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Abstract

An understanding of the migration and motion of bacteria in a fluid phase and near 

solid surfaces is necessary to characterize processes such as the bioremediation of 

hazardous waste, the pathogenesis of infection, industrial biofouling and wastewater 

treatment, among others.

This study addresses three questions concerning the prediction of the distribution of 

a population of bacteria in a fluid phase and the motion of bacteria near a solid surface: 

Under what conditions does a one-dimensional phenomenological model for the density of 

a population of chemotactic bacteria yield an adequate representation of the migration of 

bacteria subject to a one-dimensional attractant gradient? How are the values of transport 

coefficients obtained from experimental data affected by the use of the one-dimensional 

phenomenological model and also by the use of different descriptions of bacterial 

swimming behavior in a mathematically rigorous balance equation? How is the 

characteristic motion of bacteria swimming in a fluid affected by the presence of a solid 

phase?

A computer simulation that rigorously models the movement of a large population 

of individual chemotactic bacteria in three dimensions is developed to test the validity of a 

one-dimensional phenomenological model for bacterial migration in a fluid. It is found 

that, to within the precision of the simulation technique, the one-dimensional model yields 

solutions very similar to the rigorous simulation technique for a wide range of conditions 

relevant to experimental studies in a stopped-flow diffusion chamber.

The finite element method (FEM) is used to obtain solutions to a more rigorous 

equation for the migration of a population of bacteria in response to a one-dimensional 

attractant gradient. FEM solutions are compared to solutions of a one-dimensional 

phenomenological model to determine the error incurred when this model is used to obtain 

the value of the chemotactic sensitivity coefficient, a macroscopic transport coefficient. It is
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found that the value of the chemotactic sensitivity obtained from experimental data using the 

FEM solutions and solutions using the one-dimensional model can be significantly 

different. The chemotactic sensitivity coefficient is also shown to be sensitive to the choice 

of the model for down gradient swimming behavior, leading to errors as large as 100% in 

the chemotactic sensitivity coefficient.

The motion of Escherichia coli near a solid surface is studied using a microscope 

that tracks individual bacteria in three dimensions. The experimental data is compared to 

two analytical solutions: one for the motion of a sphere propelled by a single flagellum 

rotating at a constant speed and the other for a sphere moving perpendicularly toward the 

surface and opposing a constant force. It is found that the change in the cell swimming 

speed as a function of the surface-to-cell distance is in agreement with the change predicted 

by the two theories. The tendency of flagellated bacteria to swim in 30 - 50 pm circles 

when moving along a solid, planar surface is demonstrated in orthogonal projections of the 

tracking data that show the position of the solid surface relative to the bacterium. It is 

observed that bacteria turn parallel to a surface when swimming toward it instead of 

colliding with the surface. The Deijaguin-Landau and Verwey-Overbeek (DLVO) theory of 

colloid stability is applied to the experimentally measured electrostatic parameters for the 

system to offer an explanation for the tendency of cells to swim very close to the surface 

without becoming irreversibly adsorbed to it.



V

Acknowledgments

I would like to thank the following programs, institutions and individuals:

• The U. S. Department of Energy and the Oak Ridge Institute for Science Education for 

financial support through the Environmental Restoration and Waste Management 

Fellowship Program.

• The IBM Corporation for computing hardware support through the IBM Environmental 

Research Program.

• Dr. Howard Berg for the many helpful suggestions and technical assistance.

• Dr. Roseanne Ford and Dr. Peter Cummings for their advise and guidance.

Kerri for constant support, suggestions, and motivation.



VI

Contents

page

1 Introduction 1

2 Cellular Dynamics Simulations of Bacterial Chemotaxis 4

2.1 Introduction 4

2.2 Background 6

2.3 Simulation Methodology 15

2.4 Results 20

2.4.1 Simulation conditions 20

2.4.2 Values of the parameter e 24

2.4.3 Simulation and balance equation solutions 26

2.5 Conclusion 30

3 Numerical Solution of a Balance Equation for One-Dimensional
Attractant Gradients 3 2

3.1 Introduction 32

3.2 Balance Equations 34

3.3 Methodologies 36

3.3.1 Finite element method solution 37

3.3.2 Stopped-flow diffusion chamber assay 40

3.3.3 Cellular dynamics simulation 42

3.4 Results 43



3.4.1 Comparison of models

3.4.2 Effect of model selection on the chemotaxis transport 
coefficient

3.5 Conclusion

vu

48

56

44

4 Bacteria-Surface Interactions 58

4.1 Introduction 58

4.2 Background 60

4.3 Methods and Materials 66

4.3.1 Preparation of samples 67

4.3.2 Measurement of electrophoretic mobility 68

4.3.3 Tracking microscope 69

4.3.4 Data analysis algorithm 77

4.4 Results 79

4.4.1 Bulk tracking experiments 79

4.4.2 Near surface tracking experiments 88

4.4.3 Effect of the solid surface on the swimming speed 98

4.4.4 Comparison of experimental data to solutions of theories for 
spheres: Wild type cells 102

4.4.5 Comparison of experimental data to solutions of theories for 
spheres: Smooth swimming cells 109

4.5 Discussion 121

4.6 Conclusion 125

5 Summary and Concluding Remarks 127

5.1 Comparison and Vahdation of Models 127

5.2 Bacteria-Surface Interactions 129

5.3 Concluding Remarks 131

141A Relating Mean Run Time and Attractant Gradient



vm

B Turn Angle Probability Distribution 145

C Direction Change Distribution 147

D Genotype of HCB437 149

E Growth Media and Buffer Solution Compositions 151

F Additional Wild Type and Smooth Swimming Bacterial Traces 153



IX

List of Symbols

Symbols

a attractant concentration mol/cm3

a0 initial attractant concentration cells/cm3

Hamaker constant for the buffer-bacteria-glass system J

b bacterial density cells/cm
sphere radius 0111

b0 initial bacterial density cells/cm3

c bacterial density cells/cm3

D diffusion coefficient cm2/s

e charge on an electron C

F force
function

G shape function

Ga Van der Waals interaction potential J

Ge electrostatic interaction potential J

Gt total interaction potential J

h depth of simulation box or separation distance cm

Jjlff diffusive bacterial flux cells/cm2-s

k turn angle distribution

k+_,_+ one-dimensional turn angle distributions

K reduced turn angle distribution

Kd dissociation constant for receptor binding mol/cm3

kB Boltzmann's constant J/K



X

/ length of simulation box cm

L length of finite element domain

M, concentration of ion i mol/1

n number of samples 
angle-dependent bacterial density cells/cm3

n+ number of bacteria moving in the +z direction

n~ number of bacteria moving in the -z direction

N number of bacteria

N, Avagadro's number 1/mol

Nfc number of bound receptors

Nt total number of receptors

0 on the order of

p+'- one-dimensional direction change probabilities 1/s

Pr probability of reversing direction

r position vector

5 sample variance

s direction coordinate vector

s one-dimensional swimming speed cm/s

S sample variance

t time s

tan value of the Student t with a 100(1-a)% confidence interval

T temperature K

U speed of a sphere in Brenner's solution cm/s

V three-dimensional bacterial swimming speed cm/s

(^> sample mean



*, y,z direction coordinates

z,- charge on ion i

Greek Symbols

a

P

Po

p*

Xo

£

£r

e0

<t>

<t>

7

K

A

Mo

Mi

e

e
0

p

turn angle
parameter of velocity solution 

tumbling probability

tumbling probability in the absence of an attractant gradient

one-dimensional tumbling probabilities

chemotactic sensitivity coefficient

parameter of turn angle distribution

relative permittivity

permittivity of a vacuum

surface potential

difference angle

constant in a bilinear interpolation for a property 

reciprocal Debye length

parameter in Brenner's solution for the velocity of a sphere 

viscosity
electrophoretic mobility 

random motility coefficient 

mean of population i

angle between bacterial direction and z-axis 

angular speed 

Heaviside operator 

random number

1/s

1/s

1/s

cm2/s

C/V-cm

J

1/cm

g/cm-s
(im-cm/V-s

cm2/s

1/s



bacterial density in Alt's cell balance cells/cm3

run length s

mean run time in the +/- direction s

mean run time in the absence of an attractant gradient s

proportionality constant in the definition of the chemotactic sensitivity 

weighting parameter for the finite element algorithm

mean squared displacement cm2

mean cosine of the turn angle

zeta potential

gradient operator

Superscripts

+ in the positive direction

in the negative direction 

e element index

3D three-dimensional

ID one-dimensional

Subscripts

0 in the absence of an attractant gradient, an initial value, or the
result of a perturbation analysis

1, 2, 3, 4 indices

i, y, k, l, m indices

XU

cr

T

(T±)
(*o)

V

(O

a
¥

C

Vr

z in the z direction



xin

List of Figures

page

2.1 Schematic representation of the SFDC used by Ford and co-workers. 

Impinging flow from the upper and lower ports creates an initial step 

change in attractant concentration at the center of the chamber and a 

uniform distribution of bacteria. The approximate dimensions of the 

chamber are 4 cm x 2 cm x 0.2 cm. On the right is an exploded view of

the simulation box which is referred to later in the text. 11

2.2 Logic diagram for the CD simulation methodology. 18

2.3 Planar projections of a sample three-dimensional trace of a simulated 

bacterium moving in the absence of an attractant gradient. Ignoring the 

partial initial and final runs, the bacterium executed 46 runs in 244.2 s for

an average run time of 5.3 s. 19

2.4 Mean squared displacement £2 as a function of t. 22

2.5 Summary plot of cases presented. 25

2.6 Values in z - f space where £x is significant. Shown are regions in the

z-t plane inside which the quantity £x has ranges ^ > 1, ^ > 0.5and 

CiCO.S. 26

2.7 Comparison of RTBL and simulation results for a0 =0.2 mM and 

xlD = 3.5 x 10“4 cm2/s at r = 0.5, 3, 6, and 12 minutes. The smoother of

the curves represents the results from RTBL. 27



XIV

2.8 Comparison of RTBL and simulation results for a0=0.2 mM and 

X™ = 105 x 10-4 cm2/s at t = 0.5 and 6 min. Note the change of scale on

the vertical axis.

2.9 Comparison of RTBL and simulation results for a0=l.2 mM and

= 3.5 x 10-4 cm2/s at r = 0.5 and 6 min.

2.10 Comparison of RTBL and simulation results for aQ =0.02 mM and

= 3.5 x 10'4 cm2/s at t = 0.5 and 6 min. Note the change of scale on

the vertical axis.

3.1 This is an example of the type of grid used in obtaining the finite element 

solutions presented in this paper. The actual grids used contained 200 

divisions in the z direction and 10 divisions in the 6 direction. The 

length L was 1.2 cm.

3.2 This is an example of a single element in the grid. The "nodes" of the grid 

are the corners of the elements. The values of dependent variable 

nz(z,0,t) at the nodes are nz0), nz(j), nz(k) and nz(l).

3.3 Schematic representation (left) of the SFDC used by Ford and co­

workers. Impinging flow from the upper and lower ports creates an initial 

step change in attractant gradient at the center of the chamber and a 

uniform distribution of bacteria. The approximate dimensions of the 

chamber are 4 cm x 2 cm x 0.2 cm. On the right is an exploded view of 

the region of the SFDC used by the theoretical methodologies in this work 

to generate solutions for the cell density profile.

3.4 Comparison of the finite element solution of the balance equation for one­

dimensional gradients. Shown are solutions to Equation 3.1 (solid line), 

CD simulation (squares) and the RTBL model (dashed line) for 

xlD =3.5xl0_4cm2/s. Dimensionless bacterial density, c/c0 is plotted

28

29

29

38

39

41



XV

as a function of the position z along the SFDC for times of 1, 2, 4, and 6 

min. Position z = 0 corresponds to the position of the initial step change 

in the attractant concentration at r = 0 with a fucose concentration of 0.2 

mM initially in the bottom of the SFDC (0 < z < 0.4 cm in the graphs). 46

3.5 Comparison of the finite element solution of the balance equation for one­

dimensional gradients. Shown are solutions to Equation 3.1 (solid line),

CD simulation (squares) and the RTBL model (dashed line) for

X? = 105 x 10~4 cm2/s. Solutions are shown at 1, 2, 4 and 6 min. 47

3.6 The area between the dimensionless bacterial density curve and c \ c0 = 1 

in the SFDC. The area under the bacterial density curve for the half of the 

SFDC with a high concentration of attractant is plotted as a function of 4t 

for the case shown in Figure 3.8. The value of Xo use^ to produce the 

model results is x™ = l-9x 10^cm2/s and yields the same slope as a 

linear least squares regression of the experimental data. In this comparison

the offset time has been included in the simulation solutions [71]. 49

3.7 Finite element solutions to the balance equation for one-dimensional

gradients using x™ = 105 x 10”4cm2/s. In the first case (solid line), the 

tumbling frequency /3 is allowed to increase above its basal level /J0 for 

populations of bacteria moving against the attractant gradient according to 

Equation 3.3. In the second case (dashed line), the tumbling frequency is 

assumed to return to its basal value for bacteria moving against an 

attractant gradient according to Equation 3.4. 51

3.8 Comparison of FEM solutions to experimental data. FEM solutions to the 

balance equation for one-dimensional gradients (solid line) and 

experimental data [72] (circles) for the response of E. coli to a- 

methylaspartate in the SFDC with a 0.01 mM initial concentration of a- 

methylaspartate in the bottom of the SFDC (right side of figure) are



XVI

shown. Also shown (dashed line) is the dimensionless attractant 

concentration, alaQ. In the FEM model solution, the tumbling frequency 

P is allowed to increase above its basal level po for populations of

bacteria moving against the attractant gradient according to Equation 3.3.

The value of xf* used in the model solution was 1.9 x 1(T4 cm2/s. 53

3.9 Comparison of FEM solutions to experimental data. FEM solutions of the 

balance equation for one-dimensional gradients (solid line) and 

experimental data [72] (circles) for the response of E. coli to oc- 

methylaspartate in the SFDC are shown. In the FEM model solution, the 

tumbling frequency /3returns to its basal value f30 for populations of

bacteria moving against the attractant gradient according to Equation 3.4.

The value of xlD used in th® model solution was 3.8 x 10“4 cm2/s. 54

3.10 Finite element solutions to the balance equation for one-dimensional 

gradients. In the first case (solid line), the partial derivative with respect 

to time is included in the substantial derivative of the number of bound 

receptors (Equation 6). In the second case (dashed line), the partial 

derivative with respect to time is omitted (Equation 7). Only a slight 

difference between the solutions is seen at 1 and 2 min and the two 

solutions are identical at 4 and 6 min on the scale of this graph. Both 

cases assume that the tumbling frequency returns to its basal value for

cells moving in a direction against the attractant gradient.}. 55

4.1 Perpendicular motion of a sphere toward a plane surface. A sphere of

radius b moves perpendicularly toward a solid surface with speed 1/ at a 

separation distance of h-b. 63

4.2 Solution of Stokes' equation by Ramia et. al. The boundary element 

method (BEM) is used to solve Stokes' equation for a sphere with a 

flagellum rotating at constant rate moving toward a solid surface at 3



XVII

different orientation angles. Also shown is the solution to Equation 4.11, 

based on Brenner's solution for the force on a sphere perpendicularly 

approaching a solid surface. The dimensionless speed is the 

instantaneous speed divided by the speed in an unbounded fluid. The 

dimensionless distance is (h-b)/ b. 65

4.3 Orientation angle definitions. This diagram illustrates the orientation

angles referred to in the text. The orientation angle is defined such that 0° 

is coincident with the surface normal, 90° is parallel to the surface, and 

180° is perpendicular to the surface and opposite in direction to the surface 

normal. 66

4.4 Schematic of the tracking microscope used in this study. Adapted from

Berg [8], 70

4.5 Close-up of the stage and coil arrangement on the microscope. Adapted

from Berg [8]. 71

4.6 Alignment of the ends of the optical fibers. This is the alignment of the 

ends of the optical fibers as the would appear viewed from the chamber 

along the light path to the three mirrors in Figure 4.4. Adapted from 

Berg [8]. The z1 and z2 fibers appear superimposed on the center of the

array viewed from this perspective. 72

4.7 Chamber type 1. This is a diagram of the type of chamber used in

tracking experiments performed on bacteria in the bulk fluid. 74

4.8 Chamber type 2. The type of chamber was used in tracking experiments

performed on bacteria near the surface is shown above (not to scale). 75

4.9 Dot array on top window of chamber type 2. Shown is an exploded view 

of the underside of the top window used in tracking experiments near the 

surface of the glass window. An array of dots was printed on the



XVU1

underside of the window to allow the position of the surface of the glass

to be determined (not to scale). 76

4.10 Wild type bacterium in bulk. Shown is the trace of a bacterium tracked in

the bulk fluid. Each sample point is represented by a sphere. Yellow 

spheres represent sample points for which the analysis determined the 

bacterium was executing a run. Tumbles are indicated by purple spheres. 80

4.11 Wild type bacterium in bulk. This is another example of a trace from a

bacterium tracked in the bulk fluid. 81

4.12 Speed of a wild type bacterium in the bulk fluid. Shown is the speed of

the bacterium in Figure 4.10 as a function of time. 82

4.13 Close-up of bacterial swimming speed. Shown above is the region from

20 s to 30 s in Figure 4.12 above to illustrate the variation in swimming 

speed. Points where the analysis determined that tumbles occurred are 

shown as solid dots on the speed trace. 83

4.14 Run time distribution with methylcellulose. The distribution of run times 

from a tracking experiment is shown in which 0.18% (w/v) Methocel was 

added to the motility buffer. In this experiment 100 bacteria were tracked.

The solid line is the Poisson interval distribution whose mean is the same

as the experimental mean. 84

4.15 Turn angle distribution with Methocel. This figure shows the distribution 

of turn angles for the same experiment shown in Figure 4.14. The solid

line is a curve fit to the data. 85

4.16 Run speed distribution with Methocel. This figure shows the distribution 

of run speeds for the same experiment shown in Figure 4.14. The solid

line is a curve fit to the data. 86

4.17 Run time distribution without Methocel. This figure shows the 

distribution of run times from a tracking experiment in which no Methocel



XIX

was added to the motility buffer. In this experiment 130 bacteria were 

tracked. The solid line is the Poisson interval distribution whose mean is 

the same as the experimental mean. 86

4.18 Turn angle distribution without Methocel. This figure shows the 

distribution of turn angles for the same experiment shown in Figure 4.17.

The solid line is a curve fit to the data. 87

4.19 Run speed distribution without Methocel. Shown is the distribution of 

run speeds for the same experiment shown in Figure 4.17. The solid line

is a curve fit to the data. 88

4.20 Wild type bacterial trace 1. In this figure is shown the trace of a wild type

bacterium that was tracked near the surface of the upper window of the 

tracking chamber. The red plane with a white border represents the 

position of the glass surface as determined by the position of the array of 

calibration dots as discussed in the text. The normal to the surface is 

shown as a white line. Yellow spheres represent sample points that are 

part of a run, while purple points represent points where the analysis 

algorithm indicated a tumble occurred. 90

4.21 Distance and speed for wild type bacterium 1. The swimming speed and

the surface-to-cell distance as a function of time are plotted for the 

bacterium shown in Figure 4.20. The solid circles along the distance line 

indicate points where the bacterium tumbled. 91

4.22 Distance and orientation for wild type bacterium 1. The orientation and 

surface-to-cell distance are plotted as a function of time for the bacterium 

shown in Figure 4.20. The solid circles along the distance line indicate

points where the bacterium tumbled. 91

4.23 Time variation in the apparent distance from the surface to a point known 

to be on the surface. The initial error of about 0.3 pm at the start of the



XX

trial is due to the error in obtaining the position of the surface by focusing

on the array of dots as discussed in the text. 92

4.24 Wild type bacterial trace 2. Shown is the trace of a wild type bacterium 

moving near the surface. The circular portions of the cell's path occurred

when the cell was closest to the glass surface. 94

4.25 Distance and speed for wild type bacterium 2. The surface-to-cell distance

and swimming speed are plotted for the bacterium shown in Figure 4.24. 95

4.26 Wild type bacterial trace 3. Shown is a cell trace from a wild type cell

tracked near the glass surface. 96

4.27 Distance and speed for wild type bacterium 3. Note that the data analysis

algorithm identified this trail as a single continuous run. 97

4.28 Distance and orientation for wild type bacterium 3. 97

4.29 Mean swimming speed as a function of orientation. The four distance 

values plotted in the figure are the midpoints of the regions identified in

the legend. 99

4.30 Mean swimming speed as a function of orientation. The data shown in 

Figure 4.29 is plotted as a function of distance. Data for distances greater

than 30 (im is omitted. 100

4.31 Mean swimming speed in bulk versus orientation. The data in the 

distance range 0-10 pm for the surface tracking experiments is also shown

for comparison. 100

4.32 95% confidence intervals on the difference in mean swimming speeds.

The difference in the values of the mean swimming speeds are plotted 

with brackets to indicate the 95% confidence interval on the population 

parameter, Pj-/x2. 102

4.33 Wild type bacterial trace 4. This bacterium executes a single tumble,

shown as a purple sphere at the lower center of the figure. 103



XXI

4.34 Distance and orientation for wild type bacterium 4. The single tumble is

indicated by the solid dot at approximately 4 s. The bacterium can be seen 

to approach the surface at an orientation of between 135° and 180° at 

approximately 4 s and again at approximately 22 s. 104

4.35 Speed versus separation distance for wild type bacterium 4, first run. The

experimental data (•) is plotted with the BEM solutions of Ramia et al. at 

180° and 135° and the solution of Equation 4.11. The dimensionless 

distance is (h-b)l b where b is the radius of the cell body and h is the 

distance from the center of the cell to the surface. The dimensionless 

speed is the instantaneous speed divided by the speed in an unbounded 

fluid, U„. For the experimental data, the velocity closest to 10 |im was 

used as t/„. The dimensionless distance for the experimental data was 

calculated assuming a representative cell radius of 1 pm. 105

4.36 Speed versus separation distance for wild type bacterium 4, second run.

The experimental data (•) is plotted with the BEM solutions of Ramia et

al. and the solution of Equation 4.11. 106

4.37 Distance and speed for wild type bacterium 4. The single tumble is

indicated by the solid dot at approximately 4 s. 106

4.38 Wild type bacterial trace 5. Shown is the trace of a wild type bacterium 

moving near the surface. The circular portions of the cell's path occurred

when the cell was closest to the glass surface. 107

4.39 Distance and speed for wild type bacterium 5. 108

4.40 Distance and orientation for wild type bacterium 5. 108

4.41 Speed versus separation distance for wild type bacterium 5. The

experimental data is plotted for the region in Figure 4.39 just prior to 2 s. 109

4.42 Smooth swimming bacterial trace 1, view 1. The smooth swimming 

bacteria have a deletion in the gene responsible for the tumbling behavior



in E. coli. As expected, the data analysis does not predict tumbles in the 

traces of these bacteria. 110

4.43 Smooth swimming bacterial trace 1, view 2. The bacterium whose trace

is shown here is the same as that shown in Figure 4.42. The drift in the 

distance measurement causes error in the distance measurement which 

makes the bacteria in this trace appear to be a significant distance above 

the surface. Since it was observed that the calibration dots were in clear 

focus while bacteria were circling on the surface, the actual surface-to-cell 

distance for cells moving along the surface was less than 2 pm as 

discussed in the text. 111

4.44 Smooth swimming bacterial trace 1, view 3. The same trace as in 

Figures 4.42 and 4.43 is shown, viewed from the along the normal.

The nearly perfect circles that bacteria often make when swimming along a

solid surface can be seen plainly here. 112

4.45 Distance and speed for smooth swimming bacterium 1. The line

indicating the distance to the surface oscillates between 5 s and 35 s, when 

the bacterium was observed to move along the surface in circles. The 

oscillations in the surface distance are the result of a nonuniform surface 

calibration. As the cell circles in this figure, its surface-to-cell distance 

appears to oscillate between approximately 4 and 5 pm. 113

4.46 Distance and orientation for smooth swimming bacterium 1. The

bacterium begins to swim toward the surface at approximately 135°. 114

4.47 Speed versus distance for smooth swimming bacterium 1. 115

4.48 Close-up of orientation for smooth swimming bacterium 1. Here, data for

each sample point is shown as a circle (on the distance curve) or as a 

square (on the orientation curve). 115

xxii



xxm

4.49 Smooth swimming bacterial trace 2. Tracking began for the bacterium 

whose trace is shown here at approximately 35 pm from the surface. The 

bacterium approached the surface and then began swimming in circles on

the surface. 117

4.50 Speed versus orientation for smooth swimming bacterium 2. 118

4.51 Speed versus distance for smooth swimming bacterium 2. 118

4.52 Smooth swimming bacterial trace 3. The bacterium whose trace is shown

here, approached the surface and began swimming along it, without 

showing significant curvature in its path. Essentially straight bacterial 

paths across the surface were observed, although not as frequently as 

circular paths. 119

4.53 Distance and speed for smooth swimming bacterium 3. 120

4.54 Speed versus distance for smooth swimming bacterium 3. 121

4.55 DLVO interaction potential as a function of separation distance. The

potentials shown are those for van der Waals interaction GA, electrostatic 

interaction GE, and the sum of the two, Gr. for the wild type bacteria and 

glass in the phosphate buffer solution of ionic strength 0.19 M. The 

interaction potentials are normalized by khT. 123

4.56 Expanded view of the DLVO interaction potential shown in Figure 4.55.

A secondary minimum Ik^T deep exists at approximately 4.5 nm from

the solid surface. 124

C. 1 This is an illustration of the relationship between the direction vectors, s

and s' and the angles 0 and. 0'. 147

F. 1 Wild type bacterial trace 6. 154

F.2 Wild type bacterial trace 7. 155

F.3 Wild type bacterial trace 8. 156

F.4 Smooth swimming bacterial trace 4. 157



F.5 Smooth swimming bacterial trace 5. 

F.6 Smooth swimming bacterial trace 6. 

F.7 Smooth swimming bacterial trace 7.

xxiv

158

159

160



XXV

List of Tables

page

2.1 Summary of constants used in the CD simulations. 21

3.1 Values of constants used in solutions shown in Figures 3.4 and 3.5.

These are the values of the constants used in the CD simulation and in 

solving Equation 3.1 and the RTBL equation. 45

3.2 Conditions for experimental measurement of the response of E. coli to a-

methylaspartate [72], 52

3.3 Comparison of x™ values for different models. These values of XoD

were obtained from fitting to experimental data for various models, 

tumbling mechanisms and inclusion/exclusion of temporal gradient in 

tumbling probability. 57

4.1 Electrostatic parameters for the wild type bacteria and finely crushed

microscope cover slip glass. 69



1

Chapter 1

Introduction

The presence of bacteria in natural systems affects our lives in both positive and 

negative ways. Bacteria can detoxify synthetic compounds released into the environment 

as well as breakdown and mineralize contaminants in industrial and domestic waste water. 

However, they can also cause disease, produce compounds which are toxic, and foul 

industrial processes and marine surfaces. In order to determine the extent to which these 

processes occur, it is necessary to determine, among other things, the distribution of 

bacteria in the system of interest. Accurate predictions of the distribution and migration of 

bacteria in these systems make it possible to augment the beneficial aspects of a bacterial 

presence and to reduce the negative aspects.

This study attempts to answer the following three questions concerning the 

prediction of the distribution of a population of bacteria in a natural environment: To what 

extent do approximations implicit in a one-dimensional phenomenological model for the 

migration of a population of chemotactic bacteria in a fluid medium affect the ability of the 

model to accurately predict the distribution of bacteria? How are the values of transport 

coefficients obtained from experimental data affected by the use of the one-dimensional 

phenomenological model and also by the use of different descriptions of bacterial 

swimming behavior in a mathematically rigorous balance equation? How is the



characteristic motion of bacteria swimming in a solid phase affected in the presence of a 

solid phase?

Chapters 2 and 3 deal primarily with mathematical models for the migration of a 

population of chemotactic bacteria in a bulk fluid medium. In order to probe the validity of 

a one-dimensional phenomenologically-based model equation for the time evolution of the 

density of a population of chemotactic bacteria, a cellular level simulation is developed in 

Chapter 2. The simulation incorporates the constitutive relationships of the model 

equation, but is a mathematically much more accurate representation of the phenomena that 

the one-dimensional balance equation attempts to model. The simulation therefore allows 

the validity of the balance equation used in the model equation to be tested apart from the 

accuracy of the constitutive relationships integral to the model.

A priori knowledge of the characteristics of bacterial motion is necessary to develop 

the proper constitutive relationships for inclusion in the model equation. However, in 

many situations, balance equations are applied to experimental studies in order to obtain the 

values of population-based transport coefficients with incomplete knowledge of the 

behavior of the bacteria being modeled or the extrapolation of the behavior of one type of 

bacteria to another type. Chapter 3 examines the use of balance equations and constitutive 

relationships in the analysis of experimental data on bacterial chemotaxis in the stopped- 

flow diffusion chamber. In the analysis of these experimental studies, the macroscopic 

transport coefficient x™ > the chemotactic sensitivity coefficient, is obtained from

experimental data by matching the experimental data for the accumulation of bacteria around 

a gradient of a chemical attractant to solutions of mathematical models for the migration of 

bacteria in the presence of an attractant. This study shows the effect of different 

constitutive relationships for the tumbling response of bacteria to a negative attractant 

gradient on the value of Xo obtained from the experiment. In addition, this research also

shows the effect of the use of a phenomenologically based, one-dimensional model



compared to a mathematically rigorous three-dimensional analogue on the value of Xo 

obtained from experiment.

Chapter 4 deals with the experimental observations of the changes in the 

characteristic motion of bacteria near a solid surface. These experiments were performed 

using both a wild type and a smooth swimming mutant of E. coli. The motion of cells near 

a plane surface is studied through the analysis of the paths of individual cells as they 

approach a surface. Distributions of the mean swimming speeds of cells are analyzed to 

determine if significant differences in the swimming speed are present for particular 

surface-to-cell distance regions or cell orientations (i.e.; toward or away from the surface). 

The swimming speeds of individual cells as function of the surface-to-cell distance are 

measured and compared to theoretical solutions to the equations of motion of a sphere 

moving toward a solid surface through a viscous fluid. Comparisons are made to two such 

theoretical solutions in order to determine if models that consider only hydrodynamic 

interactions are appropriate for application to bacterial motion near a surface and at what 

distances these models are valid. Calculation of the DLVO interaction potential for the wild 

type cells offer a possible explanation the interesting tendency of bacteria to "track" a solid 

surface, often executing nearly perfect circles as they swim.

Chapter 5 summarizes the results of this study and presents concluding remarks to 

address the significance of this study and suggests a next step in the study of bacterial 

migration in the presence of solid surfaces.
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Chapter 2

Cellular Dynamics Simulations of 
Bacterial Chemotaxis
2.1 Introduction

The migration of bacterial populations plays an important role in many ecological 

processes such as nitrogen fixation, pathogenesis of infection, formation of biofilms and 

the degradation of chemical wastes in the environment (bioremediation) [21]. However, 

the extent to which migration affects these natural processes is not well understood. One 

approach toward quantifying this behavior is through the development and application of 

accurate mathematical models. The transport properties contained within these models are 

needed for the design of effective processes which would exploit the migration and 

redistribution of bacterial populations in natural environments. For example, bacterial 

migration is important for facilitating contact between the bacteria and the contaminant to be 

degraded for in situ applications of bioremediation.

Rivero and co-workers [62] have proposed a mathematical model (hereafter referred 

to as the RTBL model) describing the migration of bacteria in the presence of chemical 

gradients. Their model includes two transport coefficients: one to characterize random 

motion in the absence of chemical gradients and another representing the directed motion



associated with the presence of a chemical gradient. An experimental apparatus was 

designed by Ford et al. [30] to determine values for the transport properties which are 

utilized in the RTBL model. However, the model was derived for the case of motion in 

only one dimension while bacteria within the experimental apparatus actually move in three 

dimensions. Although the RTBL model was shown to agree well with experiments under 

conditions of steep one-dimensional chemical gradients, it has been subsequently shown 

[28] that the RTBL model cannot be reconciled with a more mathematically rigorous (but 

more difficult to apply in practice) three-dimensional cell balance approach except in one 

limiting case- specifically, the limit of a small one-dimensional attractant gradient implying 

symmetry in the remaining two dimensions. It is our objective in this paper to study the 

effect of simplifying assumptions implicit in the RTBL model on solutions obtained under 

the conditions of steep chemical gradients realized in the experiments of Ford et al. This is 

accomplished through the application of a cellular level simulation technique to problems 

where we expect the model to perform the least satisfactorily based on the series expansion 

analysis of Ford and Cummings [28]. Since the transport properties will be used for 

design of improved processes, it is critical that the models we use to interpret experimental 

data for determining these coefficients be accurate. With these tools available, those 

processes which most strongly influence bacterial behavior in natural settings can be 

identified and appropriate strategies for design and control can be implemented.

In Section 2.2, some of the previous work in the area of bacterial chemotaxis is 

reviewed. In Section 2.3, the methodology of the computer simulation program is 

described . The simulation results are compared with RTBL in Section 2.4 for conditions 

similar to those in the experimental apparatus developed by Ford and co-workers [30] to 

study the migration of bacterial populations. The comparisons are performed over a range 

of parameters characterizing the attractant concentration and bacterial sensitivity to the 

attractant in order to delineate the regions where the RTBL model is valid.



2.2 Background

Peritrichous bacteria such as Escherichia coli and Salmonella typhimurium are able 

to move in a fluid medium via the coordinated rotation of approximately 6-8 flagella 

attached to the perimeter of the cell. The movement of these bacteria can be described as 

alternating between two distinct phases: "running" and "tumbling" [11, 46, 70]. During 

the running phase, the cell's flagellar bundle rotates counterclockwise in a coordinated 

fashion and the cell moves in a nearly straight path. The duration of a typical run is of the 

order of 1 to 10 s. In the tumbling phase, the rotation of the flagella reverses and the 

bundle uncoils so that no coordinated linear motion occurs and the cell spins in place. The 

duration of the tumbling phase is of the order of 0. Is. As a result of tumbling the cell 

reorients itself according to a turn angle distribution, which has a slight bias in the direction 

the cell was moving prior to tumbling [11, 47] and then begins a new run. In a uniform 

environment, the swimming pattern resembles a three-dimensional random walk similar to 

Brownian motion in molecular diffusion. This motion is described by the term random 

motility.

In the presence of a concentration gradient of an attractant (food sources such as 

sugars or amino acids, for example), bacteria are able to bias their random walk by 

changing their tumbling frequency [46, 70], When moving toward an area of increasing 

(decreasing) attractant concentration, cells decrease (increase) their tumbling frequency, 

thereby increasing (decreasing) the lengths of their runs in the direction of increasing 

(decreasing) attractant concentration. In this way, a population of cells moving within an 

attractant gradient will exhibit a net movement toward the attractant source. This overall 

directed motion is called chemotaxis. The ability of chemotactic bacteria to direct their 

motion enables them to move to more favorable environments by swimming toward 

increasing concentrations of nutrients, giving these bacteria a competitive advantage over 

nonmotile bacteria [40].



A complete mathematical description of the motion of a population of chemotactic 

bacteria requires a set of cell balance equations along with constitutive relationships which 

relate the quantities in the cell balance equation to the properties of the cells and their 

motion. The three-dimensional cell balance equations of Alt [5] are the most general. 

Letting cfr.s, r,t) be the number density of cells per unit volume at position r moving in

direction s with run time t (i.e., the time since the preceding tumble), at time t, Alt's 

fundamental equation is:

d<j(r,s,T,t) _ _ g # vr[v(r,r)<r(r,s, T,t)] - P{r,s, T,f)cr(r,s, r,t) (2.1)
dt dx

for r > 0 and:

cr(r,s,0,r) = o(r,s',x,t)k(r,s',f,s)ds'dT (2.2)
0

for t = 0. Here, /3(r,s, x,t) is the probability per unit time that a cell moving in direction

s at r at time t with run time t tumbles at r at time t. The probability that a cell chooses 

the direction s2 as its new direction after tumbling is ^(r.SpriSj). The subscript r

emphasizes that the operator Vr is with respect to the spatial coordinate r. The swimming 

speed of the bacteria is v and is known from experimental observations to be relatively 

constant over a range of attractant concentrations [11, 56], Equation 2.1 states that the rate 

of change in the population of cells at r at time t moving in direction s with run time x is 

given by a term which reflects the change in the population due to changes in the run time, 

a term that reflects the change due to convection, and a term that reflects the loss to the 

population due to cells tumbling with probability ft. Equation 2.2 states that one obtains 

an initial ( t = 0) population of cells moving in direction s by considering cell populations 

which were moving in another direction s' with run time x, which tumbled at time t,
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represented by the product p(r,s',T,t)cr(r,s',T,t), and multiplying by the probability that 

the cell moves in the direction s after tumbling, given by k(r,s',f,s). This product is 

integrated over all directions s' and all run times T.

Segel [66] and Rivero et al. [62] have developed simpler phenomenological models 

based on individual cell motion in one direction only. The one-dimensional balance 

equations of Segel are:

3n+

dt
drf

nr

d(sn+)

dt
d(sn~)

dt

+ p n~ 

+ p+n+

p+n+

— p n

(2.3)

(2.4)

where n+(z,t) is the density of cells at point z at time t moving in the positive z direction 

and n~{z,t) is the density of cells at point z at time t moving in the negative z direction, 5 

is the one-dimensional, scalar swimming speed of the bacteria, p+ = p+(z,t) is the 

probability per unit time that a cell moving in the positive z direction tumbles and becomes 

a cell moving in the negative z direction and p~ = p~(z,t) is the probability per unit time 

that a cell moving in the negative z direction tumbles and becomes a cell moving in the 

positive z direction.

The RTBL model is based on the cell balance equations of Segel. Under the 

assumption that the phenomenon of tumbling is a Poisson process [9], the tumbling 

probability /? is equal to the inverse of the mean run time,

P
<*>

(2.5)

This assumption is supported by the experimental work of Berg and Brown [11]. Rivero 

et al. write this equation in one dimension as:
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P± =
(^)

(2.6)

where /J* = )3±(z,0 is the probability that a cell moving in the ±z direction tumbles and 

(t*) is the mean run time for cells moving in the ±z directions, respectively. In addition,

Rivero et al. propose:

P
± fPr (2.7)

where pr is the probability that a cell reverses direction after tumbling. The mean run times 

(t*) are then related to the attractant concentration a and its gradient by:

ln(T±)= + ZoD ^ ^

(t0) 5 {Kd + af dz
(2.8)

where (t0) is the mean run time in the absence of a chemical gradient, Kd is the 

dissociation constant for the attractant-receptor binding and is the one-dimensional 

chemotactic sensitivity parameter. In the RTBL model, Equations 2.6-2.8 form a set of 

constitutive equations for Segel's cell balance equations.

As shown in Appendix A, Equation 2.8 is a mathematical simplification of the 

expression for bacterial motion in three dimensions given by:

(To) V (Kd + af
sVra (2.9)

where XoD is the three-dimensional analogue of XoD ■ For a discussion of the derivation of 

Equation 2.9 above we refer the reader to Appendix A. Substituting Equation 2.5 into 

Equation 2.9 and rearranging, we have:
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P = Po exp
XlD Kd

v [Kd + a)1 * ■Va (2.10)

where:

/3o = (2.11)

In the one-dimensional RTBL model:

P±=P0 exp
tZoD Kd da

s [Kd + a)2 dz
(2.12)

so the complete RTBL model is the set of Equations 2.3, 2.4, 2.6, 2.7, 2.11 and 2.12. 

For a discussion of the approximate nature of Equation 2.12 we refer the reader to 

Appendix A.

The RTBL model was applied to the interpretation of experimental data by Ford et 

al. [30] for E. coli K12 responding to fucose. The experiments were carried out in a 

stopped-flow diffusion chamber (SFDC) shown schematically in Figure 2.1. For assays 

of chemotactic bacteria in the SFDC, a suspension of bacteria at concentration b0 is

pumped at a uniform rate into the upper port of the chamber and a mixture of attractant at 

concentration a0 and bacteria at concentration b0 is pumped at a uniform rate into the lower

port. Fluid exits through ports at the centerline of the chamber and the flow rates are 

controlled by a dual piston syringe pump so that for times t < 0, the two impinging streams 

form a step change in the attractant concentration at the center of the chamber. At time 

t = 0, flow into and out of the SFDC is stopped and the attractant begins to diffuse into the 

upper half of the chamber generating a time-dependent gradient. As bacteria sense the
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gradient a band of high cell density forms where the gradient is large and moves downward 

in the chamber to regions of higher attractant concentration. The experimental geometry is 

one of symmetry in two dimensions (the x and y directions in Figure 2.1) with an 

attractant gradient in the third dimension (the z direction).

Stopped-flow diffusion Simulation box
chamber

Figure 2.1: Schematic representation of the SFDC used by Ford and co-workers. 
Impinging flow from the upper and lower ports creates an initial step change in attractant 
concentration at the center of the chamber and a uniform distribution of bacteria. The 
approximate dimensions of the chamber are 4 cm x 2 cm x 0.2 cm. On the right is an 
exploded view of the simulation box which is referred to later in the text.

Ford and Cummings [28] studied in detail the relationship between the three- 

dimensional balance equations of Alt, Equations 2.1 and 2.2, and the one-dimensional 

equations of Segel, Equations 2.3 and 2.4, the latter being the basis for the RTBL model. 

Ford and Cummings showed that the Segel equations could only be derived rigorously 

from Alt's equations when the motion of the bacteria is confined to one dimension. They



considered three-dimensional systems with an attractant gradient in the z-coordinate 

direction and symmetry in the other two (x and y) coordinate directions so that:

Vra = (0,0, / dz) (2.13)

For cases of symmetry (as opposed to confinement to one-dimension), Ford and 

Cummings showed that the Alt equations could not be reduced to the Segel equations 

except in the limit of small e, where e is defined by:

/? =/?0 exp(-£) (2.14)

By comparing Equation 2.15 to Equation 2.10 and making use of Equation 2.13, e can 

be written as

e = ZoD Kd da_co&d (2.15)
v (Kd + a) dz

where 9 is the angle made by the direction vector s with the z axis. By perturbatively 

expanding in £ a reduced form of the Alt equation (obtained by integrating over t, x and 

y) Ford and Cummings obtained:

^ (2.16)

IT=+/K*~ (2'17)

where /Jj is the tumbling probability, k+_ is the probability that a cell moving in the positive 

z direction becomes a cell moving in the negative z direction after tumbling and k_+ is the 

probability that a cell moving in the negative z direction becomes a cell moving in the
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positive z direction. The subscript 0 indicates that these are the leading order terms from 

series expansions in the parameter e. This analysis clarifies the relationship between the 

one-dimensional cell speed s in the Segel equations and the three-dimensional cell speed v 

that is determined experimentally.

From this analysis, it is apparent that the correct speed to use in the one­

dimensional equations is the observable three-dimensional cell speed v divided by 2 rather 

than V3 recommended by Segel [67] and used in the analysis of Ford and co-workers [29, 

30]. Ford and Cummings noted that although this correction to the cell speed is small it 

would affect the value of the population parameters obtained from experiment. Using 

Equations (A.6) and (A.9) from Appendix A and the relationship

(2.18)\-2s

we have:

(2.19)

where u is a proportionahty constant describing the fractional change in mean run time per 

unit time rate of change in cell surface receptors that are bound to attractant molecules. We 

note that using the relationship j = v/V3 = 0.557v instead of the correct relationship 

s = 0.5v results in s being overestimated by 15.5%. It would consequently result in the 

X™ obtained from experiment being underestimated by 25% according to the relationship

in Equation 2.19.

The studies of Ford et al. [30] and Ford and Lauffenburger [29] involved 

comparison of the experimentally measured bacterial density with the predictions of the 

RTBL model. For appropriately chosen values of there is good agreement between

RTBL and experiment. Several approximations and/or assumptions are implicit in using
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the RTBL model: first, use of the approximate one-dimensional balance equations, 

Equations 2.3 and 2.4; second, the diffusion approximation [62] which enables the RTBL 

model equations to be solved numerically at the macroscopic level; third, the model for the 

tumbling probability, Equation 2.10, which involves a proposed mechanism for the way in 

which bacteria sense and respond to their environment; and fourth, the simplification of the 

tumbling probability to the one-dimensional form, Equation 2.12, as described at the end 

of Appendix A. Of these four, three are mathematical approximations (first, second and 

fourth) and one is a phenomenological assumption. One role for the cellular dynamics 

simulations is to test the validity of the mathematical approximations and is the focus of this 

chapter. The validity of the phenomenological assumptions can be tested by comparing the 

simulation results with experiments, however this is not the subject of this chapter.

Since the RTBL model does agree well with experiment, a question then naturally 

arises. Is the agreement of RTBL with experiment fortuitously caused by cancellation of 

two or more sources of error introduced by the phenomenological assumption for the 

tumbling probability and the mathematical approximations? The most straightforward way 

to answer this question is to perform a cellular level simulation of bacterial motion 

corresponding to the experimental situation (bacteria moving in three-dimensional space in 

the presence of a one-dimensional attractant gradient) that eliminates the mathematical 

approximations by using the general (three-dimensional) tumbling probability model, 

Equation 2.10. The degree to which the RTBL model predictions and the simulation agree 

is then a measure of the validity of the mathematical approximations, and thus the validity 

of the RTBL model in describing real three-dimensional systems with attractant gradients in 

one spatial direction.

Computer simulations of the motion of individual bacteria have been reported by 

several researchers. Berg [9, 10] performed simulations to illustrate the random walks 

generated by single cells assuming Poisson statistics for the tumbling probability and a 

simple approximation to the bias in the turn angle distribution. Bombusch and co-workers
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[16, 17] investigated the effect of limiting the turning field size of a cell on its ability to 

locate an attractant source. Tankersley and Conner [73] performed simulations of single 

cell migration to illustrate how the differences between various cell types in the mechanisms 

used to move toward an attractant source resulted in markedly different patterns of 

migration. In the present work, we develop a computer simulation methodology which 

rigorously describes the three-dimensional motion of individual chemotactic bacteria for the 

situation present in the SFDC experiments. Unlike the previous computer simulations just 

described, a large population of bacteria (20,000 cells) are simulated and the experimentally 

measured turn angle distribution is incorporated into the mechanism for reorienting the cells 

after tumbling. The results of the simulation are compared with those obtained using the 

RTBL model which involves the assumptions and approximations detailed above.

2.3 Simulation Methodology

After setting the appropriate initial conditions, bacterial movement is simulated by 

performing three calculations for each individual bacterium at each time step. First, it is 

determined whether or not the cell tumbles. Second, if the cell tumbles then its new 

direction is chosen; if it does not tumble, its direction is maintained. Third, the cell's new 

position is computed based on its direction vector, swimming speed and the time step. The 

implementation of these three steps and other details of the simulation are described in this 

Section.

The simulation "box" is given an initial uniform random distribution of bacteria. 

Letting b(r,t) be the bacterial density at position r at time t, then the initial concentration 

b(r,t = 0) (see Figure 2.1) is given by:

6(r,r = 0) = b0, -\<x<\

-f<*<f (2.20)
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An initial bacterial concentration of b0=2x 107 cells/cm3 was used in the experiments of

Ford et al. [30]; however, for the simulation results presented here, we used an initial 

concentration of bacteria of b0 =2x 106 cells/cm3 in order to reduce the calculations

necessary at each time step by an order of magnitude. The bacteria are assigned initial 

direction vectors at random. A step change along the z-axis at time r = 0 in the 

concentration of an attractant, a, exists such that:

a(z,t = 0) = 0, -y < z < 0 

a(z,t = 0) = a0, 0<z<{

(2.21)

where a0 is the initial attractant concentration introduced into one half of the chamber, D is 

the diffusion coefficient of the attractant, z is the position along the z axis and t is time. 

The solution given above for r > 0 can be found in Crank [23], For r > 0, the motion of 

each bacterium is modeled as an independent, three-dimensional, biased random walk.

That the motion of each bacterium can be considered independent of the motion of 

other bacteria is justified by noting that the cell densities used in the SFDC experiments are 

low enough that intercellular distances are at least an order of magnitude greater than 

cellular diameters. However at much higher cell densities (by an order of magnitude or 

more), hydrodynamic interactions among swimming bacteria may be significant [33] In 

such cases, the application of this simulation technique would require additional terms in 

the equations of motion to account for hydrodynamic interactions between the bacteria. 

The position r, of the bacterium i at time t + At, where At is the time step in the

simulation, is given by:

ri(t +At) = ri (t) + vs, Ar (2.22)



17

where v is the three-dimensional swimming speed of the bacterium and s, is the unit vector 

in the direction of motion of the bacterium. The simulation box employs periodic boundary 

conditions [4], If the cell moves out of the box, it is repositioned so that it reenters at the 

opposite wall, retaining a constant number of cells in the simulation box. The length of the 

simulation box in the direction of the attractant gradient (the z direction) is 0.8 cm. This is 

sufficiently large to ensure that the attractant concentration is uniform at the ends of the box 

(z = ±0.4 cm), at which points the cell density returns to the bulk density b0.

The unit direction vectors for the bacteria evolve in time according to:

S;(* +Ar) = A,s,(r) + (l-A,)s' (2.23)

where:

A,- =0[pI(r +Ar)-)3Ar] (2.24)

In this equation, pi is a random number chosen at time t + At from a uniform distribution 

on [0,1], /? is the tumbling probability, s' is chosen randomly from the distribution for the 

change in direction after tumbling obtained by experimental observations of single cells by 

Berg and Brown [11], and 0 is the Heaviside function, defined as:

0(*) =
0, *<0

x>0
(2.25)

Details on the method of choosing s' are provided in Appendix B. Equation 2.24 implies 

that:

A; = 1 if p, > /JAr (2.26)
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so that a bacterium has probability (5At of tumbling and probability (1 - /3At) of continuing 

its run. Thus, the tumbling probability in a zero gradient is constant and consistent with a 

Poisson distribution. The time step used in the simulation is At = 0.1 sec, the time 

corresponding to t,, the experimentally observed duration of a tumble. Therefore the

tumbling process is effectively instantaneous in our simulation.

A;=0 if p^pAt (2.27)

tumble

initial position and 
direction

choose new direction

calculate new position

Figure 2.2: Logic diagram for the CD simulation methodology.

The logic diagram in Figure 2.2 summarizes the methodology described in this 

section. The simulation box is first initialized. At the start of the simulation loop, each 

bacterium decides whether or not to tumble (according to Equation 2.24). Based on 

whether or not it tumbles, either a new direction is chosen or the bacterium continues its
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run in the same direction. Finally the bacterium moves to a new position based on its 

swimming speed and direction vector using an Euler's integration of the equation of 

motion. Figure 2.3 shows the path of a single cell generated by applying the simulation 

algorithm in the absence of a chemical gradient over a period of 2500Ar where Ar = 0.1 s. 

The cell swimming speed 22 pm/s and zero gradient tumbling probability (0.17 S'1) are the 

same as for the simulations reported in Section 2.4. Periodic boundary conditions were 

not implemented in this sample trace.

x-z planey-z plane

0.05 cm

x-y plane

Figure 2.3: Planar projections of a sample three-dimensional trace of a simulated 
bacterium moving in the absence of an attractant gradient. Ignoring the partial initial and 
final runs, the bacterium executed 46 runs in 244.2 s for an average run time of 5.3 s.

In the next section, we discuss the results of the simulation.
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2.4 Results

The goal of this section is to compare the results of the simulation outlined in 

Section 2.3 with those of the RTBL model over relatively large ranges of values for the 

chemotactic sensitivity, %0, and the attractant concentration gradient as determined by the 

initial attractant concentration, a0. A statement of the conditions under which the 

simulations were performed are given and then the results obtained in each case are 

presented.

2.4.1 Simulation conditions

The experimental situation modeled in the simulations is that of the response of E. 

coli bacteria to a gradient of fucose in the SFDC of Ford et al. [30] (see Figure 2.1) with 

the conditions given in Table 2.1. The dimensions of the simulation box are 0.1 cm x 0.1 

cm x 0.8 cm. At bacterial densities similar to those in the SFDC of 2.5 x 107 cells/cm3, 

this would require 2xl05 individual bacteria. As discussed in Section 2.3, a bacterial 

density of 2.5xl06 cells/cm3, corresponding to 2xl04 individual cells, was used in the 

simulation. Since the bacteria are assumed to be independent of each other, using a density 

of 2.5 x 106 cells/cm3 yields the same results as a density of 2.5 x 107 cells/cm3 as long as 

densities are computed relative to the bulk value. The lower density (corresponding to 

fewer cells in the simulation box) decreases the computer time required for the calculation 

(proportional to N where N is the number of bacteria) at the cost of some increased 

statistical uncertainty (which is 0(N~U2)). The attractant concentration is modeled by

Equation 2.21 presented in the previous section with the initial concentration of fucose in 

the lower half of the chamber equal to a0. The diffusivity D of fucose given in Table 2.1

is the value reported by Ford and co-workers. A typical three-dimensional cell speed of 

22 pm/s was used to be consistent with the one-dimensional speed of 11 pm/s used by
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Ford et al. In their experimental studies, Ford and co-workers reported values for the 

random motility coefficient in the absence of an attractant, /i0 of between 0.47 x 10”5 and

1.5 x 10“5 cm2/s. Lovely and Dalquist [44] derived the following relationship between the 

random motility coefficient, /i0, the cell speed v, the mean run time in the absence of an 

attractant gradient (t0):

 v2(*o)
(2.28)

where y/ is the average value of cos(a), a being the angle between the direction vectors 

of a cell before and after tumbhng. This is a general result for three-dimensional motion of 

bacteria; the only assumptions are a constant swimming speed, straight line runs between 

tumbles, and a Poisson distribution for run lengths. It is therefore consistent with the 

simulation algorithm and with Alt's general three-dimensional cell balance equations, 2.1 

and 2.2, under the additional assumption of a constant cell swimming speed.

P'o V Oo *o3Dxl04 DxlO6 Kd
(1/S) (pm/s) (mM) (cm2/s) (cm2/s) (mM)

0.17 22 0.02-1.2 3.5-105 6.9 0.08

Table 2.1: Summary of constants used in the CD simulations.

A seventh order polynomial fit (see Appendix B for further details) to the 

experimental data of Berg and Brown [11] was used and it was determined that y/ = 0.36. 

Using this value of y/ and values of 1.5 x 10"5 cm2/s for /i0 and 22 pm/s for v, yields a 

value for (r0) of 6.0 s by Equation 2.28. For a Poisson process, this corresponds to a 

tumbling probability in the absence of a gradient of p,o = 0.17 1/s, which is the value that 

was used in the simulations. A time step of Ar = 0.1 s was used. For this time step, a



bacterium in the simulation moving in a isotropic medium will, on the average, tumble 

every 58 time steps. The values of the parameters used in the simulation are summarized in 

Table 2.1.

One test of the simulation methodology is to calculate the random motility /i0 from 

the simulation and check that it matches the value given by Equation 2.28. A simulation 

was performed in the absence of an attractant gradient and the mean squared displacement 

Q(t) of the bacteria was calculated from the definition:

m = ^'Z[ri(t)-ri(0)]2 (2.29)
A ,-=1

According to the Einstein relation [4]:

(2.30)

so that at long times Q should become linear in t with slope 6/1.

fls(t)
(x 103 cm2)

2000 cells

time (sec)

Figure 2.4: Mean squared displacement Q as a function of t.
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As can be seen in Figure 2.4, Q.(t) is linear in t at large t. The slope implies a 

value of l.SSxlO-5 cm2/s for /r which is within 3% of the correct value. This suggests 

that the simulation methodology is very accurate. Note that at short times £2 is quadratic in 

t. By fitting Q(f) to at2 for r < 2 s, we find a is found to be equal to 452 (im2/s2 which 

is within 7% of v2, consistent with the short time analysis of the RTBL model as presented 

by Othmer et al. [57]. The crossover from Q(t) ~ t1 to Q(r) ~ t corresponds to the 

transition to the diffusion regime in which the diffusion approximation, discussed by 

Rivero et al. [62], is valid. Hence, the fact that £2(r) becomes linear in r for t> 10s 

suggests that the diffusion approximation is satisfied at relatively short times. The 

diffusion approximation is utilized in the macroscopic version of the RTBL model solved 

by Ford et al. [30] and the simulation results suggest that the diffusion approximation 

should be accurate.

The macroscopic form of the RTBL model which follows from the diffusion 

approximation [62] was implemented in a finite difference program using a predictor- 

corrector method [26]. As discussed in Section 2.2 the RTBL model is expected to show 

the most deviation from the simulation for large attractant gradients and large values of the 

chemotactic sensitivity coefficient since the three-dimensional equations simplify to an 

analogue of the one-dimensional phenomenological model only in the limit of small e. 

Equation 2.15. The range of values of the parameters Xo an(J ao over which we

performed simulations and comparisons with the RTBL model include the lower 

(0.01 mM) and upper (1.0 mM) ranges of a0 studied experimentally with the SFDC and 

the lower (3.5xl0-4 cm2/s) and upper (105x 10-4 cm2/s) limits on xT measured

experimentally [27, 50]. The cases that are considered in this study are summarized in 

Figure 2.5. Higher values of a0 were not considered since for attractant concentrations

significantly above ten times the dissociation constant for the attractant-receptor binding, 

Kd the receptors available for sensing concentration gradients become saturated [41] and
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the cell no longer responds chemotactically. Simulations were also performed for 

intermediate values of the parameters a0 and xlD t0 determine if significant differences

could be observed between the simulation and the RTBL model. The results yielded 

similar trends to those presented here.

2.4.2 Values of the parameter 8

In view of the analysis of Ford and Cummings, it is interesting to consider the 

relative values of e (see Equation 2.15) implied by the four cases considered. The 

parameter e can be written in the form:

£- £0 cos 6 d(al a0) 
d(zll)

(2.31)

where e0, which is dimensionless and angle-independent, is given by:

. X? Kda0 
° v/ (Kd + a)2

(2.32)

Clearly, because of the gradient term d(a / a0)l d(z / /), which varies from +°° at z = 0 

and r = 0 to essentially zero at z = ±/ / 2, the value of e can be very large and will be 

dependent on position and time. As the attractant profile relaxes with time, e will become 

small at all positions. Thus, for given values of x™ and ao there will be a t-dependent

range of z centered on z = 0 which contracts as t increases and inside of which e will be 

large. Based on the Ford and Cummings analysis, this might be the region for which the 

RTBL model may not be successful since the Alt equations simplify to the Segel equations 

only under the assumption of small e. The larger e0 is, the greater will be the range of z 

and t included in this region. By evaluating e0 at z = 0 where a = a012 for all t, a 

dimensionless measure of the expected applicability of the RTBL model can be obtained,



larger values of e0 implying a smaller region of z and t over which RTBL might be 

applicable.
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case 3
£n= 0.041

case 2case 1
e„=2.9

case 4 
,= 0.039

Chemotactic sensitivity coefficient 
(cm2/s)

Figure 2.5: Summary plot of cases presented.

For the four cases shown in Figure 2.5, Cases 1, 2, 3 and 4 yield values for £0 of

0.098, 2.9, 0.041 and 0.039 respectively. On this basis, it might be expected that RTBL 

would be least applicable to Case 2 and most applicable in Cases 3 and 4. It should also be 

noted that e0 has its maximum value as a function of a0 at a0 = 2Kd = 0.16 mM which is

near the value of 0.2 mM for Cases 1 and 2. In Figure 2.6, the quantity £, = £ / cos# is 

shown as a function of z and t for Case 1. As is evident from this figure, el is 

significantly larger than zero over significant ranges of z and t. Thus, a priori one would 

expect that the RTBL model would not be very accurate.
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e, < 0.5

e, > 0.5

‘ 100

t (secs)

Figure 2.6: Values in z-t space where £l is significant. Shown are regions in the z-t 
plane inside which the quantity e, has ranges £, > 1, > 0.5 and £, < 0.5.

2.4.3 Simulation and balance equation solutions

First, values of a0 and xT 316 considered that are similar to those used in the

SFDC experiments of Ford et al. [30]. In Figure 2.7 the RTBL model with s = v/2 and 

XlQD = xlD / 4 is compared to the simulation results for a0 = 0.2 mM and XoD = 3.5 x 10~4

cm2/s. These relationships are the proper ones between the three-dimensional and one­

dimensional parameters as discussed previously in Section 2.2. They are used in the 

results for all cases presented in this work.

The points at which cell densities from the simulation are plotted in the figure are 

the average of the density in a "sampling bin" 0.01 cm wide centered around the point. 

Sampling is implemented over 50 time steps (which corresponds to 5 s) so the density 

reported for a point at a given time is the average density in the sampling bin over the



sampling period. The statistical error associated with the simulation causes the curve 

representing the simulation results to be a little noisy.
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b/bO

b/bO

time= 3.0 mintime= 0.5 min

time= 12.0 min2.5 - time= 6.0 min

position (cm) position (cm)

Figure 2.7: Comparison of RTBL and simulation results for a0=0.2 mM and 
Xo =3.5xl0-4 cnws at t= 0.5, 3, 6, and 12 minutes. The smoother of the curves 
represents the results from RTBL.

The RTBL model agrees closely with the simulation in this case. The peak in the cell 

density profile is the result of a high density band of cells that forms where the 

concentration gradient is high. The trough in the density profile is the result of cell



depletion in the region behind the advancing concentration gradient as cells move with the 

gradient. These phenomena are also observed in experimental studies [30].
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b/bO

5 

4 

3 

2 

1 

0
-0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4

position (cm) position (cm)

time= 0.5 min time= 6.0 min

Figure 2.8: Comparison of RTBL and simulation results for a0=0.2 mM and 
Xo = 105 x 10'4 cm2/s at t = 0.5 and 6 min. Note the change of scale on the vertical axis.

For the second case, shown in Figure 2.8, a value of xlD = 105 x 10"4 cm2/s was

used , which is thirty times larger than the first case and the same initial attractant 

concentration a0 as the previous case. Note that the scale on the vertical axis has been 

changed to allow for the higher peak value of the bacterial density at this value of x™ ■

Again, the simulation results agree well with those of the RTBL model.

Next the effect of the initial concentration, a0 on the simulation and the RTBL 

model results are examined . In Figure 2.9, xl^ is held fixed at XoD = 3.5x lO-4 cm2/s as 

in the initial case and a0 is increased to 1.2 mM, six times the value used in the first case.

As in the two previous cases, the agreement between the two solutions is very good.

In Case 4, the effect of lowering the value of a0 is examined . Figure 2.10 shows 

the results obtained using a0 = 0.02 mM while holding xlD fixed. The simulation results 

show a larger maximum value of the bacteria density than does the RTBL model, but taking



29

into account statistical inaccuracies the deviation of the RTBL model from the simulation is 

quite small.

2.5 

2

b/bO 1.5 

1

0.5 

0
-0.4 -0.2 0 0.2 0.4

position (cm)

time= 6.0 min

position (cm)

time= 0.5 min

Figure 2.9: Comparison of RTBL and simulation results for a0 = 1.2 mM and 
Xo = 3.5 x 10-4 cm2/s at r = 0.5 and 6 min.

time= 6.0 mintime= 0.5 min

b/bO 1

position (cm) position (cm)

Figure 2.10: Comparison of RTBL and simulation results for Oq =0.02 mM and 
Xo = 3.5 x 10-4 cm2/s at r = 0.5 and 6 min. Note the change of scale on the vertical axis.
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The earlier discussion of the expected accuracy of the RTBL model suggested that 

the RTBL model would agree least with the simulation for Case 2, agree most for cases 3 

and 4, but for all cases show some deviation for a range of z and t depending on the 

values of a0 and xlD- However, it is apparent that the RTBL model agrees very well with

the simulation for all the cases and for most values of z and t. This suggests that the 

validity of the Segel equations cannot be judged solely on the basis of the magnitude of the 

perturbation parameter e.

2.5 Conclusion

In Section 2.4, the effect of the parameters a0 and xT on the simulation and the 

RTBL model was examined to determine the range of validity of one-dimensional 

phenomenological models for conditions involving symmetry in two dimensions. The 

range of x™ was varied from 3.5XKT4 cm2/s to 105x 10“4 cm2/s. The initial 

concentration a0 was varied from 0.02 mM to 1.2 mM. In all cases presented here, the 

results of the three-dimensional simulation and the one-dimensional RTBL model compare 

favorably. There are three possible explanations for this favorable comparison: the first is 

that the ranges of z and t over which e is large are in practice small compared to the full 

ranges of z and r; the second is that in the regions where z and t are large, the motion of 

the bacteria becomes effectively one-dimensional so that a one-dimensional model is 

appropriate; the third is that the coefficients of the higher order terms in the perturbative 

expansion are small so that the higher order terms are negligible even when £ is large. It is 

probable that some combination of these mechanisms is involved. In any event, the 

comparisons show that the assumption of small £ necessary to reduce the more rigorous, 

three-dimensional equations of Alt to the one-dimensional phenomenological RTBL model 

does not inhibit its use in accurately modeling situations involving two dimensions of 

symmetry. However, any real differences between the simulation and the RTBL model



results may be masked by the significant noise level of the simulation results. This 

possibility is explored in Chapter 3.

It should be emphasized that the agreement between the one-dimensional model and 

the three-dimensional simulation only follows when one uses the relationships between the 

three-dimensional chemotactic sensitivity and cell swimming speed and their one­

dimensional analogues that follow from the Ford and Cummings analysis. These 

relationships should be used in all future work when parameters for one-dimensional 

phenomenological models are obtained by experimental measurement.
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Chapter 3:

Numerical Solution of a Balance 
Equation for One-Dimensional 
Attractant Gradients
3.1 Introduction

To quantitatively study the migration behavior of motile bacteria, recourse is made 

to cell balance equations which are analogous to mass balances in the study of mass 

transport. The ability of the bacteria to move in both random and coordinated fashions 

must be accounted for in the cell balance equations. For a review of the details of the 

motion of flagellated bacteria see Section 2.2.

As bacteria move about exploring their surroundings, they monitor changes in 

chemical concentrations through receptor proteins located on the cell surface. These 

receptors, like enzymes, have specific binding sites to which only a narrow range of 

structurally similar chemical substrates can bind. It is the change in the number of bound 

receptors over time that provides information to the cell regarding chemical gradients [46]. 

In the presence of a gradient in an attractant (a chemical species to which bacteria favorably 

respond, such as a nutrient), bacteria are able to bias their random walk by decreasing their
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tumbling frequency when moving toward higher attractant concentrations thus extending 

the run lengths in that direction. This results in a net bias of movement toward more 

favorable conditions and is known as chemotaxis. It is important to note that experimental 

evidence suggests that this is the only mechanism by which chemotactic bacteria respond to 

an attractant. For example, the turn angle distribution is unaffected by the presence of an 

attractant [45].

A cell balance equation for bacteria responding to one-dimensional gradients was 

derived by Ford and Cummings [28] from Alt's general three-dimensional balance 

equations [5] which are based on Berg's physical picture of bacterial motion. This balance 

equation for one-dimensional gradients can be contrasted with the equations appropriate to 

motion of bacteria in one dimension used by Ford and co-workers [29, 30] to analyze 

experimental data from the stopped-flow diffusion chamber assay.

In this article, a finite element method is applied to the numerical solution of the 

balance equation derived by Ford and Cummings [28] for conditions relevant to 

experimental studies [29, 30] which involve only one-dimensional attractant gradients. We 

then compare solutions of this balance equation to those obtained using a phenomenological 

one-dimensional model [62] and to simulations of populations of individual bacteria [31]. 

The finite element solution is then used to probe the affects on the bacterial migration of 

two different models of how bacteria respond when moving against an attractant gradient. 

Our results show that the two models for down-gradient behavior give significantly 

different solutions. In addition, the importance of a commonly neglected temporal 

derivative term in the relationship between the attractant gradient and the tumbling 

probability is numerically evaluated. Finally, impact of each of these alternatives- the 

choice of balance equation, the model for down-gradient swimming behavior, and the 

neglect of the temporal derivative- on the experimentally measured transport coefficient for 

chemotaxis is examined.
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3.2 Balance Equations

In this section, the balance equation for one-dimensional gradient derived by Ford 

and Cummings is briefly described . This balance equation is a simplification of the full 

three-dimensional cell balance equation of Alt [5] for bacteria moving in three dimensions 

subject to one-dimensional attractant gradients. The simpler phenomenological one­

dimensional balance equations developed by Rivero et al are also describe in order to 

contrast the two models.

Alt's cell balance equations, Equations 2.1 and 2.2, apply to bacteria moving in 

three dimensions and are valid in the presence of multi-dimensional attractant gradients. In 

Alt's equations, the speed is still assumed to be a function of time and position and that 

tumbling probability is a function of position, direction, run time and time. These 

equations would be difficult to solve numerically for two reasons. First, the experimentally 

determined three-dimensional direction change probability distribution would have to be 

tabulated for a sufficient number of all the possible directions s and s' so that 

interpolations could be done with sufficient accuracy. In addition, there would be six 

independent variables in the full three-dimensional problem making this a very 

computationally intensive problem to solve.

The full three-dimensional equation was simplified for the migration of bacteria in 

response to one-dimensional gradients of chemical attractants by Ford and Cummings [28]. 

The resulting cell balance equation is:

dn7(z,Q,t) _ dv(z,t)n7[z,Q,t) 
dt Sl dz -(3(z,d,t)nz(z,d,t)

n

+ J P(z, 0', t)nz{z, 0', t)K{9', 0)sin O'dO'
0

(3.1)
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where K(d', 6) is the probability per unit angular measurement that a bacterium moving the 

direction 6' will change its direction to 6 after tumbling. Equation 3.1 states that the time 

rate of change in the number density of bacteria at position z moving in the direction 6 with 

respect to the z-axis (see Figure C. 1 in Appendix C) at time t is given by the sum of two 

loss terms (taking into account loss through convective motion away from the point z and 

through tumbling with probability density P(z,6,t) and a gain term (taking into account

bacteria which were moving in another direction 6' before tumbling and then moving in the 

direction 9.

The bacterial density that would be measured in an experiment is the angle 

independent density, c(z,t), and is related to the angle dependent density, nz(z, 9,t) by:

n

(3.2)
o

Equation 3.1 involves only three independent variables (z, 9 and t) and requires as input 

the angle change distribution which is a function only of the two angles 9 and 9'. In 

order to solve the cell balance equation, the functional form of the tumbling probability, (5, 

must be specified.

As noted previously, the tumbling probability is a function of the attractant gradient 

(Vra, where a is the concentration of the attractant) and the direction in which the 

bacterium is swimming. For a Poisson process, the probability of tumbling /3(r,s,r) is

given by:

(3.3)

For a discussion of the development of Equation 3.3, see Section 2.2.
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For the special case of a one-dimensional attractant gradient in the z-direction, 

s • Vra reduces to (da / <?z)cos 6 and p(r,s, r,t) = p(z, 6,t). Depending on the swimming

behavior of the particular bacterial species, an alternate form of Equation 3.3 may be 

appropriate which is given by:

£ > 0 

£ < 0
(3.4)

where:

3.5

That is, for some bacterial species the probability of tumbling does not increase when the 

bacteria are moving in the direction of a decreasing attractant gradient but simply returns to 

(50, the basal tumbling frequency in the absence of a gradient [11].

In contrast to Equation 3.1, Segel [66] and Rivero et al. [62] have developed 

simpler phenomenological models based on individual cell motion in one direction only. 

The one-dimensional cell balance of Segel is given by Equations 2.3 and 2.4. Inherent in 

the development of these equations is the assumption that the bacteria are constrained to 

motion only in two directions, the ±z directions. In the RTBL model, Equations 2.2, 2.7 

and 2.12 form a set of constitutive equations for Segel's cell balance equations. See 

Section 2.2 for the development of these equations.

3.3 Methodologies

In this section, the details of the finite element method (FEM) applied to the solution 

of the balance equation for a one-dimensional attractant gradient are described. The
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experimental assay (whose function is modeled here using the finite element and cellular 

dynamics methods) and the cellular dynamics (CD) simulation methodology is also briefly 

reviewed.

3.3.1 Finite element method solution

The numerical solutions of the balance equation for one-dimensional attractant 

gradients. Equation 3.1, presented here utilized Galerkin's method on finite elements [3] 

for integration over the spatial variables z and 6. The solution of Equation 3.1 represents 

an unusual application of the finite element technique because it is an integro-partial 

differential equation, in contrast to the typical application to purely partial differential 

equations. Thus, a standard finite element package could not be used and the program used 

to solve Equation 3.1 was developed by the author. A weighted implicit/explicit finite 

difference method was used for the integration over time. With the definition

(3.6)

0

and first order differencing in time. Equation 3.1 gives:

At
= G)Fm+(l-Q))Fm_1 (3.7)

where the subscript m indicates that F is evaluated at the current time step 

(t = tm=t0 + mAt) and the subscript m -1 indicates that F is evaluated at the previous

time step. The weighting parameter co can be varied from 1 (resulting in a fully implicit



method) to 0 (resulting in a fully explicit method). The z-Q space was divided into finite 

rectangular elements as shown in Figure 3.1.
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0

2 2

Figure 3.1: This is an example of the type of grid used in obtaining the finite element 
solutions presented in this paper. The actual grids used contained 200 divisions in the z 
direction and 10 divisions in die 0 direction. The length L was 1.2 cm.

The initial conditions used in the solutions presented in this work correspond to those of 

the stopped-flow diffusion chamber (SFDC) assay of Ford and co-workers (see the 

description of the stopped-flow diffusion chamber in the following section). An initial 

uniform bacterial density and an initial step gradient of an attractant are assumed, that is:

nz(z,0,t = 0) = nz0. -±<z<j, 0<d<n (3.8)

and

a(z,t)

a(z,t = 0) = 0,
a(z,t = 0) = aQ,

On 1 + erf
2

z
^4Dt

-j<z<0 

0<z< Y

, t>0,-$<Z<T

0-9)

where a0 is the initial attractant concentration introduced into one half of the chamber, D is 

the diffusion coefficient of the attractant, z is the position along the z axis and t is time.
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The time dependent solution given above for the attractant concentration profile can be 

found in Crank [23].

Z(l) n

node 1 nodek

node i node]

z(i) n

Figure 3.2: This is an example of a single element in the grid. The "nodes" of the grid 
are the comers of the elements. The values of dependent variable nz(z,6,t) at the nodes are
'W nzur nzoo nz«v

A bilinear function was used to approximate nz(z,d,t) on the elements, that is:

nz{z, e,t)M = y{e) + y^z + y?0 + y\e)z6 (3.10)

where the superscript e denotes the element e. The constants y2 y3and y4 are 

related to the (unknown) nodal values of the dependent variable nz{z,9,t). The 

interpolation function for nz{z, 9,t) can also be approximated by the more convenient form

n (z, 8,,) = + g;%„ + G‘%„ + g;-<(«)nzO) (3.11)

where the constants nz{i), nz(j), nz(l) and nz(l) are the values of nz(z,9,t) at the "nodes" of 

the element e (see Figure 2) and G,(e), G;(e), G(ke), and G;(e) are called the shape functions 

of e and are related to y,, y2 y3 and y4. The shape functions are constructed so that
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nz(z, Q,t) varies linearly along the sides of the element and takes on its nodal values at the 

nodest, j, k, and l.

The integration over 6' indicated in Equation 3.1 was calculated using a two-point 

Gaussian integration on each element. Because of the sufficiently small variation of the 

integrand over the width of an element in 0-space (tt/IO), a two-point Gaussian 

quadrature was found to be sufficiently accurate; higher order Gaussian quadrature did not 

lead to significantly more accurate results. The values of 0and 0' for which the direction 

change is needed are therefore known at the beginning of the solution method permitting 

K{6', 0) to be calculated at the outset of the solution procedure and tabulated so that it need

not be recalculated at each time step (see the Appendix). The solutions to the balance 

equation presented here were obtained using a grid of 2000 elements in the z - 0 space. A 

typical finite element solution to the balance equation for one-dimensional attractant 

gradients requires about 40 CPU minutes on an IBM RS/6000 Powerstation 320.

3.3.2 Stopped-flow diffusion chamber assay

The stopped-flow diffusion chamber (SFDC) assay was developed by Ford and 

co-workers [30] to permit measurement of the two bacterial transport properties, the 

random motility coefficient, /t0, and the chemotactic sensitivity coefficient, Xo- The SFDC

is shown schematically in Figure 3.3 along with the region of the chamber used to generate 

the theoretical solutions in this work. Recall from Equation 2.28 that in the absence of an 

attractant gradient, the random motility coefficient can be expressed in terms of the cellular 

quantities cell swimming speed v and mean run time (t0) as:

(3.12)
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where y/ is the average value of cos(a), a being the angle between the direction vectors 

of a cell before and after tumbling. This is a general result for three-dimensional motion of 

bacteria assuming only a constant swimming speed, straight line swimming between 

tumbles, and a Poisson distribution for run lengths.

0.1 cm

0.8 cm

Stopped-flow diffusion Simulation box
chamber

Figure 3.3: Schematic representation (left) of the SFDC used by Ford and co-workers. 
Impinging flow from the upper and lower ports creates an initial step change in attractant 
gradient at the center of the chamber and a uniform distribution of bacteria. The 
approximate dimensions of the chamber are 4 cm x 2 cm x 0.2 cm. On the right is an 
exploded view of the region of the SFDC used by the theoretical methodologies in this 
work to generate solutions for the cell density profile.

The random motility coefficient is analogous to the diffusion coefficient in Fickian 

diffusion, and in fact one can show at the macroscopic level that the diffusive part of the 

bacterial flux, j£lff, is given by [39, 62]:



42

Jff=-^oVrc(r,0 (3.13)

where c(r,r) = J n(r,s,t)ds is the bacterial density.

A description of the experiments performed by Ford and co-workers in the SFDC 

are given in Section 2.2 and in the original work by Ford et al. [30] and Ford and 

Lauffenburger [29],

3.3.3 Cellular dynamics simulation

Cellular dynamics (CD) simulation methodology was developed in Chapter 2 as a 

method for studying the collective transport properties of populations of bacteria essentially 

by simulating the dynamics of large populations of individual bacteria [31]. It thus shares 

considerable common philosophical ground with molecular dynamics simulations methods 

used to predict the many-body thermophysical properties of liquids [4], In essence, the 

stochastic differential equation which describes the dynamics of an individual bacterium is 

solved for lOMO5 bacteria in a geometry appropriate to a small subvolume (1 mm x 

1 mm x 8 mm) of the SFDC located at its center with the long axis parallel to the 

coordinate direction z in which there is an attractant gradient. Periodic boundary 

conditions are used at each face since the bacterial density is observed experimentally to 

have remained at the uniform initial value at these distances from the center of the SFDC 

during the course of a typical experiment (6-12 min).

The stochastic differential equation solved in the CD embodies the same individual 

cell dynamics as are assumed in Alt's equations and the general balance equation for one­

dimensional gradients, Equation 3.1. Hence, from the mathematical point of view, the 

density profiles obtained from the CD simulations should be the same as those obtained 

from the FEM solution provided the same boundary conditions (i.e., SFDC geometry), 

operating conditions and sensing mechanisms are used in both cases. [This equivalence is
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exactly the same as that between Brownian dynamics simulations of kinetic theory models 

of polymeric molecules at infinite dilution and the corresponding "diffusion equation" 

solutions for the phase space density [15].] The advantage of the FEM solution to 

Equation 3 over CD simulation is that the numerical computation involved is considerably 

less. This is because the error in CD simulations is 0(N~U2) while the computation time is 

O(N), where N is the number of bacteria simulated. Obtaining results from CD 

simulation with errors similar to those of FEM (around 1%) would be computationally 

expensive. For example, with 20,000 bacteria the noise in CD appears to be around 5%, so 

reducing this to 1% would require 25 times this number (or 500,000) bacteria and would 

require 26 h of CPU time on a IBM RS/6000 Powerstation 320 for a simulation 

corresponding to 6 min of real time. The advantage of the CD method is that it permits 

visualization of the individual bacterial motion as well as the collective motion of the 

population.

3.4 Results

In this Section, the results of the numerical solution of the balance equation for one­

dimensional attractant gradients, Equation 3.1, using the finite element method (FEM) 

discussed in the previous section are presented. These results are then compared to the 

RTBL model and CD simulation results.

Before doing so, it is instructive to summarize the relationship between the three 

approaches being used to describe bacterial migration in this chapter: RTBL, the FEM 

solution to the balance equation for one-dimensional attractant gradients and CD 

simulations. All three approaches have the same conceptual basis: that tumbling in bacteria 

is governed by a stochastic Poisson process and is related to the attractant gradient by the 

experimentally derived relationship Equation 3.3. The CD simulation method is, in 

essence, a brute force Monte Carlo method for solving Alt's equations, Equations 3.1
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and 3.2. The FEM solution is for the reduced form of Alt's equations derived by Ford and 

Cummings [28] for the case of a one-dimensional attractant gradient by exploiting 

symmetry in two of three coordinate directions. Thus, CD and FEM are alternative 

methods for solving the same model- that is, the same equations for the same physical 

situation- and thus should yield equivalent results. Note that the CD method involves the 

solution of the dynamical equations for individual cells and thus, unlike the FEM solution, 

is unable to take advantage of the overall symmetry of the population as it responds to a 

one-dimensional attractant gradient. This is one sense in which the FEM solution is more 

efficient. In contrast to the model underlying the CD simulation and the FEM solution, the 

RTBL model involves an additional physical assumption, namely that the bacteria are 

confined to one dimension in their motion [28].

The FEM solution is compared to that obtained by CD simulations and to that 

obtained from the RTBL model for two of the cases studied in Chapter 2 which contained 

CD simulations of E. coli in the presence of a gradient in fucose. Both the bacterial density 

profiles and the resulting bacterial transport coefficient for chemotaxis are compared. Then 

the variations on the cell sensory mechanism beyond those studied in the previous chapter 

using either CD simulation or RTBL are examined by comparing FEM solutions 

incorporating these variations to experimental data for the response of E. coli bacteria to a 

gradient of a-methylaspartate.

3.4.1 Comparison of models

The first comparison of FEM, CD and RTBL is performed for the set of conditions 

shown in Table 3.1 and =3.5xl0“4 cm2/s (equivalent to %oD =0.88xl0'4 cm2/s. 

Note that the RTBL quantities for cell speed s and chemotactic sensitivity coefficient %0 in 

Table 3.1 are one-dimensional quantities and are related to the corresponding three-



dimensional quantities used in the CD and FEM calculations according to the relationship 

derived by Ford and Cummings [28]:

45

v3D=2v1D=2>y (3.14)

which leads to the following relationship between XqD and XoD [31]:

*o3D=4^d (3.15)

These relationships were verified in Chapter 2 as being essential to obtain consistency 

between the one-dimensional RTBL and three-dimensional descriptions. The attractant 

concentration, diffusivity and dissociation constant a0, D and Kd) and bacterial properties 

(I30, v and pt) in Table 3.1 correspond to those in SFDC experiments measuring the

response of E. coli bacteria to a gradient of fucose reported by Ford et al. [30]. The value 

xlD = 3.5 x 10“4 cm2/s corresponds to the experimentally measured value for this system. 

The value of Xo0 = 105 x 10-4 cm2/s is high, but is consistent with values measured 

experimentally for bacteria cultured in limited nutrient conditions [50].

Model
ft V a0 Xo x io-4 DxlO6 ** *

(s-1) (qm/s) (mM) (cm2/s) (cm2/s) (mM)

Eq. 3.1 & CD 0.17 22. 0.2 3.5, 105 6.9 0.08

RTBL 0.17 11. 0.2 0.88, 26. 6.9 0.08 0.32

Table 3.1: Values of constants used in solutions shown in Figures 3.4 and 3.5. These 
are the values of the constants used in the CD simulation and in solving Equation 3.1 and 
the RTBL equation.

In Figures 3.4 and 3.5, the FEM solution of Equation 3.1 is compared to the CD 

simulation and to the solution of the RTBL model for the conditions given in Table 1 with



X? = 3.5 x 10'4 cm2/s over a period corresponding to 6 min of elapsed time. The bacterial 

density c(z,t) given by Equation 3.2 is plotted in dimensionless form as a function of 

position.

46

FEM Solution 
CD Simulation 
RTBL Solution

FEM Solution 
CD Simulation 
RTBL Solution

2 minutes1 minute

FEM Solution 
CD Simulation 
RTBL Solution

FEM Solution 
CD Simulation 
RTBL Solution

6 minutes4 minutes

0.4 -0
Position (cm)Position (cm)

Figure 3.4: Comparison of the finite element solution of the balance equation for one­
dimensional gradients. Shown are solutions to Equation 3.1 (solid line), CD simulation 
(squares) and the RTBL model (dashed line) for XoD =3.5xl0"4cm2/s. Dimensionless 
bacterial density, c/c0 is plotted as a function of the position z along the SFDC for times 
of 1, 2, 4, and 6 min. Position z = 0 corresponds to the position of the initial step change 
in the attractant concentration at r = 0 with a fucose concentration of 0.2 mM initially in the 
bottom of the SFDC (0 < z < 0.4 cm in the graphs).
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Figure 3.5: Comparison of the finite element solution of the balance equation for one­
dimensional gradients. Shown are solutions to Equation 3.1 (solid line), CD simulation 
(squares) and the RTBL model (dashed line) for x™ = 105 x 10-4 cm2/s. Solutions are 
shown at 1, 2, 4 and 6 min.

The model for the tumbling probability used in the FEM solution and the CD 

simulations is Equation 3.3 and in the RTBL model is Equation 3.18. This is consistent 

with the model used in previously reported numerical studies [30, 31]. The first 

observation is that the FEM solution is completely consistent with the CD simulation as 

expected on the basis of the equivalence of the models. Second, it is clear that there is a



48

small but discernible, quantitative difference between the predictions of the RTBL model 

and the solution of the three-dimensional models (FEM and CD). In the comparison 

between CD and RTBL presented in Chapter 2, the level of noise in the CD simulations 

made it difficult to assert with a high degree of certainty that there were differences 

between the predictions of RTBL and of models (such as CD and Equation 3.1) which 

take into account the full three-dimensional character of the bacterial motion. These 

differences are clearly evident in both Figures 3.4 and 3.5, with the RTBL model having a 

lower peak and a more shallow trough than the three-dimensional models.

The computation times for the FEM solution, CD simulation (using 20,000 

bacteria) and the RTBL model (solved by finite differences) are 39, 63 and 1 min 

respectively of CPU time on an IBM RS/6000 Powerstation 320.

3.4.2 Effect of model selection on the chemotaxis transport 
coefficient

An important question is to what extent the difference between RTBL and the FEM 

solution results in significant differences in the transport properties which would be 

obtained by comparison with experiment. In particular, the value of Xo obtained 

experimentally by measuring N(t), the number of bacteria entering the upper chamber of 

the SFDC as a function of time t. For RTBL, it is known that N(t) Vt with a slope that 

increases monotonically with Xo [71]. Experimentally, it is also found that N{t) Vt, so 

the value of Xo obtained from the experimental data is determined by applying the 

mathematical model to the conditions of the experiment; the value of Xo obtained from the 

experiment is that which yields the same theoretical slope of N{t)« Vt as that given by a 

linear least squares regression of the experimental data.

An explicit illustration of the method is presented here using the experimental data 

shown in Figure 3.6 which contains a plot of for E. coli responding to a-

methylaspartate in the SFDC [72], The least squares fitted slope in Figure 3.6 has an error
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of 4.7% calculated from the standard deviation based on its relationship to the R2 

correlation coefficient of 0.991 obtained from the linear regression analysis [51]. For 

in the range of our experimental data, Xo the slope in the experimental 7V(r)vs.Vf plot 

are linearly related, so that when the value of Xo is found which has a slope equal to the 

experimental value (in this case, x™ = 1-9 x 10“4 cm2/s, it is assumed that the only source 

of error in Xo is the experimentally determined slope. This linear relationship implies that 

Xo and the slope have the same fractional error. From this it can be concluded that the 

error in Xo is approximately 5%.

------FEM solution
o Experiment0.015-

0.01-

0.005-

^time (sec)

Figure 3.6: The area between the dimensionless bacterial density curve and c \ c0 = 1 in 
the SFDC. The area under the bacterial density curve for the half of the SFDC with a high 
concentration of attractant is plotted as a function of Vr for the case shown in Figure 3.8. 
The value of Xo used to produce the model results is XqD = 1-9 x 10“4cm2/s and yields the 
same slope as a linear least squares regression of the experimental data. In this comparison 
the offset time has been included in the simulation solutions [71].

Since the RTBL model has been shown to be a small gradient approximation of 

Equation 3.1, one can probe the error in x0 that might result from the use of RTBL rather 

than Equation 3.1 by fitting the N(t)vs.Jt from RTBL to the corresponding result for 

Equation 3.1 and then comparing the value of XoD required by RTBL to the value obtained 

using the balance equation for one-dimensional attractant gradients, Equation 3.1. For
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X? = 3.5 x 10-4 cm2/s, Equation 3.1 is solved by FEM and RTBL is fit to the resulting 

plot. The best fit is given by xf = 1-2 x 10-4 cm2/s which is 31% higher than 

the expected value of x™ = 3.5 x 10“4 cm2/s. For xf —105 x 10-4 cm2/s, the best fit of 

RTBL to the plot is given by Xo° =0.88xl0~4 cm2/s which is 230% higher

than the value of x™ = 26 x 10~4 cm2/s used in the FEM calculation. These two examples

are consistent with many other calculations we have performed in which we have found 

that the value of Xo required by RTBL to fit the FEM solution is higher than the value of 

Xo used in the FEM solution. This observation suggests that the values of Xo obtained by 

fitting RTBL calculations to experimental measurements are likely to be overestimates, 

although the physical basis for this discrepancy is not obvious.

Having established the correctness of the FEM solution to Equation 3.1 by 

comparison to CD simulation, it is clear that the FEM solution provides a convenient and 

computationally inexpensive route to calculating the bacterial migration profiles for bacteria 

subject to one-dimensional attractant gradients. It is thus the appropriate vehicle for 

comparison with experimental measurements, particularly for obtaining values of transport 

coefficients.

In the remainder of this chapter however, two questions concerning the model for 

the tumbling probability will be investigated. The first question is: How do bacterial 

density profiles calculated using Equation 3.4 for the tumbling probability (corresponding 

to bacteria returning to the basal tumbling frequency when moving away from an attractant) 

differ from those obtained using Equation 3.3 (corresponding to bacteria increasing their 

tumbling frequency when moving away from an attractant) as has been assumed in 

previously published analyses [29]? This question has important bearing on the 

interpretation of bacterial density transport coefficients since it is known that E. coli obey 

Equation 3.4 rather than Equation 3.3 [12],

In Figure 3.7, results for the two different tumbling probability models, 

Equations 3.3 and 3.4, are compared using the Table 3.1 parameters in Equation 3.1. It



is clear that the difference in tumbling probability has a large effect on the bacterial density 

profile for these cases.
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Figure 3.7: Finite element solutions to the balance equation for one-dimensional 
gradients using = lOSxlO^cm2^. In the first case (solid line), the tumbling 
frequency (5 is allowed to increase above its basal level for populations of bacteria 
moving against the attractant gradient according to Equation 3.3. In the second case 
(dashed line), the tumbling frequency is assumed to return to its basal value for bacteria 
moving against an attractant gradient according to Equation 3.4.

Figure 3.7 shows that the solution obtained using Equation 13 for the tumbling 

probability would result in lower numbers of bacteria moving into the half of the chamber
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where the attractant concentration is highest. Therefore a higher value of Xo* would be 

obtained by fitting solutions obtained using Equation 3.4 to experimental data than would 

be obtained if Equation 3.3 were used.

The value of x™ used in the solutions shown in Figure 3.7 is at the upper limit of 

values that one would expect to encounter experimentally [50] and was chosen to 

emphasize the difference in solutions obtained using the two models for the tumbling 

probability. Next the effect of the choice of tumbling probability models on the transport 

coefficient for chemotaxis is examined by comparing FEM solutions to experimental data 

for E. coli responding to oc-methylaspartate. The conditions at which the experiment was 

performed are given in Table 3.2 and are used in the subsequent model calculations.

V Oq /i0 xlO7 DxlO6 Kd
(|j.m/s) (mM) (cm2/s) (cm2/s) (mM)

22. 0.01 8.8 7.1 0.125

Table 3.2: Conditions for experimental measurement of the response of E. coli to oc- 
methylaspartate [72],

Figure 3.8 compares the solution of the balance equation for one-dimensional 

gradients using Equation 3.3 and Table 3.2 parameter values to the experimental data of 

Strauss [72] for E. coli responding to an initial step gradient of a-m ethyl aspartate in the 

SFDC. The model solution shown in Figure 3.9 used Equation 3.4 to calculate the 

tumbling probability. While the model solutions shown in Figures 3.8 and 3.9 are very 

similar, the value of x™ used to obtain the solution in Figure 3.9 represents a 100%

increase over the value used to obtain the solution in Figure 3.8 which incorporated 

Equation 3.3. Specifically, if it is assumed that the tumbling probability is given by 

Equation 3.3 (which states that bacteria moving against the attractant gradient are capable 

of increasing their tumbling frequency above the basal level), then the value of x0 obtained
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by fitting to the experimental data is x™ = (l-9± 0.1) x 10 4 cm2/s. If it is assumed that 

the tumbling probability is given by Equation 3.4 (bacteria moving against the attractant 

gradient return to the basal tumbling frequency) and go through the fitting procedure 

described previously, it is found that =(3.8±0.2)xl0“4 cm2/s. Therefore, 

determination of the chemotactic sensitivity (as reflected in Xo) from experimental data 

requires a priori knowledge of whether Equation 3.3 or 3.4 applies for the particular 

bacteria under investigation.

Figure 3.8: Comparison of FEM solutions to experimental data. FEM solutions to the 
balance equation for one-dimensional gradients (solid line) and experimental data [72] 
(circles) for the response of E. coli to a-methylaspartate in the SFDC with a 0.01 mM 
initial concentration of a-methylaspartate in the bottom of the SFDC (right side of figure) 
are shown. Also shown (dashed line) is the dimensionless attractant concentration, a/a0. 
In the FEM model solution, the tumbling frequency P is allowed to increase above its basal 
level P0 for populations of bacteria moving against the attractant gradient according to 
Equation 3.3. The value of x™ used i11 fhe model solution was 1.9 x 10-4 cm2/s.

The 100% increase in x™ obtained using Equation 3.4 rather than Equation 3.3 

is not a general result but is consistent with the small values of xlD involved. It can be 

shown that in the limit of small e, in which case the exponentials in Equations 3.4



and 3.3 can be linearized, this factor of two naturally arises by using a small e perturbative 

expansion [28],
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Figure 3.9: Comparison of FEM solutions to experimental data. FEM solutions of the 
balance equation for one-dimensional gradients (solid line) and experimental data [72] 
(circles) for the response of E. coli to a-methylaspartate in the SFDC are shown. In the 
FEM model solution, the tumbling frequency /? returns to its basal value (50 for populations 
of bacteria moving against the attractant gradient according to Equation 3.4. The value of 
X30D used in the model solution was 3.8 x 10-4 cm2/s.

The second question is: To what extent is Equation 3.7 a valid approximation for 

Equation 6 for conditions such as those that exist in the SFDC? At very short 

times,because the attractant concentration in one half of the chamber is initially zero, it 

might be expected that the temporal derivative could be quite large, so that Equation 3.7 

might not be satisfied. In Figure 3.10, bacterial density profiles are shown both including 

and neglecting the temporal derivative, and it is clear that there is no practical difference in 

the density profiles if the temporal derivative is included. Thus, it appears that the neglect 

of the temporal derivative is a valid assumption.
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Figure 3.10: Finite element solutions to the balance equation for one-dimensional 
gradients. In the first case (solid line), the partial derivative with respect to time is included 
in the substantial derivative of the number of bound receptors (Equation 6). In the second 
case (dashed line), the partial derivative with respect to time is omitted (Equation 7). Only 
a slight difference between the solutions is seen at 1 and 2 min and the two solutions are 
identical at 4 and 6 min on the scale of this graph. Both cases assume that the tumbling 
frequency returns to its basal value for cells moving in a direction against the attractant 
gradient.}.
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3.5 Conclusion

The reduced cell balance equation for one-dimensional attractant gradients derived 

by Ford and Cummings [28] were solved in the context of the stopped-flow diffusion 

chamber assay using a finite element technique. The accuracy of the numerical solution 

was confirmed by comparison to cellular dynamics simulation which incorporated the 

same mechanistic model for the chemotactic response used in the cell balance equation. 

The finite element solution of the balance equation for one-dimensional gradients represents 

a substantial economy of computational expense over the cellular dynamics simulations.

A summary of the x™ values obtained for the experimental data shown in

Figure 3.6 using the different models and tumbling probability expressions considered in 

this paper is given in Table 3.3. The value of xT reported for RTBL is the x™ value that 

gave the same slope as the plot of A^Ovs.Vf for the experimental data multiplied by 4 as 

required by Equation 3.15.

Compared to the solution of the balance equation for one-dimensional attractant 

gradients, RTBL overpredicts the value of the chemotactic sensitivity coefficient by as 

much as 230% when x™ = 105 x 10-4 cm2/s. Values of this magnitude have been reported

for conditions under which bacterial growth was limited [50], a situation which is not 

uncommon in natural environments. It is interesting to note that the use of Equation 3.3 

for the tumbling probability of E. coli as opposed to Equation 3.4 leads to an 

underprediction of the correct value of xT while the use of the RTBL model as opposed to

the balance equation for one-dimensional attractant gradients leads to an overprediction of 

the correct value of Xo* ■ Therefore, analyses of experimental data for the migration of E.

coli that use the RTBL model and incorporate Equation 3.3 (for example, the studies of 

Ford and co-workers) contain compensating errors that may result in reasonable values for 

xlD being obtained from experiment.
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Model Tumbling

Probability
Temporal Gradient

X™ x 104 

(cm2/s)

RTBL Eq. 3.3 3a/3t=0 2.6

FEM Eq. 3.3 3a/5t=0 1.9

FEM Eq. 3.4 3a/dt=0 3.8

FEM Eq. 3.4 3.8

Table 3.3: Comparison of xT values for different models. These values of xT were 
obtained from fitting to experimental data for various models, tumbling mechanisms and 
inclusion/exclusion of temporal gradient in tumbling probability.

Two different responses have been reported for bacteria swimming down an 

attractant gradient. E. coli return to a basal tumbling probability corresponding to what is 

observed in the absence of a chemical gradient [11, 20] while S. Typhimurium increase 

their tumbling frequency over the basal level when moving down an attractant gradient. 

Solution of the balance equation for one-dimensional gradients revealed a significant 

difference in the bacterial density profiles depending on the model used for the tumbling 

probability as shown in Figure 3.7. For bacteria returning to the basal tumbling frequency, 

the chemotactic response appears less dramatic with respect to the sharpness and intensity 

of the bands.

Within the SFDC, both a spatial and temporal attractant gradient exist. Prior 

applications of the RTBL model neglected the temporal gradient arguing that its 

contribution was small in comparison to the large spatial gradient generated by an initial 

step change in attractant concentration. Solutions of the balance equation for one­

dimensional attractants with and without the temporal gradient showed no significant 

difference over the range of parameters that were investigated, validating the assumption 

that the temporal gradient within the material derivative is negligible.
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Chapter 4

Bacteria-Surface Interactions

4.1 Introduction

In a homogeneous fluid medium, flagellated motile bacteria such as E. coli and S. 

typhimurium execute random walks as they alternate between their two phases of motion: 

running (motion in essentially straight paths) and tumbling (changes in direction while 

remaining in place) [9, 12,46,70]. In the presence of solid surfaces, this behavior will be 

modified. Intuition would suggest that long runs initiated close to the surface and in the 

direction of the surface are not possible because of the presence of the impenetrable solid 

surface. However, what is not known is the way in which bacterial swimming behavior 

will be modified. Relevant questions are: Will a bacterium swim toward the surface as 

though the surface is not present until it strikes the surface or will it slow and turn to avoid 

the surface? If a bacterium strikes the surface, will it rebound from or adhere to the surface? 

What forces must be considered in determining the swimming behavior of bacteria in the 

presence of solid surfaces? It is the purpose of this study to answer these questions.

Understanding the mechanisms of bacterial transport in the presence of solid 

surfaces is essential to being able to model many processes of engineering concern. In situ
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bioremediation has evolved as a safe and cost effective treatment for the reclamation of soil 

and groundwater contaminated with hydrocarbons from leaking underground tanks and 

above ground spills [1, 24, 25, 60, 64, 69]. Research is currently being conducted to 

extend the use of in situ bioremediation to soils contaminated with compounds such as 

halogenated aliphatics [7, 22, 52, 63, 68]. There is increasing evidence that these 

recalcitrant compounds can be effectively degraded by naturally-occurring microorganisms. 

Wastewater treatment relies on the trapping of pathogenic microorganisms in packed beds 

of sand grains and from groundwater in the aquifer matrix [48, 49]. In the area of the 

pathogenesis of infection, the most common hospital-acquired infections are catheter- 

associated. It has been shown that bacterial transport in this situation is enhanced through 

the presence of a solid surface [35] [54],

A microscopic understanding of bacterial motion near solid surfaces is necessary to 

predict the macroscopic behavior of populations of bacteria for the systems described 

above. While bacterial transport has frequently been studied by analogy to similar non­

living systems, such studies have met with varied success. An effective mathematical 

model for one experimental system is often a poor model for another, seemingly similar 

system. These inconsistencies are often the result of a fundamental misunderstanding or 

oversimplification of the nature of bacterial motion and bacteria-surface interactions.

In this study, a specially designed microscope is used to follow the paths of 

individual bacteria swimming in the fluid adjacent to a solid surface. The near-surface 

traces of the bacteria are analyzed to determine differences in the swimming behavior of the 

bacteria compared to motion in the bulk fluid phase. The variation in the swimming speed 

as a function of the surface-to-cell distance is compared to two theoretical solutions: one 

that treats the bacterium as a sphere being propelled against a constant resistive force and 

another that treats the bacterium as a sphere with a single attached flagellum rotating at a 

constant angular speed. The zeta potentials for the system are determined and used to 

calculate the DLVO (Derjaguin-Landau and Verwey-Overbeek) interaction potential as a



function of the separation distance to offer an explanation of the tendency of cells to swim 

along a solid surface tracing out circular paths.

4.2 Background

That a motile bacterium must modify its swimming behavior in the presence of a 

solid surface is obvious since, clearly, it cannot penetrate the wall. Lubrication theory 

suggests that the presence of a solid surface would influence the swimming speed of the 

bacterium through a viscous medium well before it makes physical contact with the surface 

[6], In addition, one might expect that interactions between the surface and cell arising 

from surface charges and the distribution of ions in the surrounding medium would 

influence the motion of a bacterium very near the surface. To characterize the motion of a 

bacterium near a surface by its response to these external forces, two issues must be 

considered: 1) At what distance is the bacterium considered to be "near" the wall and at 

which, the presence of the wall must be taken into account to determine the motion of the 

bacterium, and 2) What forces or interactions must be considered in these regions?

Two distinct surface-to-cell distance regions can be identified in which changes in 

bacterial motion should be anticipated. The interactions that need to be considered in these 

two regions are different; in the first region, interactions are dominated by the surface 

chemistry of the system and the medium composition, while in the second region, 

hydrodynamic interactions are dominant.

The region in which the surface chemistry of the system is important is confined to, 

roughly, the 100 nm nearest to the surface. In the study of these interactions, the DLVO 

theory of colloid stabihty is often employed [65, 74-76], This theory accounts for the long 

range (on a molecular scale) van der Waals and electrostatic interactions between the 

bacteria and the surface as a function of the separation distance and the medium 

composition. In addition to these interactions, there are very short-ranged forces that are
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thought to be important in the irreversible adhesion of bacteria to a solid surface. These 

interactions are not addressed in this study since for all the cases studied under our 

experimental system, no irreversible adhesion was observed.

According to DLVO theory, the total interaction potential between a solid surface 

and a colloid particle or bacterium is given by

(4.1)GT(h) = GA(h) + GE(h)

where h is the separation distance, GA(h) is the contribution of the van der Waals 

interaction and GE(h) is the contribution resulting from the overlap of the electrical double 

layers of the bacterium and the solid surface in the suspension medium. Letting the flat 

solid surface be (1), the particle/bacterium of radius b be (2) and the suspension medium 

be (3), Norde and Lyklema [55] give the following approximation for GA:

(4.2)

where A123 is the Hamaker constant for the system and can be written in terms of the 

individual components as:

(4.3)

For bacteria and natural surfaces in aqueous media, A123 is usually positive so GA is 

negative and attractive. The interactions resulting from double layer overlap may be 

expressed as [55]:

^f(^)— n£re0b(<l>l3 + ^23)' + ln[l - exp(-2 Kh)\ > (4.4)
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where Ere0 is the dielectric permittivity of the medium and k is the reciprocal Debye 

length. The surface potential </> is usually approximated by the zeta potential £. For the 

system studied here, both 0I3 and 023 are negative and so GE is positive and repulsive.

The reciprocal Debye length is a function of the medium composition and is given 

by [37]:

K2 1000e2NA
(4.5)

where e is the charge on an electron, kB is Boltzmann's constant, T is the absolute 

temperature, z, is the charge on ion i in the medium, Af, is the concentration of ion i in 

mol/1, and NA is Avagadro’s number.

The second region of surface-cell interactions extends out to about 10 pm from the 

solid surface. In this region, hydrodynamic interactions between the cell and the surface 

become important. For a slow moving spherical particle moving in an unbounded viscous 

fluid, the force of drag resisting the motion of the sphere can be calculated from the 

solution to Stokes' equation for creeping flow around a sphere, which is [19]:

^resistance = (4.6)

where p is the fluid viscosity, U is the speed of the sphere and b is the radius of the 

sphere. If the shape of a bacterium can be approximated by a sphere and if it is swimming 

at a constant speed, the force provided by the flagella is equal to the resistance from the 

fluid and can be calculated by Equation 4.6.

Now, consider the case of a sphere moving toward a solid surface with speed U 

and whose center is a distance h from the solid surface, as pictured in Figure 4.1. The
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force on a sphere moving at a constant velocity U toward the solid wall will no longer 

remain constant but will increase as the separation distance decreases.

Figure 4.1: Perpendicular motion of a sphere toward a plane surface. A sphere of 
radius b moves perpendicularly toward a solid surface with speed t/ at a separation 
distance of h-b.

Brenner [19] gives the solution to the creeping flow equation for the force resisting the 

motion of the sphere as it approaches the solid surface perpendicularly as:

F(h/b) , =6niibUMh/b)\ /resistance ' \ /resistance
(4.7)

where h is the distance from the center of the sphere to the solid surface and A is given by:

4 . , ^ n(n +1) 2sinh(2/i + l)a + (2/z + l)sinh2a , ..-sinh a Y ——" 1 (4-8)

and:
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a = cosh
-ifh

= In-
h (4.9)

By comparing Equations 4.6 and 4.7, it can be seen that A represents the increase in the

force resisting the motion of the sphere due to the presence of the solid surface. If the

sphere approaches the wall such that the force resisting its motion remains equal to its value 

in an unbounded fluid (i.e.; at a separation distance of °°), then its speed can be calculated 

by equating Equations 4.6 and 4.7:

F„ = 67tnbU„ = 6nnbUl = F(h/b) (4.10)

or:

= (4.11)

The conditions under which this expression is valid for use in determining the speed of a 

bacterium as it approaches a solid surface are: 1) a flagellar bundle which produces a 

constant force and 2) an insignificant change in momentum relative to the forces acting on 

the bacterium. For Reynolds numbers relevant to the motion of bacteria through water 

(<7(10'5)), this later condition is valid [19].

There are other more sophisticated models for bacterial motion toward a plane 

surface than that of a sphere moving with a constant propulsive force. Ramia [59] solved 

Stokes' creeping flow equation for an arbitrarily shaped body and an associated single 

helical flagellum rotating at a constant angular speed. The equations were solved using a 

boundary element numerical method (BEM). General descriptions of the boundary element 

method can be found in Brebbia et al. [18] and Kane [38]. This solution method allows for 

arbitrary incident angles to the solid surface. Shown in Figure 4.2 is the solution given by
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Ramia et al. [59] for cell orientations of 90° (parallel to the surface), 135°, and 180° 

(perpendicular to and toward the surface) from the surface normal and assuming a spherical 

cell body. The dependence of the speed of a sphere moving perpendicular to the surface as 

given by Equation 4.11 is shown superimposed on the BEM solutions. The definition of 

the orientation angles is illustrated in Figure 4.3.

e— BEM (180°)
■A— BEM (135°) 

BEM (90°) 
-----Brenner (180°)

Dimensionless distance

Figure 4.2: Solution of Stokes' equation by Ramia et. al. The boundary element 
method (BEM) is used to solve Stokes’ equation for a sphere with a flagellum rotating at 
constant rate moving toward a solid surface at 3 different orientation angles. Also shown is 
the solution to Equation 4.11, based on Brenner's solution for the force on a sphere 
perpendicularly approaching a solid surface. The dimensionless speed is the instantaneous 
speed divided by the speed in an unbounded fluid. The dimensionless distance is 
(h-b)/b.

One interesting result of the analysis of Ramia et al. is that bacteria swimming close and 

parallel to the surface derive a propulsive advantage from the surface and swim at a speed 

10% higher than in the bulk. Also, the velocity changes more quickly for bacteria moving 

at 180° from the surface normal than for cells moving at 135° from the surface normal. 

Compared to the solution of Equation 4.11 for a sphere moving perpendicular to the
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surface opposed by a constant force, the swimming speed is higher at a given separation 

distance for cell orientation angles of either 135° or 180°. One reason for the higher 

velocity predicted by the BEM solutions is that these solutions assume the flagellum rotates 

at a constant rate, while Equation 4.11 assumes that the force produced by the flagella is 

constant. A flagellum rotating at a constant speed would produce more thrust near a solid 

surface due to hydrodynamic interactions between the flagellum and the surface [59], 

resulting in higher swimming speeds for a given separation distance.

O'
/1

Figure 4.3: Orientation angle definitions. This diagram illustrates the orientation angles 
referred to in the text. The orientation angle is defined such that 0° is coincident with the 
surface normal, 90° is parallel to the surface, and 180° is perpendicular to the surface and 
opposite in direction to the surface normal.

4.3 Methods and Materials

Two strains of E. coli bacteria were used in this study: NR50 and HCB437. Both 

of these strains swim by the rotation of flagella located around the periphery of the cell 

body. The strain NR50 is a wild type cell with a rod-shaped body 1 |im by 2 pm in size. 

The swimming behavior of NR50 in an isotropic fluid medium is characterized by a series 

of runs interrupted at intervals by tumbles (see Section 2.2). These cells were.originally 

obtained from Judy Pile in the Microbiology Department at the University of Pennsylvania.
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The strain HCB437 is a smooth swimming (non-tumbling) mutant. Smooth swimming 

behavior is the result of the deletion of the gene responsible for the production of CheY, a 

protein known to be necessary for bacteria to exhibit tumbling. The HCB437 cells are rod­

shaped but are somewhat larger and longer than the wild type cells with body dimensions 

of approximately 2 by 4 pm, judged from a visual comparison to NR50 using transmitted 

light microscopy. These cells were obtained from Howard Berg in the Department of Cell 

and Developmental Biology at Harvard University and the Rowland Institute in Cambridge, 

Massachusetts. The differences in the genotype of this strain and wild type cells can be 

found in Appendix D.

4.3.1 Preparation of samples

The wild type cells were cultured from frozen stock stored in 300 pi aliquots before 

each experiment. Cultures were made by thawing an aliquot of stock and by pipetting 

100 pi of the stock into a 250 ml shaker flask with 50 ml of a sterile growth medium 

containing buffering agents and minimal nutrients [2] (see Appendix E for the medium 

composition). This was amended with 0.5 ml each of galactose (0.55 M) and thiamine 

(1.5 mM) solutions. The flask of nutrients and bacteria was incubated on a temperature 

controlled rotary shaker (150 rpm) at 30° C for 11-12 hours. This yielded cultures with 

cell densities of between 108 and 109 cells/ml in the mid-exponential growth phase. Just 

prior to an experiment, the final sample was obtained by dilution of the culture stock with 

motility buffer solution [36] (see Appendix E for the buffer composition) containing the 

same concentration of buffering compounds found in the growth medium but without 

nutrients. The smooth swimming cells were also prepared from stock frozen in 300pl 

aliquots. These cells were cultured by the addition of 200 pi of the frozen stock to 50 ml of 

sterile Tryptone broth in a 250 ml shaker flask (see Appendix E for the medium 

composition). The inoculated flasks were incubated on a rotary shaker at 30° C for 5
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hours yielding cultures with densities between 108 and 109 cells/ml. Tryptone broth was 

used as a growth medium for the smooth swimming cells because HCB437 is unable to 

synthesize certain amino acids necessary for growth, and the Tryptone broth supplies them 

directly.

Just before an experiment, the final sample was prepared by diluting an appropriate 

amount of the culture solution with 1000 til of motility buffer solution to obtain a sample 

with a density of approximately 106-107 cells/ml. This usually required approximately 5 

pi of the culture stock resulting in a typical dilution of 1:200.

4.3.2 Measurement of electrophoretic mobility

In this study, the interactions between E. coli and glass microscope cover slips in a 

aqueous medium of phosphate buffers were examined. Two quantities required by DLVO 

theory to characterize the electrostatic interactions between a colloid/bacterium and a solid 

surface are the surface potentials of the colloid/bacterium and the solid surface in the 

suspension medium (see Equation 4.4). The surface potential is typically assumed to be 

approximately equal to the zeta potential. The zeta potential is the potential at the edge of 

the shearing plane, or the effective boundary between the solution associated with the solid 

surface and the bulk liquid phase [43], The electrophoretic mobility of a particle in the 

suspension medium is related to the zeta potential by [37]:

£ = liEH£r£0 (4.12)

In order to determine the zeta potential for the glass, microscope cover slips were washed 

with distilled water and pulverized with an agate mortar and pestle. The ground glass was 

suspended in the phosphate buffer solution (see Appendix E for the buffer composition). 

The ionic strength of the phosphate buffer was 0.19 M. This procedure was used by Litton
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and Olson [42] to determine electrophoretic mobilities for solid material that could be 

ground into fine particles as an alternative to measuring streaming potentials. Some of the 

glass particle settle quickly, but the solutions prepared this way remained turbid for periods 

longer than 24 hr. In making a measurement, the solution of glass particles was allowed to 

settle for an hour and then a sample of the supernatant was taken. The sample was inserted 

into the analysis chamber of a Doppler Electrophoretic Light Scattering Analyzer (Coulter 

Delsa 440, Coulter Electronics, Amherst, MA) and the electrophoretic mobility was 

measured at 30° C. The Coulter Delsa 440 calculates the zeta potential from the 

electrophoretic mobility using Equation 4.12. For the bacteria, cells were taken from the 

culture flask and washed by filtering with buffer solution according to the procedure used 

by Berg and Turner [14]. Cells were resuspended in buffer and a sample was inserted into 

the analysis chamber.

The values of the electrophoretic mobility and zeta potentials measured for the 

bacteria and the ground glass are given in Table 4.1.

Material Electrophoretic mobility Zeta potential
(pm-cm/V-s) (mV)

Cover slip glass -2.51 -32.21

E. coli NR50 -1.49 -19.09

Table 4.1: Electrostatic parameters for the wild type bacteria and finely crushed 
microscope cover slip glass.

4.3.3 Tracking microscope

The microscope used to acquire the tracking data was designed and built by 

Howard Berg [8]. The body of the instrument is a standard Nikon transmitted light 

microscope. It is fitted with a special stage connected by a strut to three electromagnetic



coils, arranged so that their axes are mutually orthogonal to represent the three coordinate 

directions. A schematic of the equipment is shown in Figures 4.4 and 4.5.
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Figure 4.4: Schematic of the tracking microscope used in this study. Adapted from 
Berg [8],

The stage is moved by varying the current in the coils shown in Figure 4.5. A 

sample of bacteria diluted with buffer solution is placed in a small "box" or chamber with 

glass windows on the top and bottom on the stage. Light from the light source passes 

through the chamber and the objective to a trinocular beam splitter. Part of the light is 

transmitted to the viewer while part is allowed to pass through the splitter and is projected 

on the end of an array of six optical fibers.

The microscope is configured with a phase contrast condenser and a 20x inverse 

phase objective so that the focused image appears brighter than the background. In this
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configuration, bacteria in focus appear as bright spots on a dim background while those out 

of focus appear as dim fuzzy images. The portion of the image focused on the optical fiber 

array is approximately equal to the diameter of a bacterium (about 1 (im). The optical fibers 

transmit the light from the image to photomultiplier tubes which produce a voltage signal 

proportional to the amount of light falling on the ends of the optical fibers. Four of the 

optical fibers are arranged in an array as shown in Figure 4.6.

Figure 4.5: Close-up of the stage and coil arrangement on the microscope. Adapted 
from Berg [8].

When the image is in focus and positioned on the end of the xl optical fiber, more 

light is passed through that fiber compared to the x2 fiber and a larger signal is produced 

by the photomultiplier tube connected to the jq fiber. Therefore, if the image of a 

bacterium is focused somewhere on the end of the array of optical fibers, the light level in 

each of the fibers indicates the position of the image of the bacterium relative to the fibers. 

The configuration of the zx and z2 optical fibers is somewhat different. The position of the 

ends of the z, and z2 optical fibers is such that when the image is perfectly focused on the 

end of the array of x and y optical fibers, it is focused slightly in front of the end of the Zj
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optical fiber and slightly behind the end of the z2 optical fiber. Since an image in focus will 

appear brighter than an out of focus image, the relative voltage signal from the zx and z2 

photomultiplier tubes indicates the end of the fiber on which the image is most nearly in 

focus.

0.25mm

1,^2

Figure 4.6: Alignment of the ends of the optical fibers. This is the alignment of the ends 
of the optical fibers as the would appear viewed from the chamber along the light path to 
the three mirrors in Figure 4.4. Adapted from Berg [8]. The z, and z2 fibers appear 
superimposed on the center of the array viewed from this perspective.

The microscope is equipped with a feedback control circuit that senses the voltage 

in each of the photomultiplier tubes and changes the current in the stage control coils to 

move the stage. If the image of a bacterium falls on the ends of the optical fibers, a circuit 

senses an increase in the voltage signal from the photomultiplier tubes attached to the z, and 

z2 optical fibers. When the light level increases above the background level, a circuit is 

closed that allows the position of the stage to be controlled automatically by varying the 

current in the coils in proportion to the voltage signal from the photomultiplier tubes. If the 

image of the bacterium is positioned over the xx optical fiber, the current in the stage coils 

is varied to bring the image back toward the x2 optical fiber. If the image is focused more
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toward the z, optical fiber, this fiber is receiving more light and the coils adjust the stage 

position so that the image focus is moved toward the z2 optical fiber. If the bacterium itself 

is in motion, the stage will be moved opposite to the motion of the bacterium in order to 

keep its image in focus on the ends of the optical fibers.

A low concentration of cells (106-107 cells/ml) is necessary to suppress extraneous 

diffracted light from nearby cells which would interfere with the light from the cell being 

tracked. At this concentration, the occasion of a cell moving into the approximately 2 jim 

sphere in which its image will appear sufficiently in focus on the optical fibers by chance is 

rare. The microscope is therefore provided with a three-axis joystick controller that allows 

the user to move the stage as he/she views the dilute sample of bacteria. When a bacterium 

is found in a nearby region, the user maneuvers the stage with the joystick so that the focal 

region of the optical fiber array encloses the bacterium. When this occurs, the control 

circuit of the microscope closes and tracking begins. As the stage and chamber move in 

synchronization with the motion of the bacterium, the current in the coils generates a 

voltage signal that is proportional to the chamber position and therefore the position of the 

bacterium in the chamber.

A 16 bit A/D converter was used to digitize the voltage signal from the coils 

(National Instruments model NB-MIO-16XH). The data acquisition board was controlled 

by software written using the LabView 3.0 software package (National Instruments). The 

voltage in each of the three stage control coil circuits was digitized at the rate of 12 

samples/s.

Two types of chambers were used in these experiments and differ in the way in 

which the top windows were mounted on the chambers and the type of top window that is 

was used. The body of the first type, shown in Figure 4.7 is machined from tantalum. 

The bottom window of the chamber is a disk of glass cut from a microscope cover slip and 

sealed in place with silicone adhesive. When an experiment was performed, a drop of the



sample of bacteria in buffer solution was placed in the chamber. The top window was then 

sealed in place with vacuum grease.
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Figure 4.7: Chamber type 1. This is a diagram of the type of chamber used in tracking 
experiments performed on bacteria in the bulk fluid.

For experiments in which the position of the inside surface of the top window 

needed to be determined, the grease seal for the top window did not hold the window 

sufficiently still and the window would shift significantly in the grease. For this reason, a 

second type of chamber was designed in which the top window could be sealed between 

the body of the chamber and a threaded cap. The bottom half of the second type of 

chamber, shown in Figure 4.8, has a body machined from tantalum with machine threads 

cut on the outside of the body.

A glass disk was sealed on the bottom of the tantalum body using silicone adhesive. 

The upper half of the chamber is machined from brass and is threaded on the inside. To 

prepare the chamber for an experiment, a drop of the sample solution was placed in the 

bottom half of the chamber. A latex gasket and top window were secured in place by 

screwing the top half of the chamber onto the bottom half. The top windows are disks cut
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from microscope cover slips and are printed with an array of dots on the fluid side as 

shown in Figure 4.9. The dot array was printed on the glass using chromium metal 

deposition (Klarman Rulings, Manchester, New Hampshire). Each dot is 10 ^tm in 

diameter and has a thickness of less than 2 urn.

0.05 in

0.125 in

Brass top

Glass window

Latex gasket

Tantalum bottom

Glass window 
on bottom

Figure 4.8: Chamber type 2. The type of chamber was used in tracking experiments 
performed on bacteria near the surface is shown above (not to scale).

In an experiment in which the distance between the tracked bacterium and the 

surface was needed, the windows were sealed onto the top of the bottom half of the 

chamber with the grid of dots on the side of the top window glass facing the interior of the 

chamber. The chamber was then placed on the stage with the dotted window glass on top. 

The position of the surface exposed to the bacteria was determined by maneuvering the



stage and chamber so that a dot was positioned in the region in which a bacterium would be 

tracked and in sharp focus.
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chamber type 2
exploded view of underside 

of window with array of dots

Figure 4.9: Dot array on top window of chamber type 2. Shown is an exploded view 
of the underside of the top window used in tracking experiments near the surface of the 
glass window. An array of dots was printed on the underside of the window to allow the 
position of the surface of the glass to be determined (not to scale).

The voltage signals from the three coils were then recorded. This procedure was 

repeated until the coordinates of three of the calibration dots on the interior surface of the 

top window glass were recorded. The glass surface was assumed to be planar and the 

three coordinates were used to calculate the surface normal for the top window. If the top 

window glass were perfectly parallel to the x-y plane, it would be necessary to record the 

coordinates of only one surface point to determine the distance to the surface. However, 

since a slight misalignment would cause substantial errors on the length scale relevant to the 

experiment, an accurate determination of the position of the surface was necessary.
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In the tracking experiments originally performed by Berg and Brown [11], it was 

found that the swimming motion of bacteria in pure buffer solution is frequently not 

smooth, but that bacteria often wobble substantially as they swim. The researchers found 

that the addition of 0.18% (w/v) hydroxypropyl methylcellulose decreased the wobbling 

motion of the swimming bacteria and they felt that this lead to a more accurate analysis of 

the data. For this reason it was decided that these experiments performed in this study 

would be performed in a buffer solution to which 0.18% (w/v) hydroxypropyl 

methylcellulose was added (Biochemika Methocel 90 HG). The stage of the tracking 

microscope is equipped with a heating coil and was maintained at 30°C for all the tracking 

experiments. An initial set of experiments on bacteria moving in the bulk liquid to 

determine the effects of Methocel on the swimming behavior of E. coli.

4.3.4 Data analysis algorithm

In order to determine the phase of motion for each bacterium at each sample point,

the data analysis method of Berg and Brown [12] was used. The x component of a 

bacterium's velocity at time t] (the time at which sample j was taken) was determined from

the position data using the following 5 point differencing scheme:

(4.13)

where is the x position of the bacteria at time tj and At is the sample interval (1/12 s, in 

this case). The velocity of the bacterium in the y and z directions was similarly calculated. 

A bacterium's direction was determined using the velocity components derived from 

Equation 4.13. The rate at which a bacterium was changing its direction was called the 

angular speed and was defined by:
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6 = acos / sample interval (4.14)

where

The angular speed was used as a criteria for determining the phase of motion of a 

bacterium. A bacterium was taken to be in a tumbling phase of motion when tracking 

began. The beginning of a run was scored at data point i when the angular speed was less 

than 35° per sample point (at 12 samples/s this is 420° /s) for points i, i +1 and i + 2. A 

run was said to end at point j when either of two criteria were met: 1) the angular speed 

was greater than 35° /sample for samples j and ; +1, or 2) the angular speed was greater 

than 35° /sample for sample j and the difference angle O for point j was greater than 35° 

where the difference angle at j was defined as:

(4.15)

where:

and:

The criteria for distinguishing between the two phases of motion and the use of the angle 

35° as the criterion to which the angular speed and the difference angle are compared were 

first used in the study by Berg and Brown [12]. By this algorithm, the minimum run 

length was three data points but a tumble could be of any length that is an integer multiple 

of the sample interval of 1/12 s, including zero. These criteria were developed by viewing 

stereo plots of the tracking data and the results of the analysis by representing tumble points
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in the data as bright dots and run points as dim dots. Various analysis algorithms and 

criteria were tested by Berg and Brown with the success of a particular algorithm or 

criterion being judged by the degree to which the analysis results agreed with a visual 

examination of the data for apparent tumble locations. The algorithm and criteria outlined 

here gave the best agreement with a visual inspection of the stereo plots. For this work, a 

test of various criteria was also performed and it was determined that the algorithm 

developed by Berg and Brown was satisfactory for this study. However, it might be 

useful to make a systematic study of the effect of various criteria and analysis algorithms on 

the results of the analysis.

The angle through which a bacterium was reoriented as result of a tumble was 

designated the turn angle. For a run which ends at point k and was followed by a run 

which begins at point l, the change in direction from point k to l is called the mm angle cp 

and is defined by:

tp = acos
• f ^

VI
(4.16)

where:

=[{(vxL2+(vxL+(vx)tH(v>L+(v,L+(v>)t}{(vzL2+(vzL,+(vJt}]

and:

= [{Mi + Mm + M,+2}>{(vy), + M,+1 + M;+2}{(vz), + Mm + Mm}]

4.4 Results

4.4.1 Bulk tracking experiments
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First, a set of experiments were performed in which bacteria were tracked at 

distances far from the walls and windows of the chamber (approximately 400 p.m) in buffer 

solutions to which 0.18% (w/v) Methocel was added and to which it was not added to 

determine the effect of the compound on the swimming behavior of the bacteria in the bulk 

before experiments were performed near a surface.

Figure 4.10: Wild type bacterium in bulk. Shown is the trace of a bacterium tracked in 
the bulk fluid. Each sample point is represented by a sphere. Yellow spheres represent 
sample points for which the analysis determined the bacterium was executing a run. 
Tumbles are indicated by purple spheres.
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Figure 4.11: Wild type bacterium in bulk. This is another example of a trace from a 
bacterium tracked in the bulk fluid.
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Figures 4.10 and 4.11 show the traces of two individual bacteria from the sample 

to which Methocel was added. Tracking chambers of the type shown in Figure 4.7 with 

plain glass top windows were used in the experiments that examined bacterial motion far 

from solid surfaces. The position of the bacteria at each sample point is shown as a sphere. 

The spheres are assigned different colors based on the phase of bacterial motion; yellow 

spheres represent data points at which it was determined the bacteria was in the running 

phase while purple points indicate positions where the bacteria were in the tumbling phase 

of bacterial motion.

Shown in Figure 4.12 is the variation of the cell swimming speed as a function of 

the tracking time for the bacterial trace shown in Figure 4.10.

' I 1 1

Time (s)

Figure 4.12: Speed of a wild type bacterium in the bulk fluid. Shown is the speed of 
the bacterium in Figure 4.10 as a function of time.

It can be seen that the cell swimming speed varies substantially (between 4 and 50 |im/s). 

Part of this variation is due to the decrease in swimming speed as cells tumble since they 

tumble in place, however there is still considerable variation during the running phase of 

motion. Figure 4.13 is a close-up of the region of Figure 4.12 between 20 and 30 s. The
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solid dots in this figure represent sample points at which tumbles occurred according to the 

analysis. In this figure, the swimming speed during running can be seen to vary between 

15 |im/s and 47 (im/s.

20 21 22 23 24 25 26 27 28 29 30

Time (s)

Figure 4,13: Close-up of bacterial swimming speed. Shown above is the region from 
20 s to 30 s in Figure 4.12 above to illustrate the variation in swimming speed. Points 
where the analysis determined that tumbles occurred are shown as solid dots on the speed 
trace.

The properties that characterize the transport of a population of bacteria in an 

isotropic fluid medium are the mean run time, the mean cosine of the turn angle and the 

swimming speed of the population (see Equation 2.28). Shown in Figures 4.14, 4.15, 

and 4.16 are the distributions of run times, turn angles and run speeds for a population of 

100 bacteria from a single tracking experiment in which 100 cells were tracked. The run 

time and turn angle distributions count each run or turn angle as one value in the 

distribution. The run speed distribution counts the mean run speed for each bacterium as 

one value since reporting each run as an event would over represent slower run speeds (the 

microscope is able to track slower cells longer).
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The mean run time for the distribution shown in Figure 4.14 is 0.85±1.12 s 

(reported as the mean ± the standard deviation). The solid line in the figure is the Poisson 

interval distribution whose mean is equal to the population mean and is given by:

/(0 = 7TexP\V
At-t 
(T> .

(4.17)

where At is the minimum observable interval and (t) is the experimentally measured run 

time for the population[12].

O Experimental data 
----- Poisson Distribution
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Run time (s)

Figure 4.14: Run time distribution with methylcellulose. The distribution of run times 
from a tracking experiment is shown in which 0.18% (w/v) Methocel was added to the 
motility buffer. In this experiment 100 bacteria were tracked. The solid line is the Poisson 
interval distribution whose mean is the same as the experimental mean.

In this analysis, the minimum run length is 3 sample intervals or 3/12 s. This 

interval distribution is obtained for events which occur at random; that is, the probability of 

the event occurring during an observation interval is the same irrespective of when the 

observation is made. The fact that the experimental data agrees well with the Poisson



distribution indicates that the tumbling event occurs at random. This observation confirms 

those of Berg and Brown [12] made by tracking E. coli AW405, another wild type cell. 

Berg and Brown reported a mean run time of 0.86±1.18 s.

85

•e— Experimental data
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Figure 4.15: Turn angle distribution with Methocel. This figure shows the distribution 
of turn angles for the same experiment shown in Figure 4.14. The solid line is a curve fit 
to the data.

The mean turn angle is 82°±35° and the mean cosine of the turn angle is 0.13. In 

the tracking experiments performed by Berg and Brown, the cells showed a more 

significant bias toward smaller turn angles with a mean turn angle of 68°±36°. The mean 

run speed is 28.7±5.7 (im/s which is significantly higher than that reported by Berg and 

Brown of 14.2±3.4 pm/s. The NR50 is most likely a more motile strain, however direct 

comparison of AW405 and NR50 were not made in this study. Also, the growth media are 

different. The media used by Berg and Brown Berg and Brown contained glycerol as a 

carbon source and also included threonine, leucine, and histidine [12].
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-e— Experimental data
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Figure 4.16: Run speed distribution with Methocel. This figure shows the distribution 
of run speeds for the same experiment shown in Figure 4.14. The solid line is a curve fit 
to the data.
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Figure 4.17: Run time distribution without Methocel. This figure shows the 
distribution of run times from a tracking experiment in which no Methocel was added to the 
motility buffer. In this experiment 130 bacteria were tracked. The solid line is the Poisson 
interval distribution whose mean is the same as the experimental mean.
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Shown in Figures 4.17, 4.18, and 4.19 are the run time, turn angle, and run speed 

distributions for the NR50 bacteria tracked while swimming in buffer solution without the 

addition of Methocel. The mean run time for the distribution shown is 0.69+0.78 s which 

is slightly lower than the mean of 0.85 s recorded for the same strain swimming in a 

solution that contained methyl cellulose. The mean turn angle is 80°±36° and the mean 

cosine of the turn angle is 0.15, which shows a slightly greater bias to smaller turn angles 

than those recorded for the cells in methyl cellulose. The turn angle distribution for the 

cells tracked in the buffer solution with methyl cellulose exhibits a sharp peak around 55° 

while the distribution for cells tracked in buffer without Methocel shows a gradual rise to 

the maximum frequency at around 55° and then a gradual decrease.

■e— Experimental data

135.0
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Figure 4.18: Turn angle distribution without Methocel. This figure shows the 
distribution of turn angles for the same experiment shown in Figure 4.17. The solid line is 
a curve fit to the data.

The mean run speed of 24.2±5.0 pm/s is slightly lower than that recorded for the 

cells in Methocel. This is consistent with observations by other researchers that the 

swimming speed of some bacteria increases with the addition of viscosity enhancing agents
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[32], This is due to an increase in the efficiency of the flagellar propulsion at higher 

viscosities [13]. The decrease in mean run time and mean turn angle could be explained by 

slightly increased cell wobble in the absence of Methocel. This would lead to more 

spurious tumbles being scored by the data analysis algorithm which would decrease the 

mean run time. Tumbles generated by the analysis as a result of cell wobble would be 

recorded as having small turn angles which would lead to a corresponding decrease in the 

mean turn angle.

-©— Experimental data

Run speed (pm/s)

Figure 4.19: Run speed distribution without Methocel. Shown is the distribution of 
run speeds for the same experiment shown in Figure 4.17. The solid line is a curve fit to 
the data.

4.4.2 Near surface tracking experiments

In the next series of experiments, the chamber and windows were used that allowed 

the surface position to be determined by focusing on the dot array on the inside surface of 

the upper chamber window. The chamber and windows used are shown in Figures 4.8 

and 4.9. After the position of the surface was determined the chamber position was
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adjusted with the joystick so that the microscope was focused on the region of the fluid 

from 10 to 40 (im beneath the glass surface. The chamber was maneuvered within this 

region in order to track bacteria moving close to the glass surface. Bacteria at distances 

greater than 20 fim from the surface were observed to exhibit behavior similar to that found 

in the bulk fluid. However, bacteria moving very close to the surface exhibited a variety of 

behaviors.

Shown in Figure 4.20 is an example of a trace for the wild type bacteria from a cell 

moving near the glass surface. In this Figure, the red plane surrounded by the white border 

is the position of the interior surface of the top window as determined by the calibration of 

the surface position described above. The single white line is the surface normal. As in the 

two previous diagrams of traces from cells far from the surface, the yellow spheres indicate 

points where the analysis indicated the bacterium was in the running phase while the purple 

spheres represent points where the analysis determined the bacterium was executing a 

tumble. For this and all following cases, the buffer solution contained 0.18% (w/v) 

Methocel to increase cell swimming speed and to reduce cell wobble.

In Figure 4.20, tracking begins with the cell in a tumble near the surface at the left 

edge of the figure. After two short runs away from the surface, it begins to move toward 

the surface. While close to the surface, it executes a tumble and continues to move along 

the surface. Executing another tumble, it moves away from the surface, tumbles again, 

returns to the surface and moves along it continuing its characteristic run-tumble swimming 

behavior adjacent to the surface before tumbling and moving away again. Finally, it 

returns to the surface as the trace ends.

Figures 4.21 and 4.22 plot the surface-to-cell distance, swimming speed and 

orientation as a function of time. The solid circles along the distance line are points where a 

tumble occurred. The orientation of the cell is the angle between the cell's direction vector 

and the surface normal as shown previously in Figure 4.3. The bacterium moves 

approximately parallel to the surface between 2 and 4 s, 6 and 10 s and from 13 s to the end



of the trace as indicated by the nearly constant surface-to-cell distance of 5 |im and the 

orientation angle of approximately 90° shown in Figure 4.22.

90

Figure 4.20: Wild type bacterial trace 1. In this figure is shown the trace of a wild type 
bacterium that was tracked near the surface of the upper window of the tracking chamber. 
The red plane with a white border represents the position of the glass surface as determined 
by the position of the array of calibration dots as discussed in the text. The normal to the 
surface is shown as a white line. Yellow spheres represent sample points that are part of a 
run, while purple points represent points where the analysis algorithm indicated a tumble 
occurred.
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Figure 4.21: Distance and speed for wild type bacterium 1. The swimming speed and 
the surface-to-cell distance as a function of time are plotted for the bacterium shown in 
Figure 4.20. The solid circles along the distance line indicate points where the bacterium 
tumbled.

Time (s)

Figure 4.22: Distance and orientation for wild type bacterium 1. The orientation and 
surface-to-cell distance are plotted as a function of time for the bacterium shown in 
Figure 4.20. The solid circles along the distance line indicate points where the bacterium 
tumbled.



92

The periods of surface motion end with tumbles for this trace, although the 

initiation of a tumble does not necessarily terminate surface motion. This is illustrated by 

the solid dots at 2.5 s, 7.5 s, and 8.5 s in Figure 4.22. The orientation angle drops 

significantly near the tumbles at 2.5 and 8.5 s indicating that the bacterium was pointed 

away from the surface, but the cell continues to swim along the surface after tumbling. 

Also note that in Figure 4.21, tumbles are associated with a sudden decrease in the 

swimming speed.

Apparent distance

time (min)

Figure 4.23: Time variation in the apparent distance from the surface to a point known 
to be on the surface. The initial error of about 0.3 (im at the start of the trial is due to the 
error in obtaining the position of the surface by focusing on the array of dots as discussed 
in the text.

An interesting point to consider is the distance between the bacterium and the glass 

surface when the bacterium is moving parallel and close to the surface in Figure 4.22. The 

present configuration of the tracking microscope and the method used to locate the surface 

position does not allow the direct determination of the distance from a cell to the surface 

with adequate accuracy. There is some slight error incurred during the calibration of the
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glass surface position. This is typically on the order of 1-2 pm. However, the accuracy of 

the calculated surface-to-cell distance tends to drift with time. A measure of the expected 

error was obtained by tracking a stationary particle adhered to the glass surface and 

monitoring its apparent movement as a function of time. Figure 4.23 shows an example of 

this type of experiment.

In this trial, a micron-sized particle was found adhered to the glass surface and 

tracking was begun. After every thirty seconds of tracking, the automatic stage control 

circuit was opened so that the stage could be manipulated manually. The joystick was 

maneuvered through its full range of motion in the x, y and z directions. This was done in 

order to simulate the motion of the stage during an actual tracking experiment. After 

manipulating the joystick, the original stationary particle was again tracked while its 

apparent position was monitored. The apparent surface-to-cell distance of the stationary 

particle is seen to drift away from its location at the beginning of the experiment until after 

approximately 10 min of tracking time (which is similar to the tracking time of a typical 

experiment), the error in the particle's distance is approximately 5 |im. This indicates that 

the error in the measurement of the position of the surface slowly increases with time but is 

relatively constant for times on the order of a few seconds.

During cell tracking experiments, it was observed that runs parallel to the surface 

such as those in Figure 4.20 occurred when the calibration dots were in clear focus. It was 

observed by focusing on the dots immediately after calibration and recording the indicated 

distance to the surface that the actual surface-to-cell distances were 0±2 (im (or less than 2 

pm from the surface) when the calibration dots were in clear focus as opposed to the value 

of 4-5 pm indicated by Figure 4.21.

Another interesting feature of the trace of the bacterium shown in Figure 4.20 is its 

path when moving close to and parallel to the surface. The cell path appears to be slightly 

curved during these runs. The curvature of these paths is clockwise. A clearer example of



this circling behavior for runs adjacent to the surface can be seen in the trace of another 

bacterium shown in Figure 4.24.
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Figure 4.24: Wild type bacterial trace 2. Shown is the trace of a wild type bacterium 
moving near the surface. The circular portions of the cell's path occurred when the cell 
was closest to the glass surface.

Tracking began at the left edge of the figure. The trace has been rotated so that the surface 

normal is nearly perpendicular to the plane of the page. Comparison of the three- 

dimensional cell trace and the distance of the bacterium as a function of time in Figure 4.25



shows that periods in which the cell moves at a constant small distance from the glass 

surface correlate with periods in which the cell exhibits a circular swimming pattern.
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Figure 4.25: Distance and speed for wild type bacterium 2. The surface-to-cell distance 
and swimming speed are plotted for the bacterium shown in Figure 4.24.

Similar to the previous trace, periods of circular motion near the surface end with a tumble.

Figure 4.26 shows an example of a wild type cell swimming in a circular pattern 

when moving close to the surface while executing one long, continuous run. At the end of 

this run, the bacterium turns away from the surface and swims off into the bulk. 

Figures 4.27 and 4.28 show the variation of the cell swimming speed and orientation 

angle while swimming. Since this cell did not execute a tumble, its swimming speed 

remained relatively constant compared to the two previous bacteria, varying between 17 

(im/s and 31 |im/s. The direction of the circling is always the same for each of the bacterial 

traces shown; that is, the bacteria always make clockwise circles on the glass surface. 

Other researchers have also documented bacterial circling when cells swim very close to a 

solid surface [14] and have observed that the rotational direction of the circles is also



clockwise. Examples of runs adjacent to the surface were observed in which there was not 

significant curvature in the cell path, however this behavior was not as common as the 

circling pattern. More examples of wild type cell traces can be found in Appendix F.
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Figure 4.26: Wild type bacterial trace 3. Shown is a cell trace from a wild type cell 
tracked near the glass surface.
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Figure 4.27: Distance and speed for wild type bacterium 3. Note that the data analysis 
algorithm identified this trail as a single continuous run.
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Figure 4.28: Distance and orientation for wild type bacterium 3.
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4.4.3 Effect of the solid surface on the swimming speed

The individual cell traces shown previously were taken from several tracking 

experiments performed to collect data for wild type cells moving near a solid surface in a 

buffer solution containing 0.18% (w/v) Methocel. A total of 90 cells were tracked in these 

experiments. The tracking data were analyzed to determine if a dependence of the 

swimming speed on the surface-to-cell distance and cell orientation could be observed. If a 

swimming bacterium can be approximated as a sphere with a single flagellum rotating at a 

constant speed as in the theoretical work of [59], or as a sphere moving against a constant 

force as in Equation 4.11, then the work of Ramia et al. and Brenner suggest that 

hydrodynamic interactions would result in lower swimming speeds for cells moving 

toward a solid surface and within 10 (im of the surface.

The data were analyzed by dividing the fluid adjacent to the surface into four 

distance regions and four directional regions. The four distance regions were 0-10 [im, 10- 

20 |im, 20-30 (im, and >30 ^m from the surface. The four orientation regions were 

defined relative to the normal to the glass surface and were 0°-45° (away from the surface), 

45°-90°, 90°-135° and 135°-180° (toward the surface). The mean speed during running 

was generated for each bacterium that occupied each of the possible 16 regions of the 

distribution (four possible orientations and four possible cell-to-surface distances). The 

means for each bacterium were used to form the distributions. For example, a bacterium's 

trace was analyzed to determine the number of sample points and the swimming speed at 

each of these sample points for each of the 16 distance-orientation ranges (0-10 |im at 0°- 

45°, 10-20 |im at 0°-45°, etc.). The mean swimming speed for each of the 16 ranges for 

which samples existed were calculated by dividing the sum of the swimming speeds at each 

sample point by the number of samples in the distance-orientation range. The mean 

swimming speed for each bacterium in each region calculated in this way was used to form
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the population distributions so that each bacterium was represented once in each range it 

occupied.

Figure 4.29 shows the dependence of the mean swimming speed on the cell 

orientation for each distance range. The orientations plotted are the midpoints of the four 

regions. For cells moving in the distance range 0-10 pm, the highest swimming speeds 

were recorded for cells moving in the two orientation ranges the most parallel to the solid 

surface, while the lowest mean swimming speed was recorded for cells moving between 

135° and 180° from the surface normal (toward the surface) and within 10 pm of the 

surface.

Figure 4.29: Mean swimming speed as a function of orientation. The four distance 
values plotted in the figure are the midpoints of the regions identified in the legend.

Figure 4.30 shows the same data plotted to show the variation of the swimming 

speed as a function of distance for each of the four orientation ranges. The distances 

plotted are the midpoints of the ranges and the range 30-<» pm is omitted. In this figure, it 

is seen that bacteria swimming with directions in the 135°-180° orientation range
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(swimming toward the surface) shows the greatest variation, with the mean swimming 

speed decreasing as the distance to the surface decreases.

Figure 4.30: Mean swimming speed as a function of orientation. The data shown in 
Figure 4.29 is plotted as a function of distance. Data for distances greater than 30 (tm is 
omitted.

-e— Speed in bulk 
•— Speed near surface

Orientation (deg.)

Figure 4.31: Mean swimming speed in bulk versus orientation. The data in the distance 
range 0-10 pm for the surface tracking experiments is also shown for comparison.
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For comparison, the tracking data that generated the distributions shown in 

Figures 4.14, 4.15, and 4.16 was analyzed to show the variation of the mean swimming 

speed with the orientation angle for cell swimming very far from the surface (approximately 

400 p.m). The results of the analysis are shown in Figure 4.31 along with the data for 0- 

10 pm. As discussed in Section 4.3, the tracking chamber used for experiments in the bulk 

fluid did not have top windows printed with an array of dots for determining the plane of 

the surface. The surface plane for this data was determined by locating and recording the 

position of surface defects on the top window glass so the calibration to the surface in this 

case is only approximate but is included here to show that the mean swimming speed is 

relatively constant with respect to direction for cells moving far from the surface.

The data for the bacteria near the surface were also analyzed by considering the four 

orientation ranges and dividing the distance into two regions: 0-10 pm and >10 pm. The 

rationale for using these distance ranges is based on the dependence of the swimming speed 

on the separation distance in Equation 4.11 and illustrated in Figure 4.2, since the 

decrease in the speed of a sphere moving with constant propulsive force toward a plane 

wall is less than approximately 12% of the value in the bulk for surface-to-cell distances of 

greater than 10 times the radius of the sphere. The 100(1 - cc)% confidence interval on 

(Pj - p2) (the difference in the population means for a given orientation) was calculated by

(4.18)

where (X,) and (X2) are the mean run speeds for the sample at >10 pm and <10 pm 

respectively, 5) and S2 are the associated variances, ^ and n2 are the number of samples, 

and tal2 is the value of the Student t with a = 0.5. Shown in Figure 4.32 are the 95% 

confidence intervals for this analysis. In this Figure, }ix is the population mean for the 

distance range 10-°° pm and p2 is the population mean for the 0-10 pm distance range.
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Figure 4.32: 95% confidence intervals on the difference in mean swimming speeds. 
The difference in the values of the mean swimming speeds are plotted with brackets to 
indicate the 95% confidence interval on the population parameter, /i, -/i2.

This figure shows that one can assert with 95% confidence that for bacteria moving toward 

the solid surface at an orientation angle greater than 135° relative to the surface normal, the 

mean swimming speed for bacteria at less than 10 pm from the solid surface is significantly 

less than the mean swimming speed at greater than 10 pm from the surface. This assertion 

cannot be made for any of the other orientations since their confidence intervals bracket 

(/i1-M2) = 0.

4.4.4 Comparison of cell traces to solutions of theory for 

spheres: Wild type cells

As discussed in Section 4.2, Brenner [19] considered the hydrodynamic 

interactions between a solid plane surface and a spherical particle as the particle moved 

perpendicularly toward the surface. Ramia [59] considered the hydrodynamic interactions



103

between a spherical body with a flagellum and a plane surface for cells with different 

orientation angles to the surface normal. These two theoretical solutions suggest another 

manner in which the data can be analyzed. Individual cell traces could be isolated in which 

the cells swam nearly perpendicular to the solid surface and their speed could be analyzed 

as a function of the separation distance.

Figure 4.33: Wild type bacterial trace 4. This bacterium executes a single tumble, 
shown as a purple sphere at the lower center of the figure.
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cell distance for the reasons previously discussed. In order to compare to the theoretical 

solutions, the experimentally measured speeds were normalized by dividing by the speed of 

the bacterium at the separation distance (h-b)/b closest to 10.

1—'—r

• Experimental data
------BEM (180°)
....... BEM (135°)
-----Brenner (180°)

Dimensionless distance

Figure 4.35: Speed versus separation distance for wild type bacterium 4, first run. The 
experimental data (•) is plotted with the BEM solutions of Ramia et al. at 180° and 135° 
and the solution of Equation 4.11. The dimensionless distance is (h-b)/ b where b is 
the radius of the cell body and h is the distance from the center of the cell to the surface. 
The dimensionless speed is the instantaneous speed divided by the speed in an unbounded 
fluid, U„. For the experimental data, the velocity closest to 10 pm was used as [/_. The 
dimensionless distance for the experimental data was calculated assuming a representative 
cell radius of 1 pm.

Due to the variability in the bacterial swimming speed (see Figure 4.37), this 

normalization scheme resulted in some experimentally-determined dimensionless 

swimming speeds shown in Figures 4.35 and 4.36 that are greater than one. For the two 

cases shown, the BEM solution provides a better representation of the experimental data 

than the solution of Equation 4.11.

Figure 4.38 shows the trace of another wild-type cell that executed a run at a large 

orientation angle at a distance less than 10 pm from the surface. Figures 4.39 and 4.40
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show the variation of the surface-to-cell distance, the speed and the orientation of the cell as 

a function of time.

• Experimental data
------BEM (180°)
....... BEM (135°)
-----Brenner (180°)

0 2 4 6 8 10

Dimensionless distance

Figure 4.36: Speed versus separation distance for wild type bacterium 4, second run. 
The experimental data (•) is plotted with the BEM solutions of Ramia et al. and the 
solution of Equation 4.11.
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Figure 4.37: Distance and speed for wild type bacterium 4. The single tumble is 
indicated by the solid dot at approximately 4 s.
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Figure 4.38: Wild type bacterial trace 5. Shown is the trace of a wild type bacterium 
moving near the surface. The circular portions of the cell's path occurred when the cell 
was closest to the glass surface.

Figure 4.41 compares the speed of the cell as it approaches the solid surface an average 

orientation angle of 135° to the BEM solution of Ramia et al. As in the previous case, the 

surface-to-cell distance has been adjusted for error in the measurement by subtracting the 

closest approach distance. The experimental data agreeing most closely with the BEM 

solution for a cell orientation of 135°. In Figure 4.40, the orientation of the cell as it swam 

toward the surface (near 2 s) was approximately 135°.
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Figure 4.39: Distance and speed for wild type bacterium 5.
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Figure 4.40: Distance and orientation for wild type bacterium 5.

Speed (pm
/s) 

O
rientation (deg)



109

• Experimental data 
------BEM (180°)

Brenner (180°)

Dimensionless distance

Figure 4.41: Speed versus separation distance for wild type bacterium 5. The 
experimental data is plotted for the region in Figure 4.39 just prior to 2 s.

4.4.5 Comparison of experimental data to solutions of theories 

for spheres: Smooth swimming cells

One complicating factor in these comparisons is the tumbling behavior of the 

bacteria. The initial run toward the surface in the trace shown in Figure 4.33 terminates in 

a tumble near the surface. Since bacterial swimming speeds slow as the bacterium enters a 

tumble, it cannot be determined if the reduction in swimming speed as the separation 

distance decreases is a result of hydrodynamic interactions between the cell and the surface 

or if it is because the cell is about to execute a tumble. It is difficult to determine how the 

cell becomes aligned with the surface: by striking the surface or by turning until its path is 

aligned with the surface. If the cell strikes the surface and begins swimming parallel to it, 

then the analysis would record the action as a tumble. For the bacterial trace shown in 

Figure 4.33 the cell appears to undergo a tumble the first time it reaches the surface, as 

seen in Figure 4.37 near 4 s.
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Figures 4.42: Smooth swimming bacterial trace 1, view 1. The smooth swimming 
bacteria have a deletion in the gene responsible for the tumbling behavior in E. coli. As 
expected, the data analysis does not predict tumbles in the traces of these bacteria.
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Figure 4.43: Smooth swimming bacterial trace 1, view 2. The bacterium whose trace is 
shown here is the same as that shown in Figure 4.42. The drift in the distance 
measurement causes error in the distance measurement which makes the bacteria in this 
trace appear to be a significant distance above the surface. Since it was observed that the 
calibration dots were in clear focus while bacteria were circling on the surface, the actual 
surface-to-cell distance for cells moving along the surface was less than 2 (im as discussed
in the text.
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Figure 4.44: Smooth swimming bacterial trace 1, view 3. The same trace as in 
Figures 4.42 and 4.43 is shown, viewed from the along the normal. The nearly perfect 
circles that bacteria often make when swimming along a solid surface can be seen plainly 
here.
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However, the second time the cell approaches the surface (near 22 s), the cell does not 

tumble when it reaches the surface. Another illustration of this behavior can be seen in 

Figure 4.39 near 2 s for the cell shown in Figure 4.38.

For these reasons, experiments were performed using the smooth swimming 

mutant bacteria HCB437. For these experiments, the region approximately 100 |im above 

the surface was scanned with the tracking microscope to attempt to track cells that were 

swimming toward the glass surface. Since the cells are long and cylindrical, cells moving 

toward the surface appear foreshortened. Figures 4.42, 4.43, and 4.44 show three 

different views of the trace of a smooth swimming bacterium. Figure 4.43 shows the trace 

on edge.
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Figure 4.45: Distance and speed for smooth swimming bacterium 1. The line 
indicating the distance to the surface oscillates between 5 s and 35 s, when the bacterium 
was observed to move along the surface in circles. The oscillations in the surface distance 
are the result of a nonuniform surface calibration. As the cell circles in this figure, its 
surface-to-cell distance appears to oscillate between approximately 4 and 5 pm.
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The trace appears to be a significant distance above the surface due to the error in 

the surface-to-cell distance caused by the drift in the measurement as discussed previously. 

For cells circling in this manner, it was always observed that the array of calibration dots 

on the glass surface were in clear focus, indicating that the actual cell to surface distance 

was less than 2 (im. Figure 4.44 shows the trace from above. This illustrates the nearly 

perfect 30-50 (im diameter circles that the cell forms as it moves on the surface. The 

surface-to-cell distance, speed, and orientation of the bacterium are shown as a function of 

time in Figures 4.45 and 4.46.
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Figure 4.46: Distance and orientation for smooth swimming bacterium 1. The 
bacterium begins to swim toward the surface at approximately 135°.

Notice that in Figure 4.45, the swimming speed is more constant than for the wild type 

(non-mutant) cells, although there is still a significant amount of variation (from 16 pm/s to 

25 pm/s). The speed is plotted as a function of the separation distance in Figure 4.47 for 

the initial surface-oriented portion of the run. The experimentally-determined bacterial 

swimming speed begins to drop more quickly and does not reach as low a value as the 

BEM solution.
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Figure 4.47: Speed versus distance for smooth swimming bacterium 1.
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Figure 4.48: Close-up of orientation for smooth swimming bacterium 1. Here, data for 
each sample point is shown as a circle (on the distance curve) or as a square (on the 
orientation curve).

The experimental swimming speed in the figure is only shown while it decreased. 

For closer separations, the swimming speed begins to increase back to its value away from
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the surface. The reason for this can be seen by examining Figures 4.42 and 4.43 and also 

in Figure 4.48. As the cell approaches the solid surface, it begins to turn away from the 

surface as evidenced by the decrease in its orientation angle between 2.5 s and 3.0 s in 

Figure 4.48. The cell turns gradually until it is parallel to the solid surface and as it turns, 

the hydrodynamic force due to the interaction between the cell and the surface decreases 

and the swimming speed increases. The experimentally determined velocity also begins to 

decrease further from the solid surface than the BEM solution predicts. A possible cause 

for this is the length of the smooth swimming cells of approximately 4 (im. The exact 

position on the cell body that the microscope is tracking is not known and probably shifts 

along the length of the cell. If the microscope is tracking at the back end of the cell as the 

forward end nears the surface, then the cell will appear to decrease its swimming speed 

while the point tracked is up to 4 (im further away from the surface than the end of the cell 

closest to the solid surface.

Figure 4.49 is the trace of another smooth swimming cell for which tracking began 

as the cell moved toward the surface. As in the previous case, the cell begins swimming in 

circles adjacent to the glass surface. The surface-to-cell distance and the orientation angle 

as a function of time for this cell are shown in Figure 4.50. Figure 4.51 shows the 

velocity as a function of the separation distance as the cell approaches the surface. The 

agreement between the experimental data and the BEM method is very good.

Figure 4.52 shows the cell trace for a bacterium that approaches the surface nearly 

perpendicularly, turns until parallel to the surface and then executes a straight run across the 

surface. Although curved runs are the most frequently observed, some bacteria move in 

nearly straight paths across the glass surface. The speed and surface-to-cell distance is 

plotted as a function of time in Figure 4.53. Figure 4.52 shows the cell trace for a 

bacterium that approaches the surface nearly perpendicularly, turns until parallel to the 

surface and then executes a straight run across the surface. Although curved runs are the 

most frequently observed, some bacteria move in nearly straight paths across the glass
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surface. The speed and surface-to-cell distance is plotted as a function of time in 

Figure 4.53.

Figure 4.49: Smooth swimming bacterial trace 2. Tracking began for the bacterium 
whose trace is shown here at approximately 35 pm from the surface. The bacterium 
approached the surface and then began swimming in circles on the surface.
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Figure 4.50: Speed versus orientation for smooth swimming bacterium 2.
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50 microns

Figure 4.52: Smooth swimming bacterial trace 3. The bacterium whose trace is shown 
here, approached the surface and began swimming along it, without showing significant 
curvature in its path. Essentially straight bacterial paths across the surface were observed, 
although not as frequently as circular paths.
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Figure 4.53: Distance and speed for smooth swimming bacterium 3.

The mean swimming speed for the data shown in Figure 4.53 is slightly higher while the 

bacterium is swimming adjacent to the surface (35.4 pm/s) than in the bulk (33.9 pm/s). 

For most of the bacterial traces that had significant runs both on the surface and in the bulk 

fluid, it was observed that the mean run speed near the surface was either essentially the 

same as the bulk value or slightly higher that the bulk value.

Figure 4.54 compares the BEM solution to the experimental data for this 

bacterium. As in Figure 4.47, the speed decreases more quickly in the experimental data 

than in the BEM solution, likely a result of the variation of the exact position of tracking 

along the cell body as discussed previously. Similar to the bacteria shown in Figure 4.43, 

the cell begins to turn away from the surface as it gets near and then runs parallel to the 

surface.

Four more traces from tracking experiments performed on smooth swimming 

bacteria are found in Appendix F. They exhibit the same features as those shown here. 

Perpendicular runs near the surface show a decrease in the cell swimming speed as the cell
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nears the surface. Cells turn out parallel to the surface as they approach it. They frequently 

move in a circular path when swimming adjacent to a solid surface, but do not always do 

so.

• Experimental data
------BEM (180°)
....... BEM (135°)
-----Brenner (180°)

Dimensionless distance

Figure 4.54: Speed versus distance for smooth swimming bacterium 3.

4.5 Discussion

Both the statistical data collected by tracking 100 individual bacteria moving near a 

solid surface and the analysis of the swimming speed of individual bacteria approaching a 

solid surface indicate that for distances less than 10 ^tm and orientation angles between 

135° and 180°, the swimming speed is significantly less than at distances greater than 

10 p.m or for orientation angles less than 135°. The experimental data for the change in 

swimming speed as a function of the separation distance agrees well with the solutions of 

Ramia et al. using the BEM method and the solution of Equation 4.11. Comparison of 

bacterial swimming speeds adjacent to the surface to speeds in the bulk for individual cells 

shows that mean swimming speeds adjacent to the surface are equal to or slightly higher
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than swimming speeds in the bulk. This phenomenon has been shown to be a result of an 

increase in flagellar propulsive advantage above increases in the translational and rotational 

drag on the cell body [59], Similar effects have been observed theoretically in the study of 

multiple particles sedimenting close to each other [77] and the study of two organisms 

swimming close to each other [59]. Bodies moving near each other in a viscous medium 

exhibit a translational speed above that observed in isolation.

Ramia et al. give an excellent explanation of the circling behavior of bacteria when 

swimming along a surface based on the hydrodynamics of the rotating flagella. They were 

able to show that when the model bacterium used in their study is started out initially 

parallel to a solid surface, asymmetry in the dependence of the thrust direction of the 

flagellum on the angle of rotation results in a net force parallel to the surface, but 

perpendicular to the body axis of the cell. All of these observations indicate that the change 

in the swimming speed for bacteria moving toward a solid surface at distances of between 

approximately 2 and 10 p.m or for cells moving adjacent to the solid surface can be 

predicted by models that assume the interaction between the surface and bacterium is 

principally hydrodynamic.

However, two characteristics of bacterial motion are not predicted by models that 

consider only hydrodynamic interactions. Firstly, cells approaching the solid surface in 

this study at orientation angles between 135° and 180° do not "crash" into the surface as 

was predicted by the model of Ramia et al., but change their orientation and begin to turn 

parallel to the surface at a distance of 2-4 |im from the surface as seen in Figure 4.48. 

(Subtracting the closest-approach distance of 4 pm from the distances in this figure, it can 

be seen that the distance to the surface when the orientation begins to drop from 135° at 

about 2.5 s is approximately 4 pm). Secondly, cells remain adjacent to the surface for 

relatively long periods of time, frequently executing tumbles and then continuing to move 

along the surface.
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Examination of the interaction potentials calculated from the DLVO theory of colloid 

stability offers an explanation of the tendency of cells to remain adjacent to the surface. 

Shown in Figure 4.55 is the DLVO interaction potential, given by Equation 4.1, between 

the wild type cells and the glass surface in the buffer solution used in the tracking 

experiments. The experimentally determined zeta potentials found in Table 4.1 were used 

in the calculation.

Separation distance (nm)

Figure 4,55: DLVO interaction potential as a function of separation distance. The 
potentials shown are those for van der Waals interaction GA, electrostatic interaction GE, 
and the sum of the two, Gr. for the wild type bacteria and glass in the phosphate buffer 
solution of ionic strength 0.19 M. The interaction potentials are normalized by kBT.

The value of the Hamaker constant was taken as 1 x 10'21 J [61] and the particle radius was 

taken to be 1 |im. The relative permittivity of the medium was taken as 78.3. Figure 4.56 

shows a close-up of the region near the origin. A secondary minimum exists in the 

interaction potential at approximately 4.5 nm from the surface and has a depth of 

approximately 7/tBr. For comparison, using a bacterium mass of 4xl0"13 g and a 

swimming speed of 50 qm/s at 30° C, the kinetic energy of a bacterium due to its 

swimming is only 1.05 x 10'4 kBT. Its kinetic energy as a result of thermal motion is
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1.5 kBT [75]. Reversible bacterial adsorption in the secondary minimum would explain the 

tendency of cells to swim close and parallel to the solid surface. Another feature of the 

potential curve is the substantial energy barrier to the primary minimum, with a height of 

about 45(K'Br at a distance of 1/2 nm. This barrier would prevent adsorption in the

primary minimum and repel cells that get very close to the surface.

Separation distance (nm)

Figure 4.56: Expanded view of the DLVO interaction potential shown in Figure 4.55. 
A secondary minimum 7 kBT deep exists at approximately 4.5 nm from the solid surface.

The question remaining to be answered is how cells are able to turn parallel to the 

surface at distances of between 2 and 4 |im. The model bacteria of Ramia et al. do not turn 

parallel to the surface as they approach it. Also, the insignificance of electrostatic 

interactions between the cell body and the surface at this distance would seem to eliminate 

them as a possible explanation. However, two possible explanations exist based on 

hydrodynamic and electrostatic considerations. First of all, the hydrodynamic model 

solutions were applied to a spherical bacterium while E. coli are rod-shaped cells. There 

may be torque generated on a rod-shaped cell when it approaches the surface that would
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reorient it toward the surface. Another possible explanation lies in the presence of 

extracellular material around the cell body. E. coli are known to be covered with hair-like 

pili that are 0.2 to 2.0 |im in length [53]. The pili may be reaching the region close to the 

surface where electrostatic repulsion is significant well before the cell body. The pili at the 

front of the cell would be repelled by this interaction, forcing the cell to rotate into an 

orientation parallel to the surface while the body of the cell is still some distance from the 

surface.

4.6 Conclusion

Motile bacteria moving within 10 pm of a solid surface show a decrease in their cell 

swimming speed for runs toward the surface. The dependence of the swimming speed on 

the surface-to-cell distance can be predicted by assuming that hydrodynamic interactions 

dominate. However as cells get within approximately 2-4 (im of a solid planar surface, 

they turn until they are aligned with the surface and typically continue to swim along the 

surface. Wild type cells are frequently able to move away from a solid surface by 

executing a tumble, although cells were often observed to tumble and continue to run 

adjacent to the surface as well. Runs adjacent to the surface for cells that do not tumble 

appear to the significantly longer. However, smooth swimming cells are also able to move 

away from the surface, indicating that tumbling may facilitate the movement of a bacterium 

from the surface, but is not necessary.

The theoretical model of Ramia et al. predicts the circular motion of bacteria 

swimming adjacent to a surface, but does not explain why bacteria tend to remain adjacent 

to the surface. The DLVO interaction potential shows a significant secondary minimum 

close to the surface that might explain this tendency. An unanswered question is why cells 

moving toward the surface at orientation angles of between 135° and 180° from the surface 

normal do not appear to collide with the surface, but begin to turn parallel to the surface at



126

distances of 2-4 (im from the surface. Two possible explanations, one with a 

hydrodynamic basis and the other based on the electrostatic repulsion of extracellular 

material, have been put forth but further study is required to answer this question.



127

Chapter 5

Summary and Concluding Remarks

This dissertation involves the comparison and validation of models and solution 

algorithms for the migration of populations of bacteria, and the study of the interactions of 

swimming bacteria with a solid surface. The major results of this work are summarized 

below.

5.1 Comparison and Validation of Models

In Chapter 2, a cellular level simulation was developed which can be applied to the 

problem of the migration of a population of bacteria in a fluid medium in the presence of 

chemical attractants or repellents. This simulation algorithm, termed cellular dynamics 

(CD), was used to probe the validity of a phenomenological macroscopic model for the 

migration of a population of bacteria in a one-dimensional attractant gradient, termed the 

RTBL model. An implicit assumption in the RTBL model is that bacterial motion is 

constrained to one dimension. In Chapter 3, a finite element solution method (FEM) was 

applied to a mathematically rigorous analogue of the RTBL model. The analogue equation 

is a simplification of Alt's general cell balance equation for time evolution of the density of
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bacteria swimming in a fluid medium with an attractant gradient in one dimension. The full 

three-dimensional character of bacterial motion is preserved in the analogue equation. The 

FEM solution method was used to test the accuracy of population transport parameters 

obtained by applying the RTBL model to experimental data. The FEM solution was also 

used to probe the effect of different models for the modulation of the tumbling frequency of 

bacteria on the solution for the cell density profile.

Comparisons of CD solutions to RTBL solutions for the density of populations of 

bacteria responding to gradients of chemical attractants in a stopped-flow diffusion chamber 

show that the RTBL solutions agree (to within the noise level of the simulation) with the 

CD solution for the response of E. coli bacteria to an initial step gradient of an attractant. 

This agreement shows that a mathematical analysis based a perturbation expansion of the 

rigorous governing equation alone (see Section 2.4.2) is not a sufficient indicator of the 

ability of the RTBL model to accurately predict the solution for the density profile of a 

population of bacteria responding to relaxing step gradients of attractants. The CD 

methodology also illustrates the necessity of the use of the proper relationships between the 

experimentally measured swimming speed, v, and the chemotactic sensitivity xT obtained

from experiments and the one-dimensional analogues of these parameters, used in the 

solutions of one-dimensional models for bacterial motion such as RTBL.

In Chapter 3, a simplified form of Alt's general equation was applied to the problem 

of bacterial migration in the presence of a one-dimensional gradient of an attractant. 

Solution of the simplified form of Alt's general cell balance equation by FEM is a more 

efficient method than CD for validating one-dimensional phenomenological models. 

Comparisons to solutions generated with the CD algorithm, which is mathematically 

equivalent to the FEM solution method, show that the FEM solutions are accurate. The 

FEM solutions clearly illustrate the difference between the RTBL solution and the 

simplified form of Alt's equation. The application to experimental data from the stopped- 

flow diffusion chamber of RTBL and the FEM solution method of Alt's equation applied to
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a one-dimensional attractant gradient shows that substantial errors can result if one­

dimensional phenomenological models are used to obtain values from these experiments for 

the chemotactic sensitivity coefficient, Xo ■

The FEM solutions also demonstrate the importance of the correct choice of the 

model for the downgradient swimming behavior of bacteria on the value of Xo obtained

from experiment. Some species of bacteria respond by returning to their zero-gradient 

(basal) tumbling frequency while other species continue to increase their tumbling 

frequency above the basal frequency when swimming in a direction opposing a 

concentration gradient of an attractant. This model must be chosen a priori since the FEM 

solutions show that while nearly identical solutions for the density profile can be generated 

using the "retum-to-basal" and "increased-frequency" models for the downgradient 

behavior, the values of Xo required to obtain each of the solutions can differ by as much as

100%.

The FEM solutions also show that the assumption of a negligible partial derivative 

with respect to time in the total derivative of the number of bound attractant receptors is 

acceptable since solutions generated including and omitting this partial derivative are 

virtually indistinguishable for conditions of relevance to stopped-flow diffusion chamber 

experiments.

5.2 Bacteria-Surface Interactions

In Chapter 4, a tracking microscope was used to study the changes in the 

swimming behavior of bacteria when the cells encounter a solid surface. Analysis of the 

swimming behavior of wild type E. coli bacteria show that the mean swimming speed for 

bacteria moving toward a solid surface at orientation angles of greater than 135° and within 

10 pm of the surface are lower than for cells with orientation angles less than 135° from the 

surface normal or for cells greater than 10 (am from the surface. Experimental 

measurements of the swimming speed of individual cells as a function of surface-to-cell
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distance show that cells begin to decrease their swimming speed when they are 10 pm from 

a solid surface and are moving toward the surface at orientation angles greater than 135°. 

The rate at which their speed decreases is in agreement with the decrease in speed predicted 

by two theoretical solutions for spheres moving in a viscous medium toward a planar 

surface. As the surface-to-cell distance decreases to 2-3 pm, bacteria smoothly change 

their orientation until they are aligned parallel to the solid surface. Cells then frequently 

remain parallel to the surface longer than the mean run time of a wild type cell (0.8-0.9 s). 

In other words, surface trails may include 1-2 tumbles. (See for example Figure 4.24 

where the cell tumbles while on the surface and then continues to move along the surface.). 

Wild type cells that exhibit very long runs tend to move along the surface for longer times 

than cells that tumble more frequently. Cells that tumble with a typical frequency (1.1-1.3 

/s) tend to leave the surface more quickly than cells that exhibit very long runs, and often 

do so after tumbling. Observations of the swimming speed of smooth swimming (mutant) 

cells corroborate the observed decrease in cell swimming speed for cells approaching a 

surface and also showed that tumbling was not necessary for cells initially moving along a 

surface to leave the surface and return to the bulk fluid.

Cells swimming along the surface frequently swim in circles 30-50 pm in diameter. 

Consideration of the rotation of the flagella by Ramia et al. [59] show that circular paths are 

hydrodynamically favored for cells moving along a surface. However, hydrodynamic 

considerations are not sufficient to explain why cells seem to be constrained to move along 

the surface. Calculation of the interaction potential between the surface (glass in this study) 

and the bacteria reveals a secondary energy minimum between 4 and 5 nm from the surface 

and a substantial energy barrier to the primary minimum at less than 1 nm. Bacteria that 

approach very near the surface may become trapped in the secondary energy minimum and 

be constrained to motion only parallel to the surface plane until they are able to overcome 

the barrier and return to the bulk fluid, possibly as a result the tumbling process. 

However, it was observed in this study that tumbling is neither a sufficient nor necessary
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condition for a cell to leave the surface, but tumbling while moving along the surface 

appears to increase the probability for cells to leave the surface.

5.3 Concluding Remarks

The results of these studies reveal the complex nature of bacterial motion both near 

a solid surface and far from surfaces in the bulk fluid. To be able to predict the behavior of 

a population of bacteria moving in the bulk fluid, it is essential to understand how to 

mathematically describe the physical situation. Questions concerning the response of 

bacteria to a chemical gradient must be answered before an attempt at modeling the behavior 

can be undertaken. For example, do bacteria change their tumbling frequency when 

moving down a chemical gradient or do they return to their basal tumbling frequency? This 

work shows that substantial errors can be introduced in the transport coefficients obtained 

from experiments if the correct assumption is not made, although the solution for the 

bacterial density profile may agree well with the experimental data. Models that assume the 

motion of the bacteria is one-dimensional, like the RTBL model, are more easily solved 

than more sophisticated models. Models for bacterial migration that give an accurate 

solutions quickly would be useful in designing processes such as in situ remediation 

schemes. However, before more simple models are used, it is necessary to determine if 

they are appropriate. Are there conditions that make the assumption of essentially one­

dimensional motion valid? Simpler models should be benchmarked with more 

sophisticated models based on the general, three-dimensional cell balance equations under 

all expected actual or experimental conditions.

In the case of bacterial motion near surfaces, we have observed a spectrum of 

bacteria-surface interactions. Some wild type cells approach a solid surface, begin 

swimming along the surface while executing several tumbles and circular runs and then 

leave the surface. Other wild type cells make many circles on the surface in one long run.
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The decrease in swimming speed observed as cells approach a surface at distances less than 

10 |im is appropriately modeled by considering the hydrodynamic interactions between a 

sphere with a flagellum attached, a solid surface, and the surrounding fluid. However, 

understanding the tendency of cells to turn parallel to a surface and then move along the 

surface for significant periods of time is essential to characterizing cell-surface interactions. 

The model of Ramia et al, which accounts for the hydrodynamic interactions between then- 

model bacteria and solid surfaces, does not predict the gradual turning of cells until they are 

parallel to the surface. Although their work predicts that a bacterium with a spherical cell 

body will collide with the surface without the cell orientation changing significantly, a rod­

shaped cell may turn parallel to the surface since the resistance to motion on the end of the 

cell closest to the surface would be greater than that at the end of the cell farthest from the 

surface. For a sphere, this force of resistance would be directed through the center of mass 

of the bacterium and would generate no torque. In a rod-shaped cell, this could cause the 

cell to rotate and align itself along the surface. In addition to this possibility, DLVO 

interactions between the surface and extracellular material (such as pili) could cause the fore 

end of rod-shaped cells to be repelled by the wall before the aft end. Both of these 

explanations could account for the tendency of cells to turn parallel to the surface and not 

collide with it, however more work is necessary to identify the proper mechanism for this 

phenomenon.

As an extension of this work, I would suggest performing tracking experiments in 

solutions with varying ionic strength. If it is true that adsorption in the secondary 

minimum is resulting in cells swimming very near the surface and parallel to it, then 

reducing the ionic strength could result in cells not swimming along the surface. Also, the 

ionic strength of the medium could be increased or perhaps another material could be used 

for the solid surface to reduce or remove the electrostatic barrier to the primary minimum. 

This would make it possible to test the conjecture that electrostatic repulsion of extracellular
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material is possible for the tendency of bacteria not to collide with the solid surface, but to 

turn parallel to the surface.

At this point, it is not known why cells turn parallel to the surface and remain 

parallel to it, sometimes tumbling and continuing along the surface. A sufficient amount of 

tracking data might make it possible to obtain a reasonable stochastic representation of the 

motion of bacteria near the surface. One could obtain run time distributions for surface 

motion and probability distributions for the likelihood of a cell moving along the surface to 

return to the bulk fluid. However, it seems very possible that electrostatic interactions play 

a yet undetermined role in the motion of motile bacteria near solid surfaces. This would 

mean that near surface behavior would be a function of the composition of the media and 

the solid surface, making the prediction of the migration of bacteria in natural systems very 

difficult

If it can be determined by what mechanism the turning and surface swimming 

behavior of bacteria occurs, it would then be possible to incorporate the interaction of the 

bacteria with the surface into a cell balance equation or simulation algorithm to describe the 

motion of bacteria in a porous media or other system including a solid phase. In either 

case, an analytical solution for the dependence of the swimming speed and path of the 

bacteria is not available. The inclusion of surface interactions into mathematical models of 

this type would require the additional solution of a model such as that of Ramia et al. that 

might also include a description of the electrostatic and van der Waals interactions. Solving 

this concurrently with a balance equation would not, at this time, be practical since it would 

require very intensive computer resources and would require an unrealistic amount of time 

to obtain a solution. However, it may be possible to solve a model for the reasonable 

number of discrete orientations and separation distances much as was done for the angle 

change distribution in the FEM solutions shown in this work. Then, if sufficient storage 

resources were available, it would be possible to include the dependence of the run speed
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and cell swimming path on the separation distance in theoretical methods such as the CD 

and FEM solution methods developed in this study.
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Appendix A

Relating Mean Run Time and 
Attractant Gradient

Brown and Berg [11] observed that the mean run time (r) of cells in an attractant

gradient increased exponentially with the rate of change in the number of bound receptors 

over the mean run time measured in the absence of a gradient, (t0). Rivero et al. [62]

expressed this relationship by the equation:

In
(r) DNbv------

Dt
(A.l)

o is a proportionality constant describing the fractional change in mean run time per unit 

time rate of change in cell surface receptors that are bound to attractant molecules and 

DNb / Dt is the material derivative of the number of bound receptors,

DNb
Dt dt

+ vs-VrJV6
dNb da „ ^ dN. 
da dt da

(A.2)

In the RTBL model, it is assumed that da / dt« vs ■ Vra. Under this assumption, we can

write:
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dNj,
dt

~ vs ' Vrfl—-
da

(A.3)

For a single population of homogeneous receptors, Rivero et al. assume the following form 

for the dependence of the change in the number of bound receptors on the attractant 

concentration:

dNh_ NTKd 
da (Kd+af

(A.4)

where Kd is the dissociation constant for the attractant-receptor binding and NT is the total 

number of receptors. Substituting Equations A.3 and A.4 into Equation Al gives:.

In-ffi.-Dv, ^Vs.v,a (A.5)
M fo + a)

Rivero et al. define a chemotactic sensitivity coefficient, > as:

X™ = uvX (A. 6)

where the superscript 3D has been included to indicate explicitly that this is the definition 

for motion in three dimensions. Using the definition of ^D, Equation A.6, one can write

Equation A.5 as:

VL-z?
(To) V

Kd
(Kd + a)

rsVra (A. 8)
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In the one-dimensional RTBL model based on the Segel equations, Rivero et al. 

defined one-dimensional analogues of the above equations leading to:

In ^ ———f—- (A.9)
m(r0) s(Kd + a)2dz

where the positive/negative sign is used for bacteria moving in the positive/negative z 

direction, s is the one-dimensional swimming speed and:

(A. 10)

Attention is now turned to the relationship between p+ defined in the one­

dimensional Segel equations, Equations 2.3 and 2.4, and the corresponding quantities one 

would obtain by considering the more accurate three-dimensional description of bacterial 

motion with symmetry in two (x and y) of the three spatial directions. The latter problem 

was considered at length by Ford and Cummings [28] and the main relevant results are 

simply quoted in this Appendix. Equations (3.18) and (3.19) of Ford and Cummings 

give expressions for n+ and n~, the densities of cells moving in the positive and negative 

z-directions, as:

pn/2 plK poo »oo ^
n (z,f) = Jo j0 j J n(r,s,t)dxdyd<l>smddd 

= f n.(z,d,t)sinddd
JO 4

(A. 11)

Likewise, the density of cells moving in the negative z direction is given by:

n(z,r) = J/2Jo J J n(r,s,t)dxdyd<psmddd

= [ n.(z,0,t)sinddd
Jic/2 *

(A. 12)
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In these equations, n(r,s,t) is the density of cells at point r at time t moving in direction 

s = (sin 0cos 0,sin 0sin <p,cosd) (6 and (p are the usual angles for spherical coordinates). 

The quantity nz(z,6,t) is the density of cells moving with z-coordinate z whose velocity is 

at an angle 9 to the z-axis and is defined by:

(z,0,r) = Jq'LJ. ^n{xXt)dxdyd(p
(A. 13)

By integrating the three-dimensional balance equations over the x and y coordinate 

directions [28] and comparing with the Segel equations, one can derive an expression for 

the terms n+p+ and rf p~ in Equations 2.3 and 2.4. Consider the equation for rf p+:

(A. 14)

xK(9,0')sin 0' dd'sind dO

where K(6,0') is the reduced turn probability distribution which gives the probability that 

a bacterium moving at angle 0 to the z-axis moves at angle 0' after tumbling. Details of 

this can be found in Ford and Cummings [28], A similar expression can be developed for 

n~p~. From these expressions it is evident that p+ and p~ do not reduce to the simple 

one-dimensional expressions. Equations 2.7 and 2.12. Thus, we should regard 

Equation 2.12 as a mathematical approximation in the RTBL model.
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Appendix B

Turn Angle Probability Distribution

Berg and Brown [11] observed the direction change that E. coli bacteria exhibit 

when tumbling. They generated a plot of the number of bacteria turning into each 10° 

interval from 0° to 180°. We used this experimental data to generate a turn angle 

probability distribution by fitting a polynomial to the data and then normalizing the 

distribution. Let the direction in which a bacterium is moving prior to tumbling, s, be 

given by s = (sin 0cos 0,sin 0sin0,cos0) and the direction in which a bacterium is moving 

after tumbling, s', be given by s'= (sinfl'cos^'.sinfl'sin^'.cos#')- Let a be defined 

such that cos(a) = s • s'. The polynomial we used to represent the normalized probability 

distribution for a is

p(a) = 'YJciai(jt- a)"~' (B.l)
i=]

where c, are coefficients chosen by the method of least squares to best fit the data and rcis

the order of the polynomial. The polynomial is written in this form so that 

p(a = 0) = p(a = In) = 0 in agreement with the experimental data. We found that a 

seventh order polynomial of this type generated the best fit. The relationship between 

p(a) and p(cosa) is:
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/ ^ p(«)p(cosa) =1-----
sin a

(B.2)

This is used to generate the distribution function:

pCOS (X

F(cosa) = J p(cosa')d(coscc') (B.3)

When a cell tumbles, we choose cos a from this distribution using standard 

techniques [34], If the angle of rotation of the new direction vector s' around the direction 

vector before tumbling s is 7, then the angle 7 is chosen at random from a uniform 

distribution on [0,2k]. The new direction s' is then found from

s' = Ms (B.4)

where M is the coordinate transformation matrix between (0,0), (a, 7), and (0',0') and 

can be found in Patlack [58].
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Appendix C

Direction Change Distribution

The direction change distribution k(r,s',t\s) found in Equation 3.1 is the 

probability that a bacterium originally moving in the direction s' at time t and at position r 

prior to tumbling moves in the direction s after tumbling where 

s = (sin0cos0,sin0sin0,cos0) and s'= (sin0,cos0^sin0,sin</>,,cos0,) and as shown

in Figure C.l.

Figure C.l: This is an illustration of the relationship between the direction vectors, s 
and s' and the angles 8 and. 8'.
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Macnab and Koshland [46] observed experimentally that k(r,s',f,s) is independent of the 

presence of an attractant, so that fc(r,s',/;s) = fc(s';s). The direction change distribution 

K(6',6) found in the balance equation for one-dimensional attractant gradients. 

Equation 3.1, and defined in Equation A.l, is the probability that a bacterium originally 

moving in a direction with angle d' off the z-axis prior to tumbling moves in a direction 

with the angle 6 off the z-axis after tumbling. The distributions fc(s';s) and K(d',6) are 

related by

(C.l)

The distribution fc(s';s) is calculated from the turn angle distribution p(a) where 

cos(a) = s s'. The distribution p(a) was determined experimentally for E. coli by Berg 

and Brown [11], A seventh order polynomial of the type:

6

p(a) = YJcioci{n-a)1~‘ (C.2)
i=l

was used, where the c, are coefficients chosen by the method of least squares to best fit the 

experimental data for the distribution of turn angles (see also Frymier et al. [31]). The use 

of the seventh-order polynomial is simply for numerical convenience and does not imply 

any physical or mechanistic model for the reduced direction change distribution. Since the 

reduced direction change distribution, K(0',6), is independent of the attractant 

concentration and therefore of time, a substantial time savings can be realized if K(d',6) is 

tabulated at the control points for two point Gaussian integration on each element so the 

values can be called on when needed without recalculation.
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Appendix D

Genotype of HCB437

This information was provided by Linda Turner of the Rowland Institute, Cambridge, MA. 

Following are the mutations which affect gene function in the smooth swimming bacteria, 

HCB437:

thr(AM)l -requires threonine.

leuB6 -requires leucine.

thil -require thiamine.

his4 -requires histidine.

lacYl -cannot metabolize lactose, arabinose, xylose or maltose as carbon

sources.

aral4 n ii ii ii ii

xyl5 it ii ii ii ii

mdl n n n ti it

metF(AM)159 -requires methionine.

tsx78=T6 -phage T6 and Tl receptors, this strain lacks or has nonfunctional

receptors for this phage.

tonA31=Tl ii ii n ii H

rpsL136 Sm(r) -streptomycin resistant.



DE2209(cheA-cheZ) -this is a deletion for the chemotaxis genes from cheA to cheZ.

DE7021(tsr) 

DElOO(trg) 

zdb::Tn5 Kn(R)

-this is a deletion for the tsr gene (receptor for serine), 

-transducer for ribose and galactose.

-kanamycin resistant.

The original reference for this strain is:

Wolf et al, 1987, Journal of Bacteriology, Vol. 169, 1878-1885.
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Appendix £

Growth Media and Buffer Solution 
Compositions

Minimal growth medium composition (per liter distilled water):

K2HPO4 11.2 g
KH2PO4 4.8 g
(NH4)2S04 2.0 g
MgSO4-7H20 0.25 g
Fe2(S04)-5H20) 0.0006 g

Thiamine solution (per ml distilled water):

0. 5.mg thiamine

Galactose solution (per ml distilled water):

100.0 mg galactose

Minimal medium preparation:

1. Add 50 ml of stock solution to 250 ml shaker flask.

2. Autoclave to sterilize. Cool to room temperature.

3. Add 0.5 ml each of thiamine and galactose solutions, filtered through a 0.2 pm filter.

4. Add 100 pi of frozen E. coli stock.

5. Incubate at 30° C until ABS(A590) = 0.8 -1.0 (approximately 11 hr)



Phosphate buffer solution composition (per liter distilled water):

K2HPO4 11.2 g
KH2PO4 4.8 g
EDTA 0.029 g

Tryptone broth composition (per liter distilled water):

10 g Difco Bacto-Tryptone 
5 g NaCl
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Appendix F

Additional Wild Type and Smooth 
Swimming Bacterial Traces
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Figure F.l: Wild type bacterial trace 6.
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Figure F.2: Wild type bacterial trace 7
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Figure F.3: Wild type bacterial trace 8.



1
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Figure F.4: Smooth swimming bacterial trace 4.
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Figure F.5: Smooth swimming bacterial trace 5.
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Figure F.6: Smooth swimming bacterial trace 6.
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Figure F.7: Smooth swimming bacterial trace 7.


