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ABSTRACT

Work to measure the Zf 0 degree differential cross section in the
reaction K'p » £'n at several incident K~ momenta between 600 and 800 MeV/c
as well as the asymmetries in the decays of polarized Z+'s into protons and
neutral pions and of polarized £ 's into neutrons and negative pions in
collaboration with experimenters from Yale, Brookhaven, and the Univeksity
of Pittsburgh (Brookhaven experiment 702) has been completed. Data from
this experiment is currently being analyzed at Yale. |

Work is currently underway to develop and construct an experiment to
search for neutrinoless double beta decay in.thin foils of Mo]00 in
collaboration with experimenters from Léwrence Berkeley Laboratory.
Development work on the solid state si]iéon detectors should be complete

in the next six months and construction should be well underway within the

next yedr.



For the last several years, I have been involved in a collaborative
experiment (Brookhaven AGS experiment 702) with experimenters from Yale,
Brookhaven, and Pittsburgh in an attempt to measure the asymmetry parameter
a in the rare, rédiative decay of polarized Zf's into protons and gammas.
Because of inadequate kaon fluxes on theapo1arized target and the relatively
large pion contamination in the beam in spite of several improvements to
the LESB II beamline initiated by the Yale members of the collaboration,

the scope of the experiment was changed to measure:

1. Thez 0 degree differential cross section in the reaction
Kp~ st at several incident K incident momenta between 600
and 800 MeV/c,

2. The sign of the asymmetry parameter a in the decay‘of polarized
stis into protons and neutral pions, and -

3. The asymmetry parameter a 1h the decay of polarized 2"5 into

neutrons and negative pions.

The final data.run on this experiment was scheduled for January 1983
and actually took place during February and March. Because of a previous
commitment to work full time on the development of a neutrinoless double
beta decay experiment at the Lawrence Berkeley Laboratory, I was present at
Brookhaven only during the February running. Although the AGS ran'very
poorly during this time due to H™ injection problems, and the experiment was
shorthanded because Mike Zeller was immobilized in New Haven with back
problems, Ya]g'graduate student Rick Morrison and I made a number of
modificatiéns to the system electronics which resulted in a greater system
reliability and stability during data taking. Cooling problems with the
superconducting, polarized target magnet forced us to spend most of the

February running time collecting data on the K'p -+ sTn” differential cross
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section rather than on the I decay asymmetry parameters.

Final data analysis on the February-March 1983 data, as well as the
earlier-May-dJune 1982 data is currently being carried ouf at Yale. A
description of the superconducting magnet controller, designed and built
at Mount Holyoke and used during the last two data runs, will be submitted
for publication during the coming year. (It was not submitted last fall

because of the opportunity to test it further in the 1983 runs.)

The majority of my research effort since August, 1982 has been on the
design and development of a segmented, solid state detector array to look
for neutrinoless double befa decay in Mo]00 (See Appendix A). In August
1982, when I spent two weeks at the Lawrence Berkeley Laboratory (LBL), I
wrote a Monte Carlo program which follows the path of electrons in various
materials under consideration for use in the detector array. This program
was subsequently extensively modified and improved by Joe Krivicich, a
Berkeley graduate student at LBL and Mark Peterson, a new faculty member
at Mount Holyoke (Appendix B), and a variety of possible experimental con- ;
figurations were s£udied in detail by Joe and aﬁother Berkeley graduate

student at LBL, Brian Dougherty.

Our initial design, consfsting of a large number of 3mm thick
germanium detector sandwiches with 20 micron M0100 foil between detector
pairs, was found in late January to give unacceptably broad energy
resolution for the two electrons emitted in neutrinoless double beta decay.
After much computer simulation of other possible desjgns,'we finally
settled in late March on a design consisting of stacks of 1.5 mm thick
double sided silicon wafer detectors with about 7 micron thick disks of
Mo]00 foil between detector pairs (See Appendix A, p. 9). This design

was selected for the following reasons:
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1. Silicon has a lower cross section for'gamma‘interactions than
does germanium because of its lower atomic number Z. Consequently,
it.will have less gamma induced background.

2. Silicon has a lower probability for backscattering an fncident

100 outd be

electron than does germanium and hence electrons from Mo
less 1ikely to lose energy in the source material and broaden the
energy resolution.

3. High purity silicon detectors can be fabricated using an oxide
passivated, diffused or ion-implanted junction process which produces
rugged, stable detectors with thin (g 1 micron) dead layers on each
side. Thus, either side of these detectors can be used next to the

Mo100

foil, and only half as much silicon is required for the entire
array.'

4. Large quantitiés of high purity silicon are just becoming available
from Komatsu (Japan) and Hughes Aircraft. Three inch high purity
wafers in reasonable quantifies are currently available from Wacker
(Germany).

5. Lawrence Berkeley Laboratory has considerable expertise, in the

person of Jack Walton and his associates, in the fabrication of high

purity silicon detectors using the oxide passivation process.

I have resided in Berkeley and have been working at LBL on all aspects
of the detectbr,deve1opment work from March through August. In addition,
Matthew Deady was at LBL from early June through thg middle of July, working
primarily on background studies by means of computer simu]ation§ and. actual
counting of materials at the LBL Tow level counting facility. During that

time we and our collaborators have accomplished the fullowing things:
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1. We have done extensive computer simulations of the. detector design
on both real events and backgrounds.
ii. We have obtained approval from LBL to fabricate 10 grams of Mo]OO
into a 7 micron thick foil at Oak Ridge to evaluate the fabrication process

]00. (The Mo]00

for possible radioactive contamination of the Mo has already
been extensively tested for radibactive contamination by Al Smith at the LBL
Tow level counting facility.) The actual fabrication process will be ob-
served at Oak Ridge by Matthew ﬁeady té insufe that no obvious sources of
contamination are introduced.

iii. We have purchased from Amptek, Inc. 3 A225 hybrid chips each of
which provides all of the Tow noise'e1ectronics necessary for a single
silicon detector in the array, and have studied the performance of these
chips on electronically generated pulses and on actual detectors. These
chips perform satisfactorily relative to our requirements in their present
form, but Amptek has also indicated a willingness to optimize the chips
further for our particular application. We have also looked at TPC
~electronics and some low noise chips manufactured by LeCroy, but the Amptek
chip appears at present to be best suited for our particular requirements.

iv. We have done extensive testing of the properties of several small
silicon detectors obtained from Jack Walton. In particular, we have studied
detector resolution, noise, reverse current, and breakdown voltage as a
function of temperature from -150 to 25°C in a tgst cryostat of our own
design. These tests have indicated tha£ the demands of our large detector
array can bg easily met by detectors of poor quality by operating the array
at reduced tempgratures.

V. wg havg begun testing the properties of detectors fabricated from
40 mm diameter wafers of high purity Komatsu silicon. We have ordered

75-80 mm wafers of high purity,wacker silicon and expect shortly to begin



experimenting with it.
vi. We have developed an experimental facility to measure the density
of surface states in oxide passivated silicon to evaluate the fabrication

process on large area, high purity silicon detectors.

. Because large quantities of high purity silicon is just becomjng
'éva11ab1e, some development work jn the fabrication of large area, high
purity silicon detectors will be required. Nevertheless, very good detectors
have already been made with high purity silicon using the oxide passivated,
diffused junction and/or ion-imp]anted process, and Jack Walton foresees no

fundamental problems with this technology.
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The search for neutrinoless double beta decay which has been going on for more
than 30 years has acquired new interest with the advent of grand unified models favoring
the abandonment of baryon and lepton number conservation and of massless neutrinos.
Neutrinoless double beta decay is a sensitive indicator of the nature of the neutrino. We
do not know whether the electron neutrino carries a lepton number (and is a "Dirac"
particle) or if it is its own antiparticle (a "Majorana" neutrino). If the electron neutrino
is a Majorana particle, and there is some current speculation among theorists that this is

more natural than the Dirac alternative1

, then a search for neutrinoless double beta
decay is perhaps the most sensitive way to look for neutrino mass and right-handed
currents. Right-handed currents, suppressed by the heavy mass of a right-handed
intermediate vector boson, would make nature right-left symmetric at very high

energies. .

There are two possible modes of double beta decay for a nucleus with Z protons and
(A-Z) neutrons:

1) (Z,A) -—— (Z +2, A) + 2¢” + 2 anti-neutrinos

2) (2,A)-— (Z+2,A)+2e.

These transitions occm" primarily between nuclear ground states with spin zero and
positive parity (0+) and for which single beta decay (AZ = +1) of the parent nucleus is
energetically forbidden. Geochemical evidence for double beta decay of 130Te, 12’8Té,
and 82Se has existed for some timez. Recently, the observation of the two neutrino
decay of l82$e has been reported3. However, this new experiment gives a half-life of
10(19'0 1 0.2) which is 28 times smaller than that found by geochemical measurement,

10 (20.42 % 0'14). Recent theoretical calculations4 agree with the newer result. A
geochemical measurement5 of the ratio of the half-lives of inge and 130Te was
interpretedz’6 as favoring the existence of both decay modes 1 and 2. However, a more
recent measurement of this ratio7 disagrees with the first by more than a factor of six

and is compatible with the estimate for two-neutrino double beta decay alone.

Particularly important is whether reaction (2) occurs. Present experimental limits
on the rate are in fact the best test of lepton conservation. Here neutrinoless double
beta decay is only possible if the virtual anti-neutrino from the first electron emission is
reabsorbed as a neutrino to permit the emission of the second electron (Fig. 1). This can
occur only if the neutrino is its own antiparticle, namely a Majorana neutrino. In
addition, reaction (2) requires neutriné spin-flip; this is possible only if the neutrino has a

- tlght-handed helicity component and/or the neutrino has non-zero mass.



One can prove the existence of neutrinoless double beta decay by observing a
narrow peak in the sum of the energies of the two emitted electrons corresponding to the
transition energy. The more copious two neutrino decay gives a broad spectrum below

the narrow peak (Fig. 2).

The question of whether there are right-handed currents or whether the neutrino is
massive can be resolved by studying the angular distribution of the neutrinoless double
beta decay. For massive neutrinos the angular distribution is proportional to 1 - cos®©,
while for right-handed currents it is proportional to 1 + cos®, where © is the angle
between the electrons. We can also look for transitions to the first excited state of the
dauéhter nucleas (JP : 0% — 2%). These transitions can only be induced by right-handed

currents.

The experiment we propose is desi'gned to look for the neutrinoless double beta
decay (reaction 2) of 100Mo and 130Te, but in principle we could also observe the less
interesting two neutrino mode (reaction 1) with reduced sensitivity. If thé neutrinoless
decay mode exists, our detector can easily be modified to observe the angular
distribution of the two electrons, i.e., whether they are preferentially emitted in the

same or opposite directions.

The detector will be an array of elements containing approximately 1.7 mole of

10006,  An array of repeating

highly enriched double beta decay source material
elements, shown in Figure 3, consists of alternating layers of thin (6.6 u) source foils
between thin (~ 1.5mm) silicon solid state detectors of 2 3in diameter. About 330
elements are i-equired to view one mole of 1OOMo. An important feature of this system
is its segmentation, a geometry that can be exploited to reduce backgroun'ci from cosmic
rays and natural radioactivity. Each small area detector element will be observed
continuously and local groups will be monitored for signals in the desired energy range.
To reduce the complexity of the electronics, groups of elements will be multiplexed

together. Low activity shielding will surround the counter array and an outer shield will

further define radiation entering from external sources.



We have also considered germanium and compressed and liquid gas as the detector
material. The relaxed cooling requirements of silicon vs. germanium and the possibility
of fabricating thin dead layers on both sides of the silicon detector, making it double
sided and reducing the amount of silicon required by a factor of 5 compared with Ge,
makes high purity silicon a more attractive choice for detector material than
germanium. The R&D required for a compressed or liquid gas ionization chamber makes
it an unattractive competitor to the more straightforward silicon detector technology.

We have chosen molybdenum and tellurium for the source material because
substantial quantities are available from Oak Ridge in a highly enriched form. They also
have relatively large transition energies, which is important for two reasons. First,
making the assumption that nuclear matrix elements for double beta decay emitters are

the sameé, phase space considerations yield decay rates which are proportional to

approximately the fifth power of the energy release. Thus, 10041, (E = 3.033 MeV) and

130Te (E = 2.533 MeV) are expected to decay approximately seven and three times faster

than 0Ge (E = 2.045 MeV), a source used in previous and current experiment58’9’10 For

a lifetime of 102!

years, corresponding to a neutrino mass of 10ev or a Wp mass of
20Tev, one mole of source material would yield one neutrinoless decay per day. Second,
naturally occurring backgrounds fall very rapidly with increasing energy. Figure 2 shows
the measured background in the Mt. Blanc tunnel® along with surface meaéurements
extending to higher energiesll. A reasonable extrapolation of the Mt. Blanc tunnel
measurements to the energy of IOOAMO would suggest a background falling with increasing
energy approximately as E_6. Inspection of the Table of Isotopes substantiates this rapid
decrease beyond 2 MeV; there is a diminishing number of gamma lines withivittually

nothing above 3 MeV except for some very weak (branching fractions approximately 1074

214

lines from RaC (®" “Bi). Thus by using 100016 we anticipate a decrease in background by

at least a factor of 10 compared to 76Ge.

76

Further important suppression of background relative to a conventional Ge
detector can be realized due to the segmentation of our device. Only signals from the
thin silicon crystals on opposite sides of the sample need be added to measure the total
energy release. In this way we are dealing with many small individual volumes and not
the summed background from the entire detector. Thus detection of pairs of gammas

from cascading radioactive decays adding to 3 MeV is greatly reduced.

In summary, there are a number of advantages to our experimental approach.
1. Source materials can be chosen on the basis of their energy release and

availability in highly cnriched samples.



2. The source can be removed altogether to study backgrounds.

. 3. Source thickness can be varied to optimize event rate versus energy
resolution.

4. The detector can be easily modified to measure the angular distribution of
the electrons.

5. A measurement of the angular distribution of the electrons can be made.

6. Solid state detector materials are very puré, reducing natural backgrounds
in the detector array, and very stable, making it possible to operate the
detector, attended only intermittently in remote locations, such as a mine,
where cosmic backgrounds can be reduced to very low levels.

7. Little R&D is required since we are using established technology.

8. Segmentation allows the start of the experiment and testing of the concept
in a realistic situation with a modest investment.

9. There is a potentially much lower background, thereby compensating for the
loss in energy resolution coming from the thickness of the source.

10. Low background and source-in/source-out measurements should allow us to
measure the two neutrino decay spectrum of reaction 1. _

Details of the experimental design are still being optimized, particularly with
respect to rate and energy resolution. Fred Goulding, head of the Instruments
Techniques Division of LBL, and Richard Pehl, who is in charge of advanced detector
applicatiohs, both experts on solid state detectors, have assured us that aside from the
normal engineering fabrication problems in building a large detector érray, no
technological breakthroughs ‘are required to build what would be, as far as we know, a
unique device. The expertise in $olid state detector technology which exists at LBL
makes it a particularly desirable site at which to develop a detector array of this type

and size.

The ultimate sensitivity we hope to reach with a full array of detectors costing
between $300K and $500K is a half-life of the order of 1023 years, a sensitivity to
neutrino mass and to right-handed currents which is comparable to that given by a
Germanium half-life of 1024 years. There is no compelling experimental reason to think
that we will not observe lifetimes much shorter than this, perhaps as short as 1021

years. For this lifetime we would see one event per day.
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Figure 1
Figure 2

Figure 3
Figure 4

Figure Captions

Second-order neutrinoless double beta decay.

The electron energy-sum spectrum from double beta decay. The neutrinoless
mode is indicated by the vertical line at Eo = the nuclear transition
energy. The broad spectrum, extending up to Eo', is from the two
neutrino decay mode.

Drawings of two detector elements.

Measured continuum background in the Mt. Blanc tunnel8 in 365 gm of Ge and

higher energy surface measurements! ] in 20 gm of CaF,-.



Figure 1 Second-order neutrinoless double beta decay.



Figure 2 The electron encrgy-sum spectrum from double beta decay. The
neutrinoless mode is indicated by the vertical line at E = the nuclear

transition energy. The broad spectrum, extending up to '_Eo, is from the

two neutrino decay mode.
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ABSTRACT

The theory of the random walk on a sphere
is derived by elementary methods and by specializing
the general theory of random walks on G-spaces.
The result is applied t@ find the angular
distribution in multiple elasgic scattering afﬁgr
N steps. The case of electron scattering from
a screened Coulgmb potential is done in detail.
Formulae which are exact in principlé.and
asymptotic in practice are found, giving the
distribution with many-pléce acéuracy’at all
angles for N Z 20. Methqu for generating a
random variable with this distribution are

a4lso given.



Ruthérford's famous analysis of ™ -particle
scattering in gold foils distinguished two angular regimesfg'
a forward regime with a Gaussian distribution, dominated
by many small-angle scatters, and a large angle regime,
dominated by single scattering. This approach to the

angular distribution in multiple scattering of charged

particles is widely used even at the present day. It is

(%)

'described in textbooks.”' It is difficult to avoid the

impression that it is essentially correct.

Despite its intuitive plausibility, it is fair to
ask how accurate this representation really is, Has it
been thoroughly checked in physically interesting cases?
The answer seems to be no. That check, for a realistic
differential cross-section, considered at all angles,
is made in this paper for the first time. Previous
partial results, showing that the model of Fig. (j) is
in fact not quantitatively accurate, are cdnfirmed, and

the comparison is extended to the entire angular range.



The method employed -is not enfirely new.,
It was given in 1940 by Goudsmit and Saunderson (Gs)f33~
who were, however, unable to evaluate certain coefficients'in
their formulae (the Aﬂ's pf'Eq. (F)). Their results are
rederived here in a more physical and transparent manner
in Section 2, and the calculation is completed in Section 3.
The result is that the usual model (Fig. %) is significantly
in error (see Fig. 2): a ngive application of the central
limit theorem to the forward distribution is typically
about 40% low in the forward direction and ﬁay be high
by a factor of 2 at somewhat larger angles where one might
expect it still to apply. 1In addition, multiple scattering
corrections to the single scattering distribution areb
typically significant even at the largest'angles.

Curiously enough, the GS paper, which contains
exact results of beautiful simplicity, has been ignored
in favor of approaches which make small angle approximations.
If one makes too drastic approximations one finds that the
forward distribution is given by the central limit theorem.oﬁ
This i1s unequivocally wrong. In the late 1940's, more
careful use of the small angle approximatéﬁa)began to reveal
the true shape of the forward distribution,kbut the
results were initially often described as if they apgfoached
the naive Gaucsian, even when they élearly did notf@ﬂr)
By 1963 it was appreciated that the forward distribution

() , . :
is non-Gaussian, but the small-angle theories which

revealed this fact are complicated and approximate, and



()

have nevér fully displaced the moaél of Fig. 1 in actual use.
By contrast, the methods of this paper are so simple

that exact angular distributions in multiple scattering

can be routinely generated for use in accurate mode{v}ng

of physical processes 1in detectors, biological materials,

etc. Until now there has been no recognized good way to

do this. The persistence pf Rutherford's original model

(Fig. 1), despite its (more or less knovm) shortcomings,

was perhaps due to the absence of a simple, clear

alternative free of dubious approximations.

In Section 4 the method of Section 2 is related to
the poré general probleh of a random walk on a group.
The difficulty of extending this method from the angular
distribution to the spatial distribution of particles |
undergoing multiple scattering is pointed out.

Section 5 sontains practical suggestions for

modeclling the exact distribution.



2. Random Walk on the Sphere

Consider the distribufion of a particle on the sphere
which makes. random jumps. It is assumed that the law
governing the jumps 1s isotropic, homogeneous, and Markovian,
i.e., that there are no preferred directions or positions,
and that each jump is independent of the others. (In
applying this idea to multiple scattering, the direction
of travel of a particle or wave will be assumed to make
such a random walk. The distribution of this random »
direction will be found.)

Take coordinates (&, ) on the sphere in the usual
way, fixed once and for ail, and use unit vectors d, q,
etc., as a shorthand for locations (ep, ﬁp), (Gq, ﬁq),
etc. At each step otf the random walk one must use the
conditional probability density w1(§, 9) that a particle
at § moves in "the next step to p. Clearly W1 is positive
with

j~w1(@, Q) ap = 1. (1)

Since it is assumed that the law which governs the single
step depends only on the relative direction of P with

respect to §, and not on any third dircection, one has

WP, B = £(H-7), (2)



AN

(i? The Markovian assumption that each step is‘independent'of

the preceding one implies
W ($,8) = Sw (D,®) W,_,(R,3) ar (3)

where WN(ﬁ,a).is the conditional probability density that
a particle initially at § arrives at P after exactly N steps.
The problem posed is to .find a simple expression for

Ve (H,%) given W (H,4). Expend W,(,3) in Legendre polynomials

and thence in spherical harmonics:

W(B32) = £(5-3) Z, 2Ly N by (peg
+ 10 m--1 .
where 1
Ay = 2m | £(2) Py(z) dz | (5)
-1

Then by induction in Eq. (3),

: Zlg 2£i: )\l Ylm(n) Y ( a) . (6)

1=0 m=-1

"d)
..Q

Equation (6) is the solution. In particular, taking 4=2

(vhich only amounts to choosing the coordinate system in

the most convenient way), one has

(_* Jw(ﬁ,z) "“ zl+1 ;x pl(cos Gp). (7
l—O
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In interpreting Eq. (7) it is useful to realize that,

according to Eq. (5), the coefficient ‘Al is

_ (8
)\l = <Pl>w\ | )
i.e., just the average value of the Legendre volynomial P1

with respect to the distribution W1. In particular

/\O = 1 (3)

and

}/\1‘41 if 12 1 (10

(except in uninteresting degenerate cases). Thus in the
limit as N —> , only the 1=0 term survives in Eq. (7),

and one has

lim Vi (D,8) = A (i)

M- @ 470

the uniform distribution on the sphere; as intuition would
suggest.

If W, is sharply peaked forward, approximating a
QS —function, Al = 1 for a large number of terms. Finding
these ,Xl's accurately is the main computational difficulty
in applying this method, but it is not parficularly imposing,
Scattering from a Thomas-Fermi atom, a problem considered
by many previous investigators, yields to a simple trick
(see Section 3). A cross-section parametrized by partial

waves would also yield.‘xl's in an obvious vay.

LI s 3
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3. Multiple Scattering from Thomas-Fermi Atoms

To apply the ideas of Section 2 to multiple scaftering,

note that

w . 1 &¢ (2
1T T dg
i.e., \‘11 is just the differential cross-section normalized
to be a probability distribution. In particular, consider
potential scattering of a Dirac electron from a screened

Coulomb potential

2
V(r) = - 71% e-—r/a - (\33

(9)

The result, in Born approxima‘tﬁion, is the Mott cross-section

modified by screening

(0

_ 2
.W1(x) « 1=B°XA

where x=s5in 6/2 and A =<23.E-\—;), (13
LRG

the latter quantity corresponding to the screening length

2

e -1/3 ‘
8- —C 1 (4
0l2mc2
. i) R .
suggested by Thomas-Fermi theory (here o is the fine

structure constant, (:’; and ¥ are the relativistic

parameters of the electron, and Z is the atomic number of

the target nucleus).



=~

The average value of the Legendre function Pl ’
called }\9\ in Eq. (7 ), can be found by a generating
function technique. The generating function for the
average..Legenare functions is just the average of their
generating function,by linearity: |

oD

{L(1m)? + 4] V2 w0, = i“:_ R\ (1

C

Define'quantities'kn(A) and s_(A) by
i
Al

j ((11)2 + 4] V2 (ea)"? ax = 7 u® o (0

>
o , o |
J (1 + —h) T1/2 (X+A)-1 dx = Zhn s, = F(h) <‘3)_

It is easy to see that

Ay T [‘321% + (1+(},2A) S;f.n 1/ @2ko N (1+(32A) -?—iio ] (2‘3

so that it is enough to find the S, . Expand the first
factor of the integrand in Eq. ( \Y ) by the binomial

theorem and integrate. One has

+ [=1/2 m s
F(nh) = Z( 1{1 ) [(—A) log(1+1/4A) + 71 ('A) ] (fé)

n=0

vihere z(h) = 4n/(1-n)% .



Tl

How collect like powers of A:

P = 2, ()" E(‘V-Z) ™ log(1+1/A) + E(m) 1 (B
m=0 m .
where =
F (h) = 2z él;no g [(1 +~§)--1/2 1 g-m-1 d§ (1,{)

and [ ]m means the first m terms of the Maclaurin
expansion are subtracted off.

It is now straightforwérd, though tedious, to find
F(h) as a power series in h (and hence to find. sn)
through any finite power of A in the expansion of Eq. (23).

The result for s_ through terms involving A3 is

n
s, = 2, log(1+1/A) + b+ c Alog(1+1/A) + & A - ().
+ e AZlog(A+1/A) + £ A% 4 g A3log( 1+1/4)
+ h A+ @(n7A4log A)
where
~
% = %no

(3.6

b =[-2mlé .
2n G

n ni

a =-[2n-1)+4m (V2+ 1/3+ ...+ /) ] &,

o
]

e, = (n+1)n(n-1) én2
£ = - [ 4(n-1)(n-2)/3 - (n-1)(n-2)(n-3)/6

s2(nrDn(n=1)( 1/4 + 1/5 +.00t /(0 1))] G 5

[(n+2) (n+1)n(n-1) (n—2)/61 6n3

g




( ' h = —[% (n+1)n(n-1)(n—2)(n—3') - %O n(n-1) (n-2) (n-—})(r.l—44)

+ao— (n=1) (n=2) (n-3) (n-4) (n-5)
+ 3 () (men(n-ND@-2)( F+ F+ oou v zH0] 6,

C
Q =

1 if n=m
|

if n#m
ifnd>m

- O

€ nm ={O ifn<m

A similar expression for >‘n follows from Egs. (20 ) and ( 2f ).
Using this expression for )\ in Egq. (7 ) gives a formula

for WN
( © remark we now justify.

which for many purposes is essentially exact, a

The series obtained for >‘n from Eqs; (23 ), ( VYD), (29)
and ( 21 ) converges (in fact it is exact after 2n+1 terms).
llore important for practical purposes, only the first
few terms, typically just those given in Eq. ( 25 ), are
necessary in applications, by the following‘argument.

The terms in Eq. (15°) decrease repidly if n<s a~V2

so that one may expect Eq. (25 ) to be accurate up to some

Noox vhich depends on A. An estimeate of no.y 1S given
by looking at the next term in the expansion for Sy in
Eq. (25), namely
| . , (1)

i

(nn+3) (n+2) (}1+1)11(11=1) (n=2)(n=3)/72

where

C n



Requiring this term to be less than, say, .001 gives

“max = [.o072 A--A'/Zlog(.‘l+ 1/A) ]1/7 | (Lij

Now take N, the number of steps, to be so large that the
N '

contribution of the term contazining )\ is negligible,

Dmax
even at & = W , where the cancellation of terms is
especially delicate. Using ﬁhe estimate WN(TT ) = NW1(7T )

and asking for 3-figure accuracy there, one finds

et w103 | -
Ny log(afu W, 10 >/log( Ny (23
-max

2n + 1

max

So long as N satisfies this inequality (which is quite
insensitive to the detailed assumptions in‘its derivation),
WN is accurate at all angles; In faét, the inequality turns
out to be

N > 20 _ . (3

showing little explicit dependence,on electron energy
up to 3 Mev, which covers the range of most natural';ﬁ
emitters. Of course, for higher energy Wi is sharper

(A is smaller) so that more terms in Eq. ( 7 ) are needed
to represent WN. But just because A is smaller, the
expansion of Eq. (25) does provide those terms. (WZO

for a 3 llev eléctron in germanium requires nearly 500 terms.

For lurger N, far fewer are needed.)



The procedure outlined above could be extended to
N < 20 by going farther in the expansion of Eq. (25 ).
For example, with the next term (Eq. ( 2%)) includead,
W15 appears to be gccurate.

The above discussion does not give rigorous estimates
of error, but experience.has shown it to be an accurate rule
of thumb., The formula for".‘lN is asymptotic in N. The

error in V., appears to be - (élﬂ) where 620é2.02w1(77 <41,

N
A ftypical result for WN is shown in Fig. 2, with the |
Gaussian distribution ofrthe central limif theorem

and the single scattering tail N\'.’1 for comparison. The .
results of wofk using small angle approximations is cqnfirmed
in the forward direction, and comparisons at large angles

are possible for the first time. Multiplé scattering

corrections to the single scattering distribution are

quite noticeable.

In summary, Eq. (7) with >\l given by Egs. (22,
(%'), and ( 25) is an explicit solution to the multiple
scattering problem for N> 20 with many-place accuracy at

2ll angles.



4, Random VWalks on Groups

One gets a deeper insight into the formulae of
Section 2 by considering them in a more general setting, . _
that of a random walk on a groupfnyln particular one
sees that the réason the. forward distribution in multiple
scattering is non-Gaussian is that it arises as a random
walk in a non-Euclidean space, whereas the central limit
theorem is associated in an essential way with random
walks in Euclidean spaces and more particularly with -the
Euclidean translation group.

A random walk on a group G can be identified with
a random sequence of group operations in which G operates
on itself by left multiplication. The group operations
have a linear representation f on the space Gf of real

{i3)

valued functions on the group in the usual way
(30
p (&) £(n) = £(ng™")

In wvhat follows, the notation will imply that G is a finite
group; but nothing is changed if G is a compact Lie group
and summation ovef G is interpreted as integration with
respect to Haar measure.hi} _

Let P, be a probability measure on G such that p1(g)
is the'probability of a translation in a single step

by the action of g on G. (vie assume that the random walk

can be characterized in this way, i.e., that the probability



of the step h --> gh is independent of h.) Similarly,
let pN(g) be the probability that in N steps one has

translated by the action of g. Then

—\ - 3,\
p;(8) = \f p,(gh 1)pN—1(h) (30
he G
(1)
Define an operator on functions using the representation {0
-\ ’
Wipyd = p1(g)(0 (g) A (3
geG

Then it is easy to prove by induction that

(e, )Y = wlpyd . (34)

=\
For suppose (W[p1])N = Z . pN(h) /,» (h). Then
heG

Z Z ry(e) I (g)p;,(h) F (h)
g6 G héG

(wlp, DT

|

=7 2o e ey (39
ge G hé¢G '

-5 = p1(jh_1)pN(h)/p (1)
j€G heG

-7 Py 1(3) /0 (3) = Wlpy,
JEG |

\‘I[p1] is essentially the stochastic matrix for the random walk.



An important simplification occurs if p1(g) is a

class function, i.e., if

. .
r,(g) = p1(hgh—1) ~ ¥n¢a ( 3]

In this case, w[p1] can be written as

37
Wlp, = 7 p(x) E: / (h) 3%

[x] he Cy

where k ¢ Ck is any representative from the class Ck of G.

The operator

P> 7T ((h) S8

h¢ C
is a scalar multlple of
~ ' def (33)
<</J>> Lf(gkg
| 266
However, A
L p =2 ngg NP (n)
’ ge G &
-2 {a(gkg”h)
gEG (40)
-2 r(thJ
jéG
S
-7 P f(jkj’*)
jEG

P (h) {</0>> «



Thus, by Schur's lemma, <§d§>k is just a multiplé of the
identity operator 1 on each irreducible representation
contained in @ . If we take as a basis in F a2 vasis
for the irreducible representations contained in £

then W[p1] is diagonal, so that raising it to the Nth

power (i.e., computing the effect of a random walk of

N steps) is trivial.

A space I on which Gjacts transitively
can be identified with G/H, where H is the isotropy grouﬁ
of a point of M?i&f H is a symmetry of Py the random

walk analysis on G passes to the quotient M. Thus the

- random walk on the sphere can be regarded as arising

from a random walk on SO(3) with p, a class function.
It passes to the quotient SO(3)/S0(2), which is just the
2-sphere. Eq.( { ) displays W, in diagonal form, as it was

guaranteed to be, because the spherical harmonics are

.a basis for the irreducible representations of SO(3) on

Sz. (The spherical harmonics themselves arise by the
guotient procedure: they are just the symﬁetric top
wave functions which are invariant under the action of the
S0(2) in the quotient.) |

It is disappointing that»the same observation éannot
be used to solve the multiple scattering problem in its
entirety, i.e., to find the spatial distribution of particles
together with their angular distribution. This amounts

to solving the random walk on the affine group‘of translations



i

| +

and rotations in 3—space.A Curiously enough, the probability
measure that corresponds to physical scattering processes

is not a class function on this group. Thus the stochastic
matrix W1 cannot be diagonalized using group theory alone:
the correct basis furictions depend on the details of Py

and cannot be found once and for all, as in the simpler

angular problem.



\%

5. llodelling with WN

In modelling multiple scattering one wishes to
generate a random variable 6 with the distribution WN.
This is not immediately easy, even though WN is a known
GINUA

function.

Call f a rapidly-generable (EG) function on a domain

D if it is a probability distribution, i.e. £20 on D,

' gf = 1. | | (41)
D |

and if there is a rapid procedure for generating a random
variable with distribution f. (This definition is f1exible:
what it means depends on context, but if seems to be a
useful notion.)
To be concfete, let D be the interval [0,1].
Then by most standards the uniform distribution f=1
is RG. Also, if for any probability distribution f we
define |
def (* : | B (42)
g(x) = j f(x')dx" | .
‘ 0

then the random variable x:g—1(y), where y is uniformly
distributed on [0,1], has distribution f. Thus f is RG
if g—1 is rapidly computable. A
If f1""’fn are RG, and nonnegative numbers Bqyeeesly
satisfy azte.ta = 1, then f = a1f1+...+anfn is RG, that is{
appropriate lineur combinations of RG functions are RG.
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\D

In this‘language, the problem is to approximate WN
by an RG function. In general, it is not clear that =a
salution exists at all, since.the RG functions may not
be dense in the space of the WN'S in the appropriate norm.
The following observations constitute a rough-and-ready
solution to the problem of finding an RG approximation
to wﬁAon the sphere. This is not a solution in the sense
of giving an RG sequence {fn§ which converges to Wﬁ.
Rather we find functions which are within a few percent
at all angles,
Define a family of functions |
o —4~4x (45)
F(of ;%) = © <
. 1-e—4“' T
For any « , F is a probability distribution in x on [0,1]
with respect to the measure 47 dx, and it is RG. (Ve are
really thinking of x=sin°6/2 and F as a distribution on
the sphere. The form is chosen éo that P looks as nearly
as poibible like a Gaussian in 6 with width oL~ 1.)
It turns out that linear combinations of such functions
can approximate WN well in the forward direction.

For large angles (xz:mTﬁ sinzerms)-the form

B+Cx
(A+x)

G(A,B,C,XT;X) = 2 G(X-XT), (44)

suggested by the single-scattering distribution, works well.
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In order that the two forms. join well at Xpy, it is

advantageous to define "folded F's" on [o,xT]:

F(oL,XT x) = [F(% 3X) + (1—xT) F(ot,x')/xq] 8{x;-x)
where X(xy = \ - X (X3 =1).
F is RG because it corresponds to the following procedure:

1) generate a variable 5 with distribution F, 2) if ; X
set f ; , 3) if §> Xp, set é XT(1_~§)/(1_XT)
g is a random variable w1th distribution F.
The function G(A,B,C,XT;X) is RG because if y is

uniformly distributed on [0,1], the iterative procedure

X = x'l‘
x, = 5,0 (Aexy_y) (Aexg)C log(ﬁ"’X )/§2 .
A+xT 645
where :gz = y(A+xT)-(B—AC)
£, = [(a0-B)xp - yA(a+xp)] /4,

converges to a random variable x whose distribution is G.

It is etraightforward to find positive constants

(45)

)

1 Bpaeery By gy and <¥1,...,<1h such that a,+...+a .= 1 and
v s oo T - . 47)

It does not seem to be possible to use thc came
form for all parameter values, however. Modelling electrons
in germanium, with 100 £ N < 200 requifed the rather inelegant

choices of Table 1 at various energies,

A typical Vi, with its RG approximant (nearly indistin- ‘
I

guishable from it) is shovmn in Fig. 3.



In summary, the observations of this section facilitate
fast, accurate modelling of angular distributions in multiple
scattering.
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Electron energy Distribution
E £ 0.52 Hlev uniform
0.52 < E £ 0.6 Kev FP(ox)
0.6 < E £0.9 lev aF(« ) + (1-2)G
< P ‘ ~ ~
0.9 E £ 4.5 llev a1F( O(,1) + a2F( 0<2) + a3G

Table 1. Form of the RG distribution approximating Wy in
germanium for 100 < N < 200. The functional

forms ¥, F, and G are defined in the text.



Fig. 1.

Fig. 2.

Fig. 3.

FIGURE CAPTIONS

The Rutherford model for the angular distribution
in multiple scattering, showing two angular regimes,
with a Gaussian distribution forward and single
scattering backward. The crossover region, where
some kind of intérpolation appears to be called for,

is sometimes called "plural scattering."

Comparison of the Rutherford model with the
exact angular distribution, found as described
in the téxt, for a 1.9 Mev electron in germanium
after 150 scatters. There is a significant
discrepancy, of the order of 10%-50%, at almost

all angles.

The exact distribution of Fig. 2 is well approximated
by the form given in Table 1 with parameters

a]=0-57?’ 22=Ol393, a _0-034, 9(191801, D‘/2-'=‘4'<).O,

3
4=-0.0190, B=0.00381, €=-0.00349, x;=0.00586.
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