallic superlattices.

The inherently inhomogeneous grain-boundary superlattices respond in a homogeneous 
(perfect-crystal-like) fashion with the introduction of homogeneous (thermal) disorder under both 
constant-stress and constant-volume conditions. Their anomalous elastic behavior as a function of 
A, i.e. the amount of inhomogeneous structural disorder, persists even at non-zero temperatures. 
Under zero stress, however, the smaller-A superlattices soften slightly faster than the larger-A 
superlattices with increasing temperature.

We have benefitted from discussions with S. R. Phillpot and J. M. Rickman. This work 
was supported in part through a grant of computer time from the National Energy Research 
Supercomputer Center. JAJ was supported by the Office of Naval Research under Contract No. 
N00014-88-F-0019. DW was supported by the U.S. Department of Energy, BES Materials 
Science, under Contract No. W-31-109-Eng-38.
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