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Summary
The Economic Benefits of Midseason
Reordering

This study examines the economic benefits of midseason
reordering to a retailer in the apparel business. This is important
when deciding between an on-shore or an off-shore supplier.
Typically, an on-shore supplier will allow reorders part way through
a selling season, but an off-shore supplier often does not. The
flexibility provided by reordering should increase the net profits of
the retailer. Consequently, a method to evaluate the potential
benefits of the midseason reordering will help in selecting
suppliers.

More broadly, this analysis examines the economic benefits of
improved supplier flexibility and responsiveness. The ability to
reorder allows the retailer to better match his stocks to the demand
over the season, reducing the chances stock out or a mark-down.
This study evaluates the benefits that accrue by better matching
stock to demands. This framework can be extended to assist the
textile industry in evaluating new strategies intended to strengthen
the industry based on improving supplier responsiveness.

This report presents a method for determining the value of
reordering, explores factors that affect its value, and provides an
estimate of the value under a range of conditions.

Scenario analyzed

The study analyzes a hypothetical case of a retailer selling
flannel shirts. It is expected that the retailer will sell 50,000 dozen
shirts during the season. The first cost of the shirts is $6 per shirt
and their retail price is $12. The analysis also includes costs of
transportation, storage and handling. Two cases of end of season
markdown are evaluated, 100% and 50%.



Approach

The analysis models the demand as a simple stochastic
process which divides the selling season into a series of two-week
periods. Demands in each period are random. The demand in one
period is correlated with the demand in the previous period. As both
the standard deviation of the period demands and the correlation
increase, the uncertainty about the total demand for the season
increases. The standard deviation of the period demands and the
correlations are varied over a plausible range in the analysis to
determine the magnitude of their effects on the benefits of
reordering.

The model finds the optimal order quantities for the retailer
using a dynamic programming optimization procedure. The value of
reordering is determined by first computing the expected profit
assuming that reordering is not allowed, and then computing the
expected profits assuming that reordering is allowed. The increase
in the expected profits when reordering is allowed is the expected
benefit of reordering.

Results Of The Analysis

The results show that the value of reordering depends on
uncertainty about future demands and the end of season markdown.
As the uncertainty increases, the value of reordering increases. The
value of reordering also increases as the size of the markdown
increases.

The expected benefit of reordering depends on the assumptions
about the markdown price of unsold merchandise at the end of the
season. If merchandise cannot be sold at the end of the season (i.e. a
100% markdown), the “downside risk” to the retailer is large: there
is a chance that substantial investments will be made in inventory
that cannot be sold. However, if the merchandise can be sold at a
markdown of 50%, the downside risk is greatly reduced. If demand
turns out to be smaller than expected, there is not much loss. This
reduction in risk reduces the expected losses when reordering is not
allowed and thus decreases the difference between the expected
profits under the two cases. The expected value of re-ordering is
substantially smaller when it is assumed that there will be only a
50% markdown, compared to a 100% markdown.



Along with changing value of reordering, the assumed
markdown also changes the optimal order quantities. If the
markdown is only 50%, there is very little penalty to having left
over merchandise at the end of the season. However, there is a large
benefit to having extra stock on hand in case demand is high.
Consequently, with or without reordering, the optimal amounts to
purchase are larger when the markdown is only 50% as compared to
the case of 100% markdown.

The analysis shows that if there is little uncertainty about the
demand, the benefit of reordering is very small. For the case with
the largest uncertainty analyzed, we find that at a markdown of
100%, reordering increases the expected season profit for this
scenario from $2.15M to about $2.56M, an increase of 19%. For the
same uncertainty case with a markdown of 50%, reordering only
increased expected profits by 4.5%. Thus both the degree of
uncertainty and the end of season markdown have a substantial
effect on the value of reordering.

These benefits can be translated into the additional price that
a retailer would be willing to pay to a supplier that allows
reordering. For the case of maximum uncertainty and 100%
markdown, a retailer would be willing to pay a premium up to $0.41
per shirt. If the premium were any higher, the expected profits
would be less than the profits expected by buying from a supplier
that did not allow reordering. For the same case of uncertainty, but
with a markdown of only 50%, a retailer would only be willing to pay
premium of $0.12 per shirt.

Table S-1 summarizes the results for the case of maximum
uncertainty analyzed in the study:

Table S-1: Summary of value of reorder at the maximum level of uncertainty

analyzed
50% 100%
markdown markdown
Profits with out reorder ($M) 2.789 2.149
Profits with reorder ($M) 2.914 2.562
Increase in profit ($M) 0.125 0.414
Equivalent premium buyer would pay 0.12 0.41
for reordering ($/shirt)




Possible extensions to the analysis

The basic analytic approach can be extended to evaluate
multiple reorders and various lead times. This will give a clearer
understanding of the relationship between supplied responsiveness
and retailer profits. This will be valuable in assessing strategies
for strengthening the textile industry that are based on improved
supplier response.
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The Economic Benefits of Midseason Reordering

Introduction

This study examines the economic benefits of midseason
reordering to a retailer in the apparel business. The results are
important when deciding between an on-shore or an off-shore
supplier. Typically, an on-shore supplier will allow reorders part
way through a selling season, but an off-shore supplier often does
not. The flexibility provided by reordering should increase the net
profits of the retailer. Consequently, a method to evaluate the
potential benefits of the midseason reordering will help in selecting
suppliers.

More broadly, this analysis examines the economic benefits of
improved supplier flexibility and responsiveness. The framework
can be extended to assist the textile industry in evaluating new
strategies intended to strengthen the industry based on improving
supplier responsiveness.

This report presents a method for determining the value of
reordering, explores factors that affect its value, and provides an
estimate of the value under a range of conditions. The method is
based on a stochastic process model of the demands the retailer
faces. It uses a dynamic programming model to determine the
optimal quantities to order and the expected profits. The analysis
shows that the benefits of reordering are quite sensitive to the
uncertainties in the demand and to the assumptions about the
markdown of unsold merchandise at the end of the season.



Source of the economic benefits

The ability to reorder provides value to the retailer in two
ways: First, it increases the likelihood that the retailer's stocks
will match the customer demand. This reduces the chance of a stock
out during the season (and the lost sales) and decreases the chance
of mark-downs at the end of the season. Second, reordering allows
the retailer to spread out purchases over the season. This reduces
the carrying costs of stock. Because the effect of reordering on the
carrying costs can be readily calculated from discounted cash flow
analysis, this study focuses on the benefits that accrue by better
matching stock to demands.

The value gained from better matching stock to demand
depends on the degree of uncertainty in demand that the retailer
faces. If total demand during a season were known exactly, there
would be no value to reordering (other than reducing carrying costs).
The retailer would order exactly the right amount. There would be
no losses due to stockouts or markdowns.

However, when demand is uncertain, there is always a chance
of stockouts or markdowns. Midseason reordering allows a retailer
to make use of information about past sales to make a better
decision about how much to buy for the next periods. The value of
reordering is greatly increased if the past information can give the
retailer a better forecast' of the demand in coming periods. If it
does provide information, and if the retailer has a sound decision
procedure to use the information to make better orders, then the
value of reordering increases.

In this study the economic value of reordering is computed by
comparing the expected profits obtained when orders must be fixed
at the start of the season to the expected profits when reordering is
allowed at midseason. The difference between these is the value of
the reordering. We examine its values as a function of the
statistical characteristics of the demand the retailer faces and the
anticipated markdown of unsold merchandise at the end of the
season. The impacts of the demand statistics and the markdown on
the retailer's ordering policies are also discussed.

! Here a “better” forecast means that the variance of the difference between the

forecast quantity and the actual quantity is smaller.



Relevance of the reordering analysis to evaluating Quick
Response

The option to reorder is a simple form of Quick Response. This
analysis demonstrates a basic framework for exploring the value of
Quick Response. Here we only compare the case of (essentially) no
response and the case where one reorder is allowed during the
season with immediate delivery (zero lead time). This analysis
could be extended to evaluate the case of several orders during the
season with different lead times. It would be of particular interest
to determine if a) the value of the quick response increases
significantly as more reorders are allowed and lead time is reduced,
or b) simply allowing one reorder (as is analyzed here), captures
most of the value that is available.

Scenario analyzed

The study analyzes a hypothetical case of a retailer selling
flannel shirts. These shirts are sold during a three month season,
July through September. It is expected that the retailer will sell
50,000 dozen shirts during the season. However, there is
uncertainty about the actual amount, as is described later.

Under this scenario the retailer places an order for a portion
of the shirts 16 weeks before the sales season starts. Half way
through the season, the retailer has the option of ordering additional
shirts. It is assumed that the supplier has continued to produce
shirts and has enough stock on hand to deliver the reordered shirts
on a few days notice.

The timeline for events in the scenario is as follows:

| 16 weeks | 6 weeks | 6 weeks |

[ | [ [
First Start of Second End of
order season order season



Costs

Several costs must be taken into account in addition to the
first cost of the shirts. The costs are shown in Table 1:

Table 1: Costs associated with purchasing a single shirt

Cost Component Cost per shirt
($)

First cost 6.00
Shipping costs 0.05
Storage and handling at 0.03
warehouse

Pick, pack and label 0.25
Preparation 0.25

For the first order, it is assumed that the first cost is paid at
the time of the order. The shipping, storage, pick pack and label
(PPL), and the preparation costs are incurred at the time the items
are delivered, which is at the start of the season. Thus all the costs
except the first cost are discounted back from the start of the
season to the time of first order. For the second order, it is
assumed that all of the costs (including first cost) are incurred at
the time of the second order, which is half way through the season.
Thus all of these costs are discounted back from the middle of the
season to the time of the first order. In either case, the supplier
pays storage cost until the shirts are delivered to retailer.

The interest rate is assumed to be 12%. Based on these costs
and the timing of expenses, we can calculate the present value of all
costs per shirt. For the initial order the total discounted cost is
$6.56. For a shirt ordered part way through the season, the cost is
$6.14 .

Revenue streams

The selling price per shirt is $12.00. The revenues are
assumed to accrue uniformly during each half of the season. That is,
for each half, the total sales are determined. Then it is assumed
that this amount was sold at a uniform rate during the half season.
This income stream is then discounted back to the time of the first
order.



Analytic method

This study computes the expected benefits that can accrue to a
retailer if a supplier allows re-ordering midway through the season.
To compute this benefit, we compute the expected net discounted
revenue (profit) for the case where no reordering is allowed and
compare it to the revenues for the case where reordering is allowed.
The difference is the expected benefit that arises from the
midseason reordering. The specific cases are described below.

Cases analyzed

Case 1- No Reorder Case: The total quantity of shirts acquired for
sale during the season is bought and paid for at the time of initial
order (16 weeks before the start of the season). All ancillary costs
are incurred when the shirts are delivered. Under this case the
retailer determines the optimal amount to order , given that it is all
paid for and delivered before the start of the season.

Case 2 - Reorder Case: One batch of shirts is bought and paid for at
the initial order time (16 weeks before the start of the season).
Under this case the retailer determines the optimal amount to
purchase for the first part of the season taking into account his
estimates of demand and the fact that he can adjust his midseason
order to better fit the demand that materialize. Part way through
the season the retailer evaluates the expected demand for the rest
of the season and the stock on hand. He decides how many additional
shirts are needed and places a reorder. All costs for the reorder are
incurred at the time of reorder.

Note that Case 1 and Case 2 are not quite comparable. In Case
1 the first cost of the shirts is paid at the time of first order, while
under Case 2 the first costs for some of the shirts are paid for at
the time of reorder. Thus Case 2 includes a benefit from delaying
the ordering time that is not included in Case 1. Comparing these
two cases does not allow us to compute the additional value that is
solely due to the flexibility of reordering and to the increased
likelihood that we will be able to match stocks to demand.
Therefore we formulated Case 1la.

Case 1la - Fixed Order Case: At the start of the season, the retailer
commits to the quantities for the first and second halves of the




season. Thus the orders are fixed at the outset. The orders are paid
for in two batches. The first one is paid for at the time of initial
order (while the shipping, storage, PPL and preparation costs are
paid for when the shirts are delivered). The second batch is paid for,
including the ancillary costs, at the time of reorder, half-way
through the season. Thus the payment streams for Case 2 and Case
la are comparable. The difference between the expected profits

will reflect the value of the flexibility that reordering allows.

To complete the analysis two things are needed 1) a model of
the demand process, and 2) an algorithm for finding the optimal
order policies and the expected net revenues for these policies.

Demand model

Demand during any future period follows a stochastic model.
However, it is assumed that it follows a statistical model. Under
the model used here, the demands from one period to the next may be
correlated. This means that if the demand in one period is higher
than average, the demand in the next period will also tend to be
higher than average. Since these results are exploratory, we have
run several different cases with different degrees of correlation
(including O correlation). The equation for the model and the use of
the model in forecasting are discussed in Appendix A. This section
will summarize the model and its implications.

Here the season is assumed to last for three months. The
analysis is structured to have six periods of two weeks each. Thus
each half of the season consists of three periods of two weeks. At
the start of the second half the retailer forecasts the total amount
demanded during the remaining three periods (i.e. six weeks).

Stochastic model of demands

The demand model provides a probability distribution over the
demand for any future period. When forecasting demand for future
periods, one would generally expect that the degree of uncertainty
(e.g. the variance of the distribution) will increase the further out in
the future that one attempts to forecast. This reflects the fact that
the further we try to forecast in the future, the more likely that
other events will occur to affect the demand. It is desirable that
the model can reflect this divergence of the probability distribution.



In this case, a simple model of a stochastic process with
autocorrelation has been used. The model assumes that at the start
of the season, there is some expected demand each period (it could,
in principle, be a different expected demand for each future period,
but that is not assumed here). If in some future period, the actual
demand is higher (lower) than the expected demand, then the demand
in the following period is expected to be higher (lower) than the
expected demand, although not as much higher or lower. In practical
terms, we generally expect the conditions that caused demand to
deviate from the expected during one period will tend to persist for
future periods. The basic equation for this model is:

Xipp = @ Xt &

where:

X = the difference between the actual realized value and
the expected value, or

Xy = d-p

d, = the realized demand in period t

M = the expected demand for one period (assumed here to
be constant for all periods

(0] = the correlation coefficient

e = a randomly distributed disturbance term.

The disturbance terms are assumed to be normally distributed with
zero mean and a standard deviation of o. The disturbances are
uncorelated.

In much of the discussion the standard deviation of the
disturbance term is expressed as a fraction of the expected demand
in one period. Values of 0.0, 0.1, 0.2, and 0.3 are used. Since the
expected demand is 8.33 k doz, a value of 0.1 corresponds to a
standard deviation of 0.833 k doz.

The disturbance term represents the random variability in the
demands. |If its standard deviation is large, then the actual demands
tend to be widely distributed around the average value. If the
standard deviation were 0, then the realized demands would always



be exactly equal to the average demand and there would be no
uncertainty about future demands.

The value of @ represents the dependence, or correlation,
between demands in successive periods. As an example, if the
demand in one period were 1 k doz greater than the average value,
then we would expect the demand in the next period to be (¢ 1k
doz) greater than the average demand.

Because of this correlation, information about previous
demands allows a retailer to make a more accurate forecast of
future demands. This model allows us to compute the mean and the
variance of the demand in any future period. We can also compute
the mean and the variance for the sum of the demands in any
sequence of future periods. The algorithm for computing the optimal
order amounts makes use of this information.

The standard deviation of the demand in the next period is
simply equal to o.. However, if the correlation is greater than 0O, the
standard deviation of demand forecast increases the further in the
future one forecasts. As is shown in Appendix A, the variance of the
forecast t periods in the future is:

Var(r):g i @p’
E B

=1

—

where:

Var(t) = the variance of the forecast distribution t periods in
the future.

Note that the rate at which the variance grows is a function of the
correlation, ¢@. The larger the correlation, the more uncertain we are
about the demand in future periods. This arises since a high
correlation implies that events that cause a deviation from the mean
tend to persist and accumulate over time. Whereas low correlation
implies that events causing deviations from the mean do not tend to
persist and the demand quickly tends to return to the expected value
after the event.

Appendix A also includes the equations for the expected value
and variance of the total demand over a series of periods.



Uncertainty about future demands as a function of the variance of
the disturbance term and the correlation

The uncertainty about the demand in each future period and the
total demand over the season are functions of the variance of the
disturbance term and the correlation between demands.

Here we can illustrate the relationship between the
parameters and the total demand. Figure 1 shows the relationship
between the standard deviation of total season demand and the
standard deviation of the disturbance term and the correlation
between demands each period. The equation for the standard
deviation of total demand is given in Appendix A.

14
/>< Standard
12 / deviation of
Standard 10 disturbance
deviation of /x/ A term as
total 8 fraction of
season / the mean
demand (k period demand
.
doz) 4 /./ ——00m
2 —®—0.1 m
0 0.2 0.4 06 o 03m

Correlation between period demands

Figure 1: The standard deviation of the total season’s demand depends on the
standard deviation of the disturbance term and the correlation
between demands

We can see here that the uncertainty about total demand increases

as the standard deviation of the disturbance term increases and as
the correlation increases. Much of the discussion below will focus

on the impact of this increasing uncertainty on expected profits and
the retailer’'s optimal purchasing policies.

Retailer's knowledge of the parameters of the demand model

In this analysis it is assumed that the retailer knows the
statistics of the demand process, p, ¢, and o, and uses that
information to make forecasts and set order quantities. The



analysis here estimates the value of reordering when the parameters
of the demand are well understood.

Since the analysis assumes that the retailer knows the
statistics of the demand process the results reflect the benefit of
using information and optimal forecasts alone.

If the retailer did not know the parameters of the demand,
some additional economic benefits would arise from learning about
the underlying demand process. The retailer could observe the
demand for a period, update the estimate of the demand parameters,
and then make a new order based on this update. If future reorder
guantities are based on these improved parameter estimates, the
overall net return to the retailer should improve. Nuttle et al
provides such a case where the demands from period to period are
not correlated, but there are significant benefit to reordering.

We should note that when it is assumed that the underlying
parameters of the demand are not known, the value of reordering
could be very large. An analysis could, in fact, compute an
arbitrarily large benefit by simply assuming that the initial
estimate had a very large error.

Summary of demand model

This basic demand model provides a simple representation of a
demand process which allows for correlation. If correlation is
present, then the retailer can use the information about past
demands to make a forecast. We note that the analysis below shows
that even in the absence of correlation, past information is still
relevant and useful.

Equations and algorithm for computing expected profits for
fixed orders and re-orders

This section gives an overview of the equations and the
algorithms used to determine the optimal order policies and the
resulting expected profits. Appendix B gives the details of the
equations.

Basic method for Cases 1 and la— Fixed Order Case

Under Case 1 and 1a, the retailer decides the amounts to
purchase for each half of the season before the start of the season.
For our analysis it is only necessary to compute the total expected

10



revenue given the specified quantities and the probability
distribution over demands in both parts of the season. This is done
by writing an expression for total discounted revenues as a function
of the quantities purchased and the demands in the first and second
half of the season. The complete expression is given in Appendix B.
For this discussion let this expression to total discounted revenues
be

PV _Rev(QLD1Q2,D2)

where

Q1,Q2 = the quantities ordered for the first and second
halves of the season

D1,D2 = the total demands in the first and second halves of

the season

From the demand model, we can derive the expression for the
joint probability density function over the demands in the first and
second half of the season (D1 and D2) (see Appendix A for the method
used to compute the density function). The expected present value
of revenues is then just

EPV_Rev(QLQ2) = [ [PV_Rev(QLD1Q2,D2)+f(DLD2)
D1D2

where

f(D1,D2) = the joint distribution over the demand in the first
and second halves of the season.

To complete the calculation, the present value of the costs is
directly calculated from the present value of cost for shirts ordered
in first and second parts of the season presented earlier.

It is assumed that the retailer will order the optimum
guantities to maximize expected net revenue. This analysis simply
searches for the optimum by varying the total amount and the
amount to be purchased in the first half.

The equations for these expressions are shown in Appendix B.

11



Basic method for Case 2— Reorder Case

In Case 2 the retailer decides how much to order for the first
part of the season (using the analysis presented below). After
observing the demand for the first half, he decides how much to
order for the second half. The amount to order for the second half
depends on how much stock is on hand at the end of the first half,
and the forecast demand for the second half. Thus, the analysis only
determines the optimal amount to be purchased for the first half.
The amount purchased for the second half is probabilistic.

The complete equations are described in Appendix B. This
section gives an overview of the method. Our goal here is to develop
an equation for the expected profits as a function of the quantity
ordered in the first half of the season. One can then use the equation
to determine the quantity that reduces the largest expected profit.
This analysis uses a dynamic programming model and recursive
equations. The steps are outlined below.

Basically the equation is developed by working backward from
the end of the season to the start. We first derive an expression for
the expected profits in the second half, as a function of the amount
purchased in the first half and the demand in the first half. This
expression is built by first writing the expression for the profits in
the second half as a function of

« the amount purchased in the first half, Q1,

» the amount purchased in the second half, Q2,
+ the demand in the first half, D1, and

+ the demand in the second half, D2.

Given these four values one can determine the stock on hand at the

start of the second half and the quantities purchased and sold during
the second half. We can also derive an expression for the profits in
the second half. This expression is denoted V,(D1QLD2 Q2). The full

expression is given in Appendix B.

The expected value of the second period net revenues is
computed by integrating over the distribution over demand in the
second half:

V2(D1,QLQ2) = IVZ(DL Q1,D2,Q2)- f(D2| D)
D2

12



(the expression for f(D2|D1) is derived in Appendix A).

Finally, the optimal expected value for net revenues in the
second half is computed by taking the maximum over Q2:

V2(DL Q1) = ”(Bazx[vl(Dl QL Q)|

Note that Q2 is a decision that the retailer makes. Here we are
assuming that he will make an optimal decision, given his decision
in the first half (i.,e. Q1) and the demand that actually materialized
(D1). Using this equation, we can compute the expected profits in
the second half as a simple function of Q1 and D1.

We can write the expression for net discounted revenues in the
first half as a function of the quantity purchased and the demand.
This is denoted NRy(D1Ql). The total value of the first half net

revenues, plus the maximum expected value for the second half net
revenues is

V4(D1, Q1) = NRy(D1, Q1) + V2(D1, Q1)

The total expected net revenues over both halves, given Q1, is found
by integrating over D1:

Vi(QD) = [V4(D1 Q1)+ (DY)
D1

The expression for f(D1) is derived in Appendix A.

Finally, the expected value of the optimal decision is found by
taking the maximum over Q1:

Vi= mQa}Lx[Vl(Ql)]

The optimal quantity to order for the first half is the value of Q1
that maximizes the expression. This allows us to write out an
expression for the expected net benefits of the reordering case.

Results Of The Analysis

The results show that the value of reordering depends on
uncertainty about future demands and the end of season markdown.
As the uncertainty increases, the value of reordering increase. The

13



value of reordering also increases as the size of the markdown
increases. This section first gives an overview of these results and
the intuition behind them. It then presents several sections that
examine specific results in more detail.

Summary of results

The relationship between total expected profits and the
uncertainty is a fundamental feature of the results. The total
expected profits decline as the uncertainty in the future demands
increase for both the fixed order and the reorder cases. This arises
because there is a higher probability (i.e. a greater frequency) of
either having too little stock to meet the demand, or having too
much. The decline in expected profits happens whether uncertainty
increases due to a higher standard deviation in the disturbance term,
or a higher correlation from period to period. The difference in
expected profits between the cases arises because the expected
profits decline more rapidly when orders are fixed ahead of time. As
uncertainty increases, there can be a substantial difference between
the expected profits with and without reordering.

Next we observe that the expected benefit of reordering
depends on the assumptions about the markdown price of unsold
merchandise at the end of the season. If merchandise cannot be sold
at the end of the season (i.e. a 100% markdown), the “downside risk”
to the retailer is large: there is a chance that substantial
investments will be made in inventory that cannot be sold. However,
if the merchandise can be sold at a modest markdown (here we
assume 50%), the downside risk is greatly reduced. In this analysis,
the sales price of the garments is $12. At a 50% markdown, it can
be sold for $6, which is only slightly below its cost. Thus, if
demand turns out to be smaller than expected, there is not much
loss. This reduction in risk reduces the expected losses of the fixed
order case and thus decreases the difference between the expected
profits under the two cases. The expected value of re-ordering is
substantially smaller when it is assumed that there will be only a
50% markdown, compared to a 100% markdown.

Along with changing value of reordering, the assumed
markdown also changes the optimal purchasing policies. If the
markdown is only 50%, there is very little penalty to having left
over merchandise at the end of the season. However, there is a large
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benefit to having extra stock on hand in case demand is high.
Consequently, for both cases, the optimal amounts to purchase are
larger when the markdown is only 50% as compared to the case of
100% markdown.

The sections below present the numerical results in a table
and a discussion the graphically presents the key results.

Table of results

Table 2 shows the results for all cases analyzed in this study.
The definition of the columns are as follows:

SD Disturbance is the standard deviation of the disturbance
term as a fraction of the expected value for each period.
For example, the value 0.1 indicates that the Standard
deviation of the disturbance term is 0.1 x 8.33 k doz. This
is commonly known as the “coefficient of variation”.

Correlation is the period to period correlation of the demands.
Fixed order case

Max Expected value is the expected value of profits when first
and second order quantities are set at their optimal values.

Opt. Total Quantity is the optimal total quantity to order for
the entire season, when the order quantities are fixed at the
start of the season.

Opt. First Order is the optimal quantity to order for the first
part of the season when the quantities are fixed at the start
of the season.

Reorder Case

Max. Expected Value is the expected value of profits when the
first order quantity is set at its optimal value. Note that
the second quantity ordered is probabilistic and is not
known until the start of the second half of the season.

Opt. First Order is the optimal quantity to order for the first
half of the season for the reorder case.

Value of Reorder
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This is the difference between the Max. Expected Value for
the reorder case and the Max. Expected Value for the fixed
order case.

Table 2: Results of analysis for all cases

SD Cor- Fixed Order Case Reorder Case Value of
distur-| relation Reorder
bance ($M)
(fraction Max Opt. Opt. Max Opt.
of the Expected Total First Expected First
expected Value Quantity Order Value Order
period
demand) ($M) (k doz) (k doz) ($M) (k doz)
Markdown 100%

0.1 0.0 2.862 50 26.0 2.896 26.5 0.034

0.1 0.2 2.827 50 26.5 2.876 28.0 0.049

0.1 0.4 2.758 50 27.0 2.842 28.0 0.084

0.1 0.6 2.586 49 26.0 2.759 28.0 0.173

0.2 0.0 2.746 50 27.5 2.812 29.5 0.066

0.2 0.2 2.679 50 27.5 2.781 29.5 0.102

0.2 0.4 2.562 49 27.5 2.738 31.0 0.176

0.2 0.6 2.336 48 27.5 2.650 31.0 0.314

0.3 0.0 2.628 50 27.0 2.728 30.5 0.100

0.3 0.2 2.544 50 29.0 2.689 32.0 0.145

0.3 0.4 2.403 49 29.0 2.644 33.5 0.241

0.3 0.6 2.149 48 26.5 2.562 34.5 0.413
Markdown 50%

0.1 0.0 2.943 52 27.0 2.946 28.0 0.003

0.1 0.2 2.935 53 27.0 2.942 28.0 0.007

0.1 0.4 2.914 54 27.0 2.931 27.5 0.017

0.1 0.6 2.853 58 28.5 2.898 28.0 0.045

0.2 0.0 2.907 55 29.0 2.923 29.0 0.016

0.2 0.2 2.892 56 29.0 2.915 29.5 0.023

0.2 0.4 2.867 60 31.0 2.905 31.0 0.038

0.2 0.6 2.810 66 31.0 2.895 32.5 0.085

0.3 0.0 2.872 58 30.5 2.893 31.5 0.021

0.3 0.2 2.857 60 32.0 2.885 32.0 0.028

0.3 0.4 2.839 64 34.0 2.894 33.5 0.055

0.3 0.6 2.789 72 33.5 2.914 35.0 0.125

The following sections show some of the highlights of these
results
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The expected value of profits depends on statistics of
demand and the markdown

The demand is parameterized by the standard deviation of the
disturbance term—described as a fraction of the expected demand
each period—and the correlation between demands each period. As
either of these parameters increase, the total uncertainty in the
season demand increases. As the total uncertainty increases, the
expected profits decline since the chances of either a stockout or
excess stocks increase.

Figure 2 shows the expected profits as a function of the
statistics of the demand for the fixed order case. The expected
profits drop quickly as the uncertainty increases.

288 Standard
deviation of
2.80 \0\ disturbance
2.70 \ term, as
Expected 2.60 \ \*\ ®  fraction of
profits for 2.50 < mean demand
fixed “order ~2.40 Markdown }*\ % —9—01m
case ($M) 2.30 \ +0.2 "
2.20 '
’ 10 A —4—-03m
2.00
0 0.2 0.4 0.6

Correlation between demands in
periods

Figure 2: Expected profits decline as the uncertainty increases when orders
are fixed at the start of the season

Figure 3 shows the expected profits for the reorder case.
Expected profits do not decline as quickly when uncertainty
increases since the reordering allows the retailer the chance to
change orders part way through the season and thus avoid excess
stocks, or take advantage of an unexpectedly large demand.
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case (3M) 2.30  02m

2.20 T"Markdown| = 100% —4—0.3 m

2.10

2.00

0 0.2 0.4 0.6

Correlation between demands in
periods

Figure 3: The decline in expected profits with uncertainty is smaller when re-
orders are allowed

The value of reordering depends on the statistical
characteristics of the demand

For this analysis the value of reordering is calculated as the
difference between the expected profits when reordering is allowed
and the expected profits when fixed orders must be made at the
start of the season. Figure 4 shows the relationship between the
uncertainty in demand and the value of reordering when the
markdown is 100%. The value of reordering reaches $0.4 M at the
maximum uncertainty analyzed. This is roughly a 20% increase in
expected profits over the case where re-ordering is not allowed.
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Figure 4: As the uncertainty in demands increases, the value of reordering
increases

Value of reordering depends on markdown at the end of the
season

When the markdown is large, there is substantial downside
risk. However, as the markdown is reduced, the downside risk is
reduced and expected profits tend to increase. Figure 5 shows the
expected profits for the fixed order case when the markdown is only
50%. Here the profits decline only slightly with the increase in
uncertainty. Consequently, the difference between the expected
profits with and without reordering is small so the value of
reordering is small.
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Figure 5:  When the markdown is small, the expected profits do not decline
rapidly as uncertainty increases for the fixed order case.

Figure 6 shows the results for the reorder case. Here the
expected profit declines very slightly as uncertainty increases. In
fact the decline is so small, that the discretization of the analysis
results in curves that are not smooth.

3.00
2.90 %4

Standard
2.80 deviation of
2.70 the
Expected 2.60 Markdown | = 50% disturbance
profits for 2.50 term
reorder 2.40 .
case ($M) 2.30 0.1m
2.20 . 0.2 m
210 —4&—0.3m
2.00
0 0.2 0.4 0.6

Correlation between demands in periods

Figure 6: When the markdown is small, the expected profits decline more
slowly as uncertainty increases for the reorder case.(the curves
plotted here-particularly the 0.3 case -do not decline smoothly due
to the discretization in the analysis)

Figure 7 compares the expected value of reordering at 50%
and 100% markdown. At a 50% markdown, the value of reordering is
roughly a quarter of the value at a 100% markdown. This is shown
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for the case where the standard deviation of the disturbance term is
0.3 of the mean demand. The same general conclusion holds for the
other cases.

0.45 i

0.40 59— Standard deviation /

0.35 54— of the disturbance Markdown of
0.30 -— term = 0.3 x mean / unsold

. Expecteq 0.25 4— demand merchandise at
increase in : end of season
profits with 0.20
re-ordering  0.15 ./-/ I
($M) 0.10 —®—100%
0.05 ’—,*/1/

0.00 = T T
0 0.2 0.4 0.6

Correlation between demands in periods

Figure 7: When the markdown is small, the expected value of reordering is
markedly reduced

Quantities ordered depend on demand statistics and
markdown

In each of the cases analyzed, we have determined the optimal
guantities that the retailer should order, given the statistics of the
demand and the markdown assumptions. As uncertainty increases
there are some general trends in the optimal quantities. However,
the directions of these trends depend on the markdown assumptions
and whether or not reordering is allowed.

When the orders are fixed and the markdown is large, the
optimal total quantity to order declines somewhat as the
uncertainty increases. This is due to the downside risk. If there is
excess stock at the end of the season, each unsold item represents a
loss of more than $6. Figure 8 shows that the optimal total order
guantity declines from 50k doz to about 48k doz at the maximum
uncertainty analyzed.
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Figure 8: When the markdown is large, the optimal total quantities to order
decrease as uncertainty increase for the fixed order case

However, if the markdown is only 50%, the optimal total
guantity to order increases sharply for the fixed order case. Figure
9 shows that the optimal order quantity increases to about 72k doz
at the maximum uncertainty analyzed. At a 50% markdown any
excess inventory represents a very small loss to the retailer (less
than $0.50 pr item) so the possibility of a smaller than expected
demand represents very small losses. Conversely, if the demand
turns out to be larger than expected, and there is enough stock on
hand to meet the demand, then there is a large profit to be made on
each extra item sold (more than $5). Thus the retailer has a
substantial incentive to order large amounts at a 50% markdown.
Moreover, the greater the uncertainty, the greater the chance of very
high demands. Consequently the optimal order quantity increases as
the uncertainty increases for a 50% markdown.
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Figure 9: When the markdown is small, the optimal total quantity to order
increases for the fixed order case

In the case of reordering we can only examine the first order
guantity since the second order quantity is probabilistic. Figure 10
and Figure 11 show a trend that is quite different from the fixed
order case. For both large and small markdowns the optimal first
guantity tends to increase slightly as uncertainty increases. This is
due to the fact that as uncertainty increases, the chance of large
demands in the first half of the season increases. If the retailer has
enough stock on hand to serve this demand, he will obtain the profits
from it. On the other hand, if demand turns out to be small during
the first half season, he can always adjust his second order so as to
reduce the chance of excess stock at the end of the season.
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Figure 10: With large markdown for the reorder case the optimal quantity for
the first order increases slightly as uncertainty increases. Note
that the slight irregularities in the curves are due to the
discretization in the calculations.
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Figure 11: When the markdown is 50% for the reorder case the optimal
quantity for the first order also rises slightly as uncertainty
increases. Note that the slight irregularities in the curves are due
to the discretization in the calculations.

From these results we see that the trend of quantities to
purchase for the fixed order case is very sensitive to markdown: the
direction reverses as the markdown increases. But, for the reorder
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case, the trend of the optimal first purchase is relatively
insensitive to the markdown assumptions.

Impact of reordering on price a retailer is willing to pay

The analysis so far has shown that a retailer can expect higher
profits when purchasing from a supplier that allows midseason
reordering. If that is the case, then a retailer should be willing to
pay a somewhat higher price to a supplier that allows reordering.
As the price rises, the expected profits fall. A retailer would be
willing to pay a premium price to a supplier that allows reordering,
up to a price the causes expected profits to decline to the level of
profit that he would expect from a supplier that does not allow
reordering. This section evaluates the premium that a retailer
should be willing to pay for the ability to reorder. The additional
price that the retailer should be willing to pay can be estimated by
dividing the increase in profits shown in Table 2 by the expected
number of items (i.e. 50k doz). Technically, this calculation is not
exact since, at a higher price, the retailer would change his order
guantities slightly. To exactly compute the additional price that
the retailer would be willing to pay, one should recompute the
calculation of expected profits using several different values for
price until the expected profits at the higher price are equal to the
expected profits at the price charged by the supplier that does not
allow reordering (in this example, $6.00). This calculation was
made for several different sets of parameter values. It showed that
the approximate solution is accurate to within a few cents per item.
The approximate calculation was used for the rest of the analysis.

Table 3 shows the additional price for each of the cases
analyzed. The maximum increase that a retailer would pay is about
$0.41 in the case of a 100% markdown and maximum uncertainty
about the demand.
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Table 3: The additional price that a retailer should be willing to pay in order
to purchase from a supplier that allows reordering depends on the
statistics of the demand and the markdown assumptions

Standard Correlation Additional
Deviation of Between Price Retailer
Disturbance Term Period would Pay for
(fraction of mean Demands Reordering
demand) ($/item)

Markdown 100%

.03
.05
08
17
.07
10
.18
.31
.10
.14
.24
41

OO0 O0OO0O|0OO0OO0OO0O|OO0 OO
WWWWINNNNFP R PR
OO OO0 O0OO0O|OO0 OO
OB NOOM~ANO|OBDMDNO
ecNeoNoNol lcNeoNeoNol lolNolNolNo]

Markdown 50%

00
.01
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.02
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.08
.02
03
.06
.12
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Conclusions and indications for further
investigation

The original motivation for this work was the comparison of
on-shore and off-shore suppliers. Commonly, on-shore suppliers do
charge a higher first cost, but also permit reordering. To make a
decision between them, a retailer needs some way of assessing the
additional value that the ability to reorder will produce.
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These results indicate that there is a clear relationship
between the value of midseason reordering and well-defined
parameters of a retailer’'s operating environment. This study shows
that it is practical to assess the value of reordering when choosing
suppliers.

The analysis presented here is restricted to a single reorder at
midseason. It also assumes zero lead time for the order. Extensions
to the model could evaluate multiple reorders during the season. It
would be particularly valuable to determine whether or not the value
of reordering tends to increase sharply as more reorders are
allowed. It would also be important to determine the importance of
the assumption about immediate delivery. If lead times are longer,
one would expect that the value would decline since forecasts would
be less accurate. However, without further analysis it is not clear
whether the decline would be large or small. This question can be
addressed through an extension of the model presented here.
Ultimately, a tool could be developed to assist buyers in estimating
the value of reordering for their particular demand and the cost
structure of particular situation.

Throughout this analysis we have focused on the expected
value of profits. For long-term decision making in a company,
expected profits is often a good decision criterion. However, the
variance of the distribution over profits (i.e. the range of possible
profits) could also be significant for the retailer. If one alternative
has a somewhat smaller expected profit but a small probability of a
large loss, it may be preferred to another alternative that has a
larger expected value but a larger probability of a large loss. One
would expect that midseason reordering could change the variance of
the distribution on profits as well as the expected value. Further
analysis would be instructive. This could be done by restructuring
some of the parts of this analysis so as to retain the information
about the variance of the profits, or it could be done using a discrete
event simulation model.

It was also assumed in this analysis that the retailer knows
the parameters of the demand process and that he makes
statistically optimal decisions. It is important to examine the
impact of both of these assumptions. |If a retailer does not know the
underlying parameters of the demand, he must estimate them
through observations (and perhaps other modelling). As is pointed
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out earlier, reordering has value even when estimates must be made
as the season progresses since it make it possible to respond to new
estimates. The analysis of this process and its value would require
a different sort of model from that presented here. A simulation
model such as that used by Nuttle, et al would be appropriate.

If the retailer does not make statistically optimal decisions,
one would expect that the value of reordering would be smaller than
what is shown here. However, it is quite possible that under a range
of conditions simple heuristics decision rules may perform quite
well. This question could also be addressed using a simulation
model in which the decisions at each reorder point are based on a
simpler heuristic. The average profits under the simpler methods
could be compared to the expected values computed here.
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Appendix A
Stochastic Demand Model

This Appendix develops the equations of the demand model.
This model is used to compute the probability distribution over the
demands to compute the expected profits. It is also used to forecast
demands to determine the quantities to order.

Time series models

The demand in a given time period is often correlated with
demand in the previous time periods. Serial correlation
(autocorrelation) is used to describe this situation. It exists when
successive observations over time are related to each other. This
correlation can be accounted for using autoregressive models
described here.

Sets of observations taken in successive periods are usually
referred to as “time series”. The “autoregressive” (AR) model is
one model used to describe patterns of time series data (see Box
and Jenkins, or Harvey).

In an autoregressive model we denote the values of the series
at equally spaced times t, t-1, t-2, ... by x. Here x, represents the

demand at time t, x_,, the demand at time t-1, etc. Also define
Xt, Xt-1,X¢=2, ... to be the deviation from the mean demand, y; for
example, X, =x -y . Then

X =@ X TP X ot 7@y X T &

is called an autoregressive (AR(p)) process of order p. In this
equation the variable x is regressed on previous values of itself. The
variable e is the random error, where et is normally distributed

with a mean of 0 and a standard deviation of o [i.e. &~N(0,g)]. In the
autoregressive model the deviation X is expressed as a weighted
sum of p previous deviations and a random error e.
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This model has p+2 unknown parameters H @, ®,,....®,,0, which

needs to be estimated. There are a number of procedures used to
estimate the parameters of an autoregressive model from observed
data (see Box and Jenkins).

Demand forecast model

For the on-shore supplier analysis, we use an autoregressive
AR(1) model to represent future demands. In the absence of demand
data and for the purpose of illustrating the methodology, this
stochastic model seems to adequately represent demand patterns.
When sales data becomes available, more complex stochastic models
could be explored.

We define the sales at period t to be x , and the deviation

from the expected sales, u, to bek =x -u. Using an autoregressive
AR(1) model, the deviations at time t can be written as

% =@t
where ¢ is the correlation between X and X_,, and e is a random
term with mean zero and variance %.2. ¢ is assumed constant from
period to period.

In this analysis we need to use the model of demands to
forecast the distribution over future demands, given observations of
past demands. Let us assume that we observe the demand up
through period s, then we estimate the total demand for the future

periods. The mean and variance of the demand r steps ahead are (see
Box and Jenkins, or Harvey).

(1) =%s*@" + 1 (A-1)
and

var(t) = % i %Q
=1 B (A-2)

Assuming that the €s are normal, then given information up to time
s, the conditional probability distribution p(Xgq|Xs) of a future value

30



of the process will be normal with mean and variance as specified
above.

Mean and variance of total demand over several periods

At several points in the analysis it is necessary to compute
the probability distribution over the sum of the demands for several
periods, given the past observations of demands. The equations for
the expected value and variance of the sums of demands, given the
demand in period s are shown below (see Box and Jenkins, or Harvey).

The expected total demand over N periods is

N
I“lT: Z 5\((.l'-)
=1

N A
= gch’ Xs+Nep

= 8 (A-3)
where
U = the expected demand during a period,
X(1) = the expected demand in period t, from equation (A-

1),

X = the observed deviation in period s.

The variance of total demand is

ve =y V(D)
=1
% | k1 H -1 | ,
=0+ Y@Hme+2y Y ¢ oo
H k=2j=1 H i=1k=i+1 (A-4)

where o, and o, are the standard deviations of the disturbance terms
in periods i and k. Here the standard deviations are all assumed to
be equal to o,.
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Joint distribution of D1 and D2

In these analyses the joint distribution over the demands in
the first and second halves of the season is required. The forecast
for the second half is based on the observed demand in the first half.
If the demand in the second half is D2, then we need the probability
distribution over D2, given D1. This is denoted f(D2|Dl). By
expansion, the joint probability is calculated as:

f(D1, D2) = f(D2| D1)« (D) (A-5)

The structure of the demand model, however, implies that only the
last period in the first half is relevant to estimating the demand in
the second half since the demand in the fourth two-week period is
only a function of the demand in the third two week period.

Let d3 be the demand in the in the last period of the first half
of the season (this is the third two-week period of the season). The
distribution over the demand in the first and second halves is
computed as:

f(D1D2) = [f(D2|d3-f(d3 D} (A-6)
d3

This requires that we derive an expression for the demand in
the last period of the first half of the season, given the total amount
for the first half of the season. This can be derived as:

f(d3| D1 = J’N(el,ue,oe)- N[D1~ 2+ g —e;—dg@*e,0] (A-7)
€

where

N(x,u,0)= the value of the normal distribution at x with a mean
of p and a standard deviation of o.

The distribution over f(D2|d3) is directly computed from the
equations above. D2 is normally distributed with a mean given by
(A-3), and variance given by (A-4). This distribution is substituted
into (A-6) to obtain the joint distribution over D1 and D2.
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Appendix B
Equations for Computing Optimal Order
Quantities and Expected Net Present Value For
Ordering Decisions

Introduction

This model computes the statistically optimal ordering
guantity and the net present value of revenues that a retailer would
realize by ordering that quantity. The quantity ordered in the first
period is the decision variable. We can then compute the maximum
expected return under a range of parameters describing the
uncertainty in demand and the markdown at the end of the season.
This illustrates the relationship between expected return and the
parameters. The sections below describe the structure of the model.

We define the equations for calculating the expected net
present value of revenue (profits) given the quantities ordered and
for determining the optimal quantities to order. The sections below
first define the quantities to be used and the structure of the
periods. We then present the equations for computing the expected
value of profits given the order quantities for both halves of the
season are fixed. Finally, we present the procedure for determining
the optimal first quantity and the expected value for the reordering
case.

Some Basic Definitions
This section defines the notations which are referred to a
various points in the discussion below.

The structure of the periods and quantities is illustrated
below. The season is divided into six periods of two weeks each.
The demand during the ith period is di. The total demand over the
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first and second halves are D1 and D2. The amounts ordered for the
first and second halves are Q1 and Q2.

Fir st half of season, Second half of season,
total demand =D1 total demand =D2

<€ >€ >

period 1 period 2 period 3 | period 4 period5 | period 6

di d2 d3 d4 ds dé

A A

Q1 Q2

(ordered before
season start)

Time

>
It is assumed that the sales during a period are spread out

through the period.

Before starting it is useful to define a number of variables,
guantities and functions that will simplify the discussion below:

dn = the potential demand during the nth period. This is

the number of units that would be sold if there were
no stockouts.

D, = the total demand during the ith half of the season

sohj = the stock on hand at the start of the nth half of the
season.

Q = the quantity purchased in half season i (number of
units).

Pp, = purchase price per item ordered for the ith half of
the season.

Ps = sales price per item.

S = actual sales during half season i (number of units).
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a = a discount factor that discounts total revenue during
a period back to the start of the period, assuming
that the revenue is received in a uniform stream.

B = a discount factor that discounts a lump sum received

at the end of a period back to the start of the period.

It is also helpful to define several functions and other
notations that will be used in the sections below.

The quantity actually sold in half season i is a function of the
potential demand, the stock on hand at the start of the period, and
the amount ordered:

si(Di,sohi,Qi) = min(D;,soh; +Q;)
Revenues in period n are:

ae sn(Dn,sohn,Qn)- Py
Purchase costs in period i are

Qi’Ppi

Case Where Orders Are Fixed Before Season
Starts

In this case we need to determine the expected present value
of revenues as a function of the quantities ordered (Q1 and Q2) and
the demands (D1 and D2). This is computed as:

PV_Rev(QL D1,Q2,D2) = a »s,(D1,50h, Q1)+ Ps+a « B+, (D2,50h,,Q2) (B-1)

Where
soh, = 0
soh, = max(Q1-D1, 0)

The body of the report shows the remaining equations needed to
compute the expected present value of revenues.
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The midseason reorder case

Here we consider a case were there are two halves to the
season. The quantity for the first half of the season is fixed and the
second quantity is decided at midseason. We wish to determine the
amount to order in the first half which will maximize the expected
net present value over the entire season.

The strategy for computing the total expected benefits is
based on dynamic programming. Under this approach a recursive
equation is defined. For each period up to the last period we can
write an equation for the expected net revenues that is a sum of net
revenues from that period, plus the expected net revenues from the
future periods. The future period revenues are written as a function
of the decision made in the current period (the quantity purchased),
all of the previous decisions and outcomes, and the demand in the
current period. For the last period, there is no future net revenue, so
the net revenues are solely a function of what occurs in that period.
This allows us to terminate the recursion and actually compute an
answer.

The total discounted value as a function of the demand during
the first half, and the amount ordered after the first half is

Vi(DL QL) = a +59(D1, Q)+ Py~ QLe Py + B+ V2 (DL Q1) (B-2)

Here the quantity Vo(DL QL) is the future expected net revenues,
given the demand during first half, the first order quantity, and
assuming that the optimal decisions are made in the last period.

The expected value at the start of the first period, as a
function of the quantity ordered is

V1(Q1) = [V4(PLQY)- (DY
D1 (B-3)

Where

f(D1) = the probability distribution over the demand in the
first half of the season

By substituting (B-2) into (B-3) this can be expanded to:
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V1(Q1) =

I[a *5,(DL QL) P, - QLe Pp, +B+ V, (D1 Q)| f(D1)
P1 (B-4)
To evaluate this, we need to evaluate the term Vg(DlQl).This is

fairly straightforward if we start from the basic definition of the
value from decision during the second half:

V,(D1,Q1D2,Q2) = a *s,(D2,s0h,,Q2)* B, - Q2+ P,

(B-5)
but soh2 can be written as a function of the D1 and Q1:
soh, (D1, Q1) = max(Q1- D1,0) (B-6)
Thus, the value V, can be written as a function D1,Q1,D2,Q2:
V,(D1QLD2,Q2) =a -SZ[DZ,sth(Dl Q), Qz] P, - Q2+ Pp, (B-7)
The expected value is:
V2(D1QLQ2) =
J’[a +s,[s0h,(D1.Q1),D2,Q2]+ P, ~ Q2+ Pp,| - f(D2| DY)
D2 (B-8)
We can now find the maximum value by taking the max over Q2:
V., (soh,,, D1, Q1) = max{V , (soh.,, D1, Q1 Q2
2( 2 ) QZ[ 2( 2 )] (B-9)

This completely defines the calculations needed to compute the
expected value as a function of the quantity purchased in the first
half of the season. Substituting equation (B-9) into equation (B-2)
allows us to calculate V;(D1,Q1). The expected value from both

halves of the season, as a function of the quantity purchased at the
start of the season is just:

Vi(Q1) = [vi(D1.Qu)- f(D1) (B-10)
D1

We can then find the value of Q1 that gives the maximum value. The
maximum expected value, given the stock on hand is

e mQ%X[Vl(Ql)] (B-11)
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This gives the expected value of the optimal policy. The value of Q1
that maximizes the expression is the optimal amount to order for
the start of the season.
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