o CoNF-91071] -/

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

Argonne, lllinois 60439-4801

CONF-910771--1

DE91 006044

The Lanczos Algorithm for the Generalized Symmetric
Eigenproblem on Shared-Memory Architectures”

Mark T. Jones and Merrell L. Patrick!

Preprint MCS-P182-0990

September 1990

ABSTRACT

The generalized eigenvalue problem, Kz = AM=z, is of significant practical im-
portance, for example, in structural engineering where it arises as the vibration and
buckling problems. The paper describes the implementation of a solver based on the
Lanczos algorithm, LANZ, on two shared-memory architectures, the CRAY Y-MP
and Encore Multimax. Issues arising from implementing linear algebra operations on
a multivector processor are examined. Portability between a multivector processor
and a simple multiprocessor is discussed. A model is developed and used to predict
the performance of LANZ on shared-memory architectures. Performance results from

some practical problems are given and analyzed.

*This research was supported by the National Aeronautics and Space Administration
under NASA contract nos. NAS1-18107 and NAS1-18605 while the authors were in
residence at ICASE. Additional support was provided by NASA grant no. NAG-1-
466. The first author also received support from the Applied Mathematical Sciences
subprogram of the Office of Energy Research, U.S5. Department of Ehergy, under
Contract W-31-109-Eng-38. The authors also received time on a CRAY Y-MP at the
North Carolina Supercomputing Center.

t Permanent address: Computer Science Department, Duke University, Durham,
NC 27706.

MASTER

The submitted manuscript has been authored
by a contractor of the U.S. Government

LALLM ED

S

under contract No. W-31-109-ENG-38.
Accordingly, the U. S. Government retains a
nonexclusive, royaity-free license to publish
or renroduce the nublithed fnrm o thic
contribution, or allow others to do so, for
U. S. Government purposes.

1. Introduction. The generalized symmetric eigenvalue problem, Kz = AMz,
is of significant practical importance, for example, in structural engineering where it
arises as the vibration and buckling problems. In the problems of interest, a few of the
eigenpairs closest to some point, o, in the eigenspectrum are sought. The matrices, I
and M, are usually sparse or have a narrow bandwidth. New software, LANZ, based
on the Lanczos algorithm has been developed for solving these problems and has been
reported on in [5] [3] [7].

Because eigenvalue problems arising in structural engineering are often very large,
it is natural to‘attempt to use parallel computers to solve them. In Section 2 the p.r-
allel LANZ algorithm and its implementation on shared-memory architectures with a
small to moderate number of processors is described. A model for predicting the per-
formance of LANZ on shared-memory architectures is given in Section 3. In Sectinn 4

results from the implementations are given and analyzed.

2. Algorithm and Implementation. To speed convergence to desired eigen-
values, a shift-and-invert Lanczos algorithm similar to that described in [12] is used.
On sequential and vector machines, this algorithm has been observed to be superior to
the subspace iteration method that is popular in engineering [13] [5]. To maintain the
desired semi-orthogonality among the Lanczos vectors, a version of partial reorthogo-
nalization [19] is used. Extended local orthogonality among the Lanczos vectors is also
enforced [11] [17]. If eigenvectors are found before executing the Lanczos algorithm, an
improved version of external selective orthogonalization [2] suggested in [3] is used to
avoid recomputing these eigenvectors. Although the discussions in this paper assume
that M is positive semi-definite, the computations remain essentially the same when
M is indefinite.

The Force, a Fortran-based language for parallel programming (9], was used to
implement LANZ for two reasons: (1) it is available on several shared-memory archi-
tectures, thus allowing at least a superficial level of portability, and (2) it has been
shown to be a language suitable for implementing parallel numerical linear algebra
algorithms [8].

The parallel LANZ algorithm is presented in Figure 1. Its various computational
components and their parallel implementations are discussed in the following subsec-
tions. Explicit global synchronization points in the algorithm are denoted by the term
“SYNCHRONIZE.” Other synchronization points are required by particular opera-
tions, for example inner products, and are not explicitly denoted in the algorithm. To
avoid extra synchronization, each processor is responsible for computing a fixed subset
of each vector computation. For example, if at step 21 processor 1 compntes the first
m elements of g;41, then at step 22, processor 7 would compute the contribution of the
first m elements to the inner product, thus avoi&ing a synchronization between steps
21 and 22. In these discussions p represents the number of processors, n represents the

9

“

0) go =po =0) y=pigin

1) Choose an initial vector, guess 22) g1 = gj41 — ¥Qj

2) p1 = Mguess 23) & = p] g4

3) Orthogonalize 24) gj41 = gj41 — Gy

4) SYNCHRONIZE 25) v =pligih1

§) p1 = Mguess 26) gj41 = gj41 = Y91

6) SYNCHRONIZE 27) aj=plgin

) q=(K-oM)"'p 28) gj41 = g4 — g

8) (factorization occurs here) 29) SYNCHRONIZE

9) SYNCHRONIZE 30) pir = Mgjp

10)py = Mq 31) aj=a;+4a

11) 61 = (pT 1) 32) Bisr = (pligia)?

12) Orthogonalize 33) Calculate eigenvalues of T}
13)qy = q1/6: 34) Count the converged eigenvalues
4ypr =pi /B 35) Orthogonalize

15)For j =1, ... 36) gi+1 = g41/Bin

16) (K —odM)gj+1 = pj 37) (requires use of critical sections)
17) (only matrix solution here) 38} pisr = ry41/Bim

18) SYNCHRONIZE 39) End of Loop

19) rnorm=|| g4 || 40) compute ritz vectors

20) (if external orthogonalization)

Fi1G. 1. Parallel shift-and-invert Lanczos algorithm

order of the matrices, b represents the block size in a block algorithm, and j represents
the current Lanczos step.

2.1. Factorization. Factorization takes place only once during the algorithm,
at step 7. Because the matrices, A and M, are sparse (or have been reordered to have
a narrow bandwidth), the parallel implementation of direct factorization and solution
methods must be carefully considered. In this paper, only the case in which the
matrices have been reordered to a narrow bandwidth, §, will be considered. However,
the limitations on parallelism ir factorization and forward/backward matrix solution
that are imposed by a narrow bandwidth are similar to those imposed by sparse

madtrices.

Two situations may exist when factoring (K —oM): (1) (K — oM) is known to be
positive definite, and therefore it is desirable to use either Cholesky factorization or
LDLT decomposition, or (2) (X —o M) may be indefinite, and therefore a factorization
algorithm with pivoting is necessary. In the first case, a block factorization and solu-
tion subroutine described in [18] has been parallelized for use in LANZ. In the second
case, a block algorithm for banded matrices based on Bunch-Kaufman factorization is
used [4] [6].

LANZ was initially written for vector architectures, and therefore careful atten-
tion has been paid to achieving good vectorization. With small-to-moderate vector

lengths, it is desirable to perform sazpy operations! as opposed to inner products,

! The sazpy operation is defined as w = az + y, where w, y, and z are vectors and a is a scalar.

3

as well as to compute more than one suzpy operation at a time.2 On multivector
processors, however, good vectorization is often at odds with parallelization. In the
factorization algorithms, this conflict between vectorization and parallelization occurs
in the computation of the pivot column(s): the pivot columns(s), vectors of length g,
must be split into vectors of length 3/p for each processor to compute. On the CRAY
Y-MP the benefit of parallel computation of the pivot column is outweighed by the
resulting inefficient short vector operations and the cost of the added synchronization;
therefore, this computation is not parallelized. However, on a simple multiprocessor
such as the Multimax, this conflict does not occur, and the computation of the pivot
column is parallelized. The deminant part of the calculation is the updating of the
uneliminated nonzeroes by using the pivot columns: the updating is implemented by
distributing p‘_;—:é extended sazpy's to each of the processors. to compute. The ex-
tended sazpy’s parallelize well because there is sufficient work for each processor, and

the vector lengths are unaffected by parallelization.

2.2. Matrix Solution. Forward and backward matrix solution is required at
steps 7 and 16. The conflict between vectorization and parallelism is much worse in
these operations. This discussion will be limited to the forward and backward solution
algorithms that take place after a Bunch-Kaufman factorization in which the block
sizes vary and are selected according to numerical criteria rather than the number of
processors.” The following discussion will assume that the lower triangular factor, L,
resulting from the Bunch-Naufman algorithm has been stored by row.* Because of the
order in which pivots are performed, a sazpy-based algorithm for the forward solution

must be used, and an inner product algorithm for the backward solution must be used.

The time-consuming portion of the block forward solution algorithm is the b 8-
length sazpy operations that can be combined into a single extended sazpy operation.
The only practical way to parallelize this operation is to split the vector into p shorter
vectors. This approach, of course, significantly reduces the efficiency of the vector

operations.

The time-consuming portion of the block backward solution algorithm is the com-
putation of b fS-length inner products. Two types of parallelism are available here:
(1) two or more processors can cooperate to compute a single inner product, and (2)
individual inner products can be computed independently. Even though both meth-

ods are used, the algorithm is still inefficient because inner products are not as fast

? Performing more than one sazpy at a time, called an extended sazpy in this paper, is defined as
w=1y + Z‘:___l a;z; and is often implemented via loop unrolling [1]. This type of operation reduces
the ratio of memory references to computations.

3 The situation is slightly better for the positive definite case in which the block sizes can be selected
based on the number of processors rather than according to numerical criteria,

* If it were stored by column, the same limitations wonld apply, but the discussion for the forward
solution would be applicable to backward solution and vice versa.

as sazxpy’s, the parallel computation of a short inner product is adversely affected
by synchronization delays, and the block size may not be evenly divisible by p, and
therefore a load imbalance may result.

The considerations regarding efficiency of vector operations are not a concern when
implementing this algorithm on the Encore, and therefore better parallel speedup from
the forward and backward solution algorithms can be expected than on the CR.\Y
Y-MP. The ratio of computation to synchronization, however, is still much worse than
for factorization, and good speedup cannot be expected.

2.3. Sparse Matrix Multiplication. Multiplication of the matrix A/ by a vec-
tor is required in steps 2, 5, 10, and 29 of the algorithm, as well as in orthogonalization
and Ritz vector computation. Again, what is appropriate for a multivector processor
may not be appropriate for a multiprocessor. On both machines, better performance
can be obtained if symmetry is not exploited and if both halves of the matrix are
stored. If these steps are not taken, a significant price in parallel performance is
paid as a results of the cost of added synchronization and/or the use of inefficient
operations. On the Encore Multimax an appropriate method to parallelize sparse
matrix-vector multiplication is the straightforward inner product-based algorithm in
which each processor computes a subset of the elements in the result vector. However,
on the CRAY Y-MP the most efficient operation is a sazpy operation; therefore, a
sazpy-based algorithm is used in which each processor computes a partial result for
every element in the result vector, and then these partial results are combined at the
end of the computation. If the number of processors is small, then this column-based
algorithm is faster than the row-based algorithm because it uses the sazpy operation
exclusively. Both methods will result in good speedup because little or no synchro-
nization is required, plenty of work is available to divide up amongst the processors,
and vectors lengths are unaffected by parallelization.

2.4. Solving Tjs = fs. At every step of the algorithm, the eigenvalues of T
and their error bounds are computed so that the algorithm can be stopped when the
desired eigenpairs have converged. Because the eigenvalues of T}, 8;, interlace those
of T;°, and error bounds, bj;, are known for the eigenvalues of T;.;, an eigensolver
that uses this information will be much more efficient than one that does not. A
serial algorithm that finds the outermost eigenvalues of T} is given in [16]. A parallel
algorithm that uses all available information from the previous Lanczos step is shown
in Figure 2. The first loop is used to find intervals that contain the eigenvalues of T}.
The second loop is used to compute each eigenvalue and its error bounds. Both loops
in this algorithm can be partitioned among the processors and, therefore, can achieve

a speedup of approximately j, where j is the sizgiof the tridiagonal system. However,

5 Cauchy’s interlace theorem; see [13).

bounded[i) =0,fori=1,;
ParDoi=1,j5-1
if ((2*8)i < 8i — 8i—y) and (2%B85i < 8i41 — 0i)) then
probe = 8; + f;:
less = numless(probe)
if (less = 1) then
bounded[1] = i
else /* i and i + 1 are the only values numless will return; if
it returns something else, a grave error has occurred */
bounded[i + 1] = 1
endif
endif
enddo
Barrier
End Barrier
ParDoi1 =1, .
il (bounded[i] = 0) then
leftbound = 6,
rightbound = 8; ;
newtonroot(leftbound,rightbound,newf; ,newf;;)
else if (bound(i] = 1) then
leftbound = 6; — gj;
rightbound = 6;
newtonroot(leftbound,rightbound,newé; ,newg;;)
else if (bound{i] = i — 1) then
leftbound = 6;_;
rightbound = 8-y + ;i1
newtonroot(leftbound,rightbound,newd; ,newg;;)
endif
enddo

numless determines the number of eigenvalues less than probe
newtonroot finds the eigenvalue (and its error bound) between lefibound and rightbound

FiG. 2. Parallel tridiagonal eigensolver

because the time required to find each eigenvalue often differs, it is unlikely that a
speedup of 7 would be achieved.

2.5. Ritz Vector Computation. The assumption is made that n. Ritz vectors
are computed at the end of n, steps. For each Ritz vector that must be calculated, a
7-length eigenvector of T; must be ;élcula.ted by inverse iteration. This computation
is very inexpensive because Tj is tridiagonal; the computation is not parallelized. The
ma jor computations used to compute a Ritz vector in LANZ are (1) y; = Q;s;, which is
a full matrix multiplication, and (2) the normalization of y; to ensure that y7 My; = 1.
The full matrix multiplication can be partitioned in a fashion similar to sparse matrix
multiplication, with similar results expected. The normalization requires a sparse
matrix multiplication, a vector inner product, and a vector division. Because the
dominant computations, matrix multiplications,Parallelize well, good speedup can be

expected.

2.6. Orthogonalization. The algorithm given in Figure 1 already includes the
extended local orthogonalization algorithm. At steps 4, 6, and 34, external selective
orthogonalization will take place, if semi-orthogonality against eigenvectors computed
in a previous Lanczos run must be maintained. The algorithm for external selective
orthgonalization is given in (3] and is not given here. A j-length three-term recur-
rence is updated every step to check whether any eigenvectors must be orthogonalized

against. If necessary, ¢; and ¢j41 are orthogonalized against some of the eigenvectors.

The partial reorthogonalization algorithm maintains semi-orthogonality among
the Lanczos vectors and is described in [17]. A j-length three-term recurrence is
updated, in parallel, every step to check whether g; and ¢;4; must be orthogonalized
against all of the previous Lanczos vectors. This reorthogonalization usually occurs

approximately once every three steps.

If ¢; and gj41 have been modified by reorthogonalization, then p; and p;4q are
recomputed, and gj41 is orthogonalized against g;. These operations require two
sparse matrix multiplications to recompute the p’s, an inner product and a sazpy for
the orthogonalization, and an inner product to recompute f;41.

Excellent speedup should be obtained during orthogonalization because the com-
putations involve long vector operations and very little synchronization.

2.7. Other Computations. The rest of the computations in the Lanczos al-
gorithm (e.g. steps 11 and 13) are vector operations of length n. These vectors are
long enough to partition among a moderate number of processors without significantly

reducing vector efficiency.

3. Performance Model. A parameterized parallel execution model of the com-
putations in LANZ has been constructed to allow the prediction of performance on
parallel computers of varying characteristics, as well as for problems of varying size
and type. This model is hased on the parallel version of LANZ outlined in the pre-
vious section. One application of the model is the comparison of the actual parallel
performance of LANZ against the performance predicted by the model. This ensures
that parallel implementations of LANZ are performing as expected. Two other ap-
plications of the model are prediction of performance on different architectures, and
prediction of the effect of changes to LANYZ without the actual implementation of the
changes. Given the parameters listed in Figure 3 and the submodels given below, the

cost of execution on p processors can be estimated using the following model:

(DT (p) = t;(p) + (ns + 1)(ts5(p) + tos(P)) + (s + 3t (p) + tec(P) + tr(p) + to(p).

Because of its complexity, the model is split into the following submodels:

e

bb - Dem cmyi(3=1)

@t(p) = A+ (T A T (en + e+

Parameter | Description
n order of the emensystem
P number of processors
I} average bandwidth of the linear system
a average number of non-zeros per row of the linear system
b average block size during the factorization
Mg number of Lanczos steps
Te number of eigenvalues
fs(2) cost of synchronization given ¢ processors
csz(2y7) cost of i-length j size extended sazpy operation
cip(1,7) cost of 7 simultaneous :-length vector inner products
cym (1) cost of i-length vector multiplication
Csaz(Q) cost of sparse sazpy operation with o non-zeroes
Csin(@) cost of sparse inner-product operation with a non-zeroes
Cm cost of single multiplication
Ca cost of single addition
Fi6. 3. Parameters for the rmodel
d Wl 1
D ess((6 = 0, = 1)SIB(8 = Dem) + (8 = Dewz(5(8 —), D))}
or o
n b(b - 1)em b j(7-1)
g{f,(m IWULEE IS g CRTSR,
i=1
1 g="%) . 1
5(cool L5 2)-4 (008 = D) + (8 - D508 - 8),0)
n b 1) B—b
@) = HAE) + et ca) el 0)
n b b~— 1 g-b
(@oalp) = FUH)+ s em+ o) 4 blp= e+ ci(Z==,0)
2n n
(5)m(p) 'Z{;Csar(a) + fi(p) + Car(EaP - 1)
or
2n
—csip(a
. p(@)
n n
(G)tec() TLC(TLSCS;C(E, 1) + () + clp(; 1) + Cum(};) + 2fs(p))
n n n
(7) t:(p) (ns+ 3)2tm(p) + 20{,,(;, 1)+ Csr(; y Dng(cip(=,1) + CSI(E’)]

(6, + 1)cfp(—'g—, 1)+ (20, + 2>cum(§> + 4nscm(%, 1)+ (2n, + 2) £+ (p)

Two versions of the cost of a single factorization, t;(p), are given Equation 2: (1)
when the updating of the pivot columns is not pg;rallelized, e.g.,on the CRAY Y-MP,
and (2) when the updating of the pivot columns is parallelized, e.g., on the Encore

Multimax. The models for triangular matrix solution, t7,(p) and t5s(p), are given in

8

Equations 3 and 4.

Two models for the cost of the multiplication of a sparse matrix times a vector,
tm(p), are given in Equation 5: (1) the sazpy-based algorithm, and (2) the inner
product-based algorithm. The model for the cost of computing a Ritz vector, te.(p), is
given in Equation 6. The assumption is made that n, Ritz vectors are computed at the
end of n, steps. The term i,(p) accounts for the cost of partial reorthogonalization.
Because the cost of external selective orthogonalization depends on the number, often
0, of previously converged eigenvectors, it will not be included in the model.

The term t,(p) accounts for the length n vector operations and synchronizations
given in Figire 1. The cost of the rest of the operations in the algorithm is small

compared to those costs modeled and is therefore left out.

4. Performance Results and Analysis. One application for this model is to
ensure that the parallel implementation of LANZ is performing as expected. For a
comparison of the model against the implementation, LANZ was run on a medium
size eigenproblem from structural engineering® where the ten lowest eigenpairs were
found in 22 steps on a four processor CRAY Y-MP. A smaller problem’ was run on a
twenty processor Encore Multimax in which the ten lowest eigenpairs were found in
22 steps. An examination of the speedup curves in Figure 4 reveals that the speedups
from the implementations are very close to those predicted by the model.

It is clear from the speedup curves in Figure 4 that a speedup plateau occurs. The
main cause of this plateau is the poor speedup realized in the forward and backward
matrix solution algorithms. This problem can best be observed by plotting the per-
centage of execution time taken by forward and backward matrix solution algorithms
as the number of processors increases. These percentages are shown in Figure 5 for
Lanczos runs taking 10, 25, and 50 steps on the Encore Multimax using the same
problem described in the previous section. The problem caused by the matrix solu-
tion algorithms is exacerbated as the number of Lanczos steps increases, because each
Lanczos step requires another forward/backward matrix solution, taking more and

more time as compared to factorization, which speeds up well.

This plateau occurs later on the Encore than the CRAY because the Encore does
- not have to contend with the conflict between vectorization and parallelization: vector
lengths decreasing as the number of processors increases. However, both implementa-
tions suffer from the poor ratio of computation to synchronization in the forward and

backward matrix solution algorithms.

® Finding the vibration modes and mode shapes of the finite element model of a circular cylindrical
shell [20]. In this problem n = 12054 and the average semi-bandwidth is 394,

" Finding the five lowest buckling modes and mode shapes of the finite element model of an I-
stiffened panel. In this problem n = 4474 and the averagé semi-bandwidth was 207,

Speedup

4 ——
124 —"T a5 L Implementation
D
a
w
8 T 2 . T
Implementation Model
4 + 1 -+ e
| | v
4 8 12 18 20 1 0 3 s

Parcentage of Execution Time

Number of Processors

100

75

50 T

25

FiG. 4. Speedup curves

50 stepg///

_/

] ! I | \
4 8 12 16 20

Number of Processors

F16. & Malriz solution as a percentage of ezecution time

10

Number of Processors

If problems with larger bandwidths were used, better speedup from these algo-
rithms could, of course, be expected. It has been the authors’ experience, however,
that if the bandwidth arising?rom a structural engineering problem is large, then most
likely many zeroes exist inside the band, and therefore sparse methods are best used.

5. Concluding Remarks. A parallel Lanczos algorithm for finding a few of the
eigenpairs around a point in the eigenspectrum was described. Differences in the
implementation of the algorithm on a multivector processor and on a multiprocessor
were described. The algorithm was shown to perform reasonably well on a moderate
number of processors. The algorithm was analyzed by using an execution-time model,
and the performance bottleneck which prevents efficient utilization of a large number
of processors was identified.

Several possible modifications to the LANZ algorithm can be used to improve
its parallel performance. The use of dynamic shifting (2] to improve parallelism by
reducing the number of forward and backward matrix solutions was investigated in
[3] and was found to be successful when the eigenvalue distribution was difficult. The
use of groups of processors executing the LANZ algorithm independently at different
shifts was investigated in (3] and was found to be successful when many eigenpairs
are being sought. Block Lanczos holds some promise because it allows several forward
and backward matrix solutions to occur simultaneously [2]. The improvement in
performance resulting from block Lanczos will depend on how many Lanczos steps are
eliminated and what block size can be effectively used. Unfortunately, s-step Lanczos
methods [10] will not alleviate the bottleneck imposed by forward and back solutions

and, therefore, will not have a significant effect on performance.

Another avenue for improving parallel performance is the use of iterative methods,
such as SYMMLQ [14], to solve (K — oM)z = y rather than direct methods. However,
it has been the authors’ experience that (I — oM) is often poorly conditioned and,
therefore, is difficult to solve by iterative methods.

REFERENCES

(11 J. 1. Doncarwa aND A. R. Hinvs, Unrolling Loops in FORTRAN, Software: Practice and
Experience, 9 (1979), pp. 219-226.

(2] R. G. Gumwes, J. G. Lewis, axv H. D. SiMoN, The Implementation of a Block Lanczos Al-
gorithm with Reorthogonalization Methods, ETA-TR-91, Boeing Computer Services, Seattle,
Washington, May 1988.

(3] M. T. Jonws, The Use of Lanczos’ Method to Solve the Generalized Eigenproblem, PhD thesis,
Department of Computer Science, Duke University, 1990.

(4] M. T. Jones anNp M. L. Parwick, Bunch-Kaufman Factorization for Real Symmetric Indefinite
Banded Matrices, Technical Report 89-37, Institute for Computer Applications in Science
and Engineering (ICASE), NASA Langley Research Center, Hampton, Va., 1989,

, The Use of Lanczos’s Method to Solve the Large Generalized Symmetric Definite Eigen-

value Problem, Technical Report 89-67, Institute for Computer Applications in Science and

Engineering (ICASE), NASA Langiey Research Center, Hampton, Va., 1989,

[5)

11

’

(6] ~——, Factoring Symmetric Indefinite Matrices on High-Performance Architectures, Technical

7l

[19]

[20]

G

Report 90-8, Institute for Computer Applications in Science and Engineering (ICASE)

NASA Langley Research Center, Hampton, Va., 1990.)

, LANZ: Software for Solving the Large Sparse Symmetric Generalized Eigenproblem,
Preprint MCS-P158-0690, MCS Division, Argonne National Laboratory, Argonne, 1l., 1990,
Also available as ICASE Interim Report no. 12,

. T. Jonks, M. L. Parwcek, anp R, G. Vors't, Language Comparison for Scientific Com-
puting on MIMD Architectures, Report No. 89-6, Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, Va., 1989,

. JowwAN, The Force, Computer Systems Design Group, University of Colorado, 1987.

Kt anp A, Curonorouros, A Class of Lanczos-Like Algorithms Implemented on Parallel
Computers, Computer Science Department 89-49, University of Minnesota, July 1989.

G. Liwis, Algorithma for Sparse Matriz Eigenvalue Problems, PhD thesis, Department of
Computer Science, Stanford University, 1977,

. Nouw-Osip, B. N. Pawwerrr, T, ECsSoN, aNp P. S, JenseN, How to Implement the
Spectral Transformation, Mathematics of Computation, 48 {1987), pp. 663-673.

Nounr-Osip, BN, Parwer, axp R. L. Tayron, Lanczos Versus Subspace Iteration For So-
lution of Eigenvalue Problems, International Journal for Numerical Methods in Engineering,
19 (1983), pp. 859-871, :

. C. Patsls AND M. A, Sauspens, Solution of Sparse Indefinite Systems of Linear Equations,
SIAM Journal of Numerical Analysis, 12 (1v..), pp. 617-629.

. N. Panvuwry, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, N.J,,
1980, ‘

. N, Panurr AND B, Nounr-Osip, The Use of a Refined Error Bound When Updating Eigen-
values of Tridiagonals, Linear Algebra and its Applications, 68 (1983), pp. 179-219.

. N. Panvere, B, Nounr-Osw, anv Z. A, Liv, How to Maintain Semi-Orthogonality Among
Lanczos Vectors, PAM-420, Center for Pure and Applied Mathematics, University of Cali-
{ornia, Berkeley, July 1988.

. Poout, The Solution of Linear Systems of Equations with a Structural Analysis Code on the
NA4S Cray 2, Tech, Rep. CR-4139, CSM Branch, NASA Langley Research Center, Hampton,
Va., 1988.

. D. SimoN, The Lanczos Algorithm With Partial Reorthogonalization, Mathematics of Com-
putation, 42 (1984), pp. 115-142.

. B. Stuwanyr, The Computational Structural Mechanics Testbed Procedure Manual, Compu-
tational Structural Mechanics Branch, NASA Langley Research Center, 1989,

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of »ny information, apparatus, product, or -
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and vpinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

"“’A

