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FOREWORD

The research and development described in this report was conducted
within the U.S. Department of Energy's (DOE) Solar Thermal Technology
Program. The Solar Thermal Technology Program directs efforts to
advance solar thermal technologies through research and development of
solar thermal materials, components, and subsystems, and through testing
and evaluation of solar thermal systems. These efforts are carried out
through DOE and its network of national laboratories who work with
private industry. Together they have established a goal-directed
program for providing technically proven and economically competitve
options for incorporation into the Nation's energy supply.

There are two primary solar thermal technologies: central receivers
and distributed receivers. These two technologies use various point and
line-focus optics to concentrate sunlight onto receivers where the solar
energy is absorbed as heat and converted to electricity or used as
process heat. In central receiver systems, which this report considers,
fields of heliostats (two-axis tracking mirrors) focus sunlignt onto a
single receiver mounted on a tower. The radiant energy is absorbed by a
working fluid circulating within the receiver and is transformed into
high temperature thermal energy. Temperatures in central receivers may
exceed 1500°C.
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Abstract

Cost effective optimization of the solar central receiver system is
primarily concerned with the distribution of heliostats in the collector field,
including the boundaries of the field. The cellwise optimization procedure
determines the optimum cell usage and heliostat spacing parameters for each
cell in the collector field. Spacing parameters determine the heliostat density
and neighborhood structure uniformly in each cell. Consequently, the
cellwise approach ignores heliostat mismatch at cell boundaries. Ignoring the
cell boundary problem permits an easy solution for the optimum in terms of
appropriately defined annual average data. Insolation, receiver interception,
shading and blocking, cosine effects, and the cost parameters combine to
control the optimum. Many trade-offs are represented. Outputs include the
receiver flux density distribution for design time, coefficients for an actual
layout, the optimum boundary and various performance and cost estimates for
the optimum field.

It is also possible to optimize receiver size and tower height by a

repeated application of the field optimization procedure.
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Nomenclature

= -
L =

2.

Multiplicative loss factor including receiver absorbtivity

Coefficient for ground coverage (i.e. fc=aC/RCZC)

Area of land in cell ¢ (m?)

Area of glass/heliostat (m?)

Total area of glass in collector (m?)

Area of land/cell in collector (m?)

Subtractive loss constant including receiver radiation, conduction,
and convection losses (MWH/yr)

Set of interior (exterior) cells in collector

Boundary ratio (B C=1 at boundary)

Cell index for collector field

Total cost of thermal subsystem to base of tower including
feedwater pump but excluding thermal storage ($)

Fixed cost parameter ($)

Cost of heliostats/area ($/m?2)

Power dependent cost function ($)

width of heliostat (m)

Mechanical limit (in units of DH), i.e. diameter of clearout circle
for heliostats

Total thermal energy available at the base of the tower (MWH/yr)
Re-directed energy/yr from cell c

Ground coverage fraction (cell c)

Figure of merit ($/annual MWH thermal at base of tower)

Shifted figure of merit for case of power dependent costs

Height of cylindrical receiver in meters (i.e. top to bottom)

Maximum height of receiver in meters
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1}

Set of useful hours in year

Estimated number of hours such that E=H P,
Total hours/yr of useful daylight

Index for receiver mode heights (=1 ... Q)

Total thermal power at time t

Total thermal power at design time

Index for receiver mode azimuths (=1 ... P)
Radius of cylindrical receiver (m)

Maximum radius of receiver (m)

Radial spacing parameters (cell ¢) in units of Dy

= Radial layout function of (p,Z)

= Optimum radial spacing parameter for P=P, and Z=Zi

Total annual direct beam insolation for the useful daylight hours
(annual MWH/m?)

Focal height of tower, i.e. height of center of receiver above plane
of heliostat centers

Set of independent variables

Azimuthal spacing parameter (cell ¢) in units of DH

Relative cost of land

Relative cost of wiring for 3 kinds of wiring

Prefix denoting "variation of"

Input scale parameter for variations

Partial derivative with respect to x

Azimuthal angle separating heliostats in a circular layout

Receiver interception fraction for cell c

Solar elevation angle (degrees)

Solar elevation angle at start-up and shut-down (degrees)



Dimensionless total thermal energy for constrained optima
Cost function for constrained optima

Dimensionless measure of energy redirected by cell ¢
(i.e. AC = EC/(QAC)

Cell matching parameter (annual MWH/m?)

Efficiency of heliostats for re-directing power from cell ¢
Radial distance to cell ¢ (m)

Radial distance to circle n (m)

Proportional to BXF for mechanical constraint

Direct beam insolation as function of time (W/m?)

Direct beam insolation at design time (W/m?2)

Direct beam insolation at start-up and shut-down

Time parameter (hours from local noon)

Time of choice for design specifications (hours from local noon)

Cell use fraction for cell ¢

Angle in (R,Z) plane

Effective ground coverage fraction including land and wiring

parameters
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Figure 1.1 Artist's Concept of Central Receiver System.

Artist's Concept shows tower top receiver and collector field (shaded
area). A typical heliostat is shown in lower right. In this case the receiver
Is cylindrical. The heliostats are individually guided to reflect sunlight on

the central receiver. The optical system is a multi-segmented single surface

reflection.
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1. Introduction

The solar central receiver project at the University of Houston began in
June of 1973 under an NSF/RANN grant. The UH System Analysis Group has
been actively developing the optical analysis of the central receiver system
from this time to the present (References 1 to20). Figure 1.1 illustrates the
system concept.

The central receiver system is a means of collecting high quality solar
energy by optical transmission from a field containing a large number of
independently guided and mass produced heliostats. Image resolution is not
expected, but optical concentration is required in order to achieve an
efficient energy transfer to the working fluid in the receiver. The complex
geometry of the collector field and the large number of heliostats suggest the
use of a cell model with a statistical assumption for the effect of guidance
errors on the groups of heliostats belonging to individual cells.

An average year is defined by an average insolation model with monthly
average weather parameters for cloud cover, turbidity, water vapor, and
horizontal visibility. The thermal sub-system includes the collector field,
tower, receiver, tower plumbing, and main feed pump, but not the thermal
storage, turbine, or electric power generators.

More than half of the thermal sub-system cost is due to the collector,
and therefore, the optimization is primarily concerned with the arrangement of
heliostats in the collector field and the determination of its boundary. The
optimum collector field geometry will be a state of minimum figure of merit.
Generally, this implies that

8F = 0,

for all variations, but in section 4 an endpoint case occurs.
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Complex geometries frequently lead to Monte Carlo simulation. Monte
Carlo simulation is a statistical method for evaluating the performance of a
given design, but it requires considerable CPU time and cannot be adapted
to optimization. A cell model of the collector field provides an alternative
approach to system simulation, which can also be used for optimization.

Details of the cell-wise performance model are contained in References 2
~and 9. The theory of the cellwise optimization requires a few variables taken
from the performance model. See section 2.

The economic optimization is based on a figure of merit

F = C/E,
where C is the total cost of the thermal subsystem and E is the total thermal
energy collected in an average year. E is the energy produced at the base
of the tower. Similarly, C is the cost of the thermal subsystem down to the
base of the tower and not including thermal storage, or turbine generator,

etc.
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2. Cellwise Optimization Method
The total thermal energy collected in an average year can be expressed
in terms of the cell model as follows.

E = aAS(EqCACfC¢C) - b,

where
E = Total thermal energy available at the base of the tower,
a = Multiplicative loss factor including receiver absorbtivity,
b = Subtractive loss constant including receiver radiation,
conduction, and convection losses,
c = Index of cells in collector field (See Figure 2.1),
A = Area of land/cell in collector,
Ne = Receiver interception fraction for cell c,
c = Dimensionless measure of energy redirected by cell c,
f c = Ground coverage fraction for cell c,
0, = Cell use fraction for cell ¢, and
S =

fdto(1).
H

S is the total annual direct beam insolation for the useful hours of daylight.
o(t) is the instantaneous direct beam insolation. The useful daylight is
defined by the requirement
o(t) > o, or 8 > BS,
where 6 is the solar elevation angle. By is the elevation of the sun at start-
up or shut-down, and Oy is the coresponding insolation. In practice 6y is
between 10° and 15°.
The total area of glass in cell ¢ is given by

Ac - Afcq)c’
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Figure 2.1 Cell Model of Collector Field.

The X axis points south and the Y axis points east. Heavy lines mark
the outer boundary of the collector field. In this example the tower is
located at cell (6,4), and only the tower cell is excluded by the inner

boundary.
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and the total area of glass in the collector is

Ay = ZA_ = AXf ¢_.
C C

The ground coverage fraction is given by (See Figure 2.2)

fc = ac/(Rczc)

where
\ ) I 2AH/Dﬁ for stagger neighborhoods,
¢ ‘ AH/Dﬁ for cornfield neighborhoods,
DH = Width of heliostat,
AH = Area of glass/heliostat (See Figure 2.3),
R, = Radial spacing parameter for heliostat neighborhoods, and
ZC = Azimuthal spacing parameter for heliostat neighborhoods. (See

Figures 2.4 and 2.5).
RC and ZC are dimensionless multiples of DH and must exceed unity because
of the free-turning requirement. The so-called mechanical limits will be
discussed as constraints in section 5.

The cellwise performance model defines the energy EC which is re-
directed towards the receiver by cell c. Details of this construction are not
relevant to the optimization. However, the optimization theory is written in
terms of the dimensionless quantity

AR_,Z) = Ec(§AC).
AC is the ratio of redirected energy from cell C to the maximum total annual
direct insolation available from cell C. A depends on the location of cell ¢
and the arrangement of neighbors via (RC,ZC).

The optimization determines the following set of independent variables:

V={R Z. ¢C)' ¢ = cell index}.

c)

0 is the dimensionless fraction of cell usage for cell c. ¢,=0 if the cell is
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FRACTION OF GROUND COVERED UNIVERSITY OF HOUSTON

MAX(A) = 3.5261E-01 MINCA) = B8.3149E~C2 AVR(A) = 1.8303E-01

AlJ = ( 10 + 0 ) X PRINTED VALUES

0.083 0,093 0.101 0,104 0,101 0.093 0.083 1.000
0.098 0.115 0,131 0.138 0.131 0,115 0.C98 1.00C
0.115 0,146 C,183 0,203 0,183 0,146 C.115 1.0060
0.1317 0,183 0,274 0,353 0,274 0,183 0.131 1.000
0.138 0,203 0.353 0. 0.353 0,203 C,.138 1.000
0.131 0,183 0,274 0,353 0,274 0,183 C.131 1.00C
0,115 G.146 0.183 0,203 0,183 0.146 0.115 1.600rC
0.098 0,715 0,131 0,138 0.131 (0.115 0,098 1.00G
1.000 1.000 1,000 1.000 1.0CN 1,600 1.000 0.188

Figure 2.2 Fraction of Ground Coverage Matrix.

The tower is located at cell (5,4). In this case the ground coverage
fraction is independent of azimuth measured from the base of the tower. In
general, this is not an exact symmetry for cellwise optimization. The bottom
row and the right column represent averages of the corresponding rows and
columns. The value in the lower right corner is the over-all average. In
general, the array averages are glass weighted and for the average fraction
of ground covered by glass is always 1.000. However the over-all average is

land weighted for this array only.
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VMIR

_Y. —1 | < SLOT

UMIR

Figure 2.3 Rectangular Heliostat Geometry.
The U axis is horizontal in the usual altitude-azimuthal mounting system.

A sun sensor can be located at S. The area of glass for shading and

blocking calculations is

AH = (UMIR-SLOT) * VMIR.
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Figure 2.4 A Cornfield Type of Heliostat Neighborhood.
The R and Z spacing parameters are shown. Each neighbor is numbered

as in the code. This figure shows first and second order neighbors.
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Figure 2.5 A Stagger Type of Heliostat Neighborhood.

The R and Z spacing parameters are shown. The horizontal lines
represent tower concentric circles if the layout is radial stagger. Each
neighbor is numbered as in the code. In radial stagger, neighbor #1 is

towards the tower.
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outside of the economically useful portion of the collector field, and 6.1 if
the cell is entirely inside of the useful region. O<¢C<1 for boundary cells.
The optimized collector field has an inner and an outer boundary defined in
terms of the set {¢C}.
2.1 Simple Cost Model

The simplest possible cost model includes a fixed cost CO and a cost

which is proportional to the total area of glass in the heliostat field A In

G
this case

C = C0 + ChAG.
This cost model assumes that land cost is either ignored or included in the
fixed cost. Wiring cost is ~4% of ChAG and is simply ignored.

' AG = A Efc¢c.

The optimization process requires known values for a, b, §, A, Cyr Cpr Mg
and )\C(RC,ZC).

We consider variations of the figure of merit, F, with respect to each of
the variables in the set V. Assuming that the optimum occurs within the
allowed range of all the variables,

8F = 6(C/E) = (1/E)8C - (C/E2)6E = 0
so that
F = C/E = 6C/6E

for all choices of 6 at the optimum point. In this simple case

a¢cc = C fA

aRcc = -chfcq)cix/RC
azcc = -chfcq)CA/Zc
a¢ E = ancACfC§A

30



Q
1
i

Rc anc(aRCAC-Ac/RC)fC¢CSA

Q
x4
I}

Zc anc(BZCAC-AC/ZC)fC¢CSA

The trim variable 0 is limited to the range 0 < 0. < 1. 0. = 0 if cell ¢
is outside of the optimum field and 0. = 1 if cell ¢ is inside of the optimum
field. However, 0 < 0o < 1 if the cell ¢ is a boundary cell. For boundary
cells, 6§ = 6¢C8¢C, gives

F

(3¢ C)/(d

C

E)
c

0

It

Ch/(anCACS)
so that
ncxc = Ch/(FaS),
which can be satisfied approximately by the subset of cells called boundary
cells. The exterior cells are discarded.

The stationary conditions for interior cells can be written as

H

aR E (8R C)/F
c c

and

Q
=
1}

7 (3Z C)/F.
c c

However, it is convenient to introduce an alternative parametrization of the
neighborhood geometry. Let

f

ac/RZ
and

1/2 (R%-22)

ct
n

so that
A R,2) = A_(£,1).
It can be shown that

9F/9t = 0 = 9t/9f
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Rf Ifs f f H

Figure 2.6 Alternative Parametrization of the Neighborhood Geometry.
Rectangular hyperbolas of constant f and t fill a quadrant of (R,Z)
plane. (RO,ZO) is input estimate and (R1'Z1) is output optimum. The box
around (RO,ZO) is the zone of variations. Heavy lines labeled p and at )\C=a
define the optimum and represent theoretical optimum conditions. The shaded

region represents mechanical limits.
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so that curves of constant f and t are mutually orthdgonal hyperbolas. See
Figure 2.6. Consequently, the stationary conditions can be re-written as

af E = (Bf C)/F

C C
and
Bt E = (8t C)/F.
C C
For interior cells we have 0. = 1 so that
at C=0 (helpful!)
C
3, E =an (3, A\)fSA
C C
8f C= ChA
[
and
ach = anc(fcafc)\c + A )84 .

Consequently, the optimum geometry for an interior cell is determined by the

two requirements

and

(fcafCAC+Ac)nc = p = Ch/(FaS).

§ is called the cell matching parameter because it is independent of c. p
must be available to the optimizer. Note that p depends on the figure of
merit, F, which is estimated before the optimum can be determined, so that
the whole solution process must be repeated to converge F(input) to
F(output). Fortunately, convergence is quite rapid.

The cell matching parameter can be understood as follows.
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2
1]

ch/(Faé)
ChAGE/(Ca§A

1

o)
(C,A/C) (E/ (a8A))

Hence p is the fraction of total cost due to heliostats times the fraction of

available energy incident on the heliostats which is produced at the base of
the tower.

The stationary condition for boundary cells gives

8¢CE = (3, CO)/F,
or

anCACfCQE = cthA
Consequently, if

B, = ncA/H,

then BC = 1 for boundary cells. Bc is always positive, but BC~> 0 as n.,> o
for remote cells. Remote cells are external to the collector field and, hence
by continuity, we conclude that

BC < 1 for external cells, and

BC > 1 for internal cells.
See Figure 2.7. Small n. occurs if the cell has a large slant range or a poor
receiver incidence angle (e.g., cylindrical receiver where the cell is too near
the tower). Even if e is unity B. may be less than one if the energy
production A, is low either because of poor heliostat cosine factor (far to the
south) or because of excessive shading and blocking. Hence, the inequality
B. > 1 trims the collector field and provides both the outer and inner

C
boundary.
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INTERCEPTION FACTORS FROM (CYLN) RECEIVER PROGRAM » x &« x » UNIVERSITY OF

MAX(A) = 1.0017€ 00 MINCA) = 3.6247E-C1 AVR(A) = 5.3409€-01

AIJ = ( 10 «*x 0 ) X PRINTED VALUES

0.362 0,425 0,474 0,492 0,474 0,425 0.362 0.483
0.457 04559 0.642 0,674 0,642 0.559 0.457 0.625
0.561 0,712 0,833 0.877 0.833 00,712 C.561 (.787
0.6466 0,838 0.966 0.996 0.966 0.R38 U.5646 C.837
0.682 0.887 C.997 O, 0.997 N.887 0.682 C.9v02
0.6517 0.847 0.974 1,002 0.974 0.847 (0.651 0.894
0.567 0,723 C.850 0.895 0.850 0,723 0.567 0.85C
D.662 0,568 0.654 0.688 0,654 C.568 0.462 D.672
D.653 0,796 0,887 0.874 0,887 0.796 0.653 0.834

Figure 2.7 Receiver Interception Matrix.

The tower is located at cell (5,4). The cylindrical receiver gives
interception which is approximately independent of azimuth. Lack of
symmetry is due to north-south asymmetry in orientation of heliostats. Cell

size is too large to show reduced interception for near tower cells.
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2.2 Complete Cost Model
A similar derivation can be given for other cost models. In practice, it
is necessary to consider the cost of land and wiring. Let
= Co * ChAiq)cd’c

where
Lbc sat fc (1+51pc+B2Rc+B3Zc)'

or=C]/Ch is the relative cost of land, 31,2'3 are relative cost parameters for
various kinds of wiring (i.e. relative to heliostat cost which is dominant),
and Pe is the radius of the cell center relative to the tower.
The stationary condition states that
6C = F OE
for all possible variations, 6. Dimensionless expressions for total thermal

energy and total thermal system cost are defined as

Enckcfc¢c’

A

and

Ir

C/(chi).

As previously, the cell matching parameter

ﬁ = Ch/(Fag).

After differentiation we can drop factors of 9c. SO that

8g A= n (¥ B¢ A)
C C
at A= nc(at )\C)fC
C C
8¢CA = nc)\cfC
% I = 14B1p *B)R *BZ + (B R B33 E
at r= (BZBtRc+BSath)fc
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3¢CF - 0'+fc(HB1pr:+ﬁ2RC+BBZc)'

The stationary condition gives
C,A 8 = FaSA &A
or
SA = por.
Consequently,

nc(Ac+fcafAc) = H 8fcr

8tAc = H (BzatRc+ﬁ33tzc)/nc
for interior cells, and

r]c)\c = H (a/fc+1+slpc+82Rc+B3zc)
for boundary cells. B c is defined as nc}‘c divided by the equivalent right
side. As previously, the interior of the field satisfies the condition
Bc = ncAc/((a/fc+l+Blpc+B2Rc+B32c)“) LA
These relations degenerate to the previous case if land and wiring have no
cost; i.e.,
"':0:31:32:33-
2.3 Power Dependent Cost Model
In practice, it is also necessary to consider power dependent costs. For

this purpose, the cost model becomes

C=C,+C (B)+ ChA§¢C¢C

where Cp(P) is the power dependent term and P0 is the total thermal power
at design time. In this case,
8F = (1/E)8C - (C/E2)8E = 0

with
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6C = 6(C-C_) + (3. C )oP

p pp o
and S8E as previously given. 8pCp is known, but GPO needs explanation.
Let P(t) be the total thermal power at time t. P(t) can be expressed as

P(1) = ao(t)Rchﬁcfcq)c - b/H
C

where £C=§C(fc,tc) is the efficiency of heliostats in cell ¢ for re-directed
power at time 1 and H is the number of useful hours in a year. The time
dependent quantities are related to the corresponding annual quantities by

integrating over the useful hours in an average year. In summary

S
Ao = Jydro(DE (1)/8,
and
E = fHdtP(t).
The variation of P, is given by

6Po = ac(to)gnc{ch(£c+fcafgc)¢c ¥ 6tc(atgc)fc¢c+6¢cgcfc}'

6P, can be used to derive optimum conditions. However, it is useful to
assume that the incident energy is proportional to the incident power at

design time. Let

E=akE. - b
inc
P, =p(tr) = aP, - b/
and
E11'1C = HO PlnC
so that
6PO =ad Pic = (a/Ho) ﬁEinc
= (1/Ho) OE
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The stationary condition

8C = FOE
gives
FOE = &(C-C + (8. C )ép .
(c-C) + (3. Y0P
Consequently,
FOE = 6(C-C + (8 C 1/H )OE
( p) ( p p)( / o)
or
6(c-C = F~0E
( p)
with

F* = F - (BPCP)/HO. i
The previous optimum conditions are applicable with F>>F* in p. Consequent-
ly, under the simplifying assumption for PO, we can obtain power constrained
optima by converging

F*(INPUT) -> F*(OUTPUT).
The previous input for F becomes F*(INPUT). New outputs are needed for

HO(OUTPUT) and F*(OUTPUT) with

E. [/P.

H (OUTPUT) .
) inc’ inc

and

F#*(OUTPUT)

C/E - (apcp)Pinc/Einc'
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3. Transition to a Heliostat Layout using an Optimization with Fixed

Azimuthal Spacings

The cellwise optimization method ignores geometrical constraints which
occur at the cell boundaries. If these effects were rigorously included, an
impossible N variable problem would occur. The nature of these difficulties
can be seen when a cellwise optimum is converted to an actual heliostat layout
(see figure 3.1). If we assume a circular layout, spacing between circles can
be obtained from the cellwise optimum by making an azimuth independent fit
on the optimum R. values for the relevant cells. Optimum azimuthal spacings
Z. are nearly the same for all cells. Assume a reasonable azimuthal spacing
Z1 for all heliostats on the outer circle. For instance, let

Z, = py Ao

where P is the radius of the outer circle and A¢ is the azimuthal angle

h

separating heliostats in the zone containing the outer circle. The nt circle

of this zone will have the azimuthal spacing

Z =p, 00 =12 (p/p)
so that the inner circles are squeezed into progressively smaller azimuths and
for some n, an unacceptable amount of loss occurs. At this point a new zone
must be created with

Z[1+1 x Zl'
We can assume that the average azimuth <Z> equals the optimum values for
the zone, but a systematic departure from optimum occurs as we cross a
zone. This systematic behavior of a zonal layout is ignored by the cellwise
optimization in its original form (see Figures 3.2-3.4).

It is impractical to solve for the zone boundaries in the optimizer.

However, a more balanced layout is possible by making better use of the
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eV

Figure 3.1 "Barstow" Heliostat Layout.
This version has 2062 heliostats confined to a prescribed region having a tower exclusion and four

roads. There are six zones. Circles touching indicate mechanical limits. The deleted heliostats are

conspicuous. The inner zone is nearly hexagonal closest packing.
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Figure 3.2 Redirected Energy Versus Circle Number.

The dotted line represents this 100 MW, baseline power plant as output by the cellwise optimizer.
The cellwise optimum field has no zone structure. The solid line represents the pilot plant as output by
the individual heliostat performance model for an actual layout. The pilot plant was designed to resemble
the 100 MWe power plant. The layout has six zones. The four curves represent octants in the east half

field. East-West symmetry exists. Circle 1 is the outer circle in figures 3.2 and 3.3.
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Figure 3.3 Ground Coverage Fraction versus Circle Number.
The solid lines represent a circular layout for a pilot plant having six zones. All octants have the
same ground coverage because of the circular symmetry. Output from the cellwise optimizer for the

corresponding 100 MWe plant shows some deviations from circular symmetry and no zones.
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Figure 3.4 Circle Spacing versus Circle Radius.

This figure shows the performance of the circle generating subroutine.
The connected line joins points belonging to a zone. R(I-1)-R(I) is plotted
against R(I). The circle number of the first circle in each zone is shown
over the point. D over a point indicates that deletes occur in this circle.
An upward arrow with an M indicates that R(I) was decreased because of
mechanical limits. The boxed region is entirely controlled by mechanical
limits. The outer three zones show a V shape graph. The right branch of
the V is primarily due to "nose blocking" (i.e., blocking due to the heliostat
directly towards the tower and two circles inward). The left branch of the V
is primarily due to diagonal blocking from the two heliostats one circle
inward. Such diagonal blocking becomes more important as the azimuthal
separation decreases, i.e., as one moves inward in a zone.
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shading and blocking data. The optimization method described in section 2
requires the interpolated function

A (R,Z) = Fit(R,Z; AC(Ri,Zj)li,j=1...4),

where
R, = R_ (1+(i-2%)60),
and
Z; = 20 (1+(3-25)8,).
60 = 1/10 is a useful choice for the size of wvariations. (R&,ZC') are input

estimates for the optimum (RC,ZC) (See Figure 3.5). The )\C(Ri,Zj) are based
on insolation and shading and blocking data. The improved layout function
R(p,2) gives
Py = P, - R(p,Z)
where Pp is the radius of the nth circle measured in the plane of the heliostat
field and Z, is the azimuthal spacing in the nth circle of the zone.
The improved layout function is defined as follows. Let
R(p,Z) = Cubic Fit (Z; ﬁ(p,zi)lizl..A)
where
ﬁ(p,Zi) = Quadratic WLS (p; ﬁc(pc,zi)lcefield)
and ﬁc(pC,Zi) = Optimum value of R, with Z. constrained to Zi' The
Ii C(p C,Zi) are obtained from CELLAY.
The CELLAY solution for ﬁc is similar to the method used for (RC,Z C)
except that one less variable occurs. In this case, we have

8RC=F3RE
c c

and
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MULTIPLIER SCALE

7 17///79//%/./3//4/274/5
;[lJ -1.0 / | B
2 | | .
& | : 3 2 7
7 //////W//JV//W

® FOR DATA
X FOR DERIVATIVES
- I FOR INPUT POINT

3.5 Interpolation in the (R,Z) Patch.

This is the region spanned by variations of (RC,ZC). Sixteen data
points and nine intermediate points are used to support a quadratic fit on the
two dimensional region. The solution finder refuses to go into the shaded
region except for special default cases. This whole region is represented as

a rectangle in Figure 2.6,
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Using the land and wiring cost model, we have

dp € = CA { ~(£./R)(1+B.p +B,R +BsZ ) + Byf }
3, C = CAY
3, E = a§§nc(RC8R A A (E/R)
C C
3, E = a§§ncACfC
Consequently,
NcRR AcoAo) = (C/FaS) {B,R -(1+,p *B,R +B,Z )}

for all interior cells, and as previously

B, = n.fA /(wcﬁ) =1

ccc¢c¢

for boundary cells.
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4. Optimization with Boundary Constraints
Boundary constraints can be introduced via the assumption that
¢, = 0 for c ¢ B (i.e. C belongs to set B)
where B is the fixed set of exterior cells. Consequently,

E=aAS (ZnAfo0)-D
ceB

where B is the set of allowed cells. The optimized field may fill any subset
of B.

If boundary constraints are extreme, the power available for a
"reasonable" tower height may be very low, leading to an unreasonably high
figure of merit. In such cases use of a taller tower (50 to 100% taller) will
reduce blocking losses and may allow enough extra heliostats in the
constrained area to result in a lower figure of merit. This approach also
delivers more power from the same land area. Thus, boundary constraints

can lead to various results. (See Figures 4.1 and 4.2.)
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The ALLOWED block of integers is input to define the constraint on land

use.

available area for each cell.

The choice (0,1,2,3,4) corresponds to (0,1/4,1/2,3/4,1) times the

After optimization, the number of heliostats/cell

is given by the array in the middle of the page directly above the summary

output.
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Figure 4.2 Figure of Merit versus Annual Energy.

Each curve corresponds to a tower height. Numbers next to the circled
points are input figures of merit. The two dashed curves correspond to the
locus of minima and the locus of converged optima. Convergence (i.e., input
figure of merit = output figure of merit) will occur at the minimum of each
curve except for the effect of power dependent cost. The steeply rising

portion of the curves on the right represents nonproductive overcrowding of

the availible space.
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5. Optimization with Mechanical Constraints for Heliostat Rotation

If all heliostats are tracking accurately, the planes of neighboring
heliostats are nearly parallel and no collisions are likely. However, during
startup or shutdown operations, or if a few heliostats are disabled, the
parallelism of neighbors will not be maintained and it is necessary that the
heliostat layout satisfies a free turning mechanical constraint. Figure 5.1
shows a portion of the radial stagger neighborhood. Free turning imposes
three different mechanical limits known as the radial, azimuthal, and diagonal
limits. The free turning condition is represented by the diameter of the
sphere generated by the rotation of the heliostat plus a safety margin. Let
DM represent the diameter of the safe sphere. In practice a typical value is

DM = 1.5362 DH'

Figure 2.6 shows the appearance of the three mechanical limits in the (R,Z)
plane. Figure 5.1 also shows the allowed region which is defined by the

inequalities

M)

M
and

(R/2)2+(Z/2)? > DZ.
When an optimum collector geometry is determined as in section 2, some of the
cells may have solutions falling in the unallowed region. The three
constraints are separated by the two points of hexagonal closest packing
marked H1 and H2 in Figure 5.1. C,_ is the mid point of B2 in figure 5.1.

0
Co is also the point of minimum ground coverage on B2 (see Figure 5.2).
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It is easy to see that at

— - —_— . — -1 .
Hl' Zl - DM) R]. - \/§DM) Xl = tan (1/\[3)’

2. = 1 2_n2y = n2
aC/JED ; t, = %(3DZ-DY) = DZ

m
]

o
N
H

—_— _1 —
9" 2 J3DM; R2 = DM; X, = tan (V3);

= 2N2 . = L(N2.2n2) = -Nn2
£, = a_/{3D%; t, = %(DZ-3D2) D2
and
C,: 2= JiDM; R =4y2D ; x = n/b;
= = 2‘ =
f=a/RZ=a/2D%; t=0.

If the unconstrained optimum falls outside the allowed region, the
solution must be moved to a point on the boundary of the allowed region.

The boundary of the allowed region has the following branches:

(m,Hl)B3’ (H]. ,HZ)BZ’ and (Hz,m)Bl'

The optimum choice of boundary points is the point of minimum F. If the

minimum occurs on («,H.), , then
1 B3

is necessary unless the minimum occurs at the end point Hl' If the minimum

occurs on (Hl’HZ)B 2, then

aF =20
X
is necessary unless H1 or H2 is the solution. Similarly, if the minimum

occurs on (H2,<>°)Bl , then

is necessary unless the minimum is HZ'
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#4
(0,2)
#3
B1: R > DM (R/Z,Z/Z)
#8 | #2
B2: (R/2)2+(Z/2)% > D2
(R,0)
Ba: Z > Dm |
#1
R

Figure 5.1 Radial Stagger Neighborhood and Mechanical Limits.

R is the radial coordinate and Z is the azimuthal coordinate. Circles
represent the excluded sphere for each heliostat. The circle at the origin is
the central heliostat. Heliostats 1 to 8 are the closest neighbors. Heliostat
#1 is nearest to the tower and will cause serious blocking losses if R is small.
Heliostats 4 to 6 are symmetrically located but can not cause blocking. The
free turning requirement relates the central heliostat to all of its nearest

neighbors. Note that if Z is large and R is small, heliostat 1 becomes a
nearest neighbor.

There are three mechanical limits: B, is the radial limit; B2 is diagonal;
and B; is azimuthal. The shaded regio]n is not allowed. H,” and H. are
points “of hexagonal closest packing and C_ is the point of ma]ximum ggound
coverage on BZ' The angle x is a param%ter for locating this constrained
optimum in [Hl' H2] of B2' See figure 5.2.
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g
f’l=DM =.25/SIN2X

t*D§A=2coszx

Figure 5.2 Graph of (f,t) versus x on B3.
The upper curve shows that C0 is the point of minimum f on B3. We
assume a, = 1/2. The lower curve shows that t is a monotone parameter on

B3.
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In practice, we assume that 8RF>O on B3 so that H1 is the only possible
minimum of 83 and, similarly, 8ZF>O on B1 so that H2 is the only possible

minimum of Bl’ This leaves the circular branch (Hl'HZ)B including the

2
endpoints. Let
OF=9f3F+93¢tdF Eq. 5.1)
X X f X t (Eq
where
— 2 .
axf = BX(aC/(4DM cos X sin X ))
_ 2 _ 2 — 2_p2Y /R272
= aC/R aC/Z aC(Z R4)/R%Z
= 91 f2
= =-2tf /aC
and
3Xt = (4D§/2).8x(cos2x-sin2x)
= =2RZ = -Zac/f.
For 3 = af or Bt , we have
[of C
9F = (1/E) aC - (C/E2) 8E
and with ¢C=1
9E = aSAn_(A_9f _+f 3A)).
Consequently,
-E/(FaSAn ) 9F = A Bf +f A +T, (Eq. 5.2)
with

Ty = -3C/(FaSAn ).
We assume the land and wiring cost formula
¢= C0+ChA§¢c¢c

with

3
n

c 0l+fc(lﬂglpc"'BZRc"BBZc)
so that

3C = C,A dy_
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with ¢.=1 for interior cells. This gives

Ty = (H/n) 3,

where, as previously,

p o= Ch/(Fa§).

The evaluation of 3y requires 8(R,Z)/3(f,t) which is obtained by inverting
a(f,t)/8(R,Z). We know that

(aRf
azf
so that
(BfR

BtR
Consequently,

8f¢
and

8Rt) _ (- f/R R)
3t - £/ -Z

3,2 +Z -R RZ
= 2,722
3,2 +£/2 -f/R) (R%4+Z%)f
-a Z/f2 -a R/f?
- (R2+22)-1 4 / s / )
R -Z
1+Blpc+BZRc+B3Zc

-(a /£(R?+22)) (B,Z+B4R)

9.4 = +(£/(R*+22)) (B,R-B,4Z).

Equation 5.2

is now complete. Hence, BXF can be evaluated using

Equation 5.1. Choosing

a_F
X

implies that

atF

0

2
tf(£/a )2 3F,

which can and will occur for both minima and maxima.

axF(Hl) >0

implies a local minima at Hl' and

8XF(H2) <0
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implies a local minima at H2'
In the computer implementation, we evaluate
3(x) = Sign {[E/(FaSAn )12, F} = x/|x]
on a circle through the solution. If the unconstrained optimum falls outside
of the allowed region, then the solution moves out to BZ' If the unconstrained
optimum is allowed, then
(R2+72)% > 2Dy,

Several cases occur. (See Figure 5.3).

Case 1)

2(x) = t+ everywhere on Bz, then H1 is the optimum solution.
Case 2)

2(x) = - everywhere on B2, then H2 is the optimum solution.
Case 3)

+ for y < %o

Z(x)
- for x > x,,
where Xo is a maximum of F. Hence, x = X, can not be an optimum solution.
In this case we arbitrarily assume that
H1 is optimum if Xo > 45°,
H2 is optimum if Xo < 45°,
Case 4)
- for x < Xo
2(x) =
+ for x > x,.
where %o is @ minimum of F and x = Xo can be accepted as an optimum solution.

Case 5)
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If Z(x) changes sign several times, the automatic method fails.
In most cases, when mechanical limits occur, 3(x) locates the optimum solution
on Bz, and if no mechanical limits occur, it verifies the standard unconstrained
solution. Figures 5.4-5.6 show output for a number of the cases discussed

here.
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| )X
0 H- H

Figure 5.3 Figure of Merit versus x for Five Cases.
The five cases are discussed in the text. X marks a maxima and dot
marks a minima. The code deals with cases 1 to 4 automatically, but case 5

may require an operator judgement. An over-ride input is available for these

rare cases.
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Figure 5.4 Finding the Correct Solution.

(R,Z) coordinates are given in multiplicative form. (1,1) is the input
estimate. X marks the solution. 0 marks points where the t-equation holds
and * marks the points where the f equation holds. In this case no
mechanical limits occur in the zone of variations, but an alternative solution
occurs in lower left. The circle of signs is always passed through the
solution point. + on right of X and - on left of X verifies that the solution
is minimum of the figure of merit. The +'s and -'s refer to the sign of 2(x).
The * are placed on a circle in the (R,Z) plane which is called the circle of
signs.
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Figure 5.5 Finding the Solution of B3.

This case

The L filled region is not allowed due to mechanical limits.

An ordinary solution occurs at the intersection of the

shows B1 and B3.

There-

zeros and stars, which happens to fall inside of mechanically limits.

fore the solution is shifted to the position labeled X which is on B,y at the

point where the sign of 3(x) changes.
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Figure 5.6 Going to Hexagonal Closest Packing.

In this case, the unconstrained solution goes beyond mechanical limits

However, the circle of signs

and off the top of the zone of wvariations.

This is an

indicates a local minimum at Hz, which is marked by an X.

example of case 2 as shown in Figure 5.3.
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6. Optimization with Energy or Power Constraints

An optimization study may seek to determine the optimum scale of a
system, or it may provide a constraint on the system size. For central
receiver systems the most natural constraint is the total thermal power at the
design time. The optimization described in section 2 is unconstrained. Our
first look at the effect of constraints will be for fixed annual energy. We
assume a specific tower height, receiver size, and cost.

Given the figure of merit

F = C/E,
with
C = CO+ChAG
Ao =2 A = Ach¢C
C C
and

E = aSEnCACAC -b = aASEnCACfC¢C - b.

We need MIN(F) with E = E (i.e., E is given). Clearly,
MIN(F) = MIN{C { E = E}/E
The standard Lagrangian technique can be used for finding the minimum

under constraints. Let

g = E/(SA) = azn A f 0 _ - b/ (SA)

C

and

j=n
it

C/(chA) = co/(chﬁ) + 2 0
[

In this case g is the constraint. Consequently,

MIN(F) = chA MIN(h)/E
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when

9,8 -1, h=0 (Eq. 6.1)
c c
at g - Lat h=0 (Eq. 6.2)
c c
and
9 g-1d h=0 (Eq. 6.3)
¢c ¢c

For internal cells ¢C=1, and equation (6.1) gives
an (A +£ 3. L) - L1 =0,
C
which can be solved for the Lagrangian parameter L.

L= anc(Ac+fcachc)

Equation (6.2) gives
an (d A)f_ - L:0=0,

or, equivalently,

Similarly, equation (6.3) gives

an A f - Lf =0,
ccc C

so that

B = an A/L > 1
for cells inside the trim line.

Notice that L replaces p as the cell matching parameter, and the two
optimum cell conditions remain unchanged. The boundary condition also
appears unchanged, and the Lagrangian parameter L is determined byv the

constraint
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E=E@W) = aSAEnnCACfC - b.

3* denotes a summation over those cells for which L < an.A..
Although the input value of F is not mentioned in the above derivation,

it is convenient to assume that

Lo = ch/(F(input)ag),

IN
so that Lin is proportional to the input figure of merit F(input). After several
trials, F(output)>>F(input) and

E=E(p)
as required.

The fixed power constraint requires another sum over cells to represent
the available thermal power at design time. Let P, represent the available
thermal power at time T when the direct beam insolation at normal incidence
is ap- .gc gives the efficiency for redirected power from cell ¢ at time Ty
As in section 2.3

-]
1]

ac Asn £ f 6 - b/h

For simplicity, let

(@]
"

c,6+C A (z £.6.)

and F = C/E, as always. The fixed power optimization requires
F=Min {F(V) | P=P}.

Equations (6.1-6.3) apply, with
g =P, and h = F.

Hence, the equations for a constrained optimum are of the form
oP - LoF = 0 or OoF = oP/L

with 9 =9, , 9, , and 3, . As always, OF is
£ te L

9F = 3C/E - C 9E/E?
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so that
9C - F 3E - (E/L) ®P = 0.

Equation 6.1 gives

C,A - FaSAnC(AC+fC3fCAC) - (E/L)aooAnC(£c+fcafC£C) =0,

or, equivalently,

0= (f,t) + (Eo /(LFS)) u (f,t)) = Cp/(Fal)

where

k=
1

r]c (Ac+fc 8fc}‘c)’

and

[od
"

c nc (£c+fc afcgc)'
Equation 6.2 gives

-FaSAn_f 9 A _ - (E/L)aooAncfcatcic =0

so that

atCAC = (EOO/(LF§)) atcgc #0.

Equation 6.3 gives

C,Af_ - FaSAn A f_ - (E/L)aoghn £ f_ =0

so that for a boundary cell

w-nA, - (Eo /(LFS)) n E =0
nC)\C is larger for interior cells than for boundary cells, hence, for interior

cells

12



W/ (A <1+ (B /LFS)) § /A, -

L must be determined by the constraint

Py = P(L) = acOA E NE 0. (L) - b/H.

This type of optimization has not been implemented because of the difficulty
of solving for L.
As in Section 2.3, it convenient to assume that

E. =H P.
o 1

inc (Eq. 6.4)

nc’
so that
P = JE/H_ ,
and in this case the equations of the constrained optimum require
8C = (F+E/(LH_)) OE.
Equations 6.1-6.3 become
B = (1+E/(FLE ))p (f_,t )
3, = 0,
and
B, = (1+E/(FLHO))nCAC/G > 1
for interior cells. L satisfies Py = P(L). These optimum conditions are
equivalent to the unconstrained equations if
ppE = ¢/ (F*aS)
= (1+E/ (FLH ) 7.
Consequently,
F* = F+E/(LHO) = F(input)
and
= (F*-F)HOIE.

This solution is obtained by varying the F(input) until P0 = P.
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7.  Simultaneous Optimization of the Collector and Receiver Geometry
Let F = C/E be the figure of merit; however, we will now extend the set
of independent variables to include h for the height (vertical length), of the
receiver, r for the radius of the receiver, and T for the focal height of the
tower. Let
V= {r,n,T,(R,Z_,6,) c € field}
be the extended set. {(RC,ZC,¢C)} represents the collector field.

In this section the cost model will include the receiver and the tower.

Let
C=C, +CA_ +C(T,P) + ChAE 0 b,
where
C, = fixed cost for balance of system,
Cr = cost of receiver per unit area,
Ar = 2n rh = area of receiver,

C(T,P) = cost of tower as a function of tower height T
and power P at design time T, and
8 includes the cost of heliostats, land, and wiring as in
section 2.
E is the total annual thermal energy available at the base of the tower in

dan average year.

£y
H

a SA (E nAf£0) - b

with

[
I

ap = (absorptivity) (reflectivity) (etc.),

and

o
1]

H ArPr(to)

75



where H is the number of hours per year of useful insolation (i.e. receiver
operation), Pr(to) is the radiative and convective loss rate from the receiver
per unit area, and t, is the operating temperature of the receiver. Pr(to) is
assumed to be known.

We will not discuss the optimization with respect to operating temperature
because our figure of merit is unsuitable and the necessary cost information
is unavailable. The solution is well known, assuming Carnot efficiency and
no temperature dependent costs. Another approach to the receiver loss
problem has been developed. (See Reference 20, 21, 22).

In this section, we assume an unconstrained optimization. Therefore,
the solution for the collector geometry is formally the same as in section 2
with

C, > C, + CA_ +C(T,P)
and for given values of (h,r,T).
The receiver geometry problem requires three additional optimum

conditions for reciever height, reciever radius, and tower height.

§,F =0=06F=6F,
or, equivalently,

ahE/ahc = 1/F, etc.
For convenience, let

A=2 nchcfc¢c.

C

It is easy to see that

3,C =CA /h

8 C=CA/r

r rr
BTC = aTCT
3hE = aSAahA - HArPr/h
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BrE = aSABrA - HArPr/r
and
8TE = aSABTA.
Consequently,
hd, A = A/B + 1/BF (Eq. 7.1)
rd A = A/B + 1/BF (Eq. 7.2)
where
A=THP/C,
and
B = aSA/C A
rr
Similarly,

aSR9,A/8,Cy = 1/F,

and, therefore, (after applying a factor of T and some re-arrangement)

TSTA TBTCT/(aSAF) (Eq. 7.3)

1k

2C/ (aSAF)
for tower cost quadratic in T. Equations 7.1, 7.2, and 7.3 are difficult to
solve, and it is necessary to know the cooresponding partial derivatives of Ne
(i.e., ahnc' arnc' and aTnC).

Consequently, we propose to seek the minimum value of F(r,h), which is
consistent with the trim boundary and total power, by direct numerical
methods rather than by the optimum requirements 6,F =0 and 6.F = 0.

Given the nodal interception data n (r,h) for a receiver of size (r,h),

cpq
we can construct the interception fractions for receivers of various sizes.
The receiver nodes {(p,q)} correspond to receiver heights hq for g=1 ... Q

and receiver azimuths ¢p for p=1 ... P. All of these nodes have radius r.
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We have

h = qAh
q qah,
and
o, =P A0
where
Ah = h/q,
and
Ap = 2m/P.
The greatest interception is obtained by summing all of the nodes
- - P Q
n(r,h) = ¥ 2In .
¢ p=1 ¢=1 P4

However, shorter cylinders are easily represented by omitting a few rings of

nodes at the top and the bottom of the cylinder:

Gy = 3 5
n_(t,hy) = n
P pmigep

Pq
where
h, = BAh.
B B
Cylinders of smaller radius are more difficult to represent. However,
the task can be accomplished by interpolating panel interception fractions.
Let
n..(hg) = % n
cp B = P4
represent the panel interception factor for the p-th panel with a height hB'

The center of the p-th panel has the azimuth angle

18



0, = (pt%s) Ad
measured east from south (i.e. counterclockwise). The edges of the panel
have the azimuths p A¢ and (p+l) A¢. If cell c has azimuth O the
perpendicular distance from the edge of the panel to the center line from cell

c is given by

Dcpi = r sin (¢C - ¢P * %A¢).
Let

D_=MAXD .,

cp cpt
and let

E $2 (h,)

= n
PP - cp- B
1v2 p—p1

so that the interpolated interception fraction is given by

= +
Ne(rartg) =By p " ileqp 1) ¥ F2Nle(p +1)

for the appropriate values of pl'pZ'fl' and f2. (See Figure 7.1). f1 and f2
are suitable fractions of unity to represent a cylinder of radius ry-

The subroutine RCFINT can be generalized to construct the interception
nc(ra’hﬁ) for any

£y < r and hB < h

in terms of the nodal interception data obtained from a cylindrical receiver of
radius r and height h. It is then feasible to explore the dependence of the
output figure of merit on (ra'hB)' Interception due to a flat plate receiver
depends on its length, width, and orientation. If the optimum orientation can

be assumed, then the two variable optimization over length and width is

similar to the cylindrical case. (See Figure 7.2 and 7.3).
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iIncreasing
panel #

Figure 7.1 Panel Panel Interpolation for Smaller Cylinders.
¢C points towards the center of cell c. Py is the first panel such that
D > r, and p, is the last panel such that D > r. The panels in the
cpq - 2 Cpy —
set (pl. . .p2) provide the same interception as all of the panels in the smaller

cylinder (if the end corrections f1 and f2 are included).
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Figure 7.2 Figure of Merit for Various Receiver Sizes.

Each solid curve represents the specified receiver size. The parabolic
curves are obtained by varying the input figure of merit. The dotted curve
is the envelope of the parabolic curves for given tower height at various noon

powers.
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Figure 7.3 Figure of Merit for Various Tower Heights.

Each inlaid curve represents an envelope of optima as shown in the

previous figure. The envelope of tower height optima provides the grand

optimum versus noon power. Three different models are shown to indicate

the effect of fixed cost and visual range. The baseline visual range is 50 km

and fixed cost is $2.6 M.
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