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Abstract

Structural deterioration often occurs without perceptible manifestation. However,
the existing methods of modeling structural deterioration usually need measurable flaws
to be applicable. Moreover, the existing methods of predicting service-life are mostly
empirical in nature and are generally unable to provide estimates of residual strength of
a degrading structure.

Continuum damage mechanics (CDM) defines structural damage in terms of the
material microstructure, and relates the damage variable to the macroscopic strength or
stiffness of the structure. This enables one to predict the state of damage prior to the
initiation of a macroscopic flaw, and allows one to estimate residual strength /service life
of an existing structure.

The accumulation of damage is a dissipative process that is governed by the laws
of thermodynamics. Partial differential equations for damage growth in terms of the
Helmholtz free energy are derived from fundamental thermodynamical conditions. Closed-
form solutions to the equations are obtained under uniaxial loading for ductile deforma-
tion damage as a function of plastic strain, for creep damage as a function of time and for
fatigue damage as function of number of cycles. The proposed model uses only readily
available material parameters. The proposed damage growth model is extended into the
stochastic domain by considering fluctuations in the free energy, and closed-form solu-
tions of the resulting stochastic differential equation are obtained in each of the three
cases mentioned above. A reliability analysis of a ring-stiffened cylindrical steel shell
subjected to corrosion, accidental pressure and temperature is performed.
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Executive Summary

Steel containments and liners in nuclear power plants (NPPs) may exhibit structural
aging effects, caused by processes that depend on the operating environment, service or
environmental loads, and unforeseen or accidental events. Aging may cause the strength
or stiffness of a structure to degrade during its service life to the point where there may
be a loss of function or integrity, leading to costly maintenance, repair, or replacement.
Load-induced inelastic deformation, corrosion, elevated temperature creep, and fatigue
are examples of damage accumulation mechanisms associated with aging in steel struc-
tures. It is essential to be able to quantify structural deterioration to perform condition
assessments of an existing structure, to estimate its residual strength and remaining ser-
vice life, and to develop appropriate strategies for maintaining it in a safe and functional
condition.

The initial stages of structural deterioration often occur without perceptible or visible
manifestation. By the time that damage reaches the point where it is detectable by the
customary nondestructive evaluation methods, a significant fraction of the remaining ser-
vice life or residual strength may already have been exhausted, and costly repairs may be
required as a condition of continued service. However, the existing methods for modelling
structural deterioration usually require a measurable flaw to be applicable (e.g., Paris
Law); and those that predict the service-life of a structure often cannot provide estimates
of residual strength while the structure is still in service (e.g., S-N curve). Moreover,
existing methods for assessment of damage accumulation are largely empirical in nature,
expressing damage either as a function of the elapsed time normalized by the failure
time or through regression analyses of experimental data on damage. These approaches
are heavily reliant on experimental data, and frequently lack a strong basis in structural
mechanics. Accordingly, the extrapolation of these experimental, empirical relationships
to structural service conditions raises numerous issues regarding the validity of scaling
from the laboratory to the prototype. Finally, structural damage growth is intrinsically
random, even under well-controlled laboratory conditions. Existing approaches often en-
capsulate uncertainty in the damage accumulation process by treating the experimental
constants simply as random variables. Such approaches may not account properly for
the underlying causes of the randomness.

The research described in this report is in support of the Steel Containments and
Liners Program being conducted for the U.S. Nuclear Regulatory Commission under
overall management by Lockheed-Martin Energy Research Corporation, Qak Ridge Na-
tional Laboratory. The goals of the research are to identify mathematical models from
principles of mechanics to evaluate structural degradation, to recommend statistically-
based sampling plans for nondestructive evaluation (NDE) of complex structures, and
to identify methods to assess the probability that containment or liner capacity has not
degraded, or will not degrade during a future service period.

Rational methodologies for analyzing damage growth in steel containments and lin-

xiii NUREG/CR-6546




ers can be developed within the context of the relatively new field of classical mechanics
known as continuum damage mechanics (CDM), coupled with structural reliability anal-
ysis principles that take uncertainties in loading, in initial material strength and stiffness,
and in their subsequent deterioration into account. CDM deals with the aggregate effects
of micro-structural defects and expresses them in terms of quantities that are observ-
able at the macro-structural level, e.g., changes in the elastic modulus of the material
or stiffness of the component. CDM is well-suited for tackling several of the damage
growth processes affecting steel structural systems with a significant reduction from cur-
rent levels of empiricism. CDM-based damage growth laws arise out of the classical laws
of thermodynamics in a mathematically elegant way. They can be extended naturally in
the stochastic domain with the assumption that randomness in damage growth is caused
by spatial/temporal fluctuations in energy and in material properties.

The report begins with a review of current approaches for analyzing damage accu-
mulation due to corrosion, plastic deformation and creep, and fatigue and supporting
experimental data in Chapters 1 and 2. Fundamental notions of cumulative damage
mechanics, its thermodynamic foundations, and equations of isotropic damage growth
for ductile deformation, high-temperature creep, and fatigue are presented in Chapters 3
and 4. The predictions are validated with experimental data. The deterministic CDM
formulation is extended to the stochastic domain in Chapter 5, where a random noise
term reflecting local fluctuations in material properties and energy dissipation mecha-
nisms is introduced. The stochastic differential equations that predict uncertainty in
damage accumulation are developed, and the predictions are compared with available
experimental data. An application of various damage growth models to reliability-based
condition assessment of a ring-stiffened steel cylindrical shell, typical of a containment
subjected to internal pressurization and elevated temperatures, is presented in Chapter 6.
Chapter 7 contains a summary of the major findings of the research, and recommenda-
tions for additional studies. A comprehensive bibliography on structural damage and
deterioration due to corrosion, excessive ductile deformation, elevated temperature creep
and fatigue concludes the report.
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Chapter 1

Introduction

1.1 Statement of Problem

Steel is widely used in the construction and manufacturing industries. It finds its use in
a wide variety of structural engineering applications: building structures, power plants,
bridges, ships, aircraft and automobiles. Its chief advantages are a high strength-to-
weight ratio, temperature resistance and ductile behavior between initial yielding and
fracture. Steel is amenable to fabrication in a variety of shapes and components. In ad-
dition, uncertainties in the strength, stiffness and section properties of a steel component
can be substantially reduced by good quality control in the manufacturing process.

However, steel structures are susceptible to aging (deterioration in strength and stiff-
ness) by various processes depending on the operating environment and service loading
conditions. Corrosion, high-temperature creep and fatigue crack growth are examples
of such deleterious processes. The effects of these processes may accumulate within the
structure over time, and may cause failure under design conditions or lead to costly re-
pair. Structural failures create the potential for loss of human life (e.g. collapse of a
building), infringe on public safety (e.g., failure of a nuclear power plant containment
causing radiation leakage), and have severe economic and social consequences. Even the
temporary suspension of operations of an important structure to facilitate repairs (e.g.,
the closing down of a bridge) can impose a sizeable burden on the local economy.

It is essential to be able to quantify structural deterioration and estimate the residual
strength and service-life of a degrading structure so that it can be maintained econom-
ically while remaining in service. Considering the need to optimize maintenance ex-
penditures, the methods of estimating structural deterioration should ideally be able to
detect/predict unacceptable levels of damage early enough, so that costly and disruptive
repairs can be avoided. The need for reliable methods of predicting structural damage
growth and estimating residual strength gains further relevance with the fact that aging
of the infrastructure is a widespread phenomenon and one that is becoming more acute
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every year. For example, by one estimate (Schweitzer, 1987), the cost of corrosion in the
United States, taking maintenance, use of special materials and failure of equipment or
infrastructure into account, is 80 billion dollars annually.

Although the ultimate effect of deterioration processes in steel structures is to com-
promise structural performance, the physical manifestations of structural degradation
can be as varied as the processes which cause them. In many situations (like general
corrosion!), the growth of structural damage is gradual and stable and leaves sufficient
time to react and decide on the best remedial measure. In some situations, however,
the effect of structural decay (for example creep) is not easily detectable until it has
progressed substantially. There also are situations where the growth rate of damage is
highly nonlinear (e.g., high-cycle fatigue), and over a major portion of its service life the
structure remains essentially defect-free. In such cases, insufficient or limited time might
remain after the first detection of damage to take remedial actions.

Among the various aging processes, perhaps the most visible and easily detectable is
general corrosion which can be identified by changes in texture, color and thickness of
a steel surface. However, another form of corrosion, called pitting corrosion, which can
penetrate a section (deemed as failure for fluid and pressure-retentive structures such as
pipelines and pressure vessels), can be extremely difficult to detect as the pits are small
in diameter and are often hidden under general corrosion products. The growth rate of
pits moreover can be orders of magnitude higher than that of general corrosion in a given
environment.

The accumulation of fatigue damage in steel components causes the formation and
subsequent growth of cracks, which may finally become unstable and lead to failure. The
time to crack nucleation is often the most important factor in the total fatigue life of a
structure. Once formed, the detection and correct sizing of fatigue cracks are crucial in
determining the residual life, but accurate identification and measurement of cracks are
pot always achieved in practice.

Creep straining is the result of sustained loading in the presence of high tempera-
ture which may lead to fracture if loaded long enough, even at stresses much below the
ultimate strength at that temperature. Creep failure can occur without necking and
with little warning. There are yet other processes of structural decay, like embrittle-
ment of steel (caused by radiation and hydrogen ions), which also do not have “visible”
manifestations but can potentially cause failure of the structure.

The existing models of structural degradation are mostly empirical in nature. They
either use an a posteriori approach, expressing damage as a function of the elapsed time
normalized by the failure time (as in Miner’s rule in fatigue); or fit suitable functions
to the observed data (e.g., S-N curve for fatigue failure) without explaining their mech-
anistic bases. The shortcoming of the first approach is obvious: it requires knowledge

1Different types of corrosion, high-temperature creep, fatigue and plastic deformation are discussed
in detail in Chapter 2.
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of the time or number of cycles to failure of an existing structure which is not always
forthcoming. The latter approach generally involves extensive testing, and often requires
a measurable flaw (e.g., a crack size) which restricts the situations where such models
may be applied. Moreover, many of the above approaches lack the ability of providing
an estimate of residual strength, the knowledge of which is essential in evaluating the
safety of a degrading structure.

Rational models to analyze damage growth are therefore needed that can not only
provide estimates of residual strength and remaining service life of a structure based on
the knowledge of its service conditions, but can do so even when the structure does not
show any perceptible sign of decay. ‘As mentioned above, this is especially important
when damage either grows below the detectability threshold? and accelerates to failure
by the time it is detected, or consumes a major part of the service life to initiate and
grows swiftly thereafter.

Structural damage growth is intrinsically a random phenomenon. Indeed, even under
tightly controlled laboratory test conditions, damage growth data are found to exhibit
significant scatter. Mathematical models for predicting damage growth should therefore
be able to capture the stochastic nature of the process — providing at the least an
estimate of the variability or uncertainty in the prediction. The empirical equations
(Miner’s rule and S-N curve) discussed above are not able to account for the inherent
randomness of a given damage growth process unless they are “randomized” with the
help of additive or multiplicative stochastic noise. Such modifications do not relate to
the underlying cause of the randomness.

Continuum damage mechanics (CDM), a relatively new development out of classical
continuum mechanics, deals with the aggregate effects of micro-structural defects and
expresses them in terms of macro-level quantities — for example, a change in the modu-
lus of elasticity. Tt is shown in the subsequent chapters that CDM is well suited to tackle
several of the damage growth processes described above with a significantly lesser degree
of empiricism. CDM is especially suitable for estimating damage growth that occurs
prior to the formation of macro-defects. Since it relates structural damage to physically
measurable material properties, CDM can provide estimates of residual strength of a
damaged structure at any arbitrary time in service. Furthermore, as will be shown sub-
sequently, CDM-based damage growth laws arise out of the thermodynamic properties of
damage accumulation in a mathematically elegant way. They can naturally be extended
into the stochastic domain under the assumption that randomness in damage growth is
caused by spatial and/or temporal variations in energy and material properties. -

In view of the random damage growth in structures, coupled with uncertainties in
the loading processes and the environment, it is appropriate to take a probability-based
approach to analysis of structural safety using CDM. The determination of the time-
dependent reliability and hazard functions of a structure (in a random environment

2The minimum detectable damage is a function of the skill of the inspector and instrument sensitivity.
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subjected to random loading) can give a clear understanding of when in its service-life the
structure is likely to slip out of the acceptable safe domain or when an inspection/repair
should be scheduled to maintain it in service with adequate safety. A stochastic CDM
approach to time-dependent reliability is also helpful in deciding the service-life extension
of an existing structure or ascertaining whether an existing structure can withstand a
different operating or service environment than that for which it originally was designed.

1.2 Objectives and Scope

The objectives of this research are to formulate rational damage growth laws for steel
structures that model mechanisms of structural damage accumulation due to gross inelas-
tic deformation, creep, fatigue and corrosion while taking into account the randomness
in the processes; to estimate remaining service-life or residual strength and uncertainties
in these key decision parameters using the damage growth laws and stochastic models;
and to ascertain the reliability of a structure subject to one or more of these mechanisms.

1.3 Organization of Report

A background on the four different damage-causing processes considered in this report,
namely corrosion, fatigue, plastic deformation and creep, is presented in Chapter 2.
It includes the existing mathematical models and available statistical treatment of the
damage-causing processes. A critical appraisal of the existing methods of quantifying
structural deterioration and finding the residual strength/remaining life of a degrading
structure concludes Chapter 2.

Chapter 3 introduces the fundamentals of continuum damage mechanics (CDM). A
review of the existing CDM-based damage growth laws is presented. The method pro-
posed in this research is then developed. The thermodynamic foundations of damage are
discussed, and variational results for deformable bodies arising therefrom are presented.

Chapter 4 concentrates on isotropic damage growth in deformable bodies. It derives
equations of damage growth for ductile deformation, high-temperature creep and fatigue
from the fundamental thermodynamic principles presented in Chapter 3. These growth
models are compared with experimental results and behavioral trends published in the
literature. Sensitivity studies on the different material parameters in the models are also
presented.

Chapter 5 extends the models developed in Chapters 3 and 4 into the stochastic
domain. Existing CDM-based models of stochastic damage growth are reviewed at the
beginning of this chapter. Some basic concepts of stochastic differential equations re-
quired for the stochastic CDM approach in this report are presented. The intrinsic
material and energy variations that cause randomness in the state of damage and its
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growth rate are shown to lead to a stochastic differential equation of damage growth,
which is then solved to obtain the random damage growth laws in ductile deformation,
creep and fatigue. Finally, damage accumulation predicted by the proposed models is
compared with available existing experimental data. ’

~ Chapter 6 presents an application of the damage growth models developed in the
previous chapters. The reliability-based condition assessment of a steel ring-stiffened
cylindrical shell (typical of a nuclear power plant containment) subject to internal pres-
surization and high temperature is performed. Several different scenarios of loading and
aging are considered and the parameters having potentially significant effects on the
life-time reliability of the structure are identified.

Chapter 7 summarizes the major findings from this research and recommends areas
for additional study.
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Chapter 2

Failure Mechanisms in Metal
Structures

The four major mechanisms of degradation of steel structures, namely plastic deforma-
tion, high-temperature creep, fatigue and corrosion are discussed in this chapter. The
physical mechanisms governing these different processes and their available mathemati-
cal and statistical models are examined first. Following that, a critical appraisal of the
existing methods of quantifying structural damage and estimating the residual strength
or remaining service of a degrading structure is presented.

2.1 Plastic Deformation

The most common way to characterize a metal for structural purposes is through its
monotonic (engineering) stress-strain curve. The deformation of a material upon appli-
cation of load may, in general, have a time-dependent component® in addition to the
more common instantaneous (depending only on the applied load) component. In this
section, the instantaneous component of deformation will be discussed.

Upon application of load, the strain response of a structure can be separated into
two constituents: the fully-recoverable elastic strain and the permanent plastic strain.
For lower values of stresses, plastic strain is relatively small and may even be completely
absent (at least from a macroscopic viewpoint). Some materials show a distinct yield
point, below which all the strain is recoverable. A metal undergoes strain hardening
with accumulation of plastic strain if loaded beyond the yield point. For many metals
(e.g., SAE 4340) a distinct yield point does not exist, but as the yield strength, o, is a
widely-used mechanical property, it is usually defined for such materials to be the stress
corresponding to either a 0.2% plastic strain or a 0.5% elongation.

1For example, creep straining at high temperatures, which is discussed in Sec 2.2.
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Metals and alloys can be broadly classified as ductile or brittle according to their
behaviour before failure. Ductile materials sustain a large plastic deformation prior to
fracture; brittle materials have relatively little deformation even at ultimate loads and
fracture suddenly without much prior indication. For example, ductile cast iron (A536,
65-45-12) has a failure strain of around 15% at room temperature, whereas the corre-
sponding value for SAE 308 cast aluminum is only 0.9% (Dowling, 1993). Temperature
plays an important role in the extent of ductile behavior of a metal: a material that is
ductile at room-temperature may become brittle at low temperatures. Theoretically, a
large hydrostatic tension would cause a normally ductile material to exhibit brittle fail-
ure. An originally ductile material may be cold worked to suit particular applications —
a process which gives it a higher yield point but takes away some of its ductility. In gen-
eral, ductility is a desirable property in a structural material, as it allows the structure
to provide sufficient warning in the event of an impending collapse.

The source of elastic and plastic deformations in a metal can be traced to the structure
of the material in the atomic scale. In an idealized crystal lattice, the atoms are displaced
from their equilibrium positions upon the application of an external load. The resulting
strain is elastic if the atoms return to their original equilibrium positions once the load
is withdrawn. On the other hand, a large enough load causes one plane of atoms in the
lattice to slide over another, and when the load is withdrawn the atoms come to rest in
new equilibrium positions in the lattice. This is called slip and manifests itself as plastic
deformation in the macroscale (Collins, 1981). Plastic deformation is often concentrated
in bands called slip bands. Other microscopic mechanisms causing plastic deformation
are twinning? and grain boundary sliding.

Mechanical properties (like tensile strength and fracture ductility) as well as stress-
strain curves are frequently available in terms of engineering stresses and strains, S and e
(engineering quantities are obtained using the original dimensions of the specimen). The
corresponding true quantities, o and € (which are defined with regard to the deformed
dimensions) can be obtained using the following relations:

c=S8(1+e), e=n(l+e), (2.1)

Under uniaxial loading, the relation between the true elastic strain (¢.) and true stress
(o) is idealized as linear for most metals, while the true plastic strain (¢,) and true
stress relation is often described by a power law. Assuming that the total strain, e, is
the sum of its two components, one obtains the widely used Ramberg-Osgood law under
monotonically increasing uniaxial loading (Dowling, 1993):

€ = €t+¢
(2.2)

= g+(®"

2Twinning involves rotation of atoms in the lattice and occurs in crystals that do not permit slip
deformation. Deformation due to twinning is very small compared to that due to slip (Stouffer and
Dame, 1996).
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where F is the elastic modulus, K is the strain hardening modulus and M is the strain-
hardening exponent. An estimate of the strain-hardening exponent can be obtained from
the ultimate engineering strain:

1

M=ave)

(2.3)

where the subscript u (for ultimate) refers to the highest point on the S — e curve.

In the above discussion of monotonic tensile properties, quasi-static loading was im-
plicitly assumed. These properties, however, can be quite sensitive to the rate of load
application, and are often qualified as strain-rate effects. In general it is observed that:
with increasing strain rate, the strength properties (namely, yield strength, elasticity
modulus, ultimate strength) increase, but ductility and strain-hardening rate decrease
(Dowling, 1993; Boyer, 1987). '

Experimental values of material parameters (for a given grade of material) often
exhibit significant scatter (e.g., Cherry, 19963). While a part of the scatter may be due
to measurement errors and different conditioning of the same nominal material grade,
the scatter also arises out of intrinsic material variabilities. Randomness in material
pa,i'ameters may have a significant impact on structural degradation and failure, and
random damage growth models have been obtained under the equal rank hypothesis by
treating the material parameters in an existing deterministic model as random variables.

2.2 High-temperature Creep

In the previous section, the time-independent effects of loads on a structure were con-
sidered. The resultant deformations depended only on the magnitude of the applied
loads, and the structural response did not change with time as long as the load was held
constant. The room-temperature behaviour of most metals usually fall in this category.

Creep strain, on the other hand, is time-dependent. Even when the load is held con-
stant and the instantaneous elastic and plastic strains have been realized, the specimen
may continue to strain further with time: this continuation of straining is defined as
creep. Creep is heavily temperature-dependent. Few metals exhibit noticeable creep
under design loading conditions at room temperature. However, at temperatures above
one-third to two-thirds of the absolute melting temperature, the creep rate becomes sig-
nificant, and the specimen may fail even at load levels much below the design stress (at
that particular temperature), if loaded long enough (Dowling, 1993). Examples of melt-
ing temperatures of some materials are: 1813 K (2800°F) for iron, 1723 K (2640°F) for
stainless steel, 1673 K (2550°F) for steel and 933 K (1220°F) for aluminum alloys. Creep
rupture typically occurs “without necking and without warning” and is like brittle failure

®Based on test data from 489 specimens of pressure vessel grade steel, Cherry (1996) reports coefficients
of variation of 12% for yield strength, 7% for ultimate strength and 22% for failure strain.
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in this regard. No significant correlation exists between room temperature mechanical
properties of a material and its creep behavior (Collins, 1981, p. 437). The nature of
creep deformation is different from that of tensile and fatigue deformations which occur
mainly due to slip. Creep occurs due to the diffusion of atoms and vacancies through
the crystal lattice and along grain boundaries (Stouffer and Dame, 1996).

Creep straining, starting from initiation to failure, can be assigned three stages: (i)
primary creep, just after initiation when the rate is very high but falls off rapidly to (ii)
secondary creep, where the rate is constant (also called steady-state creep) and eventually
leading to (iii) tertiary creep, in which the rate accelerates ultimately leading to rupture.
Usually, the secondary stage covers the major portion of the creep life.

The uniaxial creep strain as a function of ¢ (time), o ( uniaxial stress) and 7' (tem-
perature) is commonly expressed as:

€or = A(T)a™t? (2.4)

which is sometimes referred to as the Bailey-Norton law, in which A, n, ¢ are material
constants. For steady-state creep, ¢ = 1. In addition, if n = 1, we have Newtonian
viscosity. The explicit dependence on temperature can be removed by introducing the
temperature-compensated time, 8, (Harmathy, 1967) from the Arrhenius equation for
thermal activation of creep:

t AH '
= = \dt .
? /oeXp( RT) (25)
such that
de, _
= = f) (26)
de. _ decdo -
dt —  df dt (2.7)

where AH is the activation energy of creep and R is the universal gas constant. For
example, the quantity AH/R is equal to 70000°R for A36 steel (Harmathy, 1967) where
°R is degree Rankine.

A set of experiments showing randomness in all three stages of creep damage growth
is available in Garofalo et al (1961)%.

2.3 Fatigue and Fracture

2.3.1 Fracture

Fracture is the separation of a member into two pieces due to application of loads. A
structural metal contains voids and inclusions at the microscopic level. Along with these

*Garofalo et al (1961) report the times to (i) the end of primary creep stage, (ii) the end of secondary
stage and (iii} failure, in type 316 stainless steel at constant temperature and stress.
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microstructural “defects”, a component may contain geometric discontinuities (weld un-
dercuts, rivet holes), sudden changes in section required by design, and local defects
(cracks in a weldment or corrosion loss) that accumulate as a result of service condi-
tions or faulty fabrication, all of which raise the stress state locally. These elevated
local stresses may cause failure when the nominal applied stress is still in a “safe” range.
Quantities which are used to evaluate the effects of such stress raisers include the stress
concentration factor K, stress intensity factor K, strain energy release rate G and J-
integral. For example, at the edge of a circular hole in an infinite plate under remote
tensile loading o, the stress concentration factor K; = 3; and the mode I stress intensity
factor at the tip of a center crack of length 2a in an infinite plate loaded similarly is
K; = oy/ma. Among the material properties which signify strength against fracture
is the plane strain fracture toughness®, K. Materials with high yield strength gener-
ally have low fracture strength, and vice versa (Dowling, 1993). Usually, materials with
Kj, < 5M Pa+/m are brittle, and those with Kj, > 20M Pa+/m are ductile, e.g., for
carbon steel, the value typically is Kj, = 140M Pa./m whereas for soda-lime glass it is
0.76 M Pa\/m.

The concept of the stress intensity factor K is confined to the field of Linear Elastic
Fracture Mechanics (LEFM) in which it is assumed that Hooke’s law is valid throughout
the material, including near the crack-tip (Kanninen and Popelar, 1985)%. Such an ide-
alization is acceptable if the material is brittle, but LEFM may be inadequate for ductile
materials because the crack-tip stress cannot exceed o, and the plastic region around
the crack-tip simply spreads with an increase in the far-field load. Though such behavior
ideally comes under the purview of Elastic-Plastic Fracture Mechanics (EPFM)7, the
wide popularity and the sound analytical basis of LEFM have led to several modifica-
tions (for example the plastic zone correction factor to define the effective stress intensity
factor) to make it applicable to a wider array of real materials. Since real materials are
composed of discrete grains, voids and inclusions which manifest as discontinuities at the
micro-structural level, LEFM-based quantities should not be applied at the scale where
the continuum approach breaks down — usually in the domain of small and short cracks
(Dowling, 1993). At this scale, micro-structural features like the average crystal grain
size and the average particle spacing may become the dominant factors in their growth
and closure phenomena.

5The fracture toughness, K, in genreral depends on the temperature, loading rate and thickness of
the member. The plane strain fracture toughness gives the lowest possible value of K, and is considered
the most critical case.

A direct consequence of this is the existence of extremely intense stress fields (which theoretically
reach infinity) around the crack-tip irrespective of the magnitude of the far-field loading.

"In EPFM, the most widely applied concept is the J-integral introduced by Rice in 1968, which can
be used to solve a variety of crack-tip plasticity problems (Kanninen and Popelar, 1985). In the absence
of crack-tip plasticity, J becomes equal to K*/E, and thus serves to unify LEFM and EPFM.
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2.3.2 Fatigue

In the foregoing discussion on failure of materials, static loading was implicitly assumed.
The situation is different in the presence of repeated or cyclic loading (which may be
due to service cycling, thermal cycling etc). This reversal of load may cause movements
of dislocations at the microscale leading to the formation of surface grooves and ridges;
or may form vacancies on slip planes that lead to holes in the lattice structure (Collins,
1981). This microstructural damage manifests as fatigue in the metal, causing cracks to
nucleate in an originally defect-free member, and subcritical cracks to grow in size and
lead to fracture (at load amplitudes much smaller than the critical static load) if cycled
long enough.

It is convenient to envision three phases in the life of a fatigue crack: (i) initiation or
nucleation, (ii) stable crack growth (otherwise known as the secondary stage) and (iii)
fast (accelerated) growth leading to fracture. The total fatigue life of a structure can be
written as the sum, v ' '

’ Nz = Nr+ Np . (2.8)
where Ny is the crack initiation life, and Np is the crack propagation life which includes
the stable as well as the accelerated stages of fatigue crack growth. The duration of the
accelerated stage is usually negligible compared to that of the secondary stage. A series of
four papers by the ASCE Committee on Fatigue and Fracture Reliability (Committee,
1982a-d) provides a comprehensive review of the subject of fatigue crack nucleation,
growth and reliability. ’

The initiation phase of fatigue life in a virgin material has often been assumed (e.g.,
Murtaza and Akid, 1995) to constitute the growth of short cracks up to the size a,, which
is the transition length of short cracks into long cracks. As the short crack approaches a,
in length, its behaviour and growth rate also approach those of long cracks (Kaynak et
al, 1996). Once a long crack develops, fatigue damage growth enters the more familiar
and widely documented domain of stable crack growth described by fracture mechanics.

Since fatigue is intimately connected with load cycling, it is often sub-divided into two
domains: high-cycle fatigue (with fatigue life, say, above a million cycles) and low-cycle
fatigue (with fatigue life below, say, 10° cycles). In the former, the material initially is
essentially defect-free, the local stresses are low and yielding is absent, and a substantial
portion of the fatigue life is spent in crack initiation. In the latter, the material could
have initial defects (like a notch) and the loading is usually in the inelastic range.

Analogous to monotonic stress-strain curves, it is also possible to plot cyclic stress-
strain curves for a material under a given fatigue loading condition. Two idealized fatigue
loading conditions can be envisioned: strain controlled and stress controlled. In the for-
mer, cycling occurs such that the strain alternates between two fixed limits, whereas in.
the latter, the applied stress alternates between two fixed limits. In either case, the shape
and size of the hysteresis loops do not remain constant from the beginning of load cycling
to failure. The material either softens or hardens cyclically over the first few cycles, and
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then stabilizes in its stress-strain response giving rise to closed hysteresis loops (e.g.,
Endo and Morrow, 1969). Cyclic softening is said to occur if the stress range drops in
successive loops under a given strain range (for strain-controlled cycling) or if the strain
range increases in successive loops for a given stress range (under stress-controlled cy-
cling). The exact opposite happens in cycling hardening. Finally, if cycled long enough,
the loop tips start to move away from the equilibrium position and fracture occurs. The
tips of the stable hysteresis loops from fully-reversed tests conducted at different load
levels are plotted to obtain the cyclic stress-strain curve. Its equation can be provided in
a format similar to that of the monotonic Ramberg-Osgood stress-strain relation (eq 2.2):

Ae=29 4o
€ te\3m

Ac Ao\ M’
= ( ) (2.9)
where Ae and Ao are the strain and stress ranges respectively, E is the elasticity modulus,
H is the cyclic hardening modulus and M’ is the cyclic hardening exponent. The first
term on the right hand side of eq (2.9) gives the elastic strain range, while the second

term gives the plastic strain range.

Alternating stresses are characterized by their maximum and minimum limits omax
and Omin. Associated quantities like the mean stress o,, (the average), the stress am-
plitude o, (the semi-difference), the stress ratio R = Omin/Omax, and amplitude ratio
A = 0,/0,, are used in several empirical fatigue laws. Similar quantities are defined and
used for strain controlled fatigue.

The classical method of expressing the fatigue life of a member (in number of cycles,
N) is through an S-N curve, in which S is usually the applied stress amplitude. The
Basquin model is

N§™=C (2.10)

where m, C are experimentally determined constants. For many materials (like carbon
and alloy steels and some stainless steels) the S-N curve for fully reversed loading of a
smooth polished specimen becomes flat at the endurance limit, S., below which fatigue
failure does not occur. S, is commonly around 40-50% of the ultimate stress, o, for
low and intermediate strength steels and around 50% of o, for wrought aluminum alloys
(Dowling, 1993).

Instead of a stress-based approach to fatigue life (eq 2.10), a strain-based approach
could be adopted. The Coffin-Manson model relates the total strain amplitude, ¢,, to
the fatigue life, N, as:

'
€ = fEi(zN)b + e (2N (2.11)

where E is the elastic modulus and the other four terms are empirical constants. Anal-
ogous to the cyclic stress-strain equation, eq (2.11) separates the total strain amplitude
into its elastic and plastic components. The first term, which plots with a very flat
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slope on a log-log plot, represents the elastic strain amplitude, €., and is negligible in
the high-strain low-cycle region. On the other hand, the second term, representing the
plastic strain amplitude, €,4, has a much steeper slope and is negligible in the low-strain
high-cycle region. The two plots intersect at the transition life, Ny (Dowling, 1993).
Therefore, the €., — N relation, which dominates the strain-life relation in the high-cycle
région, may be said to approximate the crack initiation life, N7, while the €,, — N re-
lation which dominates the strain-life relation in the low-cycle region, may be said to
approximate the crack propagation life, Np.

In the above discussion, the applied stresses (or strains) were implicitly assumed to
cycle between two fixed limits during fatigue loading. In practical situations, however,
stresses (or strains) seldom alternate between constant limits; instead variable amplitude
loading is common (Committee, 1982c). Cycle counting in such cases can be done by the
“rainflow method” (Dowling,1993). Miner’s rule is often applied to assess the cumulative
fatigue damage under variable amplitude loading:

Np
p = Sy (2.12)
Ni(S;

i=1 = *
= 1 at failure (.2.1'3)

where damage, D, is measured in linear increments; n; and N; denote, respectively, the
number of applied cycles and the number of cycles to failure at stress level S;; and Np
denotes the number of different stress-levels applied. Miner’s rule does not take into
account the order of the loading cycles, and can lead to serious under-prediction or over-
prediction of fatigue lives depending on the order of occurrence of the different stress
levels (Schutz, 1993; Dowling, 1993). In general, it is observed in variable amplitude
loading that, a few cycles (n1) at a high stress level (§;) followed by cycling at a lower
level (S2, n2) causes greater damage than when the lower stress level (S,, no) is applied
first (followed by Sy for ny cycles).

The growth rate of long fatigue cracks along with the condition of their non-propagation
has been successfully described (in the secondary or stable crack growth stage) by the

Paris-Erdogan law
da

v = C(AK)™; AK > AKy, (2.14)
where AK = Kpax — Kmin is the range of the fluctuating stress intensity factor and
C,m are experimentally determined constants (unrelated to those in eq. 2.10). It has
been widely observed (Barsom and Rolfe, 1987) that fatigue crack growth rate is zero
below a threshold stress intensity factor range, A Ky, which strongly depends on the
stress ratio R. The threshold range A K}y therefore can be used to define the boundary
between the initiation stage and the stable stage of fatigue crack growth. The boundary
between the stable and accelerated crack growth stages may likewise be defined with
the help of the mode I fracture toughness, Kj,. Improvements in the Paris-Erdogan law

have been sought by incorporating parameters like R, AKy;, and K, into the original
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equation (Dowling, 1993). However, the Paris-Erdogan law has remained the most com-
mon empirical model of stable macroscopic fatigue crack growth under the assumption
of linear elastic behavior. The length of the propagation life, Np (eq 2.8), in an initially
undamaged specimen can be obtained by integrating the Paris-Erdogan law between the
crack length limits @, and a., where a; is the threshold length of crack initiation and
a. is the critical crack length at the onset of unstable crack growth. While using the
Paris-Erdogan law to determine N for other crack increments, it should be ensured that
the limits of integration lie within the range [a;, a.].

LEFM-based crack growth concepts break down at small or short crack sizes (e.g.,
Klesnil et al, 1984). Short cracks continue to grow at stress-intensities below the long
crack threshold A Ky, described above. Moreover, short cracks may grow at rates higher
than those for long cracks depending on the stress ratio (Kaynak and Ankara, 1992).
Ignoring the short crack growth stage, or using long crack growth rate parameters (e.g.,
m and C in Paris-Erdogan law) for short crack growth “can lead to potential dangerous
over-prediction of (fatigue) life” (Kaynak et al, 1996). The threshold crack length, as,
below which LEFM (and consequently the Paris-Erdogan law) is not valid, may be
approximately estimated (Dowling, 1993) with the help of two macroscopic quantities S,

and AKy, (both for R = —1):
1 AKth>2
as = — ( AS. (2.15)

It should be mentioned here that the fatigue crack initiation length, a, lacks a universally
accepted definition (Martin and Wirsching, 1991; Min et al, 1996). Kujawski and Ellyin’s
comment (1992) highlights this: “Usually the crack initiation stage is associated with an
arbitrary specified crack length. The crack length ranging from grain diameter to about
50-100um is used, depending on the material and physical scale of interest.” However,
Martin and Wirsching (1991) used a value of a; = 0.5mm for structural welds and
Kaynak et al (1996) chose a value of 1mm for En7A steel. Murtaza and Akid (1995),
on the other hand, chose a; = 120pum for BS250A53 steel. Majumdar et al (1993)
recommended a value of 0.002¢n (51um) as the initiation crack length in carbon steel.

2.3.3 Randomness in Fatigue Crack Growth

Fatigue crack growth is a random process. Test data in fatigue studies exhibit a relatively
large amount of scatter in spite of tightly controlled test variables and conditions. This
scatter is due to the intrinsic microstructural variations in the specimen. Weibull was
among the first to put probabilistic fracture mechanics on a sound analytical basis.

To incorporate the inevitable scatter in test data, S-N curves are sometimes drawn
as a family of P-S-N curves (Provan, 1987), where P is the probability of failure at N
cycles at constant amplitude stress, S. Log-normal and Weibull distributions have been
widely used to model fatigue lives of structures (Committee, 1982a).

In applying the Paris-Erdogan law in fatigue reliability analysis, some researchers
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have assumed either m or C to be the random variable or the random process (the other
being deterministic), and some have taken them to be jointly distributed (e.g., Ortiz and
Kiremidijian, 1986). Rocha et al (1993) found m and log C to be linearly dependent for
high tensile steel. Thara and Misawa (1991) assumed C to be a non-stationary Gaussian
process. Lawrence et al (1990) integrated the Paris law assuming that the initial and final
crack sizes, component geometry, crack growth parameters and loading were random.

Deterministic growth rate models like eq (2.14) have been rendered stochastic by
multiplying the right hand side with a non-negative random process in time (Lin and
Yang, 1983; Spencer and Tang, 1988) as in the following:

dA(t)

== = CLAK)"X(1) (2.16)

where A(?) is the random crack size and X (%) is the random process. Alternately, arguing
that uncertainty in crack growth rate arises out of inhomogeneity and randomness of
material properties at or near the crack-tip, others (e.g., Ditlevsen, 1986; Ortiz and
Kiremedjian, 1986; Dolinski, 1992) have introduced a multiplicative random function of
the crack-tip position, @, rather than of ¢, in their stochastic models:

dA
— =C(AK)" X (a) (2.17)
dn
Fatigue crack growth has often been idealized as a Markov process. The various
approaches taken by different authors in this regard are summarized in the following
paragraph.

Lin and Yang (1983) adopted a diffusive Markov process to obtain the first passage
time to reach the critical crack size. In doing so, they acknowledged the fact that the
instantaneous growth rate has a finite probability of becoming negative on account of
the additive white noise, but they assured that “this error is negligible so long as the
drift dominates the diffusion” with the caution that this condition “should be verified in
each practical case”. The drift and diffusion coefficients were obtained by the stochastic
averaging method. Upon assuming a power law for crack growth and the Weibull dis-
tribution for the time to failure, the reliability at a given time was estimated. Spencer
and Tang (1988) attempted to restrict the growth rate to non-negative values by multi-
plying the deterministic model with the non-negative process 102(*), where Z(t) was an
exponentially correlated stationary Gaussian process, and obtained statistical moments
of the time to failure using a finite element formulation. In an accompanying numerical
example, however, no rational method to estimate the correlation length of Z(%) was pro-
vided. Markov approaches to fatigue crack growth have also been used by Oswald and
Schueller (1984), Bogdanoff and Kozin (1985), Lassen (1991), Zhao (1993), and Ishikawa
et al (1993).

Detailed data on fatigue characteristics of different kinds of steel may be obtained
from Barsom and Rolfe (1987). Experimental data from Virkler et al (1979) on fa-
tigue crack propagation in 2024-T3 Al alloy have been used by many authors to verify
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their random crack growth models. Virkler et al (1979) performed constant amplitude
(load-controlled, room-temperature) tests on 68 pre-cracked specimens and recorded the
number of cycles to attain predetermined crack increments. They observed sudden in-
creases and decreases in crack growth rates as if “the crack was passing through a different
material possessing different properties” and commented that fatigue crack propagation
“is not a stable, smooth, well ordered process.”

2.4 Corrosion

2.4.1 Overview and Types of Corrosion

Corrosion is an electrochemical process in which a metal combines with other substances
present in its environment under favorable conditions and forms various compounds. It
therefore requires an electrolyte in contact with the metal, which could be moist air,
an aqueous solution or some liquid other than water. Non-electrochemical reactions in
which there is loss or alteration of material also are included in the general terminology
of corrosion. Physical factors which govern corrosion and its rate include temperature,
residual stress and cyclic loading rate. Corrosion-causing environments may be broadly
classified as moist (e.g., water, aqueous solutions, moist air and moist soil) and dry (e.g.,
air, gases, steam at high temperature, molten metals).

Corrosion is a combination of oxidation-reduction and acid-base reactions. When iron
corrodes, metallic iron is oxidized by H¥, Hy0 or O, into ferrous or ferric ions which in
turn produce aquo- and/or aniono-complexes of iron (Sato, 1987). An example of a cell
reaction where ferrous hydroxide is formed is (Clifton and Knab, 1989):

Fe + %()2 + H;0 — Fe(OH)2

At relative humidity above 80%, the adsorbed moisture film formed on iron has properties
of liquid water and is able to hydrolyze metal ions as well as dissolve pollutants like
SOz and CO; from the atmosphere (Reinhard et al, 1992).

Many metals can form a protective oxide layer when exposed to oxygen (atmospheric
or dissolved in water). In an aqueous environment, different salts of weak acids also
can form such passive layers on ferrous materials, under certain conditions of anion
concentrations and pH of the solution (Reinhard et al, 1992). As long as this layer is
not ruptured and remains intact over the surface, corrosion cannot initiate on the metal.
However, mechanical actions (like abrasion, tension, fatigue crack formation), elevated
temperature or chemical agents (like chlorides) can rupture or destroy this passive layer
and initiate corrosion. If the restoration of the protective layer is prevented or is slower
than the rate of attack, corrosion progresses.

Carbon steel lacks the ability to form the protective layer unless it is in a dry, clean
atmosphere (Schweitzer, 1988). Thus it is particularly susceptible to corrosion in harsh
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but routinely encountered service conditions. Yet, due to its wide availability and rela-
tively low cost, carbon steel accounted for approximately 88% of the tonnage delivered in
1984-85 for such diverse applications as marine structures, nuclear and fossil fuel power
plants, bridges and other transportation structures, and chemical, mining and metal
processing industries (Craig, 1989).

The important forms of corrosion are described in brief in what follows (Berger, 1983).
Following that, mechanistic and statistical models for uniform and pitting corrosion will
be presented in detail. Electrochemical models of corrosion are beyond the scope of this
research.

Uniform corrosion is among the most common forms of corrosion that are encoun-
tered. It is characterized by a progressive and uniform thinning of an entire section. This
kind of degradation is often addressed by providing an extra thickness called “corrosion
allowance” while designing.

Pitting is by many accounts the most devastating form of corrosion (e.g., Provan and
Rodriguez, 1989). This is a highly localized phenomenon, and is often not accompanied
by general loss of material. Moreover, the pits can be hidden under a surface of corrosion
products, making their detection very difficult. Pits are initiated due to local acidity,
inhomogeneity in the material, cracking etc. Hydrogen is believed to have a role in
initiating pits in the passive film on pure iron (Pyun et al, 1992). In many situations the
maximum pit depth is of critical interest, rather than the distribution of pit depths over
a given surface. This is particularly relevant when a single through-the-thickness crack
is enough to cause failure, for example, due to leakage in a pipeline or loss of pressure
boundary in a pressure vessel.

Stress corrosion cracking (SCC) is a result of corrosion caused or accelerated by
external or internal stresses in the metal. Cyclic loading in a material can cause rupture
of the passive layer, forming anodic areas at the points of rupture. This gives rise to
corrosion fatigue. Fretting is the small relative movement (of the order of 100 microns)
between two adjoining metal pieces. This mechanical action can promote an oxidation
reaction of the metal (Waterhouse, 1972) by removing the protective oxide layer or by
increasing the reactivity of the metal due to plastic deformation.

Other forms of corrosion include galvanic corrosion, erosion corrosion, cavitation
corrosion, intergranular corrosion and biological corrosion.

2.4.2 Mechanistic and Statistical Models of Corrosion

According to Komp (1987), most atmospheric corrosion data follow a power function of
time, {:

C(t) = At® (2.18)
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where C is the average loss of section, and A, B are constants. Similarly, by analyzing
experimental data and fitting a least-square curve, Mabuchi et al {1991) found the weight
of corroded iron in high-temperature water to be related to exposure time by

W(t) = at® (2.19)

where ¢ and b are constants. The corrosion rate appears generally to increase with
temperature and dissolved oxygen in water.

The time required for corrosion to initiate is a random variable. This random ini-
tiation time 7o (prior to which corrosion penetration is zero) can be introduced to the
model in eq (2.18) as (Ellingwood and Mori, 1993):

Ct)=A(t—m)B, for t>n ‘ (2.20)

Failure to include this initiation time leads to a conservative estimate of remaining service
life or residual strength of a structure.

Power laws of the above form have also been adopted for pitting corrosion depth.
According to Joshi (1994), the rate of pitting corrosion can be 3x 10° to 1x 108 times more
rapid than general corrosion in the same component subject to the same environment.
Strutt et al (1985) observe that “many corrosion profiles do not fit any of the commonly
used statistical models, particularly when a combination of corrosion processes operate
at the same time, giving multimodal distributions.” However, they suggest that the
maximum depth has a type I distribution. Markov models of pitting corrosion have been
developed by Mola et al (1990), Provan and Rodriguez (1989) and Williams et al (1985).
Stochastic models of comparable sophistication are not available for general corrosion.

2.5 Appraisal of Existing Methods

The existing methods summarized above for estimating accumulated damage or for pre-
dicting the time to failure are mostly empirical in nature. Purely empirical methods
(like the S-N curve for fatigue life) lack the ability to provide information on the resid-
ual strength of a structure as a function of time, the knowledge of which is essential
in evaluating the safety of a degrading structure. Some of the methods also require an
estimate of the time to failure of an existing structure in order to find out the remaining
service-life (e.g., Miner’s rule); this information may not be available, particularly for
non-generic structures.

In this section, the shortcomings of the available methods in assessing damage and
residual life or strength of deteriorating structures are discussed. Sections 2.5.1 and
2.5.2 address the models discussed above on fatigue, creep and corrosion. Section 2.5.3
examines several state-variable type “damage variables” — non-dimensional quantities
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taking values between 0 and I — that do not have mechanistic bases (unlike CDM?)
but have been proposed in the literature to quantify structural deterioration. This will
help set the CDM-based damage variable, introduced next in Chapter 3, apart from its
look-alikes and will underline the advantage of a CDM-based formulation in determining
the residual strength of a damaged structure.

2.5.1 Fatigue, Fracture and Creep

At constant amplitude stress or strain, the S-N approach for fatigue life prediction pro-
vides information on the number of cycles to failure, Ny (failure is defined either as
fracture or as a pre-determined drop in the peak stress), at a given stress amplitude and
stress ratio. This empirical approach is, however, not able to offer any estimate of the
remaining strength of a member (e.g., ultimate strength or plastic moment capacity)
that has passed through a certain fraction of Ns. Consequently, an S-N curve may not
be useful in many instances of reliability analysis of a fatigued structure.

Miner’s rule provides an empirical method to predict service life-time in metal fa-
tigue under variable amplitude loading. One known shortcoming of this method is the
observed fact that fatigue damage does not always grow linearly with number of applied
cycles; rather, the major portion of service-life may be spent without any manifestation
of reduced capacity, and damage becomes apparent and grows visibly at an increasing
rate only towards the end of the life-time (e.g., Paas et al, 1993; Pasic, 1992; Tiejun and
Zhiwen, 1990). A second difficulty in adopting a Miner’s rule type of damage assessment
(due to its a posteriori nature) is in evaluating the remaining service life of an existing
structure where the total service-life is still unknown. A third objection to using Miner’s
rule occurs when the cycling takes place with varying amplitudes. In such a situation
Miner’s rule predicts the same value of accumulated damage irrespective of the order
of appearance of the different amplitudes, which is contrary to experimental observa-
tions (e.g., Schutz, 1993; Kutt and Bieniek, 1988; Wheeler, 1972). Finally, the residual
strength of a structure in service cannot be predicted by a method that uses Miner’s rule
to assess damage. These deficiencies point to the need for more rational fatigue damage
growth models in place of the phenomenological ones.

No conceptual breakthrough has yet been achieved in predicting the time to initia-
tion of cracks in a virgin material under fatigue loading. However, two approaches of
predicting Ny based on macroscopic crack concepts are in existence: (i) In an S-N type
approach, the number of cycles correspond to a specified threshold crack length (usually
less than 0.5 mm) under a given load amplitude. However, no unique definition of the
threshold crack length exists in the fracture mechanics community (Kujawski and Ellyin,
1992} and this approach, like its macroscopic counterpart, is unable to provide any esti-
mate of the residual strength at the end of the crack initiation period. (ii) Attempts also

8Continnum Damage Mechanics (CDM) relates damage to the microstructural deterioration in a
structure (sec 3.2).
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have been made to come up with crack growth laws analogous to the Paris-Erdogan law
for short cracks with different C' and m values from those for long cracks (eq 2.14), for
the same material and loading condition (e.g., Murtaza and Akid, 1995). Theoretically,
this would enable one to estimate Ny (eq 2.8) by integrating the short crack growth rate
between the limits ag (short crack initiation length) and e, (long crack initiation length,
eq 2.15) once the parameters (C and m for the short crack growth law) are known.
However, not only is it more difficult to obtain the C' and m parameters by recording
data on the growth of short cracks (which are by definition microscopic in size), but this
Paris Law-type approach is extremely sensitive to the microscopic initial crack length ag
(as illustrated in Kaynak et al, 1996). Neither any standard definition nor any reliable
method of measurement is known to exist for the initial length a¢ which is supposed to
be only as large as the grain size (~ 10 — 100um). Another difficulty in using a Paris-
Erdogan type law for short cracks is their presence in abundant numbers in a specimen:
It is not possible to predict which short crack in a virgin material subjected to cyclic
loading would finally give rise to a long crack signalling the end of the crack initiation
phase. In fact, this is just another empirical approach that does not deal with short
crack growth from a mechanistic basis, but instead uses a curve fitting technique on the
available data.

Hence, a totally new approach for predicting the fatigue crack initiation time in a
virgin material is required — one that is completely independent of threshold crack sizes
and empirical growth parameters for microscopic cracks. It will be shown in Chapter 4
that a CDM-based fatigue damage growth law provides estimates of N; in terms of
macroscopically obtained material parameters.

A linear incremental damage growth rule exists for creep which was proposed by
Robinson (1952). According to this model, the creep damage caused by load S; applied
for time t; at a particular temperature is D; = t;/T;, where T; is the rupture time at the
same load and temperature. This model has all of the limitations of the fatigue models
to which it is similar and experimental evidences of non-linear creep damage growth and
load sequencing effects are available in the literature (e.g., Abo El Ata, 1972).

2.5.2 Corrosion

In his 1990 paper, Rogers laments “it is surprising that in the literature of corrosion
failure prediction there are very few instances where statistical methods were applied.”
Yet, the evidence is compelling that a significant amount of randomness is involved in
corrosion initiation and growth in steel structures (Ellingwood et al, 1996). All existing
methods to describe growth of corrosion use empirical laws which have obvious short-
comings as stated at the beginning of this section. Nevertheless, these empirical laws can
be applied to model the effect of corrosion on section geometry, and the residual strength
as a function of corrosion loss may be obtained under appropriate limit states. However,
there is also some evidence that corrosion may significantly alter the ductility of steels

21 NUREG/CR-6546




(Cherry, 1995), and this phenomenon is not addressed by existing empirical laws.

2.5.3 The “Damage” State Variable

The mechanics and thermodynamics-based CDM damage state variable will be intro-
duced in the next chapter, and damage growth laws due to creep, fatigue and plastic
deformation will be derived subsequently. However, there exist in the literature several
other methods which also define and quantify structural “damage” in terms of state
variables. These methods more often have phenomenological rather than mechanistic
bases. Before moving on to the CDM-based models of damage growth, some of the other
(phenomenological) definitions of structural damage are briefly examined in this subsec-
tion, which will provide a contrast to the mechanics-based formulation developed in the
subsequent chapters of this report.

The Miner’s law in fatigue (and the analogous one in creep), which in fact takes a
state variable approach by expressing damage as the elapsed time normalized by failure
time (D = n/Ny or t/Ty), has already been discussed in detail in sec 2.5.1. The following
comment by Hult (1987) made in his review of continuum damage mechanics is pertinent
here: “the use of the [Miner’s] failure condition must be preceded by testing at all
constant load levels [S;]... In contrast to this, the CDM damage concept is related
only to the current mechanical state of the material. Detailed knowledge about the
conditions for deterioration of the material structure would make it possible to predict
the load carrying capacity or lifetime without first performing extensive testing.”

The change in the dynamic response of a structure has been used in the literature to
quantify damage. For example, the increase in the squared natural period (normalized by
the square of the damaged natural period) of a structure has been proposed as a measure
of the accumulated damage (DiPasquale and Cakmak, 1989). Similar approaches have
also been taken by Agbabian et al (1991) and Hearn and Testa (1991).

Diao (1995) has equated the damage variable D with the failure probability, F(t)
(the cumulative probability distribution of the time to failure at ¢), arguing that it is
a scalar quantity taking values between 0 and 1 and that it adequately represents the
randomness in the material microstructure.

Claiming that fatigue damage is influenced by the “equivalent crack length” as well
as the surface crack density which in turn is related to the plastic strain range, Ae, Pasic
(1992) defined fatigue damage as

D = ba’(Ae)” (2.21)
where b, ¢, n are material parameters and ¢ is the normalized crack length.

Krajcinovic and Silva (1982) and Breysse (1990) idealized a volume of material as
consisting of a large number of microscopic elastic springs of identical stiffness (some of
which fracture under strain causing damage to the material), with equal load sharing
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among the unbroken springs. They defined damage as the ratio of the fractured to the
total number of springs in the material volume.

Acoustic Emission (a non-destructive evaluation method that uses sound emitted
from a strained structure to estimate the state of its damage) has been applied to esti-
mate stress-controlled fatigue damage of Incoloy specimens (Fang and Berkovits, 1995).
Denoting the intensity of AE occurrence by # and the intensity at failure by 7y, they
defined the damage variable D = 5/n;. However, no attempt was made to establish this
quantity D on a mechanistic basis or to relate it to material properties like stiffness. Plots
of D with normalized cycles n/Ny were found to accelerate as their values approached 1.

In contrast to the above approaches, continuum damage mechanics (CDM) defines
damage in a rational way that is rooted in mechanics. As will be shown in Chapter 4, it is
extremely well suited to deal with the accumulation of damage that arises out of overall
microstructural deterioration, rather than the growth of a dominant flaw. It makes
intuitive sense to describe damage growth as an irreversible process and, indeed, CDM has
been clearly shown to follow the thermodynamics of irreversible processes (e.g., Hansen
and Schreyer, 1994). However, the existing CDM-based damage growth models, as will be
explained in sec 3.3, lack continuity with the first principles of thermodynamics and often
contain undetermined material constants. Moreover, the inherent probabilistic nature
of damage accumulation has yet to be taken into account in the existing formulations.
These shortcomings have been been addressed in the present research.
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Chapter 3

CDM-based Approaches to
Modeling Structural
Deterioration

3.1 Introduction

Continuum damage mechanics (CDM) is a relatively new development in solid mechanics
and concerns the distribution, characterization and growth of microstructural defects
with the help of macroscopic state variables (Krajcinovic, 1984; Simo and Ju, 1987;
Hult, 1987). Damage accumulation is considered to be a dissipative process that obeys
the laws of thermodynamics (Hansen and Schreyer, 1994). Physically, the CDM damage
concept represents a loss of material integrity which reduces the capacity of a damaged
component to bear applied stresses. Such loss of material integrity is caused by various
processes at the microscopic level (Woo and Li, 1993a), and continuum damage mechanics
seeks to express the effects of those microscopic processes by quantities that can be
measured at the macroscopic level. Examples of damage-causing mechanisms include
ductile deformation, fatigue, creep, embrittlement and stress corrosion. Damage growth
equations for one or a combination of these processes may be derived in the context of
CDM.

It will be shown in this and the subsequent chapters that a CDM-based approach
to structural damage avoids much of the empiricism that is inherent in many of the
existing methods!. Unlike most empirical methods, CDM-based damage growth models
can provide estimates of residual strength which may be used to determine the safety of
a degrading structure.

The present chapter begins by introducing fundamental concepts of continuum dam-

1A critical appraisal of the existing methods of modeling structural deterioration was presented in
sec 2.5
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age mechanics. Following that, a review of the existing CDM-based models and their
shortcomings are presented. The development of the proposed method is then taken up
starting from the first principles of thermodynamics. Variational results leading to a gen-
eral set of partial differential equations describing damage growth in deformable bodies
are established at the end of this chapter. These equations are specialized in Chapter 4
and are applied individually to ductile, creep and fatigue damage. The proposed method
is extended into the area of stochastic damage growth in Chapter 5.

3.2 Fundamentals of Damage Mechanics

Definition of damage

In CDM, the damage variable, D(7), on an elemental cross-sectional plane (with unit
normal #) is quantified by the surface density of cracks and voids which are considered
“lost” in regard to the cross-section’s capacity to transmit applied stresses. However,
D(#) is not simply the net fractional area of the discontinuities at the given cross-section,
but is weighted by the effects of stress concentration at the edges of discontinuities and the
interaction among the defects (Lemaitre, 1985). If A, denotes the sum of the actual area
of the individual defects present on an elemental cross-section of area Ag and orientation
f (fig. 3.1)%, then the area effectively lost at this section, A;, is larger than A, and
damage on this cross-section is the ratio:

Al Av

The above definition of damage imparts to D(#) a directional nature, and as a result,
damage can be expressed by tensors of order one (vectors), two, four or even eight
(Krajcinovic, 1984). If, however, the weighted fractional loss in area is the same in
every orientation within the material, then damage is independent of # and is said to be
isotropic. Isotropic damage is quantified by one single scalar variable, D, a dimensionless
number between zero and one. A brief history of CDM from its inception may be found

in Krajcinovic (1984) and Hult (1987).

Effective Stress

The concept of effective stress is used extensively in CDM (Chaboche, 1988; Kachanov,
1986; Lemaitre, 1985). It relates the stress distribution within a damaged material to
the state of damage within the material. The effective stress in the direction 7 is defined

as
g

1- D(#)

(3.2)

o =

2Figures and Tables are placed at the end of each chapter.
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where o is the nominal stress. Generalizing, the effective stress tensor is
d=M(D):o (3.3)

where o is the nominal Cauchy stress tensor and M(D) is called the damage effect tensor
( Chow and Wei, 1991). When damage is isotropic, the effective stress reduces to

o
1-D

o=

(3.4)
and the damage effect tensor reduces to
=——I (3.5)

in which I is the identity matrix.

Principle of Strain Equivalence

The constitutive law for damaged materials is derived from the principle of strain equiv-
alence. This principle states (Chaboche, 1988):

A damaged volume of material under the nominal stress o shows the same
strain response as o comparable undamaged volume under the effective stress

ag.

Applying the principle of strain equivalence to the elastic strain:

Q
li
(o}

€ (3.6)
€e (37)

Qi
I
Q

where C and C are the undamaged and damaged elasticity matrices respectively. Using .
the definition of effective stress, the two can then be related by

c=M"1c ' o (3.8)

This leads to the familiar expression for the reduced modulus of elasticity £ under the
assumption of isotropic damage (e.g., Lemaitre, 1984):

E=E(1-D) | | ‘(3.9)

where E is the modulus of elasticity for the undamaged material and the implicit as-
sumption is that the Poisson’s ratio is unaffected by damage (deVree et al, 1995). In
fact, the modulus of elasticity and the Poisson’s ratio both are affected when damage is
considered anisotropic (e.g., Chow and Wei, 1991).

Equation (3.9) provides a means to estimate the state of damage in a component
by experimentally determining its reduced modulus of elasticity and normalizing it by
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the original stiffness or the stiffness of a comparable undamaged component. Fig 3.2
describes a laboratory procedure to measure the progressive damage in a ductile speci-
men by periodically unloading it and measuring the slope of the unloading curve. The
damaged stiffness may also be measured in situ by one of several non-destructive meth-
ods, for example, ultrasonic pulse velocity, electrical resistivity etc (Lemaitre , 1992).
This suggests a scheme to continuously monitor the integrity of an in-service structure,
perhaps in an automated manner, which could be used to alert the maintenance staff
in case the stiffness decreases below a pre-determined safe value or the rate of decrease
starts to accelerate.

Critical Damage

By definition, damage accumulation is an irreversible process, and the overall damage
variable is a non-decreasing function of time provided that corrective human intervention
does not occur. In CDM, failure occurs when the damage variable reaches the critical
damage D. < 1. In the context of CDM, “failure” is not necessarily fracture, but is
the condition when an essential assumption in continuum damage mechanics, namely
damage arising out of a volume-wide degradation of the material microstructure, ceases
to be applicable. It is that point when the damage-causing process becomes localized and
leads to the growth of a dominant defect. Chaboche (1988) described it as the “breaking
up of the continuum volume element”. This particular ability of damage mechanics to
quantify damage that accumulates prior to the formation of a macroscopic defect makes
CDM particularly suitable to model damage growth in the initial “defect-free” stage,
unlike most of the existing empirical methods which need a measurable flaw to be useful
(sec 2.5).

In the absence of the formation of a macroscopic defect, the state of rupture itself
may be defined as failure. For ductile damage, D, is widely interpreted as the value
of damage corresponding to rupture (e.g., Lemaitre, 1985), presumably because ductile
fracture in monotonic loading occurs by necking and not by the nucleation and growth
of a macrocrack. However, D, signals the initiation of a macroscopic crack in fatigue
(e.g., Lemaitre, 1984; Pasic, 1992; Dhar et al, 1996, Chow and Wei, 1991) as well as in
creep (e.g., Lemaitre, 1984).

The above interpretations of failure allow D, to have values less than unity, as opposed
to many phenomenological models (like Miner’s rule in fatigue and Robinson’s rule in
creep) which in effect require the critical damage to be identically equal to one in every
loading situation. Fractographic analysis of ductile rupture (for example, by Le Roy et
al (1981), who examined the area-fraction of voids® in ruptured carbon steel specimens)

3 As explained in sec. 3.2 the damage variable, D, is greater than the net fractional area of defects,
Ay /Ag, on a cross-section because of stress-concentration at the edges of the discontinuities and void
interactions. Indeed, Le Roy et al (1981) reported A,/Aq values of around 4 to 7% at failure which
are almost an order of magnitude lower than D. values (around 20% to 30%) reported for carbon steels
elsewhere (e.g., Lemaitre, 1984; Lemaitre, 1992; Tie-Jun, 1992).
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has corroborated the fact that D. is not always equal to 1. Indeed, D, is often believed
to be an intrinsic material property (e.g., Chow and Wei, 1991). This suggests that
once D, is determined from a particular experiment (e.g., a simple tension test) for a
particular material at a given temperature, it could be used to predict failure in one or a
combination of other degradation mechanisms (e.g., creep-fatigue interaction), providing
a unified approach to modeling structural deterioration. Experimentally determined
values of D. range anywhere between 0.15 and 0.85 depending on the material (e.g.,
Lemaitre, 1985).

The correlation between critical damage and failure however has not been maintained
consistently. Lemaitre (1984) allowed values of D, anywhere between 0 and 1 for ductile
and creep damages, but assumed D, = 1 for fatigue failure. Kachanov (1986) assumed
D, = 1 irrespective of the damage-causing process*, though he recognized the possibility
of values lower than 1 if “damage is localized and macrocracks occur.”

3.3 Review of Existing CDM-based Methods

The existing CDM-based methods of describing damage growth can be broadly classified
into one of the following two approaches: (i) Setting up phenomenological or “kinetic
equations” of damage growth, and (ii) Postulating thermodynamic potential functions
of dissipation due to damage growth. Either approach, as will be shown subsequently,
introduces unknown material constants in the damage growth equations, and it is usually
difficult to obtain numerical estimates of these material constants. The proliferation of
undetermined material parameters in the existing CDM-based damage growth models has
caused concern in the damage mechanics community (e.g., Krajcinovic and Mastilovic,
1995). This problem, coupled with the arbitrariness associated with the choice of the
kinetic equations or dissipation potential functions (which do not descend directly from
the first principles of mechanics or thermodynamics), poses an impediment to a wider
acceptance of CDM in modeling structural deterioration.

3.3.1 Kinetic Equation Method

The general form of the available kinetic equations of damage growth is:
D = f(D,x;w) (3.10)

where x is the set of state variables (e.g., strain) and w denotes a set of material pa-
rameters. Kachanov was among the first to introduce the concept of continuum damage
mechanics. In his pioneering work, Kachanov (1958) proposed the following kinetic equa-
tion (applicable to brittle fracture and creep damage under uniaxial tension), in terms

#Kachanov actually introduced a “continuity variable”, ¥ =1 — D, and took ¥ = 0 at failure.
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of the “continuity variable”, ¥ =1 — D:

dyv o\"
=4 (5) (3.11)

where A > @, n > 1 are material constants, and the initial condition is ¥ =1 at t = 0.
For low-cycle fatigue, this is modified to (Kachanov, 1986):

A —A (%)n , if 0>0
i (3.12)
t 0, if 0<0
For high-cycle fatigue, Kachanov’s kinetic equation of damage growth is:
dy _%[Ufnax - afn.in]’ if o> g
== (3.13)
4 0, if 0<o;

where B, b are constants and oy is the fatigue limit. A similar phenomenological expres-
sion for fatigue damage growth was used by Jun and Xing (1995).

Carmeliet and Hens (1994) assumed the following damage growth model for strain-
softening materials and applied it to direct-tension type loading:

. 1. _ .
D=Cze, €>¢, €¢>0 (3.14)
I3
where € is the “average equivalent strain rate”, C is a positive material constant and ¢
is a threshold value.

Paas et al (1993) proposed a damage growth law for brittle as well as fatigue damage
as:
D =C&(D.- D)® (3.15)

where C, d, e, D, are material constants.

3.3.2 Thermodynamic Potential Method

The basic approach in this method can be summarized in two steps: Postulate a ther-
modynamic potential function, ¢;, which describes the intrinsic dissipation rate per unit
volume:

¢ = ¢i(Y, &5w) (3.16)

such that it contains the damage energy release rate, Y, explicitly; and differentiate ¢;
with respect to Y in order to obtain the damage growth rate:

. 0¢;
D=3y

(3.17)
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Isotropic damage has been used in eqs (3.16) and (3.17) for simplicity. The rationale of
the above approach is outlined in the following:

As mentioned earlier, damage growth is a dissipative process governed by the laws of
thermodynamics®. In an isothermal process, the rate of intrinsic dissipation, ¢;, can be
expressed in terms of the “dissipation variables”, H, as (Hansen and Schreyer, 1994):

¢ = —pg—fll'{ >0 (3.18)

where 1 is the free energy per unit mass and p is the mass density. It should be noted
that the assumption that the intrinsic dissipation rate is positive at every instant and at
every point within a continuum has been severely criticized, e.g., by Woods (1981). If
D denotes the partition of H that signifies the “damage” variables, then the “damage
energy release rate”, Y, is defined as

9¢
As a duality, 5
- 09
D= Y (3.20)
which in the case of isotropic damage becomes (cf eq 3.17)
- O
D= 3y (3.21)

Previous efforts from this point on have been directed to the essential step of proposing
expressions for the dissipation rate in terms of Y (or Y in case of isotropic damage), and
then differentiating them with respect to Y (or Y'), as the means of obtaining equations
for D (or D) (e.g., Lemaitre 1985; Chow and Wei, 1991; Chaboche, 1988; Hansen and
Schreyer, 1994; Tie-Jun, 1992, Woo and Li, 1992 etc). The method proposed in this
report makes a departure from this as will be shown later.

The necessity of conceiving dissipation functions in order to obtain practical equations
of dama.ge growth, instead of deriving them directly from the first principles of thermody-
namics and mechanics, is a handicap of the existing methods. “Realistic” and “physically
consistent” expressions for the dissipation rate in terms of Y and other variables, unfor-
tunately, have more to do with the necessity of producing manipulable expressions for
D than with the physics of damage accumulation. Apart from the difficulty in concep-
tualizing “the damage energy release rate”, Y, and how it governs the dissipation, such
methods of deriving damage growth equations are by nature subjective since different
authors may propose different forms of the dissipation function for the same damage
mechanism. This may prove to be an impediment to a wider acceptance of damage
mechanics in predicting damage growth. As mentioned at the beginning of this section,

5The thermodynamics of damage is discussed in detail in section 3.4 in the context of the development
of the present method.
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the prevalent practice of indiscriminately choosing internal variables, of justifying arbi-
trary continuum damage models on the lone merit that they satisfy the Clausius-Duhem
inequality, and the proliferation of undetermined material parameters that are spawned
by such models has been criticized by Krajcinovic and Mastilovic (1995).

To illustrate these difficulties, some of the dissipation functions published in the
literature are discussed below:

Lemaitre (1985) assumed an expression for the dissipation rate for ductile plastic

. S —y\etl .
¢ = 1 <—.S'_> €ps (3.22)

S and a being material and temperature dependent constants. The damage evolution
law for ductile plastic damage that arises out of eq (3.22) is

damage as

. K2 2\*°
D= (2ESTG,§"’) €, € > € (3.23)

where K, M are Ramberg-Osgood parameters, T is a “triaxiality factor” which reduces
to 1 in case of uniaxial loading, €, is the plastic strain and €p is the threshold plastic
strain of damage accumulation. Tie-Jun (1992) sought to improve the above model by
introducing another unknown constant o and incorporating the critical plastic strain in
it.

Chaboche (1988) used a dissipation rate for ductile plastic damage as:

s 1 2%
x_ oz —k [ )
¢* =6eq— R +21_D( S) (3.24)
where G, is the equivalent effective stress, R and k are associated with the Von Mises
plastic potential and § is a material parameter.

‘Chow and Wei (1991) proposed a dissipation rate for fatigue:

By = (%YT 9] :Y)§ — (Bo + B(w)) (3.25)

where [J] is a symmetric 2x2 matrix; and By and B(w) are the initial and the incremental
strain hardening threshold.

To highlight the limitations of damage growth laws arising out of the thermodynamic
potential method, we choose the model proposed by Lemaitre (eq 3.23) as a representative
case. This equation contains two unknown constants ¢ and §, which cannot be obtained
from standard test results. Lemaitre eliminated the first constant by assuming that
M ~ oo, which however may not hold for all materials. The second constant, S, was
eliminated by normalizing the equation by the boundary condition at rupture (i.e., D =
D, at €, = €5):

D=D, ('5”'6") s€p > €0, M — 00 (3.26)
€f — €
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This however introduced the need to know the critical damage a priori, and consequently,
this model can no longer independently predict the unknown value of D, given ¢, = €s.
It clearly would be more desirable to have a model that predicts D. independently using
readily available material data, which then could be applied to any failure mechanism
of interest. Lemaitre (1992) later attempted to measure the constant S experimentally,
but admitted difficulty in getting an accurate estimate of the constant.

The remainder of this report will be directed towards the development of a new
method of modeling structural deterioration from first principles and applying it to
ductile, creep and fatigue damages. The motivation is to come up with rational damage
growth laws with as little empiricism as possible, so that they do not require one to
postulate potential functions or kinetic equations and, at the same time, do not introduce
unknown material parameters in the formulation.

3.4 Thermodynamic Foundations of Damage Growth

The thermodynamic principles underlying damage accumulation have been successfully
established in CDM (e.g., Hansen and Schreyer, 1994). However, the existing thermody-
namics -based CDM models of damage growth lack continuity with the first principles
of thermodynamics and mechanics, and contain unknown material constants, as was dis-
cussed in the previous section. The present method will be shown to make a departure
from the existing approaches, and damage growth laws starting from the first principles
of thermodynamics will be derived. We begin this section by introducing the notion of ir-
reversible processes. An expression for the dissipation rate (under isothermal conditions)
is then established in terms of the evolution of the Helmholtz free energy. Conditions in
which the free energy may be considered stationary are discussed, and partial differential
equations of damage growth in deformable bodies are obtained. In Chapter 4, assuming
isotropic damage and uniaxial loading, these differential equations are solved for different
constitutive models, and damage growth laws for ductile deformation, creep and fatigue
are developed and compared with published experimental results.

3.4.1 Thermodynamically Irreversible Processes

A system is said to be in stable thermodynamical equilibrium if it cannot spontaneously
undergo a finite change to another state without a finite change in the state of the
environment®. A thermodynamic process involves a change in the state of the system.
Classical thermodynamics models processes that occur between stable equilibrium states,
and is limited to state variables that pertain to stable equilibrium only. A reversible
process between two stable states takes place along a succession of quasi-stable states
each of which is infinitesimally apart from the next. Hence a reversible process proceeds

8 Environment is defined as the space outside the boundaries of the system.
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infinitely slowly. Any process which starts or takes place away from equilibrium or in a
finite time is an irreversible process (Haywood, 1980). An irreversible process can take
place in one direction only” (thereby giving a thermodynamical definition to “time”) and
involves loss of energy. Practically all processes in nature occur within a finite time and
exhibit varied degrees of irreversibility.

Let us consider a system R defined by the closed® boundary R (see Fig. 3.3).
Throughout this chapter and the rest of this report, we shall assume that R is in contact
with a heat reservoir whose (constant) absolute temperature is 8. Let W be the work
done on R, and let U and Kg be its internal and kinetic energies respectively. The rate
of heat flow into the system from the surrounding reservoir is ) and the increase in the
entropy of R occurs at the rate of §.

The first law of thermodynamics states that energy can neither be created nor be
destroyed: The rate of increase in the kinetic and internal energies of a system equals
the rate of the net inflow of heat plus the rate of net work done on the system:

Ke+U=Q+W (3.27)

where the superscript dot indicates total derivative with respect to time. The second
law of thermodynamics states that entropy can be created, but once created it can never
be destroyed. The change in entropy of the reservoir due to the flow of heat out of it {at
the constant temperature 6) is

. _-¢
Sres - T (328)

The above relation holds whether the flow of heat is reversible or not, since entropy is
a state function and the reservoir is large enough to attain the same state irrespective
of the nature of the process which solely involves flow of heat. The rate of increase of
entropy of the universe (the system and the reservoir in this case) is then the sum of S,
and S, which has to be non-negative by the second law of thermodynamics:

. Q
§—520 (3.29)

The total entropy is preserved (i.e., the change in entropy is zero) only in the case of a
reversible process.

3.4.2 The Dissipation Rate

The rate of dissipation can be derived in terms of the Helmholtz free energy, ¥, which

is defined as:
¥=0-68 (3.30)

"If an equation describing a time-dependent physical process is invariant to the algebraic sign of the
variable time, it is called reversible. Otherwise it is irreversible (Prigogine, 1967).
8 A closed boundary is one which allows transfer of energy but not mass.
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The decrease in ¥, in the absence of dynamic effects (AKg = 0), gives an upper limit to
the work output in a process between two equilibrium states of the system at the same
temperature (Sears and Salinger, 1975):

~AT = —AU +06AS
> —AU +AQ
> —AW (3.31)

The upper limit is attained when the process is reversible and the work is mazimum.
Otherwise, if the process is irreversible, the work is less than maximum. Thus the
decrease in ¥ gives an estimate of the maximum work that can be freed from the system.

Let ¥ be a function
¥ =V¥(4,x,D) (3.32)

where D is the damage tensor and x is the remaining set of variables required to describe
the free energy. The rate of change of Helmholtz free energy can be written as

¥=U-05-56 (3.33)

which can be combined with the first law (eq 3.27) and incorporated into the second law
inequality (3.29) as
—Kg-V-054+W>0 (3.34)

The rate of change in ¥ can be expressed in terms of 6, x and D as,

. ov. o¥ . 9V .
¥ = —8—00 + 5;')( + B_DD (335)

with which we can rewrite the inequality (3.34) as

. ov s, 0¥ . 0¥ .
- — (= —e X — —D > .
Ks (39+s)9+w k= s D >0 (3.36)
Noting that 6 = 0 this can be reduced to
. . 0% . 0¥

" The above inequality is the general statement of the second law of thermodynamics
for a system that is in diathermal contact® with a heat reservoir. We denote its left hand
side as the dissipation rate, I':

ov ov

rzW—KE—E-;.x-a—D-Dzo (3.38)

9Heat can flow freely through a diathermal boundary.
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The rate of change in kinetic energy is in fact p-v, where p and v are the momenturn
and acceleration, respectively. The rate of work, W, done on the system depends on the
particular system and process under consideration. It could, for example, be FL (for a
wire in tension), —PV (for a gas), EI (in an electric field) or HM (in a magnetic field)
or a combination thereof. The general expression for W is therefore of the form Y - x.

If the dissipation rate, I, is zero, the process is reversible. As a simple example, it can
be verified that for a rigid body not undergoing damage accumulation (i.e., x = 0, D=
0), a reversible process implies I' = W — Kg = 0, which says that non- frlctlona,l and
non-gravitational work done on it is fu]ly converted to kinetic energy, a fact well-known
in mechanics.

3.5 Damage Growth in Deformable Bodies

Thus far, the above development was kept general insofar as the thermodynamic system
in consideration was in diathermal contact with a heat reservoir at constant temperature.
Let us now specify the system R as a deformable body in contact with a heat reservoir
at constant temperature. The set of variables x in the free energy (eq 3.32) is then the
symmetric strain tensor ¢;;, defined by

1
€ij = 5(Uij + i) (3.39)

where u; is the deformation at a point, and u; ; refers to its partial derivative w.r.t. the
7 displacement. The velocity and acceleration at the point are denoted by 4; and a;
respectively. The strain rate tensor is given by

, 1. .
€ = 5ty + @j;) (3.40)

The stress tensor o;; is the partial derivative of the free energy per unit volume with
regard to the strain tensor (Maugin, 1992):

01
(963'3' = 0yj (3.41)

ov
=5 (3.42)

is the free energy per unit volume. The stress tensor is symmetric, i.e., 0;; = 0;;, as can
be verified easily.

Classical equilibrium thermodynamics (also called thermostatics) defines state vari-
ables (e.g., 8, S, U and ¥) and stationarity principles for systems in equilibrium or un-
dergoing reversible processes only. However, reversibility is an idealized condition, and
all processes occurring in nature are irreversible to some extent. Since the first half of
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this century, researchers have sought to extend the domain of applicability of equilibrium
thermodynamics by ascribing quantities like temperature and entropy to non-equilibrium
states, under various postulates and axioms (e.g., de Groot and Mazur, 1962; Prigogine,
1967; Truesdell, 1984; Sieniutycz and Salamon, 1990). There is, however, no consensus
in the scientific community about the interpretation of non-equilibrium thermodynamics
and the precise definition of the state variables away from equilibrium, and they con-
tinue to be areas of active research. For the present purpose of modeling accumulation
of damage in deformable bodies, it is assumed that (i) the initial state of the system at
time ¢, is a thermodynamic equilibrium state, and (ii) the damage-causing processes are
slow processes, and though irreversible, proceed sufficiently close to equilibrium.

The work done on a system in a dissipative process at constant temperature (i.e.,
when the system is in contact with a single reservoir at this temperature, for example,
a steady environment), minus the increase in kinetic energy, is greater than the increase
in the Helmholtz free energy. Therefore,

d¥ = Wy — &*Wy dWy >0 (3.43)

Let the dissipation in the above process be denoted by d*W; where d*W,; and d*W,
denote the non-kinetic work and the dissipation in the above process. The asterisks
in the above differentials emphasize that they are imperfect differentials, meaning that
their integrations do not necessarily vanish around a closed path. Integrating the above
equation, the free energy can be expressed as:

U= /d*W,,,c _ /d*Wd

A system in diathermal contact with a heat reservoir is in a state of equilibrium (not
necessarily stable!® ) if the first variation of its Helmholtz Free Energy is zero (McLellan,
1980):

0 =0 (3.44)

The variation in the Free Energy at an arbitrary instant ¢, can be written as (cf eq
3.5)

t2 . . t
§U(t;) = 6\If(t1)+6/t2(W—KE)dt—6/tzl‘dt
1 1

i

t2 . . ¢
6/ ‘W - Kkg)dt—6 [ Tt (3.45)
i1 4

10A system is in stable thermodynamical equilibrium if it cannot spontaneously change its state to
another without a finite change in its environment. In the absence of external stimuli, the above system
can change its current state to another only if the latter state has a lower free energy (Callen, 1988).
In other words, if the free energy has a minimum at some state, then it is a state of stable equilibrium.
Mathematically, the condition of stable equilibrium is (McLellan, 1980): §*¥ > 0
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where the energy dissipation is assumed to be given by eq (3.38) and the initial state is
assumed to be one of thermodynamic equilibrium. The variation §¥(#;) is in general a

function ' ‘
dW(ty) = g(9, Eij,D,ﬁa, 0¢é;;,6D,.. 1), TE[t1,t] (3.46)

which depends on the state of the system as well as on the choice of the variations
in temperature, strain rate, damage and other terms, and is generally non-zero for an
irreversible process or for a system yet to achieve equilibrium. However, slow damage
growth prior to localization of defects is assumed to occur close to equilibrium and the
function g(-) is assumed to vanish for a suitable set of variations. Under this assumption,
we can write (using eq 3.38):

2 . . ¢
§U(t;) = 6 tz(W—KE)dt—éftzI‘dt
1 1

2, . i . . .

= 6| (W-Kg)dt—é 2(W—KE—E—€,~J~——6——‘ILD) dt

A A »

= 0 (3.47)

The validity of this assumption will be tested with the accuracy of the resulting models
of damage accumulation (in Chapters 4 and 5). The above equation can be rearranged
as:

2 . . . t . .
6¥(t2) = & Q(W—KE+3—‘I'D)dt—5 2(W—-KE—@—éij)dt

ty oD t Be,-j
(3.48)
t2 t2
= § / L(t)dt - 6 / L(t)dt
11 15
i2 12
= / 81,(£)dt / §1,()dt
21 t1
- 0 (3.49)

where I; and [; refer to the two integrands in eq (3.48) and the commutability of inte-
gration and variation has been used.

Let us consider the second variational term first. Body forces F; and boundary
traction T; perform work on the system acting through the displacement field u; on R
and OR, respectively. Suppose OR can be described as the union of two disjoint sets
OR, and R, such that displacements on only R, are specified at all times in [t1,¢2).
Apply a small variation §u; consistent with the boundary conditions

fu; =0 ondR, Vte {tl,tg] (3.50)

NUREG/CR-6546 38




on the velocity field of the system such that it does not alter the instantaneous force,
acceleration and stress distributions. The resulting instantaneous variation in I(t) in
eq (3.49) is

6L(8) = & (W —kg- %%c)

/ FibudV + / Tibusdn — / paibidV — / 0i;66; AV
R Ry R R

/ FiéudV + / TiSiadn — / paibiidV — / o6 ;v (3.51)
r R R R

where use has been made of the symmetry of the stress tensor. Upon integration by
parts,

§L,(t) = /,RFi‘Sd‘idV'i'ARTiadid"‘ﬁzpaiaaidV_/;z(aij‘s'ai),j dV+‘/RO‘.5j,j6'fllz'dV

= [(Fi+0i;; - pa; 5a,~dv+] Tibu;d —/ 0ii8i) ; AV 3.52
/R( ihg — PWi) " Ui R( 15613 ),5 ( )
Applying Green’s theorem to the last integral,

8I,(t) = </72(E + 0j; — pa;)éu; dV + /8R T;64; dn — /372 o;;n;00; dy

= [(F+oiy— pabicdV + [ (Ti= oijn;)sisd
/'R( + 05,5 — pa;)éu + aR( oi;m;)6u; dn
Since é1; is identically zero on R 3, the above expression is equal to
$L(1) = [ (R +05(t) - patois)aV + [ (Tt) - oij(t)n;)bi(t) dn (3.53)
1

The expressions in parentheses in the above integrals are each zero as they constitute
the equilibrium equations of the damaged body on R and 0R; respectively (Krajcinovic
and Sumarac, 1987). Hence the variation of the first integral in eq (3.49),

23 t2 /. . ov .
§ [ L(t)dt=6 [ / (W — Kg+ ——D) dt] =0 (3.54)
t i1 3D

It should be recalled that the above condition (3.54) arises from the assumption that the
damage causing processes are slow and proceed sufficiently close to equilibrium in the
pre-localization state. The extent of validity of this assumption will be reflected on the
accuracy of the damage models developed in Chapters 4 and 5. It should also be noted
that this relation is restricted to materials and processes for which the Helmholtz free
energy (3.32) can be suitably defined.
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Under the above assumptions and restrictions, it is now possible to apply appropriate
sets of variations on the deformable body in equilibrium (consistent with the boundary
conditions used to derive eq 3.53) and to use eq (3.54) to derive partial differential
equations of damage growth. Constitutive equations relevant to a given damage-causing
mechanism can then be incorporated into these differential equations, and corresponding
damage growth laws may be obtained. This scheme will be implemented in chapter
4, under the assumption of isotropic damage, where damage growth laws for ductile
deformation, high-temperature creep and fatigue will be derived.
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Figure 3.1: The damage variable
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Figure 3.2: Experimental determination of damage
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Figure 3.3: State variables and energy exchange for a closed system
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Chapter 4

A Unified Model for Isotropic
Damage Growth

In the previous chapter, the fundamental principles of continuum damage mechanics
were introduced. The thermodynamics of damage accumulation was described and a
stationarity condition was developed under a set of stated assumptions. In the present
chapter, this stationarity condition will be shown to lead to a set of partial differential
equations of isotropic damage growth which, with the help of relevant constitutive equa-
tions, can be applied to any damage causing mechanism so long as it remains consistent
with the notions of continuum damage mechanics and allows a suitable expression for
the Helmholtz free energy. This unified approach will be applied to three damage growth
processes, namely ductile deformation, creep and fatigue, and the models will be verified
with published experimental results.

The behavior of a metal under uniaxial loading (as opposed to multiaxial loading) is
the most common way to characterize its mechanical behavior, and material properties
and experimental data are also most commonly available in terms of uniaxial deformation.
The focus in this report is therefore on material response under uniaxial loading.

4.1 The Isotropic Damage Growth Model

Damage is considered isotropic in the following, as this will simplify the notations without
loss of generality. It will be consistent with available experimental data, most of which are
on the scalar damage variable. Since damage is observed to accumulate in the presence
of straining, it is reasonable to suppose that damage can be expressed as function of the
strain tensor. Let us assume that the variation of the integrand in eq (3.54) vanishes at
every instant,

§L(t) =6 (W(t) - Kgp(t) + %D) =0 (4.1)
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and apply a set of variations similar to that applied to eq (3.53) and obeying the same
boundary conditions. In particular, a small variation 6%;(t) subject to boundary condi-
tion (3.50) is applied on the velocity field of the system R such that it does not alter the
instantaneous force, acceleration and strain distributions; nor does it affect the rate of
change in the free energy, 01/dD, at that instant. The resulting variation in eq (4.1) is

] FibisdV + [ Tisisdn - / pa;bidV + / Mspav =0 (4.2)
R
The commutability of variation and differentiation,
d
§D = EéD (4.3)

may be used in eq (4.2) to obtain

8y d ~
/ FibidV + / Tidusdy — / paibiidV + / S ( ot )dV_O (4.4)

Noting that the applied variation is such that é¢;; = 0, we have, by the chain rule of
differentiation,

. . . 89 9D
/Rmu,dvjufakl Tzﬁu,dn—/kpaiﬁu@dv-i-/ Sppe i dV =0 (45)

As the strain tensor is symmetric, D /0¢;; is symmetric with respect to ¢, j. Integrating
by parts, applying Green’s theorem as before, and noting the boundary condition (3.50),
equation (4.5) can be written as:

SI(1) = / (Fi — ($pDl;) ; — pa)biss dV + /a (T4 ppDynsicdn =0 (46)
1

where Di; = 8D/d¢;;. We may now choose the variation in the velocity field which
satisfy é4;(¢) = 0 on OR,, which implies

F; — pa; — (YpD};) ;=0 on R » (4.7)
We then choose non-zero variations on the free surface 64;(t) # 0 on 9R,, which implies,
T; 4+ ¥pDin; =0 on R, (4.8)

Eqs (4.7) and (4.8) are the equations of damage growth in a deformable body and are ap-
plicable to any mechanism of damage accumulation that is consistent with the underlying
notions of CDM and has an appropriate expression of the Helmholtz free energy. The
specific damage growth laws arising out of these equations will depend on the functional
form of ¢ which, in turn, depends on the corresponding physical condition governing
the stress-strain relation, viscous effects, micro-void growth and so on. This highlights
the powerful and general nature of the proposed approach and suggests the possibility of
expressing damage caused by different processes acting simultaneously using one unified
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damage variable. In the case of multiaxial straining, the present approach would involve
the solution of a set of coupled partial differential equations (PDEs) which may become
computationally prohibitive. However, the majority of the existing material characteriza-
tions and test data, as mentioned at the beginning of this chapter, are available in terms
of uniaxial deformation; accordingly, and the rest of this report will focus on uniaxial
loading which will not require the solution of coupled PDE’s.

For damage growth under uniaxial loading due to a far-field stress, 6, acting normal
to the surface, eq (4.8) simplifies to:

dD
Ooo + ’l,b]_)'d—e =0 (49)
or, iD
= _I»
P (4.10)

If the strain rate is known, damage growth can be expressed as a function of time:

dD oo .
— = -2 4D,t) (4.11)
dt vp
the strain rate, ¢, being generally a function of time as well as damage. However, in some
situations the strain rate may remain constant, as in a displacement-controlled tension

test.

We will subsequently investigate different modes of damage growth in deformable
bodies, namely ductile deformation, high temperature creep and fatigue under cyclic
loading, and derive equations for damage growth in each of these cases. The basic
equation for damage growth (eq 4.9 or 4.11) remains the same but the free energy per
unit volume, 1, and its partial derivative with respect to D of course assume different
forms for different damage mechanisms. The general form of ¢ applicable to ductile
deformation, constant-stress creep and fatigue cycling is

’Lp = a'ij dqj e ’)’(D) (4’12)

where v is the surface energy of voids and discontinuities that arise due to damage
growth per unit volume. Note that eq (3.41) is satisfied. Under uniaxial straining,
eq (4.12) simplifies to
' Y= fode— (D) (4.13)

In the general case, the increment in strain de has three additive constituents: the elastic,
plastic and creep strains.

Equations (4.10 or 4.11) and (4.13) will be the starting point for developing isotropic
damage growth equations under uniaxial loading in the remaining sections in this chapter,
and will also be used in stochastic damage growth in the next chapter. The implemen-
tation of these two equations requires knowledge of the constitutive model (for a given
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loading mode) and the surface energy, v. The constitutive models will be described in-
dividually in the following subsections for ductile deformation, creep and fatigue. The
surface energy, which is common to all three, can be obtained under the following set of
idealizations consistent with the notion of isotropic damage.

The defects within the material are assumed to be spherical voids (of different sizes)
which are distributed uniformly in space within the material. Consider a representative
volume element, Vp = (4/3)wu?, in the shape of a sphere of radius u. Suppose there are
n voids present in this volume and g; is the radius of the i** void (i € [1,n]). If D is the
state of damage on some cross-section of area Sy within V; and if = is large, then, ignoring
stress-amplification, DSy is the net surface area of defects on that cross-section. Hence,
(DSo)dy is the volume of defects in a wafer whose thickness is dy. Integrating over the
entire volume of the sphere of radius u, the volume of defects present in that sphere is
found to be %mf’D. This is also equal to the sum of the individual void volumes:

4 "4 ,
§7ru3D = ; §7ra? (4.14)

which gives

D=~ > a (4.15)

Assuming a linear force-displacement relation at the microscale, and that a void is
formed when the stress on its impending boundary equals the local failure stress, o., the
energy required to form the #*® void is

1
1I; :/—acvdn (4.16)
n 2

where dn is an elemental void boundary and v is the extension normal to the initial
circular plane which finally expands to the spherical void.

For a sphere of radius a; the above potential is equal to

ail
R . 2 _ 2
I, = 2(7'c/0 2\/a1» z? 2rx dx
2 3

= 30eme (4.17)

The surface energy required per unit growth of void surface area (assuming that the void
grows when the stress on its boundary equals the local failure stress o,) is:

oIl ol (9(12' _ 1 )
R (4.18)

Summing over all the n voids, the total surface energy is

n .
> (———G:%) 4ral?.

=1

NUREG/CR-6546 48




Hence the surface energy per unit volume of the material is,

_ O )iy TG _ Oc2iny na}
S il (4.19)
With the help of eq (4.15) this becomes
¥ = %O'CD (4.20)

The local failure stress 0. may be relatively difficult to obtain experimentally, but its
value is assumed to be close to the true fracture strength, oy, of the material, which is
an easily available material property. In the sequel, v is evaluated as

vy = gUfD (4.21)

The validity of this assumption will be tested in sec 4.2.2.

It should be noted that the above approach represents a naive way of estimating the
surface energy of formation of voids. Nevertheless, it provides the estimate (eq 4.21)
in terms of easily known quantities. A more comprehensive approach would probably
introduce a greater level of complexity, and while being more realistic and accurate, would
possibly contain variables like the number, shapes and sizes of the voids as a function of
time (or strain) whose numerical estimates would not always be readily available.

Finally, the equations of damage growth under ductile deformation, creep and fatigue
and a knowledge of the critical damage parameter may be used to determine the remain-
ing service life and residual strength of a structure. The following postulate defines the
critical damage (eg, Chow and Wei, 1991):

The (temperature-dependent) critical damage parameter, D., is a material
property that is independent of the loading history. For any combination
of loads occurring in any sequence, a structure fails when the accumulated
damage D equals the critical value D,.

The above postulate gives us a tool to predict failure in a complex loading situation where
the critical damage for that particular loading condition is not known a priori. The same
value of D, for a given material at a particular temperature ascertained from a simple
test (eg, a static tension test), can be used in other situations (eg, variable amplitude
loading) to predict the time to failure (or equivalently, plastic strain to failure, or number
of cycles to failure) when the accumulated damage equals the critical value D,.

The remaining three subsections of this chapter develop isotropic damage growth
models for ductile deformation, high-temperature creep and fatigue, starting from the
general equations developed thus far. The models are verified in each case with published
experimental results and sensitivity studies are also presented. It may be noted that,
unlike the existing CDM-based methods of damage growth, only commonly available
material properties enter the proposed equations of damage growth.
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4.2 Ductile Deformation Damage

4.2.1 Damage Growth Models

Consider a component subjected to a uniaxial, monotonically increasing load. The first
term in (eq 4.12) then takes the form

€ €e €p
/ade' =/ ode, +/ ode, (4.22)
0 0 0

where total strain has been decomposed into its plastic and elastic components, ¢, and
€. respectively. To evaluate eq (4.22) we apply the Ramberg-Osgood law for monotonic
loading to the effective stress-actual strain relationship:

€= 5 + (E>M (4.23)

where & is the effective stress, F is the undamaged elastic modulus, K is the undamaged
strain hardening modulus and M is the hardening exponent. Typical values of these
constants for different metals are summarized in Table 4.1. The Ramberg-Osgood law
separates total strain into elastic and plastic components which are related according to

K 1
&' (4.24)

€e =

Adopting the principle of strain equivalence and applying it to the elastic and plastic
strains with the assumption that the exponent M, which determines the shape of the
stress-strain curve, is not affected by damage, we obtain

; under effective stress

€ = { (4.25)

; under nominal stress

o

trida

and
; under effective stress

(6% = { (4.26)

%; under nominal stress

=

in which £ and K are, respectively, the moduli of elasticity and hardening of a damaged
volume of material. It has been reported from experimental observations that damage
initiates only after the accumulation of a threshold plastic strain, ¢g. Therefore, the
values of the stiffness moduli remain unchanged until the strain reaches the threshold
value. Since & = o/(1— D), the damaged moduli are linear functions of isotropic damage:

Tl
i

E(1-D)

}for €, < €0, € < € (4.27)

and K = K(1-D)
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where €. is an infinitesimal elastic strain corresponding to ¢y (eq 4.24), arising out of
the fact that the Ramberg-Osgood model does not admit a purely elastic stress-strain
relation. It is of interest to note that eq (4.27), which arises out of the principle of strain
equivalence, allows the Ramberg-Osgood equation to also be expressed in terms of the

damaged moduli:
=7+ (3)M (4.28)
€= 7 7 .
Thus, this widely adopted stress-strain law is valid for both undamaged and damaged
materials. It can be easily verified from eq (4.28) that the relation between the elastic
and plastic strains (eq 4.24) is preserved.

The integral in the free energy (eq 4.22) can now be written as:
¢ €eo Ce € 1 € 1
/Oade' = /0 Ee de, + /eeDE(l — D)€, de., +/0 KeM de, + /EOPK(l — D)eM de, (4.29)

Subtracting eq (4.21) from eq (4.29) we obtain the free energy per unit volume of a
damaged body subjected to uniaxial monotonic loading. Finally, the partial derivative
1 p can be written as:

K’[2% 2] K Tk 1+%] 3
QpD:—ﬁ [6;”—66‘4]—1}_—)\17'[6;; M—€0 Mjl-zd’f (430)

The damage growth equation can be written as:

aD Ooo
de - %bD
_ Foc
- K2 2 2, e 141 1+L
B -a] - ot -4t + 2y
(4.31)
which, with the help of the principle of strain equivalence, becomes
1
dD K(1—- D)e*
de T g2 |Z Z| L. K |itEx A+
%[e}’f—eé‘l]+l+l [Ep M —g M]'*‘%Uf
(1- D)’
1 - fp
= Tz 2z - L L = (4.32)
QE[EP —€¥]+1+ﬁ[ep ~ % M]'*‘ZT(L

Since the left-hand side of eq (4.32) is in terms of the total strain and € # ¢, in general,
the rate of damage growth with respect to the plastic strain may be obtained (using
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dD dD de

i = 4 de
= 6(1+EM€” )
(1- D)
1-D)e K1 _ o
T K| E_ AL 1 'li% 1+4] 321(1+_M621’/M 1) (4:33)
ol -]+ et -1

This ordinary differential equation describes evolution of damage as a function of plastic
strain with the initial condition D = 0 at €, = €. In monotonic loading of ductile materi-
als, however, the elastic strain is negligible compared to the plastic strain (particularly at
strain levels where damage growth is perceptible), and consequently, the correction factor
defde, = 1 in eq(4.33) at all € of practical interest!, and therefore dD/de ~ dD[de,:

D (1= D)e¥ | (430

de, k|l & £ 1 1+42 14457 3
y4 Y M _ M _1i M __ M 2
2 |% ~% |t | € +3

=2

Eq (4.34) is non-linear and a closed-form solution apparently does not exist. However,
for metals and alloys, the elastic moduli are in general much larger than the corresponding
hardening moduli, often by two orders of magnitude. Hence for simplicity, the quantity
K/(2F) may be neglected in the above differential equation:

1
dD Md
T s
- M by g
14—1-1\7 [Gp Y — % M] + %T(L
and under this condition, the closed-form solution is:
C
D=1- 42— (4.36)
€p M + Cl
where C; and C, are constants
_ 3 1. 05 144
¢, = 4(1 + M)K € (4.37)
L
C:; = Ci+e ™ (4.38)

1For ductile materials, the plastic strain dominates the elastic strain practically from ¢ = 0 all the
way up to the fracture ductility, ey, (¢5 is typically between 0.2 to 1.0 for engineering metals) except in
the very initial stage of loading (e is typically less than 0.001 in this range) which, however, is too small
to be important in ductile damage growth. Numerical evidence of this assertion is presented in the next
subsection.
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Two further simplifications of the proposed ductile damage growth model can be
obtained. The non-dimensional material constant, (', is greater than the plastic strain
range of interest for most metals and alloys (up to the fracture ductility, €5 ) and for such
situations, eq (4.36) may be written as,

Cz C2 1+—£7.

D:].——"-I-ZY?EP N

1
C1>e M (4.39)
Gy

For those materials that possess a marked ductility in the post-yielding zone (i.e., for
those with M — o), the above equation may be further simplified into a linear relation
between damage and plastic strain:

Cy (O

D=1-—F+

C C—lzep; Ci>¢€, M— o (4.40)

The error associated with using the above closed-form solutions instead of numerically
solving eq (4.34) will be estimated subsequently.

An analytical comparison of the proposed equations with some of those already avail-
able in the literature may be insightful. Eq (4.39) is of a similar algebraic form as
Lemaitre’s (1985) solution for uniaxial ductile damage:

(2a+M)/M  (2a+M)/M
€ - €
) ;€ > €0 (4.41)

. ) _ 4
Lemaitre: D = D, ( (2a+M)/M (2a+M)/M

which contains an unknown material parameter ¢, and requires a prior estimate of the
failure condition (ef, D.) to be useful. The simplification of the proposed method for
highly ductile materials {(eq 4.40) is comparable to Lemaitre’s (1985) linear approxima-
tion:

Lemaitre: D = D, (ep—eg) i =€, M— o0 (4.42)
€ — €p

Unlike the proposed model, Lemaitre’s equation cannot be used to predict the failure

condition.

The proposed differential equation of damage growth under monotonic loading (eq
4.33), or its simplified solutions, can predict damage as a function of strain and is free of
any unknown material-dependent constants. The present approach requires only easily
defined and available mechanical properties. It can therefore predict the critical damage,
D., given the true failure strain, €;. This value of D. may then be used to predict the
time to failure in other damage mechanisms (e.g., fatigue) for the same material and
temperature.

The validation of the proposed model and an investigation of its sensitivity to the
material parameters are presented next.
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4.2.2 Model Validation and Sensitivity Study

It was noted in sec 3.2 that the reduced modulus of elasticity of a structure is a linear
function of its damage state. Eq (3.9) can be inverted to estimate the isotropic damage
variable by measuring the fractional change in the elastic modulus of a structure:

D=1-

t| e

(4.43)

A schematic implementation of eq (4.43) has already been described in Fig 3.2. The
specimen is unloaded periodically and the slope of the unloading part of the stress-strain
curve gives the damaged elastic modulus. The threshold strain of damage, ¢ (if any),
can also be found this way. Damage can then be plotted as a function of plastic strain.

Table 4.1 lists the monotonic material properties used for ductile damage growth
in this section. It is recognized that material properties may significantly differ for
the same nominal grade depending on temper and conditioning. Table 4.1 therefore
lists properties from more than one source, which underscores the handicap faced in
validating the method. The present model of ductile damage growth is compared with
experimental data on four materials. Table 4.2 lists the predicted D, (solution of eq 4.34
at the given failure strain, €5 ), and the experimental ¢y and D, for each of these materials.
Unfortunately, the published sources (Table 4.1) of these experimental results do not list
the mechanical properties of the particular specimens used in the experiments. In the
absence of that information, standard properties from other published sources for the
same materials (or equivalent materials for those alloys with French designations) are
used.

The relative magnitude of the elastic and plastic components of total strain (obtained
by solving eqs 2.2 numerically) under monotonic loading of an engineering metal is shown
in Fig 4.1. The material selected for this purpose is SAE 1035 steel. The plastic strain is
negligible in the initial stage (for ¢ < 0.0002), but its share of the total strain increases
with increasing €, and the two become practically indistinguishable above ¢ = 0.02.

Figs. 4.2(a) and (b) show the predicted growth of ductile damage in SAE 1035 steel
and compare the predictions with test results (Lemaitre, 1985) on French steel XC 38
which is equivalent? to SAE 1035. The difference between eqs (4.33) and (4.34)3 is shown
in Fig 4.2(a) which uses the log-log scale to facilitate the comparison for small values of
plastic strain. The effect of the correction factor (1 4 de/de,) is seen to be negligible for
€p > 0.001 (which is consistent with the observations in Fig 4.1) and the two solutions
are found to converge for all practical purposes. Therefore, eq (4.34) is sufficient for
predicting ductile damage growth unless small values of damage in the predominantly

2[46] vol 1, Table 38.

3The solutions of eqs (4.33) and (4.34) presented in this subsection were obtained numerically with the
help of IMSL{55] Fortran subroutine DIVPRK, which solves an initial value problem using the Runge-
Kutta-Verner fifth-order and sixth-order method.
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elastic range is of concern*. Fig 4.2(b) shows damage growth in SAE 1035 steel as
predicted by eq (4.34) and its three approximations (eqs 4.36, 4.39, 4.40 — referred to
as “closed-form”, “approx soln” and “linear approx”, respectively, in the figure). The
material properties used for the predictions are from source (b) in Table 4.1. As shown
in Fig. 4.2(b), predictions of damage growth by eqs (4.34) and (4.36) are practically
indistinguishable with the plot of the latter lying just above the former. This was found
to hold equally true for the other three materials studied, so only eq (4.34) was plotted
in Figs 4.3 through 4.5. The other two approximations, though conservative, are not
quite as close to the exact solution, and have not been plotted in the three remaining
figures.

Fig. 4.3 compares the prediction of damage growth in 2024-T3 aluminum with ex-
perimental results from three different sources: (i) Chow and Wang (1987) on 2024-T3
Al, (ii) Woo and Li (1993b) on the mean damage in 45 specimens of 2024-T3 Al, and
(iii) Lemaitre (1985) on French aluminum alloy AU4G1 which is equivalent® to 2024-T3
Al. The material properties used in the present model are from source (d) in Table 4.1.
Fig. 4.4 compares the prediction of damage growth in SAE 4130 steel with experimental
results (Lemaitre, 1985) on French steel 30CD4 which is equivalent® to SAE 4130. The
material properties used in the present model are from source (f2) in Table 4.1. Fig. 4.5
compares the prediction of damage growth (eq 4.34) in INCO 718 superalloy with exper-
imental results {Lemaitre, 1985). The material properties used in the present model are
from source (e3) in Table 4.1.

The proposed model (eq 4.34), it may be recalled, requires four mechanical properties:
the elastic modulus (E), the hardening modulus (K'), the hardening exponent (M) and
the true fracture strength” (o). In fact, only two parameters, M and the ratio os/K,
are necessary if the simplified closed-form solution (eq 4.36) is used. In addition, egs
(4.34) and (4.36) require the threshold strain, ¢y > 0, for the initial condition, which is
not widely available. It will be shown in the following that ductile damage growth is
quite insensitive to this parameter (¢p), and in the absence of additional information, €
may be equated to zero, which would cause a slight error on the conservative side®.

In spite of the difficulties encountered in verifying the proposed model its excellent

“The proposed ductile damage growth model will be used in sec 4.3.2 on creep, to determine the
damage introduced by the initial loading which is treated as the initial damage for the creep damage
growth equation {eq 4.55). Creep damage is rather sensitive to Do (even for small values of Do), and
eq (4.33) will be used instead of eq (4.34) to determine Dq in creep, since small plastic strains may be
involved.

5 Aluminum and Aluminum Alloys, ASM, 1993, p. 653.

8[46] vol 1, Table 39.

It was recognized in sec 4.1 that the local failure stress, o, may not be an easily available material
property and its value was assumed to be close to the true fracture strength, o5. In fact, o, could be
located only for low carbon steel out of the four materials considered: o. = 1200M Pa (for SAE 1045[82])
whereas o5 = 707M Pa (for SAE 1008[9]), 67 = 725M Pa (for SAE 1015 [34]), 65 = 713M Pa (for AISI
1020 steel [34]). Substituting oy for o gave very good results in Figures 4.3 through 4.5.

8 As listed in Table 4.2, € is not much different from zero (2% or less) for structural materials when
compared to the scales of fracture ductility, €5 (20% to 100% or more).
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agreement with experimental results shows its stability with regard to minor variations
in the material parameters. This suggests a way to build up a database of critical
damage parameters for different materials and temperatures even in the absence of tests
conducted for this specific purpose. The variability in damage growth, however, also
points to something more important: the possibility of noise in the process which may be
significant enough to affect the failure strain (or time) appreciably and thereby provides
a motivation for a stochastic approach to damage growth.

Sensitivity study

The sensitivity of the proposed model (eq 4.34) to the five parameters (E, K, M, oy,
€0) is shown in Fig. 4.6 through Fig. 4.10. The base values of the parameters chosen are:
E =200 GPa, K = 1000 MPa, M = 10, 5 = 1500 MPa and ¢; = 0 which are typical of

carbon steel.

Fig. 4.6 shows that at a given plastic strain level, a more rigid material suffers more
damage. However, the model is quite insensitive to variations in £. Hence, in the
stochastic formulation, to be presented in Chapter 5, F can be treated as a deterministic
variable fixed at its mean value in order to save computational effort.

Fig 4.7 shows the damage predictions are reasonably sensitive to K. A two-fold
increase (or decrease) in K causes about a two-fold increase (or decrease) in damage for
a given strain. That is, a material which undergoes more work hardening (higher K)
for a given plastic strain, suffers more damage. In contrast, predicted damage is almost
insensitive to values of M above 10, as shown in Fig. 4.8. More ductile materials (those
with higher M) start off suffering more damage for a given plastic strain, but if loaded
long enough, their rate of damage accumulation decreases faster, and a more ductile
material eventually suffers less damage.

Fig 4.9 shows that sensitivity to oy is comparable to that to K, a two-fold increase (or
decrease) causing almost a two-fold decrease (or increase) in damage. A stronger material
(higher o) suffers less damage at a given plastic strain. In other words, given the same
critical damage, D., a material with lower true failure stress fails first. Moreover, with
a higher damage threshold, a material predictably suffers less damage for a given plastic
strain (fig. 4.10). However, the rate of damage growth increases slightly with increasing

€p.

No study could be located in the literature, experimental or otherwise, which deter-
mined the sensitivity of damage growth to one or more of the above parameters. The
above predictions of sensitivity therefore remain to be verified by experimental observa-

tions.
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4.3 Creep Damage

4.3.1 Damage Growth Predictions

The principle of equivalence for elastic and plastic strains in sec 4.2 now is adopted for
creep strain rate:

A damaged volume of material under the applied stress o shows the same
creep strain rate at a given time and temperature as a comparable undamaged
volume under the effective stress & at the same time and temperature.

Using the above principle, the uniaxial creep strain rate (eq 2.4), under constant
applied stress o and at temperature 8, can be written as:

Ap5™t*~1 ; under effective stress

€or = (4.44)
Ago™t*=1 ; under nominal stress

where it is assumed that the exponents m and ¢ are not affected by damage. Continuing

with the assumption of isotropic damage and using eq (3.4), the relation between the
damaged rate parameter A and its undamaged value can be deduced from the above as

A

A= G-Dpm (4.45)
The material parameters are all temperature-dependent.
The total strain must be written in terms of three components:
€=¢€+ €6+ € (4.46)

At constant stress creep, the elastic and plastic components of strain do not change.
Hence, de = de.,, and the free energy per unit volume under uniaxial monotonic loading
reduces to

Y = /Crade'c—'y
€

<0

= Oool€cr — €0) — %af(G)D (4.47)

where o, is the constant far-field applied stress (acting normal to the surface), and 7 is
the surface energy of voids per unit volume of material. The temperature-dependence of
the true failure stress, o, has been emphasized in eq (4.47). The partial derivative of ¢
with respect to the isotropic damage variable then becomes

¥p = ~204(6) (4.48)
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We now use eq (4.10) to obtain the differential equation for uniaxial constant stress
creep damage growth under the assumption of isotropic damage:

Ooo

D=7
YD

(4.49)

where D' is the derivative with respect to the axial strain which, with creep as the
dominant damaging mechanism, is equal to dD/de... The damage growth rate is:
dD o
=5 (4.50)

dfcr %Uf

Using eq (4.44), the time rate of damage growth can be written as

d_D il.a;”é
dt 3 oy o
400

Ao™ pté1
3oy I5

Substituting eq (4.45) into eq 4.51), we can write:

aD 4 _Asomh .,
dt 30¢(1- D)™

For steady-state creep (¢ = 1), the damage growth rate simplifies to

dD _ 4 Aozt!
dt = 304(1- D)~

dD a;jl/m "
'&?:B<1—D (4.54)

where B = (4/3)A/oy is a temperature-dependent material constant. The above equa-
tion has almost the same form as Kachanov’s kinetic equation of creep damage growth
(eq 3.11) because the numerical value of m (usually ranging between 4 and 12) ren-
ders the exponent of o, sufficiently close to 1. The present method therefore can derive
from fundamental principles a long-established phenomenological model of creep damage
growth and provide estimates of the phenomenological parameters.

which can be written as:

Integrating eq (4.52), creep damage as a function of time is

D(t) = 1= [(1= Do)™*! — (4/3)(Afoy)(m + 1)old™ t¢] e (4.55)
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where the initiation time is taken to be fg = 0. Conversely, the time to failure? in creep
damage is:

m m4+111/¢
_ [(1—00) 1 — (1~ D) +} (4.56)

U= @R Al m + Do

Assuming an undamaged initial state (Dy = 0) and that m is large enough to make
(1 - D.)™*! ~ 0 (even when D, # 1), the time to failure can be simplified as
1
ty = —7 (4.57)
[(4/3)(A o) (m + 1)ok™]

Damage growth may then also be written as a function of the normalized time, t/t;:

$1 TFm
D=1- |(1=Do)™* - {(1- Doy™*' - (1 - D.y"*} (%) (4.58)

Assuming an initially undamaged state (Dg = 0) in steady state creep (¢ = 1) and that
m is large enough (i.e., (1 — D.)™*! ~ 0), we have

t 1+m

D=1-|1-— (4.59)
iy

which is identical to the form proposed by Kachanov (1986).

The proposed model is now validated with available data on creep damage. Trends
predicted by the proposed model with different loading conditions and material properties
are also presented.

4.3.2 Verification and Prediction of Trends

Unlike ductile deformation damage, there exist (to the knowledge of the authors) pub-
lished data on CDM-based creep damage growth for only one material and temperature:
superalloy IN 100 at 1000°C, the results being reproduced in Lemaitre (1992)!° as well

9As discussed in sec. 3.2, failure is defined as the development of a macrocrack, or in absence of it,
as rupture of the component.

10This reference contains two different figures of creep damage growth in IN 100 superalloy at 1000C. It
is however not clear whether they pertain to the same test: (i) D is measured by the familiar CDM-based
reduced modulus method (D = 1— E/E), which (along with e.,) is plotted as a function of time, ¢. The
critical damage is 0.22. The far-field stress level however is not reported. (ii) Creep damage is measured
as D(t) = 1 ~ [émin/éc(t)]'/™, and D is reported in terms of the normalized time t/t;. The relation of
this damage variable to CDM is not obvious. The critical damage is 0.12. The constant stress is 240 MPa
but the failure time, %y, is not reported. Finally, it is not clear whether the reported ratio t;/tgr = 0.9
pertains to the first case, the second or to both.
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as in Chaboche {1988). Fig 4.11 plots the damage growth prediction (using eq 4.58 with
Do =0,D, =022, m=4and ¢ = 1) as a function of ¢/t; and compares it with the
experimental results published in Lemaitre (1992). Since the Norton’s law parameters
for the specimen used are not reported along with the experimental results (Lemaitre,
1992), a representative value of m = 4 is assumed in eq (4.58). Very good agreement
with the experimental results is obtained.

Due to the paucity of CDM-based creep damage growth data, further validation of the
proposed creep damage model is limited to how accurately it can predict (i) the time to
failure, and (ii) trends in damage growth by varying the applied stress and temperature.
ASTM A36 steel and Type 316 stainless steel are chosen for this purpose, due first to
their importance in engineering applications and second to the availability of data on
their high-temperature creep behaviour.

Tables 4.3 and 4.4 list creep law parameters (eq 2.4) and other mechanical properties
for A36 steel and 316 stainless steel respectively at various temperatures. It should be
noted that these parameters are applicable only within certain ranges of applied stress
for a given temperature, and these limits were adhered to as much as practicable while
predicting damage growth in the following tables and figures.

Tables 4.5 and 4.6 list the predicted failure stresses at given values of time and
temperature for ASTM A36 steel and compare them with experimental results!!. The
predictions in Table 4.5 are based on creep rate data from Fields and Fields (1989) and
those in Table 4.6 are based on Harmathy (1967). The initial damage (Dp in eq 4.55)
is assumed to be caused by the plastic deformation introduced when the specimen is
loaded from zero to oo, at the beginning of the creep test. Its value is obtained from
the monotonic ductile damage growth equation (4.33)'2. Two different D, values are
chosen for eq (4.55), as the critical damage for A36 at the high temperatures is not
known experimentally. However, due to the accelerated nature of creep damage growth,
the failure condition is found to be rather insensitive to changes in D, and therefore the
difficulty in determining the critical damage at different temperatures should not be an
impediment to adopting a CDM model for creep. The quality of prediction in Table 4.6
based on the Fields and Fields (1989) data set becomes poorer with higher exposure
times. This may be due to the fact that the Fields and Fields (1989) data are obtained
from tests which lasted at most 16 hours. The validity of these parameters at exposures
of 1,000, 10,000 and 100,000 hours are unknown.

Fig. 4.12 shows the effect of applied stress 0., on predicted creep damage growth in
A36 steel as a function of time (eq 4.55) at a constant temperature, while Fig. 4.13 shows
the effect of temperature, 8, on predicted damage growth as a function of time (eq 4.55) at

" Two different sets of failure data were located in the literatuze ({12, 13]) for A36 steel.

12Eq (4.33) is solved numerically using the parameters E, K, M, s from Table 4.3, and the value of
damage corresponding to €, = (Foo/K)™M is used as Do in eq (4.55). The value of o4 predicted to
cause failure in a given exposure time and temperature is thus obtained in an iterative manner: first
by obtaining Do with the help of eq (4.33), and then by obtaining ¢y with the help of eq (4.56) in each

iteration.
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a constant applied stress. The initial damage arising out of the initial time-independent
plastic straining has been incorporated in the above figures and tables. Besides plastic
deformation, initial damage may also result from residual stresses, embrittlement etc.,
and an initial damage of only 10% can reduce the total creep life of a structure by as
much as 50% (Fig 4.14).

Fig 4.15 shows the predicted growth of creep damage in 316 stainless steel at 1100°F
(593.3°C) for six different stress levels using data from Table 4.4. The initial damage is
computed with the help of eq (4.33). The predicted times to failure (eq 4.56) are listed in
Table 4.7 along with experimental results (Garofalo et al, 1961)'3. Two different values
of critical damage have been adopted, since D, is not known for type 316 stainless steel
at 1100°F. However, due to the accelerated nature of creep damage growth, the predicted
ts is not especially sensitive to variability in D, if D, is high enough. For lower stresses,
the predictions lie within the experimentally observed range of values, but the proposed
model is found to over-predict the time to failure for higher stresses.

The existence of significant variabilities in the experimental failure stress at fixed
t; and 0, and in the experimental failure time at fixed o, and 6, is clearly seen from
Tables 4.5 (or 4.6) and 4.7, respectively. This suggests the need of a stochastic analysis
of creep damage growth.

4.4 Fatigue Damage

4.4.1 Damage Analysis

Fatigue failure occurs (after a sufficient number of cycles) at stress levels below the
static monotonic failure stress, provided the stress amplitude exceeds the endurance
limit. From the damage mechanics perspective, additional damage is introduced in the
material volume with each cycle. Since accumulation of damage is an irreversible process,
it does not disappear once the loading is reversed or withdrawn. Rather, the accumulated
damage at the end of one cycle acts as the initial damage for the damage increment in
the next cycle. This goes on until the critical value for damage is reached and failure is
said to occur:

D;yv = D;+AD;, AD;>0, t=1,...,Nf—1 (4.60)

Dy, = D (4.61)

where D; is the damage at the end of the ¢th stress cycle, AD; is the damage increment
during the ith cycle, D, is the critical damage and Ny is the cycles to failure. Failure,
however, is not necessarily the occurrence of fracture. It is, as mentioned in section

*3This reference lists the times to the end of primary and the secondary stages, t; and ¢, respectively,
besides reporting the rupture time, tg, for each stress level. Significant scatter can be seen in #1, t2 and tr
at every stress level. The CDM-based #; is generally less than ¢ and is believed to lie somewhere between
t2 and tg, but Garofalo et al (1961) did not list the time to the occurrences of the first macrocrack.
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3.2, the limit where damage can no longer be said to be homogeneous or isotropic and
the purview of damage mechanics ends. The CDM-based definition of damage ceases to
be valid with the emergence of a dominant flaw — for example, the development of a
macrocrack.

It is reasonable to assume that, in any given cycle, the unloading portion of a hys-
teresis loop and compressive stresses do not contribute to the damage increment. Conse-
quently, only the reloading section above the endurance limit (if any) in the positive stress
region causes damage to increase (similar restrictions about fatigue damage increment
are also found in Kachanov, 1986; and Lemaitre, 1984). Under these assumptions, the
basic mechanism of fatigue damage accumulation remains the same as that in monotonic
loading and creep deformation. Thus, the same equation for isotropic damage growth
(eq 4.9) may be written for the ith stress cycle:
4D —f—f; i O >9:20, €é>0
- (4.62)
0 ;  otherwise

with the initial condition D = D;_1.

The free energy (eq 4.12) must be computed differently from what was done in the
case of monotonic loading, however. This is because the equation of the hysteresis loop
is described with respect to the (cyclic) stress range-strain range coordinates Ae and Ao
(with origin at the loop tip) instead of in the original o — € coordinate system:

Ae = Ae. + Ag, (4.63)
A6
Ae, = —E"" (4.64)
AG\M'
—_— — =
Aey = 2 (2H> (4.65)

in which the total strain range is the sum of its elastic and plastic constituents, A is the
effective stress range, E is the (undamaged) elastic modulus, # is the (undamaged) cyclic
hardening modulus and M’ is the cyclic hardening exponent. The lower and the upper
loop-tip coordinates in the € — o system are (€min,Omin) and (€max, Omax) respectively
and they may vary from cycle to cycle. The relation between the new and the original
coordinates is linear:

A€ = €— €min (4.66)
A0 = 00— Cuin (4.67)

The effective stress range, A, is
AG = & ~ Fmmin (4.68)
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Using eq (3.4):

- g _ Omin
A0 = TTpT1-D
0= Omin
- 1-D
Ao
= 1P (4.69)

We now apply the principle of strain equivalence to the elastic and plastic strain
ranges to obtain:

=

; under effective stress range

Ae, = (4.70)

% ; under nominal stress range
and A5
gicijarg > under effective stress range

(Ae,) ¥ = (4.71)

FJTFT ; under nominal stress range

where £ and H are the damaged moduli, and the cyclic strain hardening exponent, M,
is assumed to be unaffected by damage.

The fact that fatigue damage does not occur when the applied stress is cycled below
the endurance limit, S., suggests the existence of a threshold plastic strain-range of
damage increment, Ae¢g,;, analogous to the threshold plastic strain €y in the monotonic
case. Agy, is cycle-dependent, as the effective stress-strain limits (Gmin, €min) may vary
as cycling progresses. It can be estimated as

Se_&minM
2( oH )

= 2 ((1 — D"‘;? — "“ﬁ“)MI (4.72)

'

i

AC(),-

Using the relation between effective stress range and nominal stress range (eq 4.69),
we obtain

E = E(1-D)

H = H(1-D)
The values of the stiffness moduli remain unchanged in cycle ¢ until the strain-range
reaches the threshold value for that cycle:

F E(1-D;y)

} for Ae > A, (4.73)

E

3 } for Ae < Acg, (4.74)
H

H(1-D;_1)
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The stress range expressed in terms of the plastic strain range is
Ag = 22"VM i (Ae )VM (4.75)

The reloading curve cuts the strain-axis at Ae = Aey, corresponding to which the plastic
strain range is Ae, = Aep;. The intercept omin can be expressed as

Omin = —21_1/M'ff(A€p1)1/M’ (4.76)

Equations (4.75) and (4.76) will be used subsequently to obtain the partial derivative of
the free energy and in the equation of damage growth.

Since the limit €nin does not change in a given cycle, we have

dAe = de (4.77)

for that cycle. This allows us to write eq (4.62) for the ¢th cycle as

Ao +0mi . . .
dD dD { - ¢D(Aae) i Ao+ Omin > Se 20, €>0 (w18)
0

de dAe ;  otherwise

The free energy per unit volume for the ith cycle can be written in terms of the loop-tip
coordinates as

€ 3
P = / ode’ — ZUf(D ~D;_1) (4.79)
€0,
Ae 3
- /A (A0 + Ouin,JAAE = S0 (D = Diy) (4.80)
50,’

which allows the partial derivative 9¥p to be expressed in terms of the strain range
coordinates as:

Ace
ép(Aé) = /A . gp(A0ind+ / 2 (Gmim )i o

Ac Ac
- /Aeo aD(Aa)dAe + 6D(am)/ dA — -af

Decomposing the total strain range, using the principle of strain equivalence for the
elastic and plastic strain ranges, and eqs (4.74) - (4.76), the partial derivative of the free
energy per unit volume in the zth cycle is found to be:

K" 2/M' 2/M K’ 1 M’ 1+1/M’
"pD(AGp) = -——2—E— [AG / - A¢ ] I-}——-A%' [Aep"’l/ — €50, / ]
12
+%A51/M (MM — Aq™) + K'AeM (A6, — Acy))
_30 ; (4.81)
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where K’ = 21=Y/M' g The differential equation of damage growth in cycle 7 is then

D _ {K'(Ae,)M' — K'(Aepl.)l/M'} dAe, )
1-D Krz {A /M 2/M'} 4 K {A€1+1/M’ ;(—)}-'l/M’}

_K’2 1/M (Ael/M I/M) K’Ael/M (Aep, — Agg;) + %O'f]

with the initial condition D = D;_; at Ae, = A¢y,. The value D;, the damage at the
end of cycle ¢, is the solution of the above differential equation at Ae, = Aepy,;, which
is the maximum plastic strain range for that cycle.

For engineering metals, the ratio H/E ~ 0 (i.e., K'/E ~ 0), allowing us to simplify
eq (4.82) to:

D _ (Aep) M — (Aep, )M dAe,  (4.83)
- - M M’ M p )
=D L [Ad T g A (8e, — Ao+ S0/ K

which has the closed-form solution:

1+1 /A’ 1+1/M7 1/M*
1+ A_}ﬁ (A€p+ / - GPO,' ) - AGpl,’ (Aép AGQt) + Z—K—,} + C()

(4.84)
Co being the constant of integration. Using the initial condition D = D;_; at Ae, = Aeg,
as stated above, the damage at the end of cycle ¢ is

—log(1— D) =log {

LA™ _ ActM Aco, + C;
= o i

D,‘ =1- (1 - z 1) 1+1/M’ 1/M! (485)
A o™ — AM Aepm, + C;
where 3 N
of - 1+1/M 1/M
p=m - — ———Ag¢ Ae A 4.86
C 15 17 7;}[—, + €0, ( )

and Aepp,,; is the maximum plastic strain range in cycle ¢, which is attained just prior
to the start of unloading in the hysteresis loop. The recursive nature of eq (4.85) can be
used to express damage at the end of n cycles in terms of the initial damage, Dy:

no +1% At ™ — AeM Aeo, + C;
D,=1-(1-Do)[]
=1 1+

4.87)
A ;‘);}I‘-Lt/M Ae 1/M Afpm,‘ + Ci (

In the case of strain-controlled loading, the strain ranges Ae€mi, A€pm;, A€y and the
parameter C; are independent of i, giving the following simplification:

AG;;F/M, — Ael/MlAepD +C

1+
Do=1-(1-Do) | —¥ (4.88)
ﬁl%AepJ“ ™M _AeMAe, +C
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It may be recalled from the discussion in sec. 3.2 that CDM-based predictions of
fatigue damage growth are confined to the initiation phase of fatigue life!4. The propaga-
tion phase can be effectively dealt with the help of fracture mechanics. Eqs (4.82) - (4.88)
are capable of predicting the crack initiation life, N, using widely available material
parameters like E, H, M', ¢ and S.. It should be noted that no undetermined material-
dependent constant has been introduced in the present formulation. In the following
subsection, damage growth predictions for different materials and loading conditions are
compared with experimental data obtained from various sources. Since available data,
on initiation life are imited (due partly to the non-unique definition of initiation, and
partly to the difficulty in detecting small cracks), some Ny predictions are supplemented
with computed Np values and then compared with the more easily available data on the
total number of cycles to failure.

4.4.2 Verification of the Proposed Model

The material properties and their sources used in the following damage growth predic-
tions are listed in Table 4.8.

Fig 4.16 predicts damage growth (using eq 4.88) in strain-controlled fatigue tests of
AISI 316 stainless steel with Ae, = 0.81% and D, = 0.15. The prediction is presented
in terms of normalized cycles N/Nt in order to compare with Chaboche (1988)!°. The
agreement with experimental results is not good in Fig 4.16 which may be due in part
to using material parameters in the model different from those of the test specimens.

Fig. 4.17 shows strain-controlled fatigue test results for A106-Grade B steel at 288°C
in air. Predictions using eq (4.88) are compared with three sets of test data: (i) Number
of cycles to crack initiation (Majumdar et al, 1993), (ii) number of cycles to a 25%
drop in the peak tensile stress (Keisler et al, 1995) and (iii) number of cycles to failure
(Majumdar et al, 1993). Here, predicted values of Ny are seen to match experimental
results quite well. The present model is also seen to project a general trend in fatigue
behavior (eq 2.11): at low-cycle fatigue, the crack initiation period is negligible and most
of the fatigue life is spent in crack propagation; while in high cycle fatigue, most of the
life is taken up by crack initiation. The present model therefore may be said to predict
the first component of the strain-life equation (2.11).

Fig. 4.18 compares (i) the predicted Ny curve (using eq 4.88)!¢ with the number of

" Discussion on the different phases of fatigue life is presented in sec. 2.3.2

15The material properties of the specimen used were not reported in Chaboche (1988), nor were the
number of cycles to failure. However, Lemaitre (1992) reports critical damage D. = 0.15 for the same
nominal grade of material. This value of D, was utilized to estimate Nr = 0.87 N7 from Chaboche (1988).
The remaining properties required in eq (4.88) were obtained from other sources for the same nominal
grade of steel, as listed in table 4.8.

18Since experimentally determined D. for quenched and tempered SAE 4340 is not available, it was
determined analytically as D. = 0.46 (corresponding to €5 = 0.83) with the help of the proposed ductile
damage model (eq 4.34).
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cycles to the development of a crack of length 0.038 mm in SAE 4340 steel (Dowling,
1993)'7 and (ii) the predicted Ny curve with the number of cycles to failure (Topper
and Morrow, 1970) in fully reversed strain-controlled fatigue cycling of quenched and
tempered SAE 4340 steel'®. The predicted N7 = Ny+ Np curve is obtained by summing
Ny (as obtained before) with the crack propagation life, Np, obtained with the help of
the Paris-Erdogan Law (eq 2.14 with AKy, = 10M Pa,/m) in the presence of crack-tip
plasticity, as described in Appendix A. Both the predlcted N7 and Nt curves are seen
to match the experimental data quite well.

4.4.3 Prediction of Load Sequencing Effects

The load sequencing effect in fatigue cycling (described in sec 2.5) is a challenging area
in modeling fatigue damage growth. Its study is especially important since variable
amplitude loading is common in practice but almost all fatigue data pertain to fixed-
limit load cycling. A state-of-the-art review of the subject (Schutz, 1993) makes it clear
that all the existing rules for predicting damage under variable amplitude loading are
far from perfect. In view of its practical importance and the shortcoming of existing
methods, the problem of load sequencing is treated in a separate subsection here.

The proposed model of fatigue damage growth predicts the crack initiation life, Ny, in
a recursive manner. It can easily incorporate variable amplitude stress (or strain) cycling,
and predict the number of cycles to a macro-crack initiation. The present research
however was unable to locate any published data that indicated how the crack initiation
life was affected by load sequencing effects, though a sizable set of results are available
when the propagation life is included (e.g., Manson et al, 1967; Wheeler, 1972; Miller,
1977). The ability of the present method to portray load sequencing effects therefore is
limited to predicting the general trends.

In the absence of experimental data, let us confine the variable load to just two levels:
S§* for ny cycles and §2 for ny cycles. The load level S' represents two fixed limits of
applied stress (or strain) cycling as does S2. Eq (4.87), which predicts damage after n
cycles, may be abbreviated as

Do=1-(1- Do) ] f(e ) (4.89)

=1
where ¢ represents the strain limits in cycle ¢, and Q is the set of material parameters.

When S* is applied first,

Dy =1~ (1= Do) Hf(_,, (4.90)

=1

7Tt should be noted that the steel in Dowling (1993), though of the same nominal grade, has different
material properties (like Sy and fy) from the one in Endo and Morrow (1969) probably because it was

not heat treated.
18The material data used (listed in Table 4.8) are taken from Endo and Morrow (1969), and Topper

and Morrow {1970) refer to the same set of tests.
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After §2 is applied subsequently, the total damage is

ny+ng
Drymy = 1=(1-Dn) T[] F(Q)
1=n141
ny ) ny+n2
= 1-(1-Do) [ f(ch: @) TI f(se)
=1 t=n;+1

Conversely, if S? is applied first,

D,, =1-(1- Do) ﬁ FGHY)

=1

After S1is applied subsequently, the total damage is:

ny+nz
Dpymy = 1=(1—Dy,) H f(_E_};Q)
i=ns+1
7Y ni+nz
= 1-(1-Do)[[ () ] f(eh:)
i=1 i=mna+1

(4.91)

(4.92)

(4.93)

(4.94)

(4.95)

It is obvious that Dy, », in general is different from D,, ,,. We can, however, find a
condition that would make these two equal and a Miner type cumulative fatigue damage

rule valid: Consider,

& = €, Vi€[l,ng+n]
s? = €, Vi € [1,n1 + ng)

(4.96)
(4.97)

which means the strain limits in every cycle are independent of the past. Under this

condition,
n1 ny+n2
Dnyjm, = 1=-(1=-Do)J]f(e59) I 7(9)
=1 i=ny+1
= 1—(1~Do)f™(e;Q)f"2(% Q)
and
n2 ni+n2
Duyny = 1=(1=-Do) [T () I #(9)
i=1 i=np+1

= 1—(1- Do)f"(e*; Q) f" ("5 9)
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and the two accumulated damages are equal. This means that if no strain hardening or
softening occurs, and if the cycling takes place between exactly the same strain limits for
a given load level (irrespective of where in the life of the component this load is applied),
then the load sequencing effect vanishes. Of course this is an unrealistic situation in
practice, and accordingly, Miner’s rule is only an approximation.

Fig 4.19 shows two different damage growth trajectories in SAE 4340 steel: one for a
high-low sequence and the other for a low-high sequence; the duration of the individual
blocks is the same in both cases. The material properties are taken from Table 4.8.
The damage caused by the high-low sequence after 120 cycles is about 0.9, while the
damage caused by the low-high sequence after the same number of cycles is about 0.25,
thus demonstrating an observed trend in load-sequencing effect (e.g., Kutt and Bieniek,
1988). ‘

Fig 4.20 shows the number of cycles to failure when the number of cycles at each
level is variable. The total life is greater if the lower stress is applied first for the
same number of cycles. The Miner’s rule however, plots as a straight line and cannot
distinguish between the ordering of the blocks.

4.5 Closure

An approach to damage prediction was established from first principles of thermodynam-
ics, making the assumptions that there is zero temperature gradient, damage is isotropic
and progresses close to equilibrium, and the force-displacement relation is linear at the
micro-scale. The resulting equations of damage growth for ductile deformation, creep
and fatigue generally show reasonably good agreement with experimental results by other
authors on various ferrous and non-ferrous alloys. No undetermined constants have been
introduced; rather, only common material parameters are included in the equations.

Damage mechanics can model the crack initiation stage of fatigue life and may be said
to represent the aggregate behaviour of numerous short cracks prior to the appearance of
any long crack. However, no widely accepted non-empirical method has existed thus far
which could predict crack initiation in a defect-free (un-notched and polished) specimen.
Together, damage mechanics and fracture mechanics can predict the entire fatigue life
of a structure and complement one another.

The damage predictions are in qualitative agreement with the existing phenomeno-
logical /empirical models — e.g., the creep damage model of Kachanov (1986), the arbi-
trary dissipation potential model of Lemaitre (1985) for ductile flow, and the Basquin
model for fatigue — thereby showing that analytical models can replace phenomenolog-
ical/empirical ones. The present model can also account for load sequencing effects in
fatigue cycling.

It has also been demonstrated that the critical damage is almost always less than 1
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and is different for different materials at a given temperature. This lends credence to
the idea that D, is material property (discussed in sec 3.2); however, extensive testing
and documentation are required to verify this claim. The attainment of critical damage
corresponds to the formation of a macroscopic crack. The assumptions underlying CDM
clearly break down once this happens. Hence, damage growth laws and damage predic-
tions obtained from CDM-based approaches are limited to microscopic crack growth and
crack nucleation prior to the development of a dominant crack.

The approach to damage growth in this chapter was deterministic (i.e., non-random).
But the possibility of randomness in damage growth was apparent throughout — in the
form of variabilities in material parameters and failure times. It will be shown in the
next chapter that damage growth is indeed a random process, and the present model
will be extended to include material variabilities as well as noise in the damage growth

process.
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Material Treatment Form E K M o €5
& condition GPa MPa MPa

SAE 1035®°  austenitized round 180 871 34 1200 1.03
& quenched  tensile

AISI 1008 x X 200 661 4.3 707 1.61

2024 Al T3 X 73 X X e 0.18

2024 Al¢ T3 X 74.5 680 5.5 435 0.18

2024 Al T3 X 73.3 505 238 x X

SAFE 4130® annealed sheet x 1167 8.47 x X

SAFE 4130° normalized & sheet x 1065 6.41 x X
temper-rolled

AISI 4130/2  tempered &  hour 221 1117 159 1692 1.12
quenched glass

INCO 7182 precipitation x 211 «x X X 0.12
hardened

INCO 718%® heat-treated sheet 207 1435 23.8 1312* x

a Collins, 1981, p. 102
b  Le Roy et al, 1981

cl [46] vol 2, p. 49

c2 [46] vol 2, p. 438

c3 [46] vol 2, p. 1113

d  Hansen and Schreyer, 1994
el Boyer, 1987, p. 139
e2 Boyer, 1987, p. 9

e3  Boyer, 1987, fig. 12-19
f1  [7]part D, p. 99

f2  [7]part B, p. 455

x  not available
computed using Ramberg-Osgood law

Table 4.1: Room temperature monotonic material properties of various alloys
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material : experimental predicted®

reference € €5 D, D,
SAE 1035 steel Lemaitre, 1985 0 0.56 0.22 | 0.26
(AFNOR XC 38)
2024-T3 Al Lemaitre, 1985 0.02 0.25 0.23 |0.25
Chow & Wei, 1987 | 0 0.32 0.22 {0.29

Woo & Li, 1991 | 0.0084° 0.25° 0.22° | 0.25

SAE 4130 steel Lemaitre, 1985 0.02 037 0.24 §0.22

INCO 718 Lemaitre, 1985 0.02 0.29 0.24 | 0.26

“Solution of eq (4.34) for D at ¢, = €7 using material properties listed in Table 4.1
*mean values from 45 specimens
‘Maximum tabulated strain value

Table 4.2: Experimental and predicted critical damage in ductile deformation
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Fields & Fields, 1989¢ Harmathy, 1967°
6 A m ¢ test® o A m ¢ | o oy° E! Kt Mt
°C °F ksi, hr ksi ksi, hr ksi 10%ksi  ksi
350 662 | 1.69x10-1% 38 0.15 3261 b'4 x x|1.06 106 249 4315 3.92

400 752 | 1.18x 10719 3.9 0.31 21-56 | 270x107'3 47 1095 95 243 4241 4.82
427 800 | 1.16 x 10~1° 44 039 21-56 | 244x 10" 47 1]083 83 239 4067 5.49
450 842 | 1.15x 107! 49 045 2148 | 146x10°12 47 1072 72 236 39.18 6.06
482 900 | 1.28x107° 6.4 053 21-48 | 145x 107 47 1067 67 232 3558 6.86
500 932 | 1.35x10-1° 7.2 058 21-37 |4.74x 107 47 1|064 64 230 3355 7.32
538 1000 | 3.74x 10~1° 6.2 0.68 16-37 | 4.93x10° 47 1054 54 225 2650 9.13
550 1022 | 4.49x 101 59 0.71 16-27 | 1.00x 10" 47 1051 51 224 2427 9.70
600 1112} 3.79x 10~° 6.5 1.00 10-18 | 1.50x 10"7 47 11034 34 217 16.20 11.40
650 1202 | 4.03x10~8 4.7 1.24 511 | 1.67x10°% 47 1[023 23 211 1096 17.00

704 1300 x X x X 1.75x 107% 47 11}0.19 19 x X X

“*Values are from tabulated data for each 9 given in the reference. Maximum test duration was 16 hrs.

®Values are generated from the regression equation given in the reference, which is valid between 750°F and
1300°F, and for stress level below 15 ksi. Maximum duration of tests was not reported.

®Stress levels in the tests were between these two limits. Each test was conducted at constant load and temperature.

4Normalized by room temperature ultimate stress, values taken from [12]

¢ Assumes 0+,(6) and of(#) have same ratios to their respective room temperature (RT') values, and oy=100 ksi at
RT.

fFrom Fields and Fields (1989), who calculated E,K,M on the basis that after a 2 min exposure, € = €. + €, only.
x=out of range

Table 4.3: Creep strain growth law parameters for ASTM A36 steel
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[ A m ¢ testo | 0,[26] o0f[26] E[26] K M
(°F) | (MPa, hr) (MPa) | (MPa) (MPa) (GPa) (MPa)

RT - - - - 275 595 193 8914 4.22

1100 | 2.32x 1072 6.92 1 199-315| 152 443.7 151.6  492.7 4.22

A, m at 1100°F obtained from least square analysis of 36 test data from [43].
Room-temperature (RT) K, M obtained from least-squares fit on curve in [9]. Elevated temperature
K, M obtained with the assumption K(6)/K(RT) = 0y(0)/0y(RT) and M(8) = M(RT), in the absence

of detailed information.

Table 4.4: Creep strain growth law parameters for type 316 stainless steel
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ty 6 Failure stress (ksi)
(kr) | (°F) Predicted Experimental
(D:=0.2) (D.=1.0) | ref[13] ref[12]
1000 800 35.4 41.2 38.0 25.8
900 16.6* 17.1* 18.5 19.0
1000 13.1* 13.5* 9.5 11.7
10000 | 800 34.7 39.1 24.8 21.0
900 14.1* 14.5* 124 13.8
1000 10.5* 10.9* 6.3 6.8
100000 | 800 33.5 36.8 16.0 -
900 12.0* 12.3* 8.2 -
1000 8.5" 8.7* 4.2 -

* using out of range parameters
- value not reported

Table 4.5: Experimental and predicted failure stresses due to creep in ASTM A36 steel
using Fields and Fields data
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ty 0 Failure stress (ksi)
(hr) | (°F) Predicted Experimental
(D:=0.2) (D,=1.0) | ref[13] ref[12]
1000 | 800 35.1* 37.4" 38.0 25.8
900 21.5* 22.7* 18.5 19.0
1000 11.3 12.0 9.5 11.7
10000 [ 800 28.6™ 30.47 24.8 21.0
900 14.5 15.4* 12.4 13.8
1000 7.6 8.0 6.3 6.8
100000 | 800 20.6* 21.7* 16.0 -
900 9.7 10.3 8.2 -
1000 5.1 5.4 4.2 -

x using out of range parameters
- value not reported

Table 4.6: Experimental and predicted failure stresses due to creep in ASTM A36 steel
using Harmathy data
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6 0o | Predicted t; Experimental (ref [43]), hours

(°F) | (MPa) | D, (eq 4.56) t; (primary) i3 (secondary) tgr (rupture)
0.2 1.0 min mean maX | min mean max | minh mean max

1100 199 | 841 1032 | 140 229 305 | 960 1283 1950 | 1267 1749 2437
218 | 384 477 20 46 88 | 150 325 546 | 170 439 779
239 167 211 8 12 17 60 77 99 76 105 132
262 69 89 3 4.3 6 17 27 31 22 37 43
288 25 34 0.9 1.9 3.8 4 9.4 15 66 133 204

315 8 12 0.3 0.5 0.7 | 1.3 3.3 6.2 1.9 4.9 9.0

The experimental min,mean,max values pertain to 6 data points (2 each from three creep-rupture ma-
chines) for each stress level.

Table 4.7: Experimental and predicted failure times (hours) due to creep in type 316
stainless steel.
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Material source E H M’ of Se

(GPa) (MPa) (MPa) (MPa)
AISI 316 Boller & 205 691 6.5 721° 155
stainless steel Seeger, 1987
AISI 1015 Dowling, 1993 206 1058 4.2 725 220¢
steel

A106 Gr-B steel | Chopraetal, | 196.5 1994 7.74 539¢  310°
(288°C in air) 1995¢

AIST 4340 Endo & Morrow | 192.9 1812 7.1 1911 5429
steel 1969

“based on S. = 515 MPa and ey=0.4 from ASM Specialty Handbook: Stainless Steels, 1994; and
assuming o5 >~ Su(1 + €x)

bassuming S. = 0.35,,, suggested by Dowling, 1993

“based on Se ~ 220 MPa for 1020 steel from Collins, 1981

“based on Su = 415 MPa at room temp ([46]vol 1, p. 332) and S5.(288°C) = 1.1S.(RT)(ref [12])
and o5 ~ S,(1 + €u)

*from Majumdar et al, 1993

fEnvironmentally Assisted Cracking of Light Water Reactors, NUREG/CR-4667.

9from Topper and Morrow, 1970

Table 4.8: Cyclic material properties of various alloys
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Figure 4.1: Elastic and plastic components of total strain
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Figure 4.2: Ductile damage growth in SAE 1035 steel
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Figure 4.3: Ductile damage growth in 2024-T3 aluminum
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Figure 4.4: Ductile damage growth in AISI 4130 steel
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Figure 4.5: Ductile damage growth in INCO 718 alloy
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Figure 4.7: Sensitivity of proposed ductile damage growth model to K
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Figure 4.9: Sensitivity of proposed ductile damage growth model to o
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Figure 4.10: Sensitivity of proposed ductile damage growth model to €
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Figure 4.12: Effect of applied stress on predicted creep damage growth in ASTM A36
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Figure 4.13: Effect of temperature on predicted creep damage growth in ASTM A36
steel at constant stress. (Model parameters taken from [49]).
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stress levels at constant temperature, data from [43].
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Chapter 5

Stochastic CDM and Structural
Reliability

5.1 Introduction

In chapter 4, the growth laws governing isotropic damage due to inelastic deformation,
high-temperature creep and fatigue were derived from the basic principles of thermo-
dynamics and mechanics. The general form of the differential equations for these three
different mechanisms of damage growth is

2 - 1.50) (5.1)
where w is the set of material parameters. The independent parameter ¢ represents time,
number of cycles or strain as appropriate. These models are deterministic, i.e., non-
random: There is no uncertainty associated either with the value of damage or with the
rate of damage growth at any given time. The tacit assumptions involved in deriving
the above models were: (i) the Helmholtz free energy per unit volume did not have any
spatial variability, (ii) the material parameters were precisely known (iii) no uncertainty
existed either in loading, or in the environment, (iv) the interaction between defects
could be ignored, (v) the shape and orientation of defects had no random constituent as
they were idealized as spheres, and (vi) the radii of the above spheres were deterministic.

However, the state of damage within a structure and its growth rate are actually
both random, owing to the intrinsic randomness in the material microstructure and
local thermal fluctuations, coupled with the randomness in the loading process and the
environment. Experimental evidence of randomness in damage growth may be obtained
from Woo and Li (1993b) (see Fig. 4.3) and Chow and Wei (1991). Since continuum
damage mechanics (CDM) deals with the effect of microstructural variations within a
structure, it is well-suited as a basis for modeling the randomness in damage growth
when its source is not localized in some point within the structure (e.g., at the tip of
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the dominant crack). In other words, when the randomness in damage growth is the
aggregate result of fluctuations arising throughout the material volume, a CDM-based
approach is ideally suited to deal with it in a rational way.

In view of the randomness in damage growth, the deterministic models must be
extended into the probabilistic domain to accommodate for the stochastic nature of
damage accumulation. Equation (5.1) should therefore be generalized to:

dD

i F(D,t; Q) (5.2)
where is- D is now a stochastic process describing the random isotropic damage, F is
a random function representing damage growth rate, and  is the set of the random
material parameters!.

The above randomization is done with the assumption that the sample functions of
D(t) are represented in some “average” manner by the non-random D(t) (the solution of
eq 5.1); and that F(-) approaches the deterministic f(-) under some central tendency.
Otherwise, the random damage growth law does not relate to its thermodynamic and
mechanistic bases, and the randomization loses physical relevance. With this assumption
in mind, we proceed to develop equations of stochastic damage growth. Certain stochastic
concepts used in their development are introduced first.

5.2 Fundamentals of Stochastic Differential Equations

A stochastic process (or random process, or random function) X (#) with ¢ € [to, ¢s] is a
family of random variables that is indexed by the parameter? t. For a given value of ¢,
the quantity X; = X(¢) is a random variable with a probability distribution, Fx(z;1).
The mean and the covariance are respectively the deterministic functions:

px(t) = E[X(1)] (5.3)
Kxx(t1,t2) = cov[X(t1),X(%2)] = E[X(21)X(2)] — ex(t1)px(t2)  (5:4)

When #; and ¢, coincide, Kx x(t,t) reduces to the variance function o%(t).

Mean square continuity of a stochastic process

If X (%) is a stochastic process, the random variable Y defined as

Y(8) = X(¢+6) - X(¢) (5.5)

In this chapter, uppercase letters will be used as much as practicable to denote the random versions
of corresponding lowercase (deterministic) quantities.

?Since a large majority of stochastic processes represent temporally fluctuating quantities, the index is
often referred to as “time” in a general discussion of stochastic processes where the context is unspecified.
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depends on the quantity § and the instant of time, ¢. Its mean square value is

E(Y?) E[(X(t+6) - X)X (t+6) - X (1))]
E[{X(t+ 6)}*] - 2E[X (¢ + 6)X (¢)] + E[{X (1)}?]
o%(t+8)+ pk (1 + 8) — 2[Kxx(t + 6,8) + px(t + &px ()] + ok (1) + pk (2)

(5.6)

If the covariance function of X(¢) is continuous at (Z,t), then the above expression van-
ishes as § — 0:

lim B[{Y(6)’] = lim B[{X(t + §) - X(1)}*] = 0 (5.7)

and the process X(t) is said to be mean-square continuous at t. The necessary and
sufficient condition for mean square continuity is that the covariance function K x x(t1,1%2)
is continuous at (t,1).

Integration of stochastic processes

If ¢(t) is a deterministic function and X (%) is a stochastic process, the random variable,
Y, given as

y = / X (1)t (5.8)

is called the integral of ¢(¢)X(t) if the infinite sum converges to Y in some sense®. For
example, mean-square integrability requires that (Lin, 1967):

< (5.9)

b b
/ / $(t1)d(12) Kx x (11, 12) dty dt

Extending the above, if
b
2(n) = [ a0 X (Bt (5.10)

where g is a deterministic function, then Z(7) is a random process. The necessary and
sufficient condition for the integral Z(7) to exist in mean square is:

b b
/ / 9(m,t1) g(n2, t2) Kxx(41,12) dty diz| < o0 (5.11)

in which g(-) indicates the complex conjugate of the function g(-).

Convergence of a sequence of random variables can occur in several ways, for example: with proba-
bility 1, in probability, in distribution and in the mean square (Lin, 1967); The latter is most commonly
used in engineering applications.
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Markov Processes

X (t) is a Markov process if, for ¢, > t,—1 > ... > {3 > t; > 0, its conditional probability
density has the following property:

Sx(tn) [Enital X(tno1) = 2o1 N X(tn-2) = Eng N o N X (1) = 24]
= fX(tn) [xn;tnl X(tn—l) = xn-—-l] (512)

and is called the transition probability density from time ¢, to ¢, of the Markov process.
A process with independent increments in disjoint intervals is a Markov process. But
this is a sufficient rather than a necessary condition for Markov processes since not all
Markov processes have independent increments.

The future behaviour of a Markov process depends only on its current state. Knowl-
edge about the past behaviour of a Markov process, that is, knowing the states occupied
from the initiation up to the present, does not affect the probability distribution of the
process at any time in the future if the present state is known. Physical processes which
can be shown or reasoned to have this “memory-less” property may be treated as Marko-
vian, allowing advantage to be taken of a rich collection of results pertaining to Markov
processes.

Diffusion processes

A continuously parametered, continuous-state Markov process, X (t), is termed a diffu-
sion process if its transition probability density, p(-), meets the three conditions described
below (Kloeden and Platen, 1992, p.36), in which € > 0,#2 > t; > 0 and z; € R:

p(z2, 82|21, 01) dza = 0 (5.13)

m
ot il — 1 lzg =21 |>e¢

This condition prevents the process from having instantaneous jumps.

2. The instantaneous rate of change of the conditional expectation, a(z1,1?;), defined

as
. 1 .
a(il:],t]) = t"l»l—l-gl tz — tl E[X(tg) - X(tl) l X(tl) = 1'1]
= Hm (.’132 - 1‘1) p((l?g, tzlml, tl) d$2 (5.14»)

fz—*t}“ t2—t |zg —=z1{>e

is a well-defined function. It is called the drift of the diffusion process at time #;
and position z;.
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3. The instantaneous rate of change of the squared fluctuations, d(z1, 1), conditioned

on X(t) = z:
. 1
b(z1,t) = lim ——E[{X(t) - X(t)F | X(t1) = z4]
ta—tt T2 — 11
= lim (zg — x1)2 p(z2,t2|21,t1) dz2 (5.15)
to—t1 t9 — 1 op—21|>e

is a well-defined function. It is called the diffusion coefficient of the process at time
t, and position zy.

Heuristically, X(f) can be conceived of as a system moving with a deterministic
velocity, a(z,t), on which is superimposed a zero-mean Gaussian fluctuation, #(t), with
variance b(z,t): '

X(t+ At) = X(t) + a(z, t)At + n(t)VAL (5.16)
It is easily seen that the sample paths are continuous (as At — 0, z(t+ At) — z(¢)) but

they are nowhere differentiable due to the presence of the term v At (Gardiner 1985, p.
53).

The standard Wiener process, W(t), is a diffusion process with zero drift and unit
diffusion coefficient. It is a zero-mean Gaussian process, with variance ¢ and covariance
function Kww(t1,t2) = min(#,t2). W(t) is a non-stationary process with independent
increments in disjoint intervals of time.

Stochastic differential equations

The integral of the white noise, £(t), can be shown to be a Wiener process, W(t):
dW(t) = W(t + dt) — W(t) = £(t)dt (5.17)

It should be noted that to derive the above, the white noise, £(t), need not be Gaussian.
The only requirement is that its autocovariance is a delta function (Gardiner, pp 81-83).
Eq (5.17) leads to the idea of a “stochastic” differential equation (SDE) in the following
way. An ordinary differential equation

% = a(z,t) ' (5.18)
may be written as the integral:
z(t) = 2o+ /tt'a(m(‘r),r) dr (5.19)
0
Extending this idea, a stochastic differential equation is
% = a(X, ) + B(X, (1) | (5.20)
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which may be written by substituting the white noise as
dX(t) = a(X,t)dt + b(X, t)dW(¢) (5.21)

The solution may be expressed as the stochastic integral,
£ t
X() = Xo + / o[ X (r), 7] dr + / bX(r), 7] dW () (5.22)
tg to

The first integral is assumed to exist in the mean-square sense. The second integral, in
which the integration takes place along the sample path of the Wiener process (instead
of the time axis) between W (tp) and W(t), is called the “stochastic integral”. It does
not have a unique definition, but two different interpretations of the stochastic integral,
one by Ito and the other by Stratonovich, are found in the literature.

Ito stochastic calculus

Let the interval {tg,t] in eq (5.22) be divided into n sub-intervals such that
o <ti1 <ty...<t,1 <t =1, (523»)

The Ito stochastic integral is defined as the mean-square limit of the partial sums (Gar-
diner, 1985):

n-—1
Sn=Y_ b(zi, t;) AW, (5.24)
i=1
where z; is evaluated at ¢; and AW, = W;, — W;. This way, the stochastic process X (t)
is evaluated at the initial point of each sub-interval, and is statistically independent of
AW;. Thus, if b is a non-anticipating function, the expectation of the Ito stochastic
integral vanishes.

The Ito stochastic differential equation (5.21) is equivalent to a one-dimensional dif-
fusion process whose drift term is a(z,t) and diffusion term is b?(z,t) (Gardiner, 1985,
p.97). However, due to the interpretation of Ito integral as the mean-square limit of the
type described above, it has properties quite different from those of ordinary calculus,
which need to be borne in mind while solving or transforming Ito SDE’s:

1. dW(t)? = dt,
AW ()"*+2 = 0,n > 0.
i.e., for a non-anticipating random function G(t),

[ swiawry: = { Ju Glrdrs =0 (5.25)

2. ftf) G(r)dW(r)dr =0
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3. dfW(t),t] = (5 + 1 5k)dt+ Sfdw (1)

4, ft? W(S)dW(.S) = W(t2)2 ot W(t1)2 - %(tg - tl)

5. If X(t) obeys equation (5.21), then an arbitrary function, f[X(t)], satisfies the
following stochastic differential equation:

X0 = (af + -;-zﬁ F')dt + bf'dW (5.26)

Thus, a change of variables in Ito stochastic calculus does not give the same results
as in ordinary calculus, unless f(X) is a linear function (i.e., f = 0).

Stratonovich stochastic calculus

For the same subintervals on the time axis as in eq (5.23) the Stratonovich stochas-
tic integral is defined as the mean square limit of a different sequence of partial sums
(Gardiner, 1985):

n—1 .
1
Sn=Y_b (5(93,; + z,'.,.l),ti) (Wiy1 — W;) (5.27)
¢ =1

This particular way of defining the partial sum ensures that all the rules of ordinary
differential calculus (Reimann integration, change of variables, etc.) remain valid in
Stratonovich stochastic calculus.

Ito and Stratonovich solutions of the same stochastic differential equation generally
are different. For example, the stochastic integral

L(W(t1)? — W(t0)?) — (t1 — %), using Ito calculus

t
/ W(0)dW (1) =
to $(W(t1)? — W(to)?), using Stratonovich calculus

(5.28)
However, the Ito solution of an SDE can be shown to be identical to the Stratonovich
solution of the same SDE modified in a certain way ( Gardmer, 1985). To elaborate, the

Ito solution of
dz = adt + bdW (5.29)

is same as the Stratonovich solution of
de =[a— %bbx]dt + bdW (5.30)
and, the Stratonovich solution of
dz = adt + fdW (5.31)
is same as the Ito solution of

do = o+ %ﬂﬂx]dt + BdW (5.32)
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where the subscript , implies partial derivative with respect to z. If the diffusion term
of an SDE is independent of z, then its Ito and Stratonovich solutions are identical.

In evaluating the relative merits of the Ito and Stratonovich approaches, it is im-
portant to note that neither is inherently superior to the other. The choice of one over
the other while solving an SDE is guided by computational expediency (Kloeden and
Platen, 1992). However once the choice is made, the solution and inferences drawn from
it should be internally consistent. Both approaches will be utilized in the sequel.

5.3 Development of CDM-based Stochastic Models

5.3.1 Review of Previous Work

The amount of published research on stochastic CDM is small compared to the work
available involving purely deterministic models, for at least two reasons. First, CDM-
based approaches are relatively new in modeling damage growth. Second, experimental
data on random damage growth are scarce, which hinders the validation of proposed
stochastic models.

Carmeliet and Hens (1994) used a non-random kinetic equation of damage growth.
They introduced randomness in the formulation by modeling the initial damage thresh-
old and the ultimate strain as a bivariate Nataf-type random field distributed over the
material, and finally employed a finite element analysis for solution.

Woo and Li (1992) defined damage as a stochastic process and have given suggestions
about how to solve the stochastic differential equation that results from damage growth
laws. In this they have made use of a dissipation function similar to that discussed
in section 3.3. Experimenting on 45 specimens of 2024-T3 Aluminum, Woo and Li
(1993b) demonstrated the statistical nature of ductile damage growth. They obtained
the first four moments (mean, standard deviation, skewness and kurtosis) of the initial
(undamaged) values of o, E and the Poisson ratios v12 and 143. As the test progressed,
they computed the mean and standard deviation of E and iy at strain values 1%, 2%,
e, 25%. However, they did not compute the autocovariance function of E or i5 which
would have led to a more complete characterization of the randomness in the damage
growth process. An interesting observation is the extremely high coefficient of variation
that they reported for the threshold strain: V, = 1.05.

Harlow and Delph (1995) adopted the familiar power law model for steady state
creep,

¢, = Co™ (5.38)
and the Kachanov model for creep damage growth,
. AN
= e .34
D T=DW (5.34)
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They assumed that C, A, N were time-independent jointly distributed random variables
with C and A having the lognormal and N having the normal as their marginal distribu-
tions. Spatial variability in the three parameters was excluded, and the formulation did
not recognize the possibility of noise in the damage growth process. Analysing high tem-
perature creep rupture test data on AISI 316 stainless steel from Garofalo et al (1961),
they computed the means, standard deviations and correlation coefficients of the jointly
distributed random variables, C, A and N. Finally, using a finite element formulation,
they numerically obtained the marginal probability density function of damage at differ-
ent values of time. The scatter was seen to increase with increasing exposure times for
a given value of the applied stress.

Existing CDM-based formulations of stochastic damage growth start with one of
the two approaches, as do their deterministic counterparts: (i) a kinetic equation of
damage growth, or (ii) a dissipation potential model. Consequently, shortcomings of
these methods remain in the stochastic context.

5.3.2 Stochastic Isotropic Damage Growth

For a system in diathermal contact with a heat reservoir, the Helmholtz free energy,
¥(8,x,D), in the deterministic formulation was expressed in terms of the dissipation
rate, I, as (cf eq 3.5)

¥ = /(W _ Kg)dt— /th (5.35)
where W is the work done on the system and Kg is its kinetic energy.

The near-equilibrium deformable body and the heat reservoir in the deterministic
formulation undergo rapid and continuous transitions among their microstates. This
causes random fluctuation in their internal energies. Owing to the randomness in the
fluctuation, the evolution of the free energy can be described as a stochastic process:

¢ t ¢
U(ty) = lIl(tl)+/t2(W—KE)dt—/2th+/tzB(t) di (5.36)
1 ty 1
where W, Kg and T are the same quantities as described in the deterministic formulation,
and B(t) is a zero-mean process (obtained by integrating B(t) in the mean-square sense),
which is assumed to represent the stochastic contributions to the free energy from the
microstructural variations, void interactions and thermal fluctuations described in sec
5.1. I the randomness occurs solely due to thermal fluctuations, then the variance of
B(t) may be estimated from statistical mechanics as 0 (t) = kg6?Nc, (Callen, 1988),
where kp is the Boltzmann constant, @ is the absolute temperature, N is the number of
particles and ¢, is the specific heat at constant volume. In a more elaborate formulation,
B(t) may be decomposed into a sum of several random processes, possibly correlated,
each of which represents the stochastic contribution from specific sources. However, in
the absence of detailed information, all the randomness is lumped into a single process,
B(t), which is sufficient for modeling damage growth from a macroscopic viewpoint.
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Proceeding as in the deterministic formulation (sec. 3.5), we can express the station-
ary variation in the Helmholtz free energy (eq 5.36) as

§U(t s (W Ee+ 2% at—s [ (W —Ew— 2%\ ar 46 [* E
(2) - tl( B E+5—5) B tl( B E—a—xx) t+ t Bdt

=0 (5.37)

where we continue with our assumption of isotropic damage. For a deformable body
sufficiently close to equilibrium, x is the symmetric strain tensor and the second term in
eq (5.37) has been shown to vanish due to appropriate variations to the velocity field.
Consequently, we are left with

5[/”(1&/-}'{ +6—WD+B)dt]—O 5.38
s ET 5D = (5.38)

Using the commutability of differentiation and variation, we can express the variation
6 B(t) on a sample-path basis as

- d d { 0B
6B = E—(&B) = a (87-(561‘]') (539)

u

where B(t) is assumed to be a function of strain. Let b(¢) denote the fluctuation in the
free energy per unit volume,

9B(t)

b(t) = v (5.40)

Continuing as in section 3.5, we arrive at the condition,

.. AW, . _
5 (W _ke+ D4 B(t)) =0 (5.41)
oD
which leads to the partial differential equations

F; — pa; — (¥pD}; + s,;),; =0 on R (5.42)
T; + (¥pDi; + 85, )n; =0 on Ry (5.43)

where F; are the body forces (i = 1,2,3), T; are the surface tractions, n; are the unit
outward normals from the surface, p is the density, a; are the accelerations at a point,
Yp = 0¢%/0D, D{; = 0D/0¢; and sp,; = 0b/0€;;. Under uniaxial loading eq (5.43)
simplifies to:
dD
Too + ’QPDE + Sp = 0 (54—4)

where 0, is the far-field load and s, = db/de. Since b is the energy fluctuation per unit
volume, s is the rate of change of this fluctuation caused by straining the deformable
body, R. It is noted that s; has dimension of energy per unit volume or, equivalently,

NUREG/CR-6546 104




of stress, and may be interpreted as a random fluctuation imposed on top of the deter-
ministic stress-field existing in R and on its boundary dR. The fluctuating stress sy, is
therefore a stochastic process indexed with strain, e.

Let us now postulate the nature of this fluctuating stress. First, it makes intuitive
sense that sy(€) is a zero mean process and that the fluctuations assume negative and
positive values with equal probability. Second, let us suppose that the mean-square of
the fluctuation is the same at all times (or strains). Lastly, let us suppose that the source
of the fluctuation is a rapidly varying quantity which may be modelled by a white noise,
&(€). Then if s, follows the Langevin equation of the type:

ds

—d?b = —c18 + /2 § (5.45)
all three assumptions made about s; above can be satisfied by a suitable choice of the
positive constants ¢; and ¢;. The solution of eq (5.45) is the Ornstein-Ublenbeck pro-

cess {a Gaussian process), the mean, variance and covariance functions of which are,

respectively,
E[ss(€)] = poe ¢ (5.46)
€24 €2
varlsy(e)] = [0g - 20.3¢ 2ae er (5:47)
cov[sy(ez), sp(€1)] = [oF — ._63_]6—61(61+62) + £2 —cilee—ei (5.48)
2 2¢q

where yp and o are, respectively, the initial mean and variance. For a sufficiently large
value of ¢;, the process becomes zero-mean and stationary.

Equations (5.44) and (5.45) describe processes that occur at widely different scales of
time (or strain). A large number of fluctuations in s; occur within a time span (or strain
increment) which is too small for damage to increase appreciably. Therefore, at a time
(or strain) scale that is significant for observing damage, s;(¢) may be approximated by
a white noise, (/¢2/¢1)€(¢) (Gardiner, 1985, chap. 6), giving:

dD__ T \/5/01

_—= € 5.49
or,
dD(e) = — 22 de - Y% gy (5.50)
, YD YD
where W (e) is the standard Wiener process. The corresponding solution is
D(€)=Do— | Z=2d¢ / Vel (5.51)
€0 '(bD €0 QpD

where Dy is the initial damage.

Alternately, if the strain rate is known, damage can be expressed as a stochastic
process indexed with time:

D _ 0w
dt — ¥p

¢D,t) - w—é(fl;t)sz, (5.52)
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where ¢ is the strain rate which is generally a function of time as well as damage. Arguing
as before, s in this case follows the Langevin equation:

dsp

D eqonlt) + Ve €0 (553)

where c3,c4 are appropriate constants and £(t) is the white noise in the time domain.
This leads to the following stochastic differential equation of damage growth in time:

dD(t) = _% édt - -\%ﬁfﬁ edW(t) (5.54)

where W(t) is the standard Wiener process. The solution is

t 14

D(t) = Dy —/ Too ¢ gyt

= 5 ———‘/;‘*Iﬁ %3 ¢ dw(t)) (5.5%)

where Dy is once again the initial damage.

Equation (5.50), or equivalently eq (5.54), is the basic stochastic differential equation
(SDE) of damage growth and will be used in the following subsections for ductile, creep
and fatigue damage.

It should be recalled here that damage growth is physically an irreversible process in
the absence of corrective human intervention. Though the above formulation of stochastic
damage growth does not exclude the possibility of instantaneous and local retardations
in damage, and though such transient fluctuations may actually occur at the microscale,
the damage variable (which deals with the aggregate effect of microscopic processes)
should be non-decreasing over a macroscopic interval of time and space. This property
of D(t) in the present formulation depends on the relative magnitudes of the drift and
diffusion coefficients in eqs (5.50) and (5.54), which should be verified in each case that
they are applied.

The initial value of damage, Dq, is in general a random variable. It represents the
effects of residual stresses, surface roughness, previous loading histories etc — i.e., any
deviation from the ideal smooth and virgin structure whose state of damage is precisely
equal to zero. Failure* occurs when damage exceeds the critical damage, D.:

Failure : D(¢) > D., t € [0,tz] (5.56)

The critical damage is assumed to be a material property (section 4.1), which is not
necessarily deterministic. Like any other material property, it possesses scatter — partly
due to measurement error, and partly due to material variability. The cumulative fajlure
probability at time ¢,

Fr(t) =1- L(t) = P[T < {] (5.57)

*As explained in section 3.2 and highlighted in chapter 4, failure in the context of CDM is not
necessarily fracture, but denotes a stage when the basic assumptions of CDM break down, e.g., with the
development of a macro-crack.

NUREG/CR-6546 106




where T is the time to failure and L(t) is the reliability function, can be simplified as
Fr(t) = P[D(7) > D,, T € [0,1]] ~ P[D(t) > D] (5.58)

provided that D(¢) is almost always a non-decreasing function. It will be shown subse-
quently that it is usually easier to determine the probability structure of the stochastic
process D(t) and the cumulative failure probability, Fr(2), by first treating the material
properties as deterministic (in the drift and diffusion coefficients). However, D, and the
other material properties entering the damage growth equations (e.g., £, K, 04, S.) are
generally random and may possess a fair amount of stochastic dependence, due to a com-
mon origin at the microstructural level. If this dependence is known, the conditioning on -
Fr(t) may be removed by using the theorem of total probability, and sensitivity studies
can be conducted. The randomness in only the significant parameters can be retained,
reducing the dimensionality of the problem.

In the following three sections, the above formulation will be applied to ductile de-
formation, creep and fatigue damage. The predictions of the proposed models will be
compared with available experimental data to determine how well they can capture the
various aspects of random damage growth processes. Simple reliability computations will
also be presented as a precursor to their later use in more complex situations in Chapter

6.

5.4 Stochastic Ductile Damage

5.4.1 Equation and Stochastic Characterization

The mechanistic bases of stochastic ductile deformation damage are considered to remain
the same as in the deterministic formulation. The expressions for o, and ¥p in eq (5.50)
above can therefore be used directly from sec. 4.2.

For ductile plastic damage under uniaxial monotonic loading, the SDE governing the
strain-rate of damage growth (eq 5.50) can be written as

dD(&p) = A(ep)(1 — D(ep))dep + B(€p)dW (¢p) (5.59)

where ¢, is the plastic strain. It is convenient to make the substitution X (¢,) = 1—D(e,),
and write instead: '

dX(ep) = —A(&) X (ep)dey — B()dW (€,) (5.60)
The coefficients are:
1
e
Aey) = gres (5.61)
ﬁg +C
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B(e,) = (vez ];cl)/ K (5.62)
DAL,

1+

where the constant
1437
_305 g
T aAw 1
4K 143

(5.63)

and €p is the threshold plastic strain for damage initiation, M is the strain hardening
exponent, K is the hardening modulus, F is the elastic modulus and oy is the local
failure stress. E is two to three orders of magnitude larger than K, making K/(2E) ~ 0,
and allowing the coefficients to be simplified as before.

The drift term, B(e,), of eq (5.60) is independent of damage which, as may be
recalled from sec. 5.2, causes the Ito and Stratonovich solutions to be identical. It thus is
unnecessary to choose one approach over the other, and the rules of ordinary calculus can
be used to arrive at a closed form solution. Let us introduce a new stochastic process,
Y(e) as:

i
Y=X ; 049
(1+T14_+C) (5.64)

where € is the plastic strain. From this point on in this section, we will drop the subscript
p in plastic strain to improve readability. Differentiating Y,

dy

It

1+4
dX [ S 4 C) + XM de
1+ %

= [61_75 + c} [— X A(€)de — B(e)dW (€)] + Xet/Mde

= ¢ €€ — € € EI/MG
Aoy X Ade = BEOIW (] + XM

_ _B(9 M (e
= T M

(ve2/e1)
~ ;’{ L aw (e) (5.65)

The solution of Y (¢) is now straightforward:

Y(e) = Y(eo)_(—‘/iK/?l—) ./E:dW(e’)
= Y(eo)- (—‘/%/_“Q W (e) - W(eo)] (5.66)
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Substituting eq (5.64), the solution for X is:

€:H-ﬁ L Ca/C
X(e) = X(a) 2020 (al/ eI yyy iy (s.67)

1
etm +(1+4)C e:g +C

Finally, the solution in terms of D(¢) = 1 — X(¢) is

€1+% e cz/c1
D) = 1-(1-D(e) et Ul (Vo) K ) gy

€1+T14-+ 1+ 1y 1+4
UranC o+

3/4)(os/K)(1+ %) . (Vez/er)/ K ) — Wie
e+ +(1+ 4)C ¥ k- el

1+ 3

= 1-(1- D(eo))}

(5.68)

D(ep) = Do being the initial damage. Unless otherwise stated, the material properties
Q = {e, 04, K, M} are considered non-random in the following.

The mean of the process is

oi(e) = 1 - (1=upy) LN K) (5.69)
T +C

1457

which is identical to the solution in the deterministic formulation (eq 4.36) with up, = 0.
The variance is

2 2
oha(@) = b | LA |y (o ) | (SIK (5.70)
= Tl

where 0%0 is the initial variance, which is equal to zero if the initial condition is deter-
ministic. Finally, the autocovariance function of the process, for €3 > €; > €g, is

(3/4)(os/K) | | (3/4)(04/K)

cov[D(e1), D(e)|Q] = o}, e i
511_'_—_11&_— +C Slz_i_—%;- +C

Hex — o) (‘{fz /K (‘fﬂ VLS RN
511%— +C f?,-}} +C
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which reduces to 0’12)’0(6) when € = ¢ = €. It is clearly seen that the ductile dam-
age growth is a non-stationary process. If the initial value of damage, D(ep), is either
Gaussian or deterministic, then D(e) itself is a Gaussian stochastic process (since the
Wiener process in eq 5.68 is Gaussian). This notion is consistent with the definition of
the damage variable: assuming that the random sizes of the numerous microscopic voids
giving rise to damage are statistically independent of each other, then, by its definition,
damage can be shown to approach in distribution a normal variable when the number of
defects is large.

If the joint probability density of Q is known, then the unconditional mean and
variance of the damage process may be obtained as,

pp(€) = / oo / epiale) falw)dw (5.72)

oh() = [ ... | b0 falw)de (5.73)

using the theorem of total probability. D(¢) is generally non-Gaussian in this case and the
unconditional distribution and covariance structure of D(¢) may be obtained numerically.

5.4.2 Failure Probability in Random Ductile Damage Growth

Failure occurs when damage reaches the critical value D, which may be less than or equal
to 1. The cumulative probability of failure at strain ¢, F, (€), which is the complement
of the reliability function, L(¢), is

F(e) = 1-L(e)
= Plef < ¢
= 1-P[D(¢) < D Ve €0,€]] (5.74)

where ¢; is the failure strain. Mathematically, this is a first passage problem.

Although damage growth is an irreversible process (autogenous healing is ruled out),
the mathematical form of the damage growth SDE (5.60) allows the possibility of negative
damage increment. The probability of a negative damage incrément depends on the drift
and diffusion terms and also on the time (or strain) interval of observation. If the drift in
damage growth is large compared to its diffusion, then the growth rate is almost always
positive. Under this condition, the sample paths of D(¢) which cross D, (from below) for
the first time at ¢ < ¢, may be expected to stay above that barrier at ¢. This becomes
more and more likely the larger the interval (¢ — €;) gets. In such cases, the reliability
can be simplified as the CDF of the damage function evaluated at the critical damage:

F.,(¢) = 1— P[D(¢) < D] (5.75)
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The validity of this assumption should be established in every case that it is adopted.
The increment in damage, AD(¢; Ae), over an interval of plastic strain, [¢,€ + A¢], is a
random quantity. Its mean and variance are:

E[AD(¢; A¢)] = A(e)(1 — up(e))Ae (5.76)
var[AD(e; Ae)] = A(e)’Aclop(e)? + B(e)*Ae (5.77)

where 4 and B are given by eqs(5.61) and (5.62). The probability of negative damage
increment over the range Ae,

P[AD(e; Ae) 0] (5.78)
is a function of the position as well as the length of the interval.

Fixing the initial condition and the material parameters, &; = {Do, €0, 04, K, M, D.},
the cumulative failure probability and the probability of negative damage increment
under assumption (5.75), can be written, respectively, as:

B D. - pppg, (€)
and
. B —~A(l - ppjg,)
P[AD(e; Ae) <0|] =@ [\/Aza%l& = B2/(A€)jl (5.80)

where ppig (€) and opg, (¢} may be obtained by setting pp, = Do and op, = 0 in
egs (5.69) and (5.70) respectively, and ®( - ) is the standard normal cumulative distribu-
tion function. The theorem of total probability may be used to remove the conditioning
on 2, if their joint probability structure is known.

5.4.3 Model Validation, Sensitivity and Reliability Studies

The deterministic version of the above stochastic ductile damage growth model has been
shown to match experimental results and observed trends in material behavior. The
proposed approach to stochastic damage growth, unlike many of the existing methods,
deals with two different aspects of randomness: one that pertains to the initial conditions
and material parameters, and the other that is associated with the instantaneous growth
rate of the process (in the form of a stochastic noise). A knowledge of both sources
of randomness is required for a satisfactory description of stochastic damage growth.
The accuracy of the proposed stochastic model will now be investigated. The rationale
of combining the effects of various random factors like microstructural variations, void
interactions and thermal fluctuations into one single stochastic process (superposed on
the scalar Helmholtz free energy) will also be examined.

Fig. 5.1 shows the predicted mean pup(€) and standard deviation op(e) (eqs 5.69
and 5.70) for ductile damage growth in 2024-T3 aluminum with deterministic initial
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conditions and material parameters, and compares them with the experimental results
from Woo and Li (1993b). Since this reference does not report the required material
parameters (nominal or statistical) of the specimens tested, the nominal values from
Table 4.1 are used. The value of ¢¢ = 0.016 is taken from Lemaitre (1985) and the
material is assumed to be initially defect-free®. The variance and correlation length of
the fluctuating stress used in the experiment is unknown, and a value of \ /c3/¢; = 20 MPa
has been assumed®. The mean function, which is identical to the deterministic solution
(eq 4.36), agrees well with the experimental mean damage from Woo and Li (1993b). It
also compares well with the data from Lemaitre (1985), but no statistical information
is available about Lemaitre’s data. The predicted standard deviation in damage growth
also agrees well with Woo and Li’s (1993b) experiment, and in particular, predicts the
decelerated growth in the experimental standard deviation correctly.

Figures 5.2 (a) through (d) show the effect of treating €y, oy, K and M as random
one at a time’. The noise parameter in the model and the experimental data points are
the same as before. The coefficient of variation (c.0.v.) of €y is taken from Woo and Li
(1993b). The c.0.v.’s of the other three and all statistical distributions are assumed and
shown in the figures. It is observed that the mean damage is not affected in any of the
four cases. The standard deviation of damage is insensitive to randomness in ¢ or M,
but increases when oy or K is considered random. These findings are consistent with
the sensitivity study done on the deterministic model in section 4.2.2.

Figs 5.3 (b) through (d) show the effect of treating all four variables as random® :
(b) when they are perfectly correlated, (c) when they are moderately correlated, and
(d) when they are statistically independent. Fig 5.3(a) reproduces the case when the
variables are treated deterministically. The noise parameter in the model and the exper-
imental data points are the same as before. It is observed that treating the parameters as
random and varying the correlation among them has almost no effect on the mean dam-
age. However, the standard deviation of D(¢) is significantly affected when all variables
are considered random, and is the highest when the random variables are considered
statistically independent. It is therefore important to know the correlation structure
of the initial condition and material parameters: considering them as independent may
over-estimate the scatter in damage by a factor of 2.

Figs 5.4 (a) - (d) show the effect of the noise intensity, /cz/c;, on the damage growth

5The initial damage is considered zero (zp, = 0,0p, = 0) in all cases considered in this subsection
for 2024-T'3 Aluminum, to conform with the way the experiment was conducted.

Several values of the unknown noise intensity ,/cz/c; were tried, and their effects on the sample
paths of damage growth, holding all parameters deterministic, were observed. Values above 40M Pa
produced occasional but significant negative damage increments, and consequently the noise parameter
was restricted below 40M Pa.

"In this analysis, the mean of a random variable is taken equal to its nominal value.

8¢s, K, M are assumed normal in this analysis, and ¢o is assumed lognormal. The marginal statistics
are the same as before. When considered perfectly correlated, the correlation matrix of In(eo), 07, K, M
is the identity matrix. When the random variables are “moderately correlated”, the off-diagonal terms
in the correlation matrix are all taken to be 0.5.
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process in the presence of moderate correlation (p = 0.5) among the random variables
€0,0f, K, M. Figs 5.5 (a) - (d) repeat the above with perfect correlation (p = 1.0) among
the random variables. In particular, Figs 5.4 (a) and 5.5 (2) pertain to the case when
the noise is entirely absent. It is observed that the intensity of the noise has no effect
on the mean of the process (as predicted by eq 5.69), but has a significant effect on the
standard deviation of damage. Among all the cases considered for 2024-T3 Al, Fig 5.5(b)
is seen to match the data (Woo and Li, 1993b) closest, however, this kind of agreement
could also be achieved with other combinations of the noise intensity, the correlation
coefficients and the marginal distributions.

As noted previously, the stochastic model in eq (5.60) admits the possibility of neg-
ative damage increment. Fig 5.6 shows the probability of negative damage increment,
AD(e, Ac), over different interval sizes as a function of strain for 2024-T3 Al with the
same properties as above. As the interval size, A¢, approaches zero, the instantaneous
growth rate approaches a 50% probability of attaining negative values, due to the spe-
cial nature of the white noise (i.e., infinite variance). However, as Ae increases, the
probability rapidly falls off to negligible quantities (~ 1071° for Ae = 0.1).

Figs 5.7(a) and (b) illustrate the limit state probability for 2024-T3 Al:
Ples <€l ~ 1~ P[D(€) < D.] (5.81)

in which the failure strain, €, is now a random variable. In Fig 5.7(a), only D, is treated
as random?® while the others (e, o¢, K, M) are held constant at their nominal values. In
Fig 5.7(b}, all five parameters are considered random (with marginal distributions and
statistics same as before) with correlation coefficient 0.5 between each pair. The noise
intensity is 20MPa in either figure. To give a visual sense of the scatter in the process, a
few sample functions of D(e) (selected at random) are shown in the figures, which were
numerically obtained from eq (5.60) using an interval size Ae = 0.01. No sample function
is seen to return to the safe region once it exits that region, reinforcing the notion of
non-negative damage growth. The scatter in the sample functions is greater in Fig 5.7(b)
as may be expected intuitively. The relation between D and € is non-linear, involves the
Wiener process and cannot be inverted explicitly. The cumulative distribution function
(CDF) of ¢y is obtained numerically (eq 5.81) using step size Ae = 0.01, following which,
its probability density function (PDF) is obtained by numerical differentiation. The
mean and standard deviation of €; are found to be, respectively, 0.237 and 0.034 in the
first case (Fig5.7 (a)) and 0.247 and 0.052 in the second case (Fig5.7 (b)), values which
are of the same order as those generally observed for engineering metals. As may be
expected, the scatter in ¢; increased when all the parameters were considered as random
variables.

Different aspects of random ductile damage growth were considered in this subsection.
The importance of noise in the process vis a vis variability in initial conditions was inves-
tigated and a knowledge of both was found necessary for a satisfactory characterization

®D. is assumed to be a normal random variable with mean 0.23 {equal to the deterministic quantity
from Lemaitre, 1985) and a coefficient of variation 0.10.
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of random damage growth. Dependence among the material parameters was considered
and their correlation structure was found to play a significant role in the scatter of the
damage growth process. Finally a scheme to perform reliability analyses was outlined.

5.5 Stochastic Creep Damage

5.5.1 Equations and Stochastic Characterization

The mechanistic basis of stochastic creep damage growth is assumed to remain the same
as in the deterministic approach (sec 4.3), eqs (4.44) and (4.45):

A

= mgﬁag A (5.82)

€
where 0, is the far-field applied stress. The partial derivative of the free energy, ¥p, was
derived in section 4.3 and the derivation will not be repeated here. However, the final
expression is reproduced below, as it will be used in the SDE for creep damage growth:

T»bD = —%Uf (583)

where oy is the true failure stress at the operating temperature.

Under high-temperature constant stress creep, the increment in total strain is the
same as that in creep strain, i.e., € = é;. The stochastic differential equation of isotropic
creep damage growth is therefore,

dD(t) = — 22 ¢, dt — ‘/aé % ¢ aw (1) (5.84)

(75) (%

Substituting the expression for creep strain rate

4 A¢o.gzo+1 -1
3 os(1- D)™

m yh—
dt + (Jeafes) 2 A2TR Ty (5.85)

4D(t) = 30;(1- D)"

To the knowledge of the author, eq (5.85) does not have a closed-form solution in Ito
calculus. But a closed-form solution is possible in the Stratonovich sense, under the
condition ¢ = 1 (steady state creep). Eq (5.85) is rewritten as

(1 - D))" dD(t) = Ay dt + By dW (1) (5.86)
where the time-independent coefficients
4 A \
At = 3 o7 0% (5.87)
' 4 A .
B = =-— o"é(\/C4/C3) (5.88)
3 of
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It should be noted that A; and B; are generally random variables on account of material
variability. The Stratonovich solution of eq (5.86) is

(1 - D(t))™*! = (1 — Do)™** — Ajt(m + 1) — By(m + 1)W(2) (5.89)

where the initial time ¢5 = 0 and the initial damage is Dy. Rearranging, damage can be
expressed as a function of time:

m 2 By(m+ )W(t T
D(t)=1- [(1 =~ Do) = Ay (m o+ Ut] ' [1 (11— Do)(m+1 - 241t((721,+ 1)]

(5.90)
which is equal to the earlier deterministic solution (eq 4.55) in terms of (1 ~ D) for
steady state creep, multiplied with a term containing noise. If the noise vanishes (¢4 = 0
in eq 5.53, which implies By = 0 above), the earlier deterministic solution and the above
solution of random creep damage coincide for given values of the material parameters

(A,m, ;) and initial damage, Do.

Damage is bounded in the range [0,1]. Since the Wiener process is Gaussian with
mean 0 and variance ¢, the cumulative distribution function (CDF) of D(¢), conditioned
on fixed values of the initial condition and material properties, @ = {Dg, 4,04, m}, is

0, d<0
Fp(d;) =P[D(t) < d]=¢ @ [P=U-ITT] - gcd<1 (5.91)
1, d>1

where ®(-) is the standard normal distribution function and

p(t) = (1—do)™ — Ast(m +1) (5.92)
g(t) = Bi(m+ 1)Ve (5.93)
Here, dp is the fixed value of the random variable Dg. Since the Wiener process can

assume values anywhere in (—occ,00), D(t) has a mixed distribution, with finite proba-
bilities at 0 and 1:

Po(t) = P[D(t) = 0] = ‘I’[p(?(t;l] (5.94)

P(t)=PD®) =1 = 1-& [z—%} (5.95)

The first two moments of D(t) are

B[] = 0-Fut) + | DA [p(”) L ‘”mﬂ} dd+1-Pit) (5.96)
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m m+1
—— O-Pg(t)+/1d2(m+ D", [p(t)——(l—d) + ] dd+1% - Py(t) (5.97)
0 q(t) q(t)
where ¢(-) is the standard normal density function. Higher moments of D(t) can be
obtained similarly, if required. If the initial condition and material parameters are ran-
dom and their joint probability density is known, the unconditional moments and the
unconditional CDF should be obtained using the theorem of total probability.

As discussed in detail in sections 3.2 and 5.3.2, creep failure occurs when the damage
process exceeds the critical damage, D.. The instantaneous failure probability, condi-
tioned on §, = {Q, D.}, is

Pyio. () = P[D(t) > D.] (5.98)
The conditioning may be removed if the joint density of £, is known. Arguing as in
the case of stochastic ductile damage, the cumulative failure probability, Fr(t), can be
approximated as the instantaneous failure probability, Ps(t), above, provided that the
damage growth rate is almost always positive:

Fr(t) = Py(t) = P[D(t) > D] (5.99)

Since the mathematical form of the SDE governing creep damage growth admits the
possibility of negative damage growth (the probability of which depends on the drift
and diffusion coefficients and the length of observation as discussed in section 5.3.2) the
validity of the preceding assumption should be established in each case that it is applied.

The SDE which has the same solutions in the Ito sense (using eq 5.32 for the trans-
formation) is

dD = [Al(l _ D)™+ %B?m(l _ D)—‘m-l] dt— By(1— D)"™dw(t)  (5.100)

This equation does not have a closed-form solution, as mentioned at the beginning of
this subsection. Numerical estimates of the mean, variance and failure probabilities from
eq (5.100) may still be obtained by simulating sample paths of D(t) using the Euler
schemel®:

1
Diy1=D; + [A1(1 -D)™+ 5B]%m(1 - Di)—m-l} Atiy1 — Bi(1 — D) ™AW, 44
(5.101)

where AW; and AW; are statistically independent for ¢ # j, D; and AW;,; are statis-
tically independent Vi.

5.5.2 Model Verification and Studies in Reliability

No published CDM-based studies of stochastic creep damage growth (e.g., by measuring
the reduced stiffness) could be located that present data on the mean and variance (and

10The Euler scheme of discretization is computationally feasible only if the Wiener increments are
independent of the stochastic process as well as of each other, and this is ensured if the Ito interpretation
is used.
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possibly higher moments and the correlation structure) of damage as a function of time.
There are limited data available on the random time to rupture and the random time
to the onset of tertiary creep (e.g., Garofalo et al, 1961). The statistics of the random
time to failure predicted by the present model will be compared with such data, but
this comparison is less than ideal because it does not give an opportunity to study the
behavior of the structure when it is still in service. Thus, predictions of the mean and the
standard deviation of creep damage based on published test conditions are presented in
the following, primarily to study the various features of the present stochastic model and
its agréeement with the deterministic model. The predicted cumulative failure probability
is also presented to observe the effect of the noise on reliability and to determine whether
it can be substituted by the more easily available closed-form solution of instantaneous
failure probability. In the following numerical examples, creep damage growth in A36
steel stressed to 12ksi (83MPa) at 1000°F (538°C') in type 316 stainless steel stressed to
199MPa at 1100°F (593°C) is analyzed.

Figs 5.8(a) and (b) show sample paths of D(t) for A36 steel obtained with the help of
eq (5.101) (with At = 12hr) for two different noise intensities. The material is assumed
initially defect-free (up, = op, = 0), and the material parameters (taken from Table 4.3)
are considered deterministic. As may be expected, the scatter in the sample paths of
damage is found to increase with a higher noise intensity. Figs 5.9(a) and (b) show the
corresponding mean damage, standard deviation of damage and failure 1! probabilities
obtained in two different ways: (i) in closed-form!? from the Stratonovich solution, and
(ii) by Monte-Carlo simulation using the equivalent Ito SDE (eq 5.101)!2. The means
and standard deviations obtained by the two different methods are found to be almost
identical, thus indicating the unbiasedness of the numerical solution. The failure proba-
bility obtained in closed-from (using the Stratonovich approach) is found to match the
numerical solution (using the Ito simulation) very well, which confirms the accuracy
of the approximation (5.99). The closed-form estimate (CDF of D(¢)) may therefore
be adopted to determine reliability, leading to a considerable computational advantage,
particularly when removing the conditioning on Dy, D, or the material parameters. The
deterministic solution for the same condition of stress and temperature agrees closely
‘with the predicted mean damage. The standard deviation of damage is found to grow
with time until the mean damage is close to 1 after which it starts to decrease, which
corroborates the fact that D = 1 is an absorbing boundary. The scatter in the time to
failure increases (the slope of Fr becomes flatter) with increasing noise intensity.

The material parameters (A, m, D) were treated as deterministic and the initial
damage (D) was neglected in the above examples. The only source of scatter was the

1 Failure is with respect to a non-random D, = 0.5

2The integrations in eqs (5.96) and (5.97) are performed using the simple trapezoidal rule with a
step-size of Ad = 0.00001

13A constant time-step of At = 12 hr is used in this Euler scheme of integration. 1 million sample
paths are generated for the estimates. The probability of negative damage increment is found to vary
between 0 and 4 x 1075 for the lower noise intensity, and for the higher noise intensity, the probability
of negative damage increment increases up to a maximum of 2% for the time step of 12 hrs.
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noise in the form of the non-zero parameter /c¢4/cs. Furthermore, only the Stratonovich
interpretation of the creep damage SDE (5.85), was adopted above. These restrictions
are removed in the following examples on creep damage growth in type 316 stainless steel.
The material properties and the initial damage!* are allowed to be random variables in
the following!®, and the differences in the Ito and Stratonovich interpretations of the
same SDE (5.85) of random creep damage growth are illustrated.

Figs 5.10(a) and (b) show the effect of treating the material parameters and the
initial damage as random variables when the Stratonovich interpretation of SDE (5.85)
is adopted. Figs 5.11(a) and (b) repeat the comparison with the Ito interpretation of
SDE (5.85). When A, m and Dg are considered random, the sample paths of D(t) show
significant scatter compared to when only the noise is present. The amount of scatter
in the sample paths in either interpretation appears to be comparable for given values
of the noise intensity and material statistics. The deterministic solution lies within the
scatter in each case. :

Figs 5.12(a)-(e) show the effect on the mean and standard deviation of damage and the
failure probability (complement of the CDF of D(¢)) using the Stratonovich approach
when the conditioning on Dy, A, D, and m are removed (in that order). The mean
and coefficient of variation (c.0.v.) of the failure time, 7', are also presented in each
figure. A 10% variability in the initial damage causes no significant increase in the
failure probability as a function of time. A 20% variability in the rate, A, causes the
variability in T to rise from about 5.3% to 20.3%. Introducing a 10% variability in D,
has almost no effect on the failure probability at this stage. However, the present model
is found to be extremely sensitive to randomness in the exponent, m. Introducing a mere
1% variability to m causes the c.o.v. of the failure time to jump to 43.3%. These values
may be compared with the experimental scatter reproduced in Table 4.7 and particularly
with the 1749 hour mean rupture time and 21% c.o.v. observed by Garofalo et al (1961)
under the same conditions.

Figs 5.13(a)-(e) show the mean, standard deviation and cumulative failure probability'®
of creep damage using the Ito interpretation of SDE (5.85). The material properties and
the noise intensity are the same as in Figs 5.12. A comparison of the two approaches in
the five different scenarios, shows that the former results in a marginal increase in the
mean time to failure, u7, but provides a correspondingly lower estimate of the c.o.v.,
Vr. The Stratonovich solution therefore provides a slightly more pessimistic estimate of

% D¢ is assumed to be Gaussian when treated as random: its mean is computed with the help of
eq (4.33) as in sec. 4.3.2 with deterministic £, K,0¢, M (Table 4.4), and its c.o.v. is assumed to be 10%.
Computed this way, the mean initial damage in type 316 stainless steel at 1100°F' under 199M Pa stress
is 0.010787.

!When a material parameter is treated as random, its mean is taken equal to its nominal value.
The nominal creep law parameters for type 316 stainless steel are listed in Table 4.4. When treated as
random variables, A is assumed to be lognormal with c.o.v. 20%, m and D. are assumed to be normal
with c.0.v.’s 1% and 10% respectively, and they are considered statistically independent of each other
and of Dg. The mean of D, is assumed to be 0.2. )

184 5(t), op(t) and Fr(t) are computed numerically with a uniform time-step of 10Ar.
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reliability than the Ito solution.

The stochastic model of creep damage growth presented in this section is able to
account for material variability as well as noise in the process. While it remains to be as-
certained whether the Ito or the Stratonovich interpretation provides a closer description
of the random creep damage growth phenomenon, the computationally efficient closed-
form Stratonovich solution (which provides a more conservative estimate of the failure
time) may nevertheless be used to find the mean and variance functions of damage, and
to estimate the cumulative failure probability in terms of the CDF of the damage func-
tion conveniently. The predicted mean damage is found to be close to the deterministic
solution from Chapter 4, and experimental results are found to be within the predicted
scatter.

5.6 Stochastic Fatigue Damage

5.6.1 Equations and Stochastic Characterization

As in ductile and creep damage, the mechanistic bases of stochastic fatigue damage
accumulation are assumed to remain the same as in its deterministic formulation. The
free energy, ¢, its partial derivative, ¥p, and the surface energy, v, may therefore be
used directly from sections 4.1 and 4.4.

Fatigue damage in a given cycle, it may be recalled, is assumed to accumulate only
during the loading portions of the stress-strain loops when the stress is greater than the
endurance limit. The accumulated damage at the end of any given cycle is therefore
the solution of a differential equation describing monotonic damage growth along the
reloading curve between the limits mentioned above, with the damage at the end of the
previous cycle taken as the initial damage. In the stochastic context, this may be ex-
pressed for the ¢th cycle as:

(5.102)

dD { ~0oo /%D — (Ve [c)E() /YD ; Oo>8.20, é>0
E-E— =

0 ; otherwise

with the initial condition D = D;_;. Damage growth can then be represented as the
sum of the increments:

D;yy = D;+AD;, AD;>0, i=1,...,N;—-1 (5.103)
Dns1r < De (5.104)
Dn, 2 D, (5.105)

where D, is the critical damage and N is the number of cycles to failure. In the stochastic
context, D. and Ny are random variables.
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If (€min, Omin) denotes the position of the lower hysteresis loop tip, then a new set
of coordinates, Ae — Ao, denoting the strain and stress ranges can be defined with its
origin at the lower loop tip:

A€ = €— €min (5.106)
Ao = 0 -0y (5.107)

such that
de = dAe (5.108)

and the white noise £(Ac¢), shifted on the strain axis, retains all its characteristics. The
stochastic differential equation describing damage growth in cycle 7 is then:

1~ D(A][(Ae) ™’ — (Aep, )M [dAe, + (Vey/e1)dAW (Ac)

[
dD(Ae) = T+1/M7 TT1/M M
. [Ag M — At ]'—Aep{i (Aey — Acpo,) + 307/ Ky

(5.109)

where Ag, is the plastic strain range, Ae,;; is the plastic strain range corresponding
to € = 0, Aepo, is the plastic strain range corresponding to ¢ = S, 0y is the true
failure stress, M’ is the cyclic hardening exponent, Ky = 21"V/M'H where H is the cyclic
hardening modulus and the ratio K'/FE has been neglected. Detailed descriptions of
these parameters are given in sec 4.4. dW(Ae¢) denotes the standard Wiener process,
indexed by the strain range. The damage, D;, at the end of cycle ¢ is the solution of
eq (5.109) at A¢, = Aepm, with the initial condition D = D;_; at A¢, = Aeyo,.

Introducing X =1— D, eq (5.109) can be rewritten as
dX = —aX dAe, — b dW(Aey) (5.110)

where

1 MI 1

a(Aey) = e (5.111)
A ttM /M’
2 - AqAgl +C;
Co

(D) = i " (5.112)

_ﬁ-%—_ - AgAe,) +C;
Co = z‘% (5.113)

1 1 '

C; = 395 _ —— ASFYMT Ae},{?’f Aepp; (5.114)

4K, 1445

The drift term, b, in eq (5.110) is independent of damage, D. Consequently, the Ito
and Stratonovich solutions of eq (5.110) are identical. The solution, moreover, can be
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obtained in closed-form by adopting an approach similar to that used for eq (5.60) in
stochastic ductile damage:

Ac 1+1/M'
R Ao, MM
X(Ae) = X (Aeo,) —2L A+ G cow (A&p) = W(Ag,)]
P NS V"D /M AT Y
7T - AgAey " +C; —-”——1— AeyAc,, +C
(5.115)
which gives the damage at the end of cycle ¢ as
1-D,;_ : _
D; =1 1= Dim1)(3/4)(05)/ K1) __ oW (5.116)
Ae“'l./M l/M 1+1/M A /M
——ffj\_l/f__ - Afpm‘AE +C; —lp_r"i— Aepm,-Afpli + C;

where AW, is the increment of the Wiener process over the ith cycle. The recursive
nature of (1 — I);) in the above equation makes it possible to express damage, D,,, at the
end of n cycles in terms of the initial damage, Dg, and n independent increments of the
Wiener process:

Dn_l—(l—Do)(3af) 1:[9,+COZ AW, H(3"f) (5.117)

h
where 1

g; = AT (5.118)

1/M?
s Aepm,Af / + C;

If the material parameters, @ = {K',M’',0¢,5.}, are held constant, the mean of this
process is
n n
W(DaI2) = 1= (1 = (Do) (375) T o (5.119)
4K =1
which is identical to the deterministic solution (eq 4.87) of fatigue damage. The variance
is

3op\ " (L ? iy /30 ’
oH(Drl2) = 7*(Do) (375) (ng-) +G3Y [H (%) gj} (Aepm, — Dépo,)
i=1 i=1 | j=i

(5.120)
where u(Dg) and 0%(Dy) are respectively the mean and variance of the initial damage.
If, in addition to holding the material parameters constant, the initial damage is ei-
ther deterministic or Gaussian, then D, is Gaussian on account of the additive Wiener
increments in eq (5.117).

If the fatigue loading is strain-controlled, the function g; = g in eq (5.118) is indepen-
dent of ¢ and the mean and the variance of damage accumulated after n cycles simplify
to:

W(DaIQ) = 1~ (1- (Do) (3759) (5.121)
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and

[ 30.f ] 2(n—i+1)

Dulg) = o n) (37s) "+ CBdem - )

30 2n
o] -1

30 2n 305 12
= 00 (220)" + it - 60 [

B
(5.122)

Also, under strain-controlled fatigue, the conditional cumulative distribution function
(CDF) of damage at the end of = cycles is:

{ (I_DO)[&J ) 3 ] (5.123)
CO(Afpm AG;)O)L;K1 g)? ([_Lg]%‘ 1)/([?{{' 12-1)

1K,
since the Wiener increments in any two different cycles are statistically independent.
If the material properties and initial damage are random and if their joint probability
density function is known, the unconditional mean, variance and CDF of damage may
be obtained with the help of the theorem of total probability.

P[D,, < d|Q, Do) = &

It may be more convenient in some situations to describe damage and its statistics
as a function of time, instead of the number of load cycles. If the cycling rate is known,
then D(t), up(t) etc may be obtained by simply substituting the functional relation,
n(t), in the above formulation. If however, the number of cycles, N(¢), is random, then
D(t) and its statistics must be obtained using the stochastic description of N(?).

Assuming that the damage growth process described by eq (5.117) is almost always
positive, the cumulative probability of failure is the complement of the CDF of D,,:

P[N; < n) = Fy,(n) ~ P[D, > D,] (5.124)

from which the probability distribution of N; may be obtained if the statistics of D, and
D, are known.

5.6.2 Validation and Studies in Reliability

A CDM-based model of fatigue damage and failure concerns the fatigue initiation period
only. Consequently, the predictions and validation of the above formulation should be
restricted to the random characteristics of only the initiation life, and should not be
extrapolated to the crack propagation phase leading to fracture.

The fatigue crack initiation time, N7, and propagation time, Np, are both random,
and the statistics of their sum, N7 = Ny + Np, depends in general on their correlation
structure. However, the probabilistic estimation of the total life, Ny, can be simplified
through the assumption that the initiation and propagation times are independent of one
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another. The variability in Ny is due to the fluctuations in energy and material properties
throughout the material volume (a necessary assumption of CDM). The variability in N,
on the other hand depends solely on the local fluctuations around the crack-tip (which is
the basic tenet of fracture mechanics). Similar arguments were put forward by Min et al
(1996): “the physical mechanism of fatigue damage accumulation in the crack initiation
process is very different from that of in [sic] the crack growth process”.

As in the case of random creep damage, no published data on random fatigue damage
growth oriented toward CDM could be located. There are limited data available on the
random initiation life, but these data do not provide information on CDM-based damage
growth during the pre-initiation stage.

In the following, studies of random fatigue damage growth in A106-B (a carbon
steel) at 288°C in air, the material properties are taken from table 4.8 and are treated
deterministically. The noise parameter, \/c,/cy is derived from Keisler et al (1994).
By fitting a least-squares curve between the predicted and observed number of cycles to
failure, Keisler et al (1994) obtained the variance of the residue, z = In(Npreq) — In(Noss),
as 0.276 for tests conducted in air on the same material. Assuming z to be Gaussian,
the coefficient of variation (COV) of exp(z) is 0.56. The least-squares curve was found
to produce a good fit and the above residue is assumed to occur solely due to the noise
in the process. Considering D, = 0.25 (deterministic) and Dp = 0 (deterministic),
eq (5.124) was solved repeatedly and the COV of N for several strain amplitudes (0.002
through 0.006) and noise parameters 1/c2/¢; (200-1000MPa) were obtained. Assuming
that Ny (in the absence of material variability) and exp(z) have the same COV, /¢, /¢; of
approximately 1000M Pa produced COV'’s for N in the range 0.4 ~ 0.6. Consequently,
v/¢3/€1=1000 MPa is used in the examples presented here.

Fig 5.14 predicts random fatigue damage growth in A106-B carbon steel due to fully-
reversed strain-controlled cycling (€, = 0.003) at 288°C in air. The mean damage, up(n),
and the range of one standard deviation above and below the mean, pp(n)+ op(n), are
plotted in the figure.

Fig 5.15 shows the predicted mean time to crack initiation, pn,, (obtained using
eq 5.124 with /c,/¢1=1000 MPa, D. = 0.25 and Do = 0) and compares the predictions
with the observed cycles to failure, N, (Chopra, 1996)!7 for the same material and
conditions as described above. Considering Ny and Np to be statistically independent,
as discussed at the beginning of this subsection, the variance of N7 should be significantly
higher than that of Nj; and a plot of one standard deviation (predicted) above and below
the predicted mean N7 is found to be tighter than the experimental scatter in Nr. The
prediction also agrees with the generally observed trend in fatigue cycling that at low-
cycle fatigue, Np takes up most of the total life, whereas in high-cycle fatigue, the crack
initiation phase consumes most of Nt.

Y Failure is defined by Chopra and his colleagues (e.g., Keisler et al, 1994) as a 25% drop in the peak
stress, which corresponds to approximately a 3mm crack, and is quite close to the point of rupture.
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Fig 5.16 plots the predicted number of cycles for four different probabilities of crack
initiation: 0.01, 0.05, 0.25 and 0.50, over a range of strain amplitudes for the same mate-
rial and test conditions, and compared them with the experimental number of cycles to
failure (Chopra, 1996). As before, D, = 0.25 (deterministic) and Dg = 0 (deterministic).
The predicted probability of crack initiation agrees qualitatively with that by Keisler et
al (1994).

The randomness in fatigue life is a function of the initiation as well as the prop-
agation lives, and a consideration of both is needed for a complete understanding of
the phenomenon. Available models of random fatigue crack growth (discussed in sec-
tion 2.3.2) ignore the fundamental problem of when the crack may initiate in a smooth
specimen. The stochastic CDM approach shows promise for reducing the empiricism of
current approaches to predicting crack initiation.

5.7 Closure

Stochastic differential equations of damage growth for ductile deformation, creep and
fatigue are obtained starting from the first principles of thermodynamics, and recognizing
the intrinsic energy fluctuations in matter. Closed-form solutions in each case are also
obtained: however, while a closed-form Stratonovich solution is possible in all three cases,
closed-form Ito solutions are available only for ductile deformation and fatigue.

The present approach is well-suited to model noise in the damage growth process,
and it can tackle variabilities in material parameters, as well as in the initial and critical
damages. Simple reliability computations were also performed which showed that the
probability distribution function of D(t) can substitute for the more difficult to compute
reliability function L(t), as damage growth is almost always positive. In the following
chapter, more detailed cases of damage growth, possible synergistic effects and the role
of corrosion in reliability will be investigated.
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Figure 5.1: Stochastic ductile damage growth in 2024-T3 Aluminum under deterministic
initial condition (€p, Do) and material parameters (os, K, M).
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Figure 5.2: Effect of randomness in material parameters and initial damage on stochastic
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Chapter 6

Condition Assessment of Aging
Metal Structures

6.1 Introduction: Description of Structure

In the previous chapters, CDM-based formulations of structural deterioration were devel-
oped from the fundamental principles of thermodynamics and mechanics. In Chapter 4,
using readily available material data, the models were compared to the laboratory test
results obtained by other researchers for various grades of steel, aluminum and nickel
alloys under conditions of gross inelastic deformation, creep and fatigue. The predictions
were found to match the data satisfactorily in most cases. The deterministic models were
then extended into the stochastic domain in Chapter 5, where they were shown to be
capable of handling material variabilities as well as random noise in damage growth. The
purpose of this chapter is to illustrate the applications of the time-dependent condition
assessment tools described in Chapters 2 to 5 to existing structures. In particular, the
condition assessment and time-dependent reliability of a ring-stiffened steel cylindrical
shell, subjected to internal pressurization and weakened by corrosion and thermal creep,
will be performed. Such a structure is typical of a nuclear power plant (NPP) steel
containment. The approach, however, will be found general enough to apply with minor
modifications to steel structures governed by other limit states (e.g., flexural collapse),
subject to recurrent extreme loads and suffering from continual deterioration (caused by
a combination of general corrosion, fatigue, creep and plastic deformation).

The containment in a NPP is designed using the ASME Code (ASME, 1986)! to
withstand accidental pressure build-ups and to limit radiation leakage to the environ-
ment. Housed within the containment are the reactor, piping, pumps and valves, steam
generators etc. Structurally, steel containments are ring-stiffened thin steel cylindrical
shells.

ISection III Division 1 of the ASME Boiler and Pressure Vessel Code, 1986.
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The ASME Code envisages four categories of operating conditions: “A” for normal,
“B” for upset, “C” for emergency and “D” for faulted. The Code also classifies stresses
produced in the structure into four following types: (i) general primary membrane stress,
P,, (ii) local primary membrane stress, Pr, (iii) primary bending stress, P;, and (iv) ex-
pansion stress, P.. Table NE-3217-1 of the Code (ASME, 1986) classifies the stress in
a cylindrical or spherical shell due to internal pressure as general primary membrane
stress (P, ). Table NE-3221-1 assigns the design stress intensity imit for P, as 1.0S,,.,
in which Sy, = 1.1F, /4 is allowable stress and F, is tensile strength. Table I-10.1 lists
the value of §,,. for SA-516 grade 70 steel, which is commonly used in containments, as
133 MPa (19.3 ksi), up to a temperature of 343°C (650°F). With a 262 MPa (38 ksi)
nominal yield strength, this provides a nominal factor of safety of 1.97 at first yield.

The steel containment analyzed in this chapter is idealized as a cylindrical shell of
radius » and thickness hg with a hemispherical top also of radius » and thickness hg.
It has ring stiffeners of cross-sectional area A; placed circumferentially at intervals of
s1. Vertical stringers of area A, are placed at intervals s; on the cylindrical portion of
the shell. The shell has penetrations at different positions to allow for piping and for
access?. The shell is fabricated of SA 516 grade 70 steel. Table 6.1 lists the nominal
material properties of SA 516/70 steel and the nominal (uncorroded) dimensions of the
ring-stiffened steel shell used in the present analysis. The nominal dimensions are based
on existing NPP’s ( eg Greimann et al, 1982b).

During the past decade, there have been 32 reported cases of containment pressure
boundary degradation identified in the 109 commercial nuclear power plants® licensed to
operate in the U.S. In particular, corrosion has been detected in the steel containments
of 18 existing nuclear power plants (eg, Oland and Naus, 1996; Naus et al, 1996; Shah et
al, 1994), where local thickness loss of up to 50% has been reported in a few instances.
In the following sections, the reliability of the NPP steel containment subject to internal
pressurization and general corrosion, in the presence of aging of safety-related equipment
and thermal creep will be investigated.

2A detailed finite element analysis is required to accurately analyze a shell with stiffeners and dis-
continuities (eg Cherry, 1996). However, as pointed out by Greimann et al (1982b), a limit analysis is a
reasonable and potentially conservative approximation and is deemed sufficient for the purposes of the

present analysis.
3Qut of these, one is under construction and five are under a deferred construction schedule (Naus et

al, 1996) as of March 1995.
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6.2 Reliability under Corrosion

6.2.1 Effect of Corrosion

The equation that generally governs design of the ring-stiffened cylindrical steel shell
subjected to internal pressurization is (Ellingwood et al, 1996):

Sme > Dy + Lo+ P, (6.1)

where D,,, L, and P, are the stresses caused by the nominal dead, live and accidental
pressure loads respectively. The subscript n is used to emphasize the nominal values
of the variables, which are usually different from their respective mean values. The
nominal values and the statistical properties* of the duration of a design-basis event and
the peak temperature and pressure attained during such an event are listed in Table 6.1
(Hwang et al, 1983; Ellingwood, 1983). In view of the stringent quality control during
the construction of NPP’s, the dimensional variabilities are considered insignificant for
the present analysis and are treated deterministically in the following.

In an elastic analysis, the circumferential stress in the shell membrane caused by

pressurization inside the shell is
r

anh_o'

where P,, is the nominal value of the peak pressure used in the design. The duration of
the accidental pressurization is of the order of 102 seconds, by which time the secondary
safety measures are expected to become operational. Accidental pressurization is a rare
event — the estimated rate of occurrence being of the order of 1073/yr to 10™%/yr (Hwang
et al, 1983) — and therefore, for the purpose of the present analysis, the occurrence of
accidental pressures can be modeled as a point process in time when compared to the
scale of the service life of interest, which is typically 40 to 60 years. The modeling of
the point load process and its stochastic characteristics will be taken up in detail later
in this section.

P, = (6.2)

Assuming that the dead and live loads are negligible when the shell is subjected to
internal pressure, the design thickness of the shell is (Eqgs 6.1 and 6.2):

ho = T (63)

Using the nominal values listed in Table 6.1, hg = 276k Pa X 16.8m/133M Pa = 34.9mm
(~ 1%in). »

*Statistical properties of variables concerning design-basis events in a nuclear power plant were ob-
tained using a Delphi, as little or no data exist on such variables. The Delphi is a structured method
for achieving group consensus in describing random phenomena in such situations, and has been used
successfully in several engineering applications (e.g., Hwang et al, 1983).
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The purpose of the NPP containment is to confine radionuclides in the event of an
accident, and consequently, the loss of pressure boundary, due either to fracture of the
shell or to leakage at penetrations, is defined as failure of the containment. As the shell
begins to deform in the event of a pressure build-up, the attachments to the containment
fail prior to general shell failure, thanks to the large ductility of carbon steel. Finite
element modeling (Greimann et al, 1982b; Cherry, 1996) also suggests that the governing
limit state is related to excessive hoop membrane strain or general inelastic deformation
of the shell, and not structural collapse. The pressure corresponding to the onset of the
critical deformation (or equivalently, the critical strain) is termed the limit pressure, po.
Though finite element analyses predict plastic strains at this deformation limit as much
as ten times the elastic strains, the limit pressure is conservatively defined as that which
produces equal amounts of plastic and elastic strains. The relation between pressure and
hoop strain is flat near ultimate because of the ductility of the steel, so the limit pressure
is insensitive to the precise value of failure strain. For an axi-symmetric ring-stiffened
shell, the limit pressure is expressed as the pressure causing the first yield multiplied by
a factor of v > 1:

po = y£7(.t_)7 (6.4)
where 7 takes into account the plastic deformation of the shell at failure (taken equal to
the amount of elastic deformation at yield) and the effects of the stiffeners (Greimann et

al, 1982a):
A

2
7—%4’01 ; a1—;§m
H(t) is the thickness of the shell at time ¢ and r is the radius. The limit state function,

(6.5)

po—P,(t)=0 (6.6)

can now be written as:
H(t)

'y(t)B——T——Fy -P(t)=0 (6.7)
where F), is the random yield stress and P, is the random peak accidental pressure. The
implicit time-dependence of pg and « is shown in eq (6.7), since the shell thickness, H(t),
decreases in time on account of general corrosion of the steel. The random variable B is
introduced to account for modelling error in formulating the limit state. The limit state
(eq 6.6) may also depend on the CDM-based damage function, D(¢), which takes into

account the service history® prior to the event of an internal pressurization.

The shell thickness, H(¢), is a random process on account of the random corrosion
loss, given by (eq 2.20)

ho—C(t—TI)M; t>Tr
H(t) = (6.8)
ho ; 1< T

5Potential damage-causing scenarios during the service life may include arc strikes, large impacts,
periodic leakage rate tests and so on, which may introduce residual stresses etc.
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in which C is the random rate, M is the random exponent and T7 is the random initiation
time. Laboratory and field data on these random variables (for steel), when available,
are found to depend strongly on the environmental and physical conditions. Since it is
not known a priori what kind of corrosive environment may exist at the critical location
of a particular NPP containment®, different sets of statistics for these random variables
(based on available data compiled and analysed by Ellingwood et al, 1996) have been
adopted later in this section for reliability and sensitivity studies. Broadly, three dif-
ferent scenarios have been considered: “severe” corrosion, “moderate” corrosion and no
. corrosion, along with a situation where the corrosion induction period is absent. These
different scenarios and parameters are listed in Table 6.2.

Let us now introduce two non-dimensional random variables, X and Y, — the normal-
ized yield strength and the normalized peak accidental pressure magnitude respectively:

F, P,
TR VTR, oo

The statistical properties of X and Y are listed in Table 6.1. Because of the simplicity
of the limit state, the uncertainty in B is subsumed in X7. The limit state equation
(6.7) can then be normalized by the design equation (6.3) and expressed in terms of the
dimensionless random variables, X and Y:

H(t)

As noted previously, the occurrence of the events leading to accidental pressure loads
can be modeled as a point process in time. The underlying physical process of events
leading to a pressure build-up can be broadly grouped into (i) pure “chance” phenomena,
like human error, the frequency of which remains essentially constant in time, and (ii)
“aging” phenomena that might cause mechanical or electrical support systems either to
malfunction or to be unavailable when needed to mitigate an accident. The propensity
of the latter may increase with time in the absence of corrective intervention®. The first
(chance) process is described by Ng(t), while the second (aging) process is described by
N4(t). Let the mean rate of occurrence of the “chance” process be Ag, and let the mean
rate of occurrence of the “aging” process be denoted by A4(t). Since aging involves a
lack of self-healing abilities, Aa(?) is a non-decreasing function of time.

SSignificant corrosion caused by leaked borated water has been detected in some locations in existing
nuclear power plants. Corrosion loss may be aggravated by accumulation of water or condensation of
leaked steam on pressure-retentive structures in a containment. The relative humidity inside contain-
ments may range up to 60% (Oland and Naus, 1996} which is high enough to accelerate corrosion at
service temperature.

"In the illustrations herein, the uncertainty in modelling error B is small because of the simplicity of
the limit state considered. In a more comprehensive analysis, its characteristics would depend on the
nature of the finite element analysis and level of refinement in modelling.

8 Previous studies of time-dependent reliability of steel containments have not considered this aspect
of load occurrence. The purpose of including this in the present analysis is to see if an increasing rate of
occurrence of design-basis events has a significant impact on the reliability of this and similar structures.
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Let us now make some assumptions about the point processes, No(t) and N4(t).
Obviously, No(0) = 0 and N 4(0) = 0. It is assumed that if there were to be an accidental
event during the service life, any equipment necessary would be repaired or replaced, so
that the cause of the present event would have no bearing on future events. Then, the
number of occurrences in disjoint intervals of time are independent for both processes,
i.e., for p < g < s < t, No(t) — No(s) is statistically independent of No(g) — No(p), and
Na(t) — Na(s) is statistically independent of N4(q) — N4(p). Also, since the aging and
chance processes have different origins, it is reasonable to assume that No() and N4(t)
are statistically independent at all ¢. Then the point processes N4(t) and Np(t) are
independent Poisson processes, and their sum, N(¢) = Na(t) + No(t), which represents
the overall occurrence of accidental pressures, is also a Poisson process with mean rate

of occurrence
A(t) = Ao+ Aa(t). (6.11)

A(t) is a non-decreasing function of time. A Poisson process is called homogeneous (or
uniform) if its rate function is constant in time. As can be seen from the above, in the
presence of aging, the occurrence of internal pressurization is a non-homogeneous Poisson
process.

The rate function, A(t), of a Poisson process is related to the probability density
function, f-(s|tp), of the event inter-arrival time, given the previous occurrence instant
as Ilg:

fr(slto) = A(to + s) exp —[A(to -+ 8) — A(to)] (6.12)

where A(t) is the mean of the Poisson process:

At) = /0 *Mo)dv (6.13)

with the initial time taken as 0. The conditional density of the occurrence time, 7%, in
the interval [t1,12] is also a function of the arrival rate (Snyder and Miller, 1991):

_Ay t <t <ty

t b
A 12 Mw)dy

fre(t*) = (6.14)

0; otherwise

Given that there are n occurrences of a Poisson process in the interval [0,1], the condi-
tional joint density of the ordered occurrence times, T*, with 0 < T} < T3 ...TF < ¢,
is
oAl ‘
fo(EIN() = n) = [———Z—] (6.15)
N

which will be used in the reliability formulation in the following.

The degradation processes due to corrosion are assumed to occur slowly enough that
the time-dependent resistance variables (7(t), H(¢)/ho) can be treated as constants dur-
ing the duration of an accidental pressurization (Mori, 1992). For brevity, let R(t) denote
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the random process representing the resistance (eq 6.10)

H (t)

R(t) = 7(t)SrX =22 (6.16)

and let r(t) denote one realization of the random process. The reliability of the shell
at time ¢, given n occurrences of accidental pressurization at known times 7, ...,¢} (in
increasing order), can then be expressed as

P[Ty > ¢|N(t) = n,I* = ] = P[NL, R(E]) > Y ()] (6.17)

where Ty is the random time to failure. Fixing the values of the random variables
X,C,T1, M in addition to fixing the number and time instants of load occurrences, the
conditional reliability can be expressed as

L(t|A) = P[Ty > #|A] = P[NiL Y (#) < (%)) (6.18)
where the event {A} is
{A}={Nt)=nT =t X=2,C=¢c,M=m,Tr =15} (6.19)

Assuming that the peak pressures occurring at different times are statistically indepen-
dent,

L(t|4) = P[T; > t|A] = Ny By [ (87)] (6.20)
Further assuming that the peak pressures are identically distributed, the conditional
reliability simplifies to

L(t|A) = P[Ty > t|A] = [] Fr[r(#)IA] (6.21)

=1

where the common probability distribution of the peak pressures is Fy(-) (defined by
Table 6.1).

We now remove the conditioning on the occurrence times of the n loads. Defining
the new conditioning event by

A{A}={N@t)=n,X=2,C=c,M =m,T; =t} (6.22)
the reliability at time ¢ is (using the theorem of total probability and eq 6.15):

stay = [ [ [ TR EEIA v = ra

1

n A *
// /HFyr(t)lA]H{fo)‘((t))dJdt}‘dt§...dt;

i=1

¢ A(s) "
( /0 Fy[r(s)|A] [m] ds) (6.23)
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where the Poisson arrival rate is given by eq (6.11). Next, the conditioning on the number
of loads is removed. Defining the new conditioning event by

{A2} ={C=¢, M =m, Ty = t1} (6.24)
the reliability at time ¢ (using the theorem of total probability) is

- ([ 26 |4\ piven -
L(fdz) = 2,(/0 SO varm ds) PIN(t) = n]

- ([ [ M3) g\ eelA@A@”
- Z( | ol e ds) u

n=0

= exp ['—A(t) (1 - /Ot FY[T(S)IA]—]‘%,(\%’);)%)] (625)

which reduces to the result obtained by Ellingwood and Mori (1993) if the Poisson
process is homogeneous, i.e., A(t) = Ag and A(t) = Aot. Finally, if the random vari-
ables X,C, M, Ty are statistically independent, their joint density is the product of their
marginals, and the unconditional reliability can be expressed as (once again using the
theorem of total probability):

L) = /; / /m /tlexp [—A(t) (1_ /:Fy[r(s)m] f%%)} x

Ix(z)fo(e) far(m) fr,(tr)dz de dm dty (6.26)

where r(t) is given by eq (6.16). In deriving Eq (6.26), the only assumptions made
regarding the statistical characteristics of the load process are that the loads occur ac-
cording to a (nonhomogeneous) Poisson point process and their peak magnitudes are
statistically independent and identically distributed.

We now make further assumptions about the “aging” process and determine the
rate Ag(t) and the conditional density function of its occurrence times. It is clearly
seen that the inter-arrival time, 7, between two successive occurrences of events in the
aging process, N4(t), is simply the time to failure of the equipment after its installation.
The life-time of equipment has frequently been modeled in the existing literature by
the Weibull distribution (e.g., Lawless, 1982). The two-parameter Weibull distribution
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is versatile enough to represent many different aging situations. Adopting the Weibull
model for the time to failure of equipment, the probability distribution function of 7 is

F-(t) = 1 — exp[—(t/u)’] (6.27)

where « is the shape parameter and u is the scale parameter. The coefficient of variation
(COV) of the time to failure is a function of the shape parameter:

[(1+42/a)
Vizy— %1 6.2
.\/r?u +1/0) (6.28)
and the scale parameter can be determined from the mean failure time, p,:
_ H
“T T+ 1/a) (6.29)

If the time to failure is described by a Weibull distribution, the rate function of the aging
process is,

a (o1
Ml = 2 (5) (6.30)
and the conditional density of the occurrence time as
t*a—l
1t =a—3 (6.31)

When o < 1, the Poisson arrival rate decreases with time. At o = 1, A4(?) is constant,
making the distribution of 7 exponential and the conditional distribution of the occur-
rence time uniform. For e > 1, the rate of occurrence increases with time and represents
a realistic “aging” process. A “linear failure rate” model (implying o = 2) has been
suggested in some studies of aging of certain mechanical and electrical equipment (e.g.,
Vesely, 1987).

Several cases of the aging process have been used in the reliability study in the
following subsection to determine whether the time- dependent reliability analysis and
condition assessment might be sensitive to this effect. Values of « less than 1 have not
been considered as they lead to decreasing rates of failure with time. The case of no
equipment aging has also been considered to establish a baseline for “chance” failure
alone. Table 6.3 lists the different values of the parameters o and y used in the analyses
along with the equipment failure probability at the end of a postulated service life of 60
years in each case.

6.2.2 Numerical Examples and Sensitivity Analyses

We now present numerical results from the reliability analyses of the steel cylindrical
shell against pressurization under different cases of corrosion and equipment aging. Re-
liabilities are computed up to a projected service life of 60 years. Two different chance
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occurrence rates have been considered in the Poisson pulse process: one representing a
“low” chance failure rate, Ag = 0.0001/yr, and the other representing a “high” chance
failure rate — twenty times higher — with Ag = 0.002/yr. The aging of the safety
equipment is assumed to follow the Weibull distribution (eq 6.30) and the total Poisson
arrival rate is given by eq (6.11). Table 6.3 lists the different aging situations.

The random variables X, C, M and Tt are assumed statistically independent (eq 6.26).
As listed in Table 6.1, the peak accidental pressure magnitude has the Type I distribution
of largest values and the yield stress has the Lognormal distribution. The statistics of X
and Y have been taken from Ellingwood et al (1996). The corrosion parameters C and
Tt (eq 6.8) are lognormally distributed and the exponent, M is normally distributed®.
Three different corrosion scenarios have been envisaged (based on Ellingwood et al, 1996)
and the corresponding sets of parameters are shown in Table 6.2. The section loss at 60
yrs due to severe corrosion evaluated at the mean values of C, Tt and M is 9mm (0.36in),
which is about 27% of the original thickness; and in case of moderate corrosion the loss
is 3.6mm (0.14¢n) which is about 10% of Aq.

Eq (6.26) may be abbreviated as,

L(t) = / (2)fz(2)dz (6.32)
where Z is the random vector [X,C, M, T1)’. The kernel, I(2), is evaluated by subdivid-
ing the interval [0,¢] and using a 21-point Gauss-Kronrod quadrature (double precision
subroutine DQDAGS from IMSL, 1991) for each subinterval and comparing the error
for each subinterval with a 10-point Gauss quadrature rule subject to certain maximum
allowable relative and absolute errors. Monte-Carlo simulations have been used to obtain
the realizations of z. The reliability estimate, f,(t), and its variance are given by

Naer
i) = N];CT > @) (6.33)
" 2 N
var[L(t)] = Nz\iCT [Nz]\:/[lcz‘T - {L(t)}2] (6.34)

where Npsor 1s the number of Monte-Carlo trials. The coefficient of variation of the
estimate was kept under 10% in each case by using a sufficient number of trials (which
ranged from 50,000 to 1,000,000). It is more convenient to plot reliability in terms of its
complement, the cumulative failure probability (CFP) given by

Fr,(t) =P[T; <t] =1~ L(2) (6.35)

®The process of general corrosion is diffusion dominated. In a purely diffusion controlled process,
the exponent is equal to 1/2, and deterministic values around 2/3 are often reported in the literature.
Consequently, the mean of M is taken to be 0.7 in the present analysis.

NUREG/CR-6546 150




where T; is the random time to failure of the structure. The figures in this subsection
show CFP’s as functions of time. Plots of failure probabilities in all figures of this
subsection are drawn to the same scale to facilitate the comparison of different scenarios.

Figs 6.1(a)-(c) show the Poisson arrival rate, A(?), for the different aging situations
and compare them with the chance failure rate. The square-root rate (a = 1.5) is seen
to be the most severe, but not significantly different from the linear case. Figs 6.2(a)-
(c) show the corresponding CFP’s for the case of “severe” corrosion. It is observed
that ignoring the equipment aging phenomenon may lead to under-prediction of Fr,(t).
For example, ignoring the aging effect when equipment failure probability is 3% at 60
years, causes an order of magnitude under-prediction of CFP at 60 years. Whether this
difference is significant for risk-informed decision making should be considered in the
context of other uncertainties in probabilistic risk assessment (Lehner et al, 1997).

The effect of ignoring corrosion is presented in Figures 6.3(a)-(c) corresponding to
the arrival rates shown in Figs 6.1(a)-(c). The rate of increase in CFP when corrosion is
ignored is much slower, and at 60 years it is more than four orders of magnitude lower
than the CFP when severe corrosion is assumed. Therefore, it is important to obtain
good estimates of corrosion loss. This presents a problem when areas susceptible to
corrosion loss are inaccessible for inspection.

The mean failure time of safety equipment apparently has an appreciable effect on
the reliability of the structure (e.g., there is a difference of two orders of magnitude in
Fr,(60) for p = 120yr and p = 00), but the precise value of « has a secondary importance
for a given mean failure time. Also, a g greater than about 10t;, can qualify as infinite
life (especially with a high «), in which case ignoring the aging effects of equipment
is acceptable. Thus it is important to know the life expectancy of the primary safety
equipment, but the precise value of its scatter is less essential. In view of this, the scale
parameter is fixed at o = 2 in the following; this results in a linear Poisson rate function,
which would be easier to fit to a limited data.

Fig 6.4(a) summarizes the effects of severe, moderate and zero corrosion with linear
A(t). Ignoring corrosion entirely can cause more than four orders of magnitude under-
prediction of the CFP at 60yr if the actual rate of corrosion is “severe”. FEven for
“moderate” corrosion (which causes only about 10% mean section loss after 60yr) the
extent of under-prediction is found to be more than 2 orders of magnitude at the end
of the projected service life. Fig 6.4(b) repeats the above analysis when the chance
occurrence rate is increased to Ag = 0.002/yr. It is observed that if equipment aging is
the dominant cause of internal pressurization, then the background chance occurrence
rate has little impact on risk. On the other hand, if chance occurrences of pressurization
dominate, then a twenty times increase in Ag causes a like increase in the CFP.

The effects of ignoring the variability in the corrosion initiation time, and ignoring
the initiation time altogether are illustrated in Figs 6.5(a) and (b). The former shows
the effect of treating T; = 10yr deterministically while the latter shows the effect of
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setting 71 = 0 under identical situations. It is clearly seen that setting 77 equal to its
mean value makes little difference to the reliability, but reduces the dimension of the
random vector, Z, by one. Ignoring the initiation time entirely, however, leads to a
more pessimistic prediction of reliability. The difference can be as high as an order of
magnitude but decreases with increasing time. Therefore, Tt should be included in the
reliability formulation, but an estimate of its mean is sufficient, and its variability need
not be considered in time-dependent reliability assessment. ‘

The effects of treating C and M deterministically are illustrated in Figures 6.6 and
6.7. As can be expected, treating the rate deterministically is shown to under-predict
the cumulative failure probability, but not severely (roughly by a factor of 2). What is
less obvious is that treating the exponent deterministically can cause under-prediction
by as much as two orders of magnitude. This observation is significant in light of the
fact that the exponent usually is treated as constant.

The following general conclusions can be drawn from the above analysis:

1. Uniform corrosion of the containment steel shell should not be neglected in relia-
bility analyses and condition assessment, even when it is expected to be moderate.

2. When corrosion is considered, it is advisable to consider it as a random process.
The randomness in the corrosion initiation time may be neglected, but the corrosion
rate and the exponent should both be treated as random.

3. Since increases in the rate of occurrence of potential design-basis events caused by
equipment aging apparently has some impact on the time dependent reliability, a
study should be undertaken to determine whether current equipment maintenance
programs might inadvertently cause such increases. Frequent testing of safety-
related equipment may actually have an adverse effect on their performance during
a design-basis event. An examination of this issue, of course, is outside the scope
of this research.

6.3 Reliability under Thermal Creep Damage

Accidental pressurization in a containment would be accompanied by a rise in temper-
ature (Hwang et al, 1983). Though the peak pressure and the peak temperature do
not necessarily occur simultaneously, they can have a sufficient overlap to cause creep
straining of the structure. In this section, the reliability of the idealized steel contain-
ment under thermal creep damage accumulation will be investigated. The formulation
of stochastic creep damage growth from section 5.5 will be used for this purpose. The
effects of corrosion and equipment aging will also be included in the creep damage growth
model.

The assumptions made about the occurrence of events in the previous section are

~.
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continued here: They are rare events with durations infinitesimally small compared to
the life-time of the structure, and can be modelled as a non-homogeneous Poisson pulse
processes. One of the consequences of the above assumptions is that the corroded depth
of a section can be treated as constant over the duration of such loads. Two general
conclusions from section 6.2.2 about the corrosion and aging processes, namely, the
initiation time can be fixed at its mean value and occurrence rate of the aging process
increases linearly, will be adopted here to reduce the dimensionality of the problem.

6.3.1 Creep Damage at Elevated Temperatures

The following assumptions (based on the data available in Hwang et al, 1983; Ellingwood,
1983) are made about the temperature and pressure histories during the course of a
design-basis event. The temperature and pressure within the containment rise in a very
short time (~ 10 sec) to their peak values, P, and 6, respectively, and remain steady
at the peak values for a duration of At (~ 20 min). The pressure drops off relatively
quickly after At and attains the base valuel® in less than one day. The temperature
however takes longer (~ 11 days) to return to its base value (~ 120°F). The peak
pressures and temperatures in events occurring at different times are assumed to be
statistically independent and identically distributed. Statistical dependence, however,
may be expected between F, and 6, during a single event. No statistical dependence is
assumed to exist between the temperature and pressure in events occurring at different
times. The statistics of P,, 8, and At are given in Table 6.1. In the event of a pressure
and temperature build-up, creep damage may be envisaged to grow during a time-interval
At, at the constant !! temperature 8, under the action of the constant load P,. The
action of the load appears in the form of the membrane stress; this depends on the
corrosion loss and thus on the time of occurrence of the event.

Suppose that n loads occur during the life of the structure at random instants of
time, t; (¢ = 1,2,...,n). The damage, D(At;)), at the end of the ¢th load occurrence

may be expressed as (eq 5.89)
(1- D(Atg))mﬁ'l =(1- D(Ati_l))mi+1 ~ A1i(m; + 1)At; — Blg(mi + 1)W(AL;) (6.36)

~ where W(At,;) is the increment in the standard Wiener process during the interval At;.
The time and temperature dependent coefficients,

—_ éél_ mi+1
Al,' = 3 P O oo (6.37)
4 A4; ..
Blg = 5—1-0'01:2 (\/6—4/63).,' (638)
g

10The pressure within a NPP containment is maintained at a constant level, which could be slightly
above or below the atmospheric pressure depending on the type of the plant (Oland and Naus, 1996).
" Constant in any given realization of the process.

153 NUREG/CR-6546




where oy is the true failure stress, A and m are the creep power law parameters and
(y/€4/c3) is the noise intensity. The subscript ; denotes their values at temperature 6,,.
The far-field stress,
r
Ooo; = Py = 6.39

depends on the shell radius, 7, the pressure F,, and the shell thickness, H; at time ¢,.
The form of eq (6.36) suggests a recursive relation which would allow the final creep
damage, Dy, to be written in terms of the initial damage, Dg. The algebraic expression

can be considerably simplified if the exponent m; can be assumed to remain constant
over the range of temperature attainable in an NPP containment. In this case,

(1 = D)™ = (1 - D)™ — ZA ontlAL; - ZBZ,.GZ‘OIW(At,-) (6.40)

i=1

where Ay, and B, depend only on 6,;:

4 A(G,)
Ay, = gm(m-l—l) (6.41)
By = jag(m+(va/e,) (6.42)

Failure'? occurs when the accumulated damage exceeds the critical damage, D.. The
conditional cumulative failure probability is

(1 _ Do)m+1 _ (1 - Dc)m+1 — 2_1 AZ. m+1At
2
( ?:1 B%,O-EO’?AtZ) /

FTf(tLlﬂ,N(tL) =n,t)=1-3
(6.43)

where the statistical independence of the Wiener increments have been used. The vector,
Q={8,,P,,At,H, Dy, D. }, where 8,, P, At, H are each vectors of size n. The n loads

QY =0 ==
are assumed to occur at fixed instances ¢7. To find the unconditional failure probability, it
is convenient to remove the conditioning on the £}’s first, which are distributed according
to eq (6.14) with ¢} and ¢} statistically independent for i # j. The conditioning on the
corrosion parameters, the temperatures and pressures, and the duration may be removed

subsequently. Finally, the conditioning on the number of loads can be removed as

FTf(tL) = i FTf(tLIN(tL) =n) (6.44)

n=0
With the load occurrences being sufficiently rare events, only a few terms need to be
considered in the series (eq 6.44).

121p CDM, failure is defined as the formation of a macro- crack.
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6.3.2 Numerical Example

A schematic representation of creep damage accumulation in a corroding steel ring-
stiffened shell subjected to internal pressurization is shown by the sample function in
Figure 6.8. A pressurization event occurs at each discontinuity of the sample path'3. The
instantaneous jumps underline the fact that the duration of the elevated temperature is
very small compared to the scale of reliability computations. The acceleration in damage
growth later in the life of the structure is partly due to the increasing corrosion loss which
amplifies the shell membrane stress.

Table 6.4 and Figure 6.9 show the reliability due to creep damage accumulation in the
steel shell as a function of time. Creep parameters for A36 steel (Harmathy, 1967) have
been used for the purpose of illustration 1%. The noise parameter /cs/c3 = 20ksi /hr
has been adapted from the examples presented in section 5.5.2 and the true failure
stress has been assumed constant at 552 MPa (80ksi). The statistics of the pressure,
temperature and their duration are presented in Table 6.1. A correlation coefficient of
0.60 between 8, and P, has been assumed!®. The containment is assumed to start service
in an undamaged state, and the critical damage is assumed to be normally distributed
with mean 0.5 (consistent with the results predicted in Tables 4.5 and 4.6) and COV
20%. The conditional failure probabilities (Table 6.4) increase with the number of events;
however the probabilities of 2 or more occurrences rapidly decrease, and not more than
three terms need to be considered in the expansion (eq 6.44). The cumulative failure
probability (CFP) due to creep damage accumulation (Fig 6.9) is orders of magnitude
lower than that due to the deformation (maximum strain) limit state associated with
internal pressurization (Fig. 6.4a) under similar conditions. Thus, elevated temperature
creep of the shell clearly is unimportant as a limit state.

13The rate of occurrence of events has been greatly magnified in this figure to illustrate the concept

1 Harmathy provides a functional relation between temperature and the rate, A, and treats m = 4.7
for all temperatures. The range of temperatures in the present analysis is lower than the range where
Harmathy’s relations are valid, but they are nevertheless adapted here.

1% A correlation coefficient of 0.62 between the the bivariate normal deviates z; and z; produced the
correlation coefficient of 0.60 between 8, = F,; 1(®(21)) and Po = F5(®(22)).
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Variable Nominal value Statistical properties
radius r 16.8 m (55 ft) deterministic
original thickness, kg 34.9 mm (1.375in) deterministic
Stringer area, A; 15500 mm? (24.0 in?) deterministic
Stringer spacing, $; 3 m (10 ft) deterministic
Accidental pressure, P, 276 kPa (40 psig)
(normalized), Y = P,/ P,, - Type I max (0.8,20%)
Yield stress, Fy 262 MPa (38 ksi)
(normalized), X = F,/Fyn - Lognormal (1.10,7%)
Tensile strength, F, 483 MPa (70 ksi) N. A.
Accidental temperature, 8, 199°C (390°F) Type I max (350°F,20%)
Significant duration, At 20 min Lognormal (1000s,30% )

Table 6.1: Nominal (uncorroded) dimensions, SA 516/70 material properties, and load
and resistance statistics for a typical NPP steel containment. The two statistical param-
eters in the parentheses are mean and COV.
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Corrosion Restriction rate exponent | Initiation time
scenario imposed C (pm/yrM) M Tr (yr)
“Severe” none LN(600,30%) | N(0.7, 20%) LN(lQ,30%)

C deterministic 600 N(0.7,20%) { LN(10,30%)

M deterministic || LN(600,30%) 0.7 LN(10,30%)
T; deterministic || LN(600,30%) | N(0.7, 20%) 10
Ignore T LN(600,30%) | N(0.7, 20%) 0

“Moderate” none LN(230,30%) | N(0.7,20%) | LN(10,30%)
“Zero” - 0 - -

Table 6.2: Different cases of uniform corrosion of the NPP steel containment.

statistical parameters enclosed in parentheses are mean and COV.

Shape parameter, o
1.5 2 3
Mean failure time, p || (COV=67.9%) | (COV=52.3%) | (COV=36.3%)
120 yr (=2tz) 26.2% 17.8% 8.5%
300 yr (=511) 7.4% 3.1% 0.6%
600 yr (=10tz) 2.7% 0.8% 0.07%
oo (no aging) 0 0 0

Table 6.3: Different cases of aging of safety-related equipment (assumed Weibull dis-

tributed) and corresponding failure probabilities at 60yrs
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tr, (yr)

PIN(tr) = n]

Fr,[tL|N(tL) = n]

10

20

30

40

50

60

0.12167x10~2
0.74106x10~¢
0.30091x10~°

0.28644x 102
0.41143x10~5
0.39396x 108

0.49389x102
0.12257% 104
0.20279x10~7

0.74348x10~?
0.27846x 104
0.69527x10~7

0.10345x 1071
0.54076x10~*
0.18844x107

0.13663x 101
0.94646x10*
0.43707x 10~

0.49171x10~8
0.84052x10~¢
0.30605x105

0.49171x10~2
0.84062x10%
0.31556x10~5

0.11489x10°°
0.10696x10-5
0.60714x107°

0.11908x 105
0.11298x10~°
0.62590%x10~°

0.12273x 105
0.12036x10~°
0.18430x 104

0.14760x10~*
0.28301x10~*
0.44587x1074

Table 6.4: Conditional failure probabilities due to creep damage growth in NPP contain-

ment shell
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Chapter 7

Conclusions and
Recommendations

7.1 Summary of Research and Findings

The research presented in this report had two principal motivations. The first was to
develop rational damage growth laws for deteriorating structures with as little empiricism
as possible. The second was to model the randomness in damage growth from a more
fundamental perspective than to simply “randomize” the deterministic equations.

Most of the existing models of structural deterioration were found to rely heavily on
curve-fitting with little or no ties to the mechanics of the process. This turns out to be
a serious deficiency when attempting to determine the remaining capacity of a damaged
structure, since empirical methods usually are unable to provide estimates of residual
strength and stiffness. Along with this shortcoming, most of the existing methods were
also found to require a measurable flaw to be applicable, leaving the important area of
pre-nucleation damage growth largely out of their purview. In contrast, the relatively
new field of continuum damage mechanics (CDM) offers a definition of damage that can
be directly related to the mechanical properties of the structure and, what is equally
appealing, has a natural advantage in modeling pre-nucleation damage accumulation,
owing to the way it defines failure.

Existing CDM-based models of structural deterioration, however, were found hand-
icapped by the presence of undetermined material constants. Moreover, the need to
postulate kinetic or dissipation potential functions had a certain amount of arbitrariness
about it. No one seemed to have exploited the powerful potential of CDM to model ran-
dom damage growth, by linking the microstructural fluctuations in energy and material
properties (spatial and temporal) to the stochastic nature of damage observed in the
macro-scale.

169 NUREG/CR-6546




Physically, damage growth is an irreversible process and the thermodynamic formula-
tion of damage accumulation was already in place in the existing CDM-based approaches.
The present research built up on those results and applied them to deformable bodies in
which damage accumulation was proceeding close to equilibrium under isothermal condi-
tions. The resulting damage growth equations were shown to depend on the evolution of
the Helmholtz free energy of the deformable body. Since this work primarily concerned
metals having structural applications, it was deemed adequate to consider damage as
isotropic. This also avoided complicating the development with tensor notations and
losing sight. of the practical relevance of the damage concept. It also facilitated verifi-
cation of the proposed model, as most of the published experimental data were on the
scalar damage variable.

The damage accumulation model developed in this research and summarized above
is general in its scope and can be used to express the effects of different processes using
one unifying approach. In essence, it is based on a concept of damage that is linked
directly to the state of the microstructure which, through a simple equivalence relation
between a damaged and a comparable undamaged body (eg, the principle of strain
equivalence), relates the structural response to the state of damage within the structure.
The Helmholtz free energy, which is central to the proposed model, can be defined
for any isothermal process to any desired degree of completeness and can be achieved
without introducing unknown material parameters. The more complete the constitutive
equations defining the free energy of the deformable body, the better is the performance
of the proposed model. Finally, the definition of failure in CDM is not particular to any
damage-causing process: Failure occurs when the microstructure anywhere within the
continuum volume degenerates into a macroscopic flaw. The critical damage is thus not
required to be identically equal to 1.

The surface energy of formation of microscopic voids was derived under a set of
simplifications which, among others, made the voids spherical, but nevertheless, allowed
the surface energy to be explicitly dependent on the state of damage. The substitution
of the local failure stress with the true fracture stress was found to produce good results.

Ductile Deformation Damage

The resulting equations for monotonic ductile damage growth were shown to have sim-
ilar algebraic forms to those arising out of the existing dissipation potential approach.
The improvement of course was the absence of undetermined parameters. The proposed
model was found to be sensitive to the hardening modulus and the true failure stress.
Varying the hardening exponent, however, was found to have a secondary effect on dam-
age growth . Significant differences were found in the published experimental values of
these parameters for the same nominal material grade. Varying the elasticity modulus
had almost no effect on damage growth, and interestingly, little variability was observed
in the numerical estimates of the elasticity modulus, unlike the other three parameters.
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Estimates of the threshold plastic strain of damage accumulation for all the materials
considered were found to be infinitesimal compared to the corresponding fracture ductil-
ities, and the threshold strain could be completely ignored insofar as predicting failure
was concerned. The predictions of ductile damage growth were found to lie a little on
the high side of the experimental results in all the cases considered. This may be due in
part to the idealization of the voids as spheres, since spheres have the least surface area
for a given volume. '

Creep Damage

In creep damage, the principle of equivalence between a damaged and a comparable un-
damaged body was applied to the rate of strain, rather than to the strain itself. This
led to a creep damage growth equation which, under steady state conditions, had an
algebraic form identical to those arising out of the existing kinetic equation approach,
with one important difference: the parameters of the proposed model were all determi-
nate. Considering the steady-state equation alone was found to underpredict damage
growth, since the steady-state pertained to the minimum rate of creep strain accumu-
lation. Including the non-zero initial damage caused by the time-independent plastic
deformation was felt necessary to correct the imbalance. The predicted creep damage
growth was found to be highly nonlinear (accelerating) with time, and the failure time
became increasingly inseusitive to the critical damage as the latter’s value approached
unity.

Fatigue Damage

The concept that the critical damage corresponds to the formation of the first macro-
defect was most convincingly demonstrated in the case of fatigue damage growth. The
predicted number of cycles to failure was found to match the observed crack-initiation
life very well in all the cases considered. A comment about the definition of fatigue
crack initiation may be in order here: Since it is more difficult to identify and measure
a threshold crack length, and since no consensus about the definition of injtiation crack
length exists, the definition of crack initiation may be shifted from a crack length-based
approached to a stiffness-based approach, which may be more universally acceptable in
the fatigue research community.

The fatigue damage model was based on the irreversibility of damage accumulation.
The damage at the end of any given cycle was assumed to act as the initial value for the
damage increment in the next cycle. The model was able to differentiate between strain-
controlled and stress-controlled fatigue cycling, could predict the S-N curve corresponding
to initiation, and could capture qualitatively the effects of load sequencing.
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Random Damage Growth

The treatment of random damage growth in this report took a more fundamental ap-
proach than to simply “randomize” the deterministic equations or its parameters. Using
the knowledge from statistical thermodynamics that a system in macroscopic equilib-
rium undergoes continuous and rapid fluctuations in its thermodynamic properties at
the micro-scale, the Helmholtz free energy was now considered a stochastic process with
the deterministic counterpart as its mean function. Assuming certain properties for the
fluctnations in the free energy, a stochastic differential equation of damage growth in
the near-equilibrium deformable body was obtained, which was then applied to the spe-
cific cases of ductile deformation, creep and fatigue damages. Closed-form solutions of
the SDEs were obtained in each case and the Ito and the Stratonovich approaches were
compared. In the limiting case when noise in the process was absent, and the material
properties and intial conditions were all precisely known, the stochastic equations were
shown to reduce to their deterministic counterparts.

Numerical examples and comparisons with experimental data showed that estimates
of the noise in the growth rate as well as knowledge of material variability were needed to
completely characterize random damage growth. This observation was significant against
the backdrop of existing methods many of which consider randomness in one but not in
the other.

The above stochastic models admit the possibility of negative damage growth. Even
though such retardations in damage might actually take place locally and instanta-
neously, overall decrease in damage is a physical impossibility. It was shown through
the numerical examples that the probability of such retardation occurring over a macro-
scopic time. and space interval was vanishingly small. One important consequence of
non-negative random damage growth is that a first passage problem can be reduced to
a much simpler unconditional probability of a single event.

Reliability of Steel Containment

The damage growth models developed in this research were applied to investigate the
time-dependent reliability of a ring-stiffened steel cylindrical shell typical of a contain-
ment in an NPP. The design basis accidents were modeled to have two independent
sources: one was due to pure chance, and the other due to aging of equipment. General
corrosion of the containment steel was found to affect significantly the deformation limit
state due to internal pressurization. On the other hand, the probability of failure due to
creep in a design basis accident was found to be orders of magnitude less than that due
to excessive deformation. Increasing the rate of occurrence of design-basis events had
an adverse impact on the reliability of the shell. A study to find out whether frequent
testing of safety-related equipment does make it more likely to malfunction at a later
time is recommended.
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7.2 Suggestions for Future Work

FEzperimental database: The verification of the models derived in this report was not easy
nor complete, as sufficient experimental data were not available in magy cases, especially
for creep and fatigue. Damage growth data are required to verify and improve these
models. Monotonic tension tests conducted at different temperatures are recommended
which may help create a database of critical damage parameters.

Critical damage: Further experimental work is needed to determine to what extent
the critical damage is a material constant, and what restrictions, if any, need to be
imposed on the postulate.

Noise: The ratio of the standard deviation and the correlation length of the noise
in the damage growth process is needed in the proposed model. This research could
not provide analytical expressions of these two quantities and best estimates had to
be obtained from the experimental scatter. While numerical estimates can be obtained
through the experimental determination of the variance and covariance functions of dam-
age, analytical expressions should be developed. The noise is expected to be strongly
temperature-dependent.

Corrosion: Corrosion was treated empirically in this research. It is believed that
corrosion can also be modeled using CDM based methods. Gibbs free energy seems to
be a logical starting point for this.

" Strain-rate effects: The strain-rate effects may be modeled by including the viscosity
term in the free energy.

Non-equilibrium conditions: This research modeled damage growth proceeding slowly
and close to equilibrium. It may be useful to investigate the more general case of damage
accumulating away from equilibrium. Failure is said to occur in CDM when localization
takes place. In this light, a growing crack may be an example of damage growth away
from equilibrium, and CDM may be extended to model crack growth occurring in a
continuum.

Structural control: The stiffness of a degrading structure may be continuously moni-
tored by one of several available NDE methods, which may then be fed into the models
derived here to obtain the reliability of the structure. This may be integrated with a
structural control system to optimize the performance of the structure.
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Appendix A

Crack-tip Plasticity and
Propagation Life

To accommodate for crack-tip plasticity (of length r,), the effective crack length, a., is

e = a+Ty (A.1)
1 K?

o= e (A.2)

K = F(%)S\/——ﬂae (A.3)

where § is the far-field applied stress, o, is the yield stress, and b is the width of the
specimen. The geometric correction factor is:

0.857 + 0.265c
Fla) = 0.265(1—a)*+ W

1
= —_——r t .
\/ cos(7a/2) for center crack (A.5)

The following equation is solved iteratively to obtain the effective crack length:

for edge crack (A.4)

Ze;):g_z
b 0'3

a. — F¥( Ge—a=0 (A.6)

where a is the nominal crack length (or half-length in case of a center crack). The
maximum stress intensity factor, Kpay can be obtained by putting § = Smax in eq (A.3).
For stable crack growth:

Kmax < Kcrit (A-7)

the critical stress intensity factor being the smaller of the two:
K i = min{K,, K7} (A.8)
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where K is the fracture toughness and K7 = /Eo,d7 is the stress intensity factor
corresponding to the crack tip opening displacement é7 which is equal to 0.04mm for
most steel (Barsom and Rolfe, 1987, p. 281). For a tensile minimum stress, Kmi, may be
obtained similarly as above by putting § = Sy in eq (A.3), yielding the stress intensity
factor range as AK = Kupax — Kmin.

The stress intensity factor range, AK, in case of compressive minimum stress is
obtained in the following way: The plastic zone length in compression is

2
r; = 1 (_A_E_) (A.9)

7 \ 20y

which can be likewise used to iteratively solve the effective crack- length, al, in compres-
sion in order to obtain AK. The Paris Law may now be integrated between the limits
a = a; (eq. 2.15) and a = a5 subject to condition (A.7) above.

The material properties used to compute Np in Fig 4.18 are: K. = 130M Pa/m,
AKy = 10M Pay/m, AS. = 1083M Pa, b7 = 0.04mm, o, = 1180M Pa, b = 6.35mm,
C = 5.4 x 107 mm/cycle and m = 3.24 which are taken from Dowling (1993), Barsom
and Rolfe (1987) and Topper and Morrow (1970).
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