
w SLAC-PUB—5579 

/> DE91 0 1 4 5 5 8 

D I F F E R E N T I A L L U M I N O S I T Y U N D E R B E A M S T R A H L U N G * 
Pisin C h e n 

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 USA 
Abstract 

For the next generation of e + e~ linear colliders in the 
TeV range, the energy loss due to beamstrahlung during the 
collision of the e + e~ beams is expected to be substantial. 
One consequence is that the center-of-mass energy between 
the colliding particles can be largely degraded from the de­
signed value. The knowledge on the differential luminosity 
as a function of the center-of-mass energy is essential for 
particle physics analysis on the interesting events. In this 
paper we derive an analytic formula for such a differential 
luminosity, which agrees very well with computer simula­
tions. A major characteristic of this formula is discussed. 

I. INTRODUCTION 
It is known that beamstrahlung, i.e., the synchrotron 

radiation from the colliding e + e~ beams, will carry away a 
sbustantial fraction of beam particle energy in future linear 
colliders. This, for one thing, will result in a degradation 
of the center-of-mass energy of the colliding beams. From 
high energy physics point of view, it is important to know 
the luminosity as a function of the spreaded center-of-mass, 
so as to analyze the data attained from the collider. 

When the average cumber of beamstrahlung photons 
radiated per beam particle is much less than unity, the en­
ergy spectrum for the final e + or e~ beams is simply the 
well-known Sokolov-Ternov spectrum [1] for the radiated 
photons with the fractional photon energy, y(= £ 7 / £ 0 ) , 
replaced by the corresponding final electron (or positron) 
energy, * = 1 — y. When the condition is such that the 
average number of photons radiated is not much less than 
unity, the effect of suceesive radiations becomes impor­
tant. Previously, the multi-photon beamstrahlung process 
has been studied by Blankenbeder and Orell [2], and inde­
pendently by Yokoya and Chen [3]. In this paper, we shall 
adopt the formulation developed in Ref. 3 as the basis for 
our derivation of the differential luminosity. In section 2, 
we will review the electron spectrum under multi-photon 
beamstrahlung. Section 3 will be devoted to the derivation 
of the differential luminosity. The characteristic feature of 
our formula is discussed and comparison to computer sim­
ulation is presented in the last section. 

II. ELECTRON ENEERGY SPECTRUM 
Let il>{x,t) be the energy spectral function of the 

electron for energy x = E/Eo at time t normalized 
asf if>(x,t)dx = 1. We assume that the emmision of the 
photon takes place in an infinitesimally short time inter­
val. Then the evolution of the spectral function can be 
described by the rate equation 

where the first term corresponds to the sink, and the sec­
ond term the source, for the evolution of V>(z,t). Here c(x) 
a the average number of photons radiated per unit time 
uid F is the spectral function of radiation, i.e., F(x, x')dx' 
a the transition probability of an electron from energy z' 
to the energy interval (r, r+dx) per unit time. Obviously, 
F(x, x') = 0 if x > i'. Notice, however, that F does not 
include the probability for electrons to remain at the same 
energy without photon emmision. 

The spectral function of radiation can be characterized 
by the beamstrahlung parameter T, defined as 
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-t- = -i,{x)il>{x,t) +J F{x,x'Mx',t)dx' , (1) 
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where B is the effective field strength of the beam, and 
Be = m?<?/eh ~ 4.4 x 10 1 3 Gauss is the Schwinger critical 
field. For historical reasons, this parameter is related to 
the parameter { introduced by Sokolov and Ternov,' by a 
simple factor 

, _ w. _ 3r e 7* 
t ~ E~2 op ~ 2 K (3) 

where r e is the classical electron radius, a the fine structure 
constant, u>c the critical frequency of radiation, and p the 
instantaneous radius of curvature, which is proportional 
to f. Thus the introduced parameter K is independent of 
energy. Since the two parameters are trivially related, one 
may employ either of them depending on the convenience 
of the situation. 

The transition probability F derived by Sokolov and 
Temov is 

F(x,x«) = ^ / « , , ) (4) 

i 

where n = K[(1/I ' ) - (1/x)], fi'J,s are the modified Bessel 
d Kd is the number of photons per unit time functions and cci 

calculated by the classical theory of radiation 

„ e , = , / „ = 0 = —m— 
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Note that for a given field strength vci is independent of 
the particle energy. In general, however, 

!/(«) = j F(x,x')dx'= vdUB(0 (6) 

The function fo (0 is normalizedsuch that Uo(0) = 1, and 
can be represented by the following approximate expres­
sion: 
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1/oK) = 
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1 + 0.922f3 (7) 
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To look for a compact analytic solution for $ in Eq.(l), meet. Then the first z-slice in beam # 1 will alwaj, en-
the exact Sokolov-Ternov spectral function in Eq.(4) is counter a "fresh" beam #2: 
somewhat cumbersome. In the classical regime of radia­
tion, i.e., £ <C 1, one can instead invoke an approximate J/Vnl 1 I 
expression to replace /({.r/) in Eq.(4): ——<x - I dttl>(z\,t)il>(x2,0) , (14) 

o 

J(IJ) = i i ^ 2 e~' 1 (8) where I is the total length of each bunch. A slice at z in 
W"' beam # 1 , however, will see a beam # 2 which has evolved 

for a time t = z/2: 
With this approximation, Eq.(l) can be solved by proper 
Laplace transformations. The details can be found from dCt-) 2 '^ 
Ref. 3. The solution is —^- « y / dii>(xut)t!>(x2,;/2) . (15) 

o 

*( i , ( ) = r " d [«(1 - 1 ) + j ^ ' ( l " 3 f c ) ] , (9) Adding all .--slices in beam #1 together, we have 

1/2 
where A'ei =i/ e | i is the average number of photons radiated Con— f dtil>(xut) I dMx?,zlT) 
up to timer, and ' 2 J J 

•> u " 

l«!r(n/3) ' 

(16) 1/2 //2 

1 *T ,i, , ^ «n =± [dWxut) [dzxKx2,z) . 

X-ito n = 1 W ' 
(10) Note that the above two integrals are functionally identi-

with A > 0 and 0 < u < oo. The first term in Eq.(9) rep- cal. Inserting the spectral function in Eq.(9), we find, for 
resents the electron population that suffers no radiation. £ "£ 1, 
The n"1 term in the Taylor expansion of the second term 
corresponds to the process of n-photon emissions. „ '(.2 

For finite values of £, the rate equation cannot be ${x) = y / dtip{x,t} 
solved exactly since i/(z) is not constant in time any more. o (IT) 
However, in the intermediate regime where £ £, 0(10), v(x) j r e - i (*) i 
should not deviate from i/ci too significantly. This suggests = JV7l^ — ' " 'W - r ) + i — x ^ ^ j " 
a solution based upon minor perturbation from the above 
classical result. It is found'1 that The function ff(ij) in the second term is 

«*,*) = . -^( l - .H^ifV'^fo)) ] ( 1 1 )

 ff('7) = I5^r(n73J7 (" + 1 ' J V c ' (18) 

for the intermediate regime, where where 7 ( „ + 1, JVj,) h the incomplete gamma function^ 
The center-of-mass energy squraed is s = 11X2. The 

differential luminosity as a function of s is therefore 

1 1 

C(s) = C / /dj;,(ii 2«(*-* 1x 2)tti(x 1)<ji(t 2) . (19) 
• 0 

It is straight forward to show that 

N, = U0(()Nti , (12) 

*-irei*" + iV' • ( 1 3 ) 

III. CENTER-OF-MASS LUMINOSITY C(s) = - L { [l - e-"AV - s) + 2[l - e " M — f f ( n ) 

To find the differential luminosity £(5) as a function of 1 ,-.,<•, 
tne center ot-mass energy squared,^, one needs to convo- + / dx ff(Q(>))y(>K'/x)) r 
lute the energy spectrum of one beam, $(xi,t), with the J ' *" — *'*' 
other, i>{xi,t). Let t = 0 when the e + e~ bunches first (20) 
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Figure 1. Two-dimensional histogram of the luminosity as 
a function of Xi and u . 

It can be shown that the last term is much smaller than 
unity, and is negligible. Thus 

£ ( S ) " 4*{ [l-«-JVd]V-*)+2[l-e-"°'] £j»(l>}. 
(21) 

For the intermediate regime, the spectral function of 
Eq.(9) should be replaced by Eq.(ll). The derivation is 
essentially the same, and we find 

£ ( S ) = ̂ {^-""^'^-J+^^^'lSM' 
(22) 

where 

• JV \ « rf'3 

(23) 

IV. DISCUSSIONS 
To confirm our theoretical formulas, we perform com­

puter simulations using the code ABEL [4]. The param­
eters of a linear collider with a center-of-maas energy 1/2 
TeV designed by Palmer [5] (the Machine G in Table 1) 
was used. The parameter^ = 0.45 in this example, and 
the bunch length is / = i/2ii<r, s 0.28 mm. A two diman-
sional plot of £ as a function of x\ and 12 is shown in Fig. 
1. We see that the most striking character of the luminos­
ity speetrum is that, aside from the sharp delta function 
at the nominal machine energy, other contribution to the 
luminosity comes essentially from the matching between a 
full energy particle and a beamstrahlung degraded parti­
cle. This is evidenced by the "walls" on the edges of the 
2-D plot, which corresponds to the second term in Eq.(22). 
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