NUREG/CR-6537
ORNL/TM-13406

Influence of Long-Term Thermal
Aging on the Microstructural
Evolution of Nuclear Reactor
Pressure Vessel Materials

An Atom Probe Study

Manuscript Completed: December 1997
Date Published: March 1998

Prepared by
P. Pareige*, K. F. Russell, R. E. Stoller, M. K. Miller

Oak Ridge National Laboratory
Operated by Lockheed Martin Energy Research Corporation
Oak Ridge, TN 37831-6285

M. G. Vassilaros, NRC Project Manager

Prepared for

Division of Engineering Technology
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

NRC Job Code L1098
e RESug,
N MASTER
P tarr® DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

*Current address: Laboratoire de Microscopie Ionique et Electronique, GMP-UMR 6634, Faculté des
Sciences de 1'Université de Rouen, 76128 Mont Saint AIGNAN, Cedex, France

TER




DISCLAIMER

Portions of this document may be illegible
electronic image products. Images are
produced from the best available original
document.




Abstract

Atom probe field ion microscopy (APFIM) investigations of the microstructure of unaged (as-fabricated)
and long-term thermally aged (~100,000 h at 280°C) surveillance materials from commercial reactor
pressure vessel steels were performed. This combination of materials and conditions permitted the
investigation of potential thermal-aging effects. This microstructural study focused on the quantification
of the compositions of the matrix and carbides. The APFIM results indicate that there was no
significant microstructural evolution after a long-term thermal exposure in weld, plate, or forging
materials. The matrix depletion of copper that was observed in weld materials was consistent with the
copper concentration in the matrix after the stress-relief heat treatment. The compositions of cementite
carbides aged for 100,000 h were compared with the Thermocalc™ prediction. The APFIM
comparisons of materials under these conditions are consistent with the measured change in
mechanical properties such as the Charpy transition temperature.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United State:s
Government. Neither the United States Government nor any agency there?f, nor any of the{r
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any fnformgtlon, apparatus: product, or
process disclosed, or represents that its use would not infringe prlvately owned rights. Refer-
ence herein to any specific commercial product, process, or service by .trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
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Influence of Long-Term Thermal Aging on the Microstructural Evolution of
Nuclear Reactor Pressure Vessel Materials: An Atom Probe Study*

P. Pareige, K. F. Russell, R. E. Stoller, and M. K. Miller

Introduction

Surveillance programs for nuclear reactor vessels were primarily designed to monitor the
radiation-induced changes occuring in the mechanical properties of the pressure vessel materials.
Nowadays, a large set of data is available on the mechanical properties and also the microstructural
evolution of irradiated materials. The embrittlement of vessel steels and weldments is known to be
related to the presence of residual elements such as copper and phosphorus. Recent microstructural
investigations have conclusively shown that the presence of these elements leads to the
radiation-enhanced or radiation-induced formation of ultrafine copper-enriched clusters associated with
nickel, manganese, silicon, phosphorous, and iron."'° However, this evolution of the microstructure
has been observed in materials that have been neutron-irradiated for several years at temperatures
near 290°C. It is therefore possible that some of the degradation in mechanical properties may be a
result of the long-term thermal-aging component.

Some previous research has indicated the potential for thermal degradation of the mechanical
properties of materials used in the construction of nuclear power systems when they are operated at
relatively high temperatures (>371°C)." However, degradation in properties as a result of long-term
exposure at lower temperatures (~300°C) is still an open question.?

Among the studies on pressure vessel steels, Pense'® detected no shift in the ductile-to-brittle
transition temperature (DBTT) of an A302 Mn-Mo plate steel after a relatively short aging time of 500 h
at 370°C. After the same aging time, an A203 Mn-Ni steel exhibited shifts in the transition temperature
in excess of 40°C. Thermal-aging data are also available for a SA-302B steel for periods of 9,726 h
and 26,114 h at 307°C; these data were reported from the surveillance program of the Big Rock Point
Reactor (BRP).'*S These data indicated little effect of thermal aging on the Charpy impact resulits of
both the SA-302, Grade B modified steel (which is equivalent to the current SA-533, Grade B1 steel)
base metal and weld metal. Also, one capsule from the Oconee Unit 1 pressurized water reactor
(PWR) aged at 304°C for 15,800 h showed no significant shift in DBTT for the same materials as
described above.'® Recent results'” concerning materials removed from Oconee Unit 3, aged for
103,000 h at 280°C, and from Arkansas Unit 1, aged for 93,000 h at 280°C, have shown that thermal
aging had only a minor effect on the impact properties of both SA-302B base and weld metal. Both
modest increases and decreases in the DBTT and the energy on the upper shelf were observed,;
however, the overall changes resulting from thermal aging were of such small magnitude as to be
considered insignificant. Because the evaluation of the Charpy impact properties was inconclusive, the
authors of Ref. 17 recommended that additional investigation should be performed to determine
whether thermal aging was having an impact on these materials. They suggested that tensile and
fracture toughness testing should be performed and that microstructural characterization of the
materials was needed.

‘Research sponsored by the Office of Nuclear Regulatory Research, Division of Engineering Technology, U.S. Nuclear Regulatory
Commission, under Interagency Agreement DOE 1886-8109-8L with the U.S. Department of Energy under contract DE-AC05-860R22464
with Lockheed Martin Energy Research Corporation.
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The main objective of the work presented in this paper was to use the technique of atom probe field ion
microscopy (APFIM)'®'® to characterize the microstructure and the composition of low-temperature
(~300°C), long-term (~100,000 h) thermally aged plate, forging, and weld materials from the Babcock
and Wilcox (B&W) Master Integrated Reactor Vessel Surveillance Program in order to investigate the
potential thermal-aging effects. It is important to determine whether there are any changes in the
composition of the matrix and whether any ultrafine precipitates had formed due to the thermal
component of the service environment only. If such changes were observed they would provide an
early indication of the potential for thermal embrittlements at the longer times (~300,000 h) associated
with the vessel lifetime.

Also, the embrittlement of pressure vessel steels and weldments during neutron irradiation is known 10
be related to the presence of residual elements, especially copper and phosphorus. Thus, it is of prime
interest to have accurate estimates of the levels of these impurities in the materials prior to irradiation.
These parameters are key factors in the prediction of the embrittlement of a pressure vessel during
neutron irradiation, and they can only be measured by an ultrafine scale microstructural technique such
as APFIM. Thus unaged specimens have been investigated with the atom probe in addition to
characterizing the thermally aged materials.

Materials Description

Five structural steels were selected for the examination of long-term thermal-aging effects. Both
Oconee Unit 3 and Arkansas Unit 1 reactors have thermal-aging boxes containing pieces of
surveillance materials. The material removed from the thermal-aging boxes included forging, plate, and
two weld metals. The base and weld metals are representative of the materials used to fabricate the
beltline shell course regions of the Oconee Unit 3 and Arkansas Unit 1 reactor pressure vessels. In
addition, the boxes contained ASTM correlation monitor plate material. The base metal materials wers
SA-533, Grade B, Class 1 plate steel and SA-508, Class 2 forging steel. The two weld metals were
typical Mn-Mo-Ni weld wire, Linde 80 flux submerged-arc welds. The chemical compositions of the five
materials are reported in Table 1.

The specimen-aging capsules were located in boxes used for irradiation on the service structure
support of the reactor vessel heads. The boxes were located under the head insulation to help maintain
the aging temperature and within the flow of the entering coolant, which helped maintain the capsules
at the same temperature as the reactor vessel wall. As a result of the location of these boxes, the
surveillance material was exposed to an actual neutron fluence of less than 1 x 10" n.m™, or
essentially zero insofar as material damage is concerned. The exact exposure time for each set of
materials was difficult to determine because of the time allowance for reactor heat-up, cool-down, and
hot standby. The aging times given in Table 2 for these materials reflect a 10% increase of the actual
effective full-power times when the surveillance material was removed.

The materials have also been characterized in the unaged condition to have a full characterization of
the microchemistry of materials prior to irradiation and to be able to determine the effects of exposure

to temperature alone. The heat-treatment and stress-relief histories of these materials are given in
Table 2.

Experimental

The APFIM technique is particularly well suited to the characterization of these pressure vessel steels
because of its near-atomic resolution and its ability to chemically analyze features on the near-atomic
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Table 1. Chemical composition (bulk chemistry) of Babcox and Wilcox
Owners Group surveillance materials

Identification % Cu Ni Mn Si P C S Mo Cr
wt% 0.15 0.52 1.32 0.2 0.01 0.21 0.016 0.57 0.19
Plate A
at. % 0.13 0.49 1.33 039 0.018 097 0.028 0.33 0.20
wt%  0.17 0.64 1.39 0.21 0.013 023 0.013 0.0 -
Plate B
at. % 0.15 0.60 1.40 041 0.023 1.06 0.022 0.29 -
wt % 0.02 0.76 0.72 0.21 0.014 024 0.012 0.62 0.34
Forging
at. % 0.017 0.72 0.72 041 0.025 111 0.021 0.36 0.36
wt%  0.28 0.59 1.49 051 0.016 0.09 0.016 0.39 0.06
Weld A
at. % 0.24 0.56 15 1.01 0.03 0.42 0.03 0.23 0.06
wt%  0.30 0.58 1.63 0.61 0.017 0.08 0.012 0.39 0.10
Weld B
at. % 0.26 0.55 1.64 1.20 0.03 0.37 0.021 0.22 0.10
Table 2. Thermal history of as-received (reference) and long-term
thermally aged commercial alloys
Material Heat Heat treatment? Thermal aging
type number (as-received) - condition
Austenitized 899-927°C for 1 h/in., WQ 93,000 h
Plate A C5114-1 Tempered 649°C for 1 h/in., AC Arkansas Unit-1
Stress-relieved 593-621°C for 29 h, FC 280°C
Plate B Austenitized 829-913°C for 4 h, WQ 93,000 h,
HSST 02 A1195-1 Tempered 649-677°C for 4 h, FC Arkansas Unit-1
Stress-relieved 593-621°C for 40 h, FC 280°C
Austenitized 854-877°C for 4 h, WQ 103,000 h,
Forging ANK-191 Tempered 666—688°C for 10 h, WQ Oconee Unit-3
Stress-relieved 593-621°C for 30 h, FC 282°C
93,000 h
Weld A WF-193 Stress-relieved 593-621°C for 29 h, FC Arkansas Unit-1
280°C
103,000 h
Weld B WF-209-1 Stress-relieved 593—621°C for 30 h, FC Oconee Unit-3
282°C

4WQ = water quench, AC = air cool, FC = furnace cool).
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scale.'®'® The microstructural characterizations were performed in the ORNL energy-compensated
IPFIM.20

The experimental conditions required to obtain accurate APFIM data are well known for these ferritic
steels. In particular, it is necessary to cool down the specimen to a temperature of 50 K to avoid a
systematic error on the copper-level measurement. Field ion specimens were electropolished using
standard procedures'® from blanks that were cut from Charpy specimens. All compositions reported in
this work are quoted in atomic percent.

Results

A parallel set of experiments has been undertaken with unaged and thermally aged materiais. The
results concerning the chemical compositions of the ferritic matrix are summarized in Table 3.
Concentration uncertainties (20) result from counting statistics, as given by the standard deviation

o = [X(1 - X)/N]'"?, where X is the measured concentration of an element and N is the number of atoms
collected in each analysis.™ It must be noted that these reactor pressure vessel steels can exhibit
significant compositional variation from one specimen to another, particularly because only a small
volume of material (=3 x 1072 m®) is sampled from any given specimen. The values in Table 3 are an
average of several experiments in which N is typically ~60,000 atoms.

Because copper repartitioning is a major contributing factor in the embrittlement of pressure vessel
steels, particular attention has been paid to this element. The composition variation was particularly
evident in the measurement of the copper level in the plates A and B. Severe fluctuations in the copper
content from one specimen to another were observed, varying from 0.02 to 0.14 at. % Cu. However,
the average copper solute concentration determined in the ferritic matrix is consistent with the nominal
level for the two plates and the forging materials. On the other hand, a depletion of copper was
observed in the matrix of the weld A and weld B metals for both unaged and thermally aged samples.
This depletion cannot be due to the spatial fluctuation mentioned above because only 70% of the
nominal level was detected.

A coarser microstructural characterization with the techniques of optical metallography and analytical
transmission electron microscopy has been performed on the weld A material.?' Results from the
literature show that the weld metal contains mixed equiaxed and dendritic grains. The steel contains
predominantly mixtures of acicular ferrite and ferrite-carbide aggregate totaling about 97% of the
microstructure of the material. This alloy shows the presence of large, randomly distributed, spherical
inclusions containing primarily Mn and Si. The average measured composition of these Mn-containing
precipitates indicates the presence of 0.2 at. % Cu in the precipitates. The microstructure also exhibits
rounded elongated precipitates, identified as M,C carbides, which are located primarily on grain
boundaries with only occasional carbides within the grains. The average composition of these carbides
indicates the presence of 0.6 at. % Cu in the precipitates. Small M,C-type carbides were also found,
again mostly on grain boundaries, randomly distributed, but generally associated with other
precipitates. The average composition indicates the presence of 0.4 at. % Cu in these carbides.
However, the low level of copper encountered in these different features cannot fully account for the
measured copper depletion from the nominal ~0.25 to ~0.17 at. % Cu measured in the matrix.

The stress relief heat treatment for the weld A and weld B materials was performed at a temperature
between 593 and 621°C. The predicted solubility limit of copper in the iron-copper binary system
ranges between 0.17 and 0.24 at. % for these two temperatures. The detected value of 0.17 at. % can
be explained by the solubility limit of copper in the ferritic solid solution at the stress-relief treatment.
This suggests the formation of other copper-rich precipitates during the stress-relief heat treatment, or
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Table 3. Chemical compositions (at. %) of the ferritic matrix determined by APFIM in unaged (UnA)
and long-term thermally aged (Th-A) materials®

Plate A Plate B Forging Weld A Weld B
UnA Th-A UnA Th-A UnA Th-A UnA Th-A UnA Th-A

0.1 0.09 0.09 0.07 0.03 0.03 0.14 0.15 0.16 0.17
* x + - =~ + =S * = +
0.05 0.03 0.05 0.03 0.01 0.02 0.03 0.05 0.03 0.02

0.64 0.74 0.74 0.50 0.72 0.63 0.45 0.45 0.42 0.43
Ni + + + + + + + + + +
0.13 0.10 0.15 0.11 0.07 0.10 0.06 0.09 0.05 0.05

0.95 1.30 0.64 1.05 0.48 0.53 1.20 0.90 1.24 1.22
Mn + + + + + + + + + +
0.15 0.13 0.14 0.17 0.06 0.09 0.10 0.12 0.08 0.09

0.41 0.62 0.44 0.43 0.50 0.44 1.05 0.80 1.73 1.49
Si + + + + + + + + + +
0.10 0.09 0.12 0.10 0.06 0.08 0.10 0.12 0.10 0.09

0.02 0.003 | 0.01 0.007 | 0.02 | 0.003 | 0.03 0.02 0.05 0.07

Cu

P + + + + + + + + + +
0.02 0.003 0.01 0.007 0.01 0.003 0.03 0.02 0.02 0.02
- 0.006 0.02 - 0.004 - 0.005 - 0.008 0.03

C + + + + + +
- 0.006 0.02 - 0.004 - 0.005 - 0.008 0.01
0.11 0.17 0.12 0.15 0.12 0.08 0.18 0.14 0.20 0.23

Mo + + + + + + + + + +

0.05 0.04 0.06 0.06 0.03 0.03 0.04 0.05 0.04 0.04

0.11 0.06 0.04 0.08 0.15 0.20 0.03 0.03 0.07 0.06
Cr + + + + + + + + + +
0.05 0.02 0.04 0.05 0.03 0.05 0.03 0.01 0.02 0.02

2All compositions are the average of several experiments (+20).

also during the furnace cooling period (at a cooling rate of ~8°C/h to ~310°C), even though they have
not been detected in this investigation. However, coarse copper-enriched precipitates have been
detected at grain boundaries of A533B steels by APFIM.”

The Si and Ni contents of the matrix are, within the standard deviation, in good agreement with the
nominal composition of the alloy. The depletion of carbon and molybdenum in the materials suggests
the presence of a high volume fraction of carbides, particularly in plates A and B and the forging
materials. This high volume fraction of carbides in these materials may also explain the observed
phosphorus matrix depletion. Indeed, phosphorus is often encountered at ferrite-carbide interfaces. In
all materials, the detected level of manganese is always slightly lower than the nominal concentration.
This depletion is due to its presence in cementite carbides, as shown below.

Analyses were performed on both the carbides and the matrix to characterize the structure of these
unaged and long-term thermally aged materials. The more common features encountered in the atom
probe analyses of these steels are M,C cementite carbides and molybdenum-containing carbides.
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Molybdenum-containing carbides were frequently observed in both unaged and thermally aged
specimens. The small carbides have a disc, needle, or spherical shape, whereas the larger precipitates
are generally spherical, as shown in Figures 1 and 2. The sizes of the observed carbides were
determined to be between 5 to 20 nm. The core composition of these particles is given in Table 4. The
large uncertainties for these features are due to the small numbers of ions collected from such small
precipitates. The Mo:C ratio, in both the unaged and thermalily aged materials, is close to that of Mo,C.

Figure 1. Field ion micrograph of disk-
shaped molybdenum carbides in
the weld B surveillance material.

Figure 2. Field ion micrograph of spherical
molybdenum carbides in the
weld B surveillance material.

In addition, molybdenum atoms were also detected in
the vicinity of dislocations, sometimes associated with
carbon and phosphorus, as evident in Figures 3 and
4. A field ion image of a dislocation having a Burgers
vector component normal to the specimen surface is

Table 4. Composition of intragranular
molybdenum-rich carbides in unaged or
long-term thermally aged materials

Element % at 20 shown in Figure 3. The presence of a dislocation
Mo 63.6 16.7 converts the usual pattern of concentric rings at a
crystallographic pole into a spiral at its point of
Cr 3.0 3.0 emergence on the specimen surface.? Bright spots,
C 33.4 16.4 characteristic of molybdenum atoms, that decorate

the dislocation can be observed near its point of
emergence. The sequence of evaporation of the
atoms during the atom probe analysis of the core of the dislocation is shown in Figure 4. Each line
represents the number of atoms detected per two atomic planes of materials field evaporated from the
specimen. This figure clearly indicates that Mo, P, and C are detected in the vicinity of the dislocation.
The concentrations of these elements decrease significantly in regions far removed from the
dislocation.
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Figure 3.
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Field ion micrograph of a
decorated dislocation in the
unaged forging material. Bright
and diffuse spots are
molybdenum or phosphorus.
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Sequence of arrival of ions at the detector from the
analyzed dislocation (see Figure 3). Note the Mo, C,
and P enrichments in the core of the dislocation. Each
line represents the removal of approximately two
atomic planes of material from the specimen.
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In addition to the Mo,C carbides and the cores of
decorated dislocations, molybdenum is also
observed at the grain boundaries. A field ion image
of a grain boundary observed in the long-term
thermally aged weld B material is shown in Figure 5.
This micrograph clearly indicates that the grain
boundry is decorated with a 1- to 2-nm-thick layer of
molybdenum carbide precipitates. This type of
decoration has been observed in various Russian
and Western steels and is a common feature of
molybdenum-containing pressure vessel steels.”?

Another common feature encountered in these
materials is the presence of M;C cementite
carbides. A field ion micrograph of a
cementite-ferrite interface observed in the thermalily
aged Plate B material is shown in Figure 6. The
ferrite can be easily recognized by the presence of
crystallographic poles (i.e., families of concentric
rings), which are not evident in the darkly imaging
cementite phase. A brightly imaging molybdenum
carbide precipitate is also evident at the interface. A
composition profile starting in this molybdenum
carbide and emerging immediately into a cementite
precipitate located at the
interface is shown in Figure 7.
It is evident from this
composition profile that there
is a large Fe and Mn content
in the cementite but little
solubility of the Fe, Cr, or Mn
alloying elements in the Mo,C
precipitate. Analyses were
performed in unaged and
thermally aged specimens to
determine whether there was
an effect of the ~10 years
thermal-aging treatment on
the evolution of the
composition of cementite.
Analyses were successful in.
the Plate A for the unaged
specimen and in the Plate B
for the thermally aged one.
The chemical compositions
and stress-relief heat
treatment of these two
materials are so similar that
they can be compared. In
addition, the atom probe
results were compared with
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Figure 5. Decorated grain boundary in the
weld B long-term thermally aged
surveillance material. Bright
spots are ultrafine Mo,C
carbides.

Figure 6.

NUREG/CR-6537

Darkly imaging cementite and
brightly imaging ferrite in
long-term thermally aged plate B
material. Bright region at the
interface is Mo,C carbide (see
Figure 7).

thermodynamic predictions.?* Thermocal¢c™
calculations were performed at two
temperatures (620 and 593°C) within the
stress-relief heat treatment and also at
300°C, the temperature at which specimens
were thermally aged (93,000 h in the case of
the Plate B). The results are summarized in
Table 5.

The atom probe results revealed, in both
unaged and thermally aged materials.
carbides with classic M,C stoichiometry,
where M stands for Fe and Mn {in majority),
Mo, Cr, and Ni (in minority) and also Cu and
V (as traces, 0.02 at. %). These results are
similar to those observed in previous
analyses of the Chooz A pressure vessel
steel® and weld metal.?' In addition, the
experimental compositions are in good
agreement with the Thermocalc™
predictions for materials aged at 593 to
620°C. In all cases, the compositions are
comparable to the predicted values at
~600°C. This agreement indicates
that long-term thermal aging has no
significant impact on the evolution of
the microchemistry of cementite
carbides.

These initial APFIM microstructural
examinations performed on unaged
and long-term, low-temperature,
thermally aged materials show no
significant evolution of the structure
of the material. No phase
transformation has been observed for
this low-temperature heat treatment.
Unaged materials and materials
thermally aged for approximately

10 years have a similar ferritic matrix
chemistry and carbide compositions.
These results are consistent with the
observed mechanical properties of
these materials.'” A general review of
the data on thermally aged material
indicates virtually no significant
change in the impact data. Only small
variations in the Charpy V-notch
impact properties were observed for
all materials after exposure at the
thermal-aging temperature. Small
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Figure 7. Composition profile through a molybdenum carbide and cementite in long-term
thermally aged plate B surveillance material.

increases (~1°C) in transition temperature were observed for the forging metal and weld B surveillance
materials aged at 103,000 h, and their upper-shelf energies demonstrated small decreases (3 to 11 J).
The Charpy V-notch results for plate A and weld metal A aged for 93,000 h revealed differences in that
the 41-J transition temperatures for both materials decreased slightly.

Also, and especially for the weld materials, the copper remains in solid solution with a concentration
following the solubility of copper in iron for unaged specimens. A metastable solid solution is observed
for thermally aged specimens. This confirms that the thermal mobility of copper in iron at 300°C is
effectively zero.

Conclusion

Microstructural characterization of long-term (~100,000 h) thermally aged (300°C) and unaged
surveillance materials obtained from the B&W Owners Group was performed. Two welds, two plates,
and one forging material were investigated. The comparison between the thermally aged materials and
unaged materials permitted, for the first time, the investigation of a potential thermal-aging effect.
Although a general review of the thermal-aging data indicates that there may be some propensity
toward embrittlement in sensitive materials,'"'? the materials examined in this study did not exhibit any
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Table 5. Atom probe analyses of the cementite carbides. Comparison of the atom
probe results with the Thermocalc™ predictions

Fe C Mn Mo Cr Ni
Plate A Unaged
Stress-relieved 593-621°C for 29 h, FC
Thermocalc
prediction 59.1 25.0 11.1 1.5 3.1 0.1
(620°C)
Thermocalc
prediction 57.5 25.0 12.5 1.6 3.3 0.1
(593°C)
Atom probe 64 25.6 8.7 1.2 05 -
experiment + * * x *
(593-620°C) 0.8 0.7 0.5 0.2 0.1 -
Thermocalc
prediction 36.5 25.0 29.9 3.4 5.0 0.1
(300°C)
Plate B Long-term thermally aged
Stress-relieved 593—-621°C for 40 h, FC
93,000 h at 280°C
Thermocalc
prediction 61.8 25.0 11.6 1.5 - 0.1
(620°C)
Thermocalc
prediction 60.4 25.0 129 15 - 0.1
(593°C)
Thermocalc
prediction 421 25.0 29.3 3.35 — 0.2
(300°C)
Atom probe 61.1 25.4 1.9 0.9 - 0.2
experiment x + * % *
93,000 h @ 280°C 01 0.9 0.7 0.2 - 0.1

significant embrittlement or microstructural evolution. The same matrix copper level was found before
and after the long thermal-aging treatment. In the two welds, a significant decrease of the copper level
in the matrix over the nominal bulk composition was found and is due to copper precipitation during the
stress-relief heat treatment. This APFIM comparison of the microstructures in all three conditions is
consistent with the measured mechanical properties (transition temperature shift); i.e., no significant
changes in either the microstructure or the mechanical properties has been observed.
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