
, . do S- 7 '7/--/
' ARGONNE NATIONAL LABORATORY

9700South Cass Avenue

CONF-910771--I
Argonne:]]]]nois60439-4801

DEgl 006044

The Lanczos Algorithm for the Generalized Symmetric

Eigenproblem on Shared-_femory Architectures"

Mark T. Jones and hderrellL. Patrickf

PreprJntMCS-P182-0990

September 1990

ABSTI%ACT

The generalizedeigenvalueproblem,IT¢ : AM,_, lsofsignificantpracticalim-

portance,forexample,in structurMengineeringwhere itarisesas thevibrationand

bucklingproblems.The paper describesthe implementationofa solverbasedon the

Lanczos algorithm,LANZ, on two shared-memory architectures,the CIK4Y Y-MP

and Encore Multim.'_x.Issuesacisingfromimplementinglinearalgebraoperationson

a multivectorprocessorare examined. Portabilitybetween a multivectorprocessor

and a simplemultiprocessorisdiscussed.A model isdevelopedand usedto predict

theperformanceofLANZ on shared-memoryarchitectures.Performanceresultsfrom

some practicalproblems aregivenand analyzed.

MASTER
"Thisresearchwas supportedby the NationalAeronauticsand SpaceAdministration

under NASA contractnos. NASI-18107 _nd NASI-18605 whilethe authorswere in

residenceat ICASE. Additionalsupportwas providedby NASA grantno. NAG-I- ,<,.,¢.

466. The firstauthoralsoreceivedsupportfrom the AppliedMathematicalSciences iil

subprogram of the OfiSceof Energy Research,U.S. Department of Energy,under

Contract W-31-109-Eng-38. The authors also received time on a CRAY Y-MP at the ,_.,'..i '

North CarolinaSupercornputingCenter.

t Permanent address"Computer ScienceDepartment,Duke University,Durham, - _

N C 27706. The submitted manuscript ha, been authored

by a contractor of the U.S. Oovernme',t
under contract No. W-31-10C_ENG-38.

1 _ Accordingly, the U. S. Government retains a
,7_L_ non*_xclusive, royalty-free license to publish

gr ,_,r,v4,,,._fM. n_Jhl_¢h_ fnrm nf rhic
DJc'u-_J_I i-r, ,'-,,' ,, ,' _n/,r,,..,, _ I_,..,, ',,,,' _..,, t_', ,..... .- contribution, or allow others to do so, for

U. S. Government purpor, es. =

1. Introduction. Tile generalized symmetric eigenvalue problem, Kz = AMm,

is of significant practiced importance, for example, in structural engineering where it

arises as tile vibration and buckling problems. In the problems of interest, a few of the

eigenpaJrs closest to some point, z, in the eigenspectrum are sought. The matrices, A"

and M, are usuMly sparse or have a narrow bandwidth. New software, LANZ, based

on the Lanczos algorithm has been developed for solving these problems and has been

reported on in [5] [3] [7].

Because eigenvalue problems arising in structural engineering are often very large,

lt is natural to attempt to use parallel computers to solve them. In Section 2 the p..r-

aJlel LANZ algorithm and its implementation on shared-memory architectures with a

small to moderate number of processors is described. A model for predicting the per-

formance of LANZ on shared-memory architectures is given in Section 3. In Section 4

results from the implementations are given and analyzed.

2. Algorithrn and Implementation. To speed convergence to desired eigen-

values, a shift-and-invert Lanczos algorithm similar to that described in [12] is used.

On sequential and vector machines, this algorithm has been observed to be superior to

the subspace iteration method that is popular _n engineering [13] [5]. To maintain the

desiredsemi-orthogonalityamon Z theLanczosvectors,a versionofpartialreorthogo-

nalization[19]isused.Extended localorthogonaJityamong theLanczosvectorsisalso

enforced[ii][17].IfeigenvectorsarefoundbeforeexecutingtheLanczosalgorithm,mn

improved versionof externalselectiveorthogonalization[2]suggestedin [3]isused to

avoidrecomputlngtheseeigenvectors.Althoughthediscussionsinthispaper assume

that A,f is positive semi-definite, the computations remain essentially the same when

i_I is indefinite.

The Force, a Fortran-based language for parallel programming [9], was used to

implement LANZ for two reasons: (i) lt is available on several shared-memory archi-

tectures, thus allowing at least a superficial le_'el of portability, and (2) lt has been

shown to be a language suitable for implementing parallel numerical linear algebra

algorithms [8].

The parallel LANZ algorithm is presented in Figure 1. Its various computational

components and theirparallelimplementationsarediscussedinthefollowingsubsec-

tions.Explicitglobalsynchronizationpointsinthealgorithmaredenotedby theterm

"SYNCHI_ONIZE." Other synchronizationpointsare requiredby particularopera-

tions,forexampleinnerproducts,and arenotexplicitlydenotedinthealgorithrn.To

avoidextrasynchronization,eachprocessorisresponsibleforcomputinga fixedsubset

ofeach vectorcomputation.Forexample,ifatstep21 processoricomputes thefirst

m elementsofqj+l,then atstep22,processoriwould compute thecontributionofthe

first rn elements to tile inner product, titus avoiding a synchronization between steps

21 and 22. In these discussions p represents the number of processors, n represents the

,)

0) q0 = po -- 0 °1) 7 -- PT-lqj+x
1) Choose an initial vector, guess 22) qj4-1 -qi+a -7qj-1

T
2) Pl '- J_[guess 23) dt =: p)qj+l

3) Orthogonalize 24) qj+1 = qj+a - &qj
T

4) SYNCHRONIZE 25) '7 = Pj-lqj+l

5) Pl = Mguess 26) qj+l - qj+l - 7qj-1

6) SYNCHRONIZE 27) c_j= P_qj+a
7) ql = (K-oM)-'vl 2s) q_+,= qy+l-_yqy
8) (factorization occurs here) 29) SYNCHRONIZE
9) SYNCHRONIZE 30) Pi+_ = Mqy+_

10) pl = _'_fql 31) cri = cU+ 5,

11)_, =(vTq,)_ 3_.)_,.+,=(vT+,q;+,)_
12) Orthogonalize 33) Calculate eigenvalues of 7_
13) q_ = q_/fl_ 34) Count the converged eigenvalues

14) pl = p_/fl_ 35) Orthogonalize
15) For j = 1, ... 36) qj+l = qj+l/flj+l

16) (K-a3f)qj+l=pj 37) (requires use of criticM sections)
17) (only matrix solution here) 3S) py+_ = ;vj+l//3i+a

18) SYNCHRONIZE 39) End of Loop

19) morro--li qj+, li 40) compute ritz vectors
20) (if external orthogonMization)

FrG. 1. Parallel shift-and.invert Lanczos algorithm

order of the matrices, b represents the block size in a block algorithm, and j represents

the current Lanczos step.

2.1.Factorization. Factorization takes place only once d _'u_lno the algoritlun,

at step 7. Because the matrices, K and M, are sparse (or have been reordered to have

a narrow bandwidth), the parallel implementation of direct factorization and solution

methods must be carefully considered. In this paper, only the case in which the

matrices have been reordered to a narrow bandwidth, ft, will be considered. However,

the limitations on parallelism in factorization and forward/backward matrLx solution

that are imposed by a narrow bandwidth are similar to those imposed by sparse
matrices.

Two situatious may ex_istwhen factoring (A'- crM)' (1) (K-a,U)is known to be

positive definite, and therefore it is desirable to use either Cholesky factorization or

LI)L r decomposition, or (2) (Ii - cz.A,/)may be indefinite, and therefore a factorization

algorithm with pivoting is necessary. In the first case, a block factorization and solu-

tion subroutine described in [18] has been parallelized for use in LANZ. In the second

case, a block Mgorithm for banded matrices based on Bunch-Kaufman factorization is

used[4][6].
LANZ was initially written for vector a'rchitectures, and therefore careful atten-

tion has been paid to achieving good vectorization. With small-to-moderate vector

lengths, it is desirable to perform sazpy operat.ions 1 as opposed to inner products,

1 The sazpy operation is defined as w = az + V, where w, y, and z are vectors and a is a scalar.

,3

I

as well a_ to compute more than one saxpy operation at a time. 2 On multivector

processors, however, good vectorization is often at odds with parMlelization. In the

factorization _gorithms, this conflict between vectorization and para]lelization occurs

in the computation of the pivot column(s)' the pivot columns(s), vectors of length p,

must be split into vectors of length/3/p for each processor to compute. On the CRAY

Y-MP the benefit of parallel computation of the pivot column is outweighed by the

resulting inefficient short vector operations and the cost of the added synchronization;

therefore, this computation is not pa ra]lelized.]Iowever, on a simple multiprocessor

such as the Multimax, this conflict does not occur, and the computation of the pivot

column is parallelized. The dominant part of the calculation is the updating of the

uneliminated nonzeroes by using t,he pivot columns" the updating is implemented by

distributing Z_,---Ab extended .sc:ZZLV'Sto each of the processors to compute. The ex-

tended _a:cpy's p_rallelize "..,.ellbecause there is sufficient work for each processor, and

the vector lengths are unaffected by parallelization.

2.2. N!atrlx Solution. Forward and backward matrix solution is required at

steps 7 and 1G. The conflict between vectorization and parallelism is much worse in

these operations. This discussion will be limited to the forward and backward solution

algorithms that take place aher a Bunch-Kaufman factorization in which the block

sizes vary and are selected according to numerical criteria rather than the number of

processors. 3 The following discussion will assume that the lower triangular factor, L,

resulting from the Bunch-I(aufman algorithm has been stored by row. 4 Because of the

order in which pivots are performed, a _azpy-based a]gorithm for the forward solution

must be used, and an inner product algorithm for the backward solution must be used.

The time-consuming portion of the block forward solution algorithm is the b/3-

length .sazpy oper_ttions that can be combined into a single extended aazpy operation.

The only practic_ way to parallelize this operation is to split the vector into p shorter

vectors. This approach, of course, significantly reduces the efficiency of the vector

operations.

The time-consurning portion of the block backward solution algorithm is the com-

putation of b ft-length inner products. Two types of parallelism are available here:

(1) two or more processors can cooperate to compute a single inner product, and (2)

individual inner products can be computed independently. Even though both meth-

ods are used, the algorithm is still inefficient because inner products are not as fast

2 Performing more than one aaz?y at a time, called an extended saxpy in this paper, is defined as
w = y + __/_=_a_z_ and is often implemented via loop unrolling [1]. This type of operation reduces
the ratio of memory references to computations.

a The situation is slightly better for the positive definite case in which the blocksizes can be selected
based on the number of processors rather than according to nurneric;d criteria.

If it were stored by column, the same limitations wou{dapply, but the discussion for the forward
solution would be applicable to backwardsolution and vice versa.

i

as ,saxpy's,the parallelcomputationof a_shortinnerproductisadverselyaffected

by synchrorfizationdelays,and theblocksizemay not be evenlydivisibleby p, and

thereforea loadimbMance may result.

The considerationsregardingefficiencyofvectoroperationsarenotaconcernwhen

implementingthisalgorithmon theEncore,and thereforebetterparallelspeedupfrom

the forwardand backward solutionalgorithmscan be expectedthan on the CR..\Y

Y-MP. The ratioofcomputationtosynchronization,however,isstillmuch worseth_n

forfactorization,and good speedupcannotbe expected.

2.3. Sparse MatrixlN'fultiplication.MultiplicationofthematrixMbyavec-

torisrequiredinsteps2,5,I0,and 29 ofthealgorithm,aswellasinorthogonalization

and Ritzvectorcomputation.A_ain,what isappropriatefora multivectorprocessor

ma),not be appropriatefora multiprocessor.On both machines,betterperformance

can be obtainedifsymmetry isnot exploited_nd ifboth halvesof the matrix are

stored. Ifthesestepsare not taken_a significantpricein parallelperforma.nceis

paid as a resultsof the costof added synchronizationand/or theuse of inefficient

operations.On the Encore Multim_x an appropriatemethod to parilelizesparse

matrix-vectormultiplicationisthestraightforwardinnerproduct-basedMgorithm in

which eachprocessorcomputesa subsetoftheelementsintheresultvector.However,

on the CR.AY Y-MP the most emcientoperationisa sazpy operation;therefore,a

sazpy-basedMgorithm isused inwhich each processorcomputesa.partialresultfor

everyelementin theresultvector,and then thesepartialresultsarecombined at the

end ofthecomputation.Ifthenumber ofprocessorsissmall,thenthiscohmn-based

algorithmisfasterthan the row-basedalgorithmbecauseitusesthesaa,p_joperation

exclusively.Both methods willresultin good speedup becauselittleor no synchro-

nizationisrequired,plentyofwork isavailabletodivideup amongst theprocessors,

and vectorslengthsareunaffectedby parMleliz3.tion.

2.4. Solving Tjs = 8s.At everystepof the algorithm,theeigenvaluesof Tj

and theirerrorbounds _recomputed so thatthealgorithmcan be stoppedwhen the

desiredeigenpairshave converged.BecausetheeigenvMuesofTj-I,8_,interlacethose

of7_5,and errorbounds, bj_,areknown forthe eigenvaluesofTj-1,an eigensolver

that uses this information will be much rnore efficient than one that does not. A

serial algorithm that finds the outermost eigenvalues of Tj is given in [16]. A parallel

algorithm that uses all available information from the previous Lanczos step is shown

in Figure 2. The first loop is used to find intervals that contain the eigenvalues of Tj.

The secondloopisused to computeeach eigenvaheand itserrorbounds.Both loops

inthisalgorithmcan be partitionedamong theprocessorsand,therefore,can achieve

a.speedupofapproximatelyj where7'isthesize_ofthe tridiagonalsystem.However, .'

s Cauchy's interlace theorem', see [15],

5

bounded[i] = 0 , for i --- 1, j
Par Doi= 1, j-1

if ((2*Ai < o,-oi_,) a,_d(2*>%.i< 01+1-Oi)) then
probe= Oi+ fiji
less = numless(probe)
if (less = i) then

bounded[i] = i
else/* i and i + 1 are the only values numless will return; if

it returns something else, a grave error h;m occurred */
bounded[i + 1] = i

endif
endif

enddo
Barrier
End Barrier

Par Doi= 1, j
ir (bounded[i]= 0) then

leftbound = 01-a
rightbound = Oi
newtonroot(leftbound,rightbound,newOi ,newpj,')

else if (bound[i]= i) then
leftbound = Oi - fiji
rightbound = Oi
newtonroot(leftbound,rightbound,new0i ,newfljl)

else if (bound[i] = i- 1) then
leftbound = Oi-a

rightbound = 01-1 +/3ii-1
newtonroot(leftbound,rightbound,newOi ,newl3ji)

endif
enddo

numless determines the number of eigenvalues less than probe

newtonroot, finds the eigenvalue (and its error bound) between leftbound and rightbound

FIo. 2. Paralld tridiagonal eigensolver

because the time required to find each eigenvalue often differs, it is unlikely that a

speedup of j would be a_chieved.

2.5. Ritz Vector Computation. The assumption is made that n_ Ritz vectors

are computed at the end of n, steps. For each Ritz vector that must be calculated, a

j-length eigenvector of Tj must be calculated by inverse iteration. This computation

is very inexpensive because Tj is tridiagonal; the computation is not parallelized. The

major computations used to compute a Ritz vector in LANZ are (1) yi = Qjs¢, which is

a full matrix multiplication, and (2) the normalization of yl to ensure that yrMyi = 1.

The full matrix multiplication can be partitioned in a fashion similar to sparse matrix

multiplication, with similar results expected. The normalization requires a sparse

matrix multiplication, a vector inner product, and a vector division. Beca,use the

dominant computations, matrix multiplications,,parallelize weil, good speedup can be .
expected.

2.6. Orthogonallzation. The algorithm given in Figure 1 already includes the

extended local orthogonalization algorithm. At steps 4, 6, a,nd 34, extern,"d selective

orthogonalization will take place, ifsemi-orthogonality against eigenvectors computed

in a previous Lanczos run must be maintained. The Mgorithm for external selective

orthgonaiization is given in [3] and is not given here. A j-length three-term recur-

rence is updated every step to check whether any eigenvectors must be orthogonalized

against. If necessary, qj and qj+l are orthogonalized against some of the eigenvectors.

The partial reorthogonal]zation algorithm maintains semi-orthogonality among

the Lanczos vectors a.nd is described in [17]. A j-length three-term recurrence is

updated, in parallel, every step to check whether qj and qj+l must be orthogonalized

against all of the previous Lanczos vectors. This reorthogonalization usually occurs

appro:dmately once every three steps.

If qj and qj+l have been modified by reorthogonalization, then pj and Pj+I are

recomputed, and qj+l is orthogonalized against qj. These operations require two

sparse matrix multiplications to recompute the p's, an inner product and a 8azpy for

the ortl_ogonMization, and an inner product to recompute Pj+I.

Excellent speedup should be obtained during orthogonalization because the com-

putations involve long vector operations and very little synchronization.

2.7. Other Computations. The rest of the computations in the Lanczos al-

gorithm (e.g. steps 11 and 13) are vector operations of length n. These vectors are

long enough to partition among a moderate number of processors without significantly

reducing vector efKciency.

3. Performance Model. A parameterizedparallelexecutionmodel ofthe com-

putationsin LANZ has been constructedto allowthe predictionof performanceon

parallelcomputersof varyingcharacteristics,as wellas forproblemsof varyingsize

and type.This model isbasedon the parallelversionofLANZ outlinedin the pre-

vioussection.One applicationofthe model isthe comparisonofthe actuM parallel

performanceof LANZ againsttheperformancepredictedby themodel.This ensures

that parallelimplementationsofLANZ areperformingas expected.Two otherap-

plicationsof the model arepredictionof performanceon differentarchitectures,and
N _predictionoftheeffectofchangesto I,AiZ withouttheactualimpbmentation ofthe

changes.Given theparameterslistedinFigure3 and thesubmodelsgivenbelow,the

costofexecutionon p processorscan be estimatedusingthefollowingmodel:

(1)T(p)= t/(p)+ (n_+ l)(t/,(p)-F%_(p))+ (n_-F3)ta(p)+ t_=(p)+ t_(p)+ to(p).

Because ofitscomplexity,themodel issplitintothefollowingsubmode]s:
._ ,:

____[j(j 1)(2)t:(p)-- {2L(p)+(b(b + + +
j=l

7

4

I

-P_rameter Description

n order of the eigensystem

p number ofprocessors ,,..........

average bandwidth of the linear system.....

c_ , _ averagenumberof non-zerosper row ofthelinearsystem

b averageblocksize during the factorization

ns number of Lanczos steps

n_ " number of eigenvalues

f_(i) cost of synchronization given i processors

cs=(i,j) cost of/-lengthj size extendedsaxpy operation
,,, ,

ci_(i,j) costofj simultaneousz-lengthvectorinnerproducts

_(i) costofi-lengthvec_o,'multip!i_t_o_
c_:(a) cost of sparse saxpy operation with c_ non-zeroes

cs(D(_) cost of sparse inner-product operation with _ non-zeroes
c,, cost of single multiplication

c= cost of single addition......

FIo. 3, Parameters/or the modal

b 1

i=l

Or

2 b(b-I)_ b
= b [f_(P) + (2 + _ j(j - 1)(cre + c_,) +

j=l 2

_ _(,e-b),b)))]
-_(_ csx((fl P- b-----_),i-1) -t-"(b(Z - b)cm) nu ((fl - b)c,z([

n b(b-1) fl-b b)](3:_j_(p)= -_[/_(p)+ 2 (_ + _) + _(-_'

(4)tb,(p) = n[fs(P) + (cre + c_) + b(p- 1)c_ + cip(fl---_b,b)]b 2

(5)tru(p) = 2nc,==(a) + f,(P)+ c,_.(p,p- 1)P
07"

2n
= --c,_p(a)

P
7_ n n

n ?% n 7_

(7)_(p) = (_,+ 3)[_t,_(_)+_(_,_)+ _(_,_)_(_,(_,_)+ _(_,_))]
7?, 7_

= (6_,+ _)_+(_,_)+(_ +_)_,m(_)+4_(_,_)+ (_ +_)f_(_)(s)to(_)

Two versions of the cost of a single factorization, ti(p), are given Equation 2" (1)

when the updating of the pivot columns is not p.)rallelized, e.g., on the CRAY Y-MP, .,

and (:2) when the updating of the pivot columfis is parallelized, e.g., on the Encore

Multimax. The models for triangular ma,trix solution, tj_(p) and tb_(p), are given in
8

ik ii,,,

q

Equations 3 and 4.

Two models for the cost of the multiplication of a sparse matrix times a vector,

t,n(p), are given in Equation 5' (1) the saxpy-b_sed algorithm, and (2)the hmer

product-ba_ed algorithm. The model for the cost of computing a Ritz vector, t_(p), is

' given in Equation 6. The assumption is made that ne Pdtz vecters are computed at the

end of ns steps. The term tr(p) accounts for the cost of partial reorthogonalization.

Because the cost of external selective orthogonaliz_tion depends on the number, often

0, of previously converged eigenvectors, it will not be included in the model.

The term to(p) accounts for the length n vector operations and synchronizations

given in Fig Lre 1. The cost of the rest of the operations in the algorithm is small

compared to those costs modeled and is therefore left out.

4. Performance t_esults and Analysis. One application for this model is to

ensure that the parallel implementation of LANZ is performing as expected. For a

comparison of the model ag,'finst the implementation, LANZ was run on a medium

size eigenproblem from structural engineering 6 where the ten lowest eigenpairs were

found in 22 steps on a four processor CRAY Y-MP. A smal.ler problem 7 was run on a

twenty processor Encore Multimax in which the ten lowest eigenpairs were found in

22 steps. An examination of the speedup curves in Figure 4 reveals that the speedups

from the implementations are very close to those predicted by the model.

It is clear from the speedup curves in Figure 4 that a speedup plateau occurs. The

main cause of this plateau is the poor speedup realized in the forward and backward

matrix solution algorithms. This problem can best be observed by plotting the per-

centage of execution time taken by forward and backward matrix solution algorithms

as the number of processors increases. These percentages are shown in Figure 5 for

Lanczos runs taking 10, 25, and 50 steps on the Encore Multimax using the same

problem described in the previous section. The problem caused by the matrix solu-

tion algorithms is exacerbated as the number of L_nczos steps increases, because each

Lanczos step requires another forward/backward matrix solution _" o', ta_,ln_, more and

more time as compared to factorization, which speeds up weil.

This plateau occurs later on the Encore than the CP_AY because the Encore does

not have to contend with the conflict between vectorization and parallelization' vector

lengths decreaslng as the number of processors increases. However, both implementa-

tions suffer from the poor ratio of computation to synchronization in the forward and

backward matrix solution algorithms.

Finding the vibration modes and mode shapes oi"the finiteelement model of a circular cylindrical
shell [20]. In this problem n = 12054and the average semi-bandwidth is 394.

7 Finding the five lowest buckling modes and mode shapes of the finite element model of an I- "
stiffened panel. In this problem n = 4,i7,Iand the averag_ semi-bandwidth was 207.

16-- 4--

@ 12-- .f_.//--"'_" @ 3 -- Implementation

-u Model -o

CL

co 8 co2--

Implementation

4 1-- /"

, I I I I i

4 8 12 16 20 1 2 3 4

Number of Processors Number of Processors

FiG, 4. Speedup curves

,_ 100"-
E
I...-

•2 7 5 --

x
LU 50 steps.1..1 -_" ----
,,- 50 -
o
® 25 stepp_s_._

_ 10 steps ._11---'d 25--
o
',,,,_,,,

o;

.... i I I

4 8 12 16 20

Number of Processors

FiG. 5. MaZrix solutiori oa c_ percen._'ge o/em'ecution time _ _

lO

If problems with larger bandwidths were used, better speedup from these algo-

rithms could, of course, be expected. It has been the authors' experience, however,

that if the bandwidth arising'from a structural engineering problem is large, then most

likely many zeroes e.'dst inside the band, and therefore sparse methods are best used.

5. Concluding _emarks. A parallel Lanczos algorithm for finding a few of the

eigenpairs around a point ill the eigenspectrum was described. Differences in the

implementation of the algorithm on a multivector processor and on a multiprocessor

were described. The algorithm was shown to perform rea.sonably well on a moderate

number of processors. The algorithm was analyzed by using an execution-time model,

and the performance bottleneck which prevents efficient utilization of a large number
of processors was identified.

Several possible modifications to the LANZ a.lgorithm can be used to improve

its parallel performance. The use of dyn_Lmicslrifting [2] to improve parallelism by

reducing the number of forward and backward matrix sohtions was investigated in
[3] and was found to be successful when the eigenvalue distribution was difficult. The

use of group._ of processors executing the LANZ algorithm independently at different

skifts was investigated in [3] and was found to be succes:sful when many eigenpairs
are being sought. Block Lanczos holds some promise because it allows several forward

and backward matrix solutions to occur simultaneously [2]. The improvement in

performance resulting from block Lanczos will depend on how many Lanczos steps are

eliminated and what block size can be effectively used. Unfortunately, s-step Lanczos

methods [10] will not alleviate the bottleneck imposed by forward and back solutions

and, therefore, will not have a significant effect on performance.

Another avenue for improving parallel performance is the use of iterative methods,

such as SYMMLQ [14], to soh'e (K-¢M)z = y rather than direct methods. However,

it has been the authors' experience that (K- aM) is often poorly conditioned and.
therefore, is difficult to solve by iterative methods.

REFERENCES

[1] J. a. DoNoAmU .aNu A. R. HJ:_us, Unrolling Loops in FORTRAN, Software: Practice and
Experience, 9 (1979), pp. 219-226.

[2] lq.. G. Glu,',ll_s, ,J. G. L,e,wts, a.'_u H. D. St,_,toN, The Implementation of a Bloch Lanczos Al.
gorithm with Reorthogonalization Methods, ETA-TR-91, Boeing Computer Services, Seattle,
Washington, May 1988.

[3] M. T. ,IoN_;s, The Use oy Lanczos' Method to Solve the Generalized Eigenproblern, PhD thesis,
Department of Computer Science, Duke University, 1990.

[4] M. T..]otq .cs at_u M. L. PxmucK, Bt|nch-Kaulman Factorization/or Real Sgmmetric Indefinite
Banded Matrices, Technical Report 89-37, Institute for Computer Applications in Science

and Engineering (ICASE), NASA Langley Research Center, Hampton, Va., 1989.

[5] _, The Use o.[Lanczos's Method to Solve the La:rge Generalized Sgmmetric Definite Eigen- ,:
value Problem, Technical Report 89-67, Institu(_ for Computer Applications in Science and

Engineering (ICASE), NASA Langley Research Center, Itampton, Va., 1989.

11

t

[6] _, Factoring Symmetric Indefinite Matrices on High-Performance Architectures, Technical
Report 90-8, Institute for Computer Applications in Science and Engineering (IOASE),I

NASA Langley Research Center, Hampton, Va,, 1990,

[7] --, LANZ: Software /or Solving the Large Sparse Symmetric Generalized Eigenproblem,
Preprint MCS-P158-0690, MCS Division, Argonne National Laboratory, Argonne, I1., 1990.
Also available as ICASE Interim Report no. 1'2..

[8] M. T. ,JONl_S,M. L. PA'rlUCK, ANU 1% G. VOIGT, Language Comparison for Scientific Com.
puling on MIMD Architectures, Report No. 89-6) Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, Va., 1989.

[9] H. JOItDAN) The Force) Computer Systems Design Group, University of Colorado, 1987.
[10] S. KL'_tAND .A. CAIItONOI'OOLOS,A Class of Lanczos.Like Algorithms Implemented on Parallel

Computers, Computer Science Department 89-49) University of Minnesota, July 1989.

[11] J, G. L_wls, Algorithms for Sparse Matrix Eigenvalue Problems, PhD thesis, Department of
Computer Science, Stanford University, 1977.

[12] B. Noua-O,uiu, B. N. PaitLl:.:'lq, T. EltlCSSON, ANU P. S. ,'II_,'.4SI:;,_,How to Implement the
Spectral Transformation, .Mathematics of Computation, 48 (1987), pp. 663-673.

[13] B. NOUlt-O,_.tlls,B. N. Palt/..k;'l'r, ASL)R.. L. TAYLOIt,Lanczos Versus SubspaceIleration For So-
lution of Eigenvalue Problems, International Journal for Numerical Methods in Engineering,
19 (1983), pp. 859-871.

[14] C. C. PalG_ ANU M. A. SAu.','ut_lts,Solution of qparse indefinite Systems of Linear Equations,
SIAM Journal of Numerical Analysis, 12 (lh ;), pp. 617-629.

[15] B. N. P.hltcm'r, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, N.J.,
1980.

[16] B. N. PAltb_'i'r A_,4oB. Not.lll.-OblllS, The Use of a Refined Error Bound II'hen Updating Eigen-
values of Tridiagonals, Linear Algebra and its Applications, 68 (1985), pp. 179-219.

[17] B. N. Paltbl_'l"l.', B. Noua-O.um, anu Z. A. LIv, How to Maintain Semi-Orthogonality Among
Lanczos Vectors, PAM-420, Center for Pure and Applied Mathematics, University of Cali-
fornia, Berkeley, July 1988.

[18] E. POOL_, The Solution of Linear Systems of Equations with a Structural Analysis Code on the
NAS Cray o,..,Tech, Rep. CR-4159, GSM Branch, NASA Langley Research Center, Hampton,
Va., 1988.

[19] H. D. Su',loN, The Lanczos Algorithm With Partial Reorthogonalization, Mathematics of Com-
putation, 42 (1984), pp. 115-142.

[20] C. B. STI_WAIt'r,The Computational Structural Mechanics Testbed Procedure Manual, Compu-
tational Structural Mechanics Branch, NASA Langley Research Center, 1989.

DISCLAIMER

This report was prepared as an accountof worksponsoredby an agencyof the UnitedStates
Government. Neither the United States Governmentnor any agencythereof, nor any of their
employees,makesany warranty, expressor implied,or assumesany legal liabilityor responsi-
bility for the accuracy, completeness,or usefulnessof zny information,apparatus, product, or
processdisclosed,or representsthat its use would not infringe privatelyownedrights. Refer-
ence hereinto any specificcommercialproduct, process,or serviceby trade name, trademark,
manufacturer, or otherwise does not necessarilyconstitute or imply its endorsement,recom-
mendation,or favoring by the United States Governmentor any agency thereof. The views
and opinions oi authors expressed herein do not necessarilystate or reflect those of the
UnitedStates Governmentor any agencythereof.

12

