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Abstract

An understanding of the migration and motion of bacteria in a fluid phase and near
solid surfaces is necessary to characterize processes such as the bioremediation of
hazardous waste, the pathogenesis of infection, industrial biofouling and wastewater
treatment, among others.

This study addresses three questions concerning the prediction of the distribution of
a population of bacteria in a fluid phase and the motion of bacteria near a solid surface:
Under what conditions does a one-dimensional phenomenological model for the density of
a population of chemotactic bacteria yield an adequate representation of the migration of
bacteria subject to a one-dimensional attractant gradient? How are the values of transport
coefficients obtained from experimental data affected by the use of the one-dimensional
phenomenological model and also by the use of different descriptions of bacterial
swimming behavior in a mathematically rigorous balance equation? How is the
characteristic motion of bacteria swimming in a fluid affected by the presence of a solid
phase?

A computer simulation that rigorously models the movement of a large population
of individual chemotactic bacteria in three dimensions is developed to test the validity of a
one-dimensional phenomenological model for bacterial migration in a fluid. It is found
that, to within the precision of the simulation technique, the one-dimensional model yields
solutions very similar to the rigorous simulation technique for a wide range of conditions
relevant to experimental studies in a stopped-flow diffusion chamber.

The finite element method (FEM) is used to obtain solutions to a more rigorous
equation for the migration of a population of bacteria in response to a one-dimensional
attractant gradient. FEM solutions are compared to solutions of a one-dimensional
phenomenological model to determine the error incurred when this model is used to obtain

the value of'the chemotactic sensitivity coefficient, a macroscopic transport coefficient. It is

m



found that the value of the chemotactic sensitivity obtained from experimental data using the
FEM solutions and solutions using the one-dimensional model can be significantly
different. The chemotactic sensitivity coefficient is also shown to be sensitive to the choice
of the model for down gradient swimming behavior, leading to errors as large as 100% in
the chemotactic sensitivity coefficient.

The motion of Escherichia coli near a solid surface is studied using a microscope
that tracks individual bacteria in three dimensions. The experimental data is compared to
two analytical solutions: one for the motion of a sphere propelled by a single flagellum
rotating at a constant speed and the other for a sphere moving perpendicularly toward the
surface and opposing a constant force. It is found that the change in the cell swimming
speed as a function of the surface-to-cell distance is in agreement with the change predicted
by the two theories. The tendency of flagellated bacteria to swim in 30 - 50 pm circles
when moving along a solid, planar surface is demonstrated in orthogonal projections of the
tracking data that show the position of the solid surface relative to the bacterium. It is
observed that bacteria turn parallel to a surface when swimming toward it instead of
colliding with the surface. The Deijaguin-Landau and Verwey-Overbeek (DLVO) theory of
colloid stability is applied to the experimentally measured electrostatic parameters for the
system to offer an explanation for the tendency of cells to swim very close to the surface

without becoming irreversibly adsorbed to it.
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Chapter 1

Introduction

The presence of bacteria in natural systems affects our lives in both positive and
negative ways. Bacteria can detoxify synthetic compounds released into the environment
as well as breakdown and mineralize contaminants in industrial and domestic waste water.
However, they can also cause disease, produce compounds which are toxic, and foul
industrial processes and marine surfaces. In order to determine the extent to which these
processes occur, it is necessary to determine, among other things, the distribution of
bacteria in the system of'interest. Accurate predictions of the distribution and migration of
bacteria in these systems make it possible to augment the beneficial aspects of a bacterial
presence and to reduce the negative aspects.

This study attempts to answer the following three questions concerning the
prediction of the distribution of a population of bacteria in a natural environment: To what
extent do approximations implicit in a one-dimensional phenomenological model for the
migration of a population of chemotactic bacteria in a fluid medium affect the ability of the
model to accurately predict the distribution of bacteria? How are the values of transport
coefficients obtained from experimental data affected by the use of the one-dimensional
phenomenological model and also by the use of different descriptions of bacterial

swimming behavior in a mathematically rigorous balance equation? How is the



characteristic motion of bacteria swimming in a solid phase affected in the presence of a
solid phase?

Chapters 2 and 3 deal primarily with mathematical models for the migration of a
population of chemotactic bacteria in a bulk fluid medium. In order to probe the validity of
a one-dimensional phenomenologically-based model equation for the time evolution of the
density of a population of chemotactic bacteria, a cellular level simulation is developed in
Chapter 2. The simulation incorporates the constitutive relationships of the model
equation, but is a mathematically much more accurate representation of the phenomena that
the one-dimensional balance equation attempts to model. The simulation therefore allows
the validity of the balance equation used in the model equation to be tested apart from the
accuracy of the constitutive relationships integral to the model.

A priori knowledge of the characteristics of bacterial motion is necessary to develop
the proper constitutive relationships for inclusion in the model equation. However, in
many situations, balance equations are applied to experimental studies in order to obtain the
values of population-based transport coefficients with incomplete knowledge of the
behavior of the bacteria being modeled or the extrapolation of the behavior of one type of
bacteria to another type. Chapter 3 examines the use of balance equations and constitutive
relationships in the analysis of experimental data on bacterial chemotaxis in the stopped-
flow diffusion chamber. In the analysis of these experimental studies, the macroscopic
transport coefficient x™> the chemotactic sensitivity coefficient, is obtained from
experimental data by matching the experimental data for the accumulation of bacteria around
a gradient of a chemical attractant to solutions of mathematical models for the migration of
bacteria in the presence of an attractant. This study shows the effect of different
constitutive relationships for the tumbling response of bacteria to a negative attractant

gradient on the value of Xo obtained from the experiment. In addition, this research also

shows the effect of the use of a phenomenologically based, one-dimensional model



compared to a mathematically rigorous three-dimensional analogue on the value of Xo

obtained from experiment.

Chapter 4 deals with the experimental observations of the changes in the
characteristic motion of bacteria near a solid surface. These experiments were performed
using both a wild type and a smooth swimming mutant of E. coli. The motion of cells near
a plane surface is studied through the analysis of the paths of individual cells as they
approach a surface. Distributions of the mean swimming speeds of cells are analyzed to
determine if significant differences in the swimming speed are present for particular
surface-to-cell distance regions or cell orientations (i.e.; toward or away from the surface).
The swimming speeds of individual cells as function of the surface-to-cell distance are
measured and compared to theoretical solutions to the equations of motion of a sphere
moving toward a solid surface through a viscous fluid. Comparisons are made to two such
theoretical solutions in order to determine if models that consider only hydrodynamic
interactions are appropriate for application to bacterial motion near a surface and at what
distances these models are valid. Calculation of the DLVO interaction potential for the wild
type cells offer a possible explanation the interesting tendency of bacteria to "track” a solid
surface, often executing nearly perfect circles as they swim.

Chapter 5 summarizes the results of this study and presents concluding remarks to
address the significance of this study and suggests a next step in the study of bacterial

migration in the presence of solid surfaces.



Chapter 2

Cellular Dynamics Simulations of
Bacterial Chemotaxis

2.1 Introduction

The migration of bacterial populations plays an important role in many ecological
processes such as nitrogen fixation, pathogenesis of infection, formation of biofilms and
the degradation of chemical wastes in the environment (bioremediation) [21]. However,
the extent to which migration affects these natural processes is not well understood. One
approach toward quantifying this behavior is through the development and application of
accurate mathematical models. The transport properties contained within these models are
needed for the design of effective processes which would exploit the migration and
redistribution of bacterial populations in natural environments. For example, bacterial
migration is important for facilitating contact between the bacteria and the contaminant to be
degraded for in situ applications of bioremediation.

Rivero and co-workers [62] have proposed a mathematical model (hereafter referred
to as the RTBL model) describing the migration of bacteria in the presence of chemical
gradients. Their model includes two transport coefficients: one to characterize random

motion in the absence of chemical gradients and another representing the directed motion



associated with the presence of a chemical gradient. An experimental apparatus was
designed by Ford ef al. [30] to determine values for the transport properties which are
utilized in the RTBL model. However, the model was derived for the case of motion in
only one dimension while bacteria within the experimental apparatus actually move in three
dimensions. Although the RTBL model was shown to agree well with experiments under
conditions of steep one-dimensional chemical gradients, it has been subsequently shown
[28] that the RTBL model cannot be reconciled with a more mathematically rigorous (but
more difficult to apply in practice) three-dimensional cell balance approach except in one
limiting case- specifically, the limit of a small one-dimensional attractant gradient implying
symmetry in the remaining two dimensions. It is our objective in this paper to study the
effect of simplifying assumptions implicit in the RTBL model on solutions obtained under
the conditions of steep chemical gradients realized in the experiments of Ford ef al. This is
accomplished through the application of a cellular level simulation technique to problems
where we expect the model to perform the least satisfactorily based on the series expansion
analysis of Ford and Cummings [28]. Since the transport properties will be used for
design of improved processes, it is critical that the models we use to interpret experimental
data for determining these coefficients be accurate. With these tools available, those
processes which most strongly influence bacterial behavior in natural settings can be
identified and appropriate strategies for design and control can be implemented.

In Section 2.2, some of the previous work in the area of bacterial chemotaxis is
reviewed. In Section 2.3, the methodology of the computer simulation program is
described . The simulation results are compared with RTBL in Section 2.4 for conditions
similar to those in the experimental apparatus developed by Ford and co-workers [30] to
study the migration of bacterial populations. The comparisons are performed over a range
of parameters characterizing the attractant concentration and bacterial sensitivity to the

attractant in order to delineate the regions where the RTBL model is valid.



2.2 Background

Peritrichous bacteria such as Escherichia coli and Salmonella typhimurium are able
to move in a fluid medium via the coordinated rotation of approximately 6-8 flagella
attached to the perimeter of the cell. The movement of these bacteria can be described as
alternating between two distinct phases: "running" and "tumbling" [11, 46, 70]. During
the running phase, the cell's flagellar bundle rotates counterclockwise in a coordinated
fashion and the cell moves in a nearly straight path. The duration of a typical run is of the
order of | to 10 s. In the tumbling phase, the rotation of the flagella reverses and the
bundle uncoils so that no coordinated linear motion occurs and the cell spins in place. The
duration of the tumbling phase is of the order of 0. Is. As a result of tumbling the cell
reorients itself according to a turn angle distribution, which has a slight bias in the direction
the cell was moving prior to tumbling [11, 47] and then begins a new run. In a uniform
environment, the swimming pattern resembles a three-dimensional random walk similar to
Brownian motion in molecular diffusion. This motion is described by the term random
motility.

In the presence of a concentration gradient of an attractant (food sources such as
sugars or amino acids, for example), bacteria are able to bias their random walk by
changing their tumbling frequency [46, 70], When moving toward an area of increasing
(decreasing) attractant concentration, cells decrease (increase) their tumbling frequency,
thereby increasing (decreasing) the lengths of their runs in the direction of increasing
(decreasing) attractant concentration. In this way, a population of cells moving within an
attractant gradient will exhibit a net movement toward the attractant source. This overall
directed motion is called chemotaxis. The ability of chemotactic bacteria to direct their
motion enables them to move to more favorable environments by swimming toward
increasing concentrations of nutrients, giving these bacteria a competitive advantage over

nonmotile bacteria [40].



A complete mathematical description of the motion of a population of chemotactic
bacteria requires a set of cell balance equations along with constitutive relationships which
relate the quantities in the cell balance equation to the properties of the cells and their
motion. The three-dimensional cell balance equations of Alt [5] are the most general.
Letting efr.s, 7,2) be the number density of cells per unit volume at position r moving in
direction s with run time T (i.e., the time since the preceding tumble), at time #, Alt's

fundamental equation is:

d<j(r,s,T,1) _ _g#vrv(ro<r(rs, T,o] - P{,5, T,Her(rs, o) (2.1)
dt dx

for r> 0 and:

cr(r,s,0,r) = o(r,s' x,0)k(r,s",f,s)ds'dT 2.2)
0

for T=0. Here, /3(r,s, X,?) is the probability per unit time that a cell moving in direction

s at r attime ¢ with run time T tumbles at r attime ¢. The probability that a cell chooses

the direction sl as its new direction after tumbling is ~(r.SpriSj). The subscript r
emphasizes that the operator Vr is with respect to the spatial coordinate r. The swimming
speed of the bacteria is v and is known from experimental observations to be relatively
constant over a range of attractant concentrations [11, 56], Equation 2.1 states that the rate
of change in the population of cells at r at time # moving in direction s with run time x is
given by a term which reflects the change in the population due to changes in the run time,
a term that reflects the change due to convection, and a term that reflects the loss to the
population due to cells tumbling with probability ff. Equation 2.2 states that one obtains
an initial ( T = 0) population of cells moving in direction s by considering cell populations

which were moving in another direction s' with run time x, which tumbled at time ¢,



represented by the product p(r,s’, T,0)cr(r,s’, T,1), and multiplying by the probability that
the cell moves in the direction s after tumbling, given by k(s f;s). This product is
integrated over all directions s' and all run times T.

Segel [66] and Rivero ez al. [62] have developed simpler phenomenological models
based on individual cell motion in one direction only. The one-dimensional balance

equations of Segel are:

3nt d(sn+t)

+p n~ pint (23)
dt dt
di d ~
'f (sn~) +p+n+ —pn (24)
nr dt

where n+(z,2) is the density of cells at point z at time # moving in the positive z direction
and n~¢z,» is the density of cells at point z at time # moving in the negative z direction, 5
is the one-dimensional, scalar swimming speed of the bacteria, p+ = p+(z,0) is the
probability per unit time that a cell moving in the positive z direction tumbles and becomes
a cell moving in the negative z direction and p~ = p~(z,» is the probability per unit time
that a cell moving in the negative z direction tumbles and becomes a cell moving in the
positive z direction.

The RTBL model is based on the cell balance equations of Segel. Under the
assumption that the phenomenon of tumbling is a Poisson process [9], the tumbling

probability /? is equal to the inverse of the mean run time,

P (2.5)

<>

This assumption is supported by the experimental work of Berg and Brown [11]. Rivero

et al. write this equation in one dimension as:



Pt = Q2.6)

(")

where /J* =)3+(z,0 is the probability that a cell moving in the +z direction tumbles and

(T*) is the mean run time for cells moving in the £z directions, respectively. In addition,

Rivero et al. propose:

Pt fPr 2.7)

where pr is the probability that a cell reverses direction after tumbling. The mean run times

(T*) are then related to the attractant concentration a and its gradient by:

In(T£)=+ZoD N o~
(10) 5 {Kd+afdz

2.8
where (T0) is the mean run time in the absence of a chemical gradient, Kd is the
dissociation constant for the attractant-receptor binding and is the one-dimensional
chemotactic sensitivity parameter. In the RTBL model, Equations 2.6-2.8 form a set of
constitutive equations for Segel's cell balance equations.

As shown in Appendix A, Equation 2.8 is a mathematical simplification of the

expression for bacterial motion in three dimensions given by:

(To) vV (Kd+ afS Vra (2.9)

where XoD is the three-dimensional analogue of XoD1 For a discussion of the derivation of
Equation 2.9 above we refer the reader to Appendix A. Substituting Equation 2.5 into

Equation 2.9 and rearranging, we have:



P =Poexp XZD [Kﬁa)z « mVa 2.10)
where:
BBo = Q-1
In the one-dimensional RTBL model:
P+=P| exp TZ0D Kd da Q.12

s [Kd+a) dz

so the complete RTBL model is the set of Equations 2.3, 2.4, 2.6, 2.7, 2.11 and 2.12.
For a discussion of the approximate nature of Equation 2.12 we refer the reader to
Appendix A.

The RTBL model was applied to the interpretation of experimental data by Ford et
al. [30] for E. coli K12 responding to fucose. The experiments were carried out in a
stopped-flow diffusion chamber (SFDC) shown schematically in Figure 2.1. For assays

of chemotactic bacteria in the SFDC, a suspension of bacteria at concentration bo is

pumped at a uniform rate into the upper port of the chamber and a mixture of attractant at
concentration a¢ and bacteria at concentration bo is pumped at a uniform rate into the lower
port. Fluid exits through ports at the centerline of the chamber and the flow rates are
controlled by a dual piston syringe pump so that for times t < 0, the two impinging streams
form a step change in the attractant concentration at the center of the chamber. At time
t = 0, flow into and out of the SFDC is stopped and the attractant begins to diffuse into the

upper half of the chamber generating a time-dependent gradient. As bacteria sense the

10
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gradient a band of high cell density forms where the gradient is large and moves downward
in the chamber to regions of higher attractant concentration. The experimental geometry is
one of symmetry in two dimensions (the x and y directions in Figure 2.1) with an

attractant gradient in the third dimension (the z direction).

Stopped-flow diffusion Simulation box
chamber

Figure 2.1: Schematic representation of the SFDC used by Ford and co-workers.
Impinging flow from the upper and lower ports creates an initial step change in attractant
concentration at the center of the chamber and a uniform distribution of bacteria. The

approximate dimensions of the chamber are 4 cm x 2 cm x 0.2 cm. On the right is an
exploded view of'the simulation box which is referred to later in the text.

Ford and Cummings [28] studied in detail the relationship between the three-
dimensional balance equations of Alt, Equations 2.1 and 2.2, and the one-dimensional
equations of Segel, Equations 2.3 and 2.4, the latter being the basis for the RTBL model.
Ford and Cummings showed that the Segel equations could only be derived rigorously

from Alt's equations when the motion of the bacteria is confined to one dimension. They



considered three-dimensional systems with an attractant gradient in the z-coordinate

direction and symmetry in the other two (x and )’) coordinate directions so that:

Vra= (0,0, /dz) (2.13)

For cases of symmetry (as opposed to confinement to one-dimension), Ford and
Cummings showed that the Alt equations could not be reduced to the Segel equations

except in the limit of small e, where e is defined by:

1?7 =/ exp(-£) (2.14)

By comparing Equation 2.15 to Equation 2.10 and making use of Equation 2.13, e can

be written as

e=Z720D Kd daco&kd (2.15)
v (Ki+a) dz

where 9 is the angle made by the direction vector s with the z axis. By perturbatively
expanding in £ areduced form of the Alt equation (obtained by integrating over T, x and

) Ford and Cummings obtained:

-~ (2.16)

I'T——

W< *~ (2'17)

where /Jj is the tumbling probability, k+ is the probability that a cell moving in the positive
z direction becomes a cell moving in the negative z direction after tumbling and & + is the

probability that a cell moving in the negative z direction becomes a cell moving in the



positive z direction. The subscript 0 indicates that these are the leading order terms from
series expansions in the parameter e. This analysis clarifies the relationship between the
one-dimensional cell speed s in the Segel equations and the three-dimensional cell speed v
that is determined experimentally.

From this analysis, it is apparent that the correct speed to use in the one-
dimensional equations is the observable three-dimensional cell speed v divided by 2 rather
than V3 recommended by Segel [67] and used in the analysis of Ford and co-workers [29,
30]. Ford and Cummings noted that although this correction to the cell speed is small it
would affect the value of the population parameters obtained from experiment. Using

Equations (A.6) and (A.9) from Appendix A and the relationship

\—2s (2.18)

we have:

(2.19)

where u is a proportionahty constant describing the fractional change in mean run time per
unit time rate of change in cell surface receptors that are bound to attractant molecules. We
note that using the relationship J=Vv/V3 =0.557v instead of the correct relationship
s =0.5v results in § being overestimated by 15.5%. It would consequently result in the
X™ obtained from experiment being underestimated by 25% according to the relationship
in Equation 2.19.

The studies of Ford ef al. [30] and Ford and Lauffenburger [29] involved
comparison of the experimentally measured bacterial density with the predictions of the

RTBL model. For appropriately chosen values of there is good agreement between

RTBL and experiment. Several approximations and/or assumptions are implicit in using
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the RTBL model: first, use of the approximate one-dimensional balance equations,
Equations 2.3 and 2.4; second, the diffusion approximation [62] which enables the RTBL
model equations to be solved numerically at the macroscopic level; third, the model for the
tumbling probability, Equation 2.10, which involves a proposed mechanism for the way in
which bacteria sense and respond to their environment; and fourth, the simplification of the
tumbling probability to the one-dimensional form, Equation 2.12, as described at the end
of Appendix A. Of these four, three are mathematical approximations (first, second and
fourth) and one is a phenomenological assumption. One role for the cellular dynamics
simulations is to test the validity of the mathematical approximations and is the focus of this
chapter. The validity of the phenomenological assumptions can be tested by comparing the
simulation results with experiments, however this is not the subject of this chapter.

Since the RTBL model does agree well with experiment, a question then naturally
arises. Is the agreement of RTBL with experiment fortuitously caused by cancellation of
two or more sources of error introduced by the phenomenological assumption for the
tumbling probability and the mathematical approximations? The most straightforward way
to answer this question is to perform a cellular level simulation of bacterial motion
corresponding to the experimental situation (bacteria moving in three-dimensional space in
the presence of a one-dimensional attractant gradient) that eliminates the mathematical
approximations by using the general (three-dimensional) tumbling probability model,
Equation 2.10. The degree to which the RTBL model predictions and the simulation agree
is then a measure of the validity of the mathematical approximations, and thus the validity
of the RTBL model in describing real three-dimensional systems with attractant gradients in
one spatial direction.

Computer simulations of the motion of individual bacteria have been reported by
several researchers. Berg [9, 10] performed simulations to illustrate the random walks
generated by single cells assuming Poisson statistics for the tumbling probability and a

simple approximation to the bias in the turn angle distribution. Bombusch and co-workers
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[16, 17] investigated the effect of limiting the turning field size of a cell on its ability to
locate an attractant source. Tankersley and Conner [73] performed simulations of single
cell migration to illustrate how the differences between various cell types in the mechanisms
used to move toward an attractant source resulted in markedly different patterns of
migration. In the present work, we develop a computer simulation methodology which
rigorously describes the three-dimensional motion of individual chemotactic bacteria for the
situation present in the SFDC experiments. Unlike the previous computer simulations just
described, a large population of bacteria (20,000 cells) are simulated and the experimentally
measured turn angle distribution is incorporated into the mechanism for reorienting the cells
after tumbling. The results of the simulation are compared with those obtained using the

RTBL model which involves the assumptions and approximations detailed above.

2.3 Simulation Methodology

After setting the appropriate initial conditions, bacterial movement is simulated by
performing three calculations for each individual bacterium at each time step. First, it is
determined whether or not the cell tumbles. Second, if the cell tumbles then its new
direction is chosen; if'it does not tumble, its direction is maintained. Third, the cell's new
position is computed based on its direction vector, swimming speed and the time step. The
implementation of these three steps and other details of the simulation are described in this
Section.

The simulation "box" is given an initial uniform random distribution of bacteria.
Letting b(7,t) be the bacterial density at position r at time 7, then the initial concentration

b(r,t = 0) (see Figure 2.1) is given by:

6(r,r=0)=>b0, —\=x—<\
—f<%<Ff .20y
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An initial bacterial concentration of bo=2x 107 cells/cm3 was used in the experiments of

Ford et al. [30]; however, for the simulation results presented here, we used an initial
concentration of bacteria of hs =2x 106 cells/cm3 in order to reduce the calculations
necessary at each time step by an order of magnitude. The bacteria are assigned initial
direction vectors at random. A step change along the z-axis at time r=0 in the

concentration of an attractant, @, exists such that:

a(zt=0)=0, -y<z<0
a(z,t=0)=a0, O<z<{

.21

where al is the initial attractant concentration introduced into one half of the chamber, D is

the diffusion coefficient of the attractant, z is the position along the z axis and ¢ is time.
The solution given above for r> 0 can be found in Crank [23], For r> 0, the motion of
each bacterium is modeled as an independent, three-dimensional, biased random walk.

That the motion of each bacterium can be considered independent of the motion of
other bacteria is justified by noting that the cell densities used in the SFDC experiments are
low enough that intercellular distances are at least an order of magnitude greater than
cellular diameters. However at much higher cell densities (by an order of magnitude or
more), hydrodynamic interactions among swimming bacteria may be significant [33] In
such cases, the application of this simulation technique would require additional terms in
the equations of motion to account for hydrodynamic interactions between the bacteria.

The position r, of the bacterium i at time ¢+ A¢ where At is the time step in the

simulation, is given by:

ri(t +Ap) = ri(®) + VS, Ar (2.22)



where v is the three-dimensional swimming speed of the bacterium and s, is the unit vector

in the direction of motion of the bacterium. The simulation box employs periodic boundary
conditions [4], Ifthe cell moves out of the box, it is repositioned so that it reenters at the
opposite wall, retaining a constant number of cells in the simulation box. The length of the
simulation box in the direction of the attractant gradient (the z direction) is 0.8 cm. This is

sufficiently large to ensure that the attractant concentration is uniform at the ends of the box

(z==+0.4 cm), at which points the cell density returns to the bulk density b0.

The unit direction vectors for the bacteria evolve in time according to:

S;(* +Ar) = A,s,(r) + (1-A))s' (2.23)

where:

A; =O[pl(r +Ar)-)3Ar] (2.24)

In this equation, pi is a random number chosen at time 7+ A¢ from a uniform distribution

on [0,1], /? is the tumbling probability, s' is chosen randomly from the distribution for the

change in direction after tumbling obtained by experimental observations of single cells by

Berg and Brown [11], and O is the Heaviside function, defined as:

0, *<O0
O = (2.25)
xX=0

Details on the method of choosing s' are provided in Appendix B. Equation 2.24 implies

that:

A =1 if p, >/JAr (2.26)
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A;=0 ifp’\pAt (227)

so that a bacterium has probability (J4¢ of tumbling and probability (1 —/3At) of continuing

its run. Thus, the tumbling probability in a zero gradient is constant and consistent with a

Poisson distribution. The time step used in the simulation is At= 0.1 sec, the time

corresponding to T,, the experimentally observed duration of a tumble. Therefore the

tumbling process is effectively instantaneous in our simulation.

initial position and
direction

tumble

choose new direction

calculate new position

Figure 2.2: Logic diagram for the CD simulation methodology.

The logic diagram in Figure 2.2 summarizes the methodology described in this
section. The simulation box is first initialized. At the start of the simulation loop, each
bacterium decides whether or not to tumble (according to Equation 2.24). Based on

whether or not it tumbles, either a new direction is chosen or the bacterium continues its
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run in the same direction. Finally the bacterium moves to a new position based on its
swimming speed and direction vector using an Euler's integration of the equation of
motion. Figure 2.3 shows the path of a single cell generated by applying the simulation
algorithm in the absence of a chemical gradient over a period of 2500Ar where Ar=0.1 s.
The cell swimming speed 22 pm/s and zero gradient tumbling probability (0.17 s are the
same as for the simulations reported in Section 2.4. Periodic boundary conditions were

not implemented in this sample trace.

y-z plane x-z plane

0.05 cm

x-y plane

Figure 2.3: Planar projections of a sample three-dimensional trace of a simulated
bacterium moving in the absence of an attractant gradient. Ignoring the partial initial and
final runs, the bacterium executed 46 runs in 244.2 s for an average run time of 5.3 s.

In the next section, we discuss the results of the simulation.



2.4 Results

The goal of this section is to compare the results of the simulation outlined in

Section 2.3 with those of the RTBL model over relatively large ranges of values for the

chemotactic sensitivity, %0, and the attractant concentration gradient as determined by the

initial attractant concentration, al. A statement of the conditions under which the

simulations were performed are given and then the results obtained in each case are

presented.

2.4.1 Simulation conditions

The experimental situation modeled in the simulations is that of the response of E.
coli bacteria to a gradient of fucose in the SFDC of Ford et al. [30] (see Figure 2.1) with
the conditions given in Table 2.1. The dimensions of the simulation box are 0.1 cm X 0.1
cm X 0.8 cm. At bacterial densities similar to those in the SFDC of 2.5 X 107 cells/cm3,
this would require 2x105 individual bacteria. As discussed in Section 2.3, a bacterial
density of 2.5x106 cells/cm3, corresponding to 2x104 individual cells, was used in the
simulation. Since the bacteria are assumed to be independent of each other, using a density
of 2.5 X 106 cells/cm3 yields the same results as a density of 2.5 X 107 cells/cm3 as long as
densities are computed relative to the bulk value. The lower density (corresponding to
fewer cells in the simulation box) decreases the computer time required for the calculation
(proportional to N where N is the number of bacteria) at the cost of some increased
statistical uncertainty (which is O(N~U2)). The attractant concentration is modeled by
Equation 2.21 presented in the previous section with the initial concentration of fucose in
the lower half of the chamber equal to all. The diffusivity D of fucose given in Table 2.1
is the value reported by Ford and co-workers. A typical three-dimensional cell speed of

22 pm/s was used to be consistent with the one-dimensional speed of 11 pm/s used by
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Ford et al. In their experimental studies, Ford and co-workers reported values for the

random motility coefficient in the absence of an attractant, /i) of between 0.47 X 10”5 and

1.5 X 10“S cm2/s. Lovely and Dalquist [44] derived the following relationship between the
random motility coefficient, /i0, the cell speed v, the mean run time in the absence of an

attractant gradient (T0):

va(*o) (2.28)

where y/ is the average value of cos(a), a being the angle between the direction vectors
of a cell before and after tumbhng. This is a general result for three-dimensional motion of
bacteria; the only assumptions are a constant swimming speed, straight line runs between
tumbles, and a Poisson distribution for run lengths. It is therefore consistent with the
simulation algorithm and with Alt's general three-dimensional cell balance equations, 2.1

and 2.2, under the additional assumption of a constant cell swimming speed.

Po v 00 *03Dx104 Dx10%6 Kd
(1/S) (pm/s) (mM) (cm2/s) (cm2/s) (mM)
0.17 22 0.02-1.2 3.5-105 6.9 0.08

Table 2.1: Summary of constants used in the CD simulations.

A seventh order polynomial fit (see Appendix B for further details) to the
experimental data of Berg and Brown [11] was used and it was determined that y/ = 0.36.

Using this value of y/ and values of 1.5 X 10"5 cm2/s for /i0 and 22 pm/s for v, yields a

value for (10) of 6.0 s by Equation 2.28. For a Poisson process, this corresponds to a

tumbling probability in the absence of a gradient of p,0= 0.17 1/s, which is the value that

was used in the simulations. A time step of Ar=0.1 s was used. For this time step, a
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bacterium in the simulation moving in a isotropic medium will, on the average, tumble
every 58 time steps. The values of the parameters used in the simulation are summarized in

Table 2.1.

One test of the simulation methodology is to calculate the random motility /i) from

the simulation and check that it matches the value given by Equation 2.28. A simulation
was performed in the absence of an attractant gradient and the mean squared displacement

O(t) of the bacteria was calculated from the definition:

722 =N Z[ri(0)-ri(O)n (2.29)
A =

According to the Einstein relation [4]:

(2.30)

so that at long times Q should become linear in ¢ with slope 6/7.

2000 cells

fls()

(x 103 cm2)

time (sec)

Figure 2.4: Mean squared displacement Q as a function of £.



As can be seen in Figure 2.4, (.(t) is linear in ¢ at large « The slope implies a
value of 1.SSx10-5 cm?2/s for /r which is within 3% of the correct value. This suggests
that the simulation methodology is very accurate. Note that at short times £2 is quadratic in
t. By fitting Q(f) to a2 for r<2 s, we find a is found to be equal to 452 (im2/s2 which
is within 7% of v2, consistent with the short time analysis of the RTBL model as presented
by Othmer ez al. [57]. The crossover from Q) ~# to Q(r) ~t corresponds to the
transition to the diffusion regime in which the diffusion approximation, discussed by
Rivero er al. [62], is valid. Hence, the fact that £2(r) becomes linear in r for z= 10s
suggests that the diffusion approximation is satisfied at relatively short times. The
diffusion approximation is utilized in the macroscopic version of the RTBL model solved
by Ford er al. [30] and the simulation results suggest that the diffusion approximation
should be accurate.

The macroscopic form of the RTBL model which follows from the diffusion
approximation [62] was implemented in a finite difference program using a predictor-
corrector method [26]. As discussed in Section 2.2 the RTBL model is expected to show
the most deviation from the simulation for large attractant gradients and large values of the
chemotactic sensitivity coefficient since the three-dimensional equations simplify to an
analogue of the one-dimensional phenomenological model only in the limit of small e.
Equation 2.15. The range of values of the parameters Xo an(J a0 over which we
performed simulations and comparisons with the RTBL model include the lower
(0.01 mM) and upper (1.0 mM) ranges of al studied experimentally with the SFDC and
the lower (3.5x10-4 cm2/s) and upper (105x 10-4 cm2/s) limits on x7° measured

experimentally [27, 50]. The cases that are considered in this study are summarized in

Figure 2.5. Higher values of al were not considered since for attractant concentrations

significantly above ten times the dissociation constant for the attractant-receptor binding,

Kd the receptors available for sensing concentration gradients become saturated [41] and
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the cell no longer responds chemotactically. Simulations were also performed for

intermediate values of the parameters al and x/D t0 determine if significant differences

could be observed between the simulation and the RTBL model. The results yielded

similar trends to those presented here.

2.4.2 Values of the parameter §

In view of the analysis of Ford and Cummings, it is interesting to consider the
relative values of e (see Equation 2.15) implied by the four cases considered. The

parameter e can be written in the form:

d(al a0
£- £ cos 6 (440 2.31)
d(zll)
where €0, which is dimensionless and angle-independent, is given by:
2
X?  Kdal (2.32)

° vl (Ki+a)

Clearly, because of the gradient term d(a /a0)Z d(z/ /), which varies from +°° at z=0

and r = 0 to essentially zero at z==// 2, the value of e can be very large and will be
dependent on position and time. As the attractant profile relaxes with time, e will become
small at all positions. Thus, for given values of x™ and ao there will be a t-dependent
range of z centered on z = 0 which contracts as ¢ increases and inside of which e will be
large. Based on the Ford and Cummings analysis, this might be the region for which the

RTBL model may not be successful since the Alt equations simplify to the Segel equations

only under the assumption of small e. The larger el is, the greater will be the range of z

and ¢ included in this region. By evaluating e) at z=0 where a =a0l2 for all ¢, a

dimensionless measure of the expected applicability of the RTBL model can be obtained,
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larger values of el implying a smaller region of z and ¢ over which RTBL might be

applicable.

case 3
£n= 0.041
case 1 case 2
e,,=2.9
case 4
,= 0.039

Chemotactic sensitivity coefficient
(cm2/s)

Figure 2.5: Summary plot of cases presented.

For the four cases shown in Figure 2.5, Cases 1, 2, 3 and 4 yield values for £ of

0.098, 2.9, 0.041 and 0.039 respectively. On this basis, it might be expected that RTBL

would be least applicable to Case 2 and most applicable in Cases 3 and 4. It should also be

noted that el has its maximum value as a function of al at al = 2Kd =0.16 mM which is
near the value of 0.2 mM for Cases | and 2. In Figure 2.6, the quantity £, = £/ cos# is
shown as a function of z and ¢ for Case 1. As is evident from this figure, el is
significantly larger than zero over significant ranges of z and ¢. Thus, a priori one would

expect that the RTBL model would not be very accurate.



e, <05

e,>0.5

100

t (secs)

Figure 2.6: Values in z-7 space where £ is significant. Shown are regions in the z-7
plane inside which the quantity e, has ranges £, > 1, >0.5and £, <0.5.

2.4.3 Simulation and balance equation solutions

First, values of al and x7 316 considered that are similar to those used in the

SFDC experiments of Ford et al. [30]. In Figure 2.7 the RTBL model with s =v/2 and
XID =xID / 4 is compared to the simulation results for a)l = 0.2 mM and XoD = 3.5 X 10~4
cm2/s. These relationships are the proper ones between the three-dimensional and one-
dimensional parameters as discussed previously in Section 2.2. They are used in the
results for all cases presented in this work.

The points at which cell densities from the simulation are plotted in the figure are
the average of the density in a "sampling bin" 0.01 cm wide centered around the point.
Sampling is implemented over 50 time steps (which corresponds to 5 s) so the density

reported for a point at a given time is the average density in the sampling bin over the
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sampling period. The statistical error associated with the simulation causes the curve

representing the simulation results to be a little noisy.

time= 0.5 min time= 3.0 min
b/bO
2.5 - time= 6.0 min time= 12.0 min
b/bO
position (cm) position (cm)

Figure 2.7: Comparison of RTBL and simulation results for a0=0.2 mM and
Xo =3.5x10-4 cnws at t= 0.5, 3, 6, and 12 minutes. The smoother of the curves
represents the results from RTBL.

The RTBL model agrees closely with the simulation in this case. The peak in the cell
density profile is the result of a high density band of cells that forms where the

concentration gradient is high. The trough in the density profile is the result of cell
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depletion in the region behind the advancing concentration gradient as cells move with the

gradient. These phenomena are also observed in experimental studies [30].

time= 0.5 min time= 6.0 min

b/bO

-0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4

position (cm) position (cm)

Figure 2.8: Comparison of RTBL and simulation results for a0=0.2 mM and
Xo =105x10% cml/s at t= 0.5 and 6 min. Note the change of scale on the vertical axis.

For the second case, shown in Figure 2.8, a value of x/D = 105 x 10"4 cm2/s was
used , which is thirty times larger than the first case and the same initial attractant
concentration al as the previous case. Note that the scale on the vertical axis has been
changed to allow for the higher peak value of the bacterial density at this value of x™
Again, the simulation results agree well with those of the RTBL model.

Next the effect of the initial concentration, al on the simulation and the RTBL
model results are examined . In Figure 2.9, x/” is held fixed at XoD = 3.5x 10-4 cm2/s as
in the initial case and al is increased to 1.2 mM, six times the value used in the first case.
As in the two previous cases, the agreement between the two solutions is very good.

In Case 4, the effect of lowering the value of al is examined . Figure 2.10 shows

the results obtained using al = 0.02 mM while holding x/D fixed. The simulation results

show a larger maximum value of the bacteria density than does the RTBL model, but taking
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into account statistical inaccuracies the deviation of the RTBL model from the simulation is

quite small.

2.5 time= 0.5 min time= 6.0 min

2

b/bO 1.5

-0.4 -0.2 0 0.2 0.4

position (cm) position (cm)

Figure 2.9: Comparison of RTBL and simulation results for al =12 mM and
Xo =3.5x10-4 cml/s at r= 0.5 and 6 min.

time= 0.5 min time= 6.0 min

b/bO 1

position (cm) position (cm)

Figure 2.10: Comparison of RTBL and simulation results for ) =0.02 mM and
Xo =3.5x104 cml/s at r= 0.5 and 6 min. Note the change of scale on the vertical axis.



The earlier discussion of the expected accuracy of the RTBL model suggested that
the RTBL model would agree least with the simulation for Case 2, agree most for cases 3
and 4, but for all cases show some deviation for a range of z and ¢ depending on the
values of all and x/D- However, it is apparent that the RTBL model agrees very well with
the simulation for all the cases and for most values of z and ¢ This suggests that the
validity of the Segel equations cannot be judged solely on the basis of the magnitude of the

perturbation parameter e.

2.5 Conclusion

In Section 2.4, the effect of the parameters al and x7 on the simulation and the

RTBL model was examined to determine the range of validity of one-dimensional

phenomenological models for conditions involving symmetry in two dimensions. The

range of x™ was varied from 3.5XKT4 cm2/s to 105x 104 cm2/s. The initial
concentration al was varied from 0.02 mM to 1.2 mM. In all cases presented here, the
results of the three-dimensional simulation and the one-dimensional RTBL model compare
favorably. There are three possible explanations for this favorable comparison: the first is
that the ranges of z and ¢ over which e is large are in practice small compared to the full
ranges of z and r; the second is that in the regions where z and ¢ are large, the motion of
the bacteria becomes effectively one-dimensional so that a one-dimensional model is
appropriate; the third is that the coefficients of the higher order terms in the perturbative
expansion are small so that the higher order terms are negligible even when £ is large. Itis
probable that some combination of these mechanisms is involved. In any event, the
comparisons show that the assumption of small £ necessary to reduce the more rigorous,
three-dimensional equations of Alt to the one-dimensional phenomenological RTBL model
does not inhibit its use in accurately modeling situations involving two dimensions of

symmetry. However, any real differences between the simulation and the RTBL model
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results may be masked by the significant noise level of the simulation results. This
possibility is explored in Chapter 3.

It should be emphasized that the agreement between the one-dimensional model and
the three-dimensional simulation only follows when one uses the relationships between the
three-dimensional chemotactic sensitivity and cell swimming speed and their one-
dimensional analogues that follow from the Ford and Cummings analysis. These
relationships should be used in all future work when parameters for one-dimensional

phenomenological models are obtained by experimental measurement.
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Chapter 3:

Numerical Solution of a Balance
Equation for One-Dimensional
Attractant Gradients

3.1 Introduction

To quantitatively study the migration behavior of motile bacteria, recourse is made
to cell balance equations which are analogous to mass balances in the study of mass
transport. The ability of the bacteria to move in both random and coordinated fashions
must be accounted for in the cell balance equations. For a review of the details of the
motion of flagellated bacteria see Section 2.2.

As bacteria move about exploring their surroundings, they monitor changes in
chemical concentrations through receptor proteins located on the cell surface. These
receptors, like enzymes, have specific binding sites to which only a narrow range of
structurally similar chemical substrates can bind. It is the change in the number of bound
receptors over time that provides information to the cell regarding chemical gradients [46].
In the presence of a gradient in an attractant (a chemical species to which bacteria favorably

respond, such as a nutrient), bacteria are able to bias their random walk by decreasing their



tumbling frequency when moving toward higher attractant concentrations thus extending
the run lengths in that direction. This results in a net bias of movement toward more
favorable conditions and is known as chemotaxis. It is important to note that experimental
evidence suggests that this is the only mechanism by which chemotactic bacteria respond to
an attractant. For example, the turn angle distribution is unaffected by the presence of an
attractant [45].

A cell balance equation for bacteria responding to one-dimensional gradients was
derived by Ford and Cummings [28] from Alt's general three-dimensional balance
equations [5] which are based on Berg's physical picture of bacterial motion. This balance
equation for one-dimensional gradients can be contrasted with the equations appropriate to
motion of bacteria in one dimension used by Ford and co-workers [29, 30] to analyze
experimental data from the stopped-flow diffusion chamber assay.

In this article, a finite element method is applied to the numerical solution of the
balance equation derived by Ford and Cummings [28] for conditions relevant to
experimental studies [29, 30] which involve only one-dimensional attractant gradients. We
then compare solutions of this balance equation to those obtained using a phenomenological
one-dimensional model [62] and to simulations of populations of individual bacteria [31].
The finite element solution is then used to probe the affects on the bacterial migration of
two different models of how bacteria respond when moving against an attractant gradient.
Our results show that the two models for down-gradient behavior give significantly
different solutions. In addition, the importance of a commonly neglected temporal
derivative term in the relationship between the attractant gradient and the tumbling
probability is numerically evaluated. Finally, impact of each of these alternatives- the
choice of balance equation, the model for down-gradient swimming behavior, and the
neglect of the temporal derivative- on the experimentally measured transport coefficient for

chemotaxis is examined.
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3.2 Balance Equations

In this section, the balance equation for one-dimensional gradient derived by Ford
and Cummings is briefly described . This balance equation is a simplification of the full
three-dimensional cell balance equation of Alt [5] for bacteria moving in three dimensions
subject to one-dimensional attractant gradients. The simpler phenomenological one-
dimensional balance equations developed by Rivero ef al are also describe in order to
contrast the two models.

Alt's cell balance equations, Equations 2.1 and 2.2, apply to bacteria moving in
three dimensions and are valid in the presence of multi-dimensional attractant gradients. In
Alt's equations, the speed is still assumed to be a function of time and position and that
tumbling probability is a function of position, direction, run time and time. These
equations would be difficult to solve numerically for two reasons. First, the experimentally
determined three-dimensional direction change probability distribution would have to be
tabulated for a sufficient number of all the possible directions s and s' so that
interpolations could be done with sufficient accuracy. In addition, there would be six
independent variables in the full three-dimensional problem making this a very
computationally intensive problem to solve.

The full three-dimensional equation was simplified for the migration of bacteria in
response to one-dimensional gradients of chemical attractants by Ford and Cummings [28].

The resulting cell balance equation is:

10,0 - AEEOD (36 g pnetzd,y

" 3.1)
+ 1P, 0, Onzfz, 0, K9, 0)sin 0'dO’
0
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where K(d', 6) is the probability per unit angular measurement that a bacterium moving the
direction 6' will change its direction to 6 after tumbling. Equation 3.1 states that the time
rate of change in the number density of bacteria at position z moving in the direction 6 with
respect to the z-axis (see Figure C. 1 in Appendix C) at time f is given by the sum of two
loss terms (taking into account loss through convective motion away from the point z and
through tumbling with probability density P(z,6,¢) and a gain term (taking into account
bacteria which were moving in another direction 6’ before tumbling and then moving in the
direction 9.

The bacterial density that would be measured in an experiment is the angle

independent density, c(z,2), and is related to the angle dependent density, nz(z, 9,¢) by:

(3.2)

Equation 3.1 involves only three independent variables (z, 9 and ?) and requires as input
the angle change distribution which is a function only of the two angles 9 and 9’ In

order to solve the cell balance equation, the functional form of'the tumbling probability, (3,

must be specified.
As noted previously, the tumbling probability is a function of the attractant gradient
(Vra, where a is the concentration of the attractant) and the direction in which the

bacterium is swimming. For a Poisson process, the probability of tumbling /3(r,s,r) is

given by:

(3.3)

For a discussion of the development of Equation 3.3, see Section 2.2.
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For the special case of a one-dimensional attractant gradient in the z-direction,
s Vra reduces to (da / <?z)cos 6 and p(7,s, r,t) = p(z, 6,t). Depending on the swimming
behavior of the particular bacterial species, an alternate form of Equation 3.3 may be

appropriate which is given by:

£>0

3.4
<0 G4

where:

3.5

That is, for some bacterial species the probability of tumbling does not increase when the
bacteria are moving in the direction of a decreasing attractant gradient but simply returns to
(50, the basal tumbling frequency in the absence of a gradient [11].

In contrast to Equation 3.1, Segel [66] and Rivero ef al. [62] have developed
simpler phenomenological models based on individual cell motion in one direction only.
The one-dimensional cell balance of Segel is given by Equations 2.3 and 2.4. Inherent in
the development of these equations is the assumption that the bacteria are constrained to
motion only in two directions, the +z directions. In the RTBL model, Equations 2.2, 2.7
and 2.12 form a set of constitutive equations for Segel's cell balance equations. See

Section 2.2 for the development of these equations.

3.3 Methodologies

In this section, the details of the finite element method (FEM) applied to the solution

of the balance equation for a one-dimensional attractant gradient are described. The
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experimental assay (whose function is modeled here using the finite element and cellular
dynamics methods) and the cellular dynamics (CD) simulation methodology is also briefly

reviewed.

3.3.1 Finite element method solution

The numerical solutions of the balance equation for one-dimensional attractant
gradients. Equation 3.1, presented here utilized Galerkin's method on finite elements [3]
for integration over the spatial variables z and 6. The solution of Equation 3.1 represents
an unusual application of the finite element technique because it is an integro-partial
differential equation, in contrast to the typical application to purely partial differential
equations. Thus, a standard finite element package could not be used and the program used
to solve Equation 3.1 was developed by the author. A weighted implicit/explicit finite

difference method was used for the integration over time. With the definition

(3.6)

and first order differencing in time. Equation 3.1 gives:

A = G)Fm+(1-Q))Fn | (3.7)

where the subscript m indicates that F is evaluated at the current time step

(t = tm=t) + mAt) and the subscript m -1 indicates that F is evaluated at the previous

time step. The weighting parameter co can be varied from | (resulting in a fully implicit
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method) to 0 (resulting in a fully explicit method). The z-€ space was divided into finite

rectangular elements as shown in Figure 3.1.

0

Figure 3.1: This is an example of the type of grid used in obtaining the finite element
solutions presented in this paper. The actual grids used contained 200 divisions in the z
direction and 10 divisions in die O direction. The length L was 1.2 cm.

The initial conditions used in the solutions presented in this work correspond to those of
the stopped-flow diffusion chamber (SFDC) assay of Ford and co-workers (see the
description of the stopped-flow diffusion chamber in the following section). An initial

uniform bacterial density and an initial step gradient of an attractant are assumed, that is:

nz(z,0,t = 0) = nz0. —-=*+<z<j, O<d<n (3.8)

and

azt=0)=0, —j<=z<0O

a(zt=0) =a0 (O<z<Y 0.9
On z
a(zv) | +erf , 1=0,-8<Z<T
2 Dt

where al is the initial attractant concentration introduced into one half of the chamber, D is

the diffusion coefficient of the attractant, z is the position along the z axis and ¢ is time.



The time dependent solution given above for the attractant concentration profile can be

found in Crank [23].

Ay n
node | nodek
node i node]

z(i) n

Figure 3.2: This is an example of a single element in the grid. The "nodes" of the grid
are the comers of the elements. The values of dependent variable nz(z,6,¢) at the nodes are

"W nzur nzoo nz«v

A bilinear function was used to approximate nz(z,d,t) on the elements, that is:
nz{z, e,t)M =yle) + y z+y?0+ ylez6 (3.10)

where the superscript e denotes the element e. The constants y2 y3and y4 are

related to the (unknown) nodal values of the dependent variable nz{z 9,t). The

interpolation function for nz{z, 9,#) can also be approximated by the more convenient form
<
n (z8,)= +G3%., + G'%.,, + G;(«)nzo) (3.11)
where the constants nz{i), nz(j), nz(l) and nz(l) are the values of nz(z,9,¢) at the "nodes" of

the element e (see Figure 2) and G,(¢), G(e), Gke), and Gie) are called the shape functions

of e and are related to y,, y2 y3 and y4. The shape functions are constructed so that

39



nz(z, Q,t) varies linearly along the sides of the element and takes on its nodal values at the
nodest, 7, k, and [

The integration over 6’ indicated in Equation 3.1 was calculated using a two-point
Gaussian integration on each element. Because of the sufficiently small variation of the
integrand over the width of an element in O-space (T1/10), a two-point Gaussian
quadrature was found to be sufficiently accurate; higher order Gaussian quadrature did not
lead to significantly more accurate results. The values of Oand O' for which the direction
change is needed are therefore known at the beginning of the solution method permitting
K{6', 0) to be calculated at the outset of the solution procedure and tabulated so that it need
not be recalculated at each time step (see the Appendix). The solutions to the balance
equation presented here were obtained using a grid of 2000 elements in the z — 0 space. A
typical finite element solution to the balance equation for one-dimensional attractant

gradients requires about 40 CPU minutes on an IBM RS/6000 Powerstation 320.

3.3.2 Stopped-flow diffusion chamber assay

The stopped-flow diffusion chamber (SFDC) assay was developed by Ford and
co-workers [30] to permit measurement of the two bacterial transport properties, the
random motility coefficient, /t0, and the chemotactic sensitivity coefficient, Xo- The SFDC
is shown schematically in Figure 3.3 along with the region of the chamber used to generate
the theoretical solutions in this work. Recall from Equation 2.28 that in the absence of an

attractant gradient, the random motility coefficient can be expressed in terms of the cellular

quantities cell swimming speed v and mean run time (T0) as:

(3.12)
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where )/ is the average value of cos(a), a being the angle between the direction vectors
of a cell before and after tumbling. This is a general result for three-dimensional motion of
bacteria assuming only a constant swimming speed, straight line swimming between

tumbles, and a Poisson distribution for run lengths.

0.1 cm

0.8 cm

Stopped-flow diffusion Simulation box
chamber

Figure 3.3: Schematic representation (left) of the SFDC used by Ford and co-workers.
Impinging flow from the upper and lower ports creates an initial step change in attractant
gradient at the center of the chamber and a uniform distribution of bacteria. The
approximate dimensions of the chamber are 4 cm x 2 cm x 0.2 cm. On the right is an
exploded view of'the region ofthe SFDC used by the theoretical methodologies in this
work to generate solutions for the cell density profile.

The random motility coefficient is analogous to the diffusion coefficient in Fickian

diffusion, and in fact one can show at the macroscopic level that the diffusive part of the

bacterial flux, j£Iff, is given by [39, 62]:
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Jftt=-"0Vrc(r,0 (3.13)

where ¢(r,r) = Jn(r,s,t)ds is the bacterial density.

A description of the experiments performed by Ford and co-workers in the SFDC
are given in Section 2.2 and in the original work by Ford et al. [30] and Ford and

Lauffenburger [29],

3.3.3 Cellular dynamics simulation

Cellular dynamics (CD) simulation methodology was developed in Chapter 2 as a
method for studying the collective transport properties of populations of bacteria essentially
by simulating the dynamics of large populations of individual bacteria [31]. It thus shares
considerable common philosophical ground with molecular dynamics simulations methods
used to predict the many-body thermophysical properties of liquids [4], In essence, the
stochastic differential equation which describes the dynamics of an individual bacterium is
solved for IOMOS bacteria in a geometry appropriate to a small subvolume (I mm x
| mm x 8§ mm) of the SFDC located at its center with the long axis parallel to the
coordinate direction z in which there is an attractant gradient. Periodic boundary
conditions are used at each face since the bacterial density is observed experimentally to
have remained at the uniform initial value at these distances from the center of the SFDC
during the course of a typical experiment (6-12 min).

The stochastic differential equation solved in the CD embodies the same individual
cell dynamics as are assumed in Alt's equations and the general balance equation for one-
dimensional gradients, Equation 3.1. Hence, from the mathematical point of view, the
density profiles obtained from the CD simulations should be the same as those obtained
from the FEM solution provided the same boundary conditions (i.e., SFDC geometry),

operating conditions and sensing mechanisms are used in both cases. [This equivalence is
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exactly the same as that between Brownian dynamics simulations of kinetic theory models
of polymeric molecules at infinite dilution and the corresponding "diffusion equation"
solutions for the phase space density [15].] The advantage of the FEM solution to
Equation 3 over CD simulation is that the numerical computation involved is considerably
less. This is because the error in CD simulations is O(N~U2) while the computation time is
O(N), where N is the number of bacteria simulated. Obtaining results from CD
simulation with errors similar to those of FEM (around 1%) would be computationally
expensive. For example, with 20,000 bacteria the noise in CD appears to be around 5%, so
reducing this to 1% would require 25 times this number (or 500,000) bacteria and would
require 26 h of CPU time on a IBM RS/6000 Powerstation 320 for a simulation
corresponding to 6 min of real time. The advantage of the CD method is that it permits
visualization of the individual bacterial motion as well as the collective motion of the

population.

3.4 Results

In this Section, the results of the numerical solution of the balance equation for one-
dimensional attractant gradients, Equation 3.1, using the finite element method (FEM)
discussed in the previous section are presented. These results are then compared to the
RTBL model and CD simulation results.

Before doing so, it is instructive to summarize the relationship between the three
approaches being used to describe bacterial migration in this chapter: RTBL, the FEM
solution to the balance equation for one-dimensional attractant gradients and CD
simulations. All three approaches have the same conceptual basis: that tumbling in bacteria
is governed by a stochastic Poisson process and is related to the attractant gradient by the
experimentally derived relationship Equation 3.3. The CD simulation method is, in

essence, a brute force Monte Carlo method for solving Alt's equations, Equations 3.1
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and 3.2. The FEM solution is for the reduced form of Alt's equations derived by Ford and
Cummings [28] for the case of a one-dimensional attractant gradient by exploiting
symmetry in two of three coordinate directions. Thus, CD and FEM are alternative
methods for solving the same model- that is, the same equations for the same physical
situation- and thus should yield equivalent results. Note that the CD method involves the
solution of'the dynamical equations for individual cells and thus, unlike the FEM solution,
is unable to take advantage of the overall symmetry of the population as it responds to a
one-dimensional attractant gradient. This is one sense in which the FEM solution is more
efficient. In contrast to the model underlying the CD simulation and the FEM solution, the
RTBL model involves an additional physical assumption, namely that the bacteria are
confined to one dimension in their motion [28].

The FEM solution is compared to that obtained by CD simulations and to that
obtained from the RTBL model for two of the cases studied in Chapter 2 which contained
CD simulations of E. coli in the presence of a gradient in fucose. Both the bacterial density
profiles and the resulting bacterial transport coefficient for chemotaxis are compared. Then
the variations on the cell sensory mechanism beyond those studied in the previous chapter
using either CD simulation or RTBL are examined by comparing FEM solutions
incorporating these variations to experimental data for the response of E. coli bacteria to a

gradient of a-methylaspartate.

3.4.1 Comparison of models

The first comparison of FEM, CD and RTBL is performed for the set of conditions
shown in Table 3.1 and =3.5x10“4 cm2/s (equivalent to %0D =0.88x10" cm?/s.

Note that the RTBL quantities for cell speed s and chemotactic sensitivity coefficient %0 in

Table 3.1 are one-dimensional quantities and are related to the corresponding three-
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dimensional quantities used in the CD and FEM calculations according to the relationship

derived by Ford and Cummings [28]:

v3D=2v1D=2y (3.14)

which leads to the following relationship between XD and XoD [31]:

*3D=4"p (3.15)

These relationships were verified in Chapter 2 as being essential to obtain consistency
between the one-dimensional RTBL and three-dimensional descriptions. The attractant
concentration, diffusivity and dissociation constant a() D and Kd) and bacterial properties
(130, v and pt) in Table 3.1 correspond to those in SFDC experiments measuring the
response of E. coli bacteria to a gradient of fucose reported by Ford et al. [30]. The value
x/ID = 3.5 x 104 cm2/s corresponds to the experimentally measured value for this system.

The value of Xo0 =105 x 10-4 c¢cm2/s is high, but is consistent with values measured

experimentally for bacteria cultured in limited nutrient conditions [50].

ft - %k *
Model v al  XoxI104 DxIO¢
(s-1) (qm/s) (mM) (em2/s)  (em2/s)  (mM)
Eq. 3.1 & CD 0.17 22. 0.2 3.5, 105 6.9 0.08
RTBL 0.17 11. 0.2 0.88, 26. 6.9 0.08 0.32

Table 3.1: Values of constants used in solutions shown in Figures 3.4 and 3.5. These
are the values of the constants used in the CD simulation and in solving Equation 3.1 and
the RTBL equation.

In Figures 3.4 and 3.5, the FEM solution of Equation 3.1 is compared to the CD

simulation and to the solution of the RTBL model for the conditions given in Table | with
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X? =3.5x 10" cm2/s over a period corresponding to 6 min of elapsed time. The bacterial
density c(z,t) given by Equation 3.2 is plotted in dimensionless form as a function of

position.

FEM Solution FEM Solution
CD Simulation CD Simulation
RTBL Solution RTBL Solution
| minute 2 minutes
FEM Solution FEM Solution
CD Simulation CD Simulation
RTBL Solution RTBL Solution
4 minutes 6 minutes
04 -0
Position (cm) Position (cm)

Figure 3.4: Comparison of the finite element solution of the balance equation for one-
dimensional gradients. Shown are solutions to Equation 3.1 (solid line), CD simulation
(squares) and the RTBL model (dashed line) for XoD =3.5x10"4cm?2/s. Dimensionless
bacterial density, c¢/cl is plotted as a function of the position z along the SFDC for times
of 1, 2, 4, and 6 min. Position z = () corresponds to the position of the initial step change
in the attractant concentration at r = 0 with a fucose concentration of 0.2 mM initially in the
bottom of'the SFDC (0 <z < 0.4 cm in the graphs).
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FEM Solutton - FEM Solution
CD Simulation 0 CD Simulation
RTBL Solution === RTBL Solution
| minute 2 minutes

FEM Solution FEM Solution
CD Simulation CD Simulation
RTBL Solution RTBL Solution

4 minutes 6 minutes

Position (cm) Position (cm)

Figure 3.5: Comparison of the finite element solution of the balance equation for one-
dimensional gradients. Shown are solutions to Equation 3.1 (solid line), CD simulation
(squares) and the RTBL model (dashed line) for x™ = 105 x 10-4 cm2/s. Solutions are
shown at 1, 2, 4 and 6 min.

The model for the tumbling probability used in the FEM solution and the CD
simulations is Equation 3.3 and in the RTBL model is Equation 3.18. This is consistent
with the model used in previously reported numerical studies [30, 31]. The first
observation is that the FEM solution is completely consistent with the CD simulation as

expected on the basis of the equivalence of the models. Second, it is clear that there is a
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small but discernible, quantitative difference between the predictions of the RTBL model
and the solution of the three-dimensional models (FEM and CD). In the comparison
between CD and RTBL presented in Chapter 2, the level of noise in the CD simulations
made it difficult to assert with a high degree of certainty that there were differences
between the predictions of RTBL and of models (such as CD and Equation 3.1) which
take into account the full three-dimensional character of the bacterial motion. These
differences are clearly evident in both Figures 3.4 and 3.5, with the RTBL model having a
lower peak and a more shallow trough than the three-dimensional models.

The computation times for the FEM solution, CD simulation (using 20,000
bacteria) and the RTBL model (solved by finite differences) are 39, 63 and | min

respectively of CPU time on an IBM RS/6000 Powerstation 320.

3.4.2 Effect of model selection on the chemotaxis transport
coefficient

An important question is to what extent the difference between RTBL and the FEM
solution results in significant differences in the transport properties which would be
obtained by comparison with experiment. In particular, the value of Xo obtained
experimentally by measuring N(%), the number of bacteria entering the upper chamber of
the SFDC as a function oftime 7. For RTBL, it is known that N(z) 'Vt with a slope that
increases monotonically with Xo [71]. Experimentally, it is also found that N{#) Vt, so
the value of Xo obtained from the experimental data is determined by applying the
mathematical model to the conditions of the experiment; the value of Xo obtained from the
experiment is that which yields the same theoretical slope of N{t)« Vt as that given by a
linear least squares regression of the experimental data.

An explicit illustration of the method is presented here using the experimental data
shown in Figure 3.6 which contains a plot of for E. coli responding to a-

methylaspartate in the SFDC [72], The least squares fitted slope in Figure 3.6 has an error
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of 4.7% calculated from the standard deviation based on its relationship to the R2
correlation coefficient of 0.991 obtained from the linear regression analysis [51]. For

in the range of our experimental data, Xo the slope in the experimental 7V(r)vs.Vf plot
are linearly related, so that when the value of Xo is found which has a slope equal to the
experimental value (in this case, x™ = 1-9 x 10“4 cm2/s, it is assumed that the only source
of error in Xo is the experimentally determined slope. This linear relationship implies that

Xo and the slope have the same fractional error. From this it can be concluded that the

error in Xo is approximately 5%.

------ FEM solution
0.015- o  Experiment

0.01-

0.005-

~time (sec)

Figure 3.6: The area between the dimensionless bacterial density curve and c\cl =1 in

the SFDC. The area under the bacterial density curve for the half of the SFDC with a high
concentration of attractant is plotted as a function of Vr for the case shown in Figure 3.8.

The value of Xo used to produce the model results is X0D = 1-9 X 10“4cm?2/s and yields the
same slope as a linear least squares regression of the experimental data. In this comparison
the offset time has been included in the simulation solutions [71].

Since the RTBL model has been shown to be a small gradient approximation of

Equation 3.1, one can probe the error in X that might result from the use of RTBL rather
than Equation 3.1 by fitting the N(?)vs.Jt from RTBL to the corresponding result for

Equation 3.1 and then comparing the value of XoD required by RTBL to the value obtained

using the balance equation for one-dimensional attractant gradients, Equation 3.1. For



X? =3.5xX10-4 cml/s, Equation 3.1 is solved by FEM and RTBL is fit to the resulting

plot. The best fit is given by X/ = 1-2 X 10-4 cm2/s which is 31% higher than
the expected value of x™ = 3.5 X 104 cm2/s. For X/ —105 X 10-4 cm2/s, the best fit of
RTBL to the plot is given by Xo°® =0.88x10~4 cm2/s which is 230% higher
than the value of x™ = 26 X 10~4 cm2/s used in the FEM calculation. These two examples
are consistent with many other calculations we have performed in which we have found
that the value of Xo required by RTBL to fit the FEM solution is higher than the value of
Xo used in the FEM solution. This observation suggests that the values of Xo obtained by
fitting RTBL calculations to experimental measurements are likely to be overestimates,
although the physical basis for this discrepancy is not obvious.

Having established the correctness of the FEM solution to Equation 3.1 by
comparison to CD simulation, it is clear that the FEM solution provides a convenient and
computationally inexpensive route to calculating the bacterial migration profiles for bacteria
subject to one-dimensional attractant gradients. It is thus the appropriate vehicle for
comparison with experimental measurements, particularly for obtaining values of transport
coefficients.

In the remainder of this chapter however, two questions concerning the model for
the tumbling probability will be investigated. The first question is: How do bacterial
density profiles calculated using Equation 3.4 for the tumbling probability (corresponding
to bacteria returning to the basal tumbling frequency when moving away from an attractant)
differ from those obtained using Equation 3.3 (corresponding to bacteria increasing their
tumbling frequency when moving away from an attractant) as has been assumed in
previously published analyses [29]? This question has important bearing on the
interpretation of bacterial density transport coefficients since it is known that E. coli obey
Equation 3.4 rather than Equation 3.3 [12],

In Figure 3.7, results for the two different tumbling probability models,

Equations 3.3 and 3.4, are compared using the Table 3.1 parameters in Equation 3.1. It
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is clear that the difference in tumbling probability has a large effect on the bacterial density

profile for these cases.

Increased Frequency Increased Frequency
Basal Frequency Basal Frequency
| minute 2 minutes
Increased Frequency Increased Frequency
Basal Frequency Basal Frequency
4 minutes 6 minutes
0.4 -04
Position (cm) Position (cm)

Figure 3.7: Finite element solutions to the balance equation for one-dimensional
gradients using =10Sx10”cm2”. In the first case (solid line), the tumbling
frequency (5 is allowed to increase above its basal level for populations of bacteria
moving against the attractant gradient according to Equation 3.3. In the second case
(dashed line), the tumbling frequency is assumed to return to its basal value for bacteria
moving against an attractant gradient according to Equation 3.4.

Figure 3.7 shows that the solution obtained using Equation 13 for the tumbling

probability would result in lower numbers of bacteria moving into the half of the chamber



where the attractant concentration is highest. Therefore a higher value of Xo* would be

obtained by fitting solutions obtained using Equation 3.4 to experimental data than would
be obtained if Equation 3.3 were used.

The value of x™ used in the solutions shown in Figure 3.7 is at the upper limit of
values that one would expect to encounter experimentally [50] and was chosen to
emphasize the difference in solutions obtained using the two models for the tumbling
probability. Next the effect of the choice of tumbling probability models on the transport
coefficient for chemotaxis is examined by comparing FEM solutions to experimental data
for E. coli responding to oc-methylaspartate. The conditions at which the experiment was

performed are given in Table 3.2 and are used in the subsequent model calculations.

v 00 si0 X107 Dx106 Kid
(j.m/s) (mM) (cm2/s) (cm2/s) (mM)
22. 0.01 8.8 7.1 0.125

Table 3.2: Conditions for experimental measurement of the response of E. coli to oc-
methylaspartate [72],

Figure 3.8 compares the solution of the balance equation for one-dimensional
gradients using Equation 3.3 and Table 3.2 parameter values to the experimental data of
Strauss [72] for E. coli responding to an initial step gradient of a-methylaspartate in the
SFDC. The model solution shown in Figure 3.9 used Equation 3.4 to calculate the
tumbling probability. While the model solutions shown in Figures 3.8 and 3.9 are very
similar, the value of x™ used to obtain the solution in Figure 3.9 represents a 100%
increase over the value used to obtain the solution in Figure 3.8 which incorporated
Equation 3.3. Specifically, if it is assumed that the tumbling probability is given by

Equation 3.3 (which states that bacteria moving against the attractant gradient are capable

of increasing their tumbling frequency above the basal level), then the value of x( obtained
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by fitting to the experimental data is x™ = (1-9+£0.1) x 10 4 cm2/s. If it is assumed that

the tumbling probability is given by Equation 3.4 (bacteria moving against the attractant
gradient return to the basal tumbling frequency) and go through the fitting procedure
described previously, it is found that =(3.8+£0.2)x10“4 cm2/s. Therefore,

determination of the chemotactic sensitivity (as reflected in Xo) from experimental data

requires a priori knowledge of whether Equation 3.3 or 3.4 applies for the particular

bacteria under investigation.

Figure 3.8: Comparison of FEM solutions to experimental data. FEM solutions to the
balance equation for one-dimensional gradients (solid line) and experimental data [72]
(circles) for the response of E. coli to a-methylaspartate in the SFDC with a 0.01 mM
initial concentration of a-methylaspartate in the bottom ofthe SFDC (right side of figure)
are shown. Also shown (dashed line) is the dimensionless attractant concentration, a/a0.
In the FEM model solution, the tumbling frequency P is allowed to increase above its basal
level P) for populations of bacteria moving against the attractant gradient according to
Equation 3.3. The value of x™ used ill the model solution was 1.9 x 10-4 cm2/s.

The 100% increase in x™ obtained using Equation 3.4 rather than Equation 3.3

is not a general result but is consistent with the small values of x/D involved. It can be

shown that in the limit of small e, in which case the exponentials in Equations 3.4
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and 3.3 can be linearized, this factor of two naturally arises by using a small e perturbative

expansion [28],

Basal Frequency Basal Frequency
Experiment..... Experiment
Attractant ,, Attractant A
~0.6
| minute - 4 minutes

3-02 01 0 oil o2 0. 3 0> ]
Position (cm) Position (cm)

Figure 3.9: Comparison of FEM solutions to experimental data. FEM solutions of the
balance equation for one-dimensional gradients (solid line) and experimental data [72]
(circles) for the response of E. coli to a-methylaspartate in the SFDC are shown. In the
FEM model solution, the tumbling frequency /? returns to its basal value (50 for populations
of bacteria moving against the attractant gradient according to Equation 3.4. The value of
XBD used in the model solution was 3.8 x 10-4 cm2/s.

The second question is: To what extent is Equation 3.7 a valid approximation for
Equation 6 for conditions such as those that exist in the SFDC? At very short
times,because the attractant concentration in one half of the chamber is initially zero, it
might be expected that the temporal derivative could be quite large, so that Equation 3.7
might not be satisfied. In Figure 3.10, bacterial density profiles are shown both including
and neglecting the temporal derivative, and it is clear that there is no practical difference in
the density profiles if the temporal derivative is included. Thus, it appears that the neglect

of the temporal derivative is a valid assumption.
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Basal: no time deriv. Basal: no time deriv.
Basal: time deriv. - - Basal: time deriv.
| minute 2 minutes
Basal: no time deriv. Basal: no time deriv.
Basal: time deriv. Basal: time deriv.
4 minutes 6 minutes |,
0.4 -0
Position (cm) Position (cm)

Figure 3.10: Finite element solutions to the balance equation for one-dimensional
gradients. In the first case (solid line), the partial derivative with respect to time is included
in the substantial derivative of the number of bound receptors (Equation 6). In the second
case (dashed line), the partial derivative with respect to time is omitted (Equation 7). Only
a slight difference between the solutions is seen at | and 2 min and the two solutions are
identical at 4 and 6 min on the scale of this graph. Both cases assume that the tumbling
frequency returns to its basal value for cells moving in a direction against the attractant
gradient. }.



3.5 Conclusion

The reduced cell balance equation for one-dimensional attractant gradients derived
by Ford and Cummings [28] were solved in the context of the stopped-flow diffusion
chamber assay using a finite element technique. The accuracy of the numerical solution
was confirmed by comparison to cellular dynamics simulation which incorporated the
same mechanistic model for the chemotactic response used in the cell balance equation.
The finite element solution of the balance equation for one-dimensional gradients represents
a substantial economy of computational expense over the cellular dynamics simulations.

A summary of the x™ values obtained for the experimental data shown in
Figure 3.6 using the different models and tumbling probability expressions considered in
this paper is given in Table 3.3. The value of x7 reported for RTBL is the x™ value that
gave the same slope as the plot of A”Ovs.Vf for the experimental data multiplied by 4 as
required by Equation 3.15.

Compared to the solution of the balance equation for one-dimensional attractant
gradients, RTBL overpredicts the value of the chemotactic sensitivity coefficient by as
much as 230% when x™ = 105 x 10-4 cm2/s. Values of this magnitude have been reported
for conditions under which bacterial growth was limited [50], a situation which is not
uncommon in natural environments. It is interesting to note that the use of Equation 3.3
for the tumbling probability of E. coli as opposed to Equation 3.4 leads to an

underprediction of'the correct value of x 7" while the use of the RTBL model as opposed to

the balance equation for one-dimensional attractant gradients leads to an overprediction of
the correct value of Xo*1 Therefore, analyses of experimental data for the migration of E.
coli that use the RTBL model and incorporate Equation 3.3 (for example, the studies of

Ford and co-workers) contain compensating errors that may result in reasonable values for

xID being obtained from experiment.
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Model Tumbling Temporal Gradient AT x 104
Probability (cm2/s)
RTBL Eq. 3.3 3a/3t=0 2.6
FEM Eq. 3.3 3a/5t=0 1.9
FEM Eq. 3.4 3a/dt=0 3.8
FEM Eq. 3.4 3.8

Table 3.3: Comparison of x7 values for different models. These values of x7" were
obtained from fitting to experimental data for various models, tumbling mechanisms and
inclusion/exclusion of temporal gradient in tumbling probability.

Two different responses have been reported for bacteria swimming down an
attractant gradient. E. coli return to a basal tumbling probability corresponding to what is
observed in the absence of a chemical gradient [11, 20] while S. Typhimurium increase
their tumbling frequency over the basal level when moving down an attractant gradient.
Solution of the balance equation for one-dimensional gradients revealed a significant
difference in the bacterial density profiles depending on the model used for the tumbling
probability as shown in Figure 3.7. For bacteria returning to the basal tumbling frequency,
the chemotactic response appears less dramatic with respect to the sharpness and intensity
of the bands.

Within the SFDC, both a spatial and temporal attractant gradient exist. Prior
applications of the RTBL model neglected the temporal gradient arguing that its
contribution was small in comparison to the large spatial gradient generated by an initial
step change in attractant concentration. Solutions of the balance equation for one-
dimensional attractants with and without the temporal gradient showed no significant
difference over the range of parameters that were investigated, validating the assumption

that the temporal gradient within the material derivative is negligible.
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Chapter 4

Bacteria-Surface Interactions

4.1 Introduction

In a homogeneous fluid medium, flagellated motile bacteria such as E. coli and S.
typhimurium execute random walks as they alternate between their two phases of motion:
running (motion in essentially straight paths) and tumbling (changes in direction while
remaining in place) [9, 12,46,70]. In the presence of solid surfaces, this behavior will be
modified. Intuition would suggest that long runs initiated close to the surface and in the
direction of the surface are not possible because of the presence of the impenetrable solid
surface. However, what is not known is the way in which bacterial swimming behavior
will be modified. Relevant questions are: Will a bacterium swim toward the surface as
though the surface is not present until it strikes the surface or will it slow and turn to avoid
the surface? If a bacterium strikes the surface, will it rebound from or adhere to the surface?
What forces must be considered in determining the swimming behavior of bacteria in the
presence of solid surfaces? It is the purpose of this study to answer these questions.

Understanding the mechanisms of bacterial transport in the presence of solid

surfaces is essential to being able to model many processes of engineering concern. In situ
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bioremediation has evolved as a safe and cost effective treatment for the reclamation of soil
and groundwater contaminated with hydrocarbons from leaking underground tanks and
above ground spills [1, 24, 25, 60, 64, 69]. Research is currently being conducted to
extend the use of in situ bioremediation to soils contaminated with compounds such as
halogenated aliphatics [7, 22, 52, 63, 68]. There is increasing evidence that these
recalcitrant compounds can be effectively degraded by naturally-occurring microorganisms.
Wastewater treatment relies on the trapping of pathogenic microorganisms in packed beds
of sand grains and from groundwater in the aquifer matrix [48, 49]. In the area of the
pathogenesis of infection, the most common hospital-acquired infections are catheter-
associated. It has been shown that bacterial transport in this situation is enhanced through
the presence of a solid surface [35] [54],

A microscopic understanding of bacterial motion near solid surfaces is necessary to
predict the macroscopic behavior of populations of bacteria for the systems described
above. While bacterial transport has frequently been studied by analogy to similar non-
living systems, such studies have met with varied success. An effective mathematical
model for one experimental system is often a poor model for another, seemingly similar
system. These inconsistencies are often the result of a fundamental misunderstanding or
oversimplification of the nature of bacterial motion and bacteria-surface interactions.

In this study, a specially designed microscope is used to follow the paths of
individual bacteria swimming in the fluid adjacent to a solid surface. The near-surface
traces of the bacteria are analyzed to determine differences in the swimming behavior of the
bacteria compared to motion in the bulk fluid phase. The variation in the swimming speed
as a function of the surface-to-cell distance is compared to two theoretical solutions: one
that treats the bacterium as a sphere being propelled against a constant resistive force and
another that treats the bacterium as a sphere with a single attached flagellum rotating at a
constant angular speed. The zeta potentials for the system are determined and used to

calculate the DLVO (Derjaguin-Landau and Verwey-Overbeek) interaction potential as a
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function of the separation distance to offer an explanation of the tendency of cells to swim

along a solid surface tracing out circular paths.

4.2 Background

That a motile bacterium must modify its swimming behavior in the presence of a
solid surface is obvious since, clearly, it cannot penetrate the wall. Lubrication theory
suggests that the presence of a solid surface would influence the swimming speed of the
bacterium through a viscous medium well before it makes physical contact with the surface
[6], In addition, one might expect that interactions between the surface and cell arising
from surface charges and the distribution of ions in the surrounding medium would
influence the motion of a bacterium very near the surface. To characterize the motion of a
bacterium near a surface by its response to these external forces, two issues must be
considered: 1) At what distance is the bacterium considered to be "near" the wall and at
which, the presence of the wall must be taken into account to determine the motion of the
bacterium, and 2) What forces or interactions must be considered in these regions?

Two distinct surface-to-cell distance regions can be identified in which changes in
bacterial motion should be anticipated. The interactions that need to be considered in these
two regions are different; in the first region, interactions are dominated by the surface
chemistry of the system and the medium composition, while in the second region,
hydrodynamic interactions are dominant.

The region in which the surface chemistry of the system is important is confined to,
roughly, the 100 nm nearest to the surface. In the study of these interactions, the DLVO
theory of colloid stabihty is often employed [65, 74-76], This theory accounts for the long
range (on a molecular scale) van der Waals and electrostatic interactions between the
bacteria and the surface as a function of the separation distance and the medium

composition. In addition to these interactions, there are very short-ranged forces that are



thought to be important in the irreversible adhesion of bacteria to a solid surface. These
interactions are not addressed in this study since for all the cases studied under our
experimental system, no irreversible adhesion was observed.

According to DLVO theory, the total interaction potential between a solid surface

and a colloid particle or bacterium is given by

GT(h) = GA(h) + GE(h) (4.1)

where £ is the separation distance, GA(h) is the contribution of the van der Waals
interaction and GE(h) is the contribution resulting from the overlap of the electrical double
layers of the bacterium and the solid surface in the suspension medium. Letting the flat

solid surface be (1), the particle/bacterium ofradius b be (2) and the suspension medium

be (3), Norde and Lyklema [55] give the following approximation for GA:

“4.2)

where Al is the Hamaker constant for the system and can be written in terms of the

individual components as:

(4.3)

For bacteria and natural surfaces in aqueous media, Al is usually positive so G4 is

negative and attractive. The interactions resulting from double layer overlap may be

expressed as [55]:

AF(N)— nfrelb<BI3 + 723) +In[l - exp(-2Kh)|>  (4.4)
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where Erel is the dielectric permittivity of the medium and & is the reciprocal Debye

length. The surface potential <> is usually approximated by the zeta potential £. For the

system studied here, both 013 and 023 are negative and so GE is positive and repulsive.
The reciprocal Debye length is a function of the medium composition and is given

by [37]:

o 1000eINA s

where e is the charge on an electron, kB is Boltzmann's constant, 7 is the absolute
temperature, z, is the charge on ion i in the medium, Af, is the concentration ofion i in
mol/1, and NA is Avagadro’s number.

The second region of surface-cell interactions extends out to about 10 pm from the
solid surface. In this region, hydrodynamic interactions between the cell and the surface
become important. For a slow moving spherical particle moving in an unbounded viscous
fluid, the force of drag resisting the motion of the sphere can be calculated from the

solution to Stokes' equation for creeping flow around a sphere, which is [19]:

“resistance = “4.6)

where p is the fluid viscosity, U is the speed of the sphere and b is the radius of the
sphere. Ifthe shape of a bacterium can be approximated by a sphere and if it is swimming
at a constant speed, the force provided by the flagella is equal to the resistance from the
fluid and can be calculated by Equation 4.6.

Now, consider the case of a sphere moving toward a solid surface with speed U

and whose center is a distance & from the solid surface, as pictured in Figure 4.1. The
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force on a sphere moving at a constant velocity U toward the solid wall will no longer

remain constant but will increase as the separation distance decreases.

Figure 4.1: Perpendicular motion of a sphere toward a plane surface. A sphere of
radius b moves perpendicularly toward a solid surface with speed t/ at a separation
distance of A-b.

Brenner [19] gives the solution to the creeping flow equation for the force resisting the

motion of'the sphere as it approaches the solid surface perpendicularly as:

F(h/b)....... =6niibUMh/b) (4.7)

where 7 is the distance from the center of the sphere to the solid surface and A is given by:

nn+1) 2sinh(2/i + a + (2/z + 1)sinh2a

AN
f1si'nh ayY

"1 (4-8)

and:
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a=cosh 7" —n (4.9)

By comparing Equations 4.6 and 4.7, it can be seen that A representsthe increase in the
force resisting themotion of the spheredue to the presence of thesolid surface. If the
sphere approaches the wall such that the force resisting its motion remains equal to its value
in an unbounded fluid (i.e.; at a separation distance of °°), then its speed can be calculated

by equating Equations 4.6 and 4.7:

F, =67tnbU,, = 6nnbUl = F(h/b) (4.10)

or:

= 4.11)

The conditions under which this expression is valid for use in determining the speed of a
bacterium as it approaches a solid surface are: 1) a flagellar bundle which produces a
constant force and 2) an insignificant change in momentum relative to the forces acting on
the bacterium. For Reynolds numbers relevant to the motion of bacteria through water
(<7(10'5)), this later condition is valid [19].

There are other more sophisticated models for bacterial motion toward a plane
surface than that of a sphere moving with a constant propulsive force. Ramia [59] solved
Stokes' creeping flow equation for an arbitrarily shaped body and an associated single
helical flagellum rotating at a constant angular speed. The equations were solved using a
boundary element numerical method (BEM). General descriptions of the boundary element
method can be found in Brebbia ef al. [18] and Kane [38]. This solution method allows for

arbitrary incident angles to the solid surface. Shown in Figure 4.2 is the solution given by
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Ramia et al. [59] for cell orientations of 90° (parallel to the surface), 135°, and 180°
(perpendicular to and toward the surface) from the surface normal and assuming a spherical
cell body. The dependence of the speed of a sphere moving perpendicular to the surface as
given by Equation 4.11 is shown superimposed on the BEM solutions. The definition of

the orientation angles is illustrated in Figure 4.3.

e— BEM (180°)

11— BEM (135°)
BEM (90°)

————— Brenner (180°)

Dimensionless distance

Figure 4.2: Solution of Stokes' equation by Ramia ef. al. The boundary element
method (BEM) is used to solve Stokes' equation for a sphere with a flagellum rotating at
constant rate moving toward a solid surface at 3 different orientation angles. Also shown is
the solution to Equation 4.11, based on Brenner's solution for the force on a sphere
perpendicularly approaching a solid surface. The dimensionless speed is the instantaneous
speed divided by the speed in an unbounded fluid. The dimensionless distance is

(h-b)/b.

One interesting result of the analysis of Ramia ef al. is that bacteria swimming close and
parallel to the surface derive a propulsive advantage from the surface and swim at a speed
10% higher than in the bulk. Also, the velocity changes more quickly for bacteria moving
at 180° from the surface normal than for cells moving at 135° from the surface normal.

Compared to the solution of Equation 4.11 for a sphere moving perpendicular to the
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surface opposed by a constant force, the swimming speed is higher at a given separation
distance for cell orientation angles of either 135° or 180°. One reason for the higher
velocity predicted by the BEM solutions is that these solutions assume the flagellum rotates
at a constant rate, while Equation 4.11 assumes that the force produced by the flagella is
constant. A flagellum rotating at a constant speed would produce more thrust near a solid
surface due to hydrodynamic interactions between the flagellum and the surface [59],

resulting in higher swimming speeds for a given separation distance.

Ol

Figure 4.3: Orientation angle definitions. This diagram illustrates the orientation angles
referred to in the text. The orientation angle is defined such that 0° is coincident with the
surface normal, 90° is parallel to the surface, and 180° is perpendicular to the surface and
opposite in direction to the surface normal.

4.3 Methods and Materials

Two strains of E. coli bacteria were used in this study: NR50 and HCB437. Both
of these strains swim by the rotation of flagella located around the periphery of the cell
body. The strain NR50 is a wild type cell with a rod-shaped body | |im by 2 pm in size.
The swimming behavior of NR50 in an isotropic fluid medium is characterized by a series
of runs interrupted at intervals by tumbles (see Section 2.2). These cells were.originally

obtained from Judy Pile in the Microbiology Department at the University of Pennsylvania.
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The strain HCB437 is a smooth swimming (non-tumbling) mutant. Smooth swimming
behavior is the result of the deletion of the gene responsible for the production of CheY, a
protein known to be necessary for bacteria to exhibit tumbling. The HCB437 cells are rod-
shaped but are somewhat larger and longer than the wild type cells with body dimensions
of approximately 2 by 4 pm, judged from a visual comparison to NR50 using transmitted
light microscopy. These cells were obtained from Howard Berg in the Department of Cell
and Developmental Biology at Harvard University and the Rowland Institute in Cambridge,
Massachusetts. The differences in the genotype of this strain and wild type cells can be

found in Appendix D.

4.3.1 Preparation of samples

The wild type cells were cultured from frozen stock stored in 300 pi aliquots before
each experiment. Cultures were made by thawing an aliquot of stock and by pipetting
100 pi of the stock into a 250 ml shaker flask with 50 ml of a sterile growth medium
containing buffering agents and minimal nutrients [2] (see Appendix E for the medium
composition). This was amended with 0.5 ml each of galactose (0.55 M) and thiamine
(1.5 mM) solutions. The flask of nutrients and bacteria was incubated on a temperature
controlled rotary shaker (150 rpm) at 30° C for 11-12 hours. This yielded cultures with
cell densities of between 108 and 109 cells/ml in the mid-exponential growth phase. Just
prior to an experiment, the final sample was obtained by dilution of the culture stock with
motility buffer solution [36] (see Appendix E for the buffer composition) containing the
same concentration of buffering compounds found in the growth medium but without
nutrients. The smooth swimming cells were also prepared from stock frozen in 300pl
aliquots. These cells were cultured by the addition of 200 pi of the frozen stock to 50 ml of
sterile Tryptone broth in a 250 ml shaker flask (see Appendix E for the medium

composition). The inoculated flasks were incubated on a rotary shaker at 30° C for 5
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hours yielding cultures with densities between 108 and 109 cells/ml. Tryptone broth was
used as a growth medium for the smooth swimming cells because HCB437 is unable to
synthesize certain amino acids necessary for growth, and the Tryptone broth supplies them
directly.

Just before an experiment, the final sample was prepared by diluting an appropriate
amount of the culture solution with 1000 til of motility buffer solution to obtain a sample
with a density of approximately 106-107 cells/ml. This usually required approximately 5

pi of the culture stock resulting in a typical dilution of 1:200.

4.3.2 Measurement of electrophoretic mobility

In this study, the interactions between E. coli and glass microscope cover slips in a
aqueous medium of phosphate buffers were examined. Two quantities required by DLVO
theory to characterize the electrostatic interactions between a colloid/bacterium and a solid
surface are the surface potentials of the colloid/bacterium and the solid surface in the
suspension medium (see Equation 4.4). The surface potential is typically assumed to be
approximately equal to the zeta potential. The zeta potential is the potential at the edge of
the shearing plane, or the effective boundary between the solution associated with the solid
surface and the bulk liquid phase [43], The electrophoretic mobility of a particle in the

suspension medium is related to the zeta potential by [37]:

£ = LiEHEr£) (4.12)

In order to determine the zeta potential for the glass, microscope cover slips were washed
with distilled water and pulverized with an agate mortar and pestle. The ground glass was
suspended in the phosphate buffer solution (see Appendix E for the buffer composition).

The ionic strength of the phosphate buffer was 0.19 M. This procedure was used by Litton
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and Olson [42] to determine electrophoretic mobilities for solid material that could be
ground into fine particles as an alternative to measuring streaming potentials. Some of the
glass particle settle quickly, but the solutions prepared this way remained turbid for periods
longer than 24 hr. In making a measurement, the solution of glass particles was allowed to
settle for an hour and then a sample of the supernatant was taken. The sample was inserted
into the analysis chamber of a Doppler Electrophoretic Light Scattering Analyzer (Coulter
Delsa 440, Coulter Electronics, Amherst, MA) and the electrophoretic mobility was
measured at 30° C. The Coulter Delsa 440 calculates the zeta potential from the
electrophoretic mobility using Equation 4.12. For the bacteria, cells were taken from the
culture flask and washed by filtering with buffer solution according to the procedure used
by Berg and Turner [14]. Cells were resuspended in buffer and a sample was inserted into
the analysis chamber.

The values of the electrophoretic mobility and zeta potentials measured for the

bacteria and the ground glass are given in Table 4.1.

Material Electrophoretic mobility Zeta potential
(pm-cm/V-s) (mV)
Cover slip glass -2.51 -32.21
E. coli NR50 -1.49 -19.09

Table 4.1: Electrostatic parameters for the wild type bacteria and finely crushed
microscope cover slip glass.

4.3.3 Tracking microscope

The microscope used to acquire the tracking data was designed and built by
Howard Berg [8]. The body of the instrument is a standard Nikon transmitted light

microscope. It is fitted with a special stage connected by a strut to three electromagnetic
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coils, arranged so that their axes are mutually orthogonal to represent the three coordinate

directions. A schematic of the equipment is shown in Figures 4.4 and 4.5.

X  Front-surface mirror

Photomultipliers
and Half-silvered mirrors
Amplifiers J 20x
eyepieces
Differ‘ence xi x2 Optical
Amplifiers fibers
Eyepieces
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Comparator Gates Trinocular
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; Objective
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Light level MpHHers (20x)
reference . .
Chamber with bacteria
Search Coil Drive Cond
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Readout Damping ‘
Circuits Drl.\ie Light
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Figure 4.4: Schematic of the tracking microscope used in this study. Adapted from
Berg [8],

The stage is moved by varying the current in the coils shown in Figure 4.5. A
sample of bacteria diluted with buffer solution is placed in a small "box" or chamber with
glass windows on the top and bottom on the stage. Light from the light source passes
through the chamber and the objective to a trinocular beam splitter. Part of the light is
transmitted to the viewer while part is allowed to pass through the splitter and is projected
on the end of an array of six optical fibers.

The microscope is configured with a phase contrast condenser and a 20x inverse

phase objective so that the focused image appears brighter than the background. In this



configuration, bacteria in focus appear as bright spots on a dim background while those out
of focus appear as dim fuzzy images. The portion of the image focused on the optical fiber
array is approximately equal to the diameter of a bacterium (about | (im). The optical fibers
transmit the light from the image to photomultiplier tubes which produce a voltage signal
proportional to the amount of light falling on the ends of the optical fibers. Four of the

optical fibers are arranged in an array as shown in Figure 4.6.

Figure 4.5: Close-up of the stage and coil arrangement on the microscope. Adapted
from Berg [8].

When the image is in focus and positioned on the end of the x/ optical fiber, more
light is passed through that fiber compared to the x fiber and a larger signal is produced
by the photomultiplier tube connected to the jq fiber. Therefore, if the image of a
bacterium is focused somewhere on the end of the array of optical fibers, the light level in
each of the fibers indicates the position of the image of the bacterium relative to the fibers.
The configuration of the zr and z? optical fibers is somewhat different. The position of the
ends ofthe z, and z) optical fibers is such that when the image is perfectly focused on the

end of the array of x and y optical fibers, it is focused slightly in front of the end of the Z
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optical fiber and slightly behind the end of the z2 optical fiber. Since an image in focus will
appear brighter than an out of focus image, the relative voltage signal from the zr and z]
photomultiplier tubes indicates the end of the fiber on which the image is most nearly in

focus.

0.25mm

1,72

Figure 4.6: Alignment of the ends of the optical fibers. This is the alignment of the ends
of the optical fibers as the would appear viewed from the chamber along the light path to
the three mirrors in Figure 4.4. Adapted from Berg [8]. The z and z? fibers appear
superimposed on the center of the array viewed from this perspective.

The microscope is equipped with a feedback control circuit that senses the voltage
in each of the photomultiplier tubes and changes the current in the stage control coils to

move the stage. Ifthe image of a bacterium falls on the ends of the optical fibers, a circuit

senses an increase in the voltage signal from the photomultiplier tubes attached to the z, and
z) optical fibers. When the light level increases above the background level, a circuit is
closed that allows the position of the stage to be controlled automatically by varying the
current in the coils in proportion to the voltage signal from the photomultiplier tubes. Ifthe
image of the bacterium is positioned over the x1 optical fiber, the current in the stage coils

is varied to bring the image back toward the x] optical fiber. Ifthe image is focused more
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toward the z, optical fiber, this fiber is receiving more light and the coils adjust the stage
position so that the image focus is moved toward the z2 optical fiber. Ifthe bacterium itself
is in motion, the stage will be moved opposite to the motion of the bacterium in order to
keep its image in focus on the ends of the optical fibers.

A low concentration of cells (106-107 cells/ml) is necessary to suppress extraneous
diffracted light from nearby cells which would interfere with the light from the cell being
tracked. At this concentration, the occasion of a cell moving into the approximately 2 jim
sphere in which its image will appear sufficiently in focus on the optical fibers by chance is
rare. The microscope is therefore provided with a three-axis joystick controller that allows
the user to move the stage as he/she views the dilute sample of bacteria. When a bacterium
is found in a nearby region, the user maneuvers the stage with the joystick so that the focal
region of the optical fiber array encloses the bacterium. When this occurs, the control
circuit of the microscope closes and tracking begins. As the stage and chamber move in
synchronization with the motion of the bacterium, the current in the coils generates a
voltage signal that is proportional to the chamber position and therefore the position of the
bacterium in the chamber.

A 16 bit A/D converter was used to digitize the voltage signal from the coils
(National Instruments model NB-MIO-16XH). The data acquisition board was controlled
by software written using the LabView 3.0 software package (National Instruments). The
voltage in each of the three stage control coil circuits was digitized at the rate of 12
samples/s.

Two types of chambers were used in these experiments and differ in the way in
which the top windows were mounted on the chambers and the type of top window that is
was used. The body of the first type, shown in Figure 4.7 is machined from tantalum.
The bottom window of the chamber is a disk of glass cut from a microscope cover slip and

sealed in place with silicone adhesive. When an experiment was performed, a drop of the



sample of bacteria in buffer solution was placed in the chamber. The top window was then

sealed in place with vacuum grease.

Top glass
window

0.09 in Tantalum body

Bottom glass
window
0.15 in

Figure 4.7: Chamber type 1. This is a diagram of the type of chamber used in tracking
experiments performed on bacteria in the bulk fluid.

For experiments in which the position of the inside surface of the top window
needed to be determined, the grease seal for the top window did not hold the window
sufficiently still and the window would shift significantly in the grease. For this reason, a
second type of chamber was designed in which the top window could be sealed between
the body of the chamber and a threaded cap. The bottom half of the second type of
chamber, shown in Figure 4.8, has a body machined from tantalum with machine threads
cut on the outside of the body.

A glass disk was sealed on the bottom of the tantalum body using silicone adhesive.
The upper half of the chamber is machined from brass and is threaded on the inside. To
prepare the chamber for an experiment, a drop of the sample solution was placed in the
bottom half of the chamber. A latex gasket and top window were secured in place by

screwing the top half of the chamber onto the bottom half. The top windows are disks cut
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from microscope cover slips and are printed with an array of dots on the fluid side as
shown in Figure 4.9. The dot array was printed on the glass using chromium metal
deposition (Klarman Rulings, Manchester, New Hampshire). Each dot is 10 *tm in

diameter and has a thickness of less than 2 urn.

Brass top

Glass window

Latex gasket

0.05 in Tantalum bottom

Glass window
on bottom

0.125 in

Figure 4.8: Chamber type 2. The type of chamber was used in tracking experiments
performed on bacteria near the surface is shown above (not to scale).

In an experiment in which the distance between the tracked bacterium and the
surface was needed, the windows were sealed onto the top of the bottom half of the
chamber with the grid of dots on the side of the top window glass facing the interior of the
chamber. The chamber was then placed on the stage with the dotted window glass on top.

The position of the surface exposed to the bacteria was determined by maneuvering the
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stage and chamber so that a dot was positioned in the region in which a bacterium would be

tracked and in sharp focus.

h b ¢ ) exploded view of underside
chamber type of window with array of dots

Figure 4.9: Dot array on top window of chamber type 2. Shown is an exploded view
of the underside of the top window used in tracking experiments near the surface of the
glass window. An array of dots was printed on the underside of the window to allow the
position of the surface of the glass to be determined (not to scale).

The voltage signals from the three coils were then recorded. This procedure was
repeated until the coordinates of three of the calibration dots on the interior surface of the
top window glass were recorded. The glass surface was assumed to be planar and the
three coordinates were used to calculate the surface normal for the top window. Ifthe top
window glass were perfectly parallel to the x-y plane, it would be necessary to record the
coordinates of only one surface point to determine the distance to the surface. However,
since a slight misalignment would cause substantial errors on the length scale relevant to the

experiment, an accurate determination of the position of the surface was necessary.
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In the tracking experiments originally performed by Berg and Brown [11], it was
found that the swimming motion of bacteria in pure buffer solution is frequently not
smooth, but that bacteria often wobble substantially as they swim. The researchers found
that the addition of 0.18% (w/v) hydroxypropyl methylcellulose decreased the wobbling
motion of the swimming bacteria and they felt that this lead to a more accurate analysis of
the data. For this reason it was decided that these experiments performed in this study
would be performed in a buffer solution to which 0.18% (w/v) hydroxypropyl
methylcellulose was added (Biochemika Methocel 90 HG). The stage of the tracking
microscope is equipped with a heating coil and was maintained at 30°C for all the tracking
experiments. An initial set of experiments on bacteria moving in the bulk liquid to

determine the effects of Methocel on the swimming behavior of E. coli.

4.3.4 Data analysis algorithm

In order to determine the phase of motion for each bacterium at each sample point,

the data analysis method of Berg and Brown [12] was used. The x component of a

bacterium's velocity at time #/ (the time at which sample j was taken) was determined from
ple s

the position data using the following 5 point differencing scheme:

(4.13)

where  is the x position of the bacteria at time # and At is the sample interval (1/12 s, in
this case). The velocity of the bacterium in the y and z directions was similarly calculated.
A bacterium's direction was determined using the velocity components derived from
Equation 4.13. The rate at which a bacterium was changing its direction was called the

angular speed and was defined by:
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6 = acos / sample interval (4.14)

where

The angular speed was used as a criteria for determining the phase of motion of a
bacterium. A bacterium was taken to be in a tumbling phase of motion when tracking
began. The beginning of a run was scored at data point i when the angular speed was less
than 35° per sample point (at 12 samples/s this is 420° /s) for points 7, i+1 and i+2. A
run was said to end at point_j when either of two criteria were met: 1) the angular speed
was greater than 35° /sample for samples 7 and ; +1, or 2) the angular speed was greater
than 35° /sample for sample ; and the difference angle O for point j was greater than 35°

where the difference angle at j was defined as:

(4.15)

where:

and:

The criteria for distinguishing between the two phases of motion and the use of the angle
35° as the criterion to which the angular speed and the difference angle are compared were
first used in the study by Berg and Brown [12]. By this algorithm, the minimum run
length was three data points but a tumble could be of any length that is an integer multiple
of the sample interval of 1/12 s, including zero. These criteria were developed by viewing

stereo plots of the tracking data and the results of the analysis by representing tumble points
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in the data as bright dots and run points as dim dots. Various analysis algorithms and
criteria were tested by Berg and Brown with the success of a particular algorithm or
criterion being judged by the degree to which the analysis results agreed with a visual
examination of'the data for apparent tumble locations. The algorithm and criteria outlined
here gave the best agreement with a visual inspection of the stereo plots. For this work, a
test of various criteria was also performed and it was determined that the algorithm
developed by Berg and Brown was satisfactory for this study. However, it might be
useful to make a systematic study of the effect of various criteria and analysis algorithms on
the results of the analysis.

The angle through which a bacterium was reoriented as result of a tumble was
designated the turn angle. For a run which ends at point k& and was followed by a run
which begins at point /, the change in direction from point k fo [ is called the mm angle ¢
and is defined by:

Ip = acos (4.16)
VI

where:
=[{(VXL2+(vx L+ )tH(Nv=L+(v, L.+ (v)t}{(vzL2+(vzL,+(vJ t}]

and:

= [{Ml 'I'MM + ML +2}>{(vy), + VLt + DNL;+2} {(VZ), +MM+MA4}]

4.4 Results

4.4.1 Bulk tracking experiments
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First, a set of experiments were performed in which bacteria were tracked at
distances far from the walls and windows of the chamber (approximately 400 p.m) in buffer
solutions to which 0.18% (w/v) Methocel was added and to which it was not added to
determine the effect of the compound on the swimming behavior of the bacteria in the bulk

before experiments were performed near a surface.

Figure 4.10: Wild type bacterium in bulk. Shown is the trace of a bacterium tracked in
the bulk fluid. Each sample point is represented by a sphere. Yellow spheres represent
sample points for which the analysis determined the bacterium was executing a run.
Tumbles are indicated by purple spheres.



Figure 4.11: Wild type bacterium in bulk. This is another example of a trace from a
bacterium tracked in the bulk fluid.
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Figures 4.10 and 4.11 show the traces of two individual bacteria from the sample
to which Methocel was added. Tracking chambers of the type shown in Figure 4.7 with
plain glass top windows were used in the experiments that examined bacterial motion far
from solid surfaces. The position of the bacteria at each sample point is shown as a sphere.
The spheres are assigned different colors based on the phase of bacterial motion; yellow
spheres represent data points at which it was determined the bacteria was in the running
phase while purple points indicate positions where the bacteria were in the tumbling phase
of bacterial motion.

Shown in Figure 4.12 is the variation of the cell swimming speed as a function of

the tracking time for the bacterial trace shown in Figure 4.10.

Time (s)

Figure 4.12: Speed of a wild type bacterium in the bulk fluid. Shown is the speed of
the bacterium in Figure 4.10 as a function of time.

It can be seen that the cell swimming speed varies substantially (between 4 and 50 |im/s).
Part of this variation is due to the decrease in swimming speed as cells tumble since they
tumble in place, however there is still considerable variation during the running phase of

motion. Figure 4.13 is a close-up of the region of Figure 4.12 between 20 and 30 s. The
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solid dots in this figure represent sample points at which tumbles occurred according to the
analysis. In this figure, the swimming speed during running can be seen to vary between

15 |im/s and 47 (im/s.

20 21 22 23 24 25 26 27 28 29 30
Time (s)
Figure 4,13: Close-up of bacterial swimming speed. Shown above is the region from
20 s to 30 s in Figure 4.12 above to illustrate the variation in swimming speed. Points

where the analysis determined that tumbles occurred are shown as solid dots on the speed
trace.

The properties that characterize the transport of a population of bacteria in an
isotropic fluid medium are the mean run time, the mean cosine of the turn angle and the
swimming speed of the population (see Equation 2.28). Shown in Figures 4.14, 4.15,
and 4.16 are the distributions of run times, turn angles and run speeds for a population of
100 bacteria from a single tracking experiment in which 100 cells were tracked. The run
time and turn angle distributions count each run or turn angle as one value in the
distribution. The run speed distribution counts the mean run speed for each bacterium as
one value since reporting each run as an event would over represent slower run speeds (the

microscope is able to track slower cells longer).
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The mean run time for the distribution shown in Figure 4.14 is 0.85£1.12 s
(reported as the mean =+ the standard deviation). The solid line in the figure is the Poisson
interval distribution whose mean is equal to the population mean and is given by:

-1

/(0= YﬁeXP A(T> | (4.17)

where At is the minimum observable interval and (T) is the experimentally measured run

time for the population[12].

O  Experimental data
————— Poisson Distribution

0.10 -

Run time (s)

Figure 4.14: Run time distribution with methylcellulose. The distribution of run times
from a tracking experiment is shown in which 0.18% (w/v) Methocel was added to the
motility buffer. In this experiment 100 bacteria were tracked. The solid line is the Poisson
interval distribution whose mean is the same as the experimental mean.

In this analysis, the minimum run length is 3 sample intervals or 3/12 s. This
interval distribution is obtained for events which occur at random; that is, the probability of
the event occurring during an observation interval is the same irrespective of when the

observation is made. The fact that the experimental data agrees well with the Poisson
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distribution indicates that the tumbling event occurs at random. This observation confirms
those of Berg and Brown [12] made by tracking E. coli AW405, another wild type cell.

Berg and Brown reported a mean run time of0.86+1.18 s.

se— Experimental data

180.0

Turn angle (deg)
Figure 4.15: Turn angle distribution with Methocel. This figure shows the distribution

of turn angles for the same experiment shown in Figure 4.14. The solid line is a curve fit
to the data.

The mean turn angle is 82°£35° and the mean cosine of the turn angle is 0.13. In
the tracking experiments performed by Berg and Brown, the cells showed a more
significant bias toward smaller turn angles with a mean turn angle of 68°£36°. The mean
run speed is 28.7+5.7 (im/s which is significantly higher than that reported by Berg and
Brown of 14.243.4 pm/s. The NR50 is most likely a more motile strain, however direct
comparison of AW405 and NR50 were not made in this study. Also, the growth media are
different. The media used by Berg and Brown Berg and Brown contained glycerol as a

carbon source and also included threonine, leucine, and histidine [12].

85



-e— Experimental data

Run speed (pm/s)

Figure 4.16: Run speed distribution with Methocel. This figure shows the distribution
of run speeds for the same experiment shown in Figure 4.14. The solid line is a curve fit
to the data.

o  Experimental data
—————— Poisson distribution
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Figure 4.17: Run time distribution without Methocel. This figure shows the
distribution of run times from a tracking experiment in which no Methocel was added to the
motility buffer. In this experiment 130 bacteria were tracked. The solid line is the Poisson
interval distribution whose mean is the same as the experimental mean.
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Shown in Figures 4.17, 4.18, and 4.19 are the run time, turn angle, and run speed
distributions for the NR50 bacteria tracked while swimming in buffer solution without the
addition of Methocel. The mean run time for the distribution shown is 0.69+0.78 s which
is slightly lower than the mean of 0.85 s recorded for the same strain swimming in a
solution that contained methyl cellulose. The mean turn angle is 80°+36° and the mean
cosine of the turn angle is 0.15, which shows a slightly greater bias to smaller turn angles
than those recorded for the cells in methyl cellulose. The turn angle distribution for the
cells tracked in the buffer solution with methyl cellulose exhibits a sharp peak around 55°
while the distribution for cells tracked in buffer without Methocel shows a gradual rise to

the maximum frequency at around 55° and then a gradual decrease.

me— Experimental data

135.0

Turn angle (deg)
Figure 4.18: Turn angle distribution without Methocel. This figure shows the

distribution of turn angles for the same experiment shown in Figure 4.17. The solid line is
a curve fit to the data.

The mean run speed of 24.2+5.0 pm/s is slightly lower than that recorded for the
cells in Methocel. This is consistent with observations by other researchers that the

swimming speed of some bacteria increases with the addition of viscosity enhancing agents
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[32], This is due to an increase in the efficiency of the flagellar propulsion at higher
viscosities [13]. The decrease in mean run time and mean turn angle could be explained by
slightly increased cell wobble in the absence of Methocel. This would lead to more
spurious tumbles being scored by the data analysis algorithm which would decrease the
mean run time. Tumbles generated by the analysis as a result of cell wobble would be
recorded as having small turn angles which would lead to a corresponding decrease in the

mean turn angle.

-0— Experimental data

Run speed (pm/s)
Figure 4.19: Run speed distribution without Methocel. Shown is the distribution of

run speeds for the same experiment shown in Figure 4.17. The solid line is a curve fit to
the data.

4.4.2 Near surface tracking experiments

In the next series of experiments, the chamber and windows were used that allowed
the surface position to be determined by focusing on the dot array on the inside surface of
the upper chamber window. The chamber and windows used are shown in Figures 4.8

and 4.9. After the position of the surface was determined the chamber position was



adjusted with the joystick so that the microscope was focused on the region of the fluid
from 10 to 40 (im beneath the glass surface. The chamber was maneuvered within this
region in order to track bacteria moving close to the glass surface. Bacteria at distances
greater than 20 fim from the surface were observed to exhibit behavior similar to that found
in the bulk fluid. However, bacteria moving very close to the surface exhibited a variety of
behaviors.

Shown in Figure 4.20 is an example of a trace for the wild type bacteria from a cell
moving near the glass surface. In this Figure, the red plane surrounded by the white border
is the position of the interior surface of the top window as determined by the calibration of
the surface position described above. The single white line is the surface normal. As in the
two previous diagrams of traces from cells far from the surface, the yellow spheres indicate
points where the analysis indicated the bacterium was in the running phase while the purple
spheres represent points where the analysis determined the bacterium was executing a
tumble. For this and all following cases, the buffer solution contained 0.18% (w/v)
Methocel to increase cell swimming speed and to reduce cell wobble.

In Figure 4.20, tracking begins with the cell in a tumble near the surface at the left
edge of the figure. After two short runs away from the surface, it begins to move toward
the surface. While close to the surface, it executes a tumble and continues to move along
the surface. Executing another tumble, it moves away from the surface, tumbles again,
returns to the surface and moves along it continuing its characteristic run-tumble swimming
behavior adjacent to the surface before tumbling and moving away again. Finally, it
returns to the surface as the trace ends.

Figures 4.21 and 4.22 plot the surface-to-cell distance, swimming speed and
orientation as a function of time. The solid circles along the distance line are points where a
tumble occurred. The orientation of the cell is the angle between the cell's direction vector
and the surface normal as shown previously in Figure 4.3. The bacterium moves

approximately parallel to the surface between 2 and 4 s, 6 and 10 s and from 13 s to the end
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of the trace as indicated by the nearly constant surface-to-cell distance of 5 |im and the

orientation angle of approximately 90° shown in Figure 4.22.

Figure 4.20: Wild type bacterial trace 1. In this figure is shown the trace of a wild type
bacterium that was tracked near the surface of the upper window of the tracking chamber.
The red plane with a white border represents the position of the glass surface as determined
by the position of the array of calibration dots as discussed in the text. The normal to the
surface is shown as a white line. Yellow spheres represent sample points that are part of a
run, while purple points represent points where the analysis algorithm indicated a tumble
occurred.



60
50
Distance 40 on
?
o}
30 @

205‘?3

10

Time (s)

Figure 4.21: Distance and speed for wild type bacterium 1. The swimming speed and
the surface-to-cell distance as a function of time are plotted for the bacterium shown in
Figure 4.20. The solid circles along the distance line indicate points where the bacterium
tumbled.

Time (s)

Figure 4.22: Distance and orientation for wild type bacterium 1. The orientation and
surface-to-cell distance are plotted as a function of time for the bacterium shown in
Figure 4.20. The solid circles along the distance line indicate points where the bacterium
tumbled.
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The periods of surface motion end with tumbles for this trace, although the
initiation of a tumble does not necessarily terminate surface motion. This is illustrated by
the solid dots at 2.5 s, 7.5 s, and 8.5 s in Figure 4.22. The orientation angle drops
significantly near the tumbles at 2.5 and 8.5 s indicating that the bacterium was pointed
away from the surface, but the cell continues to swim along the surface after tumbling.
Also note that in Figure 4.21, tumbles are associated with a sudden decrease in the

swimming speed.

Apparent distance

time (min)

Figure 4.23: Time variation in the apparent distance from the surface to a point known
to be on the surface. The initial error of about 0.3 (im at the start of the trial is due to the
error in obtaining the position of the surface by focusing on the array of dots as discussed
in the text.

An interesting point to consider is the distance between the bacterium and the glass
surface when the bacterium is moving parallel and close to the surface in Figure 4.22. The
present configuration of the tracking microscope and the method used to locate the surface
position does not allow the direct determination of the distance from a cell to the surface

with adequate accuracy. There is some slight error incurred during the calibration of the
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glass surface position. This is typically on the order of 1-2 pm. However, the accuracy of
the calculated surface-to-cell distance tends to drift with time. A measure of the expected
error was obtained by tracking a stationary particle adhered to the glass surface and
monitoring its apparent movement as a function of time. Figure 4.23 shows an example of
this type of experiment.

In this trial, a micron-sized particle was found adhered to the glass surface and
tracking was begun. After every thirty seconds of tracking, the automatic stage control
circuit was opened so that the stage could be manipulated manually. The joystick was
maneuvered through its full range of motion in the x, y and z directions. This was done in
order to simulate the motion of the stage during an actual tracking experiment. After
manipulating the joystick, the original stationary particle was again tracked while its
apparent position was monitored. The apparent surface-to-cell distance of the stationary
particle is seen to drift away from its location at the beginning of the experiment until after
approximately 10 min of tracking time (which is similar to the tracking time of a typical
experiment), the error in the particle's distance is approximately 5 [im. This indicates that
the error in the measurement of the position of the surface slowly increases with time but is
relatively constant for times on the order of a few seconds.

During cell tracking experiments, it was observed that runs parallel to the surface
such as those in Figure 4.20 occurred when the calibration dots were in clear focus. It was
observed by focusing on the dots immediately after calibration and recording the indicated
distance to the surface that the actual surface-to-cell distances were 0+2 (im (or less than 2
pm from the surface) when the calibration dots were in clear focus as opposed to the value
of 4-5 pm indicated by Figure 4.21.

Another interesting feature of the trace of the bacterium shown in Figure 4.20 is its
path when moving close to and parallel to the surface. The cell path appears to be slightly

curved during these runs. The curvature of these paths is clockwise. A clearer example of
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this circling behavior for runs adjacent to the surface can be seen in the trace of another

bacterium shown in Figure 4.24.

Figure 4.24: Wild type bacterial trace 2. Shown is the trace of a wild type bacterium
moving near the surface. The circular portions of the cell's path occurred when the cell
was closest to the glass surface.

Tracking began at the left edge of the figure. The trace has been rotated so that the surface
normal is nearly perpendicular to the plane of the page. Comparison of the three-

dimensional cell trace and the distance of the bacterium as a function of time in Figure 4.25
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shows that periods in which the cell moves at a constant small distance from the glass

surface correlate with periods in which the cell exhibits a circular swimming pattern.
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Figure 4.25: Distance and speed for wild type bacterium 2. The surface-to-cell distance
and swimming speed are plotted for the bacterium shown in Figure 4.24.

Similar to the previous trace, periods of circular motion near the surface end with a tumble.
Figure 4.26 shows an example of a wild type cell swimming in a circular pattern
when moving close to the surface while executing one long, continuous run. At the end of
this run, the bacterium turns away from the surface and swims off into the bulk.
Figures 4.27 and 4.28 show the variation of the cell swimming speed and orientation
angle while swimming. Since this cell did not execute a tumble, its swimming speed
remained relatively constant compared to the two previous bacteria, varying between 17
(im/s and 31 |im/s. The direction of the circling is always the same for each of the bacterial
traces shown; that is, the bacteria always make clockwise circles on the glass surface.
Other researchers have also documented bacterial circling when cells swim very close to a

solid surface [14]and have observed that the rotational direction of the circles is also
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clockwise. Examples of runs adjacent to the surface were observed in which there was not
significant curvature in the cell path, however this behavior was not as common as the

circling pattern. More examples of wild type cell traces can be found in Appendix F.

Figure 4.26: Wild type bacterial trace 3. Shown is a cell trace from a wild type cell
tracked near the glass surface.
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Figure 4.27: Distance and speed for wild type bacterium 3. Note that the data analysis
algorithm identified this trail as a single continuous run.
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Figure 4.28: Distance and orientation for wild type bacterium 3.



4.4.3 Effect of the solid surface on the swimming speed

The individual cell traces shown previously were taken from several tracking
experiments performed to collect data for wild type cells moving near a solid surface in a
buffer solution containing 0.18% (w/v) Methocel. A total of 90 cells were tracked in these
experiments. The tracking data were analyzed to determine if a dependence of the
swimming speed on the surface-to-cell distance and cell orientation could be observed. Ifa
swimming bacterium can be approximated as a sphere with a single flagellum rotating at a
constant speed as in the theoretical work of [59], or as a sphere moving against a constant
force as in Equation 4.11, then the work of Ramia ef al. and Brenner suggest that
hydrodynamic interactions would result in lower swimming speeds for cells moving
toward a solid surface and within 10 (im of the surface.

The data were analyzed by dividing the fluid adjacent to the surface into four
distance regions and four directional regions. The four distance regions were 0-10 [im, 10-
20 |im, 20-30 (im, and >30 “m from the surface. The four orientation regions were
defined relative to the normal to the glass surface and were 0°-45° (away from the surface),
45°-90°, 90°-135° and 135°-180° (toward the surface). The mean speed during running
was generated for each bacterium that occupied each of the possible 16 regions of the
distribution (four possible orientations and four possible cell-to-surface distances). The
means for each bacterium were used to form the distributions. For example, a bacterium's
trace was analyzed to determine the number of sample points and the swimming speed at
each of these sample points for each of the 16 distance-orientation ranges (0-10 |im at 0°-
45°, 10-20 |im at 0°-45°, etc.). The mean swimming speed for each of the 16 ranges for
which samples existed were calculated by dividing the sum of the swimming speeds at each
sample point by the number of samples in the distance-orientation range. The mean

swimming speed for each bacterium in each region calculated in this way was used to form
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the population distributions so that each bacterium was represented once in each range it
occupied.

Figure 4.29 shows the dependence of the mean swimming speed on the cell
orientation for each distance range. The orientations plotted are the midpoints of the four
regions. For cells moving in the distance range 0-10 pm, the highest swimming speeds
were recorded for cells moving in the two orientation ranges the most parallel to the solid
surface, while the lowest mean swimming speed was recorded for cells moving between
135° and 180° from the surface normal (toward the surface) and within 10 pm of the

surface.

Figure 4.29: Mean swimming speed as a function of orientation. The four distance
values plotted in the figure are the midpoints of the regions identified in the legend.

Figure 4.30 shows the same data plotted to show the variation of the swimming
speed as a function of distance for each of the four orientation ranges. The distances
plotted are the midpoints of the ranges and the range 30-<» pm is omitted. In this figure, it

is seen that bacteria swimming with directions in the 135°-180° orientation range
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(swimming toward the surface) shows the greatest variation, with the mean swimming

speed decreasing as the distance to the surface decreases.

Figure 4.30: Mean swimming speed as a function of orientation. The data shown in
Figure 4.29 is plotted as a function of distance. Data for distances greater than 30 (tm is
omitted.
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Figure 4.31: Mean swimming speed in bulk versus orientation. The data in the distance
range 0-10 pm for the surface tracking experiments is also shown for comparison.
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For comparison, the tracking data that generated the distributions shown in
Figures 4.14, 4.15, and 4.16 was analyzed to show the variation of the mean swimming
speed with the orientation angle for cell swimming very far from the surface (approximately
400 p.m). The results of the analysis are shown in Figure 4.31 along with the data for 0-
10 pm. As discussed in Section 4.3, the tracking chamber used for experiments in the bulk
fluid did not have top windows printed with an array of dots for determining the plane of
the surface. The surface plane for this data was determined by locating and recording the
position of surface defects on the top window glass so the calibration to the surface in this
case is only approximate but is included here to show that the mean swimming speed is
relatively constant with respect to direction for cells moving far from the surface.

The data for the bacteria near the surface were also analyzed by considering the four
orientation ranges and dividing the distance into two regions: 0-10 pm and >10 pm. The
rationale for using these distance ranges is based on the dependence of the swimming speed
on the separation distance in Equation 4.11 and illustrated in Figure 4.2, since the
decrease in the speed of a sphere moving with constant propulsive force toward a plane
wall is less than approximately 12% of the value in the bulk for surface-to-cell distances of
greater than 10 times the radius of the sphere. The 100(1 - cc)% confidence interval on

(Pj = p2) (the difference in the population means for a given orientation) was calculated by

(4.18)

where (X,) and (X2) are the mean run speeds for the sample at >10 pm and <10 pm
respectively, 5) and S are the associated variances, ” and n! are the number of samples,
and tal? is the value of the Student t with a =0.5. Shown in Figure 4.32 are the 95%
confidence intervals for this analysis. In this Figure, }ir is the population mean for the

distance range 10-°° pm and p? is the population mean for the 0-10 pm distance range.
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Figure 4.32: 95% confidence intervals on the difference in mean swimming speeds.
The difference in the values of the mean swimming speeds are plotted with brackets to

indicate the 95% confidence interval on the population parameter, /i, —/12.
pop p

This figure shows that one can assert with 95% confidence that for bacteria moving toward
the solid surface at an orientation angle greater than 135° relative to the surface normal, the
mean swimming speed for bacteria at less than 10 pm from the solid surface is significantly
less than the mean swimming speed at greater than 10 pm from the surface. This assertion

cannot be made for any of the other orientations since their confidence intervals bracket

(/il-M2) = 0.

4.4.4 Comparison of cell traces to solutions of theory for

spheres: Wild type cells

As discussed in Section 4.2, Brenner [19] considered the hydrodynamic
interactions between a solid plane surface and a spherical particle as the particle moved

perpendicularly toward the surface. Ramia [59] considered the hydrodynamic interactions
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between a spherical body with a flagellum and a plane surface for cells with different
orientation angles to the surface normal. These two theoretical solutions suggest another
manner in which the data can be analyzed. Individual cell traces could be isolated in which
the cells swam nearly perpendicular to the solid surface and their speed could be analyzed

as a function of the separation distance.

Figure 4.33: Wild type bacterial trace 4. This bacterium executes a single tumble,
shown as a purple sphere at the lower center of the figure.
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Figure 4.33 is the trace of a bacterium that was tracked while executing two long
runs with one tumble. Tracking began with the cell moving toward the surface from about
the center of the figure. At two points during the trace, the cell approaches the surface at an
orientation angle between 135° and 180" as can be seen in Figure 4.34. Figures 4.35
and 4.36 show the experimentally measured speed as a function of the separation distance
plotted along with the solutions of Ramia et al. [59] for approach angles of 135° and 180°
and the solution of Equation 4.11 for the two portions of the trace where the cell

approaches the surface at a large orientation angle.
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Figure 4.34: Distance and orientation for wild type bacterium 4. The single tumble is
indicated by the solid dot at approximately 4 s. The bacterium can be seen to approach the

surface at an orientation of between 135" and 180" at approximately 4 s and again at
approximately 22 s.

The values of the distances plotted in this figure are the experimentally determined
distances minus the closest approach distance of the bacterium shown in Figure 4.33. The
closest approach distance was determined to be 6.8 um by examining the data in

Figure 4.37. It was felt that this was a more accurate representation of the true surface-to-
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cell distance for the reasons previously discussed. In order to compare to the theoretical
solutions, the experimentally measured speeds were normalized by dividing by the speed of

the bacterium at the separation distance (/-b6)/b closest to 10.

=  Experimental data
______ BEM (180°)
....... BEM (135°)

_____ Brenner (180°)
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Figure 4.35: Speed versus separation distance for wild type bacterium 4, first run. The
experimental data () is plotted with the BEM solutions of Ramia ef al. at 180° and 135°
and the solution of Equation 4.11. The dimensionless distance is (4-b)/b where b is
the radius of the cell body and 4 is the distance from the center of the cell to the surface.
The dimensionless speed is the instantaneous speed divided by the speed in an unbounded
fluid, U,,. For the experimental data, the velocity closest to 10 pm was used as [/ . The
dimensionless distance for the experimental data was calculated assuming a representative
cell radius of | pm.

Due to the variability in the bacterial swimming speed (see Figure 4.37), this
normalization scheme resulted in some experimentally-determined dimensionless
swimming speeds shown in Figures 4.35 and 4.36 that are greater than one. For the two
cases shown, the BEM solution provides a better representation of the experimental data
than the solution of Equation 4.11.

Figure 4.38 shows the trace of another wild-type cell that executed a run at a large

orientation angle at a distance less than 10 pm from the surface. Figures 4.39 and 4.40
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show the variation of the surface-to-cell distance, the speed and the orientation of the cell as

a function of time.
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Figure 4.36: Speed versus separation distance for wild type bacterium 4, second run.

The experimental data (*) is plotted with the BEM solutions of Ramia et al. and the
solution of Equation 4.11.
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Figure 4.37: Distance and speed for wild type bacterium 4. The single tumble is
indicated by the solid dot at approximately 4 s.
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Figure 4.38: Wild type bacterial trace 5. Shown is the trace of a wild type bacterium
moving near the surface. The circular portions of the cell's path occurred when the cell
was closest to the glass surface.

Figure 4.41 compares the speed of the cell as it approaches the solid surface an average
orientation angle of 135° to the BEM solution of Ramia ef al. As in the previous case, the
surface-to-cell distance has been adjusted for error in the measurement by subtracting the
closest approach distance. The experimental data agreeing most closely with the BEM

solution for a cell orientation of 135°. In Figure 4.40, the orientation of the cell as it swam
g

toward the surface (near 2 s) was approximately 135°.
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Figure 4.39: Distance and speed for wild type bacterium 5.
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Figure 4.40: Distance and orientation for wild type bacterium 5.
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Figure 4.41: Speed versus separation distance for wild type bacterium 5. The
experimental data is plotted for the region in Figure 4.39 just prior to 2 s.

4.4.5 Comparison of experimental data to solutions of theories

for spheres: Smooth swimming cells

One complicating factor in these comparisons is the tumbling behavior of the
bacteria. The initial run toward the surface in the trace shown in Figure 4.33 terminates in
a tumble near the surface. Since bacterial swimming speeds slow as the bacterium enters a
tumble, it cannot be determined if the reduction in swimming speed as the separation
distance decreases is a result of hydrodynamic interactions between the cell and the surface
or if it is because the cell is about to execute a tumble. It is difficult to determine how the
cell becomes aligned with the surface: by striking the surface or by turning until its path is
aligned with the surface. Ifthe cell strikes the surface and begins swimming parallel to it,
then the analysis would record the action as a tumble. For the bacterial trace shown in
Figure 4.33 the cell appears to undergo a tumble the first time it reaches the surface, as

seen in Figure 4.37 near 4 s.



110

Figures 4.42: Smooth swimming bacterial trace 1, view 1. The smooth swimming
bacteria have a deletion in the gene responsible for the tumbling behavior in E. coli. As
expected, the data analysis does not predict tumbles in the traces of these bacteria.



Figure 4.43: Smooth swimming bacterial trace 1, view 2. The bacterium whose trace is
shown here is the same as that shown in Figure 4.42. The drift in the distance
measurement causes error in the distance measurement which makes the bacteria in this
trace appear to be a significant distance above the surface. Since it was observed that the
calibration dots were in clear focus while bacteria were circling on the surface, the actual

surface-to-cell distance for cells moving along the surface was less than 2 (im as discussed
in the text.
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Figure 4.44: Smooth swimming bacterial trace 1, view 3. The same trace as in
Figures 4.42 and 4.43 is shown, viewed from the along the normal. The nearly perfect
circles that bacteria often make when swimming along a solid surface can be seen plainly
here.
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However, the second time the cell approaches the surface (near 22 s), the cell does not
tumble when it reaches the surface. Another illustration of this behavior can be seen in
Figure 4.39 near 2 s for the cell shown in Figure 4.38.

For these reasons, experiments were performed using the smooth swimming
mutant bacteria HCB437. For these experiments, the region approximately 100 |[im above
the surface was scanned with the tracking microscope to attempt to track cells that were
swimming toward the glass surface. Since the cells are long and cylindrical, cells moving
toward the surface appear foreshortened. Figures 4.42, 4.43, and 4.44 show three
different views ofthe trace of'a smooth swimming bacterium. Figure 4.43 shows the trace

on edge.
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Figure 4.45: Distance and speed for smooth swimming bacterium 1. The line
indicating the distance to the surface oscillates between 5 s and 35 s, when the bacterium
was observed to move along the surface in circles. The oscillations in the surface distance
are the result of a nonuniform surface calibration. As the cell circles in this figure, its
surface-to-cell distance appears to oscillate between approximately 4 and 5 pm.
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The trace appears to be a significant distance above the surface due to the error in
the surface-to-cell distance caused by the drift in the measurement as discussed previously.
For cells circling in this manner, it was always observed that the array of calibration dots
on the glass surface were in clear focus, indicating that the actual cell to surface distance
was less than 2 (im. Figure 4.44 shows the trace from above. This illustrates the nearly
perfect 30-50 (im diameter circles that the cell forms as it moves on the surface. The
surface-to-cell distance, speed, and orientation of the bacterium are shown as a function of

time in Figures 4.45 and 4.46.
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Figure 4.46: Distance and orientation for smooth swimming bacterium 1. The
bacterium begins to swim toward the surface at approximately 135°.

Notice that in Figure 4.45, the swimming speed is more constant than for the wild type
(non-mutant) cells, although there is still a significant amount of variation (from 16 pm/s to
25 pm/s). The speed is plotted as a function of the separation distance in Figure 4.47 for
the initial surface-oriented portion of the run. The experimentally-determined bacterial
swimming speed begins to drop more quickly and does not reach as low a value as the

BEM solution.
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Figure 4.47: Speed versus distance for smooth swimming bacterium 1.
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Figure 4.48: Close-up of orientation for smooth swimming bacterium 1. Here, data for

each sample point is shown as a circle (on the distance curve) or as a square (on the
orientation curve).

The experimental swimming speed in the figure is only shown while it decreased.

For closer separations, the swimming speed begins to increase back to its value away from
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the surface. The reason for this can be seen by examining Figures 4.42 and 4.43 and also
in Figure 4.48. As the cell approaches the solid surface, it begins to turn away from the
surface as evidenced by the decrease in its orientation angle between 2.5 s and 3.0 s in
Figure 4.48. The cell turns gradually until it is parallel to the solid surface and as it turns,
the hydrodynamic force due to the interaction between the cell and the surface decreases
and the swimming speed increases. The experimentally determined velocity also begins to
decrease further from the solid surface than the BEM solution predicts. A possible cause
for this is the length of the smooth swimming cells of approximately 4 (im. The exact
position on the cell body that the microscope is tracking is not known and probably shifts
along the length of'the cell. Ifthe microscope is tracking at the back end of the cell as the
forward end nears the surface, then the cell will appear to decrease its swimming speed
while the point tracked is up to 4 (im further away from the surface than the end of the cell
closest to the solid surface.

Figure 4.49 is the trace of another smooth swimming cell for which tracking began
as the cell moved toward the surface. As in the previous case, the cell begins swimming in
circles adjacent to the glass surface. The surface-to-cell distance and the orientation angle
as a function of time for this cell are shown in Figure 4.50. Figure 4.51 shows the
velocity as a function of the separation distance as the cell approaches the surface. The
agreement between the experimental data and the BEM method is very good.

Figure 4.52 shows the cell trace for a bacterium that approaches the surface nearly
perpendicularly, turns until parallel to the surface and then executes a straight run across the
surface. Although curved runs are the most frequently observed, some bacteria move in
nearly straight paths across the glass surface. The speed and surface-to-cell distance is
plotted as a function of time in Figure 4.53. Figure 4.52 shows the cell trace for a
bacterium that approaches the surface nearly perpendicularly, turns until parallel to the
surface and then executes a straight run across the surface. Although curved runs are the

most frequently observed, some bacteria move in nearly straight paths across the glass
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surface. The speed and surface-to-cell distance is plotted as a function of time in

Figure 4.53.

Figure 4.49: Smooth swimming bacterial trace 2. Tracking began for the bacterium
whose trace is shown here at approximately 35 pm from the surface. The bacterium
approached the surface and then began swimming in circles on the surface.
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Figure 4.50: Speed versus orientation for smooth swimming bacterium 2.
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Figure 4.51: Speed versus distance for smooth swimming bacterium 2.
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50 microns

Figure 4.52: Smooth swimming bacterial trace 3. The bacterium whose trace is shown
here, approached the surface and began swimming along it, without showing significant
curvature in its path. Essentially straight bacterial paths across the surface were observed,
although not as frequently as circular paths.
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Figure 4.53: Distance and speed for smooth swimming bacterium 3.

The mean swimming speed for the data shown in Figure 4.53 is slightly higher while the
bacterium is swimming adjacent to the surface (35.4 pm/s) than in the bulk (33.9 pm/s).
For most of the bacterial traces that had significant runs both on the surface and in the bulk
fluid, it was observed that the mean run speed near the surface was either essentially the
same as the bulk value or slightly higher that the bulk value.

Figure 4.54 compares the BEM solution to the experimental data for this
bacterium. As in Figure 4.47, the speed decreases more quickly in the experimental data
than in the BEM solution, likely a result of the variation of the exact position of tracking
along the cell body as discussed previously. Similar to the bacteria shown in Figure 4.43,
the cell begins to turn away from the surface as it gets near and then runs parallel to the
surface.

Four more traces from tracking experiments performed on smooth swimming
bacteria are found in Appendix F. They exhibit the same features as those shown here.

Perpendicular runs near the surface show a decrease in the cell swimming speed as the cell
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nears the surface. Cells turn out parallel to the surface as they approach it. They frequently
move in a circular path when swimming adjacent to a solid surface, but do not always do

SO.
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Figure 4.54: Speed versus distance for smooth swimming bacterium 3.

4.5 Discussion

Both the statistical data collected by tracking 100 individual bacteria moving near a
solid surface and the analysis of the swimming speed of individual bacteria approaching a
solid surface indicate that for distances less than 10 “tm and orientation angles between
135° and 180°, the swimming speed is significantly less than at distances greater than
10 p.m or for orientation angles less than 135°. The experimental data for the change in
swimming speed as a function of the separation distance agrees well with the solutions of
Ramia ef al. using the BEM method and the solution of Equation 4.11. Comparison of
bacterial swimming speeds adjacent to the surface to speeds in the bulk for individual cells

shows that mean swimming speeds adjacent to the surface are equal to or slightly higher
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than swimming speeds in the bulk. This phenomenon has been shown to be a result of an
increase in flagellar propulsive advantage above increases in the translational and rotational
drag on the cell body [59], Similar effects have been observed theoretically in the study of
multiple particles sedimenting close to each other [77] and the study of two organisms
swimming close to each other [59]. Bodies moving near each other in a viscous medium
exhibit a translational speed above that observed in isolation.

Ramia et al. give an excellent explanation of the circling behavior of bacteria when
swimming along a surface based on the hydrodynamics of the rotating flagella. They were
able to show that when the model bacterium used in their study is started out initially
parallel to a solid surface, asymmetry in the dependence of the thrust direction of the
flagellum on the angle of rotation results in a net force parallel to the surface, but
perpendicular to the body axis of the cell. All of these observations indicate that the change
in the swimming speed for bacteria moving toward a solid surface at distances of between
approximately 2 and 10 p.m or for cells moving adjacent to the solid surface can be
predicted by models that assume the interaction between the surface and bacterium is
principally hydrodynamic.

However, two characteristics of bacterial motion are not predicted by models that
consider only hydrodynamic interactions. Firstly, cells approaching the solid surface in
this study at orientation angles between 135° and 180° do not "crash" into the surface as
was predicted by the model of Ramia et al., but change their orientation and begin to turn
parallel to the surface at a distance of 2-4 |im from the surface as seen in Figure 4.48.
(Subtracting the closest-approach distance of4 pm from the distances in this figure, it can
be seen that the distance to the surface when the orientation begins to drop from 135° at
about 2.5 s is approximately 4 pm). Secondly, cells remain adjacent to the surface for
relatively long periods of time, frequently executing tumbles and then continuing to move

along the surface.
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Examination of the interaction potentials calculated from the DLVO theory of colloid
stability offers an explanation of the tendency of cells to remain adjacent to the surface.
Shown in Figure 4.55 is the DLVO interaction potential, given by Equation 4.1, between
the wild type cells and the glass surface in the buffer solution used in the tracking
experiments. The experimentally determined zeta potentials found in Table 4.1 were used

in the calculation.

Separation distance (nm)

Figure 4,55: DLVO interaction potential as a function of separation distance. The
potentials shown are those for van der Waals interaction GA, electrostatic interaction GE,
and the sum of the two, Gr. for the wild type bacteria and glass in the phosphate buffer
solution of ionic strength 0.19 M. The interaction potentials are normalized by kBT.

The value of the Hamaker constant was taken as 1 x 10"l J [61] and the particle radius was
taken to be | |im. The relative permittivity of the medium was taken as 78.3. Figure 4.56
shows a close-up of the region near the origin. A secondary minimum exists in the
interaction potential at approximately 4.5 nm from the surface and has a depth of
approximately 7/tBr. For comparison, using a bacterium mass of 4x10"l3 g and a
swimming speed of 50 qm/s at 30° C, the kinetic energy of a bacterium due to its

swimming is only 1.05 x 10'4 kBT. Its kinetic energy as a result of thermal motion is
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1.5 kBT [75]. Reversible bacterial adsorption in the secondary minimum would explain the

tendency of cells to swim close and parallel to the solid surface. Another feature of the
potential curve is the substantial energy barrier to the primary minimum, with a height of

about 45(K'Br at a distance of 1/2 nm. This barrier would prevent adsorption in the

primary minimum and repel cells that get very close to the surface.

Separation distance (nm)

Figure 4.56: Expanded view of the DLVO interaction potential shown in Figure 4.55.
A secondary minimum 7 kBT deep exists at approximately 4.5 nm from the solid surface.

The question remaining to be answered is how cells are able to turn parallel to the
surface at distances of between 2 and 4 |im. The model bacteria of Ramia ef al. do not turn
parallel to the surface as they approach it. Also, the insignificance of electrostatic
interactions between the cell body and the surface at this distance would seem to eliminate
them as a possible explanation. However, two possible explanations exist based on
hydrodynamic and electrostatic considerations. First of all, the hydrodynamic model
solutions were applied to a spherical bacterium while E. coli are rod-shaped cells. There

may be torque generated on a rod-shaped cell when it approaches the surface that would
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reorient it toward the surface. Another possible explanation lies in the presence of
extracellular material around the cell body. E. coli are known to be covered with hair-like
pili that are 0.2 to 2.0 |[im in length [53]. The pili may be reaching the region close to the
surface where electrostatic repulsion is significant well before the cell body. The pili at the
front of the cell would be repelled by this interaction, forcing the cell to rotate into an
orientation parallel to the surface while the body of the cell is still some distance from the

surface.

4.6 Conclusion

Motile bacteria moving within 10 pm of a solid surface show a decrease in their cell
swimming speed for runs toward the surface. The dependence of the swimming speed on
the surface-to-cell distance can be predicted by assuming that hydrodynamic interactions
dominate. However as cells get within approximately 2-4 (im of a solid planar surface,
they turn until they are aligned with the surface and typically continue to swim along the
surface. Wild type cells are frequently able to move away from a solid surface by
executing a tumble, although cells were often observed to tumble and continue to run
adjacent to the surface as well. Runs adjacent to the surface for cells that do not tumble
appear to the significantly longer. However, smooth swimming cells are also able to move
away from the surface, indicating that tumbling may facilitate the movement of a bacterium
from the surface, but is not necessary.

The theoretical model of Ramia et al. predicts the circular motion of bacteria
swimming adjacent to a surface, but does not explain why bacteria tend to remain adjacent
to the surface. The DLVO interaction potential shows a significant secondary minimum
close to the surface that might explain this tendency. An unanswered question is why cells
moving toward the surface at orientation angles of between 135° and 180° from the surface

normal do not appear to collide with the surface, but begin to turn parallel to the surface at
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distances of 2-4 (im from the surface. Two possible explanations, one with a
hydrodynamic basis and the other based on the electrostatic repulsion of extracellular

material, have been put forth but further study is required to answer this question.
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Chapter 5

Summary and Concluding Remarks

This dissertation involves the comparison and validation of models and solution
algorithms for the migration of populations of bacteria, and the study of the interactions of
swimming bacteria with a solid surface. The major results of this work are summarized

below.

5.1 Comparison and Validation of Models

In Chapter 2, a cellular level simulation was developed which can be applied to the
problem of the migration of a population of bacteria in a fluid medium in the presence of
chemical attractants or repellents. This simulation algorithm, termed cellular dynamics
(CD), was used to probe the validity of a phenomenological macroscopic model for the
migration of a population of bacteria in a one-dimensional attractant gradient, termed the
RTBL model. An implicit assumption in the RTBL model is that bacterial motion is
constrained to one dimension. In Chapter 3, a finite element solution method (FEM) was
applied to a mathematically rigorous analogue of the RTBL model. The analogue equation

is a simplification of Alt's general cell balance equation for time evolution of the density of
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bacteria swimming in a fluid medium with an attractant gradient in one dimension. The full
three-dimensional character of bacterial motion is preserved in the analogue equation. The
FEM solution method was used to test the accuracy of population transport parameters
obtained by applying the RTBL model to experimental data. The FEM solution was also
used to probe the effect of different models for the modulation of the tumbling frequency of
bacteria on the solution for the cell density profile.

Comparisons of CD solutions to RTBL solutions for the density of populations of
bacteria responding to gradients of chemical attractants in a stopped-flow diffusion chamber
show that the RTBL solutions agree (to within the noise level of the simulation) with the
CD solution for the response of E. coli bacteria to an initial step gradient of an attractant.
This agreement shows that a mathematical analysis based a perturbation expansion of the
rigorous governing equation alone (see Section 2.4.2) is not a sufficient indicator of the
ability of the RTBL model to accurately predict the solution for the density profile of a
population of bacteria responding to relaxing step gradients of attractants. The CD
methodology also illustrates the necessity of the use of the proper relationships between the
experimentally measured swimming speed, v, and the chemotactic sensitivity x 7" obtained
from experiments and the one-dimensional analogues of these parameters, used in the
solutions of one-dimensional models for bacterial motion such as RTBL.

In Chapter 3, a simplified form of Alt's general equation was applied to the problem
of bacterial migration in the presence of a one-dimensional gradient of an attractant.
Solution of the simplified form of Alt's general cell balance equation by FEM is a more
efficient method than CD for validating one-dimensional phenomenological models.
Comparisons to solutions generated with the CD algorithm, which is mathematically
equivalent to the FEM solution method, show that the FEM solutions are accurate. The
FEM solutions clearly illustrate the difference between the RTBL solution and the
simplified form of Alt's equation. The application to experimental data from the stopped-

flow diffusion chamber of RTBL and the FEM solution method of Alt's equation applied to
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a one-dimensional attractant gradient shows that substantial errors can result if one-
dimensional phenomenological models are used to obtain values from these experiments for
the chemotactic sensitivity coefficient, Xo1

The FEM solutions also demonstrate the importance of the correct choice of the
model for the downgradient swimming behavior of bacteria on the value of Xo obtained
from experiment. Some species of bacteria respond by returning to their zero-gradient
(basal) tumbling frequency while other species continue to increase their tumbling
frequency above the basal frequency when swimming in a direction opposing a
concentration gradient of an attractant. This model must be chosen a priori since the FEM
solutions show that while nearly identical solutions for the density profile can be generated
using the "retum-to-basal" and "increased-frequency" models for the downgradient
behavior, the values of Xo required to obtain each of the solutions can differ by as much as
100%%.

The FEM solutions also show that the assumption of a negligible partial derivative
with respect to time in the total derivative of the number of bound attractant receptors is
acceptable since solutions generated including and omitting this partial derivative are
virtually indistinguishable for conditions of relevance to stopped-flow diffusion chamber

experiments.

5.2 Bacteria-Surface Interactions

In Chapter 4, a tracking microscope was used to study the changes in the
swimming behavior of bacteria when the cells encounter a solid surface. Analysis of the
swimming behavior of wild type E. coli bacteria show that the mean swimming speed for
bacteria moving toward a solid surface at orientation angles of greater than 135° and within
10 pm of the surface are lower than for cells with orientation angles less than 135° from the
surface normal or for cells greater than 10 (am from the surface. Experimental

measurements of the swimming speed of individual cells as a function of surface-to-cell
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distance show that cells begin to decrease their swimming speed when they are 10 pm from
a solid surface and are moving toward the surface at orientation angles greater than 135°.
The rate at which their speed decreases is in agreement with the decrease in speed predicted
by two theoretical solutions for spheres moving in a viscous medium toward a planar
surface. As the surface-to-cell distance decreases to 2-3 pm, bacteria smoothly change
their orientation until they are aligned parallel to the solid surface. Cells then frequently
remain parallel to the surface longer than the mean run time of a wild type cell (0.8-0.9 s).
In other words, surface trails may include 1-2 tumbles. (See for example Figure 4.24
where the cell tumbles while on the surface and then continues to move along the surface.).
Wild type cells that exhibit very long runs tend to move along the surface for longer times
than cells that tumble more frequently. Cells that tumble with a typical frequency (1.1-1.3
/s) tend to leave the surface more quickly than cells that exhibit very long runs, and often
do so after tumbling. Observations of the swimming speed of smooth swimming (mutant)
cells corroborate the observed decrease in cell swimming speed for cells approaching a
surface and also showed that tumbling was not necessary for cells initially moving along a
surface to leave the surface and return to the bulk fluid.

Cells swimming along the surface frequently swim in circles 30-50 pm in diameter.
Consideration of the rotation of the flagella by Ramia et al. [59] show that circular paths are
hydrodynamically favored for cells moving along a surface. However, hydrodynamic
considerations are not sufficient to explain why cells seem to be constrained to move along
the surface. Calculation of the interaction potential between the surface (glass in this study)
and the bacteria reveals a secondary energy minimum between 4 and 5 nm from the surface
and a substantial energy barrier to the primary minimum at less than | nm. Bacteria that
approach very near the surface may become trapped in the secondary energy minimum and
be constrained to motion only parallel to the surface plane until they are able to overcome
the barrier and return to the bulk fluid, possibly as a result the tumbling process.

However, it was observed in this study that tumbling is neither a sufficient nor necessary
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condition for a cell to leave the surface, but tumbling while moving along the surface

appears to increase the probability for cells to leave the surface.

5.3 Concluding Remarks

The results of these studies reveal the complex nature of bacterial motion both near
a solid surface and far from surfaces in the bulk fluid. To be able to predict the behavior of
a population of bacteria moving in the bulk fluid, it is essential to understand how to
mathematically describe the physical situation. Questions concerning the response of
bacteria to a chemical gradient must be answered before an attempt at modeling the behavior
can be undertaken. For example, do bacteria change their tumbling frequency when
moving down a chemical gradient or do they return to their basal tumbling frequency? This
work shows that substantial errors can be introduced in the transport coefficients obtained
from experiments if the correct assumption is not made, although the solution for the
bacterial density profile may agree well with the experimental data. Models that assume the
motion of the bacteria is one-dimensional, like the RTBL model, are more easily solved
than more sophisticated models. Models for bacterial migration that give an accurate
solutions quickly would be useful in designing processes such as in situ remediation
schemes. However, before more simple models are used, it is necessary to determine if
they are appropriate. Are there conditions that make the assumption of essentially one-
dimensional motion valid? Simpler models should be benchmarked with more
sophisticated models based on the general, three-dimensional cell balance equations under
all expected actual or experimental conditions.

In the case of bacterial motion near surfaces, we have observed a spectrum of
bacteria-surface interactions. Some wild type cells approach a solid surface, begin
swimming along the surface while executing several tumbles and circular runs and then

leave the surface. Other wild type cells make many circles on the surface in one long run.
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The decrease in swimming speed observed as cells approach a surface at distances less than
10 |im is appropriately modeled by considering the hydrodynamic interactions between a
sphere with a flagellum attached, a solid surface, and the surrounding fluid. However,
understanding the tendency of cells to turn parallel to a surface and then move along the
surface for significant periods of time is essential to characterizing cell-surface interactions.
The model of Ramia et al, which accounts for the hydrodynamic interactions between then-
model bacteria and solid surfaces, does not predict the gradual turning of cells until they are
parallel to the surface. Although their work predicts that a bacterium with a spherical cell
body will collide with the surface without the cell orientation changing significantly, a rod-
shaped cell may turn parallel to the surface since the resistance to motion on the end of the
cell closest to the surface would be greater than that at the end of the cell farthest from the
surface. For a sphere, this force of resistance would be directed through the center of mass
of the bacterium and would generate no torque. In a rod-shaped cell, this could cause the
cell to rotate and align itself along the surface. In addition to this possibility, DLVO
interactions between the surface and extracellular material (such as pili) could cause the fore
end of rod-shaped cells to be repelled by the wall before the aft end. Both of these
explanations could account for the tendency of cells to turn parallel to the surface and not
collide with it, however more work is necessary to identify the proper mechanism for this
phenomenon.

As an extension of this work, I would suggest performing tracking experiments in
solutions with varying ionic strength. If it is true that adsorption in the secondary
minimum is resulting in cells swimming very near the surface and parallel to it, then
reducing the ionic strength could result in cells not swimming along the surface. Also, the
ionic strength of the medium could be increased or perhaps another material could be used
for the solid surface to reduce or remove the electrostatic barrier to the primary minimum.

This would make it possible to test the conjecture that electrostatic repulsion of extracellular
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material is possible for the tendency of bacteria not to collide with the solid surface, but to
turn parallel to the surface.

At this point, it is not known why cells turn parallel to the surface and remain
parallel to it, sometimes tumbling and continuing along the surface. A sufficient amount of
tracking data might make it possible to obtain a reasonable stochastic representation of the
motion of bacteria near the surface. One could obtain run time distributions for surface
motion and probability distributions for the likelihood of a cell moving along the surface to
return to the bulk fluid. However, it seems very possible that electrostatic interactions play
a yet undetermined role in the motion of motile bacteria near solid surfaces. This would
mean that near surface behavior would be a function of the composition of the media and
the solid surface, making the prediction of the migration of bacteria in natural systems very
difficult

If it can be determined by what mechanism the turning and surface swimming
behavior of bacteria occurs, it would then be possible to incorporate the interaction of the
bacteria with the surface into a cell balance equation or simulation algorithm to describe the
motion of bacteria in a porous media or other system including a solid phase. In either
case, an analytical solution for the dependence of the swimming speed and path of the
bacteria is not available. The inclusion of surface interactions into mathematical models of
this type would require the additional solution of a model such as that of Ramia ef al. that
might also include a description of the electrostatic and van der Waals interactions. Solving
this concurrently with a balance equation would not, at this time, be practical since it would
require very intensive computer resources and would require an unrealistic amount of time
to obtain a solution. However, it may be possible to solve a model for the reasonable
number of discrete orientations and separation distances much as was done for the angle
change distribution in the FEM solutions shown in this work. Then, if sufficient storage

resources were available, it would be possible to include the dependence of the run speed
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and cell swimming path on the separation distance in theoretical methods such as the CD

and FEM solution methods developed in this study.
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Appendix A

Relating Mean Run Time and
Attractant Gradient

Brown and Berg [11] observed that the mean run time (r) of cells in an attractant

gradient increased exponentially with the rate of change in the number of bound receptors

over the mean run time measured in the absence of a gradient, (10). Rivero et al. [62]

expressed this relationship by the equation:

In Ve (A.D

o is a proportionality constant describing the fractional change in mean run time per unit

time rate of change in cell surface receptors that are bound to attractant molecules and

DNb /Dt is the material derivative of the number of bound receptors,

DNb t ey dNbda o~ .

(A.2)
Dt dt da dt da

In the RTBL model, it is assumed that da / dt<« vsi1Vra. Under this assumption, we can

write:
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dNJ, _ ys' vrfl— (A3)
dt da

For a single population of homogeneous receptors, Rivero ef al. assume the following form

for the dependence of the change in the number of bound receptors on the attractant

concentration:

dNh_ NTKd

(A4)
da (Kd+af

where Kd is the dissociation constant for the attractant-receptor binding and NT is the total

number of receptors. Substituting Equations A.3 and A.4 into Equation Al gives:.

In-ffi.-Dv, > N\"s.v.a (A.5)
N fo +a)

Rivero et al. define a chemotactic sensitivity coefficient, > as:

A™M=uvX (A.6)

where the superscript 3D has been included to indicate explicitly that this is the definition

for motion in three dimensions. Using the definition of “~D, Equation A.6, one can write
Equation A.5 as:

Vi -z? Ki

rsVra (A.8)
e V' (Kd+a)
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In the one-dimensional RTBL model based on the Segel equations, Rivero et al.

defined one-dimensional analogues of the above equations leading to:

In—~ S o (A.9)
m(10) s(Kd+a)2dz

where the positive/negative sign is used for bacteria moving in the positive/negative z

direction, s is the one-dimensional swimming speed and:

(A. 10)

Attention is now turned to the relationship between pt defined in the one-
dimensional Segel equations, Equations 2.3 and 2.4, and the corresponding quantities one
would obtain by considering the more accurate three-dimensional description of bacterial
motion with symmetry in two (x and y) of the three spatial directions. The latter problem
was considered at length by Ford and Cummings [28] and the main relevant results are
simply quoted in this Appendix. Equations (3.18) and (3.19) of Ford and Cummings
give expressions for nt and n~, the densities of cells moving in the positive and negative

z-directions, as:

n (zf) = on/zﬁ)lem J’ n(r,s,t)dxdyd<l>sm21dd
(A. 11)

= JfO n. (z,d,t)sinddd

Likewise, the density of cells moving in the negative z direction is given by:

n(z,r)=Jd20 J J n(rst)dxdyd<psmddd
(A. 12)
= n.(z,0,t)sinddd

Jic/2 =+
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In these equations, n(7,s,t) is the density of cells at point r at time ¢ moving in direction
s = (sin Ocos 0,sin Osin <p,cosd) (6 and (p are the usual angles for spherical coordinates).
The quantity nz(z,6,t) is the density of cells moving with z-coordinate z whose velocity is

at an angle 9 to the z-axis and is defined by:

(z,0,r) =JQ'LLT. "n{xXt)dxdyd(p
(A. 13)

By integrating the three-dimensional balance equations over the x and ) coordinate

directions [28] and comparing with the Segel equations, one can derive an expression for

the terms ntp+ and 7fp~ in Equations 2.3 and 2.4. Consider the equation for 7fp+:

(A.14)
xK(9,0"sin 0'dd'sind dO

where K(6,0’) is the reduced turn probability distribution which gives the probability that
a bacterium moving at angle O to the z-axis moves at angle O' after tumbling. Details of
this can be found in Ford and Cummings [28], A similar expression can be developed for
n~p~. From these expressions it is evident that pt and p~ do not reduce to the simple
one-dimensional expressions. Equations 2.7 and 2.12. Thus, we should regard

Equation 2.12 as a mathematical approximation in the RTBL model.
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Appendix B

Turn Angle Probability Distribution

Berg and Brown [11] observed the direction change that E. coli bacteria exhibit
when tumbling. They generated a plot of the number of bacteria turning into each 10°
interval from 0° to 180°. We used this experimental data to generate a turn angle
probability distribution by fitting a polynomial to the data and then normalizing the
distribution. Let the direction in which a bacterium is moving prior to tumbling, s, be
given by s = (sin Ocos 0,sin 0sin0,cos0) and the direction in which a bacterium is moving
after tumbling, s', be given by s'= (sinfl'cos™'.sinfl'sin™'.cos#')- Let a be defined
such that cos(a) =s's'. The polynomial we used to represent the normalized probability

distribution for a is

p(a) = "Yiciai(JT- a)"~' (B.D
]

where ¢, are coefficients chosen by the method of least squares to best fit the data and rcis

the order of the polynomial. The polynomial is written in this form so that

p(a=0)=p(a=1In)=0 in agreement with the experimental data. We found that a
seventh order polynomial of this type generated the best fit. The relationship between

p(a) and p(cosa) is:
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p/(cosa)A = _.gff_) (B.2)
sin a

This is used to generate the distribution function:

F(cosa) = ICO;X(COSCZQCZ(COSCCQ (B.3)

When a cell tumbles, we choose cosa from this distribution using standard
techniques [34], If the angle of rotation of the new direction vector s' around the direction

vector before tumbling s is 7, then the angle 7 is chosen at random from a uniform

distribution on [0,2K]. The new direction s' is then found from
s'=Ms (B.4)

where M is the coordinate transformation matrix between (0,0), (a,7), and (0',0") and

can be found in Patlack [58].
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Appendix C

Direction Change Distribution

The direction change distribution k(7,s’¢\s) found in Equation 3.1 is the
probability that a bacterium originally moving in the direction s' at time ¢ and at position r

prior to tumbling moves in the direction s after tumbling where

s = (sin0co0s0,sin0sin0,cos0) and s'= (sin0,cos0”"sin0,sin</>,,cos0,) and as shown

in Figure C.1.

Figure C.1: This is an illustration of the relationship between the direction vectors, s
and s' and the angles 8 and. 8'.



148

Macnab and Koshland [46] observed experimentally that k(7,s’f,s) is independent of the
presence of an attractant, so that fc(r,s',/;s) = fe(s'ss). The direction change distribution
K(6',6) found in the balance equation for one-dimensional attractant gradients.
Equation 3.1, and defined in Equation A.l, is the probability that a bacterium originally
moving in a direction with angle d’ off the z-axis prior to tumbling moves in a direction

with the angle 6 offthe z-axis after tumbling. The distributions fe(s';s) and K(d',6) are

related by

(C.D)

The distribution fe(s';s) is calculated from the turn angle distribution p(a) where
cos(a) =s s'. The distribution p(a) was determined experimentally for E. coli by Berg

and Brown [11], A seventh order polynomial of the type:

pla) = ;’Jcioci{n—a)F (C.2)

i=1

was used, where the c, are coefficients chosen by the method of least squares to best fit the
experimental data for the distribution of turn angles (see also Frymier et al. [31]). The use
of the seventh-order polynomial is simply for numerical convenience and does not imply
any physical or mechanistic model for the reduced direction change distribution. Since the
reduced direction change distribution, K(0',6), is independent of the attractant
concentration and therefore of time, a substantial time savings can be realized if K(d',6) is
tabulated at the control points for two point Gaussian integration on each element so the

values can be called on when needed without recalculation.



Appendix D

Genotype of HCB437

This information was provided by Linda Turner of the Rowland Institute, Cambridge, MA.
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Following are the mutations which affect gene function in the smooth swimming bacteria,

HCB437:

thr(AM)1
leuB6
thil

his4

lacYl1

aral4

xyl5

mdl
metF(AM)159

tsx78=T6

tonA31=T1

rpsL136 Sm(r)

-requires threonine.

-requires leucine.

-require thiamine.

-requires histidine.

-cannot metabolize lactose, arabinose, xylose or maltose as carbon

sSources.

-requires methionine.
-phage T6 and T1 receptors, this strain lacks or has nonfunctional

receptors for this phage.

n 1 H

-streptomycin resistant.



DE2209(cheA-cheZ)  -this is a deletion for the chemotaxis genes from cheA to cheZ.

DE7021(tsr) -this is a deletion for the tsr gene (receptor for serine),
DEIOO(trg) -transducer for ribose and galactose.
zdb::Tn5 Kn(R) -kanamycin resistant.

The original reference for this strain is:

Wolf et al, 1987, Journal of Bacteriology, Vol. 169, 1878-1885.



Appendix £

Growth Media and Buffer Solution
Compositions

Minimal growth medium composition (per liter distilled water):

K2HPO4 11.2 g
KH2PO4 4.8 g
(NH4)2504 2.0 g
MgSO4-7H20 0.25 g
Fe2(S04)-5H20) 0.0006 g

Thiamine solution (per ml distilled water):

0. 5.mg thiamine

Galactose solution (per ml distilled water):

100.0 mg galactose

Minimal medium preparation:

L.

2.

Add 50 ml of stock solution to 250 ml shaker flask.

Autoclave to sterilize. Cool to room temperature.

. Add 0.5 ml each of thiamine and galactose solutions, filtered through a 0.2 pm filter.

Add 100 pi of frozen E. coli stock.
Incubate at 30° C until ABS(A590) = 0.8 -1.0 (approximately 11 hr)

151



Phosphate buffer solution composition (per liter distilled water):

K2HPO4 11.2
KH2PO4 4.8
EDTA 0.029 g

UQ 0Q

Tryptone broth composition (per liter distilled water):

10 g Difco Bacto-Tryptone
5 g NaCl
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Appendix F

Additional Wild Type and Smooth
Swimming Bacterial Traces
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Figure F.l: Wild type bacterial trace 6.
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Figure F.2: Wild type bacterial trace 7
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Figure F.3: Wild type bacterial trace 8.
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Figure F.4: Smooth swimming bacterial trace 4.
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Figure F.5: Smooth swimming bacterial trace 5.
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Figure F.6: Smooth swimming bacterial trace 6.
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Figure F.7: Smooth swimming bacterial trace 7.



