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ABSTRACT 

+ Work to measure the 2: 0 degree differential cross section in the 
- + -reaction K p + 2: n at several incide,nt K~ momenta between 600 and 800 MeV/c 

as well as the asymmetries in the decays of polarized E+'s into protons and 

neutral pions and of polarized 2: 's into neutrons and negative pions in 

collaboration with experimenters from Yale, Brookhaven, and the University 

of Pittsburgh (Brookhaven experiment 702) has been completed. Data from 

this experiment is currently being analyzed at Yale. 

Work is currently underway to develop and construct an experiment to 

search for neutrinoless double beta decay in thin foils of Mo100 in 

collaboration with experimenters from Lawrence Berkeley Laboratory. 

Development work on the solid state silicon detectors should be complete 

in the next six months and construction should be well underway within the 

next yea.r·. 
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For the last several years, ~ have been involved in a collaborative 

experiment (Brookhaven AGS experiment 702) with experimenters from Yale~ 

Brookhaven, and Pittsburgh in an attempt to measure the asymmetry parameter 

a in the rare, radiative decay of polarized r+•s into protons and gammas. 

Because of inadequate kaon fluxes on the polarized target and the relatively 

large pion contamination in the beam in spite of several improvements to 

the LESB II beamline initiated by the Yale members of the collaboration, 

the scope of the experiment was changed to measure: 

1. TheE+ 0 degree differential cross section in the reaction 

K-p + E+n- at several incident K- incident momenta between 600 

and 800 MeV/c, 

2. The sign of the asymmetry parameter a in the decay of polarized 

E+'s into protons and neutral pions, and 

3. The asymmetry parameter a in the decay of polarized~ •s into 

neutrons and negative pions. 

The final data run on this experiment was scheduled for January 1983 

and actually took place during February and March. Because of a previous 

commitment to work full time on the development of a neutrinoless double 

beta decay experiment at the Lawrence Berkeley Laboratory, I was present at 

Brookhaven only during the February running. Although the AGS ran very 

poorly during this time due to H- injection problems, and the experi~ent was 

shorthanded her.i'lu~e Mike Zeller was immooilizeq in New Haven with back 

problems, Yale graduate student Rick Morrison and I made a number of 

modifications to the system electroriics which resulted in a greater system 

reliability and stability during data taki.ng. Cooling problems w-ith the 

superconducting, polarized target magnet force~ us to spend most of the 

- + -February running time collecting data on the K p + r n differential cross 
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section rather than on the E decay asymmetry parameters. 

Finar data analysis on the February-March 1983 data, as well as the 

earlier May-June 1982 data is currently being carried out at Yale. A 

description of the superconducting magnet controller, designed and built 

at Mount Holyoke and used during the last two data runs, will be submitted 

for publication during the coming year. (It was not submitted last fall 

because of the opportunity to test it further in the 1983 runs.) 

The majority of my research effort since August, 1982 has been on the 

design and development of a segmented, solid state detector array to look 

for neutrinoless double beta decay in Mo100 (See Appendix A). In August 

1982, when I spent two weeks at the Lawrence Berkeley Laboratory (LBL), I 

wrote a Monte Carlo program which follows the path of electrons in various 

materials under consideration for use in the detector array. This program 

was subsequently extensively modified and improved by Joe Krivicich, a 

Berkeley graduate student at LBL and Mark Peterson, a new faculty member 

at Mount Holyoke (Appendix B), and a variety of possible experimental con-

figurations were studied in detail by Joe and another Berkeley graduate 

student at LBL, Brian Dougherty. 

Our initial design, consisting of a large number of 3mm thick 

germanium detector sandwiches with 20 micron Mo100 foil between detector 

pairs, was found in 1 ate January to give unacceptably broad energy 

resolution for the two electrons emitted in neutrinoless double beta decay. 

After much computer simulation of other possible designs,·we finally 

settled in late March on a design consisting of stacks of 1.5 mm thick 

double sided silicon wafer detectors with about 7 ~icron thick disks of 

Mo100 foil between detector pairs (See Appendix A, p. 9). This design 

was selected for the following reasons: 
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1. Silicon has a lower cross section for gamma intefactions than 

does germanium b~cause of its lower atomic number Z. Consequently, 

it will have less gamma induced background. 

2. Silicon has a lower probability for backscattering an incident 

electron than does germanium and hence electrons from Mo100 would be 

less likely to lose energy in the source material and broaden the 

energy resolution. 

3. High purity silicon detectors can be fabricated using an oxide 

passivated, diffused or ion-implanted junction process which produces 

rugged, stable detectors with thin (~ l micron) dead layers on each 

side. Thus, either side of these detector~ can be used next to the 

Mo100 foil, and only half as much silicon is required for the entire 

array. 

4. Large quantities of high purity silicon are just becoming available 

from Komatsu (Japan) and Hughes Aircraft. Three inch high purity 

wafers in reasonable quantities are currently available from Wacker 

(Germany). 

5. Lawrence Berkeley Laboratory has considerable expertise, in the 

person of Jack Walton and his associates, in the fabrication of high 

purity silicon detectors using the oxide passivation process. 

I have resided in Berkeley and have been working at LBL on all aspects 

of the detector .development work from March through August. In addition, 

Matthew Deady was at LBL from early June through the middle of July, working 

primarily on background studies by means of computer simulations and. actual 

counting of materia 1 s at the LBL 1 ow l eve 1 counting facility. During that 

time we and our collaborators have accomplished the following things: 
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i . We have done extensiv~ computer ~imulations of the.detector design 

on both real events and backgrounds. 

ii. We have obtained approval from LBL to fabricate 10 grams of Mo100 

into a 7 micron thick foil at Oak Ridge to evaluate the fabrication process 

for·possible radioactive contamination of the Mo100 • (The Mo100 has already 

been extensively tested for radioactive contamination by Al Smith at the LBL 

low level counting facility.) The actual fabrication process will be ob­

served at Oak Ridge by Matthew Deady to insure that no obvious sources of 

contamination are introduced. 

iii. We have purchased from Amptek, Inc. 3 A225 hybrid chips each of 

which provides all of the low noise electronics necessary for a single 

silicon detector in the array, and have studied the performance of these 

chips on electronically generated pulses and on actual detectors. These 

chips perform satisfactorily relative to our requirements in their present 

form, but Amptek has also indicated a willi,ngness to optimize the chips 

further for our particular application. We have also looked at TPC 

electronics and some low noise chips manufactured by LeCroy, but the Amptek 

chip appears at present to be best suited for our particular requirements. 

iv. We have done extensive testing of the properties of several small 

silicon detectors obtained from Jack Walton. In particular, we have studied 

detector resolution, noise, reverse current, and breakdown voltage as a 

function of temperature from ..,150 to 25°C in a test cryostat of our ovm 

design. These tests have indicated that the demands of our large detector 

array can be easily met by detectors of poor quality by operating the array 

at reduced temperatures. 

v. We have begun testi~g the properties of detectors fabricated from 

40 mm diameter wafers of high purity Komatsu silicon. We have ordered 

75-80 mm wafers of h.igh purity Wacker silicon and expect shortly to begin 
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experimenting with it. 

vi. We have developed an experimental facility to measure the density 

of surface states in oxide passivated silicon to evaluate the fabrication 

process on large area, high purity silicon detectors. 

Because large quantities of high purity silicon is just becoming 

available, some development work in the fabrication of large area, high 

purity silicon detectors will be required. Nevertheless, very good detectors 

have already been made with high purity silicon using the oxide passivated, 

diffused junction and/or ion-implanted process, and Jack Walton foresees no 

fundamental problems with this technology. 
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The search for neutrinoless double beta decay which has been going on for more 

than 30 years has acquired new interest with the advent of grand unified models favoring 

the abandonment of baryon and lepton number conservation and of massless neutrinos. 

Neutrinoless double beta decay is a sensitive indicator of the nature of the neutrino. We 

do not know whether the electron neutrino carries a lepton number (and is a "Dirac" 

particle) or if it is its own antiparticle (a "Majorana" neutrino). If the electron neutrino 

is a Majorana particle, and there is some current speculation among theorists that this is 

more natural than the Dirac alternative\ then a search for neutrinoless double beta 

decay is perhaps the most sensitive way to look for neutrino mass and right-handed 

currents. Right-handed currentS, suppressed by the heavy mass of a right-handed 

intermediate vector bosori, would make nature right-left symmetric at very high 

energies. 

There are two possible modes of double beta decay for a nucleus with 2 protons and 

(A-2) neutrons: 

1) (2,A) -- (2 + Z, A) + Ze- + Z anti-neutrinos 

Z) (2,A) -- (2 + Z, A) + Ze -. 

These transitions occur primarily between nuclear ground states with spin zero and 

positive parity (0+) and for which single beta decay (b.2 = +1) of the parent nucleus is 

energetically forbidden. Geochemical evidence for double beta decay of 130Te, 128Te, 

and 82se has existed for some time2• Recently, the observation of the two neutrino 
8Z 3 decay of Se has been reported However, this new experiment gives a half-life of 

10(19·0 ± O.Z) which is Z8 times smaller than that found by geochemical measurement, 

10 (Z0.4 Z ± 0•14). Recent theoretical calculations4 agree with the newer result. A 

geochemical measurement5 of the ratio of the half-lives of 128Te and UUTe was 

interpreted
2
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as favoring the existence of both decay modes 1 and z. However, a more 

recent measurement of this ratio 7 disagrees with the first by more than a factor of six 

and is compatible with the estimate for two-neutrino double beta decay alone. 

Particularly important is whether reaction (Z) occurs. Present experimental .limits 

on the rate are in fact the best test of lepton conservation. Here neutrinoless double 

beta decay is only possible if the virtual anti-neutrino from the first electron emission is 

reabsorbed as a neutrino to permit the emission of the second electron (Fig. 1). This can 

occur only if the neutrino is its own antiparticle, namely a Majorana neutrino. In 

addition, reaction (Z) requires neutrino spin-flip; this is possible only if the neutrino has a 

right-handed helicity component and/or the neutrino has non-zero mass. 
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One can prove the existence of neutrinoless double beta decay by observing a 

narrow peak in the sum of the energies of the two emitted electrons corresponding to the 

transition energy. The. more copious two neutrino decay gives a broad spectrum below 

the narrow peak (Fig. 2). 

The question of whether there are right-handed currents or whether the neutrino is 

massive can be resolved by studying the angular distribution of the neutrinoless double 

beta decay. For massive neutrinos the angular distribution is proportional to 1 - cos9, 

while for right-handed currents it is proportional to 1 + cosH, where 9 is the angle 

between the electrons. We can also look for transitions to the first excited state of the 

daughter nucleus (JP : o+ - 2+). These transitions can only be induced by right-handed 

currents. 

The experiment we propose is designed to look for the neutrinoless double beta 

decay (reaction 2) of 100Mo and 130Te, but in principle we could also observe the less 

interesting two neutrino mode (reaction 1) with reduced sensitivity. If the neutrinoless 

decay mode existS, our detector can easily be modified· to observe the angular 

distribution of the two electrons, i.e~, whether they are preferentially emitted in the 

same or opposite directions. 

The detector will be an array of elements containing approximately 1. 7 mole of 

highly enriched double beta decay source material 100Mo. An array of repeating 

elements, shown in Figure· 3, consists of alternating layers of thin (6.60) source foils 

between thin (- l.Smm) silicon solid state detectors of ?: 3in diameter. About 330 

elements are required to view one mole of 100Mo. An important feature of this system 

is its segmentation, a geometry that can be exploited to reduce backgrouna from cosmic 

rays and natural radioactivity. Each small area detector element will be observed 

continuously and local groups will be monitored for signals in the desired energy range. 

To redu~e the complexity of the electroniCs," groups of elements will be multiplexed 

together. Low activity shielding will surround the counter array and an outer shield will 

further define radiation entering from external sources. 
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We have also considered germanium and compressed and liquid gas as the detector 

material. The relaxed cooling requirements of silicon vs. germanium and the possibility 

of fabricating thin d·ead layers on both sides of the silicon detector, making it double 

sided and reducing the amount of silicon required by a factor of 5 compared with Ge, 

makes high purity silicon a more attractive choice for detector material than 

germanium. The R&D required for a compressed or liquid gas ionization chamber makes 

it an unattractive competitor to the more straightforward silicon detector technology. 

We have chosen molybdenum and tellurium for the source material because 

substantial quantities are available from Oak Ridge in a highly enriched form. They also 

have relatively large transition energies, which is important for two reasons. First, 

making the assumption that nuclear matrix elements for double beta decay emitters are 

the same, phase space considerations yield decay rates which are proportional to 

approximately the fifth power of the energy release. Thus, 100Mo (E = 3.033 MeV) and 

130Te (E = 2.533 MeV) are expected to decay approximately seven and three times faster 

than 76Ge (E = 2.045 MeV), a source used in previous and current experiments8 ' 9 '
1° For 

a lifetime of 1021 years, corresponding to a neutrino mass of 10ev or a WR mass of 

20Tev, one mole of source material would yield one neutrinoless decay per day. Second, 

naturally occurring backgrounds fall very rapidly with increasing energy. Figure 2 shows 

the measured background in the Mt. Blanc tunnel8 along with surface mea~urements 
extending to higher energies11 • A reasonable extrapolation of the Mt. Blanc tunnel 

measurements to the energy of 100Mo would suggest a background falling with increasing 

energy approximately as E-6• Inspection of the Table of Isotopes substantiates this rapid 

de.l.:rease beyond 2 MeV; there is a diminishing number of gamma lines with virtually 

nothing above 3 MeV except for some very weak (branching fractions approximately 10-4 ) 

lines from Rae (214Bi). Thus by using 100Mo we anticipate a decrease in background by 

at least a factor of 10 compared to 76Ge. 

Further important suppression of background relative to a conventional 76Ge 

detector can be realized due to the segmentation of our device. Only signals from the 

thin silicon crystals on opposite sides of the sample need be added to measure the total 

energy release. In this way we are dealing with many small individual volumes and not 

the summed background from the entire detector. Thus detection of pairs of gammas 

from cascading radioactive decays adding to 3 MeV is greatly reduced. 

In summary, there are a number of advantages to our experimental approach. 

1. Source materials can be chosen on the basis of their energy release and 

availability in highly enriched t::amplec. 
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2. The source can be removed altogether to study backgrounds. 

3. Source thickness can be varied to optimize event rate versus energy . 

resolution. 

4. The detector can be easily modified to measure the angular distribution of 

the electrons. 

5. A measurement of the angular distribution of the electrons can be made. 

6. Solid state detector materials are very pure, reducing natural backgrounds 

in the detector array, and very stable, making it possible to operate the 

detector, attended only intermittently in remote locations, such as a mine, 

where cosmic backgrounds can be reduced to very low levels. 

7. Little R&D is required since we are using established technology. 

8. Segmentation allows the start of the experiment and testing of the concept 

in a realistic situation with a modest investment. 

9. There is a potentially much lower background, thereby compensating for the 

loss in energy resolution coining from the thickness of the source. 

10. Low background and source-in/source-out measurements should allow us to 

measure the two neutrino decay spectrum of reaction 1. 

Details of the experimental design are still being optimized, particularly with 

respect to rate and energy resolution. Fred Goulding, head of the Instruments 

Techniques Division of LBL, and Richard Pehl, who is in charge of advanced detector 

applications, both experts on solid state detectors, have assured us that aside from the 

normal engineering fabrication problems in building a large detector array, no 

technological breakthroughs ·are required to build what would be, as far as we know, a 

unique device. The expertise in solid state detector technology which exists at LBL 

makes it a particularly desirable site at which to develop a detector array of this type 

and size. 

The ultimate sensitivity we hope to reach with a full array of detectors costing 

between $300K and $500K is a half-life of the order of 1023 years, a sensitivity to 

neutrino mass and to right-handed currents which is comparable to that given by a 

Germanium half-life of 1024 years. There is no compelling experimental reason to think 

that we will not observe lifetimes much shorter than this, perhaps as short as 1021 

years. For this lifetime we would see one event per day. 
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Figure Captions 

Figure 1 Second-order neutrinoless double beta decay. 

Figure 2 The electron energy-sum spectrum from double beta decay. The neutrinoless 

mode is indicated by the vertical line at E = the nuclear transition 
0 

energy. The broad spectru·m, extending up to E ·, is from the two 
0 

neutrino decay mode. 

Figure 3 Drawings of two detector elements. 

Figure 4 Measured continuum background in the Mt. Blanc tunnel8 in 365 gm of Ge and 

higher energy surface measurements11 in 20 gm of CaF2• 

.. 
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Figure 1 Second-order neutrinoless double beta decay. 
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The electron energy-sum spectrum from double beta decay. The 

neutrinoless mode is indicated by the vertical line at E
0 

= the nuclear 

trandtion enP.rgy. The broad s-pectTum, extend1ng up to E , is from the 
0 

two neutrino decay mode. 
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ABSTRACT 

The theory of the random walk on a sphere 

is derived by elementary methods ~~d by specializing 

the general theory of random walks on G-spaces. 

The result is applied to find the ~~gular 

distribution in multiple elas~ic scattering after 

N steps. The case of electron scattering from 

a screened Coulomb potential is done in detail. 

Formulae which are exact in principle and 

asymptotic in practice are found, giving the 

distribution with many-place accuracy at all 

angles for ?'i -~ 20. 1.1ethods for generating a 

randon1 variable with this distribution are 

a.lso given. 
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Rutherford's famous analysis of o(-particle 

scattering in gold foils distinguished two angular regimes: 

a forvvard regime with a Gaussian distribution, dominated 

by m~~y small-angle scatters, and a large angle regime, 

dominated by single scattering. This approach to the 

~~gular distribution in multiple scattering of ~harged 

particles is ·widely used even at the present day. It is 

described in textbooks_('-) It is difficult to avoid the 

impression that it is essentially correct. 

Despite its intuitive plausibility, it is fair to 

ask how accurate this representation really is. Has it 

beenthcrroughly checked in physically interesting cases'Z 

The ansuer seems to be no. That check, for a realistic 

differential c~oss-section, considered at all angles, 

is made in this.paper for the first time. Previous 

partial results, showing that the model of Fig. (1) is 

in fact not qu~~titatively accurate, are confirmed, and 

the comparison is extended to the entire angular ra~ge. 

(1) 
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The method employed ·is not entirely new. 
(3). 

It was given in 1940 by Goudsmit and Saunderson (GS), 

who were, however, unable to evaluate certain coefficients in 

their formulae (the A9.' s of. Eq. ( 7 ) ) . Their results are 

rederived here in a more physical and transparent manner 

in Section 2, and the calculation is completed in Section 3. 

The result is that the usual model (Fig. ~) is significantly 

in error (see Fig. 2): a naive application of the central 

limit theorem to the forward distribution is typically 

about 40/~ low in the forward direction and may be high 

by a factor of 2 at somewhat larger angles where one might 

expect it stil"l to apply. In addition, multiple scattering 

corrections to the single scattering distribution are 

typically significant even at the largest angles. 

Curiously enough, the GS paper, which contains 

exact results of beautiful simplicity, has been ignored 

in favor of approaches vvhich make small angle approximations. 

If one makes too drastic approximations one finds that the 

forward distribution is given by the central limit theorem. 
(I~) 

This is unequivocally wrong. In the late 1940's, more 

careful use of the smHll a.'1gle approximation began to reveal 
(:_}),tl") 

the true shape of the forv1ard distribution ;A but the 

results v1ere initially often described as if they approached 
. (~(7) 

the naive Gaucsian, even when they clearly did not. > 

By 196 3 it was appreciated that the forvvard distribution 

t~) . th . h. h is non-Gaussia..'1., but the small-angle eor1es w 1c 

revealed this fact are complicated a'1.d approximate~ a'1.d 
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have never fully displaced the model of Fig. 1 in actual use. 

By contrast, the methods of this paper are so simple 

that exact angular distributions in multiple scattering 

can be routinely generated for use in accurate model ing 
'-../ 

of physical processes in detectors, biological materials, 

etc. Until now there has been no recognized good way to 

do this. The persistence of Rutherford's original model 

(Fig. 1), despite its (more or less knovm) shortcomings, 

was perhaps due to the absence of a simple, clear 

alternative free of dubious approximations. 

In Section 4 the method of Section 2 is related to 

the more general problem of a random walk on a group. 

The difficulty of extending this method from the angular 

distribution to the spatiaL distribution of particles 

undergoing multiple scattering is pointed out. 

Section 5 contains practical sugeestions for 

modelling the exact distribution. 
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Q. Random Walk on the Sphere 

Consider the distribution of a particle on the sphere 

which makes. random jumps. It is assumed that the law 

governing the jumps is isotropic, homogeneous, and Markovian, 

i.e., that there are no preferred directions or positions, 

and that each jump is independent of the others. (In 

applying this idea to multiple scattering, the direction 

of travel of a particle or ·wave will be assumed to make 

such a random walk. The distribution of this random 

direction will be found.) 

Take coordinates (~, ~) on the sphere in the usual 

way, fixed once and for all, and use unit vectors p, q, 

etc., as a shorthand for locations (~ , ~), (~, ~ ), p p q q 

etc. At each step o±' the random walk one must use the 

conditional probability density w1(p, q) that a particle 

at q moves in· ·the next step to p. Clearly \'/ 1 is positive 

with s \'/ 1 ( p • q) d\) = 1 • ( 1) 

Since it is assumed that the law which governs the single 

step depends only on the relative direction of p with 

respect to q, and not on any third direction, or. e.. ho..s 

( 2) 
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The Markovian assumption that each step is independent" of 

the preceding one implies 

( 3) 

where \'il:-r(p,q) .is the conditional probability density that 

a particle initially at q arrives at p after exactly N steps. 

The problem posed is to find a simple expression for 

\'/N(p,q) given w1(p,q). Expand w1(p,q) in Legendre polynomials 

and thence in spherical harmonics: 

where 

DO 

W1(p~q) = f(p·q) = L 
1=0 

1=0 m=-1 

1 

'J.. 1 ~ 2'0 ~ f(z) P1 (z) dz 

-1 

Then by induction in Eq. (3), 
,N 

;\1 ylm(p) y~m(q) 

( 4) 

( 5) 

(6) 

Equation (6) is the solution. In particular, taking q=z 

(v1hich only amounts to choosing the coordinate system in · 

the most convenient way), one has 

(7) 
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In interpreting Eq. (7) it is useful to realize that, 

according to Eq. (5), the coefficient 1\
1 

is 

(g) 

i.e., just the average value of the Legendre polynomial P
1 

with respect to the distribution ,, 
II 1 o In particular 

and 

if 1 ~ 1 

(except in uninteresting degenera~e cases). Thus in the 

limit- as N ..,..-") <>O , only the 1=0 term survives in Eq. (7), 

and one has 

lim WN(p,q) = 
t-1 ,...:..) oJ 

1 

4T\ 

-
the unifonn distribution on the sphere, as intuition would 

suggest. 

If w1 is sharply peaked forward, approximating a 

~ -function, A 1 ~ .1 for a large number of terms. Finding 

these ,\ 1 ' s accurately is the main computational difficulty 

in applying this method, but it is not particularly imposing~ 

Scattering from a Thomas-Fermi atom, a problem considered 

by many previous investigators, yields to a simple trick 

(see Section 3). A cross-section parametrized by partial 

waves would also yield \ 1 ' s in an obvious vray. 

~··~ -· • • --···-· .;. __ ..,....:.o~:_-.., .. '.--.•··.-.-,-..,..---.-·· --·-··-..~ ~ ~·· •-····•··-'"'·'-"'-· ' ' o.t...(.O_.o,.._-.~~ 
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3. Multiple Scattering from Thomas-Fermi Atoms 

To apply the ideas of Section 2 to multiple scattering, 

note that 

i.e., w1 is just the differential cross-section normalized 

to be a probability distribution. In particular, consider 

potential scattering of a Dirac electron from a screened 

Coulomb potential 

ze2 -r/a V(r) = - - e r 

. (9) 
The result, in Born approximation, is the Matt cross-section 

-
modified by screening 

~ (:x+A) (' 
; I i /. 

and A =(~~~) vvhere x=sin 2 G/2 

the latter quantity corresponding to the screening length 

a = z-1/3 

(J6\ 
suggested by Thomas-Fermi theory ' (here o( is the fine 

structure constant, ~ and '6 are the relativistic 

parameters of the electron, and Z is the at·omic number of 

the target nucleus). 
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The average value of the Legendre function P1 , 

called ~ ~ in Eq. ( 7 ) , can be found by a generating 

function technique. The generating function for the 

average .. Legendre functions is just the average of their 

generating function,by linearity: 

Define quantities kn{A) and sn{A) by . 
I 60 
I" 

~ 

J [ ( 1-h) 2 + 4xh]-1/2 ( x+A) - 1 dx = Lhn kn 
(\gj 

n=u 
0 

(1:) 

j [1 + 4xh J-1/2 (x+A)- 1 dx Lhn sn F(h) 
( 1-h) 2 = = 

<.J 

It is easy to see that 
:.n 
~ 

kn = L sm 
m=O 

so that it is enough to 

factor of the integrand 

theorem and integrate. 

; L(-1~2) F(h) n z 
n=O 

where z (h) = 4h/ ( 1-h) 2 • 

i\=0 

find the sn. Exp~~d the first 

in Eq. ( \ ~ ) by the binomial 

011e has 

n-1 
( -A)m 

[(-A)n log(1+1/A) +I-: J n-m 
m=O 

('~) 

( ,. t \ 
./_ ) 
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Now collect like powers of A: 

F(h) ; Z ( -A)m [ \1~2 ) zm log( 1+1/A) + Fm(h) ] (b<l 
m::O 

where 

and [ 

~ 

m 1. z 1m 
t-?0 

~ [(1 +~)-1/2 ]m 3-m-1 d§ 

J means the first m terms of the Maclaurin m 

expa..'Ylsion are subtracted off. 

It is now straightforward, though tedious, to find 

F(h) as a power series in h (and hence to find sn) 

through a..'Yly finite power of A in the expansion of Eq. ( '13 ) • 

The result for sn through terms involving A3 is 

where 

sn = an log(1+1/A) + bn +en Alog(~+1/A) +~A 

+en A 2log(~+1/A) + fnA 2 + ~ A3log(1+1/A) 

+ h A3 + ()'(n 7A 4log A) 
n 

(25')-

bn = l-2/n j 6 n 1 

c = 2n ~ 

(:;.~) 

n n1 

~ =- [ 2.(n-1) + 4n (1/2 + 1/3 + ••• + 1/n) J Gn 2 

en = (n+ 1 )n(n-1) G n 2 

fn =- [ 4n(n-1)(n-2)/3- (n-1)(n-2)(n-3)/6 

+2(n+1}n(n-1) ( 1/4 + 1/5 + ••• + 1/(n+1)) J G n3 

en = ~(n+2) (n+ 1 )n(n-1) (n-2)/61 e n3 
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hn = -[1 (n+1)n(n-1)(n-2)(n-3) 1 n(n-1)(n-2)(n-3)(n-4) 
20 

1 . 
+1~ (n-1)(n-2)(n-3)(n-4)(n-5) 

+ ± (n+2)(n+1)n(n-1) (n-2) ( 
1 . 1 + 1 )] B b+ 7 ••• + n+2 

( - J 1 if n=m 
a run - t 0 if njm 

={~ 
if n 2. m 

e if n< m nm 

A similar expression for ~ n follows from Eqs. ( 2.o ) and ( 11 ) • 

Using this expression for An in Eq. ( 1 ) gives a formula 

for WN which for many purposes is essentially exact, a 

remark we now justify. 

The series obtained for ~n from Eqs. ( '13 ) , ( I~ ) , \2a) 

and ( '2.\) converges (in fact it is exact after 2n+1 terms). 

l;Iore important for practical purposes, only the first 

few terms, typically just those given in Eq. ( ~S), are 

necessary in applications, by the following argument. 

The terms in Eq. ( 2_5') · decre~se rapidly if n .:~-~ A- 112 , 

so that one may expect Eq. ( 2.5"') to be accurate up to some 

n which depends on A. max An estimate of n is given max 

by looking at the next term in the expansion for sn in 

Eq. ( J.S" ) , namely 

sn = ..• + jn A4 log(1+1/A) 

vihere J n - ( n + 3 ) ( n + 2) ( n + 1 ) n ( n-1 ) ( 11-2) ( n-]) /7 2 

n4 



.. 

() 

C> .. \ . 
• ·:"! .... 

I' .1 

Requiring this term to be less than, say, .001 gives 

n .!. [ .072 A - 4/log( 1+ 1/A) ] 1/7 max 

Now takeN, the number of steps, to 

contribution of the term containing 

be so large that the 
.N . 
A is negligible, 

nmax 

even at G- = '1\ , where the cancellation of terms is 

especially delicate. Using the estimate VvN('--;1 ) = NW
1

( il ) 

and asking for 3-figure accuracy there, one finds 

N) log(. 41TW1 "X10-3 \jlog( ~n ) ·. 
2n + 1 ) max 

max· 

(1j) 

So long as N satisfies this inequality (\Vhich is quite 

insensitive to the detailed assumptions in its derivation), 

V/N is accurate at all angles. In fact, the inequality turns 

out to be 

N > 20 

showing little explicit dependence. on electron energy 

up to 3 Mev, which covers the range of roost natural · {3 

emitters. 0 f course, for higher energy r1 1 is sharper 

(A is smaller) so that more terms in Eq. ( 7 ) are needed 

to represent \'In. But just because A is smaller, the 

expansion of Eq. ( ~5"") does provide those terms. (\'1 20 

for a 3 T.1ev electron in germanium requires nearly 500 terms. 

For l~rger N, far fewer are needed.) 
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The procedure outlined above could be extended to 

N < 20 by going farther in the expansion of Eq. ( 25 ) • 

For example, with the next term (Eq. ( <J..7)) included, 

w15 appears to be accurate. 

The above discussion does not give rigorous estimates 

of error, but experience has shovm it to be an accurate rule 

of thumb. The formula for \'/.,T is asymptotic in N. The 
. l~ 

error in YIN appears to be -0 ( ~ N) where E 20~ .0 2W 
1 
(7) ~L.. 1. 

A.j;ypical result for WN is shown in Fig. 2, with the 

Gaussian distribution of the central limit theorem 

and the single scattering tail N\'1 1 for comparison. The 

results of work using small angle approximations is confirmed 

in the forward direction, and comparisons at large angles 

are possible for the first time. Multiple scattering 

corrections to the single scattering distribution are 

quite noticeable. 

In summary, Eq. (7) with A
1 

giv-en by Eqs. ('2.0), 

( ). 1 ) , and ( ·)_':)) is an explicit so~ution to the multiple 

scattering problem for N ~ 20 vii th many-place accuracy at 

all a.:1.gles. 
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4. Random Walks on Groups 

One gets a deeper insight into the formulae of 

Section 2 by considering them in a ~ore general setting~-_ 
lll) 

that of a random walk on a group. In particular one 

sees that the reason the. forward distribution in multiple 

scattering is non-Gaussian is that it arises as a random 

walk in a non-Euclidean space, whereas the central limit 

theorem is associated in an essential way vdth ra~dom 

walks in Euclide~~ spaces and more particularly with ~he 

Euclidean translation group. 

A random walk on a group G can be identified with 

a random sequence of group operations in which G operates 

on itself by left multiplication. The group ·operations 

have a linear representation f on the space 3r of real 
(13) 

valued functions on the group in the usual way 

f (g) f(h) = f(hg- 1) 

In what follovvs, the notation will imply that G is a finite 

group; but nothing is changed if G is a compact Lie group 

a.'1d summation over G is interpreted as integration with 
ll 3) 

respect to Haar measure. 

Let p
1 

be a probability measure on G such that p 1(g) 

is the probability of a translation in a single step 

by the action of g on G. (VIe assume that the ra~dom walk 

can be characterized in this way, i.e., that the probability 
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of the step h --~gh is independent of h.) Similarly, 

let ~~(g) be the probability that inN steps one has 

translated by the action of g. Then 

~ 1 
= L P 1 ( gh- ) 11·J -1 C h) 

(3'2.) 

ht:G 

( (2.) 

Define an operator, .. on functions using the representation l · 
--:---\ 

= L P1(g) f (g) 

gi:G 

Then it is easy to prove by induction that 

(34) 

J ~l ~ For suppose (vV[p 1 ) = \ Jl-J(h) f (h). Then 

ht-G 

( w [ P 1 J) N + 1 = T: L P ·J ( g) ( ( g) Pn (h) f (h) 

g& G ht-G 

_ ___.., .:.::;-'' 
= L ~ P1(g)pr1<h) ( (gh) 

e~ G h ~ G 

= :>- . . > ~ p 1 ( j h -1 ) ~~ (h) ! (j ) 

jt_G hl:G 

~ 

= !__; 11·r + 1 < j ) f (. j ) = ,, [ J 
li Pr-1+1 

j ~ G 

W[p
1

] is essentially the stochastic matrix for the random walk. 
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c An important simplification occurs if p
1
(g) is a 

class function, i.e., if 

Vhf G 

In this case, \'l[p 1] can be written as 

W[p1]=)~p(k)L f (h) 

[k1 h.f ck 

where k E Ck is any representative from the class Ck of G. 

The operator 

is a scalar multiple of 

· def -\ 
<<f>>k = L r (gkg-1) 

. gf G 

However, 

<<t>>k r (P.) = L f (gkg-1) r (h) 
gt: G 

= 2 ~ .. r < gkg-1h) 

g& G 

= L ( (hjkj-1) 

j ~ G 
·-·\ 

= L r (h) r < jkj -1) 
j E G 

= f (h)<.<.,>> k 
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Thus, by Schur's lemma, <<p>>k is. just a multiple of the 

identity operator I on each irreducible representation 

contained in f If we take as a basis in j:" a basis 

for the irreducible representations contained in f 
then W[p 1] is diagonal, so that raising it to the Nth 

power (i.e., computing the effect of a random walk of 

N steps) is trivial. 

A space r.1 on which G acts transitively 

, 

can be identified with G/H, where H is the isotropy group 
(if) 

of a point of M. II H is a symmetry of p1' the random 
h ' 

walk analysis on G passes to the quotient M. Thus the 

random walk on the sphere can be regarded as arising 

from .a random walk on S0(3) with p 1 a class function. 

It passes to the quotient S0(3)/S0(2), which is just the 

2-sphere. Eq. ( ~ ) displays W 1 in diagonal form, as it was 

guar~~teed to be, because the spherical harmonics are 

. a basis for the irreducible representations of SO{ 3) on 

2 S • (The'spherical harmonics themselves arise by the 

quotient procedure: they are just the symmetric top 

v1a.ve functions which are invariant under the action of the 

50(2) in the q~otient~) 

lt is disappointing that the same observation cannot 

be used to solve the multiple scattering problem in its 

e~tirety, i.e., to find the spatial distribution of particles 

together with their angular distribution. This amounts 

to solving the random walk on the affine group 0 f translations 
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and rotations in 3-space. Curiously enough, the probability 

measure that corresponds to physical scattering process~s 

is not a class function on this group. Thus the stochastic 

matrix W 1 cannot be diagonalized using group theory alone: 

the correct basis furictions depend on the details of p 1 

and cannot be found once.and for all; as in the simpler 

angular problem. 



c 

( ·~ 
. -

l 

\~ 

5. Modelling with \'IN 

In modelling multiple scattering one wishes to 

generate a random variable~ with the distribution WN. 

This is not immediately easy, even though WN is a known 
liS\llL.) 

function. 

Call f a ranidly-generable (RG) function on a domain 

D if it is a probability distribution, i.e. f=:: 0 on D, 

= 1 

and if there is a rapid procedure for generating a random 

variable with distribution f. (This· definition is ·flexible: 

what" it means depends on context, but it seems to be a 

useful notion.) 

To be concrete, let D be the interval [0,1]. 

Then by most standards the uniform distribution f=1 

is RG. Also, if for any probability distribution f we 

define 
def Jx · 

g ( X) = f ( X t ) dx' :) 

0 
. 1 

then the random variable X=g- (y), where y is uniformly 

distributed on [0,1], has distribution f. Thus f is RG 

if g-·J is rapidly computable. 

{42) 

If f 1, ••• ,fn are RG, and nonnegative numbers a 1 , ••• ,an 

satisfy a 1+ ••• +an = 1, then f = a 1f 1+ ••• +anfn is RG, that is, 

appropriate lifa~ar combinations of. }:{LJ functions are RG. 
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In this language, the problem is to approximate WN 

by an RG function. In general, it is not clear that a 

solution exists at all, since,the RG functions may not· 

be dense in the space of the WN' s in the appropriate norm. 

The following observations constitute a rough-and-ready 

solution to the problem of finding an RG approximation 

to WI{ QP the sphere. This is not a solution in the sense 

of giving an RG sequence {fn\ which converges to WN. 

Rather we find functions which are within a few perc·emt 

at all angles. 

Define a family of functions 

-4~x e (43) 

For any o<. , F is a probability distribution in x on [O, 1] 

with respect to the measure 4TI dx, and it is RG. (We are 

really thinking of x=sin2G/2 and F as a distribution on 

the sphere. The form is chosen so that F looks as nearly 

as poll1fuible like a Gaussian in G- with vlidth eX_ - 1.) 

It turns out that linear combinations of such functions 

can approximate WN well in the forward direction. 

For large angles (x~ ~~ sin2G-rm
5

) the form 

B+CX ( ) G{A,B,C,xT,·x) = 2 6 x-x...n , 
(A+x) .. T 

{44) 

suggc::;tcd by. the single-scattering distribution, works well. 
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In order that the two forms. join well at ~, it is 

advantageous to define "folded F's" on [O,~]: 

.... 
F(cX. ,~ ;x) = [F( ot ;x) + ( 1-~) F( oc ,x• )/xT] 6~~-x') 

~he.r-e. x' (><.) = \ - x ( x.-:;. - \). . 
F is RG because it corresponds to the following procedure: 

{I I 
1) generate a variable) with distribution F, 2) if)~~ 

I . I 

set~=~ , 3) if §>~·,set~= ~(1-_5)/(1-~). 

S is a random variable with distribution F. 
The function G(A,B,C,~;x) is RG because if y is 

uniformly distributed on [0,1], the iterative procedure 

where 

xo = ~ 

xn = §1 '+ (A+Xn-1) (A+"T)C ~og(A+xn-1) I 3 2 

A+~ 

_3 2 = y(A+~) -(B-kC) 

~ 1 = ((AG-B)~ - yA(A+~)] /j 2 

converges to a random variable x whose distribution is G • 
. 

It is straightforward to find positive constants 

a 1 , a 2, ••• , an+ 1, and ot1 , ••• , <X'n such that a 1+ ••• +an+,= 1 and 

(4'i-) 

It does not seem to be possible to use the came 

form for all parameter values, however. Modelling electrons 

in germanium, with 100 f: N S 200 required the rather inelegant 

choices of Table 1 at various energies. 

A typical YIN' with its RG approximant (nearly indistin-

guishable from it) is shovm in Fig. 3. 
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In summary, _the observations of this section facilitate 

fast, accurate modelling of angular ·distributions in multiple 

scattering. 
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Electron energy Distribution 

E ~ 0.52 Mev uniform 

0.52 < E s 0.6 Mev F( o£ ) 
.... 

0.6 <. E ~ 0.9 Mev aF ( tx: ) + ( 1-a) G 
.... .... 

0.9 <. E ~ 4.5 Mev a1F( cX-1) + a2F( 0( 2) + a 3G 

Table 1. Form of the RG distribution approximating WN in 

germanium for 100 ~ N ~ 200. The functional 

forms F, F, and G are defined in the text. 
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FIGURE CAPTIONS 

Fig. 1. The Rutherford model for the angular distribution 

in multiple scattering, showing two angular regimes, 

with a GaussiaYJ. distribution forward and single 

scattering backward. The crossover region, where 

some kind of interpolation appears to be called for, 

is sometimes called "plural scattering." 

Fig. 2. Comparison of the Rutherford model with. the 

exact angular distribution, found as described 

in the text, for a 1.9 Mev electron in germanium 

after 150 scatter·s. There is a significant 

discrepancy, of the order of 10%-50%, at almost 

all angles. 

Fig. 3. The exact distribution of Fig. 2 is well approximated 

by the form given in Table 1 with parameters 

a
1
;;;0.57?, a 2=0.393; a 3-0.03~, !X'1'"'18.1, ot. 2=40.0, 

A=-0.0190, B:::0.00381, C=-0.00349, xT=0.00586. 
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