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Abstract

For the next generation of e¥e™ linear collidets in the
TeV range, the energy loss due to beamstrahlung during the
collision of the ete~ beams is expected to be substantial.
One consequence is that the center-of-mass energy between
the colliding particles can be largely degraded from the de-
signed value, The knowledge on the differential luminosity
as a function of the center-of-mass energy is easential for
particle physics analysis on the interesting events. In this
paper we derive an analytic formula for such a differential
luminosity, which agrees very well with computer simula-
tions. A major characteristic of this formula is discussed.

1. INTRODUCTION

It is known that beamstrahlung, i.e., the synchrotron
radiation from the colliding e*e~ beams, will carty away 2
sbustantial fraction of beam particle energy in future linear
colliders. This, for one thing, will result in a degradation
of the center-of-mass energy of the colliding beams. From
high energy physics point of view, it is important to know
the luminosity as a function of the spreaded center-of-rnass,
50 as o analyze the data attained from the collider.

When the sverage number of beamstrahlung photons
radiated per beam particle is much less than unity, the en-
ergy spectrum for the final e* or e~ beams is simply the
weil-known Sokolov-Ternov apectrum [1] for the radiated
photons with the fractional photon energy, y(= E.,/Fy),
replaced by the corresponding final electron (or positron)
energy, r = 1 — y. When the condition is such that the
average number of photons radiated is not much less than
unity, the effect of succesive radiations becomes impor-
tant. Previously, the multi-photon beamstrahlung process
has been studied by Blankenbecler and Drell [2], and inde-
pendently by Yokoya and Chen [3]. In this paper, we shall
adopt the formulation developed in Ref. 3 as the basis for
our derivation of the differential luminesity. In section 2,
we will review the electron spectrum under multi-photon
beamstrahlung. Section 3 will be devoted to the derivation
of the differential luminosity. The characteristic feature of
our formula is discussed and comparison to computer sim-
ulation is presented in the last section.

II. ELECTRON ENEERGY SPECTRUM

Let ¥(z,t) be the energy spectral function of the
electron for energy z = ﬁEu at time t normalized
asf ¢(z,t)dz = 1. We assume that the emmision of the
photon takes place in an infinitesimally short time inter-
val. Then the evolution of the spectral function can be
described by the rate equation

%%:-u(z)w(z.:n / Flz,2)(' 0)d' ., (1)
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where the first term corresponds to the zink, and the sec-
ond term the source, for the evolution of y(z,t). Here v(z)
‘s the average number of photons radiated per unit time
ad F is the spectral function of radiation, i.e., F(z,z')dz’
s the transition probability of an electron from energy z’
to the energy interval (z, z+dx) per unit time. Obviously,
F(z,2') =0 if £ > z'. Notice, however, tkat F does not
include the probability for electrons to remain at the same
energy without photon emmision.

The spectral function of radiation can be characterized
by the beamstrahlung parameter T, defined as

B
T=7 B 2)
where B is the effective field strengtk of the beam, and
B, = m*c®feh ~ 4.4 x 10 Gauss is the Sehwinger critical
field. For hisiorical reasons, this parameter is related to
the parameter £ introduced by Sokolov and Ternov,’ by a
simple factor

@

where r, is the classical electron radius, a the fine structure
constant, w, the critical frequency of radiation, and p the
instantaneous radius of curvature, which is proportional
to 7. Thus the introduced parameter K is independent of
energy. Since the two parameters are trivially related, one
may employ either of them depending on the convenience
of the situation.

The transition probability F derived by Sokolov and
Ternov is
Vel
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where n = 5(1 /2') = (1/2)], Rs are the modified Bessel
functions and ¥ is the number of photons per unit time
calculated by the classical theory of radiation,
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Note that for a given field strength v, is independent of
the particle energy. In general, however,

ve) = j F(2,2)dz’ = valio(€) ©)
0

The function Up(€) is normalizedsuch that Uy(0) = 1, and
can be represented by the following approximate expres-
sion:

1 — 0.598¢ + 1.061¢5/2

Uel€) = T+ 0.922¢2 '

(7)

where the relative error is within 0.7% for any €.
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To look for a compact analytic solution for ¢ in Eq.(1),
the exact Sokolov-Ternov spectral function in Eq.(4) is
somewhat cumbersome. In the classical regime of radia-
tion, i.e., £ € 1, one can instead invoke an approximate
expression to replace f(£,n) in Eq.(4):

~2/3 ,-n

1
a(n) = m’l € (8)

With this approximation, Eq.(1) can be solved by proper
Laplace transformations. The details can be found from
Ref. 3. The solution is

e = e 51 - 2) + ok PN L @)

where N,; = vyt is the average number of photons radiated
up to timet, and

Adioa = "
h(u) = 2—:;; / exp(up-lls +p)dp= Z ﬁ“(‘:‘lm ,
A=ico n=1

(10}
with A > 0 and 0 € u € 00. The first term in Eq.(9) rep-
resents the electron population that suffers no radiation.
The n** term in the Taylor expansion of the second term
corresponds to the process of n-photon emissions.

For finite values of £, the rate equation cannot be
solved exactly since »(z) is not constant in time any more.
However, in the intermediate regime where § £ 0(10), ¥(z)
should not deviate from v, too significantly. This suggests
a solution based upon minor perturbation from the above
classical result. It is found ™ that

W)= e [5(1 - 2)+ Sk PR an
for the intermediate regime, where

Ny = Uo(6)Nar (12)

F= gt Tog ™ (13)

III. CENTER-OF-MASS LUMINOSITY

To find the differential luminosity £(5) as a function of
the center-of- mass energy squared,s, one needs to convo-
lute the energy spectrum of one beam, t{(z,,t), with the
other, ¢(z3,t). Let t = 0 when the e*e~ bunches first

meet. Then the fitst z-slice in beam #1 will always en-
counter a “fresh” beam #2:

2
dﬁ(z") %/dw(zx.i)!b(:!‘o) . (14)
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where [ is the total length of each bunch. A slice at z in
beam #1, however, will see a beam #2 which has evolved
for a time t = z/2:

12
@ = %/dlw(:l,!)d)(zg,:/?) (15)
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Adding all z-slices in beam #1 together, we have
12
Lox— /dtgb(:;,t)/ 2p(2a,2/2)
:/° 1/2 (16)
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Note that the above two integrals are functionally identi-
cal. Inserting the spectral function in Eq.(9), we find, for
§<1,
2
2
#)=7 [
o

(17)
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The function g(n) in the second terin is
o r’ﬂ/3
y(ﬂ)='§m‘7(ﬂ+ 1,Ng) (18)

where y(n + 1, N,q) is the incomplete gamma function.
The center-of-mass energy squraed is s = z;z5. The
differential luminosity as a function of s is therefore

11
L(s)=LCL / / dzdzr8(5 — 2122)6(21)d(z2) 19)
s 0

It is straight forward to show that
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Figure 1. Two-dimensional histogram of the luminosity as
a function of 2; and za.

It can be shown that the last term is much smaller than
unity, and is negligible. Thus
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For the intermediate regime, the spectral function of

Eq.(9) should be replaced by Eq.(11). The derivation is
essentially the same, and we find

L(s)= Ni’,{ [1-e] s - a2 [1-e] £ g0m).

1-—
(22)
where
L WV \n /3
=3 () miargre+ L) - @)
n=)

IV. DISCUSSIONS

To confirm our theoretical formulas, we perform com-
puter simulations using the code ABEL [4]. The param-
eters of a linear collider with a center-of-mass energy 1/2
TeV designed by Palmer [5] (the Machine G in Table 1)
was used. The parameter £ = 0.45 in this example, and
the bunch length is | = 20, = 0.28 mm. A two diman-
sional plot of £ as a function of z1 and z; is shown in Fig.
1. We see that the most striking character of the luminos-
ity spectrum is that, aside from the sharp delta function
at the nominal machine energy, other contribution to the
luminosity comes essentially from the matching between a
full energy particle and a beamstrahlung degraded parti-
cle. This is evidenced by the “walls” on the edges of the
2-D plot, which corresponds to the second term in Eq.(22).
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