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FOREWORD 

The research and development described in this report was conducted 
within the U.S. Department of Energy's (DOE) Solar Thermal Technology 
Program. 
advance solar thermal technologies through research and development of 
solar thermal materials, components, and subsystems, and through testing 
and evaluation of solar thermal systems. 
through DOE and its network of national laboratories who work with 
private industry. 
program for providing technically proven and economically competitve 
options for incorporation into the Nation's energy supply. 

The Solar Thermal Technology Program directs efforts to 

These efforts are carried out 

Together they have established a goal-directed 

There are two primary solar thermal technologies: central receivers 
and distributed receivers. These two technologies use various point and 
line-focus optics to concentrate sunlight onto receivers where the solar 
energy is absorbed as heat and converted t o  electricity or used as 
process heat. In central receiver systems, which this report considers, 
fields of heliostats (two-axis tracking mirrors) focus sunlight onto a 
single receiver mounted on a tower. The radiant energy is absorbed by a 
working fluid circulating within the receiver and is transformed into 
high temperature thermal energy. Temperatures in central receivers may 
exceed 15OO0C. 
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Abstract 

Cost effective optimization of the solar central receiver system is 

primarily concerned with the distribution of heliostats in the collector field, 

including the boundaries of the field. The cellwise optimization procedure 

determines the optimum cell usage and heliostat spacing parameters for each 

cell in the collector field. Spacing parameters determine the heliostat density 

and neighborhood structure uniformly in each cell. Consequently, the 

cellwise approach ignores heliostat mismatch a t  cell boundaries. Ignoring the 

cell boundary problem permits an easy solution for the optimum in terms of 

appropriately defined annual average data. Insolation , receiver interception , 

shading and blocking, cosine effects, and the cost parameters combine to 

control the optimum. Many trade-offs are  represented. Outputs include the 

receiver flux density distribution for design time, coefficients for an actual 

layout, the optimum boundary and various performance and cost estimates for 

the optimum field. 

I t  is also possible to optimize receiver size and tower height by a 

repeated application of the field optimization procedure. 
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Nomenclature 

a = Multiplicative loss factor including receiver absorbtivity 

= Coefficient for ground coverage (i  .e .  fc=ac/RcZc) 

A, = Area of land in cell c (m2) 

AH = Area of glass/heliostat (m2) 

AG = Total area of glass in collector (m2) 

A = Area of land/cell in collector (m2) 

b =  

B , B  = 
- 

Bc - 
- - C 

c =  

- 
co - 

- 
‘h - 
c (P) = 

P 
- 

DH - 

DM - 
- 

E =  
- 

Ec - 

f , f ,  - - 

F =  

h =  

Subtractive loss constant including receiver radiation , conduction , 

and convection losses (MWH/yr) 

Set of interior (exterior) cells in collector 

Boundary ratio (Bc=l a t  boundary) 

Cell index for collector field 

Total cost of thermal subsystem to base of tower including 

feedwater pump but excluding thermal storage ($) 

Fixed cost parameter ($) 

Cost of heliostats/area ( $/m2) 

Power dependent cost function ($) 

Width of heliostat (m) 

Mechanical limit (in units of D,), i .e .  diameter of clearout circle 

for helios ta t s 

Total thermal energy available a t  the base of the tower (MWH/yr) 

Re-directed energy/yr from cell c 

Ground coverage fraction (cell c)  

Figure of merit ($/annual MWH thermal a t  base of tower) 

Shifted figure of merit for case of power dependent costs 

Height of cylindrical receiver in meters (i .e.  top to bottom) 

h = Maximum height of receiver in meters 
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H = Set of useful hours in year 

Ho = Estimated number of hours such that E=HoPo 

fl = Total hours/yr of useful daylight 

p = Index for receiver mode heights (=1 ... Q) 

P ( t )  = 

Po = Total thermal power a t  design time 

q = Index for receiver mode azimuths (=1 ... P) 

r = Radius of cylindrical receiver (m) 

r = Maximum radius of receiver (m) 

R , R c =  Radial spacing parameters (cell c) in units of DH 

R ( p , Z )  = Radial layout function of (p ,Z)  

R(pc ,Zi)= Optimum radial spacing parameter for p=p, and Z=Zi 

S = Total annual direct beam insolation for the useful daylight hours 

Total thermal power a t  time t 

h 

(annual MWH/m2) 

T = Focal height of tower, i.e. height of center of receiver above plane 

of heliostat centers 

V = Set of independent variables 

Z , Z c  = 

CI = Relative cost of land 

Azimuthal spacing parameter (cell c)  in units of DH 

= Relative cost of wiring for 3 kinds of wiring h , 2 , 3  
6 = Prefix denoting "variation of" 

6, = Input scale parameter for variations 

Partial derivative with respect to x = ax 

'1, 

A@ = Azimuthal angle separating heliostats in a circular layout 

= Receiver interception fraction for cell c 

e = Solar elevation angle (degrees) 

= Solar elevation angle a t  start-up and shut-down (degrees) 

16 



A =  

r =  
- 

hc - 

N 

I - 1 =  

a(r) = 

Dimensionless total thermal energy for constrained optima 

Cost function for constrained optima 

Dimensionless measure of energy redirected by cell c 

(i.e. hc = Ec/(SAc) 

Cell matching parameter (annual MWH/m2) 

Efficiency of heliostats for re-directing power from cell c 

Radial distance to cell c (m)  

Radial distance to circle n (m) 

Proportional to a F for mechanical constraint 

Direct beam insolation as  function of time (W/m2) 
X 

Direct beam insolation a t  design time (W/m2) 

Direct beam insolation a t  start-up and shut-down 

Time parameter (hours from local noon) 

Time of choice for design specifications (hours from local noon) 

Cell use fraction for cell c 

Angle in ( R , Z )  plane 

Effective ground coverage fraction including land and wiring 

parameters 
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N 

Figure 1.1 Artist's Concept of Central Receiver System. 

Artist's Concept shows tower top receiver and collector field (shaded 

area). In this case the receiver 

is cylindrical. The heliostats are individually guided to reflect sunlight on 

the central receiver. The optical system is a multi-segmented single surface 

reflection. 

A typical heliostat is shown in lower right. 
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1. Introduction 

The solar central receiver project a t  the University of Houston began in 

June of 1973 under an NSF/RANN grant. The UH System Analysis Group has 

been actively developing the optical analysis of the central receiver system 

from this time to the present (References 1 to 2 0 ) .  Figure 1.1 illustrates the 

system concept. 

The central receiver system is a means of collecting high quality solar 

energy by optical transmission from a field containing a large number of 

independently guided and mass produced heliostats. Image resolution is not 

expected, but optical concentration is required in order to achieve an 

efficient energy transfer to the working fluid in the receiver. The complex 

geometry of the collector field and the large number of heliostats suggest the 

use of a cell model with a statistical assumption for the effect of guidance 

errors on the groups of heliostats belonging to individual cells. 

An average year is defined by an average insolation model with monthly 

average weather parameters for cloud cover , turbidity , water vapor , and 

horizontal visibility. The thermal sub-system includes the collector field , 

tower, receiver, tower plumbing, and main feed pump, but not the thermal 

storage , turbine , or electric power generators. 

More than half of the thermal sub-system cost is due to the collector, 

and therefore , the optimization is primarily concerned with the arrangement of 

heliostats in the collector field and the determination of its boundary. The 

optimum collector field geometry will be a state of minimum figure of merit. 

Generally , this implies that 

6F = 0, 

for all variations, but in section 4 an endpoint case occurs. 
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Complex geometries frequently lead to Monte Carlo simulation. Monte 

Carlo simulation is a statistical method for evaluating the performance of a 

given design, but it requires considerable CPU time and cannot be adapted 

to optimization. A cell model of the collector field provides an alternative 

approach to system simulation, which can also be used for optimization. 

Details of the cell-wise performance model are contained in References 2 

The theory of the cellwise optimization requires a few variables taken and 9.  

from the performance model. See section 2.  

The economic optimization is based on a figure of merit 

F = C/E, 

where C is the total cost of the thermal subsystem and E is the total thermal 

energy collected in an average year. E is the energy produced a t  the base 

of the tower. Similarly, C is the cost of the thermal subsystem down to the 

base of the tower and not including thermal storage, or turbine generator, 

etc. 
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2.  Cellwise Optimization Method 

The total thermal energy collected in an average year can be expressed 

in terms of the cell model as follows. 

where 

E 

a 

b 

C 

A 

‘1, 

hc 
f C  

@C 

s 

s is the 

Tota 

c 

thermal energy available a t  the base of the tower, 

Multiplicative loss factor including receiver absorbtivity , 

Subtractive loss constant including receiver radiation , 

conduction , and convection losses , 

Index of cells in collector field (See Figure Z.l), 

Area of land/cell in collector , 

Receiver interception fraction for cell c , 

Dimensionless measure of energy redirected by cell c , 

Ground coverage fraction for cell c ,  

Cell use fraction for cell c ,  and 

Jdta( t ) . 
H 

annual direct beam insolation for the useful hours of daylight. 

a(t) is the instantaneous direct beam insolation. The useful daylight is 

defined by the requirement 

a( t )  - > as o r  8 - > BS, 

where 8 is the solar elevation angle. 

up or shut-down, and as is the coresponding insolation. 

between loo and 15O. 

8, is the elevation of the sun a t  start-  

In practice es is 

The total area of glass in cell c is given by 

Ac = qc, 

23 



I X 

Figure 2 .1  Cell Model of Collector Field. 

The X axis points south and the Y axis points east. Heavy lines mark 

the outer boundary of the collector field. In this example the tower is 

located a t  cell ( 6 , 4 )  , and only the tower cell is excluded by the inner 

boundary. 
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and the total area of glass in the collector is 

AG = IA = I\,Ifcoc. 
C 

C C 

The ground coverage fraction is given by (See Figure 2 .2)  

where 

- - a 
C 

2AH/Di f o r  s t a g g e r  neighborhoods, 

AH/Di f o r  c o r n f i e l d  neighborhoods, 
I 

Width of heliostat I 

Area of glass/heliostat (See Figure 2.3) 

Radial spacing parameter for heliostat neighborhoods, and 

Azimuthal spacing parameter for heliostat neighborhoods. (See 

Figures 2.4 and 2.5).  

Rc  and 2, are dimensionless multiples of DH and must exceed unity because 

of the free-turning requirement. The so-called mechanical limits will be 

discussed as  constraints in section 5. 

The cellwise performance model defines the energy E, which is re- 

directed towards the receiver by cell c. Details of this construction are not 

relevant to the optimization. However, the optimization theory is written in 

terms of the dimensionless quantity 

Ac(Rc ,Zc)  = E c ( s A c ) .  

hc is  the ratio of redirected energy from cell C to the maximum total annual 

direct insolation available from cell C. hc depends on the location of cell c 

and the arrangement of neighbors via (R, Zc) . 
The optimization determines the following set  of independent variables : 

V = {(Rc, Z c ,  e,) I c = c e l l  i ndex) .  

QC is the dimensionless fraction of cell usage for cell c. oC=O if the cell is 

25 



F R A C T I O N  OF G R O U N D  C O V E R E D  U N I V E R S I T Y  OF t i O U S T O &  

M A X ( A )  = 3.5261E-01 M I N ( A )  = R.3149E-C2 A V R ( A )  = 1 .S.303E-Ol 

A I J  = ( 1 0  + *  0 1 

0 . 0 8 3  0.0’33 0.101 

0.038 0.115 C . 1 3 1  

0.115 (3 .1Lh C.183 

0.131 C . 1 4 3  0 . 2 7 4  

0 . 1 3 8  0.203 0 . 3 5 3  

9.131 (3.183 0 . 2 7 4  

0.115 G.146 0.183 

0 . 0 9 8  0.115 0.131 

X P R I N T € D  V A L U E 5  

0.104 0.1C1 0 . 0 9 3  0.i781 

0.138 0.131 0.115 Cl.198 

0 . ? 0 3  0.183 0,146 C . 1 1 5  

0 . 7 5 3  0 . 2 7 4  0.183 0.131 

0. 0 . 3 5 3  0 . 2 P 3  2.138 

0 .3S3  0 . 2 7 4  0.153 C.131 

0.21!3 0.1913 C.lG6 0.115 

0.1Tq 0.111 C).115 0 . 0 9 8  

1,000 1.o;)o 1.001! 1.000 1,oor) 1.000 1.000 

i . o w  
1.I)clc 

1 .OGO 

1 . 000 

1 . 001’ 

1. ooc  

1 .cor 

1 . O O G  

0.138 

Figure 2 . 2  Fraction of Ground Coverage Matrix. 

The tower is located a t  cell (5,4). In this case the ground coverage 

fraction is independent of azimuth measured from the base of the tower. In 

general, this is not an exact symmetry for cellwise optimization. The bottom 

row and the right column represent averages of the corresponding rows and 

columns. The value in the lower right corner is the over-all average. In 

general, the array averages are glass weighted and for the average fraction 

of ground covered by glass is always 1.000. However the over-all average is 

land weighted for this array only. 
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-U 

I 

Figure 2 . 3  Rectangular Heliostat Geometry. 

The U axis is horizontal in the usual altitude-azimuthal mounting system. 

A sun sensor can be located a t  S. The area of glass for shading and 

blocking calculations is 

= (UMIR-SLOT) * VMIR. AH 
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12 

Figure 2 . 4  A Cornfield Type of Heliostat Neighborhood. 

The R and 2 spacing parameters are shown. Each neighbor is numbered 

as in the code. This figure shows first and second order neighbors. 
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Figure 2.5 A Stagger Type of Heliostat Neighborhood. 

The R and 2 spacing parameters are shown. The horizontal lines 

represent tower concentric circles if the layout is radial stagger. Each 

neighbor is numbered as in the code. In radial stagger, neighbor #1 is 

towards the tower. 
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outside of the economically useful portion of the 

the cell is entirely inside of the useful region. 

The optimized collector field has an inner and an 

terms of the set  ioc). 
2 . 1  Simple Cost Model 

The simplest possible cost model includes a 

which is proportional to the total area of glass in 

this case 

c = c  + C A  
o h G' 

This cost model assumes that land cost is either 

collector field, and gc=l if 

O<gc<l for boundary cells. 

outer boundary defined in 

fixed cost Co and a cost 

the heliostat field AG.  In 

ignored or included in the 

fixed cost. Wiring cost is -4% of ChAG and is simply ignored. 

AG = 2fcec. 
C 

The optimization process requires known values for a ,  b ,  s,  A ,  Co, c h ,  q,, 

We consider variations of the figure of merit, F ,  with respect to each of 

the variables in the set  V.  Assuming that the optimum occurs within the 

allowed range of all the variables, 

6F = 6(C/E)  = (1 /E)6C - (C/E2)6E = 0 

so that 

F = C/E = 6C/6E 

for all choices of 6 a t  the optimum point. In this simple case 

a c = c h f c i  
$C 

a, c = -chfc@zc 
C 
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a, E = arl,(az A c - A c / Z c ) f c $ c S i  
C C 

The trim variable I$ is limited to the range 0 - 5 $c 5 1. QC = 0 if cell c 

is outside of the optimum field and 0, = 1 if cell c is inside of the optimum 

field. For boundary 

cells, 6 = s$,a$,, gives 

C 

However, 0 < $c < 1 if the cell c is a boundary cell. 

F = (a c ) / ( a  E) 
@C 0, 

= ch/ (arlcAcS) 

so that 

qcAc = ‘h/ (FaS) 3 

which can be satisfied approximately by the subset of cells called boundary 

cells. The exterior cells are  discarded. 

and 

The stationary conditions for interior cells can be written as  

aR E = (a, C) /F  
C C 

aZ E = (a, c)/F. 
C C 

However, it  is convenient to introduce an alternative parametrization of the 

neighborhood geometry. Let 

f 5 a /RZ 
C 

and 

t 1/2 (R2-Z2)  

so that 

hc(R,Z) = A c ( f , t ) .  

I t  can be shown that 

a f / a t  = o = a t / a r  
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R 
R 

x =€  
C 

Figure 2.6 Alternative Parametrization of the Neighborhood Geometry. 

Rectangular hyperbolas of constant f and t fill a quadrant of ( R , Z )  

The box plane. 

around (Ro,Zo) is the zone of variations. 

define the optimum and represent theoretical optimum conditions. 

region represents mechanical limits. 

(R,,Z,) is input estimate and (R1,Z1) is output optimum. 

Heavy lines labeled and 8 h =E 
tc 

The shaded 
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so that curves of constant f and t are mutually orthogonal hyperbolas. See 

Figure 2 . 6 .  Consequently , the stationary conditions can be re-written as 

a, E = (a, C)/F 
C C 

and 

a, E = (a, C)/F. 
C C 

For interior cells we have 9, E 1 so that 

a , c = o  ( h e l p f u l  ! ) 
C 

a, E = aqc(a, Ac)fcSi 
C C 

a, c = chi  
C 

and 

a, E = aqc ( f  a Ac + hc)SA . 
C ,c 

Consequently, the optimum geometry for an interior cell is determined by the 

two requirements 

a A = o ,  
,c 

and 
(fcafchc+Ac)qc = nd p C,/(FaS). 

N N 

p is called the cell matching parameter because i t  is independent of c. p 

must be available to the optimizer. Note that depends on the figure of 

merit, F ,  which is estimated before the optimum can be determined, so that 

the whole solution process must be repeated to converge F(input) to 

F(output). Fortunately , convergence is quite rapid. 

The cell matching parameter can be understood as follows. 
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N 

p = Ch/(Fag) 

= ChAGE/ ( CaSAG) 

= (ChAG/C) (E/ (agAG)) 

Hence i; is the fraction of total cost due to heliostats times the fraction of 

available energy incident on the heliostats which is produced a t  the base of 

the tower. 

The stationary condition for boundary cells gives 

or 

arlcA f c 3A = ChfcA 
C 

Consequently, if 

then Bc = 1 for boundary cells. 

for remote cells. 

by continuity , we conclude that 

Bc is always positive, but Bc+ o as qc+ o 

Remote cells are external to the collector field and, hence 

Bc < 1 for external cells, and 

B > 1 for internal cells. c -  
See Figure 2.7. Small qc occurs if the cell has a large slant range or a poor 

receiver incidence angle ( e . g . ,  cylindrical receiver where the cell is too near 

the tower). Even if qc is unity Bc may be less than one if the energy 

production A, is low either because of poor heliostat cosine factor (far to the 

south) or because of excessive shading and blocking. Hence, the inequality 

B > 1 trims the collector field and provides both the outer and inner 

boundary. 
c -  
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I N T E R C E P T I O N  F A C T O R S  F R O M  ( C Y L N )  R E C E I V E R  P R O G R A M  * * * * U N I V E R S I T Y  O F  

M A X ( A )  = 1 . 0 0 1 7 E  0 0  Y I N ( A )  = 

A I J  = ( 10 * *  0 ) X P R I M T E D  V A L U E S  

0 . 3 6 2  0 . 4 2 5  0 . 4 7 4  0 . 4 9 2  0 . 4 7 4  l7.425 

0 . 4 5 7  0 . 5 5 9  0 . 6 4 2  0 . 6 7 4  0 . 6 4 2  0 . 5 5 9  

0 . 5 6 1  0 . 7 1 2  0 . 8 3 3  3 . 8 7 7  0 . 8 3 3  0 . 7 1 2  

0 . 6 4 6  0 . 8 3 8  0 , 9 6 6  0 . 9 9 6  0 . 9 6 6  0.878 

0 . 6 8 2  0.ad7 c . 9 9 7  o. 0 . ~ 9 7  r i . w 7  

0 . 6 5 1  0 . 8 4 7  0 . 9 7 4  1 . 0 0 2  0 . 9 7 4  0 . 8 4 7  

0 . 5 6 7  0 . 7 2 3  C.850 9 , 8 9 5  0 . 8 5 0  0.723 

0 . 4 6 2  0 . 5 6 8  0 . 6 5 4  0 . 6 8 8  0 . 6 5 4  ‘2.568 

3 . 6 2 4  7 E - C  1 A V R ( A )  = 5 . 3 4 0 9 E - 0 1  

0 . 3 6 2  0 . 4 q 3  

0 . 4 5 7  C.625 

C. 561 0 . 7 8 7  

0 . 4 4 6  C.857 

0 . 6 8 2  O . Y r I 2  

0 . 6 5 1  0 . 8 9 4  
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Figure 2.7 Receiver Interception Matrix. 

The tower is located a t  cell (5 ,4) .  The cylindrical receiver gives 

interception which is approximately independent of azimuth. Lack of 

symmetry is due to north-south asymmetry in orientation of heliostats. Cell 

size is too large to show reduced interception for near tower cells. 
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2 . 2  Complete Cost Model 

A similar derivation can be given for other cost models. In practice, it 

is necessary to consider the cost of land and wiring. Let 

c = co + ChArgc*, 
C 

where 
QC = + fc ( ~ + B ~ P , + B ~ R ~ + P ~ Z ~ ) .  

ff’c]/ch is the relative cost of land, p1,2,3 are relative cost parameters for 

various kinds of wiring (i.e. relative to heliostat cost which is dominant), 

and pc is the radius of the cell center relative to the tower. 

The stationary condition states that 

6 C  = F 6E 

for all possible variations, 6.  Dimensionless expressions for total thermal 

energy and total thermal system cost are defined as 

and 

r = c/ (chi). 
A s  previously , the cell matching parameter 

N 

p = C,/(FaS). 

After differentiation we can drop factors of g p ,  so that 

a, A = 
C 

8, A = 
C 

a A =  
$C 

a, r = 

at r = 

C 

C 
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The stationary condition gives 

chX a- = F ~ S A  6~ 

or 

= ctir. 
Consequently, 

for interior cells, and 

qChc = i; ( c r / f c + l + ~ 1 ~ c + ~ 2 ~ c + ~ 3 ~ c )  

for boundary cells. 

side. 

Bc is defined as qcAc divided by the equivalent right 

A s  previously, the interior of the field satisfies the condition 

Bc 5 ‘lcAc/ ( (cr/fc+l+B1~,+B2Rc+B3ZC)~) - > 1 .  

These relations degenerate to the previous case if land and wiring have no 

cost; i . e . ,  

u = O = $  = p  = p  
1 2 3’ 

2 . 3  Power Dependent Cost Model 

In practice, it  is also necessary to consider power dependent costs. For 

this purpose, the cost model becomes 

c = co + c (P ) + chX~@c$c 
C P O  

where C (P)  is the power dependent term and Po is the total thermal power 

a t  design time. 
P 

In this case, 

6F = (1/E)6C - (C/E2)6E = 0 

with 
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6C = 6(C-Cp) + (a c )6P 
P P  0 

a C 
P P  

and 6E as previously given. is known, but 6Po needs explanation. 

P ( t )  can be expressed as Let P(T) be the total thermal power a t  time t .  

P(T) = ao(r)~tqc[cfc@c - b/R 
C 

where tc=tc(fC,tc) is the efficiency of heliostats in cell c for re-directed 

power a t  time T and R is the number of useful hours in a year. The time 

dependent quantities are related to the corresponding annual quantities by 

integrating over the useful hours in an average year. In summary 

n = SHdt, 

= JHdTo(t), 

Ac = .fHdTo(T)[c(T)/Sj 

and 

E = JHdrP(t). 

The variation of Po is given by 

6Po = a d 1  0 ) A ~ c ~ 6 f c ( [ c + f c a f ~ c ) @ c  + 6 t c ( a t [ c ) f c ~ c + 6 ~ c [ c f ~ ~  * 

6Po can be used to derive optimum conditions. However, it is useful to 

assume that the incident energy is proportional to the incident power at  

design time. Let 

E = a Einc - b 
Po = p( ro )  = aPinc - b/n 

and 

so that 

E = Ho Pinc inc 

6P 0 = a 6 Pinc = (a/Ho) 6Einc 

= ( l / H o )  6E . 

38 



The stationary condition 

6 C  = F6E 

gives 

F6E = 6 ( C - C  ) + (a C )6Po . 
P P P  

Consequently, 

F6E = 6 ( C - C  ) + (a C ) (1 /Ho)6E  
P P P  

or 

6 ( C - C  ) = F;:6E 
P 

with 

F$; = F - (apCp) /Ho 

The previous optimum conditions are applicable with F*F* in p. Consequent- 

ly, under the simplifying assumption for Po, we can obtain power constrained 

optima by converging 

F;:(INPUT) ++ F+c(OUTPUT). 

The previous input for F becomes F*(INPUT). New outputs are  needed for 

Ho(OUTPUT) and F*(OUTPUT) with 

Ho(OUTPUT) = Einc/Pinc 

and 

F;\(OUTPUT) = C/E - (apCp)Pinc/Einc. 
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3 .  Transition to a Heliostat Layout using an Optimization with Fixed 

Azimuthal Spacings 

The cellwise optimization method ignores geometrical constraints which 

occur a t  the cell boundaries. If these effects were rigorously included, an 

impossible N variable problem would occur. The nature of these difficulties 

can be seen when a cellwise optimum is converted to an actual heliostat layout 

(see figure 3.1). If we assume a circular layout, spacing between circles can 

be obtained from the cellwise optimum by making an azimuth independent f i t  

on the optimum Rc values for the relevant cells. Optimum azimuthal spacings 

Zc are  nearly the same for all cells. Assume a reasonable azimuthal spacing 

Z1 for all heliostats on the outer circle. For instance, let 

z1 = PI A@ 

where p1 is the radius of the outer circle and A@ is the azimuthal angle 

separating heliostats in the zone containing the outer circle. The nth circle 

of this zone will have the azimuthal spacing 

‘n = P, A$ = z1 ( P , l P , )  

so that the inner circles are  squeezed into progressively smaller azimuths and 

for some n ,  an unacceptable amount of loss occurs. A t  this point a new zone 

must be created with 

z*+l E z l .  
We can assume that the average azimuth < Z >  equals the optimum values for 

the zone, but a systematic departure from optimum occurs as  we cross a 

zone. This systematic behavior of a zonal layout is ignored by the cellwise 

optimization in its original form (see Figures 3.2-3.4) .  

I t  is impractical to solve for the zone boundaries in the optimizer. 

However, a more balanced layout is possible by making better use of the 
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Circle Radius (DMIR) 

Figure 3 . 4  Circle Spacing versus Circle Radius. 

This figure shows the performance of the circle generating subroutine. 
The connected line joins points belonging to a zone. R(1-1)-R(1) is plotted 
against R(I). The circle number of the first circle in each zone is shown 
over the point. D over a point indicates that deletes occur in this circle. 
An upward arrow with an M indicates that R(1) was decreased because of 
mechanical limits. The boxed region is entirely controlled by mechanical 
limits. The right branch of 
the V is primarily due to "nose blocking" ( i .e . ,  blocking due to the heliostat 
directly towards the tower and two circles inward). The left branch of the V 
is primarily due to diagonal blocking from the two heliostats one circle 
inward. Such diagonal blocking becomes more important as the azimuthal 
separation decreases, i . e . ,  as one moves inward in a zone. 

The outer three zones show a V shape graph. 
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shading and blocking data. The optimization method described in section 2 

requires the interpolated function 

hc(R,Z) = F i t ( R , Z ;  h c ( R i , Z  . ) I  i, j= l . .  . 4 ) ,  
J 

where 

= R; (1+(i-2%)6~), Ri 

and 

Z .  = Z; (1+(j-23)60). 
J 

6, = 1/10 is a useful choice for the size of variations. ( R l , T )  are input 

estimates for the optimum (Rc,Zc) (See Figure 3.5). The hc(Ri,Z.) are based 

on insolation and shading and blocking data. The improved layout function 

R ( ~ , z )  gives 

I 

- Pn-2 - P, - R ( P n , Z n )  

where pn is the radius of the nth circle measured in the plane of the heliostat 

field and Zn is the azimuthal spacing in the nth circle of the zone. 

The improved layout function is defined as follows. Let 

R(p,Z) = C u b i c  Fit ( Z ;  E ( p , Z i ) l  i=l .  . 4 )  

where 

,. 
and Rc(pc,Zi) = Optimum value of Rc with Z, constrained to Zi. The 
h 

Rc(pc ,Zi) are obtained from CELLAY. 
h 

The CELLAY solution for R, is similar to the method used for (Rc ,Zc )  

except that one less variable occurs. In this case, we have 

aR C = FaR E 
C C 

and 

8 C = Fa E .  
0, @C 
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MULTIPLIER SCALE 
.85 1.0 

-1.0 

0. 

+ 1.0 

1.15 

0 FOR DATA 
)t FOR DERIVATIVES 
1 FOR INPUT POINT 

3 . 5  Interpolation in the (R,Z) Patch. 

This is the region spanned by 

points and nine intermediate points are  

two dimensional region. The solution 

variations of ( Rc , Zc) . Sixteen data 

used to support a quadratic fit on the 

finder refuses to go into the shaded 

region except for special default cases. 

a rectangle in Figure 2 .6 .  

This whole region is represented as  
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Using the land and wiring cost model, we have 

a R  C = Chi { - ( f c / R c ) ( l + B 1 P c + B 2 R c + B ~ Z c )  + B2fcI 
C 

a c = Chi*, 
@C 

aR E = a s i q  (R i3 

a E = a~iqcAcfc 

hc-hc) (fc/Rc) c c Rc 
C 

0, 

Consequently, 

qc(R a Ac’hc) = (ch/FaS) ~ B 2 R c - ( 1 + B 1 ~ c + B ~ R c + B ~ z c )  I 
Rc 

for all interior cells, and as previously 

Bc = rlcfcAc/(+ci;) = 1 

for boundary cells. . 
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4.  Optimization with Boundary Constraints 

Boundary constraints can be introduced via the assumption that 

Qc = 0 f o r  c E 6 (i.e. C belongs to s e t  6)  

where is the fixed set of exterior cells. Consequently, 

E = a% ( 2 qchcfcQc) - b 
c&B 

where B is the set of allowed cells. 

of B. 

The optimized field may fill any subset 

If boundary constraints are extreme, the power available for a 

"reasonable" tower height may be very low, leading to an unreasonably high 

figure of merit. In such cases use of a taller tower (50 to 100% taller) will 

reduce blocking losses and may allow enough extra heliostats in the 

constrained area to result in a lower figure of merit. This approach also 

delivers more power from the same land area. Thus, boundary constraints 

can lead to various results. (See Figures 4 .1  and 4 . 2 . )  
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Figure 4 .1  Output for an Asymmetric Boundary. 

The ALLOWED block of integers is input to define the constraint on land 

use. The choice (0 , l  ,2,3,4) corresponds to (0 1/4,1/2 3/4,1) times the 

available area for each cell. After optimization, the number of heliostats/cell 

is given by the array in the middle of the page directly above the summary 

output. 
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Figure 4 .2  Figure of Merit versus Annual Energy. 

Each curve corresponds to a tower height. Numbers next to the circled 

points are input figures of merit. The two dashed curves correspond to the 

locus of minima and the locus of converged optima. Convergence ( i . e . ,  input 

figure of merit = output figure of merit) will occur a t  the minimum of each 

curve except for the effect of power dependent cost. The steeply rising 

portion of the curves on the right represents nonproductive overcrowding of 

the availible space. 
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5. Optimization with Mechanical Constraints for Heliostat Rotation 

If all heliostats are tracking accurately, the planes of neighboring 

heliostats are nearly parallel and no collisions are likely. However during 

startup or shutdown operations, or if a few heliostats are disabled, the 

parallelism of neighbors will not be maintained and it is necessary that the 

heliostat layout satisfies a free turning mechanical constraint. Figure 5.1 

shows a portion of the radial stagger neighborhood. Free turning imposes 

three different mechanical limits known as the radial, azimuthal I and diagonal 

limits. The free turning condition is represented by the diameter of the 

sphere generated by the rotation of the heliostat plus a safety margin. Let 

DM represent the diameter of the safe sphere. In practice a typical value is 

D, = 1.5362 DH. 

Figure 2.6 shows the appearance of the three mechanical limits in the ( R , Z )  

plane. Figure 5.1 also shows the allowed region which is defined by the 

inequalities 

- > Dfl> 

- > D M 9  

and 

(R/2)2+(Z/2)2 2 D i .  
When an optimum collector geometry is determined as in section 2 ,  some of the 

cells may have solutions falling in the unallowed region. The three 

constraints are separated by the two points of hexagonal closest packing 

marked H1 and H2 in Figure 5.1. Co is the mid point of B2 in figure 5.1. 

Co is also the point of minimum ground coverage on B2 (see Figure 5.2). 
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It is easy to see that a t  

= tan-'  (1 /~3)  ; R1 = 6 D M ;  X 1  
H 1 :  Z = D 1 M ;  

f l  = a C / f i D i ;  tl = %(3Di-D;) = D i  

H2: Z2 = dTDM; R 2 = D M ;  ' 2  = t an-  (43) ; 

f2 = a c / , / D $ ;  t2 = %(D$-3D2) M = -D2 M 

and 

C 0 : Z = &DM; R = ./?DM; X = n / 4 ;  

f = a /RZ = ac/2D;; t = 0. 
C 

If the unconstrained optimum falls outside the allowed region, the 

solution must be moved to a point on the boundary of the allowed region. 

The boundary of the allowed region has the following branches: 

The optimum choice of boundary points is the point of minimum F.  If the 

minimum occurs on (@,H ) , then 
B3 

aRF = 0 

is necessary unless the minimum occurs a t  the end point H1. 

occurs on (H1,H2)B then 

a F = O  

If the minimum 

X 

is necessary unless HI or H2 is the solution. 

occurs on (H2,m) , then 

Similarly, if the minimum 

Bl 

a F = O  Z 

is necessary unless the minimum is H2. 
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B i  : R > DM 

B2 : ( R / 2 I 2  + ( Z / 2 ) *  > Dd 

B 3 :  Z > DM 
# 

#43 

R 
Figure 5.1 Radial Stagger Neighborhood and Mechanical Limits. 

R is the radial coordinate and 2 is the azimuthal coordinate. Circles 
represent the excluded sphere for each heliostat. The circle a t  the origin is 
the central heliostat. Heliostats 1 to 8 are the closest neighbors. Heliostat 
#1 is nearest to the tower and will cause serious blocking losses if R is small. 
Heliostats 4 to 6 are symmetrically located but can not cause blocking. The 
free turning requirement relates the central heliostat to all of its nearest 
neighbors. Note that if 2 is large and R is small, heliostat 1 becomes a 
nearest neighbor. 

There are three mechanical limits: B is the radial limit; B2 is diagonal; 
and B3 is azimuthal. The shaded regiah is not allowed. H and H are 
points of hexagonal closest packing and C is the point of makimum g8ound 
coverage on B2. The angle x is a paramster for locating this constrained 
optimum in [HI,  H2] of B2. See figure 5.2. 
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Figure 5.2 Graph of ( f , t )  versus x on B3. 

The upper curve shows that Co is the point of minimum f on B3. We 

The lower curve shows that t is a monotone parameter on assume ac = 1/2. 

B3 - 
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In practice, we assume that aRF>O on B3 so that H1 is the only possible 

minimum of B3 and, similarly, azF>O on B1 so that H2 is the only possible 

minimum of Bl. This leaves the circular branch (Hl,H2)B2 including the 

endpoints. Let 

where 

a f = a (a / ( 4 D i  cos x sin x 1) 
X x c  

= a / ~ 2  - ac/Z2 = a ( z ~ - R ~ ) / R ~ z ~  

= -2 t f2 / ac  

C C 

and 

a t = ( 4 D i / 2 )  a X (cos2X-sin2x) 
X 

= -2RZ = -2ac / f .  

For  a = a or a , we have 
f C  t C  

aF = ( 1 / E )  aC - (C/E2) 6E 

and with $c=l 

aE = a%qc(Acafc+fcaAc). 

Consequently, 

-E/(Fai%qc) aF = Acaf +f ah +Ta 
c c c  

with 

Ta = -aC/(FaSKqc). 

We assume the land and wiring cost formula 

c = Co+ChA~$c*c 
C 

with 

(Eq .  5.1) 

(Eq.  5.2) 

so that 
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with $c=l for interior cells. This gives 

Ta = (ihC) a*, 
where I as previously, 

N 

p = C h / ( F a $ ) .  

The evaluation of a$ requires a(R,Z)/a(f  I t)  which is obtained by inverting 

a ( f , t ) / a (R ,Z) .  We know that 

so that 

RZ 

+ f / Z  - f / R  ( R 2 + Z 2 )  f 

- a c Z / f 2  -a - - ( R 2 + Z 2 ) - l  [ C 

R -Z 

Consequently, 

a,$ = + ( f / ( R 2 + Z 2 > >  (B2R-B,Z>.  

Equation 5.2 is now complete. Hence, a F can be evaluated using 
X 

Equation 5.1. Choosing 

a F = O  
X 

implies that 

atF = t f ( f / a c ) 2  afF, 

which can and will occur for both minima and maxima. 

a F ( H 1 )  > 0 
X 

implies a local minima a t  HlI  and 

X 
a F ( H 2 )  < 0 
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implies a local minima 

In the computer 

z.(x> = 

a t  H2. 

implementation , we evaluate 

Sign { [E/  (Fa%qc) laXF] = X/ I x I 
on a circle through the solution. 

of the allowed region, then the solution moves out to B2. 

optimum is allowed, then 

If the unconstrained optimum falls outside 

If the unconstrained 

(R2+Z2)' > 2DH. 

Several cases occur. 

Case 1) 

(See Figure 5.3). 

Z(x)  = + everywhere on B2, then H1 is the optimum solution. 

Case 2)  

I(x) = - everywhere on B2, then H2 is the optimum solution. 

Case 3) 

where xo is a maximum of F. 

In this case we arbitrarily assume that 

Hence, x = xo can not be an optimum solution. 

HI is optimum if xo > 45O, 

H2 is optimum if xo < 45'. 

Case 4)  

. 
where xo is a minimum of F and x = xo can be accepted as  an optimum solution. 

Case 5) 
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If I ( x )  changes sign several times, the automatic method fails. 

In most cases , when mechanical limits occur , I(x) locates the optimum solution 

on B2,  and if no mechanical limits occur, i t  verifies the standard unconstrained 

solution. Figures 5.4-5.6 show output for a number of the cases discussed 

here. 
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Figure 5.3 Figure of Merit versus x for Five Cases. 

The five cases are discussed in the text. X marks a maxima and dot 

The code deals with cases 1 to 4 automatically, but case 5 

An over-ride input is available for these 

marks a minima. 

may require an operator judgement. 

rare cases. 
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Z = >  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  ..................................... 
R 3 8 8 8 8 9 9 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 3 0 1 1 1 1 1 1  
I 5 5 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 L 5 5 7 8 9 0 1 2 3 4 5  
V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~ 0 O O O O O G O ~ O O ~  

‘7.853 ( 7 0 0 0 ~ 3 0 0 0  * *  + +  
q.850 0 0 0 0 0 0 0 0 0 0 0 0  * *  t +  
0.573 o o c l  0 0 0 0  * * + +  
0.890 0 0 0  g o o  * + + +  
n.893 n o  0 3  * + +  
0 . 9 9 9  0 
0.313 
0 . 9 2 3  - - * *  0 9  
0 .333  - -  * *  9 0  
3 . 9 4 3  - -  * * *  0 0  
0 . 9 5 3  - -  * * *  0 0  
0 . 9 6 3  - - -  * * *  0 0 0  
0 . 9 7 0  - - -  * * *  0 0  
0 . 9 5 3  - -  * * *  0 0  
0 . 9 9 3  - -  * * *  0 0  
1 .000  * * *  0 0 
1 .313 * * *  0 0  
1 . 3 2 3  * * *  0 0  
1 . 3 3 3  * * *  0 0  
1 .OLD * * *  0 0 II 
1.353 * * *  3 0 3  
1 . 0 6 7  * * *  0 3 0 n  

1.087 * * *  0 0 0 0 0  
1 .093  * * *  0 0 3 0 0 0  
1.107 * * *  @ 0 0 0 0 0 0 3 9  
1 . 1 1 3  5 0 * * * 0 0 0 0 n 0 0 0 0 0 3  
1 .123  0 0 * + * 0 O c ) O  
1 .133 * * *  
7 . 1 4 3  * * *  

o x +  
* o  - -  

* * *  o o c o  1 .073 

Figure 5.4 Finding the Correct Solution. 

(R,Z)  coordinates are given in multiplicative form. (1,l) is the input 
estimate. X marks the solution. 0 marks points where the t-equation holds 
and * marks the points where the f equation holds. In this case no 
mechanical limits occur in the zone of variations, but an alternative solution 
occurs in lower left. The circle of signs is always passed through the 
solution point. + on right of X and - on left of X verifies that the solution 
is minimum of the figure of merit. The +Is and -‘s refer to the sign of Z.(x). 
The 2 are placed on a circle in the ( R , Z )  plane which is called the circle of 
signs. 
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LOCATOR * * * * * * * * *  : L F O R  M E C H A N I C A L  L I M I T S  : 0 F O R  T EQUATION : * F O R  F EQUATION : 

. 

. 

Z = >  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
R 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1  
I 5 6 7 8 9 0 1 2 3 4 S 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 S  
V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 .853 
0.863 
0.870 
0.883 
0.893 
0 .900  
0.913 
0.923 
0.933 
0 . 9 4 3  
0.953 
0.963 
0.973 
0.983 
0.993 
1.003 
1.313 
1.023 
1.033 
1.043 
1 . o s 3  
1.063 
1.073 
1.080 
1.093 
1.103 
1.110 
1.1 23  
1.133 
1.143 
1.153 

L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L  
L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L  
L L L O L L L L L L L L L L L L L L L L L L L L L L L L L L L  
L L L L O L L L L L L L L L L L L L L L L L L L L L L L L L L  
L L L L L L L L L L L L L L L L L L L L +  
L L L L L L L L L L L L L L L L L L L +  
L L L L L L L L L L L L L L L L L L L + * * * *  
L L L L L L L L  L L L L L L ‘ L L *  * + +  
L L L L L L L L O L L L L L * * L L +  
L L L L L L L L L O L L * * L L L L +  

L L L L L L L L L * * O L L L L L +  
L L L L L L L L L L @ * L L L L L +  

L L L L L L L L * L L L 0 L L L(’X) 
L L L L L L L * L L L L L 0 L L?’” 
L L L L L L * * L L L L L L L -  
L L L L L L * L L L L L L L L -  
L L L L L * L L L L L L L L - -  
L L L L * * L L L L L L L L -  0 
L L L L * L L L L L L L L - -  
L L L * * L L L L L L L L -  0 
L L L I L L L L L L L L - -  0 
L L L * L L L L L L L L -  0 
L L * L L L L L L L L - -  0 
L L * L L L L L L L L -  0 
L L * L L L L L L L - -  0 
L L * L L L L L L L -  0 
L * L L L L L L L - -  il 
L * L L L L L L L -  0 
L ‘ L L L L L L -  0 
L * L L L L L L -  0 
L * L L L L L - 0  

Figure 5.5 Finding the Solution of B3.  

The L filled region is not allowed due to mechanical limits. This case 

shows B1 and B3.  An ordinary solution occurs a t  the intersection of the 

zeros and s tars ,  which happens to fall inside of mechanically limits. There- 

fore the solution is shifted to the position labeled X which is on B3 a t  the 

point where the sign of Z(x) changes. 
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LOCATOR * * * * * * * * *  : L F O R  MECHANICAL L I M I T S  : 0 F O R  T EQUATION : * F O R  F EQUATION : 

Z = >  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

R 
I 
V 

0 .853 
o . a a  
* ~ . a 7 3  
o m a n  
0.893 
3.903 
0 .913 
0 .923 
0 .930 
0.943 
0.953 
0.963 
0 . 9 7 3  
0 .983 
0.993 
1.003 
1,013 
1 .023 
1 .333 
1 . 0 4 3  
1 . 0 5 3  
1 .063  
1 .073 

1 . 0 9 3  
1.103 
1 . 1 1 3  
1 .123 
1.1 3 3  
1.140 
1 . 1 5 3  

1 .oa3  

. . . . . . . . . . . . . . . . . . .  
8 a 8 8 8 ~ 9 9 9 ~ 9 9 9 9 9 0 0 0 0  
S 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 
L L L L L L L * L L L L L L L L L L L  
L L L L L L * L L L O L L L L L L L L  
L L L L L * L L L L O L L L L L L L L  
L L L L I t L L L L L L L L L L L L L  
L L L L * L L L L L L L L L L L L L L  
L L L * L L L L L L L O L L L L L L L  
L L * * L L L L L L L O L L L L L L L  
L L * L L L L L L L L O L L L L L L -  
L * L L L L L L L L L O L L L L L L -  
L * L L L L L L L L L L L L L L L L -  
* L L L L L L L L L L L O L L L L -  
* L L L L L L L L L L L O L L L L -  
L L L L L L L L L L L L O L L L -  
L L L L L L L L L L L L O L L L -  
L L L L L L L L L L L L O L L -  
L L L L L L L L L L L L O L L -  
L L L L L L L L L L L L O L - -  
L L L L L L L L L L L L O L -  
L L L L L L L L L L L L O - -  
L L L L L L L L L L L O O -  
L L L L L L L L L L L O - -  
L L L L L L L L L L L O -  
L L L L L L L L L L O - -  
L L L L L L L L L L O -  
L L L L L L L L L O - -  
L L L L L L L L L O -  
L L L L L L L L S - -  
L L L L L L L J O -  
L L L L L L O O -  
L L L L O O L L -  
L L L O O L L -  

I 

. . . . . . . . . . . .  
0 0 0 0 0 0 1 1 1 1 1 1  
4 5 6 7 8 9 0 1 2 3 4 5  
0 0 0 0 0 0 0 0 0 0 0 0  

L L L L L L L L L L L L  
L L L L L L L L L L L L  
L L L L L L L L L L L L  
L L L L L L L L L L L L  
L ,:B 

Figure 5.6 Going to Hexagonal Closest Packing. 

In this case, the unconstrained solution goes beyond mechanical limits 

and off the top of the zone of variations. However, the circle of signs 

indicates a local minimum a t  H2, which is marked by an X .  This is an 

example of case 2 as  shown in Figure 5 .3 .  
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6 .  Optimization with Energy or Power Constraints 

An optimization study may seek to determine the optimum scale of a 

system, or it may provide a constraint on the system size. For central 

receiver systems the most natural constraint is the total thermal power a t  the 

design time. Our 

first look a t  the effect of constraints will be for fixed annual energy. We 

assume a specific tower height, receiver size, and cost. 

The optimization described in section 2 is unconstrained. 

Given the figure of merit 

F = C/E, 

with 

C = C + C A  o h G  

AG = 2 A c  = AZf Q c c  
C C 

and 

E = a S 2 q c A c A c  - b = ais2r) A f Q - b .  c c c c  
C C 

We need MIN(F) with E = E, ( i .e . ,  is given). Clearly, 

M I N ( F )  = M I N ( C  I E = R]/E 
The standard Lagrangian technique can be used for finding the minimum 

under constraints. Let 

g = E/(si) = aZqcAcfcQc - b / ( S i )  
C 

and 

h = C / ( C h x )  = C o / ( C h x )  + ZfcQc.  
C 

In this case g is the constraint. Consequently, 

M I N ( F )  = C h i  M I N ( h ) / i  
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when 

a, g - Laf h = o 
C C 

a, g - La, h = 0 
C C 

and 

(Eq .  6.1) 

(Eq.  6.2) 

( E q .  6 . 3 )  

For internal cells @c=l, and equation (6.1) gives 

aqC(Ac+f a Ac) - L * l  = 0, 
f c  

which can be solved for the Lagrangian parameter L .  

Equation (6.2) gives 

aqc(atcAc)fc - L * O  = 0, 

or ,  equivalently, 

a A = o .  
,c 

Similarly , equation (6 .3)  gives 

aqcAcfc - Lfc = 0 ,  

so that 

Bc E aqchc/L - > 1 

for cells inside the trim line. 

Notice that L replaces as the cell matching parameter, and the two 

optimum cell conditions remain unchanged. The boundary condition also 

appears unchanged, and the Lagrangian parameter L is determined by the 

constraint 
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E = E(L) = a%I*qchcfc - b. 
C 

I* denotes a summation over those cells for which L - < aqchc. 

Although the input value of F is not mentioned in the above derivation, 

it is convenient to assume that 

LIN = Ch/ (F( input )aS)  , 
so that LIN is proportional to the input figure of merit F(input). After several 

trials , F(output)++F(input) and 

E = E(LIN) 

as  required. 

The fixed power constraint equire n 

the available thermal power a t  design time. 

ther sum over cells to represent 

Let Po represent the available 

thermal power a t  time to when the direct beam insolation a t  normal incidence 

is a*. 5,  gives the efficiency for redirected power from cell c a t  time T ~ .  

A s  in section 2 . 3  

P = aaol \2qc~cfc$c - b/fi 

For simplicity, let 

c = co + Ch li (I: fc$c) 
C 

and F = C/E, a s  always. The fixed power optimization requires 

F = Min (F(V) I P = P o ) .  

Equations (6 .1-6.3)  apply , with 

g = P,  and h = F. 

Hence, the equations for a constrained optimum are of the form 

8P - LBF = 0 o r  aF = BP/L 

wi th  a = a, , at  , and a . As always,  8F i s  
C C $C 
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so that 

Equation 6.1 gives 

aC - F aE - (E/L) a P  = 0. 

and 

+f a t 1. 
fc 

u = ‘1, (E, , C 

Equation 6.2 gives 

-Fa~iqcfcatAc - (E/L)aooAqcfcatc~c = 0 

so that 

Equation 6.3 gives 

ChAfc - FaSiqcAcfc - (E/L)ao0itlc[,fc = 0 

so that for a boundary cell 

,u 

v - q,Ac - (Eoo/(LFS)) qcgc = 0 

qcAc is larger for interior cells than for boundary cells, hence, for interior 

cells 
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N 

p/(qcAc) 5 1 + (Eoo/LFS)) g c / A c  

L must be determined by the constraint 

This type of optimization has not been implemented because of the difficulty 

of solving for L .  

A s  in Section 2 . 3 ,  i t  convenient to assume that 

so that 

(Eq. 6 . 4 )  

ap = B E / H ~  , 
and in this case the equations of the constrained optimum require 

aC = (F+E/(LHo)) aE. 

Equations 6.1-6.3 

and 

for interior cells 

become 
N 

p = (~+E/(FLHo))pc(fc,tc> 

atAc = 0, 

BC = (l+E/(FLHo))qcAc/p 2 1 

L satisfies Po = P(L). 

N 

These optimum conditions are 

equivalent to the unconstrained equations if 
N 

p*pf: = C,/(V:& 
n d  

= p ( i + ~ /  (FLH~) )-I. 

Consequently, 

Ft = F+E/(LHo) = F(input) 

and 

L = (W-F)Ho/E. 

This solution is obtained by varying the F(input) until Po = P. 
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7. Simultaneous Optimization of the Collector and Receiver Geometry 

Let F = C/E be the figure of merit; however, we will now extend the set  

of independent variables to include h for the height (vertical length), of the 

receiver, r for the radius of the receiver, and T for the focal height of the 

tower. Let 

V = (r,h,T,(Rc,Zc,Qc) c E field] 

be the extended set .  ( (Rc  ,Zc ,e,) ] represents the collector field. 

In this section the cost model will include the receiver and the tower. 

Let 

where 

Co = fixed cost for balance of system, 

Cr = cost of receiver per unit area, 

A, = 2n r h  = area of receiver, 

C(T,P) = cost of tower as a function of tower height T 

and power P a t  design time to, and 

JI, includes the cost of heliostats, land, and wiring as in 

section 2 .  

E is the total annual thermal energy available a t  the base of the tower in 

an average year. 

E = a (2 qchcfc$c) - b 
C 

with 

and 

a = 66 = (absorptivity) (reflectivity) (etc.), 

b = fi A P (to) r r  
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where fl is the number of hours per year of useful insolation (i.e. receiver 

operation), Pr(to) is the radiative and convective loss rate from the receiver 

per unit area, and to is the operating temperature of the receiver. Pr(to) is 

assumed to be known. 

We will not discuss the optimization with respect to operating temperature 

because our figure of merit is unsuitable and the necessary cost information 

is unavailable. The solution is well known, assuming Carnot efficiency and 

no temperature dependent costs. Another approach to the receiver loss 

problem has been developed. (See Reference 20, 21, 22 ) .  

In this section , we assume an unconstrained optimization. Therefore , 

the solution for the collector geometry is formally the same as in section 2 

with 

+ C A + C ( T , P )  co ++ co r r  
and for given values of ( h , r , T ) .  

The receiver geometry problem requires three additional optimum 

conditions for reciever height , reciever radius , and tower height. 

6hF = 0 = 6 F = 6TF, r 

or , equivalently , 

a h E / a h C  = 1/F, e t c .  

For convenience, let 

I t  is easy to see that 

a h C  = C r A r / h  

arc = C r A r / r  

aTc = aTcT 
ahE = - h r P r / h  
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and 

Consequently, 

hahA = A/B + 1/BF 

rarA = A/B + 1/BF 

where 

( E q .  7 . 1 )  

( E q .  7.2)  

A = fiPo/Cr, 

and 

B = aSA/CrAr 

Similarly, 

a8iaTA/aTCT = 1/F, 

and, therefore, (after applying a factor of T and some re-arrangement) 

T ~ , A  = ~ a ~ ~ ~ / ( a S i i F )  ( E q .  7 . 3 )  

E 2cT/(aS&) 

for tower cost quadratic in T .  Equations 7.1,  7.2,  and 7 . 3  are difficult to 

solve, and it is necessary to know the cooresponding partial derivatives of qc 

( i * e a f  ah'lct arqc, and aTQc)* 

Consequently, we propose to seek the minimum value of F ( r ,h ) ,  which is 

consistent with the trim boundary and total power, by direct numerical 

methods rather than by the optimum requirements tihF = 0 and 6,F = 0. 

Given the nodal interception data q ( r , h )  for a receiver of size ( r , h ) ,  

we can construct the interception fractions for receivers of various sizes. 

The receiver nodes ( (p ,q ) )  correspond to receiver heights h for q=l . . . Q 

and receiver azimuths 0 for p=l . . . P. All of these nodes have radius F. 

CPq 

q 

P 
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We have 

and 

where 

Ah = k/Q, 

and 

A$ = 2n/P. 

The greatest interception is obtained by summing all of the nodes 

P Q  

p = l  q=l  q c ( i , k )  = t Qcpq ' 

However, shorter cylinders are easily represented by omitting a few rings of 

nodes a t  the top and the bottom of the cylinder: 

where 

h =$Ah. B 
Cylinders of smaller radius are more difficult to represent. However, 

the task can be accomplished by interpolating panel interception fractions. 

Let 

B '  
represent the panel interception factor for the p-th panel with a height h 

The center of the p-th panel has the azimuth angle 
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0, = (P+% A$ 

measured east from south (i .e.  counterclockwise). The edges of the panel 

have the azimuths p A$ and (p+l )  A$. If cell c has azimuth qc, the 

perpendicular distance from the edge of the panel to the center line from cell 

c is given by 

D cpf = i s i n  ($c - qP 2 ~ $ 1 .  

Let 

and let 
cpf  ' D = M A X D  

C P  

so that the interpolated interception fraction is given by 

for the appropriate values of p1,p2,fl, and f2 .  (See Figure 7.1). 

are suitable fractions of unity to represent a cylinder of radius rcI. 

f l  and f 2  

The subroutine RCFINT can be generalized to construct the interception 

Qc(rcI#h$) for any 

ru 5 i and h < h - B =  
in terms of the nodal interception data obtained from a cylindrical receiver of 

radius r and height h .  I t  is then feasible to explore the dependence of the 

output figure of merit on ( ru ,h  ). Interception due to a flat plate receiver 

depends on its length, width, and orientation. If the optimum orientation can 

be assumed, then the two variable optimization over length and width is 

similar to the cylindrical case. 

8 

(See Figure 7.2 and 7 . 3 ) .  
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increasing 
panel  # 

I 
I ‘ I  I 

Figure 7.1 Panel Panel Interpolation for Smaller Cylinders. 

$c points towards the center of cell c .  p1 is the first panel such that 

D > r ,  and p2 is the last panel such that D > r. The panels in the CP1- CP2 - 
set (pl . .  .pz) provide the same interception as  all of the panels in the smaller 

cylinder (if the end corrections f l  and f 2  are included). 
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w- 80.0 
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500 600 700 

Equinox Noon Power (MWTH) 

Figure 7.2 Figure of Merit for Various Receiver Sizes. 

Each solid curve represents the specified receiver size. The parabolic 

curves are  obtained by varying the input figure of merit. The dotted curve 

is the envelope of the parabolic curves for given tower height a t  various noon 

powers. 
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0 200 400 600 800 1000 1200 

Equinox Power MWrH 

Figure 7 . 3  Figure of Merit for Various Tower Heights. 

Each inlaid curve represents an envelope of optima as  shown in the 

previous figure. The envelope of tower height optima provides the grand 

optimum versus noon power. Three different models are  shown to indicate 

the effect of fixed cost and visual range. The baseline visual range is 50 km 

and fixed cost is $2.6 M .  

1 -  Bad Visual Range ( =  

Baseline Design 
\ l o o m  
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