FER 17 1998

SANDIA REPORT

SAND97-3010/1 « UC-705
Unlimited Release
Printed January 1998

A Graph-Based Network-Vulnerability
Analysis System <
WQQ‘&Q

@3“ '

Laura Painton Swiler, Cynthia Phillips, Timothy Gaylor

Prepared by
Sandia National Laboratories .
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogra ratory operated by Sandia Corporation,
- a Lockheed Martin Company “for the United States Department of
Energy under Contract DE-ACO4 94AL85000.

Approved for public vre}le’abse;:‘ﬂ‘irther»di- unlimited.

Ry

S$F2900Q(8-81)



Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
- P.O. Box 62 :
Qak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: A01




DISCLAIMER

Portions of this document may be illegible
electronic image products. Images are
produced from the best available original
document.




SAND97-3010/1 Distribution
Unlimited Release Category UC-705
Printed January, 1998

A Graph-Based Network-Vulnerability Analysis System

Laura Painton Swiler
Systems Reliability Department

Cynthia Phillips
Applied Mathematics Department

Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185-0746

. Timothy Gaylor
3M, Visual Systems Division
Austin, TX 78726

Abstract

This report presents a graph-based approach to network vulnerability analysis. The
method is flexible, allowing analysis of attacks from both outside and inside the network.
It can analyze risks to a specific network asset, or examine the universe of possible
consequences following a successful attack. The analysis system requires as input a
database of common attacks, broken into atomic steps, specific network configuration
and topology information, and an attacker profile. The attack information is “matched”
with the network configuration information and an attacker profile to create a superset
attack graph. Nodes identify a stage of attack, for example the class of machines the
attacker has accessed and the user privilege level he or she has compromised. The arcs in
the attack graph represent attacks or stages of attacks. By assigning probabilities of
success on the arcs or costs representing level-of-effort for the attacker, various graph
algorithms such as shortest-path algorithms can identify the attack paths with the highest
probability of success.
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1. Introduction

This research effort was motivated by the need for a better methodology to perform risk
and vulnerability analyses of computer networks. This problem is extremely important to
the military and civilian infrastructure today. For example, the Presidential Commission
on Critical Infrastructure recommended increasing spending to a $1B level during the
next seven years. The Commission recommended that this money be heavily focused on
cyber-security research, including vulnerability assessment, risk management, intrusion
detection, and information assurance technologies (Commission Report, Oct. 1997). In
this paper, we describe a systematic analysis approach that can be used by persons with
limited expertise in risk assessment or vulnerability analysis to (1) examine how an
adversary might be able to exploit identified weaknesses in order to perform
undesirable activities, and (2) assess the universe of undesirable activities that an
adversary could accomplish given that they were able to enter the network using an
identified weakness.

This LDRD was funded in FY 1997. Originally it was to be a two-year LDRD. The Risk
and Reliability IAT Review Committee decided not to renew funding for this LDRD in
FY 1998 because of its similarity to other network related proposals and research funded
at Sandia. This report documents the progress that was made in FY 1997, and presents
the network vulnerability modeling approach as far as we have been able to take it. As
such, this report can be used as a starting point for further work in this area. The LDRD
team members who worked on this feel that a significant amount of work remains to be
done before our ideas could be turned into a marketable prototype software tool, but we
feel this is a worthwhile goal.

Background

The original LDRD proposal had a three-pronged approach:

1. Development of risk sub-models. This refers to categorizing known vulnerabilities
and attacks according to the type of network components that are susceptible.

2. Develop a “deductive” risk assessment method, which will examine how an adversary
might be able to exploit identified weaknesses in order to perform undesirable
activities.

3. Develop an “inductive” risk assessment method, which will examine the set of
undesirable activities an adversary could accomplish given that they entered the
network.

With respect to (1) above, we have documented the classes of networking components
(e.g., workstations, routers) and network service applications (e.g., mail services,
firewalls) that are vulnerable to attack, the classes of known attacks, and the current
classes of defenses that are used to deter or repel these known classes of attacks
(LDRD Task 1 Memo, May 30, 1997). We also spent a significant amount of time
identifying the characteristics of networks that need to be incorporated into a risk
assessment (RA) method. Ideally, a network-vulnerability risk-analysis system should




be able to model the dynamic aspects of the network (e.g., virtual topology changing),
multiple levels of attacker ability, dynamic behavior of a single attacker (e.g.,
learning), multiple simultaneous events or multiple attacks, user access controls, and
time-dependent, ordered sequences of attacks.

Probabilistic Risk Assessment (PRA) techniques such as fault-tree and event-tree
analysis provide systematic methods for examining how individual faults can either
propagate into or be exploited to cause unwanted effects on systems. For example, in a
fault-tree a negative consequence, such as the compromise of a file server, is the root
of the tree. Each possible event that can lead directly to this compromise (e.g., an
attacker gaining root privileges on the machine) becomes a child of the root. Similarly,
each child is broken into a complete list of all events which can directly lead to it and
so on. Wyss, Schriner, and Gaylor (Wyss et. al) have used PRA techniques to
investigate network performance. Their fault tree modeled a loss of network
connectivity, specifically the “all terminal connectivity” problem. Physical security and
vital area analyses have also successfully used PRA techniques (Stack and Hill). Since
PRA methods are able to measure the importance of particular components to overall
risk, it seems that they could provide insights that can help design networks that are more
inherently resistant to known methods of attack. These methods, however, have limited
effectiveness in the analysis of computer networks because they cannot model multiple
attacker attempts, time dependencies, or access controls (sse LDRD Task 2 Memo,
March 17, 1997). In addition, fault trees don’t model cycles (such as an attacker
starting at one machine, hopping to two others, returning to the original host, and
starting in another direction at a higher privilege level). Methods such as influence
diagrams and event trees suffer from the same limitations as fault trees.

The major advance of our method over other computer-security-risk methods is that it
considers the physical network topology in conjunction with the set of attacks. Thus, it
goes beyond the scanning tools such as the SATAN (Security Administrator Tool for
Analyzing Networks) tool that are currently available which check a “laundry list” of
services or conditions that are enabled on a particular machine. For example, SATAN
checks for the following vulnerabilities on UNIX based systems:

1. Are NFS file systems exported to unprivileged programs?
2. Are NFS file systems exported to arbitrary hosts?

3. Is X server access control disabled?

4. Is there a writable anonymous FTP home directory?

5. Is there an insecure version of sendmail in use?

All the vulnerabilities SATAN finds are well known and have either bulletins and/or
patches from an incident response team or a vendor. SATAN is a useful network analysis
tool and can provide a system administrator with a set of items to patch or fix. However,
it cannot identify paths of attacks, alternative network configurations that would be more




robust, or linked attacks such that a combined sequence of attacks would do more harm
than an individual attack.

Our approach to modeling network risks is based on the idea of an attack graph. Each
node in the graph represents a possible attack state. A node will usually be some
combination of physical machine(s), user access level, and effects of the attack so far,
such as placement of trojan horses or modification of access control. Edges represent a
change of state caused by a single action taken by the attacker (including normal user
transitions if they have gained access to a normal user’s account) or actions taken by an
unwitting assistant (such as the execution of a trojan horse). Figure 4 gives an example
attack graph, which will be explained more fully when we describe attack graphs in
section 2.

Since the generation of an attack graph will quickly become extremely difficult for one
person to build given the combinatorial explosion of the nodes and paths, we propose a
method which can automatically generate the graph. The generator requires three types
of input: attack templates, a configuration file, and an attacker profile. Attack templates
represent generic (known or hypothesized) attacks including conditions, such as operating
system version, which must hold for the attack to be possible. The configuration file
gives detailed information about the specific system to be analyzed including the
topology of the network and configuration of particular network elements such as
workstations, printers, or routers. The attacker profile contains information about the
assumed attacker’s capabilities, such as the possession of an automated toolkit or a sniffer
as well as skill level. The attack graph is a customization of the generic attack templates
to the specific network specified in the configuration file and the attacker profile. If an
attack is possible in this network, its edge weight (probability or cost) will be a function
of configuration parameters and/or attacker skill level. Though attack templates represent
pieces of known attacks or hypothesized methods of moving from one state to another,
their combinations can lead to descriptions of new attacks. That is, any path in the attack
graph represents an attack, though it could be cobbled together from many known attacks.

Once the attack graph has been generated, we can apply analysis methods to determine
high-risk attack paths. As a preliminary tool for analyzing the graph, we chose a shortest-
path algorithm. If we attach a probability or cost to each arc, a shortest-path algorithm
can find the attack path with lowest cost or highest probability of success, provided the
success probabilities can be modeled as independent. The graph may also be used to run
simulations. Additional analysis methods will be explained in more detail in Section 4.

The remainder of the paper is organized as follows. Section 2 gives a more detailed
description of attack templates, the configuration file, and attacker profile. Section 3
describes how to generate the attack graph from the attack templates and configuration
file. Section 4 discusses analysis methods. Section 5 gives a detailed example, applied to
a test network we have built. Section 6 provides some concluding remarks.




2. Configuration Files and Attack Templates

This section explains the inputs required for our method: configuration files, attacker
profiles, and attack templates.

Configuration files
The configuration file contains information relevant to operating system, network type,
router configuration, and network topology. More specifically, each device (i.c.,
workstation, printer, file server, etc.) should have the following information:
1. Machine class: workstation, printer, router, etc.
2. Hardware type: e.g., SUN SPARCstation™ 5
3. Operating System
a. O.S. patches that have been installed.
4. Users (Initially just the classes of users, i.e. root, normal, privileged.)
5. Configuration
a. Ports enabled
b. Services enabled
c. Any intrusion detection applications installed
4. Type of network(s) the device is on (Ethernet, FDDI, ATM, etc.)
5. Physical link information such as type of communications media

A configuration file also includes a graph of the topology of the network. Building and
maintaining configuration files by hand will be a tedious, time-consuming and error-
prone task which could seriously limit the utility of the system. Therefore, we envision
an automated tool that will automatically generate and maintain this configuration file.
For example, a root-level daemon on each network component can periodically send
information to a central server. The configuration file could be based upon the
information available from a tool like SATAN, augmented to match the conditions in the
set of attack templates. We hope the system administrator will have reasonable defenses
in place to protect this data when using the tool. For example, it may only be available
online in one place while the administrator is running analyses.

Attacker Profiles

The attacker profile contains information about an assumed attacker’s capabilities, such
as the possession of an automated toolkit, a sniffer, etc. The attacker profile also contains
an assumption about the skill level of an attacker, which is used to determine the
probability of success for particular attack methods. The attacker profile represents the
initial capabilities of the attacker in the same way that the configuration file represents the
initial state of the network. To assist the analyst, default profiles for various attacker skill
levels such as novice vs. expert could be provided. The network owner’s security
policies and strategies can be guided by the level of attacker they wish to strongly deter
and their available budget.



Attack template

Attack templates represent generic steps in known attacks, including conditions which
must hold for the attack to be possible. Each node in the attack template represents a
state of an attack, as detailed below. The nodes are distinguishable, and therefore, each
edge represents a change in state on one or more devices. Examples of state changes are:
a file was changed, a configuration setting was altered, an executable was run, etc. An
example of attack templates using the following definitions and fields is shown in Figure
1. A more complete list of attack templates is shown in the Appendix (SAND 97-
3010/2). These templates have varying degrees of aggregation and completeness, and
they do not all fit into our definition. However, they are provided for information
purposes. For more specific details about Java attack templates, see (Harris, 1997).

- Nodes have the following fields:

1. User level: Possible user levels include: none, guest (anonymous), normal
user, privileged user, root, or system administrator.

2. Machine(s): For the attack templates, the machine field will most likely be
used to specify an individual machine or set of machines, all machines on a
subnet, or all machines on multiple subnets. In the attack templates, this field
contains placeholders (variables) that are instantiated in the attack graph.

3. Vulnerabilities: The vulnerabilities field can be used to indicate changes to
the original configuration caused by attacker actions. When building the
attack graph, the vulnerabilities "overwrite" the relevant portions of the
configuration file for a given node.

4, Capabilities: The capabilities field can include physical access to part of the
network, installation of a trojan horse, delivery of mail or an applet with
executable content, or installation of a sniffer on an edge of the network. It
can also indicate other programs that the attacker has successfully installed or
has access to, such as crack programs, root kits, etc. The capabilities gained
can locally overwrite the attacker profile in the same way that the
vulnerabilities field will overwrite the configuration file.

5. State: The state field is primarily used to break attacks into atomic pieces. An
attack may require several steps, each of which could fail and none of which
adds a new capability, vulnerability, etc. The states distinguish the nodes by
indicating progress in the attack.

Edges in an attack template represent actions by the attacker or his/her
victim/unwitting assistant. They can also indicate an event such as the detection of a
particular type of packet on a network by some hardware and/or software under attacker
control. To allow maximum detection of new attack sequences, these events should be
atomic and nontrivial (probability of success is strictly between 0 and 1). Probability-one
edges must change the environment (introduce a vulnerability, change user level, etc.).
‘Each edge has conditions on the users and/or machines. If all the conditions are met, the
attack succeeds with a given probability and/or cost. Our examples model this measure
as static, but it can more generally be a function of configuration and attacker experience.




If a user is only interested in viewing the possible universe of attacks regardiess of
cost/success probability, then these functions could be extremely simple.

A number of issues are not completely resolved. There is some flexibility in assigning
conditions to the arcs (requirements for the attack) vs. the nodes (part of the state). For
example, possession of a root kit may be required for a certain attack. It can be made a
condition of the edge (hence the edge is not added to the attack graph unless the attacker
possesses a root kit) or it can be made a state of the start node (thus the attacker must
have a root kit in order for the node to be reached in the first place). In addition, one
must carefully chose levels of machine aggregation. Generating nodes for all possible
subsets of machines will be impossible even for small systems. However, we believe the
design described above can model a wide variety of attacks. For example, we have
developed a set of templates for several attacks in each of the following classes:
sendmail, ftp, telnet, Windows NT, and Java. Furthermore, the system has sufficient
flexibility to evolve smoothly as new, previously unanticipated modeling needs arise.

The attack templates are “matched” to the configuration file and the attacker profile to
create an attack graph which contains all of the possible attack paths for the particular
network in the configuration file. Paths are labeled by cost, effort, or probability of
success, which are functions of attacker capability and level of knowledge. The
following section discusses the attack graph generation.

3. Generating the Attack Graph

In this section we describe how one might generate the attack graph from a configuration
file, an attacker profile, and a database of attack templates. The latter part of this section
also discusses implementation issues. As described before, nodes of the attack graph
represent stages of an attack, and edges represent an attack that changes the state. [n
general the nodes of the attack graph look like nodes of the attack templates instantiated
with particular users and machines. Edges are labeled only by a probability-of-success
(or cost) measure, and a documentation string for the user interface. For ease of
exposition, for the remainder of this section, we will call the measure the weight of the
edge. This weight is determined by an instantiation function associated with each edge of
an attack template. This function accesses the configuration file and the attacker profile.
If an edge goes from node u to node v, then we call node u the fail of the edge and node v
the head of the edge.

We now describe how the attack graph could be generated by building backwards from a

goal node. One could also build forward from a start node (to explore the universe of
possibilities) or assume both a start and a goal node. We illustrate this description with
the simple example in Figure 2. The attacker profile, which is not shown in Figure 2 for
space reasons, assumes that the attacker has physical access to B and the boot CD. We



maintain a queue of generated nodes which have not been processed. Initially this queue
contains only the goal node and nodes are added as they are created.

Start with the goal node: achievement of user-level access on machine M. The graph
generator checks the database of attack templates and identifies all edges whose heads
match the goal node. Assuming this database contains only the two templates shown in
Figure 2, we find two matches, namely the head of each attack template. Consider the
first template for an rlogin attack. Machine M matches the variable M, in the template.
The instantiation function can then generate the tail node (node N,) by generating all
(user, machine) pairs that meet the constraints (the user has an account on this machine
and M, and an appropriate rlogin file on M). Note that if machine M has rlogin disabled,
then node N, would not be generated. On the assumption that machines A and B can
communicate with M (given the rlogin file), the probability of the edge from node N, to
the goal is 1. Node N, is an OR node, meaning that achievement of any (user, machine)
pair suffices.

The goal node also matches the last node of the second template for physical access.
Machine M matches the variable X and the instantiation function creates node N,, which
in turn generates N ; However, the attacker does not have physical access to M. Thus,
the nodes N, and N ; are marked with a dotted line to show that under existing conditions,
they would not be reachable from the start state. There could be other attack templates
which would lead to physical access to M, and then these nodes would be enabled. In
this case, the capability of physical access to M is an addition (or overwrite) to the
attacker profile.

Since there are no more matches for the goal, node N, is removed from the queue and
matched against the database against both heads and tails. In principle, it can again
match with the head of the rlogin attack. However, assuming transitivity (i.e. that a user
has rlogin set up symmetrically for all his accounts), applying this edge again will give no
new information. Recognizing and preventing this in all cases is still a research issue.
Node N, also matches with the last node of the second template on physical access, which
generates node N,.

Node N, matches the middle node of the second template. The attacker profile indicates
that the attacker has physical access to machine B, but not to machine A. Since N, is an
OR node, it can be satisfied by the attacker becoming root on B. In this example, node N,
is created with a subset of the machines in node N,. Alternatively, we could have
generated an intermediate node for becoming root only on B rather than A or B. The
advantage of this is that additional paths to the goal or start can pass through this
intermediate node. When both goal and start nodes are specified, either method is likely
to work, since if this node is required for a path, it will be generated later. If only one of
goal and start are specified, the more verbose method may be advantageous. We
recognize node N; as a start node in this graph, and thus we do not try to match
backwards from it. Although it is not shown, the attack graph would also contain a node




for A similar to N, which, like nodes N, and Nj, is unreachable because the attacker has
no physical access to A.

When a node is matched with a template in the database, the other endpoint could either
be generated as in the example above, or be a node already generated. Thus the generator
must be able to efficiently search the nodes generated so far. Edges created between two
nodes already generated can lead to interactions between attack templates and the
“discovery” of new attack sequences.

The instantiation function may generate multiple nodes if reachability is a condition on an
edge and there are multiple routers between a pair of machines (see the example in
section 5). The steps necessary for routing a message, telnet session, etc., are explicitly
included in the attack graph because this access is an important security parameter. If a
worrisome attack path involves going through multiple routers, the system administrator
has the option of modifying the access control tables to forbid the access.

There are a number of implementation issues which must be resolved when the system is
tested on large datasets. For example, it may be useful to allow some hierarchy in the
attack graph generation. If there is a common set of attack paths that allow an attacker to
become root from a normal vser account on the same machine, this could be a useful
building block. If multiple machines have identical parameters, this subgraph need only
be built once. It can be collapsed to one edge, with the option of expanding the graph for
the system administrator via the user interface.

For each piece of the configuration or attacker profile files, it would be useful to maintain
a list of edges whose probability was influenced by that attribute. This will allow quick
recomputation of edge weights if a configuration or attacker parameter is changed.
However, it is more challenging to leave such a “trail” for pieces that were missing in the
configuration file or lead to edges not existing.

Instantiation functions could become quite complicated. For example, suppose one is
searching for the universe of possible consequences from a break-in. In “spam”™ attacks
on networks, an attack is replicated on many machines. If one wants to predict the
number of machines compromised, the instantiation function must have an inclusion/
exclusion calculation if the weights are probabilities.

There are two possible ways to represent the users and/or machines in a node: as an
explicit list, or as a list of conditions (from edge conditions). Since each condition is
associated with an instantiation function, one can go from condition lists to explicit user
lists. One could imagine that both representations could be used in different parts of the
attack graph during generation depending upon the ways. the lists will be refined. For
example, the list-of-conditions method may be better for matching.

Another issue is how to model attacks that require access to two different user accounts
possibly on two different machines. This could be done as a 2-step process in the attack



template. However, in the attack graph, getting access to two users' accounts is highly
correlated within the various attacks, and this correlation must be incorporated into the
both instantiation functions. Therefore, obtaining access to two or more accounts should
probably be combined as a single atomic event. Since we expect most attacks to require
access to only a small number of accounts simultaneously, this consolidation/duplication
should not increase the size of the graph too much.

Matching methods will evolve experimentally. However, unification techniques used in
logic programming languages are a natural starting place. It is possible that using lists of
conditions, one can search the set of generated nodes efficiently using hashing
techniques.

4. Analysis Méthods

After the attack graph is generated by the procedure outlined above, some analysis tools
are needed to identify the attack paths which are most likely to succeed in a particular
threat scenario. We are currently using a shortest-path algorithm. These algorithms
generally compute the best paths from a source to all other nodes. Bicriteria shortest-path
algorithms can be used to compute strategies that, for example, maximize the probability
of success within a fixed budget constraint. Current exact solution methods involve
shortest-path computations in significantly expanded graphs. However, scaling provides
a graceful tradeoff between approximation quality and the time and space needed to
compute the solution (Phillips). Very recently, Tayi et al. have shown how to compute
all undominated (Pareto optimal) paths for multiple edge weights using a psuedo-
polynomial time algorithm. Efficiently solving variants with many more than two
optimization criteria is an open problem. In practice, the success probability or cost of an
attack depends upon the attacker's experience. We would like to develop new single-cost
shortest-paths algorithms to incorporate adaptive attacker experience (experience
increases as the attack progresses). An issue for these augmented algorithms is quality of
the larger, more complex, and more speculative input data set.

Another research issue is computation of cost-effective defense strategies. Given a set of
possible defenses, each with a cost (financial, loss-of-service, etc.), we would like to
compute a set of defenses to implement which will maximally decrease the probability of
success (or increase attacker cost). We expect this to be a challenging problem because
implementing a defense strategy on a particular machine could have a wide-spread effect
on the attack graph.

Alternatively, a system administrator could use the attack graph as the foundation for a
simulation tool. The simulation could start from the node where the attacker breaks in,
and follow high probability paths until the attacker fails, in which case the simulation can
backtrack to an earlier node and try another path. This kind of a model could represent the
real behavior of attackers (going down one branch, figuring that it is too difficult to do
something such as get root on a particular machine, so backing up and trying another
method). Another strategy would be that the attacker chooses his next attack arc based on




configuration knowledge of all outgoing links, plus an estimate of the shortest path from
neighboring nodes. This simulation technique would be very appropriate for a graphical
user interface which could show a network designer the paths the attacker is most likely
to take (for example, by lighting up nodes with a green light as the attacker is successful,
and displaying a red light where the attacker gets blocked).

Finally, we would like to investigate generating and pruning exhaustive graphs from the
recursive algorithms used in solving event trees. Selective pruning of insignificant paths
will be a key aspect of a solution method. The algorithm of (Naor and Brutlag) uses a
canonical representation for all epsilon-optimal paths. This would allow us to generate
all paths that are no more than epsilon larger than the shortest path, and also allow for the
identification of arcs (attack “edges™) which are common to many of the epsilon-optimal
paths.

5. Example: Password Guessing

This section presents an example of the graph-based vulnerability assessment method,
specifically a password guessing attack on a small network. The network, shown in
Figure 3, is small but has a somewhat complex topology and also has many of the main
technologies we are interested in modeling: an ATM-switched network, an Ethernet
network, two routers of differing types, a firewall to the Internet, SGI workstations, and
SUN workstations.

Figure 4 is an attack template showing several possible ways to gain illegal access to a

machine by password guessing. For example, an attacker can use anonymous fip to plant
a trojan horse which when executed mails him back the password file. He then can run a
password cracking program on the password file. Or, if the attacker has a sniffer and
sniffs the password, if the password is plaintext, the attacker can login as a normal user
with that password. As shown in Figure 4, attack templates are multigraphs. That is,
there can be multiple edges between two nodes indicating different attack methods. For
example, in Figure 4, trojan horses can lead to attacker acquisition of the password file in
three different ways. We chose password guessing because it is a common attack
estimated to be used in approximately one-quarter of attacks, based on the analysis of
incidents reported to the Computer Emergency Response Team (CERT), in the
dissertation by John Howard, 1997. This example is not meant to be exhaustive even for
password guessing. In general an assessment is only as complete as allowed by the
coverage of the database.

Attack graphs assume a start and/or goal state. For this example, we assumed that the
attacker had access to a normal user account on the Sun workstation SUN1. That is, the
attacker could be an insider with an account on SUN1 or could have gained access to
SUNI1 from the Internet by getting through the firewall. The file server in this network is
the Silicon Graphics workstation SGI1 on the Ethernet network. We assumed that the
attacker’s goal was to access protected data files on the file server SGI1. The starting and



goal states are specified in the attacker profile. Only one of these is needed and the attack
graph can be built from that point. In this example, however, we specify both.

Figure 5 shows the attack graph generated from the password-guessing attack template
and the network configuration information. This graph shows specific steps the attacker
would take to get the protected files. We will not step through the graph generation in
detail, but the overall idea is that the user on SUNI is going to try and access an account
on SGI2. From there, she sniffs the password of a user on the broadcast Ethernet network
who is logging into SGII.

This graph was generated as follows: the start node (the attacker having access to a
normal user account on SUN1) matches the conditions of the lower start node on the
password-guessing template (normal user on a machine M). From the template start
node, there are two paths, one involving email and one involving anonymous ftp. The
graph-generation algorithm checks the configuration file to see if email is enabled
between SUN1 and SGI1. It is not, because SGI1 is configured to be a protected server
which only has privileged users who must logon for access. Likewise, anonymous fip is
turned off on SGI1. However, SGI2 has these services. Thus, the paths of planting a
trojan horse via email or obtaining the password file via anonymous ftp are matched to
the SGI2 where SGI2 is machine B on the attack template. To access SGI2 via ftp or
email, the packets must go through both the NetEdge and Cisco routers.  This is
information that is in the configuration file. These show up as states in the attack graph
because they represent stages necessary to perform the ftp or email actions. (Note: this
approach can help show where it will be beneficial to prevent attack. For example, one
could configure the routers to not allow any traffic from the ATM network to the Ethernet
network).

Note that the start node did not match the upper start state in the password template based
on the sniffing route. That is because SUN1 is on an ATM network, which is a switched
packet network. It is very difficult to sniff packets on a switched network but relatively
easy to do on a broadcast network.

Follow the attack graph to the “normal user on SGI2” node. The intermediate nodes
between SUN1 normal user and SGI2 normal user are an instantiation of the password
template states, based on our actual test network. Now the graph generation algorithm
examines what states on the attack template match “normal user on SGI2.” The lower
start node matches “normal user on SGI2” but it doesn’t match the subsequent nodes
because email and ftp are disabled on SGI1. We have assumed in the attacker profile that
the attacker has access to a sniffer for broadcast Ethernet networks that requires root
capability. These are publicly available; we downloaded one from the web. We have
also assumed that the attacker can get root access on SGI2 once she is a normal user on
SGI2 (there are a variety of attack templates which could outline how to get from normal
user to root on a machine, including use of a toolkit, physical access, etc.). From root on
SGI2, the attacker can install the sniffer to listen to the Ethernet traffic. So, the attacker
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can sniff the password of a privileged user or the system administrator logging into SGI1.
With that, she will have access to the files on SGI1.

During the attack-graph generation, each edge is labeled with the probability of that the
attacker will successfully transition between the two adjoining nodes. Some of the
probabilities are based on knowledge of the frequency of events. For example, the
probability that a person will click on an email attachment and run it is fairly high. We
estimated it at .9. Other probabilities will be based on configuration information and
attacker skill level. An edge in the attack template could have several probabilities for
different conditions and attacker skill level, and these will be generated by the
instantiation function on the edge. For example, the function to generate the probability
for successfully sniffing the packet containing the password could be a function of the
number of users and the frequency of login for each user over the network. For another
example, the configuration file will indicate whether traffic going to M is encrypted or
not. It the traffic is plaintext, then the probability of successfully guessing the password
when it is sniffed is 1. If the password is encrypted, then the edge has probability 1 if the
attacker possesses the key (as indicated in the attacker profile). Otherwise, it is set to
some probability according to the instantiation function (either a probability based on
attacker experience or financial ability, or 0 if it-is assumed that the profile is complete in
regard to key possession). The probabilities we used may not be very representative:
more research is needed to obtain more accurate probability estimates. Alternatively,
“level of effort” estimates could be used on the arcs.

Finally, we used a shortest-path algorithm to find the path that has the highest probability
of success. This path is shown in Figure 5 by the gray-colored nodes. To obtain this
path, we modified a shortest-path code that was publicly available on the web. This code
is called SPLIB, version 1.3, December 20, 1996, written by Cherkassky, Goldberg, and
Radzik. SPLIB contains codes, generators, and generator inputs for shortest-path
algorithms. We used one of the shortest-path algorithms based on the Dijkstra algorithm.

Figure 6 shows the steps necessary to modify the probabilities so they can be used as
input to a shortest path algorithm: the problem was turned from a maximization into a
minimization by multiplying by -1, and from a multiplication of arc probabilities to
addition of the logs of the arc probabilities. The most successful path had a probability of
success of 1*0.98*%0.95*0.75*%0.98*1*0.95=0.65.

We built a test network of the network shown in Figure 3. We found that implementing a
test network is a useful tool for understanding attacks, identifying various paths, and .
getting a sense of the probability of success for various attacks by having different people
- attempt them.
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6. Conclusions

We have spoken with computer security experts, and general consensus is that an attack-
graph analysis should work well for modeling enterprise-level (commercial or military)
network risks. We would like to take this work further and develop a robust tool with a
graphical interface which is easy to use and which links to a large list of vulnerabilities,
such as the databases that commercial vendors (i.e., Internet Security Systems’ X-force
database) have created or that CERT has compiled.

This paper has presented a method for risk analysis of computer networks. The method is
based on the idea of an attack graph which represents attack states and the transitions
between them. The attack graph can be used to identify attack paths that are most likely
to succeed, or to simulate various attacks. The attack graph could also be used to identify
undesirable activities an attacker could perform once they entered the network. The
major advance of this method over other computer security risk methods is that it
considers the physical network topology in conjunction with the set of attacks. Thus, it
goes beyond the scanning tools that are currently available which check a “laundry list”
of services or conditions that are enabled on a particular machine.

The method we have presented addresses many of the modeling issues that a traditional
PRA method such as fault trees do not. Specifically, our graph-based approach allows for
modeling dynamic aspects of the network (this can be done by overwriting the
configuration file as the attacker makes system changes). Our approach allows for
several levels of attacker capability, and can capture the learning behavior of the attacker
by adding capabilities to the attacker profile as the graph gets built. It allows for the
modeling of user access levels and transitions between them, which are critical in
network security. And it represents the time dependencies in sequences of attacks.

There are potential limitations with our method. We have not generated a realistic size
attack graph based on 10 or 20 templates, and we have not resolved all of the issues
associated with the matching of templates to configuration and attacker profile. Also, the
existence of attack templates and of the configuration file could be another vulnerability
in itself. If these got into the wrong hands, they would be very valuable tools for the
attacker. However, we believe that the approach we have presented is an advance in
network-vulnerability modeling and will ultimately help network security if implemented
in a reasonable way.
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