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ABSTRACT

The probability of detecting residual contamination in the field using portable radiological survey instruments
depends not only on the sensitivity of the instrumentation used in scanning, but also on the surveyor’s
performance. This report provides a basis for taking human performance into account in determining of the
minimum level of activity detectable by scanning. A theoretical framework was developed (based on signal
detection theory) which allows influences on surveyors to be anticipated and understood, and supports a
quantitative assessment of performance. The performance of surveyors under controlled yet realistic ficld
conditions was examined to gain insight into the task and to develop means of quantifying performance. Then,
their performance was assessed under laboratory conditions to quantify more precisely their ability to make the
required discriminations. The information was used to characterize surveyors’ performance in the scanning task
and to provide a basis for predicting levels of radioactivity that are likely to be detectable under various
conditions by surveyors using portable survey instruments.
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EXECUTIVE SUMMARY

The probability of detecting residual contamination in the field using portable radiological survey instruments
depends not only on the sensitivity of the instrumentation used in scanning, but also on the surveyor’s
performance. This report provides a basis for taking human performance into account in determining the
minimum level of radioactivity detectable by scanning. A theoretical framework was developed (based on signal
detection theory) which allows influences on surveyors to be anticipated and understood, and supports a
quantitative treatment of performance. The performance of surveyors under controlled yet realistic field
conditions was examined to gain insight into the task and to develop means of quantifying performance. Then,
* their performance was assessed under laboratory conditions to quantify more precisely their ability to make the
required discriminations. The information was used to characterize surveyor performance in the scanning task
and to provide a basis for predicting levels of radioactivity (minimum detectable concentrations) that are likely
to be detectable under various conditions by surveyors using portable survey instruments.

In practice, surveyors do not base decisions on a single indication. Rather, upon noting an increased number of
counts, they pause briefly and then decide whether to move on or take further measurements. Accordingly, a two-
stage model of detection was developed. In the first stage, characterized by continuous movement of the probe,
the surveyor has only a brief "look" at potential sources. Hence, sensitivity is relatively low. The surveyor’s
criterion (i.¢., willingness to decide that a signal is present) is likely to be liberal, in that the surveyor should
respond positively on scant evidence, since the only “cost” of a false positive is a little time. The second stage
occurs only after a positive response has been made; the surveyor interrupts the scan and holds the probe over
the potential contamination for a period, while comparing the instrument’s output signal to the background
counting rate. Sensitivity is relatively high, owing to this longer observation. For this decision, the criterion
should be stricter, since the cost of a “yes” decision is to spend considerably more time taking a static
measurement. If the observation is sufficiently long, an acceptable rate of source detection can be maintained
despite the more stringent criterion having been applied.

Detectability of a given source varies inversely as the square root of the number of background counts in the
observation interval. This implies that, while the minimum detectable level will be roughly proportional to the
background over a small range of background levels (such as those indicated by a particular type of detector at
different locations), this will not be the case over wide ranges (such as those produced by different types of
detectors).

More importantly, the time for which the radioactivity is sampled determines the information that is available to
the surveyor. Thus, if the probe is moved too quickly (or is not held over the source long enough) the
distributions of activity on which the surveyor's decision is based will not be sufficiently distinct to support
acceptable performance. Time also is critical to the surveyor's performance in the second stage because
sensitivity is determined by the length of time for which the probe is held over the source.

Controlled studies were conducted in which surveyors used Geiger-Miiller, gas-proportional, and sodium-iodide
instruments to locate hidden sources of radioactivity. In conducting indoor scans, most surveyors adopted a
criterion that allowed them to pause over roughly 90% of the sources. Surveyors using the Geiger-Miiller probe
tended to give a negative response for many of these sources; the number of sources paused over that were
subsequently "missed" was lower for the gas-proportional probe. As a whole, then, the indoor results depended
significantly on the decision at the second (pause) stage. By contrast, in the outdoor scan using the sodium-iodide
probe, performance depended almost entirely on the first (scan) stage. With few exceptions, sources paused over
were correctly identified as such. Thus, the point in the process at which limitations in human performance have
the greatest impact varies, depending on the scanning situation.
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The results of psychophysical experiments using simulated survey-instrument output indicated that theoretically
predicted effects of the background rate and the length of the observation interval on detectability may be useful
in roughly predicting the performance of surveyors under various conditions. Specifically, if a given source level
allows acceptable performance for a certain background rate and probe speed, it is possible to estimate the level
of radioactivity expected to yield equal detectability for other backgrounds and speeds.

If a value is assumed for the surveyor’s efficiency, the number of source counts required to yield a particular level
of performance can be estimated. The surveyors' actual performance compared with that which is ideally possible
(given the statistics of the distributions of background and source counts) indicates the efficiency of the
surveyors. This efficiency can be modeled by assuming that the surveyor, like the survey instrument, does not
register every event. By adjusting the proportion of counts that the ideal observer registers it is possible to
roughly equate the ideal and actual performance; the proportion at which the two most closely coincide represents
the surveyor’s efficiency. The efficiencies established by this method were between 0.5 and 0.75. An example
is given of how this information can be used to estimate the minimum detectable count rate for a given
background intensity and performance requirement.
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FOREWORD

The NRC amended its regulations to establish residual radioactivity criteria for decommissioning of licensed
nuclear facilities. As part of this initiative, the NRC staff prepared a draft Generic Environmental Impact
Statement (GEIS), consistent with the National Environmental Policy Act (NEPA). The effects of this new
rulemaking on the overall cost of decommissioning are among the many factors considered in the GEIS. The
overall cost includes the costs of decontamination, waste disposal, and radiological surveys to demonstrate
compliance with the applicable guidelines.

An important factor affecting the costs of such radiological surveys is the minimum detectable concentration
(MDC) of field survey instruments in relation to the residual contamination guidelines. The MDC determined
using portable scanning equipment depends on many of the same factors that influence the detection of
contamination under static conditions (e.g., the level of the background, the nature of the potential contamination,
the intrinsic characteristics of the detector, and the desired level of confidence). In scanning, additional factors
related to the surveyor come into play. Obviously, the scan MDC is influenced by such things as the surveyor's
ability to move the probe over a surface at a prescribed rate. However, there are other important surveyor-related
factors that are typically not taken into account - those pertaining to the surveyor's abilities and decision
processes. This report describes an approach for taking these factors into account in estimating MDCs.

Cheryl A. Trottier, Chief

Radiation Protection and Health Effects Branch
Division of Regulatory Applications

Office of Nuclear Regulatory Research
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1 INTRODUCTION

1 INTRODUCTION

1.1  Background

The U.S. Nuclear Regulatory Commission's Division of Regulatory Applications is involved in a rulemaking to
establish radiological criteria for land and structures after decommissioning. This rulemaking must be
accompanied by a regulatory analysis and a Generic Environmental Impact Statement (GEIS) which analyzes the
costs and impacts of compliance with the proposed criteria. The radiological surveys required to demonstrate
compliance represent a potentially significant portion of these costs. A critical factor in determining survey costs
is the minimum detectable concentration (MDC) of residual radioactivity that can be accurately measured in field
surveys using commercially available instrumentation.

Scanning often is performed during surveys to identify any locations of elevated direct radiation. The probability
of detecting residual contamination in the field depends not only on the sensitivity of the scanning
instrumentation, but also on the surveyor’s performance. Therefore, determining the minimum level of activity
detectable by scanning must take into account human performance.

1.2 Approach

In this report, human performance in scanning surveys is examined from three perspectives. First, a theoretical
framework is developed which allows influences on surveyors to be anticipated and understood, and which
supports a quantitative assessment of performance. Second, the performance of surveyors under controlled yet
realistic conditions is examined to gain insight into the task and to develop means of quantifying performance.
Finally surveyors' performance is assessed under laboratory conditions to quantify more precisely their ability
to make the necessary discriminations.

In Section 2.2, the scanning task is considered in terms of human information processing. Signal detection theory
is introduced to clarify the constraints on human performance in such tasks. Section 3 describes the methods and
results of field studies assessing the performance of surveyors working under conditions that were reasonably
close to those encountered in actual surveys but that nevertheless allowed performance measures to be collected.
In Section 4, laboratory studies using simulated sources and backgrounds are described which quantified
surveyors’ abilities under more controlled conditions.

In Section 5, the information developed is used to characterize surveyor performance in the scanning task and to

provide a basis for predicting levels of radioactivity that are likely to be detectable under various conditions by
surveyors using portable survey instruments.
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2 HUMAN FACTORS CONSIDERATIONS

2 HUMAN FACTORS CONSIDERATIONS IN SCANNING SURVEYS

2.1 Influences on the Surveyor’s Performance

Figure 1 depicts the survey process as a series of components. In each component, beginning at the source,
evidence of contamination is transformed (e.g., attenuated by surface conditions and/or probe characteristics, or
scaled by instrument circuitry). In static surveys, the "operator” (i.¢., surveyor) component is bypassed. In the
final component, the transformed evidence is compared to a criterion, and a decision is made as to the presence
of contamination.

As shown in the figure, factors related to the surveyor can influence the performance of each component of the
surveyor/instrument system. The amount of radiation reaching the probe is affected by the source-to-detector
geometry, which is a function of their dimensions and the distance of the probe from the surface, as well as the
speed at which the surveyor moves it over the surface. The information reaching the surveyor depends on the
audibility and visibility of (and attention to) the instrument's display(s). Finally, the surveyor's decision is
influenced by a variety of factors, including the costs of missed contamination and "false positives," and the
surveyor's assumptions about the likelihood of contamination being present. Human performance considerations
come into play primarily in this final decision component.

2.2  Description of the Surveyor's Task

Personnel conducting scanning surveys for residual contamination must interpret the audible output or visual
reading of a portable survey instrument to determine when the signal (clicks or visual readings) exceeds the
background level by a margin sufficient to conclude that contamination is present. The detection of low levels
of contamination is difficult because both the signal and the background are variable.

In abstract terms, the task of personnel conducting scanning surveys can be briefly characterized as follows. The
condition of the surface being surveyed is represented to the surveyors by samples from random processes.
Furthermore, the samples are limited in size (i.e., time) for practical reasons. Based on the samples, the surveyors
must decide whether they have sampled the distribution of activity associated with a contaminated surface or an
uncontaminated surface. The concepts and methods of signal detection theory are well suited to analyzing
performance on such tasks.

In the following section, signal detection theory will be discussed in general terms, but the correspondence of the
concepts used in the theoretical discussion and the quantities of interest in radiological survey scanning should
be clear. Detecting a signal embedded in background noise is directly analogous to detecting gross radioactivity
against the ambient background. Furthermore, the treatment of decision outcomes (e.g., false positives, false
negatives) in signal detection theory has much in common with the statistics of static sampling, as does the use
of criterion values that reflect policies regarding those outcomes.
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HUMAN PERFORMANCE IN RADIOLOGICAL SURVEY SCANNING

PHYSICAL/ANSTRUMENT SURVEYOR FACTORS
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Figure 1 Components of the scanning survey process
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2 HUMAN FACTORS CONSIDERATIONS

2.3  Signal Detection Theory and the Ideal Observer
23.1 Theoretical Framework

Signal detection theory originally applied the principles of statistical decision theory to the detection of radar
signals in the presence of electromagnetic noise. It was soon recognized, however, that the theory also could
characterize the detection of sensory signals by human observers (Green and Swets, 1988). The theory postulates
that the sensory input that constitutes an observation can be represented at some point in the sensory/perceptual
system on a single, continuous dimension. It is assumed that any particular observation (or value on the
continuum) can arise from either background noise alone or from signal-plus-noise. Thus, the information
available to the observer can be represented by two (typically overlapping) probability density distributions
(Figure 2). The task of the observer is to resolve whether a stimulus arose from a "noise alone" or a "noise plus
signal" event. To make this decision, a criterion must be established at some point along the continuum. The
area of the signal-plus-noise and noise distributions lying beyond the criterion is estimated by the proportion of
"signal" responses given on trials when signal-plus-noise and noise alone, respectively, were presented.
Assuming the underlying distributions are normal and of equal variance, an index of sensitivity (d) can be
calculated which represents the distance between the means of the distributions in units of their common standard
deviation (see Figure 3). The index is calculated by transforming the true-positive and false-positive rates' to
standard deviation units, i.e., z-scores (Egan, 1975, p. 61) and taking the difference:

d' = z (false positive) - z (true positive)

Values of d' associated with various true-positive and false-positive proportions are given in Table 1. The 4’
measure is independent of the criterion adopted by the observer, thus allowing meaningful comparisons of
sensitivity under conditions in which observers' criteria may differ. A measure of the position of the criterion,
¢ (Macmillan & Creelman, 1991, p. 33), also can be calculated from the response probabilities:

¢ = 05 [z(true positive) + z(false positive)]

When the false-positive rate and the false-negative rate are equal, ¢ = 0 and the observer is said to be unbiased,;
the criterion is positioned at the intersection of the density functions (sec Figure 3). For criterion positions to
the right of this point, the value of ¢ is positive; for positions to the left, ¢ is negative. Thus, ¢ may be thought
of as indicating the extent to which negative responses are preferred; the greater the value of ¢, the lower the
false-positive rate. According to statistical decision theory, the a priori probabilities of the events and the values
and costs associated with the outcomes will influence the placement of the criterion. When signals are rare, the
criterion of an observer attempting to maximize the proportion of correct responses moves to the right; the value
of ¢ will be greater, and negative responses will dominate. When signals are frequent, the opposite occurs. The
value of ¢ will be lower and more positive responses will be made. Other things being equal, when false negative

! It is conventional in signal detection theory analysis to describe performance in terms of the true-positive
rate (1-B) and the false-positive rate (). The remaining two response conjunctions, true negatives (or correct
rejections) and false negatives (“misses™) are simply the complements of the preceding quantities.
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HUMAN PERFORMANCE IN RADIOLOGICAL SURVEY SCANNING

Criterion  Criterion Criterion
A B C
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Figure 2 A signal-detection theory view of the detection of signals in noise
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Figure 3 SDT measures of sensitivity and criterion (d’ and c, respectively)
shown relative to assumed underlying distributions
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2 HUMAN FACTORS CONSIDERATIONS

Table 1 Values of d’ for selected true-positive and false-positive proportions

True-Positive Proportion

.60 .65 .70 75 .80 85 .90 95

.05 190 202 216 232 248 268 292 328
10 154 166 180 196 212 232 256 292
15 130 142 156 172 188 208 232 268
20 110 122 136 152 168 188 212 248
25 093 106 120 135 152 172 1% 232

False- .30 078 091 105 120 136 156 180 2.16

Positive
Proportion 35 064 077 091 106 122 142 166 202

40 051 064 078 093 110 130 154 190
45 038 052 066 080 097 117 141 177
.50 026 038 052 068 084 104 128 164
.55 012 026 040 054 071 091 115 151
.60 000 013 027 042 058 082 102 138

responses carry a greater cost than false-positive responses, the value of ¢ will be greater; i.e., the position of the
criterion will move to the right along the continuum. Thus the detection of a signal in a noise background is
determined not only by its magnitude relative to the background, but also by the observer’s willingness to report
its presence, i.c., the criterion for responding "yes." The importance of this concept for assessing decision
performance is that different observers (or the same observer at different times) may differ in the proportion of
signals correctly detected, and yet be equally sensitive to the signal. For example, an observer who adopts a
criterion similar to that shown as 'A' in Figure 2 will correctly detect about 85% of the signals (and will give a
false-positive response half of the time). At the other extreme, an observer setting a criterion at 'C' will correctly
detect just 50% of the signals (but will give a false positive only about 15% of the time). Despite the differences
in their behavior, these observers are in fact equally sensitive to the signal; they differ only in their willingness
to report it.

2.3.2 Performance of the Ideal Observer

If the distributions underlying a detection decision can be specified, it is possible to examine the performance
expected of an ideal observer, i.e., one that makes optimal use of the available information to achieve a specified
goal (e.g., to maximize the percent correct responses). This is valuable in the present context because it allows
the basic relationships among important parameters (e.g., background rate and length of observation) to be
anticipated, and it provides a standard of performance (actually, an upper bound) against which to compare

7 NUREG/CR-6364




HUMAN PERFORMANCE IN RADIOLOGICAL SURVEY SCANNING

performance of actual surveyors. It should be noted that the terms 'ideal' or ‘optimal’ do not imply behavior that
is error-free.

The audio output of a survey instrument represents randomly occurring events. It will be assumed that the
surveyor is a "counting" observer, i.e., one that makes a decision about the presence or absence of contamination
based on the number of counts in a given period. This number will have a Poisson distribution, and its mean will
be greater in the presence of contamination than when only background activity is present. These distributions
will overlap when the intensity of activity associated with contamination is low, as it often is during final status
surveys. The ideal observer decides that contamination is present if the number of counts is greater than x, where
the criterion value x is chosen according to some rule (e.g., to maximize percent correct, or limit the false-positive
rate to no more than 0.10).

If the number of counts per minute from background activity and from contamination are specified, and an
observation interval is postulated, the performance expected for an ideal observer (in terms of correct detection
and false-positive rates) can be determined from tabled values of the cumulative Poisson distribution. The
following example illustrates this approach. Consider an observer attempting to detect 180 counts per minute
(cpm) in a background of 60 cpm based on observations that are 1 sec in length. The observer's decision will be
based on two overlapping (Poisson) distributions of counts, one having a mean of 1 (corresponding to the
background activity) and the other having a mean of 3 (corresponding to the source plus background activity).

If the background and source are equally likely events, and positive and negative responses are equally valued,
the ideal observer attempting to maximize the percent correct will choose as a criterion for a positive response
the point at which ¢ =0, or 2 counts (see the point labeled 2 in Figure 4). This corresponds to a position midway
between the means of the background and source plus background distributions, where the curves intersect and
the false-positive and false negative rates are equal. From the values of the cumulative Poisson probabilities
given in Table 2 (refer to the row corresponding to a criterion value of 2), the observer would be expected to
correctly detect 80% of the 180 cpm sources, and would also identify background activity as a source roughly
26% of the time. If the situation were such that missed signals should be strongly avoided, the observer might
adopt a criterion of 1 count (see the point labeled 1 in Figure 4). In this case, 95% of the sources would be
detected, but the rate of false positives would increase to roughly 63%. If, for each of the possible criterion
numbers of counts, the corresponding true-positive rates are plotted against the corresponding false-positive rates,
the result is the relative operating characteristic (ROC) for a given condition (Figure 4). The preceding example
demonstrates that the ideal observer is not error-free. In any situation of practical interest, the distributions
underlying the decision will overlap, and there will be errors, ¢.g., false-positive decisions.

If acceptable performance (in terms of true- and false-positive rates) can be specified, the source levels required
to support such performance for the ideal Poisson observer can be estimated. For example, if the conditions
described above (60 cpm background, 180 cpm gross source) represent adequate performance (between 60 and
65% false positives and 95% true positives), other conditions can be identified which would be expected to
support similar performance. For any given mean number of background counts in an observation, a criterion
number can be found (using the tabled values of the Poisson distribution or the normal approximation) which
would result in 60 to 65% false positives. The number of gross source counts needed for adequate performance
under these conditions would be arrived at by a finding mean count value which, for that same criterion, would
result in roughly 95% true positives. Using this method, the gross levels required (for the ideal observer) to yield
performance equal to that for 180 cpm in a background of 60 cpm would be about 900 cpm in a background of
600 cpm and 6900 cpm in a background of 6000 cpm. The source levels do not represent a constant fraction of
the background rate. Rather, it can be shown that the levels would be expected to be proportional to the square
root of the number of background counts (Egan, 1975, p. 182). Thus, the minimum detectable net source is a

NUREG/CR-6364 8
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Figure 4 Relative operating characteristic (ideal observer) for detecting 120 cpm (net)
in a background of 60 cpm; observation intervals of 1 sec and 4 sec

multiple of the background level at count rates typical for GM detectors, and a fraction of the background level
for gas-proportional and Nal scintillation detectors, which have much higher background rates.

The values given in the preceding examples are not minimum detectable count rates (methods for estimating these
quantities are provided later). Rather, they should be regarded as reflecting the maximum performance that could
theoretically be supported by a given combination of background and source levels.

23.3 Implications

The principal implication of signal detection theory for scanning performance is that one must consider false-
positive rate as well as correct detection rate to meaningfully characterize human performance. The rewards or
penalties associated with various outcomes influence subjects' responses. In scanning surveys, these factors may
affect performance significantly. Surveyors are typically motivated to detect all instances of possible
contamination, i.¢., to maximize the hit rate. However, costs are associated with incorrectly identifying areas as
contaminated (€.g., making follow-up static measurements). The placement of the criterion reflects a balance
between these two influences. According to the theory, observers' estimates of the likelihood/frequency of signals
also influence their willingness to decide that a signal is present. Other things being equal, then, a surveyor will
adopt a less strict criterion when examining areas where contamination may be expected; similarly, criteria may
be stricter in areas expected to be clean.
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Table 2 Cumulative Poisson probabilities of observed values for selected
average numbers of counts per interval®

Criterion 60 cpm 180 cpm Criterion 60 cpm 180 cpm
Values (1 sec = 1 count) (1 sec = 3 counts) Value (4 sec =4 counts) (4 sec = 12 counts)

0 1.000 1.000 0 1.000 1.0000
1 6321 9502 1 9817 1.0000
2 2642 .8009 2 .9084 29999
3 .0803 .5768 3 7619 .9995
4 0190 3528 4 .5665 9977
5 .0037 .1847 5 3712 9924
6 .0006 0839 6 2149 9797
7 .0001 0335 7 : 1107 9542
8 0119 8 0511 9105
9 .0038 9 0214 .8450
10 0011 10 0081 7576
11 .0003 11 0028 6528
12 .0001 12 .0009 .5384

13 .0003 4240

14 .0001 3185

15 2280

16 1556

! Based on tabled values of the cumulative Poisson distribution given in W.H. Beyer (ed.), Handbook of
Tables for Probability and Statistics, Cleveland: Chemical Rubber Co.

2.4  Scanning Sensitivity Criteria and Pertinent Literature

It is generally assumed that surveyors can reliably detect two to three times the background level for ambient
levels of a few counts per second (Berger, 1992). However, experience shows that at background rates of
thousands of counts per minute, an increase of 25-50% is readily detected (USDOE, 1992); this reflects the
expected relationship of detectability as a function of the square root of the background rate described for the
ideal observer.

Specifying detectable levels is complicated by the difficulty of defining "detectable" as applied to the surveyor’s
performance. For example, the draft ANSI Standard 13.12, “Control of Radioactive Surface Contamination on
Materials, Equipment, and Facilities to be Released for Uncontrolled Use” (ANSI, 1985), states that the scanning
speed shall be slow enough to ensure that small-diameter sources are detected with a 67% probability. However,
from the discussion of signal detection theory, specifying a percentage of sources to be detected also requires a
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policy on false positives. In theory, any correct detection rate can be achieved for any source intensity if the
number of false positives permitted is unlimited. '

Goles, Baumann, and Johnson (1991) determined scanning MDCs for both alpha and beta instrumentation under
various background conditions. MDCs were defined as that activity that could be detected 67% of the time under
standard survey conditions. The MDC for beta/gamma activity was determined for different background
activities (e.g., 50, 250, and 500 cpm), based on whether it could be detected 67% of the time. The reported
scanning sensitivitics for the GM detectors demonstrated that activities producing net instrument responses of
305, 310, and 450 cpm could be statistically recognized 67% of the time in 50, 250, and 500 cpm background
fields, respectively. Goles, et al. cautioned that the "...data are highly idealized, and that the performance of these
instruments may differ considerably under field conditions." The deviation from a predictable pattern of results
(apparently at the 50-cpm background level) presumably reflects observers’ adopting (for whatever reason) a
stricter criterion for that background rate compared with the others. False-positive rates were not reported.

Sommers (1975) experimentally checked the validity of the theoretical calculations of source detection frequency.
Calibrated sources were moved past the detector’s windows at measured velocities (from 2.4 to 15 cm/s), and
at different source-detector distances to determine detection frequencies; the background level was 120 cpm. The
experimental results are averages of 100 observations per datum point from two or more experienced surveyors.
The effects of probe velocity (source residence time), and background activity on source detection frequencies
(in %) were plotted. Observers using speaker output typically outperformed those making a calculation based
on an alarm setpoint; the size of the advantage depended on the detector’s velocity. Further, detection of sources
emitting 500 counts per minute in a 120 counts/min background was about 80% using the speaker outputs,
regardless of the velocities between 3.5 and 15 cm/s. While such results probably reflect the observers adopting
different criteria under various conditions, no data (i.¢., false-positive rates) are reported that would allow this
conjecture to be tested. Sommers points to the possibility of criterion differences in noting that "...the largest
variations in the data occurred between individuals, i.e., the largest variables were caused by the physical and
psychological conditioning of the surveyors."

Two reports in the recent human factors literature concern performance in detecting radiation sources. While
neither has results directly applicable to estimating minimum detectable levels of contamination, each is briefly
summarized below and relevant aspects are noted.

Tzelgov, Srebro, Henik, and Kushilevsky (1987) studied performance in locating and detecting radiation sources
using a hand-held radiation monitor. Their principal aim was to compare performance using the visual indication
(instrument meter), the auditory indication (instrument speaker), or the two combined. Subjects with no
experience in radiation detection performed both a search task and a detection task. In the former, the
experimenters measured the time required for subjects to locate (by scanning) a source in a 100 cm x 100 cm grid;
the sources were located faster using only the auditory indication rather than the visual display alone or both
modes combined. The detection task, in which the sources were moved past the probe mechanically, was designed
to relieve the subjects of having to visually attend to the probe’s movement. For this task, there were no
significant differences (in terms of detection time) among the audio, visual, and combined conditions.

Tzelgov, et al. concluded that it should be possible to turn off the visual displays of radiation monitors, and that
surveyors should be encouraged to turn them on "...only in the final stages of the search when the level of
contamination is important."

Casey (1991) studied the accuracy of technicians in sorting low-level radioactive waste using hand-held probes.

They identified items as contaminated or uncontaminated from the meter reading (set for a slow response) and
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an alarm signal (visual and audio) with a setpoint equal to the contamination criterion. (It was assumed that the
ambient noise levels in the nuclear power plants where the sorting occurred were high enough to render inaudible
the audio alarm and the normal audio output of the survey device.) Because all items were measured after sorting,
it was possible to report the total number of items that were contaminated, the number correctly judged, and the
number incorrectly judged to be contaminated. Thus, not only was the proportion of contaminated items
identified, but also the false-positive rate.

Three waste inspection studies are described by Casey (1991). In Studies 1 and 2, waste expected to contain few
contaminated items was inspected, respectively, by inexperienced or experienced personnel. The proportion of
contaminated items was roughly 0.01. In the third study, experienced technicians sorted waste in which they
expected that the number of contaminated items was greater; the proportion was 0.19. About 10,000 items were
inspected in each study. The proportions of contaminated items correctly identified were 0.62, 0.87. and 0.97
in Studies 1, 2, and 3, respectively. It was noted that "...false-positive rates were very high in all three studies."
Inspection of the frequencies with which uncontaminated items were judged to be contaminated indicates that this
rate varied widely from one study to the other. Thus, it is of interest to compute performance measures that are
free of criterion bias for these results.

Despite wide differences in the proportion of contaminated items correctly identified (0.62 vs 0.87) and the
overall proportion of items correctly classified (0.90 vs 0.72), the sensitivity (in terms of d') of the technicians
in Study 1 and Study 2 was virtually the same (1.58 vs 1.67). Thus, they differed only in that the more
experienced group adopted a strategy that identified a higher percentage of contaminated items, at the cost of a
higher false-positive proportion. In Study 3, where contaminated items were more likely to be found, and the
level of radioactivity in these items was expected to be more intense, the technicians were still more willing to
judge items to be contaminated. They achieved a 0.97 true-positive proportion, but the proportion of false-
positive judgements was 0.44. This group also appeared (again, in terms of d’) to be slightly more sensitive than
the other groups. However, this may reflect the fact that the items in Study 3 had higher levels of contamination.

This discussion demonstrates the importance of structuring the data collection to allow the false-positive rate to
be taken into account, and shows how the choice of performance measures (e.g., "hit" rate, percent correct, d')
can influence the conclusions.

2.5  Specific Issues

Having considered the scanning task in general and developed a framework for considering the influences on
surveyors’ performance, some details of scanning survey activity will now be considered, introducing relevant
issues.

In practice, surveyors do not make decisions based on a single indication. Rather, upon noting an increased
number of counts, they pause briefly and then decide whether to move on or take further measurements.
Furthermore, these scanning surveys are typically carried out for extended periods. The following sections
consider these elements of the scanning task, and describe possible approaches for understanding their effects
on performance in the theoretical context developed above.

251 Two-Component Detection Processes
Detection of radioactive sources by scanning consists of two stages: continuous monitoring and stationary

sampling. The performance of various systems consisting of two detection processes has been discussed. For
example, Pollack and Madans (1964) develop predictions for the joint performance of two physical detectors,
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when both are exposed to the stimulus and the output of both detectors is used to arrive at a decision regarding
the presence of a signal. They demonstrated that the joint performance is not necessarily superior to that of either
detector alone, and that it may fall to that of the poorer detector under some conditions. This treatment of two
detectors differs from the characterization of scanning activity given above in that both detectors always observe
the input channel. Jerison and others (Jerison, Pickett, and Stenson, 1965; Guralnick, 1972) developed the
concept of an "observing response” which precedes a decision about the presence of the signal. Such a decision
is made only if an observing response has first occurred. However, it differs from the scanning pause in that the
observing response is assumed to be emitted based only on the overall probability of a signal being detected, not
on any aspect of the input channel.

The "alerted monitor" concept developed by Sorkin and his colleagues (Sorkin and Robinson, 1984; Sorkin and
Woods, 1985) consists of two detectors (each with its own sensitivity and criterion parameters) working
sequentially. The first detector (representing an automated monitor) produces an output based on the evidence
in the monitored process. The second detector (representing the human operator) observes the process if, and
only if, the first detector produced a positive response (i.¢., the evidence exceeded the criterion of the first
detector). This model generates operating characteristics for the ideal observer which reflect various interactions
of the human and automated detectors.

The two-stage arrangement of detectors in the "alerted monitor" model can be used to characterize the decision
processes of the scanning surveyor. It is assumed for the present discussion that both stages of the process reside
in the surveyor; i.e., surveyors are not using a threshold setting on the instrument as an initial indication of
possible contamination. In the first stage, characterized by continuous movement of the probe, the surveyor has
only a brief "look" at potential sources. Hence, sensitivity is relatively low. The surveyor’s criterion (i.e.,
willingness to decide that a signal is present) at this stage is likely to be liberal, in that the surveyor should
respond positively on scant evidence, since the only “cost” of a false positive is a little time. The second stage
occurs only after a positive response has been made at the first stage. It is marked by the surveyor interrupting
the scanning and holding the probe over the potential contamination for a period, while comparing the
instrument’s output signal to the background counting rate. Sensitivity is relatively high owing to the longer
observation interval. For this decision, the criterion should be more strict, since the cost of a “yes” decision is
to spend considerably more time taking a static measurement. If the observation interval is sufficiently long, an
acceptable rate of detection can be maintained despite applying the more stringent criterion. For example, the
solid line in Figure 4 represents performance for a 4-sec observation. Under these conditions, roughly 95%
correct detections can be achieved with only 10% false positives.

Figure 5 shows the performance resulting from the combination of these processes. The dotted line represents
ideal performance for a 1-sec observation, as in Figure 4. The open circle represents the observer's decision at
the first stage. The combined performance of the first and second stages is represented by the solid line. As in
Figure 4, this line is associated with a 4-sec observation. However, in Figure S the line begins at the initial
decision point (open circle), not at the upper right corner of the plot. This is a consequence of the assumption
that the stages are sequential, i.e., a ‘miss' at the first stage removes an item from further consideration, setting
an upper limit on the final true-positive rate. The observer's final decision is represented by the filled circle. In
this example, the observer's goal was to achieve better than 90% true positives while limiting false positives to
10% or less. (This goal is represented by the square at the upper left of the ROC space).
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2.5.2 Vigilance

In scanning, a continuous instrument output is monitored for extended periods, during which indications of
contamination may occur unpredictably. These features are characteristic of vigilance tasks, i.e., tasks which
require a sustained readiness to respond to a randomly occurring change in the environment. The term vigilance
decrement is used to describe the decline in performance that typically occurs when tasks are done for long
periods.

The human engineering literature on vigilance and the vigilance decrement is voluminous (see Davies and
Parasuraman, 1981, and Parasuraman, 1986 for extensive reviews). In this section, the theory and results will
be briefly considered to anticipate whether performance in survey scanning is likely to show a vigilance
decrement, and to consider the possible mechanisms of such an effect.

A decrease in detection rate with time on the task may be the result of shifts in the observer's criterion rather than
changes in sensitivity per se (Egan, Greenberg, and Schulman, 1961; Swets, 1977). That is, declines in correct
detections may result from an overall decrease in the probability of positive responses (as indicated by an
accompanying decrease in the rate of false-positive responses). The increases in criterion are typically attributed
to changes in the observer's expectancies about the probability of a signal; when signals are rare, the observer's
estimate of the likelihood of a signal occurring may decrease over the course of a session. This will lead to the
adoption of a stricter criterion, and, therefore, the detection of still fewer signals. Thus, the potential exists for
positive feedback to bring the observer to a point at which correct detections are unlikely owing to very few
positive responses being made.

If the vigilance decrement is based on criterion adjustments based on expectancies about the probability of

signals, an increase in the criterion should not occur if the observer comes to the task with expectancies that
match the actual signal probabilities. Furthermore, if the observer expects signals to occur with a much lower
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probability than is actually the case, the criterion should shift in the opposite direction, i.c., should become less
strict during a session. Such effects were described by Williges (1976).

Sensitivity decrements are observed in some studies of vigilance tasks, even when the possibility of criterion
shifts is taken into account; however, in many other studies, such a decrement fails to appear. Davies and
Parasuraman (1981) undertook a taxonomic analysis of vigilance studies in an attempt to identify the factors
associated with decrements in sensitivity. They classified the vigilance situations used on the rate of the event
and the type of discrimination employed. Event rate refers to the rate at which the items or stimuli to be inspected
are presented to observers. The discrimination task can be classified as simultaneous or successive. In
simultaneous discrimination, the signal and non-signal features are present at the same time in the stimulus. In
successive discrimination, the signal is a change in some parameter of a presentation, so that the input to be
judged must be compared to a non-signal value held in memory (Parasuraman, 1986). Davies and Parasuraman
found that sensitivity decrements were confined to tasks with a high event rate involving successive
discriminations.

Based on the preceding discussion, decreases are possible in the probability of correct detections after long
periods of scanning. Criterion shifts of the type described above may or may not occur, depending on surveyors'
expectancies, which reflect their training and experience. Sensitivity decrements may also be predicted, since
survey scanning involves successive discriminations based on a continuous signal. However, no vigilance studies
have been made using a signal similar to the output of a survey instrument.

2.6 Summary

The surveyor-related factors identified earlier as potential influences on the minimum detectable concentration
are now briefly reconsidered based on the human performance information discussed above.

Analysis of the ideal observer indicates that detectability of a given source varies inversely as the square root of
the number of background counts in the observation interval. This implies that, while the minimum detectable
level will be roughly proportional to the background over a small range of background levels (such as those
indicated by a particular type of detector at different locations), this will not be the case over wide ranges (such
as those produced by different types of detectors). More importantly, the analysis demonstrated that the time for
which the activity is sampled determines the information available to the surveyor. Thus, if the probe is moved
too quickly (or is not held over the source for long enough) the distributions of activity on which the surveyor's
decision is based will not be sufficiently distinct (i.e., 4’ will be too small) to support acceptable performance.
Time is also critical to the surveyor's performance in the stationary detection stage because sensitivity depends
on the length of time for which the probe is held over the source.

The importance of the surveyor's criterion also is evident from the analysis of the ideal observer. The criterion
for pausing the probe (the first stage) establishes the upper bound for the correct detection rate and should
therefore be quite liberal (i.e., the surveyor should pause often, at the least indication of contamination). This
is important since correct detections vary greatly with changes in this criterion, especially for difficult-to-detect
sources. The criterion for identifying areas as contaminated (the second stage) will be influenced by the cost of
taking further measurements, balanced by the penalties associated with missed contamination. At both stages,
other things being equal, the surveyors' criteria for responding positively will depend on what they assume about
the presence of contamination. When finding contamination is considered unlikely, the criterion will be stricter
than in the case where surveyors believe they have a good chance of finding it. In practice, surveyors' criteria
probably vary constantly as a function of the location being surveyed or the appearance of the surface.
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Based on the preceding discussion, scanning areas that are expected to be "clean" for long periods, while the total
time available for the survey is limited, represents a "worst case" from a human performance perspective for
detecting potential contamination by scanning. Because this description fits many decommissioning surveys, it
is necessary to consider how much these factors affect actual surveyors. One aim of this project is to provide a
basis for assessing these effects. Once such techniques are available, it should be possible to develop methods,
such as training, to counter the potentially detrimental effects. For example, in laboratory studies showed which
training that employs knowledge of results can improve vigilance performance (Wiener and Attwood, 1968;
Attwood and Wiener, 1969).

The remainder of this report describes empirical research examining the performance characteristics of surveyors
working in realistic yet controlled settings, to establish (using simulation) the relationship between the minimum
detectable count rate and background rate, and to determine the efficiency of surveyors relative to an ideal
observer. From the results, a method is described for estimating the minimum detectable increment in response
to a survey instrument.
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3 FIELD TESTS OF SURVEYOR PERFORMANCE

Scan surveys were conducted under controlled conditions to examine the abilities of surveyors to detect typical
source configurations in circumstances that approximated those encountered in the field. The following section
describes the objectives of the field tests and aspects of the experimental approach common to all experiments.
Details of the procedures and results for the surveys are given in Section 3.2; Section 3.3 contains a general
discussion of the results.

3.1 Objectives and Approach

The overall purpose of the tests was to examine the detection of sources under field conditions by actual
surveyors. The experiments were designed and analyzed in accord with the human-factors considerations
developed in Section 2.2. Specifically, the surveyors' behavior during the scanning surveys was recorded so that
both components, continuous and stationary, of scanning could be examined, and an analysis was used which
allowed estimations of true-positive and false-positive rates. Accordingly, the scanning process could be
described (rather than just the result), and meaningful comparisons made of performance among surveyors and
among conditions.

The true-positive rates for the continuous and the stationary components of the scanning task were determined
by dividing the number of sources to which one or more positive responses were made by the number of
radioactive source configurations. For the continuous component, a pause in the movement of the probe was
considered a positive response. A response was considered to have been associated with a source if it fell within
any of the areas of elevated radioactivity mapped before the trials. (It should be emphasized that positive
responses occurred simply by the surveyor pausing at these locations, even if the surveyor subsequently concluded
that the response did not represent a signal above background.) For the stationary component, a positive response
was the identification of a location as exceeding background.

The number of false positives for the continuous task was computed as the total number of times the surveyor
paused, minus the number of pauses associated with sources. A difficulty arises in analyzing a continuous
detection task since the rate at which false alarms occur cannot be specified simply, as it can in discretely
presented trials (see, e.g., Egan, et al., 1961; Watson and Nichols, 1976). The number of opportunities for a false
positive must be estimated to compute a rate. The number of false-positive opportunities was determined by
estimating the average area covered by the source configurations, and then dividing this area into the entire area
represented by the false positives (which is equal to the entire areca minus the total configuration area). For the
indoor example, the entire area tested was 7.5 m?, with the total area of the source configuration occupying
roughly 0.5 m® The area of a typical source was estimated to be roughly 500 cm?. Thus, the estimate of false-
positive opportunities was 140. Assuming that false-positive responses are distributed randomly over the “non-
contaminated” area, then the false-positive rate can be estimated as the number of responses divided by number
of opportunities. This estimate is only an approximation, however, since two (or more) responses may fall in the
same area. If the false-positive rate is to be considered the proportion of opportunities having at least one
response associated with them, the calculation must take into account the expectation of two (or more) responses
occurring in the same area. This proportion is formally the complement of an estimate of the probability of an
unobserved outcome (Robbins, 1968) and can be calculated analogously.?

? Dr. David Stock suggested this approach for calculating the number of opportunities for which one or more
responses would be expected to occur.
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The results of each experiment are presented by plotting, for each individual surveyor, the true-positive rate as
a function of false-positive rate for both the pauses and final decisions. A line is drawn connecting the two points
representing each subject. These plots are not typical ROCs. The connected points do not represent different
criteria applied to the same presentation; rather, they represent performance by the same individual for two
situations in which detectability was expected to differ.

The experiments employed actual radioactive sources and scanning instrumentation. The sources were positioned
so that they could not be seen by the surveyors. The surveyors were given written instructions and a scale map
of the area to be scanned, and then instructed to perform a 100% scan of the arca at a specified scan rate.
Surveyors marked on the map the areas they judged as containing residual radioactivity in excess of background,
along with the actual meter reading (in cpm) for those areas. During the surveys, observers recorded on a similar
map any locations at which the surveyor briefly paused.

The indoor experiments consisted of scanning for beta activity on an interior wall at a height of 0.5 to 2 m with
a GM detector (20 cm?probe area) and a gas-proportional detector (126 cm?® probe area). The wall was 5 m long,
resulting in a test area of 7.5 m®. In the outdoor experiment, an area measuring 20 m x 30 m was surveyed using
a sodium-iodide detector.

The surveyors in the studies were from the Environmental Survey and Site Assessment Program (ESSAP).
Unfortunately, surveyors participated only as their schedules allowed, so that same group of individuals was not
available for each of the studies.

3.2  Methods and Results
3.2.1 Indoor Scan Using GM Detector

Sheets of cardboard were cut to fit over a 1.5 m x 5 m test area surface. Sections of the cardboard were removed
and radioactive sources were fastened to the side of the cardboard in contact with the wall. The radioactive
sources included C-14, Co-60, Sr-90, Tc-99, Cs-137, and processed natural uranium. Sixteen sources were
positioned on the cardboard, either singly or in groups, to simulate nine areas of contamination with varying
radiation levels and geometries. The levels of the radiation sources were selected to be near the expected scanning
sensitivity (based on the field experience of ESSAP surveyors). The cardboard sections were then repositioned
on the wall and the entire surface characterized to provide information on the location and beta radiation level
of each source configuration. The gross radiation levels measured directly over the sources ranged from roughly
125 to 950 cpm. The areas around the sources within which radioactivity above background was detectable
ranged between roughly 50 and 1400 cm® The background radiation was determined for the GM detector in this
geometry by scanning a nearby section of cardboard that contained no hidden sources; it ranged from 40 to 70
cpm.

Six surveyors performed the scans; their experience ranged from none to several years performing scanning
surveys. Each was given a brief description of the GM detector and the procedures for scanning and documenting
results on the scale drawing. They were instructed to scan the surface slowly (one detector width per second).
Surveyors were first familiarized with the audible response to background radiation by scanning an adjacent
section of cardboard that contained no hidden sources. The test surface scan was typically completed in 45 to
60 minutes.

Figure 6 plots the correct detection rate as a function of false-positive rate (calculated based on the assumptions
described above) for each surveyor. Each pair of x's represents the performance of one person. The results for
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pauses (data points near the top center of the plot) are considered first. As expected, surveyors adopted a liberal
criterion during continuous scanning; 1.¢., they paused often; most paused over eight of the nine sources. The rate
of pausing over clean areas varied considerably among surveyors, ranging roughly from 0.40 to 0.70. The resuits
for the final decision are represented by the points near the y-axis. A more stringent criterion was employed when
the probe was held stationary; most false-positive rates were less than 0.10. Surveyors typically did not mark
as exceeding background all of the sources they paused over; i.e., the points representing the final decision tended
to be lower on the true-positive axis. Most surveyors identified five or six of the nine sources. Their levels of
experience were not reliably related to their sensitivity or criteria.

Figure 7 depicts the area and the intensity of the sources and the frequency with which each source was found
by the surveyors. Each numeral in the plot represents a source, the area and intensity of which can be read from
the horizontal and vertical axes, respectively. The numeral itself is the number of surveyors that correctly
identified each source. The sources that were correctly detected most often (five of six surveyors) were the two
sources with the largest areas, and a small source located at the upper left of the surface to be scanned. It is not
surprising that sources covering larger areas were more readily detected, since the extended geometry is the
equivalent of a longer observation interval. As for the smaller source, the surveyors might have been more
vigilant at the start of the scan (at the upper left) than they were later. Repeated scans using sources of uniform
intensity (perhaps in simulation) would be required to formally test for the presence of a vigilance decrement.

3.2.2 Indoor Scan Using Gas-proportional Detector

The area of wall to be surveyed was the same as that used for the GM detector; the same sources were used but
in a different arrangement. In this case 14 areas of contamination were simulated. The gross radiation levels
measured directly over the sources ranged from roughly 350 to 2800 cpm. The areas around the sources within
which radioactivity above background was detectable ranged between roughly 100 and 700 cm®. The same
analysis described above for the GM scan was applied to the results obtained using the gas-proportional detector.
Because the same set of sources was used, the same number of opportunities for a false-positive response was
assumed. Background levels for the gas-proportional detector ranged from 200 to 240 cpm.

Nine surveyors performed scans using the gas-proportional instrument. Figure 8 plots the correct detection rate
as a function of false-positive rate for each surveyor. The results for pauses (data points near the top center of
the plot) are considered first. Most surveyors paused over all (or nearly all) of the sources. The rate of pausing
over non-source areas ranged from roughly 0.20 to 0.50. The results for the final decision are represented by the
points near the y-axis. Again, surveyors typically did not mark all of the sources they paused over as exceeding
background; i.e., the points representing the final decision tended to be lower on the true-positive axis.

The number of times each source was correctly identified is shown in Figure 9; the format of this plot is the same
as Figure 7. Surveyors identified from 9 to 13 of the 14 sources.

19 NUREG/CR-6364




HUMAN PERFORMANCE IN RADIOLOGICAL SURVEY SCANNING

0.8

0.6
True

Positive

Rate 0.4

02 F ]

0 1 I 1 1 " [ I 1 A

0 0.2 0.4 0.6 0.8 1
False Positive Rate

Figure 6 Surveyors’ performance in indoor scan survey using GM detector; each pair of x’s
(connected by a line) represents the performance of one surveyor
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Figure 7 Activities and areas of sources used in the GM scan study; numerals indicate the numbers of
surveyors who paused over each source
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Figure 8 Surveyor performance in indoor scan survey using gas-proportional detector; each pair of
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3.2.3 Outdoor Scan Using Nal Detector

A 20 m x 30 m plot of land was gridded and 25 gamma-emitting sources were buried at 13 locations so as to
provide a variety of geometries and radiation levels. The gross radiation levels ranged from 7 to 24 kcpm as
measured using a 3.2 cm x 3.8 cm Nal scintillation detector. The level of the background for the detector, 4 to
5 kepm, was determined in an area adjacent to the test grid.

Twelve ESSAP personnel performed scans; their experience ranged from none to several years of scanning
surveys. They were instructed to scan the surface slowly (roughly 0.5 m/sec). The scanning technique consisted
of swinging it from side-to-side, keeping the detector just above the surface of the ground at its lowest point.
Surveyors covered 100% of the test area using lanes 1 m wide.

Because of the differences between the indoor and outdoor scan in the area to be surveyed, and the type of
detector and survey techniques used, a somewhat different procedure (based on the width of the lanes) was used
to estimate the number of opportunities for false positives in the outdoor scan.

The correct detection rate is plotted as a function of false-positive rate for each surveyor in Figure 10. The
results for pauses (the points nearest the middle of the figure) show considerable variation among surveyors in
the number of the 13 sources paused over; it ranged from 7 to 12. As expected, large or intense sources were
identified more readily than less intense or smaller ones. The proportion of pauses over uncontaminated areas
ranged from roughly 0.15 to 0.45. The variation in the final true-positive rate is similar to that for the pauses.
With just two exceptions, surveyors correctly identified every source that they had paused over. Furthermore,
the final decision typically resulted in no false positives. Thus, performance for the final detection stage was
essentially perfect. This result indicates that radiation was well above the just-detectable level for most, if not
all, of the surveyors and that success depended on the criterion adopted for the first (scanning) component (i.e.,
the likelihood of pausing) and the quality of the input to that process (which is a function of the length of the
observation). It is interesting to note that the two surveyors who correctly identified the fewest sources were also
those who took the least time to complete the survey. Figure 11 shows the source areas and intensities and
surveyor performance in the same format as previously described.

3.3 General Discussion

The surveyor-related factors identified earlier as potential influences on the minimum detectable concentration
are briefly reconsidered in light of the results of the ideal observer analysis and the field experiments. The
analysis of the ideal observer demonstrated that the time for which the activity is sampled determines the
information that is available to the surveyor. Thus, if the probe is moved too quickly, the distributions of activity
on which the surveyor's decision is based will not be sufficiently distinct to support acceptable performance. This
effect may have been the reason for some relatively intense sources going undetected in the outdoor survey.
Although the movement of the probes was not directly measured in any of the field tests, differences in technique
among surveyors were noted by the observers and probably contribute to apparent differences in sensitivity.

Similarly, the failure of surveyors to correctly identify sources at locations they had paused over (especially in
the results of the GM experiment) may have been due to the probe being held stationary for too short a time to
support a sufficiently high correct detection rate, given the strict criterion for a final positive response.
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The importance of the surveyor's criterion for pausing the probe is evident from the analysis of the ideal observer.
The operating point for the first (continuous) component establishes the upper bound for the correct detection
rate and the criterion should, therefore, be quite liberal. The field tests confirmed that surveyors generally do
adopt liberal criteria (i.e., they pause often), but the data indicated that there is much variation among surveyors
in this regard. This is important since correct detections vary greatly with changes in this criterion, especially for
difficult-to-detect sources (¢.g., the indoor GM survey). It would be of interest to determine the degree to which
surveyors' criteria in continuous scanning are affected by the assumed likelihood of a source being present, or the
frequency of sources being found as a survey progresses. If the criterion becomes more stringent when sources
are assumed or found to be unlikely (as signal-detection theory predicts it should), the number of weak sources
missed may become unacceptably large.

Equally important in determining the minimum detectable concentration is the surveyor's criterion for identifying
arcas as contaminated. Here, too, there was considerable variation among surveyors in the field tests - even
between surveyors with roughly equal sensitivity. The extent to which surveyor's performance in this case is
subject to the influences described above is also unknown.

As a whole, the results of the experiments show that sensitivity can vary considerably among surveyors. The
results also demonstrate that the surveyor's choice of a criterion for a positive response is quite important in
determining success in identifying sources. This applies both to the decision to momentarily stop moving the
probe, and to the final decision regarding the presence of contamination. Although a surveyor's training,
experience, and scanning technique may afford adequate sensitivity to detect a given source level, detection
performance may not be optimal unless doth of these decisions are based on appropriate criteria that do not vary
significantly over the course of the survey.
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4 SIMULATION TESTS OF SURVEYORS’ PERFORMANCE

4.1 Objectives and Approach

Some influences on surveyor scanning performance are difficult to assess under field conditions because they
cannot be easily manipulated or controlled. For example, it is not possible in the field to continuously vary
background rate to assess its effect on the surveyor’s performance. Furthermore, the many repetitions of the scan
survey necessary to achieve the desired level of precision in measuring performance can be costly. One means
of achieving the necessary control and repeatability is to record (on audio tape) the output of survey instruments
exposed to various background and sources. This method, however, is labor-intensive, requiring, for example,
an apparatus for moving sources relative to a probe, attenuation of calibrated sources to produce the desired
source rates, and mixing of multiple audio outputs to produce various background rates.

For the present study, a computer simulation of the audio output of a survey device was developed which allowed
audio signals representing various combinations of source and background activity levels to be easily produced.
The simulation consisted of series of brief pulses at the serial port of a personal computer; the pulses were led
to either headphones or a to a small amplified speaker to produce clicks. The intervals between pulses were
randomly sampled from a negative exponential distribution, the parameter of which corresponded to the average
intensity of the process being simulated. Separate routines provided the background and (net) source simulations.
The simulation was used in conjunction with psychophysical procedures, scoring routines, and a user interface
which also were implemented using the computer. In the simulation tests, three different psychophysical
procedures were used which addressed different aspects of the performance of a scanning survey. The general
methods and objectives associated with each are described briefly below. (Detailed methods are given in Section
42).

An adaptive procedure was used to determine the source intensity needed to support an arbitrarily chosen level
of performance under various conditions. The objective was to determine whether the square-root relationships
predicted from the analysis of the ideal observer could be used to predict scanning performance. The procedure
can be used to establish relationships between performance and basic task parameters at relatively little cost (in
surveyor time), since the audio outputs to be judged are presented at short intervals. However, it does not closely
simulate actual surveying in that the intervals to be judged are defined for the surveyor, the likelihood of being
presented with a (simulated) source is high (compared to an actual task), and immediate feedback is provided as
to the surveyors on the correctness of their decisions. Since background rates encountered in field surveys vary
over a wide range depending on type of equipment used and type of location to be surveyed, a range of
background rates was simulated in the present experiments. Because detectability (for the ideal observer) is also
determined by the length of the observation, various intervals also were simulated.

A detection procedure using confidence ratings was used to determine not only the true and false-positive rates
associated with a given condition but also the operating characteristic for each surveyor. The results from this
procedure allowed several aspects of performance to be considered, and also independent measures of sensitivity
and criterion to be calculated. The objective was to determine the relationship of actual to ideal performance and
to examine differences among surveyors. Based on the ROCs derived from the confidence ratings, it was also
possible to determine whether a simple SDT model could be used to predict changes in performance associated
with changes in criteria.

In the continuous monitoring procedure, the observation intervals were not defined for the surveyor and no
feedback was given on the correctness of responses. The objective was to examine performance under
circumstances closer to those characteristic of actual surveys. It is generally found in studies of human
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performance that when aspects of the signal to be detected (e.g., physical characteristics or time of occurrence)
are uncertain, detection is poorer than when the signal is specified exactly. Analysis of performance is difficult
when discrete trials are not defined. Egan, et al. (1961) described an analysis (the method of free response) based
on the times at which responses occurred relative to the presentation of a signal. Responses occurring within a
fixed (brief) period after a signal were considered to have been associated with the signal, while responses
occurring some (greater) time after the signal were assumed to be responses to the background noise. Response
rates for these two periods of time provided estimates of the true-positive and false-positive rates, from which
d' can be calculated (see Section 2.3.1). Watson and Nichols (1976) proposed an enhancement of this approach
which does not depend on an assumption about the period over which responses to the signal will occur. This
is a significant advantage in the present context because the "signals" are long (relative to those typically used
in auditory-detection studies).

4.2 Method and Results
42.1 Adaptive Procedure

In the adaptive procedure, the simulated source level was varied based on the correctness of the surveyors’
responses. The adjustment was made according to a rule designed to arrive at a source level that was detectable
by the surveyor 75% of the time (Kaernbach, 1990). Two studies were conducted; in the first, adaptive
determinations of the 75% correct level were made for three background levels (60, 120, and 240 cpm) and threc
observation interval lengths (2, 4, and 8 sec). Five unique conditions were presented: 2 sec in a 120 cpm
background; 4 sec in a 60 cpm background; 4 sec in a 120 cpm background; 4 sec in a 240 cpm background; and,
8 sec in a 120 cpm background.

Depending on the availability of the surveyors, three, four, or five separate determinations of the 75% correct
level were made for each of the five conditions. The order in which the conditions were run was random. Six
surveyors participated in the defined-interval, adaptive experiment; four had four years of experience in scanning
surveys, one had five years of experience, and the other had one year.

The background rates used in the first study were characteristic of the types of instruments used in the indoor
studies, i.e., GM and gas-proportional detectors. Other instruments, such as the Nal detector used in the outdoor
study, have a much higher rate at background (in the thousands of cpm). This response gives rises to a percept
different from that associated with the GM and gas-proportional instruments. At low background rates the
observer is assumed to judge the numerosity of the instrument clicks, but at high rates the decision is apparently
based on the intensity or density of a static-like sound. Therefore, in the second study, the adaptive procedure
was applied using higher background rates (1000, 3000, and 6000 cpm); the observation interval was 4 sec
throughout. Two or more separate determinations of the 75% correct level were made for each of the three
background levels. Only one subject participated in this smaller study.

In both studies, simulated background activity was continuously present during the data collection. To begin an
observation, the surveyor activated a button on a computer display. A signal light on the screen was immediately
illuminated for the duration of the observation interval. For half of the observations (selected randomly), counts
representing a given level of contamination were added to the background activity during this interval. When the
signal light was extinguished, the surveyor used buttons on the screen to indicate whether or not contamination
was indicated. Then, a feedback indicator on the screen showed whether the response was correct. At this point,
the surveyor was free to begin the next trial.
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The program recorded the levels at which the adjustment reversed direction; the average of these levels for a given
condition was taken as the source level that was detectable 75% of the time. The adaptive procedure typically
took 10 to 15 minutes for each condition. Other things being equal, less time was required to complete the
procedure for the 2-sec interval, and more time was required for the 8-sec interval. The length of the procedure
also depended on the rapidity with which the surveyor initiated and responded to presentations. Finally, the
number of presentations required for a determination depended on the stability of the surveyors' performance.
Several consecutive incorrect responses (such as might result from a lapse of attention) would cause the level to
be adjusted well away from the desired level. When this occurred, the number of presentations required to meet
the termination criterion of the adaptive procedure increased, thus increasing the time needed to complete it.
Consequently, the time required for completion of a given condition ranged between 5 and 25 minutes.

Figure 12 shows the net source levels corresponding to 75% correct performance for detection in backgrounds
of 60, 120, and 240 cpm; the observation interval was 4 sec. Each represents the result of one adaptive
determination. Each symbol shape represents a different surveyor. (The data points for different surveyors are
displaced along the x-axis for clarity). The solid line indicates the average of the determinations at each
background level. Figure 13 shows the net source levels corresponding to 75% correct performance for detection
using observation intervals of 2, 4, and 8 sec; the background rate was 120 cpm. The format of the graph is the
same as in the previous figure. The dotted line in both figures represents the performance expected based on the
ideal observer discussed in Section 2.3.2. The level of the ideal observer function (i.¢., its position on the vertical
axis) is arbitrary; it is anchored to the detectability achievable for a net source of 120 cpm in a background of 60
cpm (i.e., three times background). In both figures, the function for the ideal observer roughly parallels the
average function for the actual surveyors (indicated by the solid line). However, there is a good deal of variability
in the 75% correct levels determined by the adaptive procedure, both for individual surveyors from one
determination to another, and between one surveyor and another. This may reflect the inherent variability of the
background and source processes, the variability of surveyor sensitivity (e.g., variations in attention), or both.

Net source levels corresponding to 75% correct performance for detection in backgrounds of 1000, 3000, and
6000 cpm (for the single surveyor in the second study) are shown at the upper right of Figure 14. The average
values for backgrounds of 60, 120, and 240 (from Figure 12) are also shown. Two or more determinations were
made at each of the higher background rates. (As a check, some data were also collected for this observer at 240
cpm; the source level values fell within the range reported above). Similar to the values for lower background
rates, the values for 3000 and 6000 cpm define a line with a slope of 0.5 on log-log axes; that is, the 'square root
of background' relationship apparently holds. The values for 1000 cpm (just two data points) fall above the line
defined by the higher rates. It is not clear whether this is a result of normal variability (perhaps compounded by
lack of practice with judging the higher backgrounds) or whether the judgement was reliably more difficult at
1000 cpm.

It is interesting to note that the values for 3000 and 6000 cpm fall just above a line extrapolated through the
values collected at 60, 120, and 240 cpm. This indicates not only that the 'square root relationship’ adequately
describes performance at high as well as low background rates, but also that the surveyor’s efficiency does not
vary greatly over this range.
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Figure 12 Adaptive determination of 75% correct source levels for 60-, 120-,
and 240-cpm backgrounds; each symbol represents a different surveyor
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Figure 13 Adaptive determination of 75% correct source levels for 2-,
4-, and 8-sec intervals; each symbol represents a different surveyor
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Figure 14 Source levels determined by adaptive adjustment for background rates of 1000, 3000,
and 6000 cpm,; also shown (at left) are average values (five surveyors) for 60, 120, and 240 cpm

4.2.2 Rating Procedure

A single fixed-source level was used in the rating procedure. In addition to indicating whether or not a source
had been simulated, the surveyors indicated their confidence on a six-category rating scale. The 60 cpm
background level was used throughout; the net source level was fixed at 120 cpm. Four surveyors participated
in the defined-interval rating experiment. Three of the participants had four years of experience in scanning
surveys; the other had one year of experience.

For the confidence-rating procedures, the number of responses in each category was tallied separately for trials
in which a source was simulated, and trials in which only background activity was simulated. From these
distributions, relative operating characteristics were generated by the methods described by Egan, Schulman, and
Greenberg (1959), and indices of detectability were calculated.

Figure 15 shows the ROCs (sce Section 2.3.2) generated from the confidence ratings of the four surveyors. As
indicated earlier, the surveyors detected a 120 cpm net source in a background of 60 cpm; This condition was
nearly equally detectable for all four surveyors. As was found previously (Brown and Emmerich, 1994; Brown,
1995), the ROCs were not markedly asymmetrical; therefore, d' is assumed to be an adequate index of
detectability. The d’ values corresponding to the yes/no points (filled symbols) ranged from 2.2 to 2.6.
Presumably, because feedback was provided after each trial, the surveyors did not differ radically for the yes/no
criterion; that is, the yes/no points fell close to the negative diagonal. However, one surveyor (s in Figure 15)
maintained a higher criterion (said 'ves' less often) than the others. This resulted in a true-positive rate of about
80%, as compared with 90% for a surveyor (® in Figure 15) with roughly equal sensitivity but a less strict
criterion.
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Figure 15 Rating ROCs for four surveyors; background 60 cpm, net source 120 cpm

The surveyors' actual performance compared with the ideal (given the statistics of the distributions of background
and source counts) indicates their efficiency. This efficiency can be modeled by assuming that the surveyor, like
the survey instrument, does not necessarily register every event. By adjusting the proportion of counts that the
ideal observer registers it is possible to roughly equate the ideal and actual performance. The proportion at which
the two most closely coincide can be taken as the efficiency of the surveyor. The efficiencies for the four
surveyors were between 0.5 and 0.75.

4.2.3 Monitoring Procedure

This procedure differs from those described in the preceding sections in that the time at which a source may be
simulated is not indicated to the surveyor. For a given background rate and interval length (simulated probe
speed), sources were presented at random intervals during data-collection sessions. The surveyors’ task was to
respond (by clicking a button on the computer display) whenever they detected evidence of a source; this was
equivalent to the decision to momentarily halt the movement of the probe. Surveyors then were allowed to listen
to the simulation for as long as they wished before making a second, yes/no decision on whether a source was
being simulated. Thus, from the surveyor's point of view, the simulation was a reasonably close approximation
of the actual task. However, there is a practical problem with this implementation. To continue the presentation
of the current condition when the surveyor calls for a pause, an assumption must be made (similar to that in the
method of free response) about the meaning of responses occurring at various times after the beginning of the
presentation of the simulated source. In the present experiments, the same critical time (i.e., time within which
responses are considered true positives) was assumed (based on preliminary studies) for all surveyors. Only after
analysis was complete could the actual critical time be empirically determined for each individual based on the
observed distribution of response times.
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The computer program recorded the time of occurrence of the first response after the start of each measurement
interval; these latencies are the basis for the analysis. Frequency distributions of the latencies were generated
separately for intervals in which a source was simulated and intervals in which only background activity was -
simulated. Using the methods described by Watson and Nichols (1976), an index of detectability (d) was
computed for the conditions simulated. Comparing these results with the expected performance of the ideal
observer and with the performance of the surveyor in defined-interval detection indicated the surveyor’s
"efficiency" under conditions that approximated those of actual surveys.

The monitoring task employed a background of 60 cpm and simulated sources of 120 cpm which were randomly
presented for 4-sec intervals; the intervals were not indicated to the surveyors. Two monitoring studies were done.
In the first, five surveyors monitored in blocks several minutes long. Each block consisted of 20 intervals of
between 10 and 20 sec. Sources were simulated at the start of half of them. Each surveyor completed 10 blocks.
Figure 16 summarizes the performance of one surveyor on the undefined interval task. The general pattern of
results was similar for all five surveyors. As described earlier, the analysis is based on the times at which the
surveyor responds relative to the beginnings of the intervals. The cumulative proportion of responses that
occurred within a given time after the beginning of a measurement interval is plotted for intervals which began
with simulated sources and those with only background. The cumulative proportions of each type of response
occurring within a given interval after the interval started are used to calculate d’ values; the value of d'
corresponds to the maximum separation of the two functions and is assumed to indicate the surveyor’s sensitivity.
As shown in the figure (reading from the right axis), d’ for this surveyor reaches a maximum of roughly 2; the
d’ values ranged from roughly 1.4 to 2.3 for the five surveyors.

Surveyors adopted criteria that allowed them to respond during or immediately after the presentation of 90% or
more of the simulated sources. That is, they seemed to respond as they would in the field, pausing often of
minimize the number of sources missed. The proportion of background intervals in which one or more responses
were recorded ranged from 0.58 to 0.98. Pauses typically lasted roughly 4 to 5 sec, although many longer pauses
(8 sec or more) were recorded. Examination of a portion of the yes-no decisions made after the pauses indicated
that very few sources were missed at this stage, but the false-positive rate was also relatively high (roughly 0.25).

A second monitoring experiment (using one observer) assessed the effects on performance of extended periods
of surveying (see Section 2.5.2). Background and source rates were set as before to facilitate comparisons. The
intervals ranged from 90 to 180 sec (as compared to 10 to 20 sec previously), resulting in collection sessions
roughly one hour (compared to several minutes). Ten of these 'vigilance' sessions were completed. Several
sessions were run with the shorter intervals for comparison. Interestingly there was no apparent detrimental effect
on performance in the long sessions. Comparison of the responses made early and late in the sessions indicated
no marked changes in either sensitivity or decision criterion over time.
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Figure 16 Cumulative proportion (left axis) of responses as a function of time after the
beginning of interval for source (solid), and background intervals (dashed); heavy line
indicates values of 4’ (right axis)

4.3 General Discussion

Taken together, the simulation studies demonstrate the extent to which human limitations and the type of
scanning task reduce the efficiency of the surveyor relative to an ideal observer. The ideal observer attempting
to detect 180 cpm (gross) in a background of 60 cpm (i.e., a source three times background) can correctly detect
the source roughly 91% of the time with about 5% false alarms (assuming a 4-sec observation and a criterion of
eight counts; see Table 2). This corresponds to a d' value of roughly 3. In the defined-interval task, using the
same background and source values, a typical surveyor detected about 90% of the sources with a false-alarm rate
of 14%, for a d’ value of about 2.4. With undefined intervals, under the same conditions, the performance of the
same surveyor yielded a d' value of 1.8. This demonstrates that 1) even under ideal circumstances (i.e., with
defined observation intervals) humans do not behave as perfect counting devices (i.e., they are less efficient than
the ideal observer), and 2) in scanning, where observation intervals are not defined, the efficiency of the surveyor
(relative to the ideal observer) declines further.

NUREG/CR-6364 32




5 EXPERIMENT RESULTS AND THE ESTIMATION OF SCANNING MDC

5 EXPERIMENT RESULTS AND THE ESTIMATION OF SCANNING MDC

5.1 Overview of Results

During indoor scans, most surveyors adopted a criterion for pausing that allowed them to stop over roughly 90%
of the sources. Surveyors using the GM probe tended to give a negative response for many of these sources;
fewer of the sources paused over were subsequently "missed" with the gas-proportional probe. As a whole, then,
the results depended significantly on the decision at the second (pause) stage. By contrast, in the outdoor scan
using the Nal probe, performance depended almost entirely on the first (scan) stage. With few exceptions,
sources paused over were correctly identified as such. Thus, the point in the process at which human performance
limitations have the greatest impact depends on the scanning situation.

The results of the adaptive defined-interval procedure indicate that theoretically predicted effects of background
rate and observation interval length on detectability may be useful in roughly predicting the performance of
surveyors under various conditions. However, the levels determined using this procedure do not necessarily
correspond to a level that will be detectable with 75% accuracy in a given background by an observer in the field.
Rather, the results of the adaptive experiment indicate that if a given source level allows acceptable performance
for a certain background rate and probe speed, it is possible to estimate the source level expected to yield equal
detectability for other backgrounds and speeds. It should also be noted that, given the degree of variability in
actual performance (within and between individuals), this prediction is of average performance.

The confidence-rating task indicated that the form of the function relating true-positive-and false-positive rates
for the simulated survey task does not deviate markedly from that predicted by a signal-detection model which
assumes that the decisions are based are normal distributions. Therefore, it can be assumed that calculating d’
from true- and false-positive rates (Section 5) does not greatly misrepresent the observers' sensitivity (i.e., that
the sensitivity indices are independent of the surveyors' criteria).

Performance in the undefined-interval tasks was poorer than that in the defined interval situation for the same
background and source intensities. The method of Watson and Nichols (1976) appears to be a practical means
of assessing scanning performance under controlled survey conditions while preserving a critical element of the
task, i.e., the continuous observation. Results from this method will be important in estimating source levels
actually detectable (at a specified true-positive and false-positive rate) in a given background.

5.2 Estimation of Detectable Source Levels

The changes in detectability as a function of background level and observation interval (as determined in
simulations using adaptive-level adjustment) were consistent with theoretical predictions, i.e., the number of
source counts required to yield a constant level of performance was proportional to the square root of the number
of background counts in the observation. Therefore, if performance is known to be acceptable for a given
background/source condition and observation interval, it is possible to estimate source levels expected to support
similar performance under other conditions.

If a value is assumed for the surveyor’s efficiency, the number of source counts required to yield a particular level
of performance (specified in terms of d) can be estimated. The surveyors' performance compared with an ideal
one (given the statistics of the distributions of background and source counts) indicates the surveyors’ efficiency.
The efficiencies estimated from defined-interval performance ranged between 0.5 and 0.75. Sensitivities (as
indicated by d”) in the undefined-interval experiments were lower. While the limited study of extended periods
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of monitoring showed no evidence of a further decrease in performance, it can not be concluded that such
decrements would not occur under field conditions, and it is probably advisable to assume an efficiency value no
greater than 0.5 when estimating count rates detectable in the field.

Egan (1975, p. 182) shows that detectability for Poisson distributions can be expressed as

where s; and b are, respectively, the average number of source and background counts in an interval. For
background and source rates (b and s, respectively) in cpm and interval length 7 in seconds, s; = s(i/60) and
b,=b(i/60). The detectability index, D, is asymptotically equal to d' (when b, is large). Therefore, for an ideal
observer, the number of source counts required for a specified level of performance can be assessed by
multiplying the square root of the number of background counts by the detectability value associated with the
desired performance (as reflected in d'); i.e.,

s, =d’ \/b_,

where the value of d'is selected (e.g., from Table 1) based on the required true-positive and false-positive rates.

For example, suppose that one wished to estimate a count rate that is detectable by scanning (i.e., at the first
detection stage) in a background of 1500 cpm. Assuming that a typical source influences the moving probe for
1 sec, the average number of background counts in an observation is 25. Furthermore, as discussed, it can be
assumed that at the scanning stage a high rate (e.g., 95%) of correct detections is required, and that a
correspondingly high rate of false positives (e.g., 55%) will be tolerated. From Table 1, the value of 4’
representing this performance goal is roughly 1.5. The net source-counts needed to support the specified level
of performance (assuming an ideal observer) will be estimated by multiplying 5 (the square root of 25) by 1.5.
Thus the source counts per interval needed to yield better than 95% detections with about 55% false positives
is 7.5. The net minimum detectable count rate (MDCR) in cpm is s; (60/7) or 450 cpm (1950 cpm gross).

For a less-than-ideal observer, Egan (1975, p. 187) shows that detectability becomes

$; P §;
D = x VP

Vo p \/b—,
where p is the efficiency of the observer. The required source counts, again using d' to reflect the desired
performance, are estimated as follows:

d- b,

Si = _[-I

Vp

To continue with the above example, for the same performance requirement, the source counts needed by an
observer with an efficiency of 0.25 is estimated by dividing 7.5 by 0.5 (the square root of 0.25). Thus, the
required number of source counts is 15, which is equivalent to 900 cpm (2400 cpm gross). (Note that the
efficiency value of 0.25 was chosen for convenience in calculating this example. The efficiencies estimated from
the experimental results were higher).
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The source counts required to support a given level of performance for the final detection decision can be
estimated using the same method. As explained earlier, the performance goal at this stage will be more
demanding. The required rate of true positives remains high (e.g., 95%), but fewer false positives (e.g., 10%)
can be tolerated, so that d’ (from Table 1) is now roughly 3. Assuming that the surveyor typically stops the probe
over a suspect location for about 4 sec before making a decision, the average number of background counts in
an observation is 100. The efficiency of the surveyor is assumed to be the same at both stages (in this example,
0.25). Therefore, the net source counts needed will be estimated by multiplying 10 (the square root of 100) by
3 (the d’ value), and dividing by 0.5 (the square root of the efficiency). The result is 60, which is equivalent to
900 cpm (2400 cpm gross).

It should be noted that the detectable count rates estimated as described will not necessarily be equal for the first
and second stages of the detection model. (The pause length at which the detectable net source is equal for both
depends on the choice of d” for each stage.) When attempting to estimate the minimum detectable count rate for
given performance requirements, the greater of the two values probably would be chosen. Typically, the value
associated with the first (scanning) stage will be greater, owing to the relatively brief intervals assumed.
However, if the length of the pause (i.e., the interval assumed for the second stage) is not significantly longer than
the first-stage interval, the value associated with the second stage will be greater.

A convenient efficiency factor of 0.25 was used in the above examples. Figure 17 shows, for the conditions
described, the estimated detectable net source rate as a function of background rate for assumed observer
efficiencies of 0.25, 0.50, 0.73, and 1.0, reading from top to bottom.

5.3  Review of Assumptions and Results

To summarize the development of the method for estimating MDCR, each of the key assumptions and the
relevant experimental results is briefly reviewed below.

The central assumption in estimating minimum detectable count rate is that the minimum detectable increment
in the number of counts in an observation varies as a function of the square root of the number of background
counts. This is based on a signal detection theory model of a Poisson (or 'counting') observer. The adaptive
simulation experiments indicated that this relationship adequately represents surveyors’ performance over a wide
range of background rates. However, for low background rates there was considerable variability in these results
both within and between observers. Furthermore, the correspondence between the results at low and high
background rates may be fortuitous, since few data were collected at high rates. Thus, the generality of the
assumption should be verified in future experimentation.

It was assumed that observers' performance could be related to that expected of an ideal observer by an efficiency
factor which represents the probability of a count being recorded by the observer's decision process, thus reducing
the effective number of background- and source-counts in the observation. The results of an experiment on
defined-interval confidence rating indicate that this factor is no greater than 0.75. The monitoring (undefined-
interval) results showed lower sensitivities than the defined-interval results; therefore, an efficiency value of 0.5
is more appropriate for estimating field performance.

Using d'to convert performance requirements (desired detection rate and permissible false-positive rate) into an
index of detectability implicitly assumes that the distributions underlying the observers' performance are normal.
The fact that the ROCs resulting from the confidence rating experiments were not markedly asymmetrical
indicates that this assumption is acceptable.
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Figure 17 Estimates of net detectable source levels for assumed observer
efficiencies of 0.25, 0.50, 0.75, and 1.0

Finally, it was assumed that surveyors would employ a lenient criterion for pausing the probe and a stricter one
when judging the activity observed during the pause. The results of the field experiments were consistent with
this assumption and provided a basis for the true- and false-positive rates assumed in the sample calculations in
the previous section. However, as with the other results, there was considerable variation in surveyors'
performance in the field studies; the values used were typical of the best-performing surveyors. This brings up
the point that, although an efficiency factor was used to adjust estimates calculated in the previous section, the
estimates may still represent 'ideal’ performance with respect to the criteria adopted by the hypothetical surveyor.
It is assumed that the surveyor 'chooses' and can maintain criteria for both decision stages that allow achievement
of a desired overall level of performance. Surveyors do not consciously set the precise parameters of their
behavior, nor are they necessarily aware of changes in these values as a survey progresses.

Although the limited study of extended periods of monitoring did not demonstrate a large effect of ‘time-on-task'
on sensitivity or criterion placement, it cannot be assumed that this is generally the case in actual surveying. The
lack of a regular relationship in the field studies between the intensity/area of a source and the likelihood of its
being detected suggests the opposite. That is, the fact that sources very similar in geometry and intensity differed
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greatly in the number of times they were correctly identified suggests that surveyors' criteria and/or sensitivity
fluctuates during a survey.

The data collected in these studies do not speak definitively to the mechanism for, or the magnitude of, such
changes. Processes associated with the 'vigilance decrement' are a possible source of variability, but other factors
may come into play. The placement of a criterion to achieve a given level of performance involves an assumption
by the surveyor about the size of the increment that is to be detected. Surveyors' criteria may, therefore, vary as
a result of the sequence in which they encounter sources of various intensities.

The importance of the criterion to the outcome of the survey activity is best illustrated in Figure 5, in which
acceptable performance (better than 90% detections with fewer than 10% false alarms) is indicated by the square
at the upper right of the ROC. There is a minimum level of sensitivity (or, equivalently, a minimum level of
activity) below which acceptable performance is not achieved. However, even when the level is adequate (as
shown in the diagram), changes in criterion at either stage can shift performance out of the acceptable range.
Therefore, it would be interesting to conduct experiments specifically designed to reveal such criterion variations.

It also would be of interest, especially to those who use MDCRs estimated by the method described here, to
validate these values in controlled field studies or further simulation experiments which would presumably
concentrate on the values predicted by this method for specific circumstances. As stated earlier, the few studies
in the literature of surveyors’ performances in the context of determining MDC do not provide an adequate check
on these estimates. Ideally, for practical application of the estimation method, sufficient evaluations should be
conducted to establish the norms for survey performance, which would, in turn, allow examination of the
sensitivity of the MDC to variations human performance to be examined. For the present, it should be recognized
that estimates produced this document reflect performance typical of relatively few surveyors.

In addition to providing a basis for estimates of MDCR, the model of survey activity described in the previous
section implies an optimal relationship between the lengths of the observations associated with the first and
second detection stages, deviation from which will result in poorer overall performance. Experiments in which
the movements of the probe are tracked and timed would reveal whether surveyors' actual performance
approximates the predicted relationship. Because time limitations (explicit or implicit) are necessarily a part of
the survey task, surveyors' relative allocation of time to scanning and pausing when the total time is limited will
greatly influence their effectiveness.
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