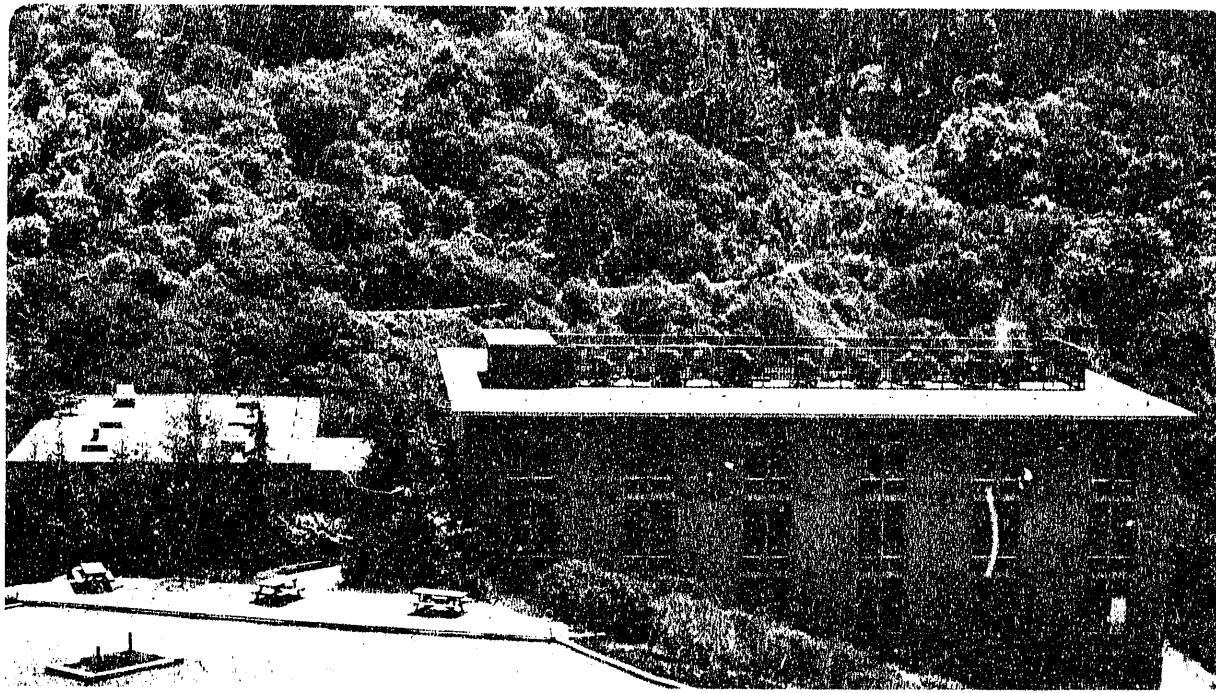




# Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

## Materials & Chemical Sciences Division


MAR 2 4 1992

To be presented at the Lattice Effects in High-T<sub>c</sub> Superconductors  
Workshop, Santa Fe, NM, January 13-15, 1992,  
and to be published in the Proceedings

### **The Debye Temperature of YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-δ</sub> and Its Dependence on the Volume Fraction of Superconductivity**

R.A. Fisher, J.E. Gordon, and N.E. Phillips

December 1991



Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098

#### **DISCLAIMER**

This document was prepared as an account of work sponsored by the United States Government. Neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California and shall not be used for advertising or product endorsement purposes.

Lawrence Berkeley Laboratory is an equal opportunity employer.

LBL--31663

DE92 010305

**THE DEBYE TEMPERATURE OF  $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$   
AND ITS DEPENDENCE ON THE  
VOLUME FRACTION OF SUPERCONDUCTIVITY**

R.A. Fisher<sup>a)</sup>, J.E. Gordon<sup>a,b)</sup> and N.E. Phillips<sup>a)</sup>

<sup>a)</sup>Materials Science Division,  
Lawrence Berkeley Laboratory,  
University of California  
Berkeley, CA 94720

<sup>b)</sup>Physics Department,  
Amherst College  
Amherst, MA 01002

To be presented at the workshop on:  
Lattice Effects in High- $T_c$  Superconductors  
Santa Fe, NM  
January 13-15, 1992

This work was supported by the Director, Office of Energy Research,  
Office of Basic Energy Sciences,  
Materials Sciences Division of the U.S. Department of Energy  
under contract DE-AC03-76SF00098.

**MASTER**

*Se*  
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

# THE DEBYE TEMPERATURE OF $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ AND ITS DEPENDENCE ON THE VOLUME FRACTION OF SUPERCONDUCTIVITY

R.A. FISHER<sup>a)</sup>, J.E. GORDON<sup>a,b)</sup> and N.E. PHILLIPS<sup>a)</sup>

<sup>a)</sup>*Materials Sciences Division, Lawrence Berkeley Laboratory  
Berkeley, CA 94720, USA*

<sup>b)</sup>*Physics Department, Amherst College, Amherst, MA 01002, USA*

## ABSTRACT

Specific-heat measurements, on polycrystalline samples of  $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ , YBCO, have shown sample-to-sample variations in the volume fraction of superconductivity,  $f_s$ , which is correlated with the concentration of  $\text{Cu}^{2+}$  magnetic moments in the YBCO lattice. At low temperatures the lattice specific heat also varies with  $f_s$ , but these variations do not persist above ~20K. The low-temperature data show that  $\Theta_0^{-3}$  varies linearly with  $f_s$ , and give values of 520 and 390K for  $\Theta_0$  for fully-superconducting and "fully-normal" YBCO, respectively. These results suggest that the long wavelength phonon modes are altered when  $\text{Cu}^{2+}$  magnetic moments are present in the lattice. The fact that different samples have the same lattice specific heat at ~20K and above  $T_c$  indicates that the higher energy phonon modes are insensitive to these  $\text{Cu}^{2+}$  moments.

The size of the anomaly at  $T_c$  in the specific heat,  $C$ , of polycrystalline  $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ , YBCO, as measured by  $\Delta C(T_c)$ , shows a wide sample-to-sample variation<sup>1,2</sup>. It has been argued<sup>3,4</sup> that this result is evidence for a corresponding sample-to-sample variation in the volume fraction of superconductivity,  $f_s$ . Two other quantities<sup>3,4,5</sup> that might also be expected to be proportional to  $f_s$ ,  $\Delta S$ , the change in the entropy near  $T_c$  produced by the application of a magnetic field,  $H$ , and  $d\gamma^*/dH$ , where  $\gamma^*$  is the coefficient in the linear term in  $C$ , are proportional to  $\Delta C(T_c)/T_c$  as shown in Fig. 1. These quantities have been used to determine  $f_s$ , as is shown in Fig. 2a, where each quantity has been suitably scaled and averages of the three have been used to define relative values of  $f_s$ . Figure 2b shows that  $f_s$  decreases approximately linearly with increasing  $n_2$ , the concentration of  $\text{Cu}^{2+}$  magnetic moments in the YBCO lattice<sup>3,4</sup>. Whether these moments themselves create regions of normal material via a magnetic pair-breaking mechanism, or whether their concentration is simply proportional to some other defect responsible for creating the

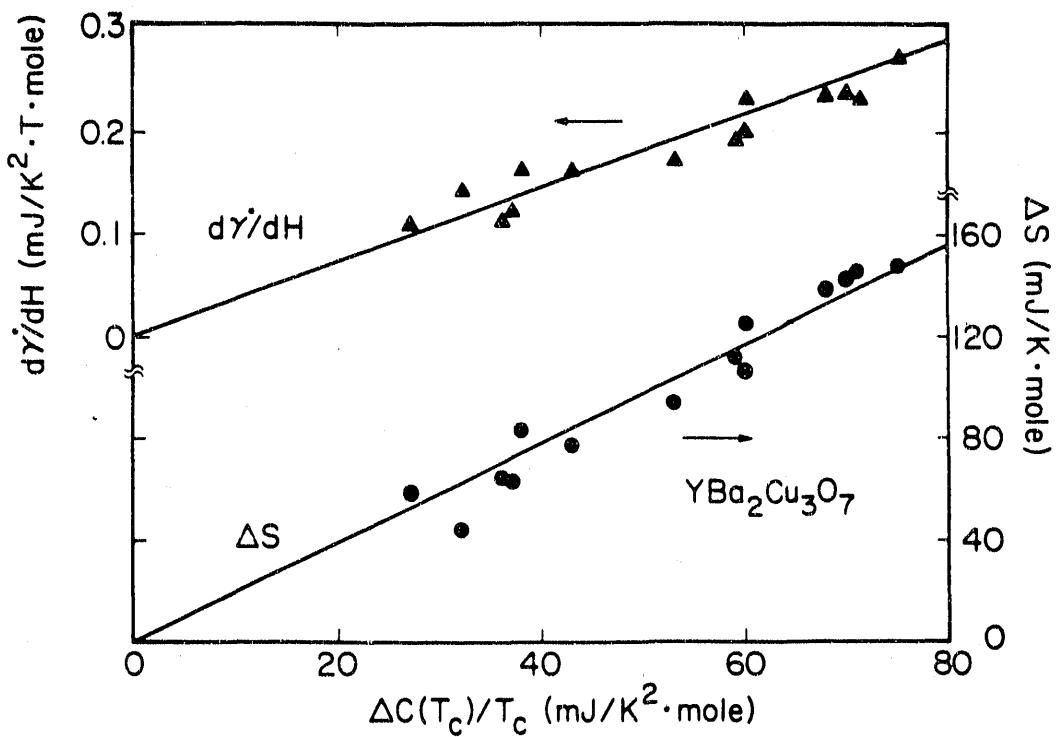



Fig. 1. The correlation of  $d\gamma^*/dH$  and  $\Delta S$  with  $\Delta C(T_c)/T_c$ .

normal regions, is not known. However, in view of the correlation of  $f_s$  with  $n_2$ , it is reasonable to associate the limit  $n_2=0$  with  $f_s=1$ , thus establishing absolute values of  $f_s$ . The interpretation of the properties of YBCO as reflecting the coexistence of superconducting regions and normal regions associated with  $Cu^{2+}$  magnetic moments, first reported in Ref. 3, is supported by very recent NMR measurements<sup>6</sup>.

In this paper it is pointed out that  $\Theta_o^{-3}$ , where  $\Theta_o$  is the Debye temperature obtained from the  $T^3$  contribution to the low-temperature specific heat, is a linear function of  $f_s$ . Figure 3, a graph of  $\Theta_o^{-3}$  versus  $f_s$  indicates that  $\Theta_o \approx 520K$  for a fully-superconducting sample of YBCO and  $\Theta_o \approx 390K$  for a fully-normal one. Swenson et al.<sup>7</sup> have reported a variation of  $\Theta_o$  with  $\gamma^*(0)$ , a result that is qualitatively in agreement with the correlation reported here. It should be noted that values for  $\Theta_o$  reported in the literature (see the compilations in Refs. 1 and 2) vary from 290 to 510K. While some of these reported variations undoubtedly arise because of the way in which  $\Theta_o$  was derived from C, e.g., the assumption of  $T^3$  behavior for the lattice specific heat for  $T > 5K$  (which results in too small a value of  $\Theta_o$ ), not all of the difference can be explained in this way.

Figure 4a is a graph of  $C_e/T^3$  versus  $T$  from -2 to 20K for two polycrystalline samples [ $C_e$  is the lattice specific heat and is equal to  $C\gamma^*(0)T \cdot C_m$ , where  $C_m$  arises from the magnetic interaction among the  $Cu^{2+}$  moments.  $C_m \sim A_2 T^2 + A_3 T^3 + \dots$ ]. It is evident that for both samples the  $T^3$  region does not extend above  $\sim 5K$ . It is also clear from Fig. 4a that whereas  $C_e$  is markedly different in the low-temperature region, this difference essentially disappears by  $\sim 20K$ . Figure 4b is a graph of  $C/T$  versus  $T$  for the same two samples in the vicinity of the anomaly at  $T_c$ . It should be noted that above  $T_c$ , the specific heats of the two samples are the same to within experimental accuracy. Because a larger fraction of one sample (triangles) undergoes

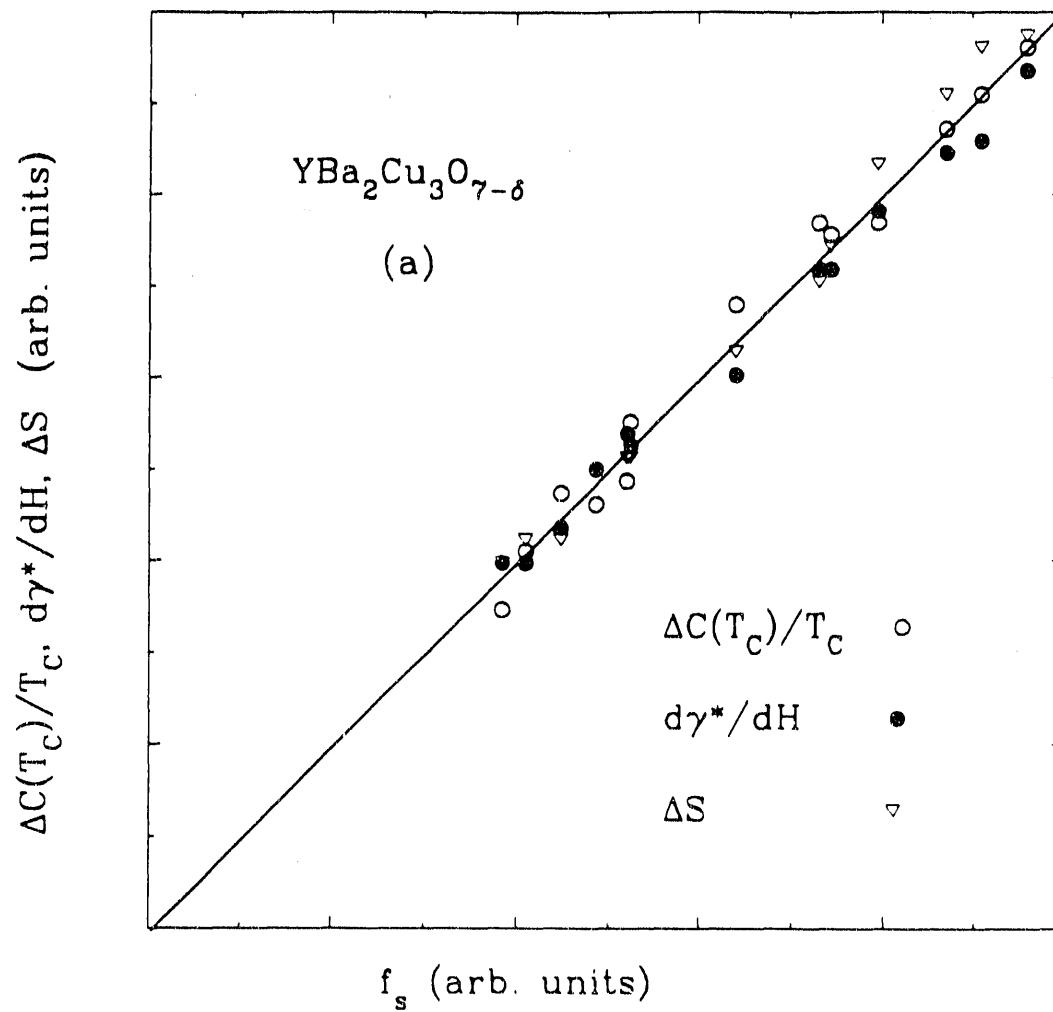



Fig. 2a. The correlations among  $\Delta C(T_c)/T_c$ ,  $d\gamma^*/dH$  and  $\Delta S$ , scaled to fall on the same line, for a number of polycrystalline YBCO samples. For each sample the three quantities are plotted at the relative value of  $f_s$  that best represents all three.

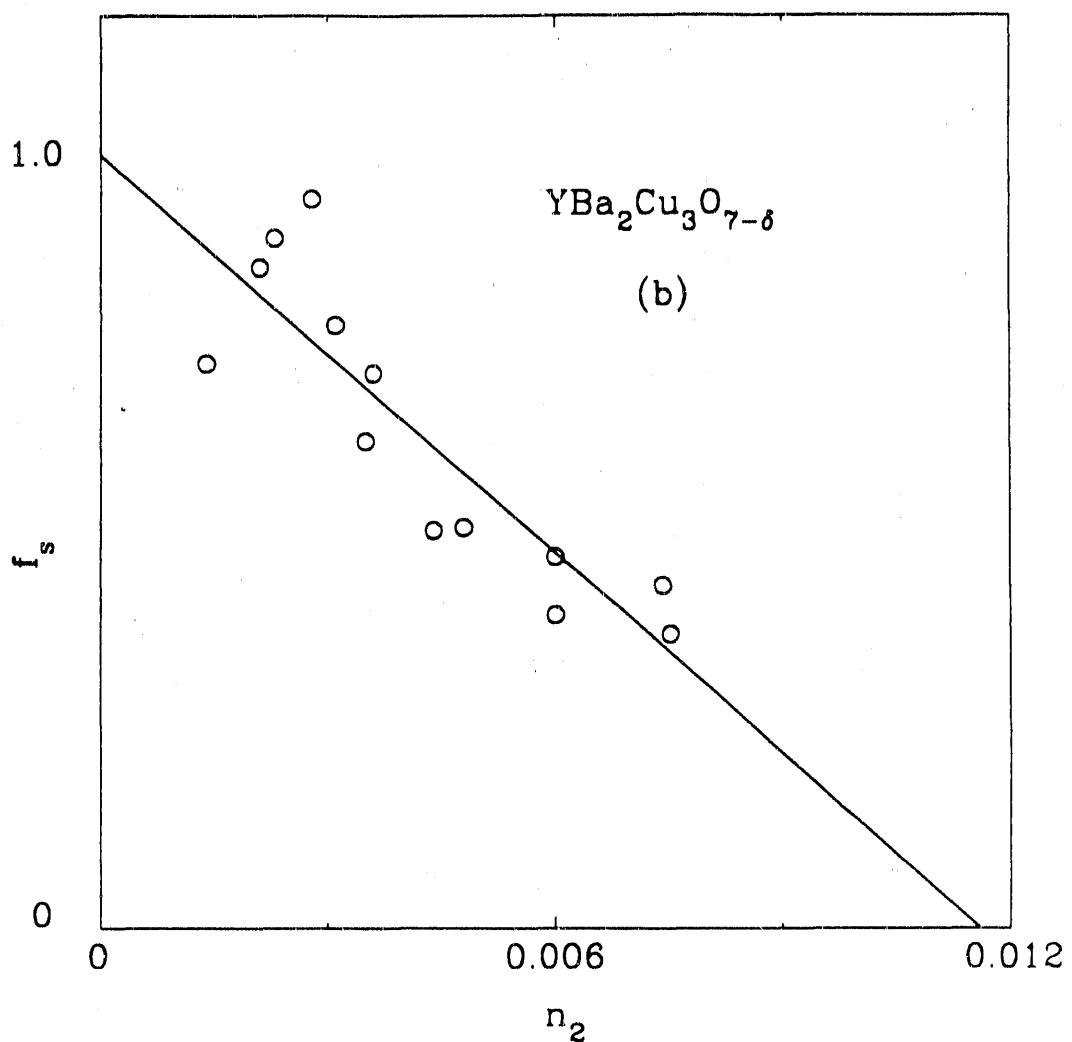



Fig. 2b. The correlation of the relative values of  $\xi$  with  $n_2$ , which suggests that  $n_2$  measures the concentration of a defect that suppresses the transition to the superconducting state. The association of  $n_2 = 0$  with  $\xi = 1$  puts the values of  $\xi$  on an absolute scale.

the superconducting phase transition, that sample's specific heat is larger immediately below  $T_c$  than that of the second (circles), but as  $T$  approaches 70K the two specific heats become more nearly equal. There are no data for one of the samples between 22 and 70K. However, since the two specific heats are equal to within experimental accuracy at the lower temperature, it seems reasonable to assume that for temperatures between 22 and  $\sim 65$ K, the specific heats of the two samples would differ only because their values of  $\gamma^*(0)$  are different and, possibly, because impurity contributions to  $C$  may also be different for the two samples.

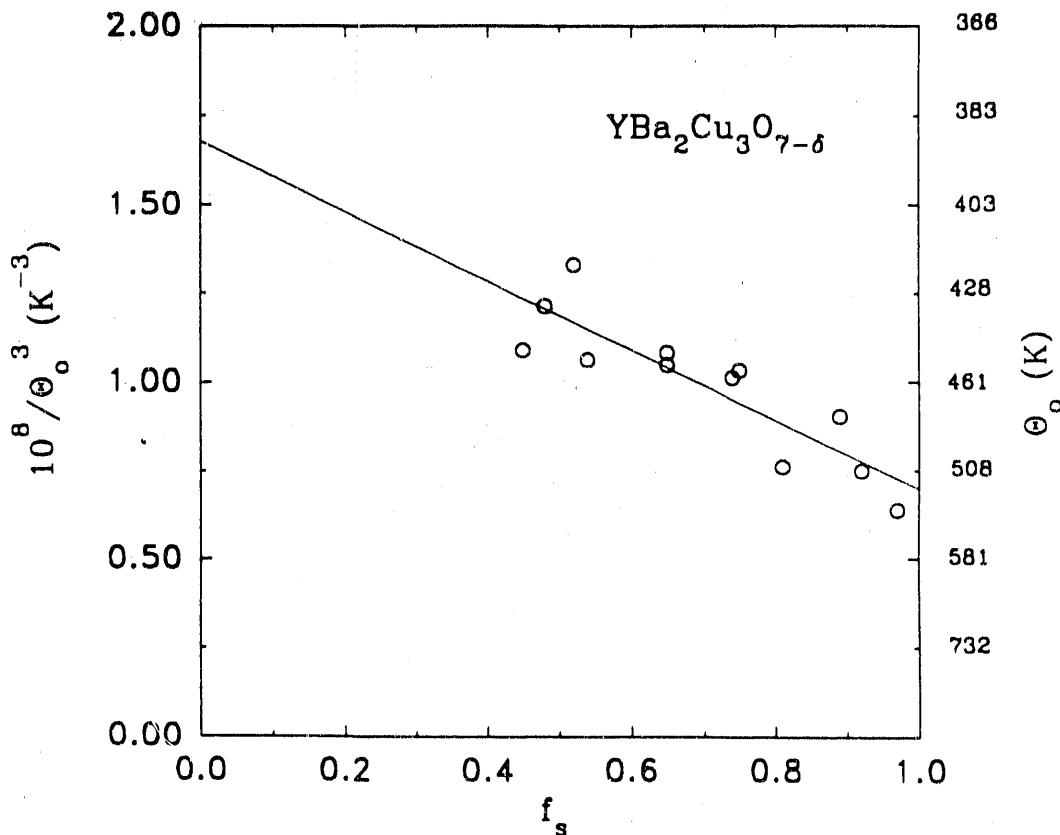



Fig. 3. The correlation of  $\Theta_0^{-3}$  with  $f_s$ .

It appears, then, that the difference in the low-temperature lattice specific heats has disappeared at temperatures above ~20K. If we associate the low-temperature difference with different fractions of volume superconductivity in the two samples, it is logical to infer from these data that the difference in the phonon spectra of the superconducting and the "normal" phases lies in the very long wave length modes. The "normal" phase presumably contains Cu<sup>2+</sup> magnetic moments that probably correspond to alterations in the bonding characteristics of the lattice. Thus, this "normal" material may well have a  $\Theta_0$  that is different from the  $\Theta_0$  of the superconducting material, and from that of the normal phase to which the superconducting material transforms at  $T_c$ .

Information about the low-frequency modes can, in principle, also be obtained from sound-velocity,  $v$ , measurements. There are numerous reports of small increases in  $v$  near  $T_c$ <sup>8,9</sup>. However, these changes are far smaller than the 30% difference in  $\Theta_0$  obtained from the intercepts in Fig.3. This apparent discrepancy

may arise because the change in  $v$  is associated with the superconducting transition in regions that do not contain  $\text{Cu}^{2+}$  magnetic moments, whereas the difference in the intercepts in Fig.3 is associated with the difference between regions that contain such magnetic moments and regions that do not. On the other hand, the sample-to-sample variations in  $v$  reported in the literature may result, in part, from sample-to-sample variation in the concentration of  $\text{Cu}^{2+}$  magnetic moments, which affect  $f$ .

The sound-velocity measurements sample the very long wave length phonon modes, and do not test the proposition that the higher energy modes are unaffected by the superconducting phase transition. It is precisely the higher energy modes, however, that are sampled by inelastic-neutron scattering data. The results of Rhyne et al.<sup>10</sup> show there is a negligible difference in the YBCO phonon density of states above and below  $T_c$ . Although somewhat contradictory results have also been reported<sup>11</sup>, the data in Ref. 10 provide support for the inference drawn from the specific-heat data that the higher energy phonon modes are relatively unaffected by the superconducting transition. The neutron-scattering experiments do not effectively sample those phonon modes that contribute to the low-temperature specific heat and

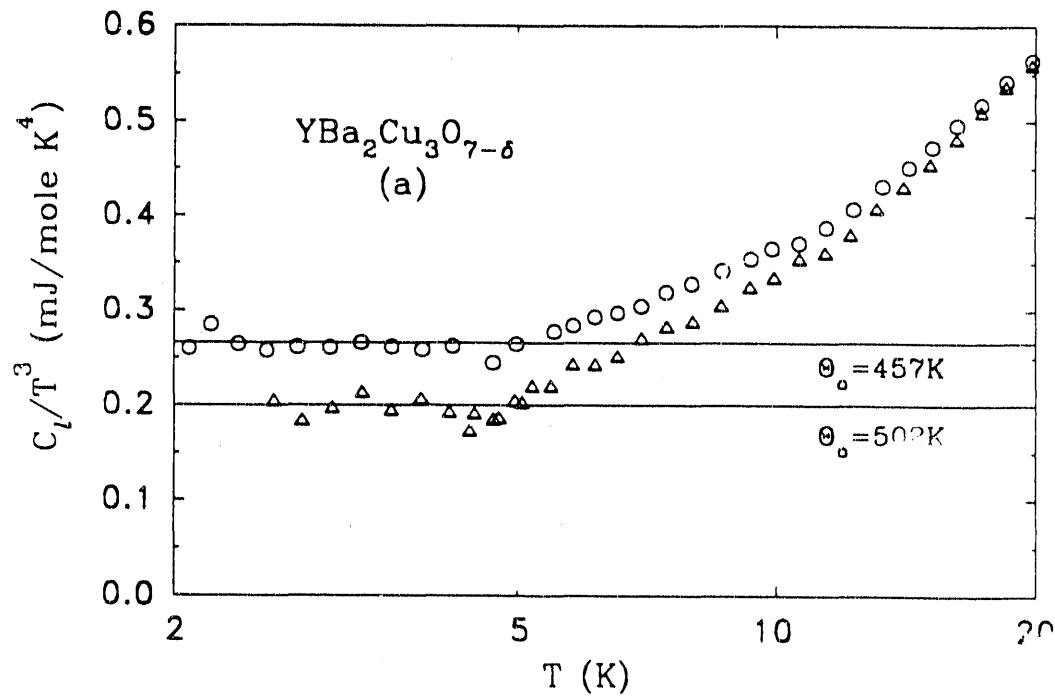



Fig. 4a. The lattice specific heat for two polycrystalline YBCO samples between 2 and 20K.

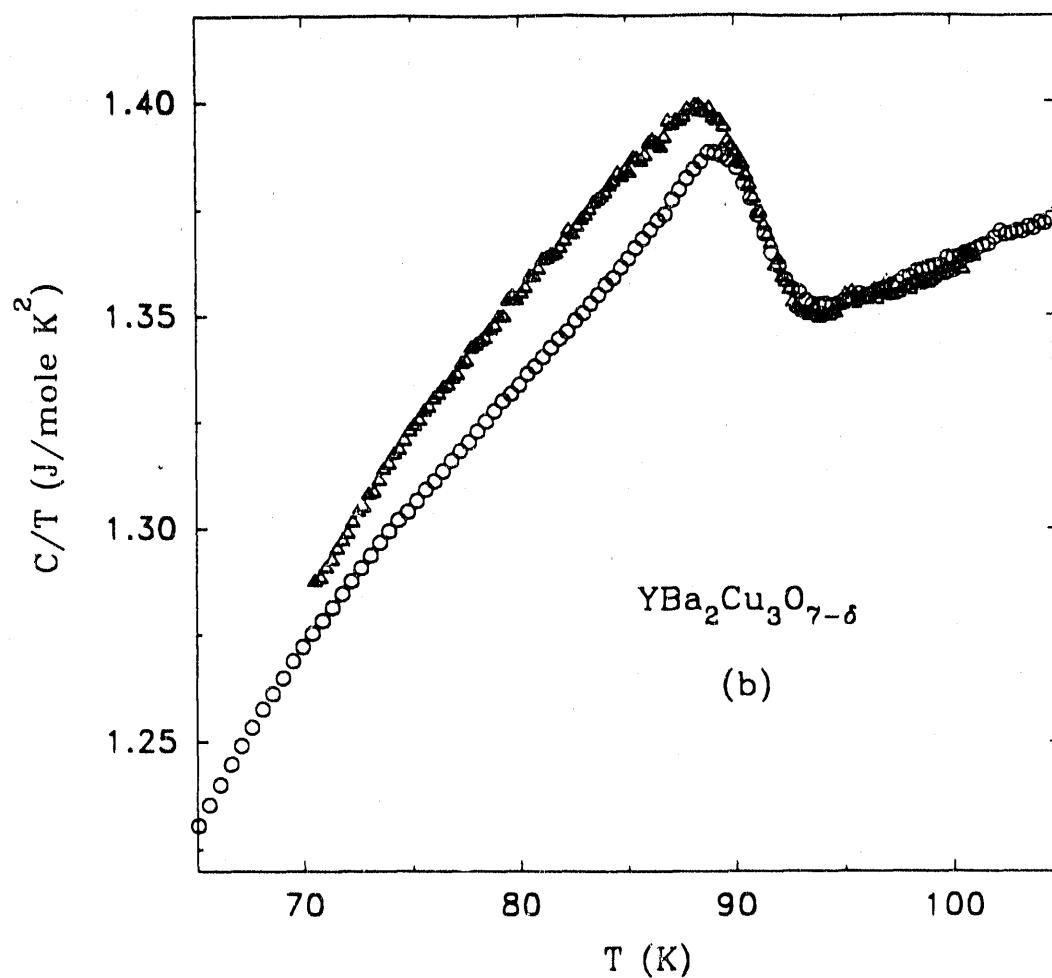



Fig. 4b. The specific heat for the same two polycrystalline YBCO samples shown in Fig. 4a in the vicinity of  $T_c$ .

therefore do not contradict the conclusion that these low-lying modes are affected by the presence of Cu<sup>2+</sup> magnetic moments and, possibly, by the superconducting phase transition.

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy under contract DE-AC03-76SF00098 and for J.E.G. by a grant from the Research Corporation.

## References

1. R.A. Fisher, J.E. Gordon and N.E. Phillips, *J. Superconductivity* **1** (1988) 231.
2. A. Junod, in *Physical Properties of High Temperature Superconductors II*, ed. D.M. Ginsberg (World Scientific, Singapore, 1990) p. 13.
3. N.E. Phillips, R.A. Fisher, J.E. Gordon and S. Kim, *Physica C* **162-164** (1989) 1651.
4. N.E. Phillips, R.A. Fisher, J.E. Gordon, S. Kim, A.M. Stacy, M.K. Crawford and E.M. McCarron III, *Phys. Rev. Lett.* **65** (1990) 357.
5. J.E. Gordon, R.A. Fisher, S. Kim and N.E. Phillips, *Bull. Mat. Sci. (India)* **14** (1991) 651.
6. H. Alloul, P. Mendels, H. Casalta, J.F. Marucco and J. Arabski, *Phys. Rev. Lett.* **67** (1991) 3140.
7. C.A. Swenson, R.W. McCallum and K. No, *Phys. Rev. B* **40** (1989) 8861.
8. M. Saint-Paul, J.L. Tholence, H. Nöel, J.C. Levet, M. Potel and P. Gougeon, *Solid State Commun.* **69** (1989) 1161.
9. T.J. Kim, J. Kowalewski, W. Assmus and W. Grill, *Z. Phys. B* **78** (1990) 207.
10. J.J. Rhyne, D.A. Newmann, J.A. Gotaas, F. Beech, L. Toth, S. Lawrence, S. Wolf, M. Osofsky and D. Gubser, *Phys. Rev. B* **36** (1987) 2294.
11. V.G. Bar'yakhtar, A.A. Vasil'kevich, P.G. Ivanitsky, V.T. Krotenko, A.N. Maistrenko, A.E. Morozousky, V.M. Pan, M.V. Pasechnik and V.I. Slisenko, *Physica C* **162-164** (1989) 466.

END

DATE  
FILMED  
5/06/92