MAR 5 igsg

SANDIA REPORT |
SAND98-0503 « UC-330 CONF— 960L72--3
Unlimited Release CON F- g7 04 79 --2o

Printed February 1998

John Krumm

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 84550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-ACR4-94AL85000.

#

SF2900Q1(8-81)

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from.
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, F'TS 626-8401

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: AO3
Microfiche copy: A0l

DISCLAIMER

Portions of this document may be illegible
electronic image products. Images are
produced from the best available original

document.

SAND98-0503 Distribution
Unlimited Release Category UC-330
Printed February 1998

Sensing and Compressing 3-D Models

John Krumm
Intelligent System Sensors and Controls Department
Sandia National Laboratories
. P. O. Box 5800
Albuquerque, New Mexico 87185-1003

Abstract

The goal of this research project was to create a passive and robust computer vision
system for producing 3-D computer models of arbitrary scenes. Although we were
unsuccessful in achieving our overall goal, several components of this research have
shown significant potential. Of particular interest is the application of parametric
eigenspace methods for planar pose measurement of partially occluded objects in gray-
level images. The techniques presented provide a simple, accurate, and robust solution to
the planar pose measurement problem. In addition, the representational efficiency of
eigenspace methods used with gray-level features were successfully extended to binary
features, which are less sensitive to illumination changes. The results of this research are
presented in two papers that were written during the course of this project. The papers are
included in sections 2 and 3. The first section of this report summarizes our 3-D modeling
efforts.

Contents

Summary ... 7

Eigenfeatures for Planar Pose Measurement of ;?
Partially Occluded Objects..............ccoovevvroreceeeeeceeea, 9 /

1. Why Work on Planar Pose Measurementc.cooeeecereeveruirereereereeseennenns 9 \/{)\{)

2. Parametric Eigenspace.........cccveeererverereeesrecreserernessorersansaneane rteteeeerenenn 9 \DQ

3. Eigenfeatures for Pose Measurement.............ccccevereeerieeeenrernesereenenns A1 \((,)\

4L RESUIES. ..ttt sttt e n e sttt s e et 13 ()@

5. CONCIUSION ...ouveeintinienircrtrrt et ereeeertrtesseseeereseeetsessbessessansasasasaentensensens 14

Object Detection with Vector Quantized Binary Features15 ,/
1. Overview and CONtEXtccvveveiererniniiietitre et 15

2. Appearance Modeling with Binary Featuresc.cecceneeiinvnnccnnnceenncen.

...
..
...

...

Figures

2. Eigenfeatures for Planar Pose Measurement of Partially Occluded Objects

1.

A typical pose measurement station with an overhead camera and

lights pointed at a conveyer belt carrying to be assembled or inspected. 9
Training images are taken with an overhead camera looking down at
the object which rests on a motorized rotation table.........c.coceecereereveeninernenen. 10

In previous approach, segmented image patch must be large enough to
contain all trained orientations of object, which could include large parts of

DACKZIOUNG. ...ttt ettt ettt st a e s an e anen 10
It is difficult to make templates from the overlapping regions of these

ODJECtS' SITNOUEHES.ecvreeriiereiteicerieeicee ettt et st et en e e e s esseesens 11
Features automatically selected on wire connector training images................ 12

. Parametric eigenspace for one eigenimage of one feature at one angle.

We compute the distances between the parametric curves and actual
eigenvector weights a;, to find the best angle.cooorvviiiiiiiiiiiine, 12

Shiny metal valve used for testing. Automatically found features are
shown ;in rectangles. Specular highlights change depending on the
valve's angle, meaning that consistent features are difficult to find. 13

Histograms of position and angle errors for 90 test images of valve............... 14

. Results of object detection on images of partially occluded wire

connector (top row) and "T" CONNECLOT.covevereevrerreereeeeeeesresrrreeenrssereennes 14

3. Object Detection With Vector Quantized Binary Features

1.

Result of detection algorithm in presence of background clutter and

PArtial OCCIUSIONS. ...coviveeeeiirreeieieeteieeserie et testessenesne e be s esaesnsssessessens 15
. Binary features automatically selected for modeling object........cccevereerirnene 16

30 code features from all training images of object in Figure 2. 18

4. An experiment shows that the probability of miscoding a feature rises

and then falls with the number of code features chosen.cccceeeveeeeenveneanen. 18

Result on one of 1000 test IMAES. ...coeeuiveeireeirceerieirecteereeereereere e asne s 19
. Theoretical receiver operating characteristic as detection threshold varies

for different number of features and constant 30 codes. 40 features are

adequate. The bend in the curve for 409 features occurs at a detection

threshold 0f 13 feattres.coeeveieerererireeet ettt 21

7. Theoretical receiver operating characteristic as detection threshold varies
for different number of codes and constant 40 features. 30 codes are
adequate. The bend in the curve for 30 codes occurs at a detection
threshold 0f 13 fEatUres.cueveeireeireeietctreeenee ettt ettt eae e s 21

8. Actual and theoretical receiver operating characteristic.cccoceeeueevrereerennens 22

1. Summary

The goal of this research was to create a passive means of producing computerized, 3-D
models of arbitrary scenes. Current methods for solving this problem suffer from
restrictive assumptions about scene formation and the physical world. For instance,
conventional binocular stereo vision assumes that both cameras see the same set of 3-D
scene points, which, due to occlusions, is hardly ever 100 percent true. False physical
assumptions like these have lead to poor performance. Our approach was different in that
we aimed to exploit the rich models of computer graphics in order to make a more robust
computer vision system for building 3-D scene models.

Computer graphics has been very successful at accounting for the detailed physical
phenomena involved in scene formation. The major difference between computer
graphics and computer vision is that computer graphics solves the problem of making an
image from a scene description, while computer vision tries to go in the opposite
direction. Given the multitude of physical phenomena to account for, using the models of
computer graphics for computer vision results in a complex inversion problem for which
there is no closed form solution.

Our initial approach to the problem starts with a pair of stereo images as input. The
algorithm performs an exhaustive random search for the 3-D scene that best accounts for
-the two input images. To evaluate each candidate scene, the algorithm uses computer
graphics techniques to compute the scene’s appearance from the point of view of the two
cameras that provided the input images. In this approach, the 3-D scenes are represented
by voxels (volume elements). The voxel representation facilitates a systematic search and
a very general 3-D representation. This representation allows the complex physical
models of computer graphics to be used for image construction and interpretation for
passive 3-D model building.

Although our initial results obtained on a low-resolution 16x16x16 voxel space were very
successful, we were unable to obtain comparable results at more realistic levels of
resolution. The extremely complex surface reflectance properties of objects contained in
representative real-world scenes proved to be a major hurdle that time and budget
constraints prevented us from crossing. Rather than abandon our efforts at this point in
our research, however, we chose to investigate a more traditional approach for 3-D model
building using binocular stereo vision.

In stereo vision, a correspondence between image features acquired from two different
camera views is used to establish 3-D model points. Although the approach is
conceptually simple, the correspondence of image features can be problematic. In fact,

the inadequacy of solutions to the correspondence problem has limited the use of
binocular stereo vision in computer vision applications. The basic problems with feature
correspondence in stereo imaging have to do with the fact that things can look
significantly different from different points of view. It is possible for two stereo views to
be sufficiently different that, even though an image feature is common to both views, they
can not be matched correctly. Even worse, it is possible that a feature present in one view
can be obscured in the other view, making it impossible to match. More robust solutions

to the correspondence problem are necessary if binocular stereo vision is to become a
truly practical means for creating 3-D computer models of arbitrary scenes.

Our investigations in developing robust solutions to the correspondence problem
involved application of “parametric eigenspace” methods. Recently, Murase and Nayer
have presented the parametric eigenspace for object recognition and pose measurement
based on training images. Although their system is easy to use, it has potential problems
with background clutter and partial occlusions. We have extended their approach to use
several small features on the object rather than a monolithic template. These
“eigenfeatures” are matched using a median statistic, giving the system robustness in the
face of background clutter and partial occlusions. We have demonstrated the applicability
of the approach on the more general problem of planar pose measurement of partially
occluded objects. The pose measurement accuracy has been demonstrated with a
controlled test and the algorithm’s robustness is demonstrated on cluttered images with
objects of interest partially occluded.

In addition to the eigenspace methods developed for gray-level features, we have
extended our methods to include binary features, which are less sensitive to illumination
changes. Binary features, contained within square sub-templates, are automatically
chosen on each training image. Using features rather than whole templates makes the
algorithm more robust to background clutter and partial occlusions. Instead of
representing the features with real-valued eigenvector principle components, we use
binary vector quantization to avoid floating point computations. The object is detected in
the image using a simple geometric hash table and Hough transform. On a test of 1000
images, the algorithm works on 99.3 percent. We present a theoretical analysis of the
algorithm in terms of the receiver operating characteristic, which consists of the
probabilities of detection and false alarm. We verify this analysis with the results of our
1000-image test, and we use the analysis as a principled way to select some of the
algorithm’s important operating parameters. '

The details of our research involving parameteric eigenspace methods for planar pose
measurement are presented in sections 2 and 3. This work constitutes a significant portion
of our research and has proven extremely successful.

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 1996, San Francisco

Eigenfeatures for Planar Pose Measurement
of Partially Occluded Objects

John Krumm
Intelligent Systems and Robotics Center

CONF- 960672~

Sandia National Laboratories
MS 0949, P.O. Box 5800
Albuquerque, NM 87185

jeckrumm@sandia.gov

Abstract

Planar pose measurement from images is an impor-
tant problem for automated assembly and inspection. In
addition to accuracy and robustness, ease of use is very
important for real world applications. Recently, Murase and
Nayar have presented the “parametric eigenspace” for
object recognition and pose measurement based on training
images. Although their system is easy to use, it has potential
problems with background clutter and partial occlusions. We
present an algorithm that is robust in these terms. It uses
several small features on the object rather than a monolithic
template. These “eigenfeatures” are matched using a
median statistic, giving the system robustness in the face of
background clutter and partial occlusions. We demonstrate
our algorithm’s pose measurement accuracy with a con-
trolled test, and we demonstrate its detection robustness on
cluttered images with the objects of interest partially
occluded. : '

1. 'Why Work on Planar Pose Measurement?

Planar pose measurement is an important part of auto-
mated assembly and inspection. In this paper, we are envi-
sioning a workcell of the type illustrated jn Figure 1. An
overhead camera is pointed down at objects resting on a flat
surface. The task is to measure the pose, (x,y,0),o0fa
given object in the image.

Although there are several solutions available to the pose
measurement problem, both commercially and academically,
none of the solutions have yet to win widespread appeal.
One of the main barriers to increased use of computer vision
in automated manufacturing is that the vision systems are
difficult to tune. Pose measurement is intended to function as
part of an automated manufacturing line. But this advantage
is lost when the vision system requires reprogramming from
a skilled operator to account for changes in illumination,
optics, and objects. Current commercially available solutions
typically require a training phase in which an operator manu-
ally helps the vision system identify important features of
the objects of interest. These features must be carefully cho-
sen based on their consistency and their ability to indicate
the pose of the object. This requirement leads to heuristic
rules for the operator to follow such as “specular highlights

This work was performed at Sandia National Laboratories
and supported by the U.S. Department of Energy under Con-
tract DE-AC04-94A185000.

Figure 1: A typical pose measurement station with an
overhead camera and lights pointed down at a
conveyor belt carrying objects to be assembled or
inspected.

are bad features because they shift based on the orientation
of the object, lights, and camera,” and “line segment features
are not good for localizing the object along the line.” Given
the cost of computer vision experts, it often appears less
expensive to find less flexible or more labor intensive solu-
tions to the pose measurement problem.

In this paper, we present a new solution to the pose mea-
surement problem. It is based on Murase and Nayar’s “para-
metric eigenspace” idea[2], which uses principle component
templates based on training images. We show how to apply
this idea to multiple, automatically detected features on the
object. We match features using a median distance measure,
which gives the algorithm robustness. Using features instead
of monolithic templates, our algorithm overcomes problems
of segmentation, background clutter, and partial occlusions,
while retaining the automatic programming advantage of the

original system.

2. Parametric Eigenspace

A new techniqﬁe for pose measurement, called “paramet-
ric eigenspace”, has been developed by Murase and Nayar
[2]. Their work is related to earlier eigenface research by
Turk and Pentland [7]. The method is used to recognize
objects and measure their orientation based on training
images of the objects.in different orientations. This solution
is attractive because it requires no expert human assistance
for picking features. A brief explanation of parametric
eigenspace follows.

In its full form, as explained in [2], the parametric eigens-
pace method works on a presegmented image to identify an
object and give its orientation around one axis under a few

s

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 1996, San Francisco «

Figure 2: Training images are taken with an overhead
camera looking down at the object which rests on a
motorized rotation table.

different lighting conditions. The method is based on a series
of training images of the object taken at different orienta-
tions. In our implementation, we use 90 or 180 training
‘images of the object (four degrees or two degrees apart)
taken from a camera directly overhead while the object is
rotated on a motorized table below. This setup is illustrated
in Figure 2.

For training, the object is first segmented from each train-
ing image into a rectangular image patch. Segmentation in
the training phase is normally easy because the scene can be
carefully controlled. We use a backlit table to make a binary
mask of the object. The segmented patches must be the same
size for each training image. This equal size requirement
means the patches must include significant parts of the back-
ground if the object is elongated or has significant concavi-
ties, as illustrated in Figure 3.

Each segmented training patch is normalized in intensity
by dividing each pixel by the sum of the squares of the pixels
in the unnormalized patch. While Murase and Nayar also
normalize for size, we do not since we assume the camera
will always be the same distance from the object. Finally, the

mean of the entire normalized set of training patches is com-

puted and subtracted from each normalized patch, Each of °
these processed patches is scanned in raster order to form a’
column vector containing all the pixels in the patch. All the
column vectors are placed side by side into a matrix X . The
sample covariance matrix is formed as

0 =xx". k

The eigenvectors of @ form an orthogonal basis set for
the normalized, zero mean training patches. These eigenvec-
tors are called eigenimages when they are scanned from col-
umn vectors back into images. The normalized, zero mean
training patches can be expressed as a weighted linear sum
of the eigenimages. Moreover, the patches can be accurately
approximated by only the first few eigenimages. In equation
form, this is

10

image patch

circle swept by

222227777225

object
/ |

N e
~ 7
-~ .-

Figure 3: In previous approach, segmented image
patch must be large enough to contain all trained
orientations of object, which could include large
parts of background.
Pi=), c;& 1)
where

= th . ..
P; = { normalized, zero mean training patch

. Sh .
€ = j eigenvector of Q

c

;4 = weighting coefficient = P g

{

number of eigenimages used

The simple computation of the weighting coefficients comes
from the fact that the eigenvectors are orthogonal. For our
experiments, we used I = 10.

Equation (1) implies that each training patch p; can be
represented by I coefficients (c; ¢, ¢; 1 - ¢; ;) - These
coefficients are a point in an /-dimensional space, and each
training patch projects to such a point. Since the training
images represent an ordered progression of angles (0 in Fig-
ure 2), the coefficients plotted in ! -dimensional space nor-
mally fall on a smooth curve. Each point represents a
different training image and thus represents a different orien-
tation of the object. This curves resides in “parametric
eigenspace”, because it can be parameterized by the angle 6.

Pose measurement in Murase and Nayar’s formulation
consists of first segmenting an input image by some means
to find the object. This rectangular image patch is then nor-
malized and the mean of the training patches is subtracted
(same processing as training images). This processed patch
is projected into the parametric eigenspace by taking dot
products with the ! previously computed eigenimages. To
find the angle. ©, the parametric curve is interpolated to find
the closest point. More details can be found in [2], which
also discusses a similar approach to object recognition and

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 1996, San Francisco

small bounding box of possibly no
overlapping overlap includes overlap
region background

Figure 4: It is difficult to make good templates from
the overlapping regions of these objects’
silhouettes. '

training under different illumination.

The advantage to the eigenspace approach is that the train-
ing is automatic. One disadvantage is that the object must
first be segmented in the run-time image, which can be diffi-
cult in any image without a uniform background. Another
disadvantage is that the basic parametric eigenspace method
works on rectangular image patches that contain the whole
object. Thus, for optimum matching, none of the object can
be occluded, and the background of the object to be detected
in an image cannot be different from the background in the
training images. Rectangular image patches become a prob-
lem when the object does not have a generally rectangular
shape, because other objects can intrude in the background.
Our algorithm addresses all these problems.

Recently, Murase and Nayar have modified their approach
to address the problems of segmentation and background
clutter[3]. Their “image spotting™ algorithm scans the image
for the object, which solves the segmentation problem. (This
assumes that the object’s appearance is invariant with respect
to translation in the image, which is approximately true
when using a long focal length lens.) The algorithm uses
training images that are reduced in size to the area of com-
mon overlap between the object’s silhouettes in the training
images at different angles, thus eliminating the background
from the training images. Some objects do not have much
overlap in their silhouettes, so the image spotting algorithm
can sometimes split the training images into subsets that
have sufficient overlap. Thus, the reduced size training tem-
plates solve the problems of background clutter for some
objects, but not all. Some objects defy this splitting, as their
silhouettes have virtually no overlap that could be contained
in a bounding box without background as the object rotates
in discrete increments. Three illustrations of such shapes are
given in Figure 4. The problem of partial occlusions still
remains, too.

3. Eigenfeatures for Pose Measurement

We have developed a new way of using parametric eigens-
pace that avoids the problem of segmentation, background
clutter, and partial occlusions. We avoid the segmentation
requirement by applying our method at every offset in the
image, using the fast Fourier transform to speed up the pro-
jections into eigenspace. We solve the problem of back-
ground clutter and partial occlusions by using several small,
rectangular image patches on each object rather than one
large patch. In addition, using features means our algorithm
does not use large, uniform regions of the object for match-
ing, which often leads to false matches. Our method retains
the advantages of the original algorithm in that it works
entirely based on training images and requires no program-
ming from a skilled operator. The remainder of this section
explains our method in detail.

3.1 Gathering Training Features

We gather training images using an overhead camera
pointed down at a backlit table mounted on a motorized rota-
tor. We take images every two or four degrees using over-
head lighting, giving a total of 180 or 90 training images per
object. We take another set of images at the same set of
angles with the overhead lights off and the backlit table on.
The backlit images are thresholded to form masks for seg-
menting the training images. This backlit segmentation is
used only for training and is not part of the on-line system.

Features consist of small, rectangular image patches. We
use a feature size of 15 x 15 pixels along with a feature-
finder developed by Shi and Tomasi[6]. Given an image,
their algorithm produces a list of rectangular image patches
of a prespecified size that is ranked based on the features’
ability to be tracked through image sequences. We find their
features to be good for pose measurement, too, because they
are good at localizing position, e.g. points and corners. Shi
and Tomasi’s recipe for finding good features is to first com-
pute partial derivatives at every pixel in the image. If the
image is 7 (x, y) , then the partial derivatives are I_(x, y)
and Iy (x,y) . For the numerical derivatives, we use Sav-
itzky-Golay filters as described in Numerical Recipes [4]
with the derivative filter size equal to the window width (15
x 15). At each pixel, a matrix is formed whose elements are
sums of the products of the partial derivatives taken in the
feature windows. The matrix is

so | Zhy)
L(x1,(xy)

S (53 L (x,)
31, (%)

where the sums are taken over the pixels in the feature win-
dow. The second eigenvalue of this matrix is used to rank the
feature - the higher the better. The top 30 features of a wire
connector at different angles are shown in Figure 5.

Shi and Tomasi’s algorithm is especially convenient, since
the only parameters it takes are the size and number of fea-

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 1996, San Francisco | -

0 degrees

180 degrees

Figure 5: Features automatically selected on wire
connector training images.

tures. We constrain the features to have no overlap, and to be
centered somewhere within the mask computed from the
backlit images.

Every training image has its own set of features - there is
no tracking of features from image to image. Thus, features
on certain parts of the object, such as specular highlights,
could come and go as the object rotated. In a more general
3D orientation problem, rotating the object could cause parts
of the object to come into and out of view, making feature
correspondence impossible. Since we do not require feature
continuity from angle to angle, this would not be a problem
for our algorithm.

3.2 Training

The training for our method begins in the same way as
described for the image patches in Section 2, except it uses
small features instead of image patches. For n training
images and m feature per image, we have mn total features.
Since we do not track features through the training images,
we must have some other way to account for the changing
appearance of a given feature due to rotation. We do this by
noting how the pixels in each feature window change as the
object rotates slightly beneath them. For a given feature in
training image ¢, we take out a feature in the same (x, y)
location in training images i — 1 and i + 1 (with circular
wrap-around of the indices on the first and last training
images). This gives a total of 3mn features for each object.
Each of these features is processed as described for the

" image patches in Section 2 (normalizing and subtracting
aggregate mean).

The 3mn processed features are scanned in raster order
into column vectors. We designate the pixels from the & th
feature from image i to be v, where ie [0, 1,...,n-1]
indexes the n training images (and therefore the orientations
8;),and ke [0, 1, ..., m—1] indexes the m features. The
two features in the same location from images i — 1 and
i+1 are designated v, and v;‘k respectively. If the dimen-
sions of the features is w x w pixels, then each feature vec-
tor will be w” x 1.

The processed feature vectors are assembled into the col-
umns of matrices:

| 9. 1

X = (99 | Py 1o V0 1 4 ¥y o]

12

A

+ 1 C,jk(e)

ifk
ajk

Cijk ———

;jk 1

7 | [!
ei—l el ei+ 1

Figure 6: Parametric eigenspace for one eigenimage
of one feature at one angle. We compute the
distances between the parametric curves and actual
eigenvector weights a; to find the best angle.

X =0velval..l Vil I V- (m-1]

+ + - _ - .
X = [Vl v+o1 |] v+,~,- 1.1 v+(,,..1)(m.’.1)il .

The order of the vectors in these matrices is irrelevant. (The
bars in the matrices above represent matrix partitioning and
n02t absolute value.) The dimensions of X, X, and X" are
w" x mn. The sample covariance matrix of all 3mn fea-
tures is formed as

0= [XIX1X"] [XlX'IX+]T,-

whose dimensions are w2 X w2 . In our implementation,
w = 15, so the size of Q is a relatively modest 225 x 225.1
We compute the eigenvectors of @ and designate them ag
g, where je [0, 1,..,]—1] indexes the / eigenvectors
that we use. In our implementation we use 10 eigenvectors.
We call the &; “eigenfeatures”.

Each feature can be approximated as a weighted linear
sum of the first few eigenvectors. These weights are
Cijk = Vig € C','jk =V - éj, and C+,'jk = V+,'k . Ej. With
these coefficients, we form small parametric eigenspaces as
quadratics fit through sets of three parameterized points
(81 Cije)» (8, ¢), and (8, , ¢,) for all images i,
eigenvectors j, and features k. Figure 6 shows a sample
quadratic for one eigenvector of one feature in one image.
We call this function c,.,.k(e) .

3.3 Detection and Pose Estimation

Our algorithm scans the input image in order to find the
features on the object. An image to be analyzed must be pro-
cessed in the same way as the features in the training image.

1. There is a technique outlined in [1] that shows how to compute
the eTigenviectors of XX by instead computing the eigenvectors
of X" X.If X is tall and narrow, this leads to a smaller eigenvec-
tor problem. In our case, however, X tends to be wider than it is
tall, so we compute the eigenvalues of XX~ directly.

In order to normalize each feature-sized patch, we compute
the local power at every point in the image in w x w win-
dows by convolving a w x w, unit-height rectangle function
with an image where each pixel has been squared. Each pixel
in the image is considered as the center of a feature. Overlap-
ping w x w, feature-sized windows in the image are pro-
jected onto the eigenimages. The projections are computed
as correlations between the normalized input image and the
eigenvectors. Both the convolution and correlations are done
in the Fourier domain for speed. We also subtract the mean
of all the training features as appropriate. This processing
leaves us with an image where each pixel contains / eigen-
vector coefficients a; .

To find the object and estimate its pose, we scan through
the image in small increments (increments of one to five pix-
els) looking for the appropriate features in the appropriate
spatial configuration. At each point we check all n training
angles. For a given image point and a given training angle
0,, we consider the point to be centered on the first feature
(k = 0) of the m features for that angle. The centers of the
other features are picked up in the image at the appropriate
offsets with respect to the first feature. The eigenvector coef-
ficients at these feature points are called a;;, where
je [0,1,...,1—1] indexes the / eigenvectors and
ke [0,1, .., m—1] indexesthe m features. To get arough
estimate of quality of the match at 6;, we compare the image
features to the trained features with no interpolation between
angles. We compute a squared distance for each feature as

1-1
. 2
cody = 2 lege—ad ™
j=0

where the sum is taken over the [eigenvectors. If we have
the approximate correct location in the image and the
approximate correct angle index i, then all the 4, will be
small. If we have the approximate pose but the object is par-
tially occluded, then only some of the d;, will be small,
because only some of the features will be visible. Therefore,
we use the median to combine the d;;, into a single distance
measure: ’

d; = median, (d;;) .

The rough pose estimate is the position and angle that give
the minimum d; . The resolution of this estimate is limited to
the pixel resolution of the image scan in location and the
angle increment of the training images in orientation. We
designate the best angle index as i .

Given the rough pose estimate, we refine the position and
orientation with a gradient descent search. We form a dis-
tance function d.(6) that combines the distances between
the Im eigenvector coefficients and the corresponding para-
metric eigenspace quadratics for the rough training angle
estimate Oi.:

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 1996, San Francisco

Figure 7: Shiny metal valve used for testing.
Automatically found features are shown in
rectangles. Specular highlights change depending
on the valve’s angle, meaning that consistent
Jeatures are difficult to find.

m-11-1

40 = 3 T [@]’

k=0j=0

where the sums are taken over the m features and [eigen-
vectors, One of the addends in the sum is illustrated in Fig-
ure 6. Since c. _k(e) is a quadratic in 6, 4 .(0) is a quartic,
and r] L4

a’df.(e)

w® =0

is a cubic. One of the solutions to the cubic minimizes the
sum of squared distances to give the best angle 8 . We wrap
this closed form minimization in a gradient descent over
pixel location to give the final subpixel pose estimate. We do
not use a detection threshold since we assume the object is
present somewhere in the image.

‘We were recently made aware of a similar approach to this
problem developed by Ohba and Ikeuchi. Like us, they use a
principle component analysis of features taken from the
object. The major differences are that they employ a step to
eliminate similar-looking features, and they use a voting
scheme to find the object rather than the image scanning that
we use.

4. Results
We tested our algorithm for both accuracy and robustness.
For accuracy, we used a shiny, metal valve as the object,
shown in Figure 7. The mirror finish on this object meant
that the features consisted mostly of specular highlights,

e e

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 1996, San Francisco .

P RN WW R
viouounouno

RN

0
5
0
5
0
5
0
5

-2-10 1 2
angle error in degrees

Q 1 2 3
position error in pixels

Figure 8: Histograms of position and angle errors for
90 test images of valve.

which changed dramatically as the object rotated. This
would confuse any algorithm that depended on tracking fea-
tures. We took 90 training images four degrees apart and
used five features. We tested the algorithm on 90 test images
taken at orientations halfway between each training image.
We scanned the image in one-pixel increments. Our algo-
rithm found the object in every image, with an average error
in position of 1.4 pixels with a standard deviation of 0.8 pix-
els, and an average absolute value error in angle of 0.6
degrees with a standard deviation of 0.3 degrees. Histograms
of the errors are in Figure 8.

Our test for robustness used two different objects - a long,
thin wire connector and a shiny, metal pipe connector shaped
like a “T”. The wire connector has very liftle overlap
between its sithouettes as it rotates, making a single template
nearly impossible to use for this object. The “T” connector’s
shininess makes it difficult to track features on it. For both
these objects, we used 180 training images taken two
degrees apart and 30 features. We scanned the image first in
increments of three pixels and then increased the search res-
olution to one pixel centered around the best result from the
first pass. We tested the algorithm on images with back-
ground clutter and partial occlusions. The algorithm cor-
rectly found the object in about 80% of the test images.
Successful results are shown in Figure 9.

5. Conclusion

We have shown how to use eigenfeatures for pose mea-
surement in the plane. The use of training images to find
good features makes the algorithm work without a skilled
operator. The eigenvalue decomposition makes the algo-
rithm more efficient than raw pixel matching. By scanning
the image for the object, we avoid the problem of segmenta-
tion. The innovative use of features rather than monolithic
templates allows the algorithm to work in spite of back-
ground clutter and partial occlusions. The combination of
eigenspace analysis and features provides for a simple, accu-
rate, and robust solution to the planar pose measurement
problem.

References

[1]1 Murakami, Hiroyasa and B.V.K. Vijaya Kumar. “Effi-
cient Calculation of Primary Images from a Set of
Images”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 4(5), September 1982, 511-515.

[2] Murase, Hiroshi and Shree K. Nayar, “Visual Learning
and Recognition of 3D Objects from Appearance”, Inter-
national Journal of Computer Vision, 14(1), 1995, 5-24.

[3] Murase, Hiroshi and Shree K. Nayar, “Image Spotting of
3D Objects using Parametric Eigenspace Representation”,
9th Scandinavian Conference on Image Analysis, June
1995, 325-332.

[4] Press, William H., Saul A. Teukolsky, William T. Vetter-
ling, and Brian P. Flannery. Numerical Recipes in C (Sec-
ond Edition), Cambridge University Press, 1992.

[5] Ohba, Kohtaro and Katsushi Ikeuchi. “Recognition of the
Multi Specularity Objects using the Eigen-Window”, Car-
negie Mellon University School of Computer Science
Technical Report CMU-CS-96-105, February 29, 1996.

[6] Shi, Jianbo and Carlo Tomasi. “Good Features to Track”,
IEEE Conference on Computer Vision and Pattern Recog-
nition, June 1994, 593-600.

[7] Turk, Matthew and Alex Pentland. “Eigenfaces for Rec-
ognition”, Journal of Cognitive Neuroscience, 3(1), 1991,
71-86.

Figure 9: Results of object detection on images of partially occluded wire connector (top row) and “T” connector.

14

Object Detection with Vector Quantized Binary Features
To appear at 1997 IEEE Computer Society Conference on Computer Vision & Pattern Recognition

CONF-F70677-=).

Object Detection with Vector Quantized Binary Features
' John Krumm
Intelligent Systems & Robotics Center
Sandia National Laboratories
Albuquerque, NM 87185
jckrumm@sandia.gov

Abstract

This paper presents a new algorithm for detecting
objects in images, one of the fundamental tasks of com-
puter vision. The algorithm extends the representational
efficiency of eigenimage methods to binary features,
which are less sensitive to illumination changes than
gray-level values normally used with eigenimages. Bi-
nary features (square subtemplates) are automatically
chosen on each training image. Using features rather
than whole templates makes the algorithm more robust to
background clutter and partial occlusions. Instead of
representing the features with real-valued eigenvector
principle components, we use binary vector quantization
to- avoid floating point computations. The object is de-
tected in the image using a simple geometric hash table
and Hough transform. On a test of 1000 images, the al-
. gorithm works on 99.3%. We present a theoretical analy-
sis of the algorithm in terms of the receiver operating
characteristic, which consists of the probabilities of de-
tection and false alarm. We verify this analysis with the
results of our 1000-image test, and we use the analysis as
a principled way to select some of the algorithm’s im-
portant operating parameters.

1. Overview and Context

Detecting objects in images and measuring their lo-
cation is a fundamental task of computer vision, with ap-
plications in manufacturing, inspection, world modeling,
and target recognition. Often the scene is inherently
cluttered, the object may be partially occluded, and illu-
mination may change. In this case, the algorithm must
look at features internal to the objects’ silhouette, and
look at them in such a way that missing features and
changing illumination are tolerated.

Researchers have responded to this need in many
ways, including fairly recent, elegant object detection
algorithms based on principle components of training
images of the object[6][10]. In particular, Murase and
Nayar[6] extract templates from training images of the
object in different orientations, compute eigenvector prin-
ciple components of these templates, and recover the ob-

This work was performed at Sandia National Laborato-
ries and supported by the U.S. Department of Energy
under contract DE-AC04-94A1.85000.

R L /o
Figure 1: Result of detection algorithm in presence of
background clutter and partial occlusions.

ject’s orientation in new images by projecting them onto
the principle components. They address the problem of
illumination changes by taking training images under
different lighting conditions. The whole-object template
idea was improved by algorithms that look at only part{7}
or parts[4][8] of the training templates. This helped to
reduce or eliminate the effects of background clutter and
partial occlusions.

This paper presents and analyzes a new algorithm for
object detection based on binary subtemplates (features)
of the training images. Binary features are more robust to
illumination changes than the gray-level features of pre-
vious methods. We replace the eigenvector principle
components with binary vector quantization, a common
method for image compression. This avoids any floating
point processing after edge detection. An object is repre-
sented with a separate, distinct model for each pose in the
training set, which avoids problems caused by self-
occlusion and the movement of specular highlights. A
model consists of vector quantized binary features and
their relative spatial offsets with respect to each other.
An example of detection results in an image with back-
ground clutter and partial occlusions is shown in Figure 1.
On a test of 1000 cluttered images containing the test

15

Object Detection with Yector Quantized Binary Features
To appear at 1997 IEEE Computer Society Conference on Computer Vision & Pattern Recognition

object, the algorithm correctly detected the object in
99.3%. In order to determine the best values of the algo-
rithm’s important parameters, we derive and plot receiver
operating characteristic. This shows the tradeoff between
the probabilities of detection and false alarms.

2. Appearance Modeling with Binary

Features

An object’s pose has six degrees of freedom in gen-
eral, and a general version of our algorithm would have a
separate model for each discretized pose in this six-
dimensional space. Such a high-dimensional model space
implicitly accounts for the normally confounding effects
of parallax, self-occlusion, and the movement of specular
highlights. Our detection problem is less general in that
we have a camera pointed down at objects resting on a
plane which is perpendicular to the camera’s optical axis.
This eliminates all but one continuos degree of freedom.
For now, we will describe the algorithm as having
n,models for a single object, with the models spread
over the applicable degrees of freedom. In general, each
model M,, i €[1,2,3,...,n,], models one pose of the ob-
ject to be detected.

A model consists of a set of binary feature vectors
(square subtemplates) arranged with respect to each other
in image coordinates. Each model comes from a training
image of the object in a known pose. We get binary edge
images using dilated zero crossings of Laplacian of Gaus-
sian versions of the training images. The Gaussian filter
has o =2, and we dilate with an », x», structuring
element of 1’s with n, =3. The idea to dilate the edges
comes from [3], and we do so to help ensure some over-
lap between training features and possibly corrupted ac-
tual features. We designate the edge training images as

ei(x, y) , where ie€[l,2,3,...,n,] indexes the model and
x €[0,1,2,3,...,n, —1] and y €[0,},23,...,n, —1] give the
pixel coordinates.

In order to eliminate the background from the train-
ing images, we made binary masks of the training images
by backlighting the rotation table used in training. These
backlit images were thresholded to form the object masks

bi(x>y)={ (D

A model M, represents features that are square

1if (x, y) is on object in v,(x,¥)
0 otherwise A)

patches of dilated edge points from e,(x,y). Using an

idea from [9], we pick patches that are easy to localize in

that they do not correlate well with their surroundings.
We introduce a windowing operator that extracts a

square region of size (2b +1)x (2b +1) pixels centered
around (x, y) and scans the pixels into a column vector:

16

Q{f(x,¥)%,, 0,0} =
[f(x+xn—b9y+y(\ _b)7
flx+x,-b,y+y,—b+1),

f(x+x(,+b,y+y(,—b),
f(x+xn+bsy+yo"'b+1)3

Slx+x,+b,y+y,+0.
_ @
The windowed neighborhood around each pixel in

e,(x,y) is rated as a feature based on

f(x’*'xn_b’y'*'yn +b)’

r(x,¥)=4(x») min {D,[O{e(x', 5% 3.5},

-dsd, sd -
a{e,.(x' V' hx+d,y+d, b}]}

D, (#,5) is the Hamming distance between binary vec-

(3)

" tors 7 and 5. The Hamming distance simply counts the

number of unequal elements in corresponding positions
of its two arguments. In words, 7,(x,y) is computed by

taking a square of dimension (2b + 1) X (2b + 1) pixels

centered on (x,y)in e(x,y) and computing its Ham-
ming distance with equal sized squares of pixels centered
in the surrounding dx d neighborhood of ¢,(x,y). The
minimum of these Hamming distances is the rating of the
feature. The feature will rate highly if it is dissimilar to
its surroundings. For our program, we chose & = 7pixels
to give binary features of size 15x15. We chose d =3
pixels.

The best feature is taken as the (2b + 1) X (2b + 1)

square surrounding the maximum value in 7,(x,y). Sub-
sequent features are chosen as squares surrounding the
next highest value in 7(x,y) that does not overlap any
previous features. Nominally, we chose 7, =40 features
based on the analysis in Section 5. Because features can-

Figure 2: Binary features automatically selected for
modeling object

Object Detection with Vector Quantized Binary Features

To appear at 1997 IEEE Computer Society Conference on Computer Vision & Pattern Recognition

not overlap, a liberal upper bound on n, can be com-

puted by dividing the area of the smallest object mask
b,(x,y) by the area of a feature. A future step is to allow
the number of features to vary from model to model. The
features chosen for one model of one of our objects of
interest are shown in Figure 2. '
The binary features are scanned into column vectors

called J;; with i €[,2,3,...,n,] indexing the models and
J €l1,23,...,n,] indexing the features within the models.
The corresponding locations of the features in the training
images are x; = (x,.;., y;) . Since the absolute location of

the object in the training image is uhimponant, we take
the feature locations as offsets with respect to the first

I

feature in each model: x, =x; X, = (xl Xi, Yy~ y,.’l) .

By picking an independent set of features from each
training image, we are not forced to depend on tracking
training features from pose to pose. This is difficult if
features appear and disappear due to specular highlights
or self-occlusions.

As we mentioned above, our problem is one of de-
tecting objects in stable poses resting on a plane with a
camera looking down from above (e.g. conveyor belt).
We model translation of the object parallel to the resting
plane as proportional translation in the image, which as-
sumes away effects of parallax and image distortion, ie.
the image of the object is shift-invariant. The degree of
freedom that we model, then, is rotation around an axis
perpendicular to the resting plane. Each model M, mod-
els the object at angle 6,.

We can compute the number of models », we need
in this situation by considering the feature size. The
training images of the object are separated by Aé in an-

gle. This angle should be small enough that a binary
feature should not change appearance over the range

[9‘. —-AB8/2,0 +A8/ 2], Measured from the center of a
(2b+1) X (2b+ 1) feature, the distance to the center of

the farthest pixel is V25 . This pixel will move along an
arc of length \/_Z-bAH between training images. We en-

deavor to make this arc length much less than one pixel to
ensure that the feature will not change over the A@ range

in angle. If we set v25(A8)=02 pixels, then b=7
gives AG=116°. Weset A§=10°, giving n, =360.

3. Encoding Binary Features

The recent work in subspace methods for object rec-
ognition [3, 4, 6-8, 10], as well as the standard principle
component analysis of pattern recognition, can be thought
of as applications of data compression. A set of high-

dimensional training vectors are projected into a lower-
dimensional space to serve as efficient models of the
items in the training set. When new data is to be classi-
fied, it is compressed in the same way as the training data
and then compared to the compressed version of the
training data. The advantage of this approach is not only
efficiency, but that the compression process groups simi-
lar features, thereby tolerating the inevitable variations in
features from image to image. We verify this assertion at
the end of this section.

Looking to standard methods in image compression,
we found no close analogue of eigenvectors for binary

data like our training features f,. Huttenlocher et al.[3]

use binary whole-object templates compressed with real-
valued eigenvectors for matching. The eigenvectors
serve as floating point principle components onto which
the binary edge images are projected, giving real-valued
compressed versions of binary training templates. One of
the goals of our work was to avoid using any floating
point processing on binary data. Thus, instead of eigen-
vectors, we chose to use binary vector quantization,
which preserves the binary nature of the data in its com-
pressed form.

Traditionally, the goal of vector quantization has
been image compression[1]. The image to be compressed
(binary, gray level, or color) is split into rectangular
blocks. Each block is compared to a relatively small set
of previously determined code blocks of the same size.
The image block is represented by the index of the most
similar code block. This index is transmitted or stored,
and the image can be approximately reconstructed from
the indices and code blocks. In our case, we have a set of

n,n, training features]7,7 that we want to represent with

a much smaller set of n, code features F,,

a€[l,2,3,...,n,]. Each code feature is the same size as
the training features, ie. (2b+ 1)2 .

We use the standard method for computing code
features, the Lloyd algorithm, described in [1]. This is
the same as the k-means algorithm from pattern recogni-
tion. The first iteration of the Lloyd algorithm uses code
features randomly selected from the training set. Each of
the training features is matched with its closest code fea-
ture. To measure distance between features, we use the
Hamming distance, described above. The new set of code
features is taken as the centroids of the clusters of
matched features in the previous iteration. The iterations
continue until the code features stop changing, or until the
total dissimilarity is deemed small enough, or until the
program has run too long. In our case, we found that 10
iterations were enough to produce a good set of code
features.

Object Detection with Vector Quantized Binary Features
To appear at 1997 IEEE Computer Society Conference on Computer Vision & Pattern Recognition

ZIR

Figure 3: 30 code features from all training images of

object in Figure 2.

To compute the centroid of a set of binary vectors
based on the Hamming distance, we have corresponding
elements of each vector vote for “0” or “1”. For deter-
mining each element of the centroid, the majority rules,
with ties broken randomly.

The result of the Lloyd algorithm is a mapping from

any training feature fu to the index of its corresponding

code feature fcj We designate this mapping as

N (f”) = ¢, . 30 code features for all 360 training images

of the object in Figure 2 are shown in Figure 3.

We can assess the quality of the mapping by com-
puting the probability that a feature will be miscoded.
This helps to select the number of codes, »_, that we will

choose, as described in Section 5. We could derive the
probability of miscoding by assuming some probability
_distribution on the features, or we could approximate the
probability with an experiment. We chose the later ap-
proach.
In order to approximate the probability of miscoding,
we took 360 test images of the object in Figure 2 at an-
gles halfway between the n, =360 training images. For

each feature fj , we extracted a test feature at the same

relative location as the training feature in the two adjacent
test images. We coded these test features, and took the
probability of miscoding as the fraction of these features
that were not mapped to the same code as their respective
training feature. We repeated the experiment for different
aumbers of code features, n, , rerunning the Lloyd algo-
rithm each time we changed »,. The result is plotted in
Figure 4. Of course, this experiment does not account for
all anticipated variations of the features (e.g. illumination
effects), but it does give an approximate idea of miscod-
ing probabilities as well as the general behavior of the
detection algorithm with variations in #, .

As we expect, a small number of code features leads
to a small probability of miscoding. This is because the
nearest neighborhood of each code feature is large, so the
chance of straying to another neighborhood is small. This
supports our assertion at the beginning of this section that
that one advantage of subspace methods is that small ap-
pearance variations are tolerated by the many-to-one

18

ooooo
Q= NWHL O

probability of
miscoding

S T R W I W MR ET] IR

1 10 100 1000
number of code features

Figure 4: An experiment shows that the probability of
miscoding a feature rises and then falls with the
number of code features chosen.

mapping. Based on this data, and the analysis in Section
5, we chose n, =30 codes, which gives a probability of
miscoding of p, =0464.

Figure 4 shows that the probability of miscoding
peaks at about », =80 and then starts to drop. We did

not expect this behavior, and we are still speculating on
the cause. It may be that for large numbers of code fea-
tures, the code features represent training features that
really belong together in some sense, while for smaller
numbers of code features, there is a “forced marriage”
between features that are really not very similar. An in-
teresting extension of this work would be to explore the
implications of large numbers of code features.
4. Detecting an Object

An object model M, consists of a set of feature
codes and locations for one pose of the object:

M, = {(fn>cn)>(fiz>ciz)>'":(fin,’Cin,)} €y
We search for these features in a preprocessed image in
order to detect the object.

The input image is processed the same way as the
training images to givee(x,y), an image of dilated
Laplacian of Gaussian zero-crossings. We then code the
(Zb + 1) X(Zb + 1) neighborhood around each pixel with

the code features fj, computed from the Lloyd algorithm.
The corresponding image of code indices is
otx,y) =agmintD, [O{ex yhe v 8L E]})
To detect an object, we search the image for all the
models M, of the object. Since we assume that the ob-
ject’s appearance is space-invariant, we search over all
translations of all models M,. We keep track of the
search with a three-dimensional Hough transform H, ,

whose three indices correspond to the three search pa-
rameters:

B Object Detection with Vector Quantized Binary Features
To appear at 1997 IEEE Computer Society Conference on Computer Vision & Pattern Recognition

Figure 5: Result on one of 1000 test i images.

ie [1,2,3,. . nm] indexes models
Xe [0,1,2,..., nx] indexes image column 6)
y e[O,l,Z, cees ny] indexes image row
The bins of the Hough transform keep track of how many
features were found for each model M, at each location
in the image.

The Hough transform is filled by consulting a simple
geometric hash table upon encountering each code index
in c(x, y). Each code index lends evidence to several

different model and translation possibilities. Upon en-
countering a particular code index, the algorithm indexes
into the hash table to find models that contain that code.
Each occurrence of an equivalent code in a model causes
one bin of the Hough transform to be incremented: The
incremented bins correspond to the model index i and
the position of the first feature on that model translated by
the position of the code index in ¢(x,»). A standard
geometric hash table must be indexed by pairs of points
(or more)[5]. Since we have a distinct model for each
pose of the object, we can index on single points.

Each bin in the filled Hough transform contains a
count of the number of features found that support a
given model at a given location. We declare a detection

of model M, at location (xﬂ, yo) if H, =>k.. The

integer k, is a detection threshold that spemﬁes the num-
ber of features that must be found for the object be con-
sidered detected. Our nominal value is &, =13, based on
our analysis in Section 5.

We tested the program on 1000 images of the unoc-
cluded object in a chuttered background, one of which is

shown in Figure 5. Of these 1000, the object was cor-
rectly detected on 99.3% with at least k, =13 features

and with no other detections exceeding the number of
features correctly found. We also tested the algorithm on
images with partial occlusion as in Figure 1. The algo-
rithm works in such cases, but we have not performed a
statistically significant test.

After offline training, the program takes 5.5 minutes
to compute the pose of an object in a new image, running
on a 50 MHz Sun Sparc 10. The bulk of the time is de-
voted to encoding the image (= 2.5 minutes) and filling
the Hough transform (= 3.0 minutes).

5. Receiver Operating Characteristics

The “receiver operating characteristic” is a way of
measuring the performance of a signal detection algo-
rithm{11]. The receiver operating characteristic graphi-
cally shows the tradeoff between the probability of a de-
tection and the probability of a false alarm. A false alarm
occurs when the algorithm signals a detection, but the
object was not really present. The tradeoff in our case is
controlled by the detection threshold k.. If %, is low,
then the algorithm is more hkely to find the object, even
if many of the features are not found. But, a low k, will
also increase the-chance of a false alarm. Conversely, a
high &, will decrease the chance of a false alarm, but also
decrease the chance of a valid detection. The receiver
operating characteristic is useful for assessing and opti-
mizing the performance of the algorithm. Typical signal
detection algorithms are less procedural than ours in that
they normally consist of a set of measurements plugged
into an equation. While our algorithm is less straightfor-
ward, it still admits to a mathematical analysis of prob-
abilities.

Traditionally, the receiver operating characteristic
considers the case of a single (possibly multidimensional)
measurement. For our case, it is more useful to modify
the receiver operating characteristic to show what we are
most interested in for a computer vision application. We
will base our probability calculations on the algorithm’s
behavior on a search through the entire image rather than
just a single measurement. The two probabilities that we
calculate are:

P(detection) = probability that algorithm will find correct
model in correct location given that unoccluded
object appears somewhere in image

P(fase alarm) = probability that algorithm will find any
model anywhere in image given that object does
not appear anywhere in image

This analysis is similar in spirit to that of Grimson
and Huttenlocher[2], who analyze the Hough transform
for pose measurement. However, they analyze a sitnation

19

Object Detection with Vector Quantized Binary Features
To appear at 1997 IEEE Computer Society Conference on Computer Vision & Pattern Recognition

where each feature fills a swath of bins in the Hough
transform, while our formulation only fills several dis-
connected bins. They warn that the probability of false
positives can be very high, but our theory and experiment
show that it is easy to bring the probability of a false
positive arbitrarily low with our algorithm.

5.1 Probability of False Alarm

We will begin by computing the probability of a false
alarm, since this is easier, and the same techniques will be
used in the next section. Our algorithm reports a detec-
tion if it finds at least one model M, somewhere in the

image supported by at least k, features. For lack of a

reason 1o believe otherwise, we will assume that the fea-
ture codes in an image with no object are uniformly dis-
tributed. Given this, the probability of observing a given

feature index at a given location in c(x, y) is n,™", where
n, is the number of codes we choose to use. When the

algorithm considers the existence of a given model at a
given location, it looks for n, code indices in a certain

geometrical arrangement in c(x, y). The probability of

finding any subset mc M, of exactly / features at /
~ different locations and not finding specific features at the
‘remaining n, -/ locations in c(x, y) is given by a bino-
mial distribution:

im0y 0
The probability of falsely reporting a detection of a
given model af a single location is the sum of the prob-
abilities of finding between &, and n, features:
p,= Z’b(l;nf,nc'l). &)
I=kp
It is clear from this equation that a lower value of the de-
tection threshold k&, increases the chance of a false de-
tection.
The probability of a false alarm, as we have defined
it, is the probability that a model with at least &, features

will be found somewhere in the image. We calculate this
probability as follows:

20

P(false alarm)

= P(ﬁnding > k, features somewhere in image)

=1- P(not finding 2 k, features anywhere in image))
=1- b(O; nnn,, pf)

=1-(1=p,)""

where we calculate the probability of not finding = £,
features anywhere in image as a binomial probability with

~ zero successes out of n,n.n tries with a probability of

success on any given trial of p,. As we expect, the
probability of a false alarm rises with the size of the im-
age (n,n,) and the number of models searched for (7,).

5.2 Probability of Detection
A successful detection occurs when the algorithm
finds at least &, features on the object at the correct pose

and no greater number of features from a single model
anywhere else. Since we assume that the problem is
translation invariant, the object’s position in the image

~ makes no difference, and we start with the following

probability of a successful detection:

P(detection) = "i P(ﬁnding model M]M)P(M) . (10)
i=1
By the event “ M,” we mean that the object is at the ori-

entation represented by M,. We will assume that in-
stances of the model in the images are uniformly distrib-

uted, so that P(M,.) =n".

We further specify the probability of a detection as
finding m < M, such that S(m) 2k,

at correct location and not finding

n, 'Y Plany mc M, ,je[1,2,3,...,n, | such

o o . (D
that S(72) > S(m) at any other location

|in image] M,

S(m) is the number of elements in the set m. The event

specified in this equation is that of finding at least k,
features out of the set of features that indicates the model
and not finding a larger set of features from the models
anywhere else. We split this term into mutually exclusive
events based on the number of features found on the cor-
rect model, noting also that the two statements connected
by “and” are independent events:

Object Detection with Vector Quantized Binary Features
To appear at 1997 IEEE Computer Society Conference on Computer Vision & Pattern Recognition

LJE—
5 c 08 “,_—— ..._—.:._1_0’fe;tures
28064 | .. 20 features
28 | 0 30 features
% _*3 0.4 1 40 features |_.---
5 0.2 1

0 : i : : i

Q 0.2 0.4 0.6 0.8 1

probability of false alarm

Figure 6: Theoretical receiver operating characteris-
tic as detection threshold varies for different number
of features and constant 30 codes. 40 features are
adequate. The bend in the curve for 40 features oc-
curs at a detection threshold of 13 features.

-

[T ==
w“ o8l -
c s
28067 [CT__C 3 codes
29 0.4 —————. 10 codes
ST e 20 codes
27T g2 30 codes
a B N S 1000 codes
0 — i —t |
0 02 04 06 08 1

probability of false alarm

Figure 7: Theoretical receiver operating characteris-
tic as detection threshold vaires for different number
of codes and constant 40 features. 30 codes are ade-
quate. The bend in the curve for 30 codes occurs at a
detection threshold of 13 features.

2SS {P(ﬁnding mc M, such that S(m) = k| M)

i=1 ksky
findingany m< M, j €[1,2.3,...,n
1— P such that S(z?z) > k at any other
location in image

(12)

The correct way to compute the first term in the
product above is to consider all possible subsets mc M,.
Since there are so many possibilities, this is prohibitively
expensive in computer time. Instead, we assume that
each feature has the same probability of being miscoded,

P, » as computed at the end of Section 3. Then the prob-
ability of finding exactly % features and miscoding
n —k features for all possible sets m such that

S(m) =k is

b(k',nf,l—pb)z (Zf](l_pb)k(pb)n/-k . 13)

For the second term in the product in Equation 12,
we assume again that the feature codes in the background
of the image are uniformly distributed. The probability of
finding any specific combination (mc M,) of k or
greater features at a single location is

le(, n). (14)

Omitting the correct pose, there are n nn, -1 opportu-

m"x y
nities to find % or greater features from any model. The
second term in the product in Equation 12 becomes

1- P(finding 2 & features somewhere in image)

Aty -1

- > b(z n,n.n, ~ l,pm)
i=1
=1—[1—b (0:n,m.n,-1,,)]
_ (I—Pm)n_n,ny—l.

(15)

‘Noting that we have assumed away any dependence
on the particular model M, , the probability of detection
is

P(detection) = g: {b(k; nl-p,){ Z b(l, n.n):ln....,nr' } (16)

5.3 Receiver Operating Characteristic Curves

Receiver operating characteristics based on the prob-
abilities of false alarm and detection derived above are
plotted in Figure 6 and Figure 7.

Receiver operating characteristic curves are gener-
ally parameterized by a detection threshold. In our case,
the detection threshold is %, , which gives the number of
features that must be found to consider the object present.
A good receiver operating characteristic curve will look
like the symbol I', with the vertical segment coincident
with the vertical axis, and the corner being at point (0,1).
Such a curve means that the false alarm rate stays low
even for high probabilities of detection. Our goal is to
adjust parameters in an attempt to reach an ideal curve
shape and then take %, to be the value at the upper left
corner of the curve. Figure 6 shows the effect of varying
the number of features with the number of codes kept
constant at n, =30. It shows that 40 features give a

good curve. The sharp bend occurs at &, =13.

Figure 7 shows the effect of varying the number of
codes with the number of features kept constant at

21

Object Detection with Vector Quantized Binary Features
To appear at 1997 IEEE Computer Society Conference on Computer Vision & Pattern Recognition

2038
% 0.6
3 04
£ 02
04 + —+ : —
0 10 20 30 40

detection threshold

____ " actual defection probability
_____ actual false alarm probability
e theoretical false alarm probabifity
......... theoretical detection probability

Figuré 8: Actual and theoretical receiver operating
characteristic.

n, =40, It shows that 30 codes give a good curve, with

the sharp bend in the curve occurring at &, =13. This is
how we chose the number of features, number of codes,
and detection threshold.

In our test of 1000 images, we kept track of the num-
ber of features found for the top 10 detections for each
image. Using this data, we plotted an empirical receiver
operating characteristic curve, as show in Figure 8. We
also plotted the theoretical receiver operating characteris-

tic curve (n, =40 and #, =30). As shown, the false

alarm rate is very well predicted by Equation 9. Equation
16 tends to overestimate the probability of detection
slightly, which could be due to a higher probability of
miscoding than what our experiment in Section 3 showed.

Nearly every computer vision algorithm comes with
parameters that must be adjusted by the user - so-called
“magic numbers”. We list the magic numbers used by
our program in Table 1. The ideal computer vision algo-
rithm has no magic numbers, which means it does not
have to be adjusted for different situations. The next best
alternative is to provide a principled method to choose the
parameters. As shown in Table 1, we were able to do this
for about half the adjustable parameters, with the receiver
operating characteristic accounting for three of the most
important.
6. Summary

This paper presents a new algorithm for detecting
objects in images. It uses models based on training im-
ages of the object, with each model representing one
pose. Since each pose is modeled uniquely, this helps
reduce the confounding effects of specular highlights, and
climinates the need to track features during training.
Objects are modeled in terms of square binary edge
patches that are automatically selected from the training
images based on their digsimilarity with their surround-
ings. Internal features means the algorithm is robust in

22

P ————————

image size (n,,ny) (512,480) preset
smoothing o 2 pixels by eye
dilation n, 3 pixels experience
feature size b 7 pixels experience
feature correlation 3 pixels experience
distance d
number of models 360 subpixel feature
n, change (Section 2)
probability of miscod- 0.464 (for miscoding experiment
ing p, n, =30) (Figure 4)
number of features n, 40 receiver operating
characteristic
number of codes », 30 receiver operating
characteristic
detection threshold %, 13 features receiver operating
characteristic

Table 1: Settings of parameters (magic numbers)

the face of background clutter. The features are com-
pressed using binary vector quantization, which gives an
efficient representation of the models. The detection al-
gorithm fills a 3D Hough transform. We derive the prob-
abilities of detection and false alarm (receiver operating
characteristics) and use this analysis to determine some of
the important operating parameters of the program.

References
[1] Gray, Robert M., “Vector Quantization”, IEEE ASSP Magazine,
April 1984, pp. 4-29.
[2] Grimson, W. Eric L. and Huttenlocher, Daniel P, “On the Sensi-
tivity of the Hough Transform for Object Recognition”, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,; 12(3), March 1990,
pp. 255-274.
[3] Huttenlocher, Daniel .P., Lilien, Ryan H., and Olson, Clark F. ,
“Object Recognition Using Subspace Methods”, Proceedings of ihe
Fourth European Conference on Computer Vision, 1996, pp. 536-45.
[4] Krumm, John C., “Eigenfeatures for Planar Pose Measurement of
Partially Occluded Objects”, Proceedings of the IEEE Computer Vision
and Pattern Recognition Conference, June 1996, pp. 55-60.
[5] Lamdan, Yehezkel and Wolfson, Haim J., “Geometric Hashing: A
General and Efficient Model-Based Recognition Scheme”, Proceedings
of the Second International Conference on Computer Vision, December
1988, pp. 238-249.
[6] Murase, Hiroshi and Nayar, Shree K., “Visual Learning and Rec-
ognition of 3D Objects from Appearance”, International Journal of
Computer Vision, 14(1), 1995, pp. 5-24.
[71 Murase, Hiroshi and Nayar, Shree K., “Image Spotting of 3D
Objects using Parametric Eigenspace Representation”, 9/ Scandinavian
Conference on Image Analysis, June 1995, 325-332.
[8] Ohba, Kohtaro and Ikeuchi, Katsushi, Recognition of the Multi
Specularity Objects using the Eigen-Window, Camegie Mellon Univer-
sity School of Computer Science Technical Report CMU-CS-96-105,
February 1996.
[91 Shi, Jianbo and Tomasi, Carlo, “Good Features to Track”, Pro-
ceedings of the IEEE Computer Vision and Pattern Recognition Confer-
ence, June 1994, pp. 593-600.
[10] Turk, Matthew and Pentland, Alex, Eigenfaces for Recognition™,
Journal of Cognitive Neuroscience, 3(1), 1991, 71-86.
[11] Van Trees, Harry L., Detection, Estimation, and Modulation The-
ory, Part I, Detection, Estimation, and Linear Modulation Theory, John
Wiley & Sons, New York, 1968.

