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INTRODUCTION 

Observations t h a t  oxygen increases the response o f  c e l l s  ex- 

posed t o  i o n i z i n g  r a d i a t i o n  can be t raced back t o  the beginning 

o f  t h i s  century. The e a r l i e s t  o f  these seems t o  have been rna,de 

by Schwartz (1909), a l though he d i d  not  i n t e r p r e t  h i s  r e s u l t s  i n  

terms o f  d i f f e r e n t  oxygen concentrat ions.  I nves t iga t i ons  by Hol- 

thusen (1921) w i t h  Ascar is  eggs, by Petry (1921) w i t h  seeds, by 

Crabtree and Cramer (1933) w i t h  a t ransplantable.  murine carcinoma, 

and' by Mottram (1935) w i t h  r a t s  a r e  among those having specia l  i m -  

portance. However, the  s tud ies  begun i n  the 1950's by L. H. Gray 

and h i s  col leagues c l e a r l y  represent a mi lestone i n  r a d i a t i o n  b i -  

o logy.  Gray's 1961 review i s  an exce l l en t  survey o f  in format ion 

t o  t h a t  t ime. 

When Gray surveyed the l i t e r a t u r e ,  c lea r  evidence a l ready 

showed t h a t  i n  very d r y  b i o l o g i c a l  systems, f o r  example b a c t e r i -  

a l  spores (powers e t  a l .  1960), more than one k ind  o f  oxygen- 

dependent s e n s i t i z i n g  process ex is ted .  Recent work w i t h  c e l l s  

i r i a d i a t e d  i n  suspension ( ~ l p e r  1963, T a l l e n t i r e  e t  a l .  1972, She- 

noy e t  a l .  1975, Ewing and Powers 1976) has confirmed t h i s  20- 

year-o ld observat ion: oxygen operates i n  more than one way i n  

a f f e c t i n g  the r a d i a t i o n  s e n s i t i v i t y  o f  the c e l l .  

Oxygen sens i t i zes  a l l  c e l l s  t o  i r r a d i a t i o n .  I t s  e f f e c t s  

have been studied w i t h  many experimental techniques and w i t h  many 



d i f f e r e n t  organisms. Perhaps i n  p a r t  because o f  t h i s  d i v e r s i t y ,  

d e f i n i t i v e  s tud ies  do not  show whether oxygen s e n s i t i z e s  a l l  o r -  

ganisms through i d e n t i c a l  chemical  pathway.^. Some experimental 

i n f o r m a t i o n  supports. t h i s  assumption; o t h e r  data c o n t r a d i c t  i t .  

The survey below w i l l  examine the chemical mechanisms involved i n  

oxygen-dependent sens i t i  za t ions o f  c e l l  s i r r a d  i a t e d  i n  suspension. 

SENSITIZATION BY DIFFERENT O2 CONCENTRATIONS 

The e f f e c t s  o f  vary ing  O2 concentrat ions have been s tud ied  

i n  several  c e l l u l a r  systems by a number o f  authors. Most o f  t he  

e a r l y  s tud ies  recognized a dependence o f  r a d i a t i o n  s e n s i t i v i t y  

upon O2 concent ra t ion  t h a t  increases t o  a p la teau very. sharp ly  

w i t h  no m ic ros t ruc tu re  i n  the response. The s tud ies  on B a c i l l u s  

megaterium spores ( ~ a l  l e n t i  r e  e t  a1 . 1972,' Ewing and powers 1976) 

demonstrated the  important f a c t  t h a t  there  i s  an in te rmed ia te  

reg ion  o f  s e n s i t i v i t y  i n  which there  i s  a p la teau a t  low [02] a t  

approximate ly  h a l f  the s e n s i t i v i t y  o f  the p la teau seen a t  h igh  

[02].  These observat ions a r e  commented on extensive1 y below. 

Here we note  t h a t  whi l e  prev ious .authors have no t  demonstrated 
. . 

t h i s  in te rmed ia te  e f f e c t  i n  t h e i r  s tudies,  t h e i r  r e s u l t s  a r e  i n -  

deed cons i s ten t  w i t h  those two sets o f  experiments. I n  F igure  1 

we have normal ized the  r a d i a t i o n  s e n s i t i v i t y  w i t h i n  several sys- 

tems and have p l o t t e d t h e  degree t o  which d i f f e r e n t  [02] s e n s i t i z e  
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w i t h i n  the  maximal 0 e f f e c t .  Note t h a t  the two spore stud.ies a re  
2 

cen t ra l  w i t h  the  Ewing and Powers (1976) study demonstrating a 

smooth r e l a t i o n s h i p  between [02] and r a d i a t i o n  s e n s i t i v i t y .  As 

pointed o u t  p rev ious ly ,  the Manchester spore studies .are consis- 

t e n t  w i t h ' t h e  Aust in  s tudies,  except t h a t  the p lateau occurs a t  

I a d i f f e r e n t  l e v e l ,  t h i s  being explained, perhaps, by the  d. i . f fer-  

ence between 6 0 ~ o  gamma rays and 50 kVp X-rays. The remarkable 

aspect o f  F igure 1 i s  t h a t  two d i f f e r e n t  vegeta t ive  bac te r ia  and 

' 

two.se ts  o f  experiments on V79 mammalian c e l l s  a re  cons is ten t  w i t h  

! the response demonstrated by the b a c t e r i a l  spores. So, w h i l e  

I there may be d i f f e rences  i n  absolute s e n s i t i v i t y  among the v a r i e t y  
1 

o f  systems, the O2 e f f e c t ,  when looked a t  as i n  F igure 1 ,  i s  t r u l y  
I 

I . the same i n  the several systems, perhaps i n d i c a t i n g  a u n i t y  i n  the 

I mechanisms involved i n  the 0 e f fec t ,  whether they be observed i n  
2 

mammalian c e l l s  o r  b a c t e r i a l  spores. Indeed, i n  the  most recent 

observat ions on hamster c e l l s  ( ~ i l  l a r  e t  a1 . 1979), ind ica ted as 

open squares on F igure  1 , the presence o f  a p lateau a t  low [02] i s  

acknowledged. The d i f f e r e n c e  between the  spore and the mammalian 

c e l l s  i n  t h i s  instance i s  t h a t  the p lateau appears a t  concentra- 

t i o n s  o f  O2 a f a c t o r  o f  10 below those a t  which the  p lateau ap- 

pears i n  the spore system. 

The r e l a t i v e  amount o f  s e n s i t i z a t i o n  seen a t  a p a r t i c u l a r  

0 concent ra t ion  i s  very near ly  independent o f  c e l l  type o r  the  
2 

suspending medium a t  the  t ime o f  i r rad ia t i on ' .  This ind ica tes  t o  
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us t h a t  the  i n tens i ve  i nves t iga t i ons  i n  b a c t e r i a l  systems, whether 

spores o r .  vegeta t ive  c e l l  s, a re  proper mode1.s f o r  const ruc t  ion  o f  

. . experiments i n  mammalian c e l l s  t o  search f o r  s i m i l a r  e f f e c t s .  

SEPARATION OF 02-DEPENDENT DAMAGE INTO.COMPONENTS 

Bac te r ia l  Spore Studies 

The f i r s t  recogn i t i on  o f  oxygen's having more than one k ind  

o f  a c t i o n  was made i n  a  d r i e d  system. Using d r i e d  b a c t e r i a l  

spores, Powers e t  a1 . (1 960) showed t h a t  oxygen's s e n s i t i z a t i o n  

could be exper imental ly  resolved i n t o  a t  l e a s t  two major classes 

of.da!mage. I n  t h e i r  experiments, the exchange'of gases took sev- 

e r a l  minutes, and, based on t h i s  reference time-scale, they estab- 

l i shed  these d e f i n i t i o n s :  (a) -- Class I damage i s  independent o f  

oxygen; i t s  magnitude i s  the  same whether o r  no t  O2 i s  present;  

(b) -- Class I I  damage i s  oxygen-dependent and shor t - l i ved ;  i t  can be 

observed on1 y  when .oxygeli i s  present dur ing  i r r a d i a t i o n ;  and (c) 

Class I l l  damage, the  "pos t - i r rad ia t i on "  02-e f fec t ,  i s  produced -- 
during e i t h e r  o x i c  o r  anoxic exposures; however, the development 

o f  t h i s  k ind  o f  damage i s  very slow i n  t h i s  d ry  b i o l o g i c a l  system. 

There i s  good evidence t h a t  the  k ind  o f  damage designated as Class 

I l l  involves a  reac t i on  between O2 and a  radiat ion- induced c e l l u -  - 
l a r  rad ica 1 (Powers 1966) . 

Tal l e n t  i r e  and Powers ( 1  963) l a t e r  showed t h a t  i n t r a c e l l  u l a r  

water p ro tec ts  aga ins t  both k inds o f  oxygen-dependent damage. 
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Spores i r r a d i a t e d  i n  suspension o r  under saturated water vapor con- 

d i t i o n s  show no Class I l l  and on ly  a reduced amount of Class I I  -- -- 
damage; under these cond i t i ons  O2 introduced a few minutes a f t e r  

anoxic i r r a d i a t i o n  d i d  no t  increase the  s e n s i t i v i t y .  T a l l e n t i r e  

and Powers d i d  propose, however, t h a t  two k inds o f  oxygen-dependent 

damage probably operate i n  the  i r r a d i a t e d  wet spore. The review 

a r t i c l e  by Powers and T a l i e n t i r e  (1968) summarizes the  work w i t h  

d r i e d  b i o l o g i c a l  systems. 

Recent work has made i t  very c l e a r  that.'organi'sms i r radia ' ted i n  

suspension do indeed show-more than one k ind  o f  oxygen-dependent dam- 

60 
age. Using Co y r a y s ,  Tal l e n t i r e  e t  a1 . (1972) found evidence f o r  a t  

l e a s t  two components o f  oxygen-dependent damage i n  b a c t e r i a l  spores. 

La ter  experiments w i t h  50 kVp X-rays showed t h a t  t he  s e n s i t i z a - .  

t i o n  o f  spores by oxygen could be separated i n t o . a t  l e a s t  th ree corn- 

ponen t s  (Ew i ng and Powers 1976) t h a t  a re  02-concent r a t  ion dependent. 

These resu1,ts a r e  i l l u s t r a t e d  i n  F igure  2. t-Butanol i s  an e f f e c -  - 
t i v e  scavenger o f  OH r a d i c a l s  and the  oxygen-dependent damaye re-  

moved w i t h  t h i s  a lcohol  present i s  designated as the "'OH compon- 

ent." Two o ther  components o f  damage .are designated as the  "low- 

O2I1 and "high-02" components, t o  emphasize t h a t  d i f f e r e n t  concentra- 

t i o n s  o f  0xyge.n can produce d i f f e r e n t  k inds o f  damage (Ewing 1978a). 

An important d i f f e r e n c e  has not  ye t  been resolved between the  

spore experiments w i t h  50 kVp X-rays  w wing and Powers 1976) and 

6 0 
those w i t h  Co y-rays, noted j u s t  above ( T a l l e n t i r e  e t  a l .  1972). 
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I n  both sets o f  data, the  changes i n  response occur over very sim- 

i l a r  oxygen concentrat ions, j u s t  as they do f o r  most organisms 

(cf.  F igure 1) . Furthermore, the changes themselves a r e  qua1 i ta-  

t i v e l y  the same: as the [02]  i s  raised, the  responses increase, 

reach a plateau, then increase again t o  a maximum value. However, 

w i t h  y-rays, the  p lateau occurs when about 30% of  the maximum sen- 

s i t i z a t i o n  has been reached ( c f .  F igure 4, T a l l e n t i r e  e t  a l . .  1972). 

With 50 kVp X-rays, the p lateau comes a t  70%. The basis f o r  t h i s  

discrepancy i s  no t  known, a l though d i f f e rences .o the r  than photon 

energy e x i s t  between the  two sets o f  experiments; e.g., the y-ray 

wor'k was i n  phosphate b u f f e r  whereas the X-ray experiments used 

water-suspended spores. Th is  "water-versus-buffer" quest ion would 

I 
I not  be important when y-rays a r e  used ( ~ a l  l e n t i  re, p r i v a t e  commun- 
i 

i c a t i o n ,  quoted i n  Ewing 1975), bu t  i t  would be important w i t h  50 . 

' 

kVp X-rays (Ewi ng 1975) . 
Recent work w i t h  b a c t e r i a l  spores and 1,4-diazabicyclo[2.2.2]- 

.L 

octane (DABCO) , a quensher o f  s i n g l e t  oxygen (02 ' A  ) , suggests 
9 

t h a t  an a d d i t i o n a l  f o u r t h  component o f  damage may now have been 

recognized ( ~ a r b e r  and Cent i 1 1 i , unpubl i shed). Over a range o f  

. oxygen concentrat ions,  DABCO has a p r o t e c t i v e  e f f e c t  which i s  ad- 

d i t i v e  t o t h a t  seen through OH rad i ca l  removal; t h i s  suggests a 

component o f  s e n s i t i z a t i o n  i nvo lv ing  s i n g l e t  0 ' a l though the re-  
2 ' 

s u l t s  o f  f u r t h e r  experiments a re  needed f o r  conf i rmat ion .  

The oxygen-dependent s e n s i t i z a t i o n  o f  b a c t e r i a l  spores can 
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a l s o  be resolved i n t o  t ime components .if the  r a d i a t i o n  dose i s  de- 

l i v e r e d  i n  a very b r i e f  i n t e r v a l .  With pulsed techniques t h a t  a l -  
. . 

lowed examination o f  inc idents  i n  very  short  t imes a f t e r  i r r a d i a - .  

t i o n ,  Weiss and h i s  col leagues (Weiss and McDonald 1976, Weiss and 

Santomasso 1977, Jones and Weiss 1977) noted t h a t  i n  wet spores, 

as i n  dry  spores, 0 de l i ve red  t o  spores a f t e r  anoxic i r r a d i a t i o n  
2 

I 

can increase ' .se 'ns i t i v i ty .  Complementary & r k . b y  Ta1 l e n t i r e  and 

h i s  col leagues le all entire e t  a l .  1977, S t r a t f o r d  e t  a l .  1977) 

showed t h a t  a f t e r  anoxic i r r a d i a t i o n  o f  spores i n  suspension, the  

decay o f  t he  p o t e n t i a l l y . l e t h a 1  species can.be resolved i n t o  two 

components; the rad ica l  h a l f - l i v e s  associated w i t h , t h e s e  two .reac- 

t i o n s  a re  9 seconds and 120 seconds. Spores i r r a d i a t e d  i n  O2 

show o n l y  one f i r s t - o r d e r  rad i ca l  decay process '(T = n ine  sec- 3 
onds). Presumably, t h i s  i s  the  f a s t e r  o f  the two processes ob- 

served i n  anoxia. 

Very recent resu l t s ,  a l s o  by T a l l e n t i r e  and h i s  co-workers 

w i t h  t h i s  same rapid-mix method  a all entire e t  a l .  1979), provide 

additiona.1 in format ion ,about  these two long - l i ved  components. 

When an OH rad i ca l  scavenger i s  present dur ing  anoxic i r r a d i a -  

t i o n ,  the product ion and subsequent two-component decay i s  unaf- 

fected. Thus, 'OH appears no t  t o  be involved i n  e i t h e r  o f  . the  

two. 0 a c t  ions. When these authors use N 0 (present dur ing  i r -  
2 2 

r a d i a t i o n ) ,  the i n i t i a l  su rv i va l  l eve l  i s  lowered f o r  "zero t ime'  

before O2 in t roduct ion,"  and i t  remains a t  thesame reduced 

1evel.even when the  i n t roduc t ion  o f  0 ' I S  delayed; They sug- 
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gested t h a t  'OH i s  ab le  t o  reac t  w i t h  the  two 0 - s e n s i t i v e  "spe- 2 

cies"  t o  " f i x "  damage by excluding the p o s s i b i l i t y  t h a t  the  r a d i -  

c a l  s i t e s  could decay t o  a harmless state.  L imi ted  data, f o r  

which they used an OH rad ica l  scavenger along w i t h  NZO, show t h a t  

the  e f f e c t  o f  N20'can be p a r t i a l l y ,  but no t  completely, blocked,. 

We should note  t h a t  according t o  these observat ions 'OW dependent 

0 .  s e n s i t i z a t i o n  operates o n l y  i n  the presence.of  N 0 -- an agent 2 2 

t h a t  supposedly ac ts  o n l y  by increasing 'OH y i e l d .  I f  t h a t  i s  

the  o n l y  'act ion,  we ask why ' O H  scavengers do not  a f f e c t  Q2 sen- 

s i t i z a t i o n  processes i n  the  absence o f  N 0. The d i f f e rence  i s  
2 

the  removal o f  e- i n  the N 0 case and i t s  presence i n  N 0 ab- 
a q 2 2 - 

sence. The i r  experiment w i t h  acetone, supposedly removing e 
aq ' 

does no t  g i ve  the answer, f o r  i t  i s  used a t  1 M, a concentrat ion 

7 t h a t  e f f e c t i v e l y  a l s o  removes a l l  
'OH (&=etone 

+ 'OH = 6.8 x 1'0 

- 1 M-I seconds ) . 
A1 though both ' labora tor ies  whose work was c i t e d  j u s t  above 

worked w i t h  0 .  megaterium spores, t h e i r  r e s u l t s  a r e  not  e n t i r e l y  - 
compatible. Weiss and Santomasso (1977) used a s i n g l e  th ree nano- 

seconds pulse o f  e lec t rons ,  g i v i n g  a t o t a l  dose o f  e i t h e r  400 o r  

'600 krad t o  spores mounted on wet membrane f i l t e r s .  A f t e r  an0xi.c 

i r r a d i a t i o n ,  they observed the  decay o f  an.oxygen-sensi t ive r a d i -  

c a l  having a ha l f -1  i f e  o f  e i t h e r  10.5 seconds o r  7.4 seconds re-  

spect ive ly ,  depending on the r a d i a t i o n  dose they.used. I n  con- 

t r a s t ,  T a l l e n t i r e  and h i s  co-workers i r r a d i a t e d  spores i n  suspenc 



s i o n  w i t h  two microseconds pulses o f  e lec t rons ,  g i v i n g  a t o t a l  

dose o f  600 krad a t  about 0.8 krad/pul se. The t o t a l  exposure 

could l a s t  up t o  two seconds. A f t e r  anoxic i r r a d i a t i o n ,  they ob- 

served the  decay o f  two oxygen-sensit ive "species". Apparently, 

~ e i  ss and Santomasso saw one but  no t  both the rad ica l s  observed 

by T a l l e n t i r e  e t  a l .  Nei ther  set  o f  authors has attempted t o  ex- 

p l a i n  the  d i f f e r e n c e  i n  r e s u l t s .  

Veaetat ive Bac te r ia l  Ce l l  Studies'  

Although experiments w i t h  d r i e d  vegeta t ive  bac te r ia  showed 

two classes o f  oxygen-dependent damage   ebb 1964) , t e s t s  w i t h  

bac te r ia '  i r r a d i a t e d  i n  suspension have not .  Epp and h i s  c o l -  

1 eagues, whose experiments have been recent 1 y summar i zed ( ~ p p  e t  

a l .  1976), used a double-pulse technique w i t h  both Escherichia 

c o l i  and S e r r a t i a  marcescens. They i r r a d i a t e d  oxygenated c e l l s :  

then, by vary ing  the  t ime before a second e lec t ron  pulse, they 

al lowed d i f f e r e n t  amounts o f  O2 t o  d i f f u s e  back i n t o  the  c e l l s .  

Thei r ana lys i s  showed an upper 1 i m i  t o f  2.1 o - ~  seconds f o r  the 

l i f e t i m e  o f  t he  rad ica l  which can reac t  w i t h  O2 t o  cause damage. 

However, they d i d  f i n d  a d i s c o n t i n u i t y  i n  the graph o f  "decade 

spacing" ( i . e .  r e l a t i v e  decrease i n  l o g  f r a c t i o n a l  s u r v i v a l )  ver -  

sus i n te rpu lse  time. Th is  "bump" might be taken as evidence f o r  

more than one k ind  o f  oxygen-dependent damaging process, a l though 

t h i s  i s  no t  c e r t a i n .  
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Michael e t  a l .  (1973) used a  gas explos ion technique t o  de- 

l i v e r  0 a t  c o n t r o l l e d  times t o  a n o x i c a l l y  i r r a d i a t e d  c e l l s .  T.hey 
2 

found a  p o s t - i r r a d i a t i o n  0  e f f e c t  and est imated the h a l f - l i f e  as 2 

500 microseconds f o r  the  rad ica l  which reac ts  w i t h  0  t o  cause 
2 

damage. Th is  value i s  d i f f e r e n t  from t h a t  obta ined by Epp e t  a l .  

described j u s t  .above, who a l so  worked w i t h  vegeta t ive  bac ter ia .  

Michael' e t  a l .  d i d  not ,  however, f i n d  evidence fo r .more  than one 

k ind  o f  reac t i on  i nvo lv ing  0  Shenoy e t  a l .  (1975) have used 2 ' 

the  l i q u i d  rapid-mix method i n  somewhat s i m i l a r  s tudies.    his 

procedure, which showed two ox'ic s e n s i t i z a t i o n  components w i t h  

mammalian c e l l s ,  described below, a l so  f a i l e d  t o  demonstrate ,more 

than one k i n d  o f  oxygen-dependent damage i n  wet bac ter ia .  

This d i f f e r e n c e  i n  the measures o f  rad i ca l  l i f e t i m e s  from the 

two experimental methods i s  s i g n i f i c a n t  and i t  mer i t s  f u r t h e r  com- 

ment. Michael e t  a l . ,  i r r a d i a t i n g  under anoxic cond i t ions  and i n -  

t roducing O2 af terward,  measured a  rad ica l  h a l f - l i f e  o f  ~ 5 0 0  m i -  

croseconds; Epp e t  a l . ,  who i r r a d i a t e d  i n  0 t o  r a d i o l y t i c a l l y  
2 

bind the  d issolved 0  and thereby achieve anoxia before the  second 
2 

pulse o f  rad ia t i on ,  found an upper l i m i t  t o  the  rad ica l  l i f e t i m e  

- 4 
o f  about 10 seconds. The upper l i m i t  t o  the  l i f e t i m e  o f  the 

rad i c a l  found by Michael e t  a1 . . w u l  d  be abou't 1 Ox longer than 

t h a t  found by Epp e t  a l .  (1976). We note  here t h a t  the  c o n f l  i c t  

i n  t h e i r  r e s u l t s  could be based on the  d i f f e r e n t  experimental 

techniques t h a t  were used. The d i f f e r e n t  cond i t ions  o f  i r r a d i a -  
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t i o n  may not  have produced the  same rad i ca l  populat ions,  and the 

two l a b o r a t o r i e s  may not ,  i n  f a c t ,  have been studying the same 

k ind  o f  0 -dependent damage. This  suggest ion  i s  based on pub- 
2 

l i s h e d  work w i t h  d r i e d  b a c t e r i a l  spores. I n  these spore exper i -  

ments, Powers e t  a l .  (1960) i r r a d i a t e d  i n  anoxia, as Michael e t  

a l .  d id ,  and produced Class I l l  damage. When they i r r a d i a t e d  

i n  02, as Epp e t  a l .  d id ,  they produced i n  spores, bo th  Class I I  

and Class I l l  k inds  o f  02-dependent damage. Powers and Held . 

(1 979) have, i n  fac t ,  recal  l e d  an e a r l  i e r  suggest ion  o f  Ewing 

(unpublished) t h a t  may emphasize the importance o f  the  d i f f e r -  

en t  i r r a d i a t i o n  procedures these two l abo ra to r i es  used w i t h  veg- 

e t a t i v e  bac te r i a .  As they po in ted  out ,  S t r a t f o r d  e t  a l .  (1977), 

us ing  wet b a c t e r i a l  spores, observed the p o s t - i r r a d i a t i o n  decay 

o f  two 0 - s e n s i t i v e  r a d i c a l s  f o l l o w i n g  anoxic exposure. However, 2 

when they i r r a d i a t e d  i n  02, o n l y  one r a d i c a l ,  the  one w i t h  the 

shor te r  h a l f - l i f e ,  was seen. I n  terms o f  procedure, these con- 

d i t i o n s  o f  i r r a d i a t i o n  dupl i c a t e  those o f  Michael (anoxic) and 

Epp (ox i c ) ,  and Epp d i d ,  i n  f a c t ,  observe a shor te r  rad i ca l  h a l f -  

l i f e  (based on h i s  est imate o f  upper l i m i t  t o  the  r a d i c a l  l i f e -  

t ime) than d i d  Michael. Whi le these experiments w i t h  vegeta t ive  

bac te r i a  have n o t  resolved 0 -dependent damage i n t o  separate 2 

components, i t  may ye t  be poss ib le  t o  do so w i t h  d i f f e r e n t  ex- 

perimental  techniques and, perhaps, d i f f e r e n t  methods o f  ana lys is .  
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I n  V i t r o  Mammalian Ce l l  Studies 

I n  con t ras t  t o  the  r e s u l t s  w i t h  vegeta t ive  bac ter ia ,  informa- 

t i o n  c o l l e c t e d . w i t h  mammalian c e l l s ,  a f t e r  pulsed exposures, a l so  

shows t h a t  s e n s i t i z a t i o n  by oxygen can be resolved i n t o  components. 

However, the  t ime scales f o r  these e f f e c t s  a re  much shor ter  than 

those noted above f o r  b a c t e r i a l  spores. This d i f f e r e n c e  i n  r a d i -  

ca l  l i f e t i m e s  i . ~  a major p o i n t  o f  c o n f l i c t  between those studies 

w i t h  b a c t e r i a l  spores and these w i t h  mammalian c e l l s .  T a l l e n t i r e  
. . 

e t  a l .  (1.977) proposed t h a t  the long 1 i f e t imes  they observed. might 

have resu l ted  from a r e l a t i v e  dryness o f  the spore core, the  pre- 

sumed s i t e  f o r  radiat ion- induced damage; t h i s  s t a t e  o f  dryness. 

would e x i s t  even though the  spores were suspended i n  water. Thus, 

we might i n f e r  t h a t  the  chemical processes through which 0 2 s e n s i -  

t i z e s  a re  the same i n  both spores and mammal'ian ce l  l s ,  even though 

the  reac t ions  themselves a re  considerably slower i n  spores. 

Using a l i q u i d  fas t - f l ow ,  rapid-mix method w i t h  mammalian 

c e l l  s, Shenoy e t  e l .  (1975) found t h a t  O2 -- a t  any concentrat ion -- 
del  ivered two m i  1 1 i seconds before . . i r rad  i a  t ion  gave a constant amount 

o f  s e n s i t i z a t i o n .  ( w i t h  t h i s  mix ing technique, two m i  1 1  iseconds i s  

the shor tes t  poss ib le  t ime between O2 contact  and the  r a d i a t i o n  

pul se.) Greater s e n s i t i z a t i o n  was obta ined by a1 lowing longer O2 

contact  t imes before i r r a d i a t i o n .  They discussed t h e i r  r e s u l t s  i n  

terms o f  " fas t "  and "slow" O2 e f f e c t s  and suggested t h a t  the most 
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p l a u s i b l e  i n t e r p r e t a t i o n  was t h a t  damage was produced a t  two s i t e s  

w i t h i n  the  c e l l  s; t he  " fas t "  versus "slow" r e s o l u t i o n  represented 

the  times needed by O2 t o  d i f f u s e  t o  these d i f f e r e n t  s i t es .  

Watts e t  a l .  (1978) have recen t l y  appl ied the  gas-explosion 

method t o  i n  v i t r o  mammalian c e l l  experiments. This procedure a l -  

I lows a resol  u t  ion o f  about one m i  1 1 i second. between 0 deJ.ive<y, 2 

t ime and the  r a d i a t i o n  dose, whereas i n  the  l i q u i d  rapid-mix meth- 

od, described j u s t  above, the  best r e s o l u t i o n  i s  about th ree m i l -  

I 1 iseconds. These two methods f o r  del i v e r i n g  0; t o  the  c e l l s  g i ve  

d i f f e r e n t  r e s u l t s  f o r  t he  shor tes t  ( p r e - i r r a d i a t i o n )  O2 contact  

t ime .necessary t o  achieve the maximum amount o f  o x i c  s e n s i t i z a t i o n .  

However, i n  these p re l im ina ry  experiments, the  gas explos ion tech- 

n ique probably. a l s o  shows two p o s t - i r r a d i a t i o n  O2 e f f e c t s ,  j u s t  

as the  1 i q u i d  rapid-m,ix method d id .  The i r  discuss'ion does no.t 

focus on t h i s  po in t ,  however; we in ' fe r  t h i s  from our examination 

o f  t h e i r  F igure 2. 

Michaels e t  a l .  (1978) and L ing e t  a l .  (1978) have a l s o  re-  

c e n t l y  s tudied 0 -dependent damage i n  mammalian c e l l s  i r r a d i a t e d  
2 

i n  v i t r o .  Using t h e i r  double-pulse method, f i r s t  app l ied  t o  bac- 

t e r i a  (Epp e t  a l .  1973), they.found an upper l i m i t  o f  Q th ree m i l -  

1 iseconds f o r  the 1 i f e t i m e  o f  the rad ica l  which can reac t  w i t h  O2 

t o  cause damage. This i s  about 30x longer than the upper l i m i t  

found w i t h  vegeta t ive  bac te r ia  w i t h  t h i s  same technique although, 

as they pointed out ,  t h i s  i s  compatible w i t h ' t h e  greater  s i ze  o f  
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the  mammalian c e l l s  and, l o g i c a l l y ,  there fore ,  w i t h  the greater  

d is tance O2 must d i f f u s e  before i t  can reach the  ta rge t  rad i ca l s ,  

presumably located near the  c e l l s '  centers. The d i f f e r e n c e  i n  

upper 1 i m i t s  they saw w i t h  b a c t e r i a l  and mammal ian c e l l s  does not  

mean t h a t  t h e  l i f e t i m e s  o f  the  02-sensi t ive r a d i c a l s  a c t u a l l y  i n -  

volved a re  d i f f e r e n t ;  as they discussed, they measured the maxi- 

mum 1 i f e t i m e  these r a d i c a l s  could have, no t  .the r a d i c a l ' s  h a l f -  

l i f e  ( ~ i n g  e t  a l .  1978). 

Some recent work w i t h  chemical model systems, where b i o l o g i -  

ca l  l y  important molecules a r e  i r r a d i a t e d  i n  . v i  t'ro, a l s o  suggests 

t h a t  O2 may have more than one ac t ion .  Held and Powers (1979) and 

Powers and Held (1979) have ex t rac ted w i ld - type DNA from a s t r a i n  

o f  B a c i l l u s  s u b t i l  i s ,  i r r a d i a t e d  the DNA, and then measured the  

loss  o f  t ransforming a b i l i t y  i n  a - trp- r e c i p i e n t  c e l l .  As they 

described i n  an e a r l i e r  paper ( ~ e l d  e t  a l .  1978) they again found 

t h a t  O2 a t  h i g h  concentrat ions M) p r o t e c t s  DNA i r r a d i a t e d  

under. these cond i t i ons  ( r e l a t i v e  t o  the response a f t e r  anoxic ex- 

posures): They a l s o  noted t h a t  t he  s e n s i t i v i t y  changes l i t t l e  

o v e r  a wide range o f  O2 concentrat ions except around M, where 

-6 the  s e n s i t i v i t y  drops, and i n  the region around 10 M, where the  

s e n s i t i v i t y  peaks sharply. An important p roper ty  o f  t h i s  peak i s  

t h a t  i t  i s  removed by a d d i t i o n  o f  'OH scavengers, i n d i c a t i n g  'OH 

involvement i n  the  0 e f f e c t  a t  low concentrat ions o f  02, j u s t  as 2 

i n  the  wet spore experiment o f  Ewing and Powers (1976). 
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Studies by Michaels and Hunt (1977a,b) may be re levant  t o  
! 

these r e s u l t s  wi,th t ransforming DNA. They i r r a d i a t e d  s ing le-  

stranded polynucleot ides t o  study the  reac t ions  o f  0 a t  the  r a d i -  
2 

ca l  s i t e  formed by 'OH a t tack .  Using pyr- imidines ( p o l y c y t i d y l i c  

a c i d  and p o l y u r i d y l  i c  a c i d ) ,  they found evidence f o r  two polynuc- 

l e o t i d e  r a d i c a l s  which reac t  w i t h  0 a t  d i f f e r e n t  rates.  They 
2 

proposed t h a t  a t  low O2 concentrat ions the  absolute r a t e  constant 

8 -1  - I 
i s  about 5.8 x 10 M seconds , wh i le  a t  h igh  0 concentrat ions, 

2 

the  r a t e  constant f o r  the  po ly  C-OH' + 0 reac t i on  i s  about 1.8 x 
2 

8 - 1  
10 M seconds-'. The i r  r e s u l t s  w i t h  pu r inepo lynuc leo t ides  

and w i t h  double-stranded polymers are  considerably more cornpi ex 

and, as they discuss, f u r t h e r  experimental work i s  needed ' t o  

i d e n t i f y  the  reac t ions  which a re  occur r ing .  

The s tud ies  c i t e d  i n  t h i s  sec t ion  prov ide  conclus ive evidence 

t h a t  0 has more than a s i n g l e  .chemical pathway through which i t  
2 

e f f e c t s  s e n s i t i z a t i o n  i n  several b i o l o g i c a l  systems. The studies 

discussed i n  the  f o l l o w i n g  sec t ion  w i l l  summarize what has been 

learned concerning the chemical na ture  o f  these components o f  

damage. 

EFFECTS ADDED CHEMICALS HAVE ON 0x1 c SENS.ITIZATION: 
PROTECTORS & O2 

When water i s  i r rad ia ted ,  the  th ree pr imary r a d i o l y t i c  prod- 
- 

uc ts  a r e  the hydrated e l  ec t ron  (e  ) , the  hydrogen atom - ( 'H> , and 
a q 



Ewing and Powers 
page 16 

the  hydroxyl rad i c a l  ('OH). l nformat ion concerning these rad ica l  s 

has accumulated r a p i d l y  s ince the  19601s, and r a d i a t i o n  b i o l o g i s t s  

have t r i e d  t o  associate reac t ions  o f  these t rans ien ts  w i t h  speci f -  

i c  b i o l o g i c a l  endpoints. Only the  hydroxyl rad i ca l  has been c l e a r -  

l y  impl icated i n  causing c e l l  death a f t e r  i r r a d i a t i o n   o oh an sen 

and Howard-Flanders 1965, Sanner and P i h l  1969, Powers and Cross 

1970, Chapman e t  a l .  1975), although,. as discussed below, the  i n -  

format ion from d i f f e r e n t  organisms suggests t h a t  d i . f f e ren t  process- 

es may be involved. Some years ago, Adams and Dewey (1 963) noted 

' that  chemical a d d i t i v e s  which reacted we l l  w i t h  hydrated e lec t rons  

a r e  genera l l y  rad ia t ' ion  sens i t i ze rs .  This observat ion, t h a t  e- 
a q 

removal increases the  r a d i a t i o n  s e n s i t i v i t y ,  suggests i n  i t s e l f  

t h a t  t he  e- might be p lay ing  a p r o t e c t i v e  r o l e '  i n  reducing the 
aq 

amount o f  radiat ion- induced damage. This concept i s  cen t ra l  t o  

the  e l e c t r o n  sequestrat ion model o f  Powers (1972) which deals w i t h  

mechanisms o f  r a d i a t i o n  damage and the chemical basis fo r  the ac- 

t i o n s  o f  some r a d i a t i o n  sens i t i ze rs .  

Results from s tud ies  w i t h  bac ter ia ,  b a c t e r i a l  spores, and 

mammalian c e l l s  have led  t o  d i f f e r e n t  conclusi.ons about the  i n -  

.volvement o f  'OH i n  damage and sens i t i za t i on .  This may be due, i n  

pa r t ,  t o  the  absence o f  comparat i v e  s tud ies  among the th ree types 

o f  c e l l s .  Careful s tud ies  a r e  u rgen t l y  needed before we can under- 

stand how t o  app ly  in format ion  from one o f  these b i o l o g i c a l  sys- 

tems t o  another. 
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Bac te r ia l  Spore Results 

When b a c t e r i a l  spores a r e  i r r a d i a t e d  i n  anoxia o r  i n  h igh  

concentrat ions o f  02, the  a d d i t i o n  o f  a scavenger t o  remove OH 

rad i ca l  s  does not  necessar i l y  p r o t e c t  (Powers e t  a1 . 1972 and 

.Ewing 1976a). - t-Butanol , f o r  example, w i  1 1  no t  p ro tec t  spores 

i r r a d i a t e d  under e i t h e r  o f  these two cond i t ions  (as long as no 

o ther  sensi t i v i t y - m o d i f y i n g  agent i s  present) ; i n  f a c t ,  h igh  con- 

cen t ra t i ons  o f  - t-butanol  (>I  M) w i  1 1  increase the  anoxic response 

 w wing 1976a), an observat ion'  t h a t  has not  ye t  been explained. 

Some OH r a d i c a l  scavengers, however, have been found which 

do p ro tec t  spores i r r a d i a t e d  e i t h e r  i n  a i r   w wing 1975) o r  i n  

anoxia  w wing 1976b). F igure 3 i l l u s t r a t e s  the  r e s u l t s  i n  an- 

ox ia.  Th is  p r o t e c t i o n  i s  no t  a simple func t i on  o f  'OH removal, 

but i t  seems t o  be co r re la ted  w i t h  the  a b i l i t y  o f  the  scavenger 

t o  form an a-carbon rad ica l  ( i  .e., a reducing r a d i c a l )  a f t e r  re -  

a c t i o n  w i t h  'OH (Ewing 1976). Results empliasize both the  import-  

ance o f  t h i s  c o r r e l a t i o n  and the  f a c t  t h a t  'OH removal i t s e l f  

does not  necessar i l y  p ro tec t .  C02 i s  a p ro tec to r  ( c f .  F igure 

3),but i t  does not  reac t  wi'th OH rad i ca l s ;  i n  f a c t ,  CO i s  one 2 
- 

o f  the very  few e scavengers which i s  no t  a r a d i a t i o n  sensi- 
a '=I - 2 

t i z e r .  Formate a t  2 x  10 M reduces the  response t o  the m i n i -  

mum leve l  reached by any o f  t he  tes ted compounds, a decrease i n  

-2 k o f  ~ 2 0 % .  t-Amy1 alcohol  a t  2.8 x 10 M and t-butanol a t  9.6 - - - 
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x  M scavenge OH r a d i c a l s  as e f f i c i e n t l y  as t h a t  formate con- 

cen t ra t i on ,  but  ne i the r  o f  these two a lcoho ls  protects.  This i s  

c l e a r  evidence t h a t  'OH removal i n  i t s e l f  w i l l  not  i n v a r i a b l y  

p r o t e c t  spores i n  the  absence o f  sens i t i ze rs .  

I n  a  set  o f  experiments t o  t e s t  the  importance o f  forming 

a  reducing r a d i c a l ,  methanol (a p ro tec to r )  and t-amyl a lcohol  - 
(a non-protector)  were used simultaneously. A t  selected concen- 

t r a t i o n s ,  where t-amyl a lcohol  scavenges ' O H ' S  more e f f i c i e n t l y  - 
than methanol, methanol 's a b i l i t y  t o  p r o t e c t  was reduced. This 

supports the hypothesis t h a t  methanol i s  no t  i t s e l f  t he  p ro tec to r ;  

instead, the  p r o t e c t i n g  agent i s  formed a f t e r  a  reac t ion  w i t h  a 

water-derived r a d i c a l ,  i n  t h i s  case the 'OH  w win^ 1976b). 

F igure 2 shows t h a t  over a  range o f  0  concentrat ions,  t- 
2 - 

butanol p ro tec ts .  I n  con t ras t  t o  what was f o u n d ' a f t e r  anoxic i r -  

rad ia t i on ,  t e s t s  have shown t h a t  t h i s  p ro tec t i on  i n  low 0  con- 
2 

cen t ra t i ons  can be s p e c i f i c a l l y  a t t r i b u t e d  t o  a  simple removal 

o f  OH r a d i c a l s  (F igure 4 ) .  D i f f e r e n t  a d d i t i v e s  used a t  the same 

'OH scavenging e f f i c i e n c y  p ro tec t  equa l ly  we l l  c w wing 1978a). 

Add i t i ves  have a l s o  been tes ted f o r  e f f e c t s  against  the 

low- and high-0 components o f  damage ( c f .  F igure 2).  The re -  2 

s u l t s  w i t h  methanol a r e  shown i n  Figure 5; those w i t h  e thano l , .  

i n  F igure 6. 

Under anoxic cond i t ions ,  methanol reduces the  response 

 w wing 1976b). When spores a r e  i r r a d i a t e d  i n  0.8% 0 M 
2 



d i ssol ved)', methanol removes the  0 -dependent ' OH damage . (c f  . 
2 

Figure 3) .  As shown i n  Figure 5, h igher concentrat ions o f  meth- 

anol tes ted i n  0.8% 0 reduce the  response f u r t h e r  (Ewing, un- 
2 

pub1 ished). But the  amount o f  t he  p r o t e c t i o n  i n  0.8% 

O2 ( i .e . ,  the  -bk) - and the  methanol concentrat ions over which 

t h i s  p r o t e c t i o n  occurs suggest t h a t  t h i s  i s  simply the  same pro-  

t e c t i o n  seen w i t h  methanol i n  anoxia. From t h i s ,  we conclude 

t h a t  methanol does no t  a f f e c t  the low-O2 k ind  o f  damage. Meth- 

anol,  tes ted i n  a i r   w wing 1976a), f i r s t  shows a reduct ion i n  

the  o v e r a l l  response, p a r a l l e l  t o  that .seen i n  anoxia; higher 

methanol concentrat ions reduce the s e n s i t i v i t y  even more. Thus, 

methanol i s  a b l e  t o  reduce, a l though not  e l im inate ,  damage a t -  

t r i b u t a b l e  t o  the  high-O2 component. 

The r e s u l t s  w i t h  ethanol (F igure 6) a r e  more complex. L i ke  

methanol, ethanol p ro tec ts  spores i r r a d i a t e d  i n  anoxia, a1 though . 

the amount o f  p r o t e c t i o n  ( t h e  -Ak) - i s  not  as great  as w i t h  meth- 

anol. Again l i k e  methanol, ethanol does no t  appear t o  p ro tec t  

against  low-0 damage, a l though as the ethanol concentrat ion i n -  
2 

creases above 2 M, the  response r i s e s  sharply  w win^, unpub1,ished). 

I n  a i r ,  ethanol p ro tec ts  against  t he  high-0 component, as meth- 
2 

an01 does, but h igh  ethanol concentrat ions again increase the 

response. Th is  increase seems t o  m i r r o r  t h e  increase seen w i t h  

ethanol i n  0.8% 0 t h a t  i s ,  i n  a i r  the turnabout i n  p r o t e c t i o n  
2 ; 

a t  h igh  ethanol concentr.at ions i s  probably due. t o  e thano l ' s  
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unexpected a b i l i t y  t o  increase damage through . . the  low-0 corn'- 2 

ponen t . 
Tests w i t h  ethanol have a l s o  been run a t  an intermediate 

0 concentrat ion. I n  5.5% O2 (2.8 x 10-'M d isso lved) ,  the 'OH 2 

component i s  negl i g i b l y ' s m a l l .  Presumably, the  low- and l i igh-  

0 components are  both operat ing.  I n  increas ing ly  higher e th-  
2 

an01 concentrat ions, the  response i n  5.5% 0 i s  reduced; i t  
2 

passes through a minimum, then i t  increases again ' ( c f .  .Figure 6 ) .  

These r e s u l t s  a re  q u a l i t a t i v e l y  the  same as those observed when 

ethanol was tested i n  a i r .  However, two important .quan t i t a t i ve  

d i f fe rences a re  apparent. F i r s t ,  i n  5.5% 02, ethanol begins t o .  

p r o t e c t  a t  lower concentrat ions than i t  d i d  when tes ted i n  a i r ;  

,and., second, the maximum amount o f  p ro tec t  ion ( the  -bk )  i s  g reat -  - 
e r  in '5 .5% 0 than i t  i s  i n  a i r .  We f i n d ,  i n  f a c t ,  t h a t  the ra-  

2 . 

t i o  o f  ethanol .concentrat ions f o r  50% p r o t e c t i o n  ( a i r :  5.5% 02) 

i s  0.6 M/0.15 M = 4.0. This i s  the  same as the  r a t i o  o f  O2 con- 

cen t ra t i ons  used i n  the  two tes ts ,  0:209/0.055 = 3.8. These. 

r e s u l t s  might .suggest  t h a t  0 and ethanol a re  competing f o r  a 
2 

sing1.e damaged c e l l u l a r  s i t e .  A lower 0 concentrat ion corres-  
2 

pondingly reduces the  ethanol concentrat ion requ i red  f o r  the 

same leve l  o f  p ro tec t ion ;  it a l s o  increases the amount o f  pro-  

t e c t i o n  t h a t  i s  possib le.  

Such a compet i t ion between ethanol .and 0 ( s p e c i f i c a l l y  t he  
2 

high-O2 component i n  these experiments) was no t  found i n  studies 
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wi th.  E. c o l  i by Johansen and Howard-Flanders (1965). From t h e i r  - - .  

experiments, they concluded t h a t  ethanol could i n t e r f e r e  w i t h  

the  format ion o f  R '  ( t he  damaged ce l  l u l a r  s i t e ) ,  but  ethanol and 

O2 d i d  not  compete f o r  reac t ions  a t  t h a t  s i t e .  This r e s u l t  w i t h  

b a c t e r i a l  c e l l s  does not  complement t h a t  found by Weiss and San- 

I tomasso (1 977), who pu l  se-i  r r a d  i a ted  spores suspended i n  water 

I o r  pure ethanol.  I n  ethanol,  they found no decrease i n  the y i e l d  
I 

! 
o f  the  oxygen-sensi t i v e  rad ica l  ( i  .e., ethanol d i d  not  i n t e r f e r e  

w i t h  the format ion of the  damaged s i t e ) ,  a l though the  ha l f -1  i f e  ! 
1 

o f  the rad ica l  i n  ethanol was consi,derably reduced. (NO value i 
I 

was given f o r  the  reduced h a l f - l i f e . )  Whether these r e s u l t s  i n  I 
I 

pure ethanol ( ~ e i s s  and Santomasso 1977) a r e  compatible w i t h  
I 
1 
I 

those i 1 l u s t r a t e d  i n  .Figure 6,  which show an .O -ethanol compet i- ' 

2 

t i o n ,  i s  unknown. P u l s e - i r r a d i a t i o n  s tud ies  a t  lower 0 co'ncen? 
2 

t r a t i o n s  would c l a r i f y  t h i s  p o i n t .  

Glycerol  i s  the a d d i t i v e  which has the  greates t  p r o t e c t i v e  

ab i  1 i t y  i n  t h e  spore system   ebb and Powers 1963, Ewing 1975). 

At s u f f i c i e n t l y  h igh  concentrat ions, g l yce ro l  p ro tec ts  spores 

i r r a d i a t e d  i n  anoxia, and, even when i r r a d i a t e d  i n  a i r ,  g l yce ro l  

reduces t h e  response t o  t h e  same pro tec ted l e v e l  se,en i n  100% 

N2. With spores, no o the r  a d d i t i v e  has been found which can 

e l i m i n a t e  a l l  oxygen-dependent damage. 

From these spore resu l t s ,  i n  which r a d i a t i o n  p ro tec to rs  

have been tes ted i n  anoxia and i n  var ious 0 concentrat ions,  we 
2 
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may make these general observat ions:  

( 1 )  A1 though OH r a d i c a l s  a re  c l e a r l y  damaging under some 

experimental cond i t ions ,  i.n anoxia -- w i t h  no o ther  s e n s i t i v i t y -  

modi fy ing agent present -- OH rad i ca l  removal per se-does not  

p ro tec t .  The same general i z a t  ion holds t r u e  f o r  spores, i r r a d  i- 

ated i n  h i g h  [02]:  'OH removal i n  i t s e l f  does no t  p ro tec t .  

. (2) However, over a l i m i t e d  range o f  0 concentrat ions 
2 

- 4 
( roughly t o  10 M), s imple 'OH removal w i l l  reduce the re- 

sponse. Thus, al though 0 i s  no t  known t o  a f f e c t  the i n i t i a l  
2 

y i e l d  o f  'OH and a l though O2 and the 'OH do no t  react ,  'OH dam- 

age becomes "temporari ly" important.  And i t s  occurrence re-  

qu i res  the  presence o f  0 w i t h i n  a s p e c i f i c  concent ra t ion  range; 
2 

- 4 
a t  [02] >10 M, 'OH removal no longer pro tec ts .  

(3) Some a d d i t i v e s  have been found which p r o t e c t  spores i r -  

: rad ia ted under anoxic cond i t ions .  These agents probably func t i on  

by forming an a-carbon rad ica l ,  which i s  the ac tua l  p ro tec to r .  

These agents, which can a l l  form reducing rad ica ls ,  p ro tec t  i n  

anoxia: formate ion, methanol, C02, ethanol,  a l l y 1  a lcoho l ,  g l yc -  

e r o l ,  1 -propano1 , and 2-propanol . I f  these agents p r o t e c t  i n  

anoxia, through the  format ion o f  a reducing r a d i c a l ,  a reasonable 

in ference i s  t h a t  the  damage being repa i red  o r  prevented a r i ses  

through an o x i d a t i o n  reac t ion .  

(4) Those agents which form a-carbon rad ica l s  and p ro tec t  

i n  anoxia a l s o  p r o t e c t  against  one o r  both the  low- an'd .high-O2 
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. . 

Components o f  damage. ( ~ l  1 OH r a d i c a l  scavengers which have been 

tested,  incl 'uding one s e n s i t i z e r ,  Ewing 1978, can remove the 'OH 

component o f  oxygen-dependen t damage and thereby p r o t e c t  . ) ' A1 1 y  1 

a lcoho l   w wing; unpubl ished) , methanol, e thanol ,  and g l y c e r o l  a1 1 
. . 

p r o t e c t  aga ins t  high-0 damage; t h i s  impl ies,  again, f o l l o w i n g  the 
? 

! reasoning i n  i tem (3),  t h a t  an o x i d a t i o n  r e a c t i o n  i s  involved i n  

1 t he  damage f.rorn t h i  s  spec i f i c component o f  'oxygen's sens i t i  za t ion. ~ 
i Th is  same conclusion, t h a t  the  high-O2 component probably involves 

1 an o x i d a t i o n  reac t ion ,  has been reached through o the r  spore stud- 

I i e s  ( ~ i m i c  and Powers 1974, Ewing 1978); The f a c t  t h a t  methanol 
I 

and ethanol do n o t  p r o t e c t  aga ins t  low-O2 damage suggests t h a t  t he  

process leading t o  s e n s i t i z a t i o n  here does n o t  i nvo l ve  an ox ida-  

t i o n  s tep  o r  process. 

Bac te r i a l  Vegetat ive Ce l l  Results 

The vegeta t ive  c e l l  s tud ies  most e a s i l y  compared t o  the  spore 

experiments described i n  the preceding sec t i on  a r e  those by 

Sanner and P i  h l  (1 969) and by Johansen and Howard-F.landers (1 965). 

Both i n v e s t i g a t i o n s  examined poss ib le  ro1e.s t h a t  r a d i c a l  scaveng- 

ing  agents have i n  reducing the r a d i a t i o n  s e n s i t i v i t y .  

Sanner and P i h l  (1969) used E. c o l i  B, suspended i n ' d i s t i l l e d  - -  
water and i r r a d i a t e d  i n  e i t h e r  l i q u i d  o r  f,rozen s ta tes ,  w i t h  o r  

w i thou t  se lected a d d i t i v e s .  They found t h a t  bo th  ethanol and 

g l y c e r o l  p r o t e c t  b a c t e r i a  ' i r r a d i a t e d  a n o x i c a l l y  i n  l i q u i d  suspen- 

0 
s ion  a t  0 C ;  a  1 M concent ra t ion  o f  e i t h e r  a d d i t i v e  w i l l  reduce 
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the response t o  about 65% o f  t h a t  seen w i thout  the a d d i t i v e .  

They a l s o  used acetone, an agent they found. r e l a t i v e l y  poor a t  

reducing the s e n s i t i v i t y  o f  - -  E .  c o l i  i r r a d i a t e d  i n  anoxia. - I n  

con t ras t ,  T a l l e n t i r e  and Jacobs (1972), working w i t h  b a c t e r i a l  

spores, found t h a t  acetone was an e f f e c t i v e  r a d i a t i o n ' s e n s i t i z e r ;  

a l though very h igh  concentrat ions were requ i red  f o r  an e f f e c t .  

F igure 7 shows t h e i r  r e s u l t s  w i t h  these and several o the r  

compounds. They have p l o t t e d  the r e l a t i v e  s e n s i t i v i t y  aga ins t  

e i t h e r  the 'OH scavenging e f f i c i e n c y  ( l e f t  panel) o r  the e- 
a q 

scavenging e f f i c i e n c y  ( r i g h t  panel) .  I f  the p r o t e c t i o n  they ob- 

- 
served must a r i s e  from e i t h e r  'OH o r  e scavenging, c l e a r l y  OH 

a q 

rad ica  1 scaveng i ng i s  respons i b l  e. However, the data po i  n t s  

( r i g h t  panel) do no t  themselves es tab l  i s h  a we1 1 -def ined r e l a -  

t i onsh ip ,  a l though t h i s  i s  no t  s t r i c t l y  requ i red  s ince a l l  the  

a d d i t i v e s  may not  necessar i l y  p r o t e c t  through OH rad i ca l  scaveng- 

ing. Perhaps more ser ious i s  the f a c t  t h a t  the data p o i n t s  a l s o  

show s c a t t e r  around the t h e o r e t i c a l  l i n e  (shown i n  F igure 7) ,  

which was drawn based on the assumption t h a t  'OH a r e  respons ib le  

f o r  45% o f  the l e t h a l  damage i n  anoxia. 

From these r e s u l t s ,  Sanner and P i h l  concluded t h a t  'OH re -  

moval w i l l  p r o t e c t  bac te r i a  i r r a d i a t e d  under anoxic  cond i t ions ;  

they est imated t h a t  under these cond i t i ons  abou't 50% o f  the t o t a l  

damage a r i s e s  through reac t  ions o f  hydroxyl rad ica  1 s; They ncfted 

t h a t  t h i s  'est imate agrees we1 1 w i t h  conclusions from Webb's work 
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(Webb 1964). He mounted Staphylococcus aureus c e l l s  on membrane 

f i l t e r s  and d r i e d  them; the anoxic r a d i a t i o n  s e n s i t i v i t y  dropped 

by about 50% when' the e q u i l i b r i u m  vapor pressure was reduced t o  

about 1 To r r .  Fur ther  d ry ing  had l i t t l e  e f f e c t  on the  response. 

However, t h i s  amount o f  p ro tec t i on ,  seen i n  e i t h e r  E.  c o l i  o r  - -  
Staphylococcus, i s  considerably g reater  than the  p r o t e c t i o n  ob- 

served when b a c t e r i a l  spores a r e  i r r a d i a t e d  under s i m i l a r  condi -  

t ions. Tal  l e n t  i r e  and .Powers (1963) found t h a t  d ry ing  produced 

o n l y  about a 25% reduct ion  i n  anoxic response. ( l t  i s  important 

t o  r e c a l l  t h a t  i n  both the spore and Staph. systems, d ry ing  - de- 

creases the r a d i a t i o n  s e n s i t i v i t y  o n l y  under anoxic cond i t ions ;  

i n  bo th  organisms, the two classes o f  oxygen-dependent damage 

increase g r e a t l y  as water i s  removed.) 

Sanner and P i h l  (1969) a l s o  concluded t h a t  no amount o f  pro-  

t ec t i on ,  i nc lud ing  t h a t  from the  s u l f h y d r y l  cystea'mine, was 

greater  than t h a t  expected from 'OH scavenging alone. 

Johansen and Howard-Flanders (1965), in, a sl i g h t l y  e a r l  i e r  

study, used E.  c o l i  B / r ,  i r r a d i a t e d  i n  bu f fe red  s a l i n e  a t  2'-5' C .  - -  
( I t  i s  no t  known if the o v e r a l l  r e s u l t s  would have changed if d i s -  

. . 

t i 1  l ed  water,  ra the r  than bu f fe r ,  had been used; o r ,  a1 te rna te l y ,  

i f  b u f f e r ,  ra the r  than water, had been used i n  the experiments 

described by Sanner and P i h l  1969.) Wi th b a c t e r i a l  spores, phos- 

phate b u f f e r  i s  i t s e l f  a s l  i g h t  r a d i a t i o n  s e n s i t i z e r   w wing 1975), 

and the ac t i ons  o f  - p-nitroacetophenone i n  a low 0 concent ra t ion  2 
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a r e  d i f f e r e n t  i n  water compared w i t h  b u f f e r   w wing 1977). 

Johansen and Howard-Flanders (1965) s tud ied  several rad ia -  

t i o n  p ro tec to rs  i n  some d e t a i l .  They concluded t h a t  the e f f e c t s  

of  the su l fhyd ry l  mercaptoethanol a r e  two-fold: f i r s t ,  t h i s  agent 

cou ld  i n t e r f e r e  w i t h  the format ion  o f  a damaged (oxygen-sens i t ive)  

s i t e  w i t h i n  the  c e l l  by.scavenging . . water-der ived rad i ca l s ;  and, 

second, mercaptoethanol could p r o t e c t  by success fu l l y  competing 

w i t h  O2 f o r  reac t i on  a t  t h i s  damaged s i t e .  F igure  8 shows t h e i r  

r e s u l t s  w i t h  f i v e  p r o t e c t i v e  agents. Cur iously ,  they included 

n i t r i c  ox ide  (NO) among the pro tec tors .  Although NO has complex 

e f f e c t s  on r a d i a t i o n  s e n s i t i v i t y ,  t h e i r  own r e s u l t s  c l e a r l y  show 

( ~ i ~ u r e  4 o f   o oh an sen and Howard-Flanders 1965) t h a t  the  sensi t i v -  

i t y  a t  a l l  NO concent ra t ions  i s  g rea ter  than t h a t  seen i n  i t s  

absence, although's peak i n  the  response may in 'dicate two ac t i ons  

o f  NO. This i s  para1 l e l  t o  t he  e a r l  i e r  observat ion o f  Powers e t  

al ' .  (1960) t h a t  NO has two ac t i ons  i n  the d ry  spore. 

The method o f  ana lys i s  used by Johansen and Howard-Flanders 

i s  s l i g h t l y  d i f f e r e n t  from t h a t  o f  Sanner and P i h l ;  bu t ,  again, 

i f  the p r o t e c t i o n  the former team observed i n  a i r  must a r i s e  from 

scavenging e i t h e r  'OH o r  a combination o f  e- and 'H, the data 
a q 

c l e a r l y  favor  an involvement o f  OH rad i ca l s .  As was the case w i t h  

the  anoxic study ( c f .  F igure  7) ,  the f i t  o f  the data t o  the ex- 

pected l i n e  i s  n o t  extremely good. Johansen and Howard-Flanders, 

i n  f a c t ,  c a l l e d  the  f i t  "reasonably good" and suggested t h a t  
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"uncer ta in t ies  i n  the  concentrat ions o f  the added substances w i t h -  

i n  the c e l l i 1  might account f o r .  some o f  the s c a t t e r   o oh an sen and 

. Howard-Flanders 1965). From t h i s  ana lys is ,  they concluded t h a t  

OH r a d i c a l s  c o n t r i b u t e  about ha1 f the  l e t h a l  damage when these 

bac te r ia  a r e  i r r a d i a t e d  under aerobic cond i t ions .  

These two inves t iga t i ons  w i t h ' v e g e t a t i v e  bac ter ia ,  w i t h i n  

themselves, provide a  cons is ten t  view o f  the r o l e  played by OH 
. . 

r a d i c a l s  both i n  O2  and i n  anoxia and they p-esented several 

chemical models t h a t  were reasonable r e f l e c t i o n s  o f  the s t a t e  o f  

r a d i a t i o n  chemical knowledge o f  t h a t  time. 

I The data from the  two b a c t e r i a l  s tudies can be compared by 

p l o t t i r i g  them on the  same graph. ~ i ~ u r e  9  shows such a  p l o t  a f t e r  

1 
a r e c a l c u l a t i o n  o f  the  aerobic data o f  Johansen and Howard- 

Flanders (1965), w i thout  the n i t r o u s  ox ide  p o i n t ,  t o  conform t o  

the ana lys i s  method used by Sanner and P i h l  (1969). More recent 

values o f  the reac t i on  r a t e  constants (ROSS and Ross 1977) were 

used, and the  po in ts  have s h i f t e d  somewhat from t h e i r  o r i g i n a l  

pos i t i ons .  The l i n e  i n  t h i s  f i g u r e  i s  the same as t h a t  from 

Figure 7 (Sanner and P i h l  1969). The f i t  o f  the aerobic data 

po in ts  t o  the  theo re t i ca l  l i n e  i s  no worse than the f i t  o f  the 

o r i g i n a l  anaerobic po in ts .  

I n  V i  t r o  Mamma1 i'an ' C e l l  'Resul ts  -- - 

Much o f  the  groundwork on the o x i c  s e n s i t i z a t i o n  o f  mammalian 

c e l l s  and on the poss ib le  r o l e s  played by OH rad ica l s  comes from 
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the work o f  Chapman and h i s  col leagues. They tested several r a d i -  

a t i o n  p ro tec to rs  over a range o f  concentrat ions, usua l l y  up t o  the 

l i m i t  se t  by t o x i c i t y  o f  the added agent (chapman e t  a l .  1975). 

Dimethyl sul f ox ide  (DMso) i s  one o f  the  very few compounds t h a t  can 

be used a t  h igh  concentrat' ions i n . c u l t u r e s . o f  mammalian c e l l s ,  and 

f o r  t h i s  reason, unfor tunate ly ,  DMSO must 'be used i n  the s tud ies  

concerning OH rad ica l  involvement when c e l l s  a re  i r r a d i a t e d  

i n  v i t r o .  Chapman and h i s  col leagues found t h a t  DMSO can prov ide 

considerable p r o t e c t i o n  f o r  c e l l s  i r r a d i a t e d  i n  a i r ;  DMSO a l s o  . 

p ro tec ts  anoxical  l y  i r r a d i a t e d  c e l  l s ,  a1 though the magnitude o f  

the e f f e c t  i s  much smaller.  DMSO has a l s o  been tested i n  b a c t e r i a l  

spores  wing 1978), where, i n  cont ras t ,  i t  was found t o  be a very 

potent  r a d i a t i o n  sensi t i t e r .  'However, spores t rea ted w i t h  DMSO 

and then washed before i r r a d i a t i o n  i n  water s t i l l  showed v i r t u a l l y  

the same response noted i f  DMSO had no t  been removed before  i r r a d -  

i a t i o n .  Thus, t h i s  s e n s i t i z a t i o n  seems a t t r i b u t a b l e .  t o  changes 

DMSO causes i n  spore "physiology." These u n i d e n t i f i e d  changes, 

whi.le c l e a r l y  no t  t o x i c ,  seem responsib le f o r  the g r e a t l y  increased 

responses t o  i r r a d i a t i o n ,  both i n  0 and i n  anoxia, when DMSO was 2 

present.  To our  knowledge, t h i s  "washed out"  experiment has not  

been done w i t h  mammalian c e l l s .  

Chapman and h i s  co-workers (Chapman e t  a l .  1973) have a l so  

observed t h a t  cysteamine was, i n  f a c t ,  a b e t t e r  p ro tec to r  o f  mam- 

mal ian c e l l s  than DMSO. Lower concentrat ions o f  cysteamine, 

tes ted i n  O2 and i h  anoxia, gave as much p r o t e c t i o n  as h igher 
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concentrat ions o f  DMSO; i n  add i t i on ,  the maximum amount o f  pro- 

tec t i on ,  i n  both gases, was greater  from c.ysteamine. They con- 

cluded tha t ,  l i k e  DMSO, cysteamine protected by scavenging 'OH; 

however, another r a d i a t i o n  chemical process, perhaps r e p a i r  

through hydrogen-donation, i s  a l s o  poss ib le  w i t h  cysteamine. This 

may c o n f t i c t  w i t h  the  r e s u l t s  Sanner and P i h l  observed w i t h  bac- 

t e r i a  ( ~ a n n e r  and P i h l  1969). They found t h a t  a1 1 the p r o t e c t i o n  

from cysteamine could be accounted f o r  soley by 'OH removal. 

0 t h e r . a d d i t i v e s  which Chapman and h i s  colleagues tested 

showed o n l y  smal.1 ab i  1 i t i e s  t o  p ro tec t  a t  concentrat ions. lower: 

than the 1 i m i t s  se t  by t o x i c i t y .  The r e s u l t s  o f  t h e i r  survey 

(Chapman e t  al.. 1975) a re  i l l u s t r a t e d  i n  ~ i ~ u r e  10. l  he c e l l s  

were i r r a d i a t e d  i n  c u l t u r e  medium.) To analyze and t o  t e s t  f o r  an 

involvement o f  OH r a d i c a l s  i n  l e t h a l  processes, the authors i rnpl i -  

c i  t l y  assumed t h a t  .these compounds would a1 1 p r o t e c t  t o  the  same 

minimum response l e v e l  -- the  l eve l  seen w i t h  o n l y  DMSO -- i f  tox-  

i c i t y  were no t  a 1 i m i t i n g  f a c t o r .  They p l o t  the rec iproca l  o f  the  

a d d i t i v e  concentrat ion f o r  50% o f  the e f f e c t  DMSO had against  the 

r a t e  constant. f o r  'OH scavenging by the s p e c i f i c  a d d i t i v e .  .The 

r e s u l t ,  shown i n  the  r i g h t  panel o f  F igure 10, i s  a s t r a i g h t  l i n e  

having the expected slope o f  +1.0. The r e l a t i o n s h i p  they ob,served 

provided the  basis f o r  the conclusion tha t ,  i n  a i r ,  OH rad i ca l  

removal p ro tec ts  aga ins t  0 -dependent damage. Based on these.and 
2 

e a r l i e r  data (chapman e t  a l .  1973.1, they est imated t h a t  f o r  i r r a d -  

i a t  ion i n  a i r  about 62% o f  the  l e t h a l  damage i n  mammal ian c e l l s  



r e s u l t s  from the ac t i ons  o f  OH r a d i c a l s .  The small amount o f  

p r o t e c t i o n  they saw when DMSO-treated c e l l s  were i r r a d i a t e d  an- 

o x i c a l l y  ( c f .  F igure . l o )  was a t t r i b u t e d  to.  OH rad i ca l  removal, 

a l though anoxic experiments,, l i k e  those f o r  a i r  shown i n  F igure 

10, were n o t  repor ted.  The authors est imated t h a t  i n  anoxia 

about 30% o f  the  damage r e s u l t s  from the  e f f e c t s  o f  OH rad i ca l s ,  

an es t imate  t h a t  seems somewhat high. 

These data by Chapman and h i s  col leagues, F igure 10, can be 

re-analyzed and compared w i t h  the  r e s u l t s  from the  aerobic and 

anaerobic b a c t e r i a l  s tud ies ,  which were c o l l e c t e d  i n  F igure  9. 

Table I shows the  ca l cu la ted  values f o r  " r e l a t i v e  s e n s i t i v i t y "  

and "'OH scavenging e f f i c i e n c y ' '  t h a t  were ca l cu la ted  from the 

o r i g i n a l ,  mammalian c e l l  data (chapman e t  a l .  ,1975). Comparison 

w i t h  the  b a c t e r i a l  c e l l  da ta .  i n  F igure  9  shows a  remarkably good 

agreement. 

Thes'e r e s u l t s  can a l s o  be compared w i t h  those i n  F igure  4, 

where, w i t h  b a c t e r i a l  spores, 'OH removal i s  c l e a ' r l y  responsib le 

f o r  the observed p r o t e c t i o n .  According t o  F igure 4, a kc o f  - 
4 - 1 

about 10 seconds . w i l l  achieve 50% o f  the maximum amount o f  

5 pro tec t i on ,  a  scavenging e f f i c i e n c y  almost 10 times lower than 

t h a t  needed f o r  p r o t e c t i o n  through 'OH removal i n  the two o r -  

ganisms compared i n  F igure  9  and Table I .  (The ca l cu la ted  p o i n t  

4  
f o r  spores i s  " r e l a t i v e  s e n s i t i v i t y "  = 0.89; " kcso%" = 10 sec- 

- 1 
onds .) 
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This comparison o f  data from spores, vegeta t ive  bac ter ia ,  

I and mammalian c e l l s  ra i ses  perplex ing quest ions and provides few 

s a t i s f a c t o r y  answers. 'OH removal does no t  p ro tec t  spores i r r a d - .  

. ia ted  under e i t h e r  anoxic o r  well-oxygenated cond i t ions ;  however, 

over an intermediate range o f  O2 concentrat ions -- i n  spores -- 
simple ' O H  removal w i  1 1  p ro tec t .  I n  cont ras t ,  result 's from sev- 

e r a l  s tudies i nd i ca te  t h a t  'OH removal w i l l  p ro tec t  vegeta t ive  

I bac te r ia  i r r a d i a t e d  under e i t h e r  anoxic o r  well-oxygenated con- 

d i t i o n s .  The amount o f  p ro tec t i on  seen w i t h  vegeta t ive  bac ter ia  

I under these two cond i t i ons  seems t o  be a  simple func t i on  o f  t he  

I e f  f i c  i ency ' f o r  OH rad i ca 1 remova 1 ; equa 1 ' OH scaveng i ng e f  f i c  i en- 

c i e s  w i l l  produce equal amounts o f  p ro tec t i on .  I n  spores, 'OH 

damage i s  c l  ear 1 y  oxygen-dependent (or ,  more genera 1 1 y  , I1sens.i - 
tizer-dependent"). I n  s p i t e  o f  t h i s  apparent ly  unique o r i g i n  

f o r  an 'OH involvement, we do not  understand why the  'OH scaven- 

g ing  e f f i c i e n c y  needed t o  p r o t e c t  vegeta t ive  bac te r ia  i s  about 

5 1 0  t imes greater  than t h a t  needed i n  spores f o r  t he  same r e l a -  

t i v e  amount o f  p ro tec t i on .  

The same conclus ion regarding the  importance o f  OH rad i ca l  

removal has a l s o  been reached from s tud ies  w i t h  mammalian c e l l s :  

i t  seems t h a t  simple OH r a d i c a l  removal p ro tec ts .  I n  t h i s  case, 

however, the maximum amount o f  p r o t e c t i o n  seen i n  the  anoxic 

studies i s  much less  than t h a t  p r o t e c t i o n  seen i n  experiments 

which used a i r - e q u i l i b r a t e d  c e l l s .  We do not  understand.why 
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these two experimental cond i t ions  would g i ve  s i m i l a r  r e s u l t s  w i t h  

vegeta t ive  bac te r ia  but  d i f f e r e n t  r e s u l t s  w i t h  mammalian c e l l s ,  

e s p e c i a l l y  since, i n  both k inds o f  c e l l s ,  t h e  r o l e  played by OH 

r a d i c a l s  i s  bel ieved the  same. On the  o ther  hand, under aerobic 

cond i t ions ,  the  same OH scavenging e f f i c i e n c y  does g i ve  about 

the  same r e l a t i v e  amount o f  p r o t e c t i o n  w i t h  e i t h e r  vegeta t ive  

bac te r ia  o r  mammal ian c e l l  s. 

Wi th  the  in format ion  present ly  a v a i l a b l e  from these , th ree 

b i o l o g i c a l  systems, i t  appears t h a t  O2 need not  s e n s i t i z e  these 

c e l l  s  through the same chemical pathways. However, before ac- 

cept ing  t h i s  conclusion, we should c a r e f u l l y  re-examine the i n -  

format ion on which i t  i s  based. We shoul'd remember. t h a t  there  

have been no comparative s tud ies  where the  same add i t i ves  were 

r i g o r o u s l y  tes ted i n  a l l  th ree systems. Th is  i s  p a r t l y  due, o f  

course, t o  t o x i c i t y  problems w i t h  vegeta t ive  bac te r ia  and mammal- 

ian c e l l s .  We u rgen t l y  need t h i s  k ind  o f  experimental data. 

With spores, we found t h a t  var ious  OH r a d i c a l  scavengers d i d  

not  always have the same e f f e c t s ,  and consequently, they could 

not  be used interchangeably. I n  s p i t e  of t h e  c o r r e l a t i o n  drawn 

between p r o t e c t i o n  and OH rad i ca l  scavenging i n  both vegeta t ive  

bac te r ia  and mammalian c e l l s ,  there  i s  sure ly  enough experimen- 

t a l  unce r ta in t y  t o  emphasize the  need f o r  a d d i t i o n a l  data. 
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SUMMARY 

Th is  survey has focused . p r i m a r i l y  on 0  e f f e c t s  i n  th ree  
2  

b i o l o g i c a l  systems, a l l  tes ted  i n  suspension: b a c t e r i a l  spores, 

vegeta t ive  b a c t e r i a l  c e l l s ,  and mammalian c e l l s .  We have exam- 

ined in fo rmat ion  from these systems which shows t h a t  0  has more 
. 2  

than one process throogh which i t  can ac t ,  and we have looked a t  

the e f f e c t s  var ious  p ro tec to rs  have on oxygen's a b i l i t y  t o  sen- 

s i t i z e .  While s e l e c t i n g  from.among the many s tud ies  w i t h i n  

these gu ide l ines ,  we have l a r g e l y  ignored the s tud ies  which t e s t  

0 i n  combination w i t h  o the r  r a d i a t i o n  s e n s i t i z e r s .  There i s  
2  

considerable in fo rmat ion  from these studies,  but,  w i t h i n  the 

i n t e n t i o n a l l y  l i m i t e d  scope of  t h i s  survey, we cannot cover t h i s  

in fo rmat ion  here. 

Studies w i t h  b a c t e r i a l  spores prov ide  c l e a r  evidence t h a t  

m u l t i p l e  components t o  oxygen-dependent r a d i a t i o n  s e n s i t i z a t i o n  

e x i s t .  Studies w i t h  mammalian c e l l s  a l s o  show t h a t  a t  l e a s t  two 

oxygen-dependent s e n s i t i z a t i o n  processes can be dist inguished, 

a1 though we have n o t  y e t  learned how t o  r e l a t e  the components 

o f  s e n s i t i z a t i o n  from these two very d i f f e r e n t  organisms. S i m i -  
i n  suspension 

l a r  studi 'es w i t h  vegeta t ive  bac te r i a  have'not  resolved o x i c  sen- 
A 

s i  t i z a t i o n  i n t o  components, a1 though d i f f e r e n t  experimental tech- 

niques may y e t  do so. I t  i s  essen t i a l  t o  emphasize t h a t  the  ob- 

se rva t i on  noted almost 20 years ago w i t h  very d ry  b a c t e r i a l  spores 
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I - 

now c l e a r l y  app l i es  t o  mammalian c e l l s  i r r a d i a t e d  i n  v i t r o :  there  

I i s  more than one k i n d  o f  oxygen-dependent damage. 

I We have examined the r o l e s  water-der,ived r a d i c a l s  might p lay  

i n  r a d i a t i o n  s e n s i t i v i t y  and, s p e c i f i c a l l y ,  i n  s e n s i t i z a t i o n  by 

02. , We f i n d  tha t ,  among the pr imary r a d i o l y t i c  products, OH r a d i -  

1 c a l s  a r e  c l e a r l y  imp1 ica ted  i n  damage i n  a l l  th ree  b i o l o g i c a l  ~ 
t e s t  systems. However, we must exerc ise  g rea t  c a r e . i n  drawing 

conclus ions here, s ince  the s p e c i f i c  r o l e s  proposed f o r  OH r a d i -  

c a l s  a r e  d i f f e r e n t  i n  these organisms. 

I n  b a c t e r i a l  spores, 'OH removal i n  i t s e l f  does n o t  p r o t e c t  

i n  anoxia' o r  i n  h igh  concentrat ' ions o f .  0 .  i f  there i s  no o the r  2 

s e n s i t i v i t y - m o d i f y i n g  agent present.   any organic and inorganic 

s e n s i t i z e r s  have e f f e c t s  which can be p a r t i a l l y  o r  completely re-  

moved by agents which scavenge OH rad i ca l s . )  With spores, 'OH 

removal over a l i m i t e d  in termediate range o f  0 concentrat ions 
2 

w i l l ,  however, p ro tec t .  Results o f  t e s t s  w i t h  those agents which 

p r o t e c t  i n  anoxia and i n  a i r  show t h a t ,  a l though these agents 

scavenge OH rad i ca l s ,  t h a t  i s ,  i n  i t s e l f , . n o t  the p r o t e c t i n g  

step; instead, 'OH scavenging probably r e s u l t s  i n  the fo rmat ion  

o f  the  ac tua l  p r o t e c t o r .  

I n  bac te r i a ,  r e s u l t s  o f  surveys t o  t e s t  the  e f f e c t s  var ious  

r a d i c a l  scavengers have on r a d i a t i o n  s e n s i t i v i t y  and on the sensi -  

t i z a t i o n  by 0 have provided the  bas is  f o r '  the suppos i t ion  t h a t  2 

'OH removal w i l l  p r o t e c t  bo th  i n  anoxia and i n  the presence o f  02. 
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Many authors have suggested t h a t  OH r a d i c a l s  reac t  w i t h  a c e l l u -  

l a r  t a rge t  molecule and leave a r a d i c a l  s i t e ;  t h i s  i s  the  s i t e  

which can then reac t  w i t h  0 t o  cause damage. I t  i s  widely be- 
2 

1 ieved and o f t e n  expressly s ta ted t h a t  DNA i s  the, 1 i k e l y  c e l  l u -  

l a r  t a r g e t  f o r  OH rad i ca l  a t tack .  

I n  mammalian c e l l s ,  there  a r e  severe d i f f i c u l t i e s  i n  using 

r a d i c a l  scavenging agents a t  the  necessary h i g h  concentrat ions.  

Nevertheless, based on the informat ion which can be obtained, a 

reac t i on  scheme, s i m i l a r  t o  t h a t  proposed f o r  bac ter ia ,  has been 

suggested f o r  02-dependent s e n s i t i z a t i o n ;  again, i t  i s  expressly 

s ta ted t h a t  DNA - i s  the  l i k e l y  ta rge t  f o r  c e l l u l a r  damage. 

A re-analys is  o f .  the  data from these ,b io log i ca l  systems sug- 

gests t h a t  these conclusions may not  be' as f i . r m  as we had thought. 

From the r e s u l t s  w i t h  the  d i f f e r e n t  k inds o f  c e l l s ,  we see t h a t  

the  proposed r o l e s  f o r  oxygen-dependent sens i t i za t  ion, and es- 

p e c i a l l y  f o r  t he  involvement o f  OH rad ica l s ,  a r e  not,complemen- 

ta ry .  Before we accept the  conclusion t h a t  O2 operates through 

d i f f e r e n t  chemical pathways i n  these organisms, we should.care-  

f u l l y  re-examine the data on which our conclusions have been 

based . 
We must remember when we use an OH rad ica l  scavenger and 

observe p r o t e c t i o n  t h a t  we have no t  proved t h a t  'OH removal i s  

the  s p e c i f i c  reac t i on  responsib le f o r  the pro tec t ion ;  ne i the r  

have we proved t h a t  OH r a d i c a l s  a re  damaging t o  i r r a d i a t e d . c e l l s .  
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Thes'e conclusions-may be e n t i r e l y  t rue ,  but our simple observa- 

t i o n  o f  p r o t e c t i o n  has not  establ  ished them. We must a l s o  remem- 

ber t h a t  f o r  many years most analyses. were based on the  assump- 

t ion  t h a t  on1 y one k ind  o f  d2-dependent s e n s i t i z a t i o n  process 

ex i s t s .  C lea r l y  0 can s e n s i t i z e  b a c t e r i a l  spores, mammalian 2 

c e l l  s, and very 1 i k e l y  b a c t e r i a l  c e l l  s  as we1 1 ,  through more than 

one chemical o r  physical  process. Our tak ing  the  simplest case o f  

assuming o n l y  one e f f e c t  o f  02, b u i l d i n g  models, and drawing con- .  

c l  us ions may no t  have been as p r o f  i tab1 e as we. had hoped. Perhaps 

i t  i s  t ime t o . d i s c a r d  t h i s  simplest case i'n our modei-bui ld ing and 

take a more rea l  i s t i c ,  a l though necessar i l y  more complex, view o f .  

how O2 Bc ts  t o  s e n s i t i z e  c e l l s .  
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Table I .  'OH Scavenging E f f i c i e n c y  f o r  h a l f  maximal p ro tec t i on .  

o f  Chinese hamster c e l l s  i r r a d i a t e d  i n  v i t r o .  

A  I R/ANOX I A  ADDITIVE 
RELAT l VE ' OH 

SENSITIVITY (x  
. . 

A i r  DMSO 0.71, 8.4 

A i r  Iso-butanol 0.71 7..2 

A i r  Ethy lene g l y c o l  0.71 11.0 

A i r  ' t -Butanol - 0.71 6.6 

Anox i a  DMSO 0.91 8.4 
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F igure  1 .  Radiation' s e n s i t i v i t y  a t  p a r t i c u l a r  [O 1 r e l a t i v e  t.0 
2 

.the maximal s e n s i t i v i t y  seen i n  0 f o r  the p a r t i c u l a r  system. 
2 

The symbols a re  as. f o l  lows: - B.. megaterium spores (Aus) -- spores 

i r r a d i a t e d  i n  H 0 w i t h  50 kVp x-rays  w win^ and powers 1976) ; 
2 .  

%$ 

V-79 -- Chinese hamster c e l l s  i r r a d i a t e d  i n  c u l t u r e  medi.um w i t h  

. . 
250 kVp x-rays (chapman e t  a1 . 1974) ; ,B. megateri urn spores 

60 . (MAN) -- spores i r r a d i a t e d  i n  phosphate b u f f e r  w i th .  Co y-rays 

( ~ a l l e n t i ' r e  e t  a l .  1.972); S h i g e l l a  -- i r r a d i a t e d  i n  phosphate 

b u f f e r  w i t h  200 kVp x-rays (~oward-Flanders and Alper 1957) ; 

S e r r a t i a  -- i r r a d i a t e d  i n  b u f f e r  w i t h  200 kVp x-rays ( ~ e w e y  1963) ; 

V-79-7538 -- Chinese hamster c e l l s  i r r a d i a t e d  i n  c u l t u r e  medium 

w i t h  6 0 ~ o  y-rays ( ~ i l l a r  e t  a l .  1979). The s o l i d  l i n e  i s  the  

response f o r  spores as presented by Ewing and Powers 1976. 
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Figure 2. The r a d i a t i o n  s e n s i t i v i t y  o f  - B. rnegaterium spores as 

a func t i on  o f  0 concentrat ion (Ewing and Powers 1976). I r r a d i -  
2 

a t i o n  was w i t h  50 kVp x-rays. D i f f e ren t  [02] were prepared by 

adding measured amounts o f  N t o  a c y l i n d e r  conta in ing  0 The 2 2 ' 

r e s u l t i n g  [O ] was measured w i t h  a gas chromatograph. (see 
2 

Powers and Cross 1970 f o r  procedural d e t a i l s . )  
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Figure 3 .  Anoxic r a d i a t i o n  s e n s i t i v i t y  o f  B .  megaterium spores, - 
suspended i n  various concentrat ions.of  the addi t ives  noted. I r -  

r a d i a t i o n w a s  w i t h  50 kVp x-rays. (Reproduced fromEwing 1976b.) 
. . 
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Figure 4. Changes i n  the r a d i a t i o n  s e n s i t i v i t y  o f  B. megaterium. - 
spores i r r a d i a t e d  i n  l o e 5  M 0 w i t h  var ious concentrat ions o f  2 

several a lcoho ls  a l s o  present.  The abscissa shows the 'OH scav- 

enging e f f i c i ency ,  the product .o f  the s p e c i f i c  a lcohol  concentra- 

t i o n  and the  bimolecular r a t e  constant f o r  i t s  reac t i on  w i t h  )OH. 

(~eproduced from E w i  ng 1978a. ) 
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F igure  5. Changes i n  the r a d i a t i o n  s e n s i t i v i t y  o f  B .  megaterium - 
spores, i r r a d i a t e d  i n  water w i t h  SO kVp x-rays, under th ree  r e f -  

erence cond i t ions  when d i f f e r e n t  concentrat ions o f  methanol (M~oH),  

are eresent.  The lower h o r i z o n t a l  1 i ne  shows the  response i n  an- 

o x i a  w i t h  no a d d i t i v e  present;  the  symbols 0 show the p r o t e c t i v e  
. . 

e f f ec t s  MeOH has i n  anoxia  wing 1976b). The middle h o r i z o n t a l  

l i n e  shows the response from the  Low-0 Component o f  damage; i n  
2 

the [02] used f o r  these t e s t s ,  MeOH has a l ready removed the  'OH 

Component of damage (c f .  F igure 4) a t  concentrat ions lower than 

those shown i n  t h i s  f i gu re .  The symbols A show the  reduct ion  i n  

the response w i t h  h igher  [MeOH]  wing, unpubl ished) . The upper 

h o r i z o n t a l  l i n e  shows the response ' in  a i r  w i t h  no a d d i t i v e  pr'es- 

en t ;  the symbols show the reduct ion i n  t h i s  response when MeOH 

i s  added . . a t  h igher  and h.igher concentrat  ions (Ewing ,1976a). Re- . 
. . 

f e r  t o  the t e x t . f o r  a d iscussion o f  these r e s u l t s .  
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F igure  6. Changes i n  the r a d i a t i o n  s e n s i t i v i t y  of  B. megaterium - 
spores, i r r a d i a t e d  i n  water w i t h  50 kVp x-rays, under f o u r  r e f e r -  

ence cond i t i ons  when d i f f e r e n t  concentrat ions o f  ethanol ( E ~ O H )  

are  present.  The lower h o r i z o n t a l  l i n e  shows the response i n  

anoxia w i t h  no a d d i t i v e  present;  the symbols @ show the protec-  
, 

t i v e  e f f e c t s  EtOH has i n  anoxia ( ~ h i n ~  1976b). The middle h o r i -  

zonta l  l i n e  shows the response from the Low-0 Component o f  dam- 
2 

age; i n  the [02] used f o r  these tes ts ,  E t O H  has a1 ready removed 

the 'OH Component of damage (c f .  F igure 4) a t  concentrat ions '. 

lower than those shown i n ' t h i s  Figure. The symbols A show the 
. . 

e f f e c t s  on the Low-O2 Component of  oxygen-dependent damage when. 

d i f f e r e n t  [EtOHI's a re  used (Ewing, unpubl ished). The. uppermost 

h o r i z o n t a l  l i n e  shows the  response i n  a i r  w i t h  no a d d i t i l e  pres- 

en t  ; the symbols. H show the changes i n  rad, ia t  ion sens i t i  v i  ty when 

d i f f e r e n t  [ E ~ O H ] ' ~  a re  .present.  Arrows p o i n t i n g  t o  the  o rd ina te  

yhow the  response i n  5.5% 0 2 w i t h  no a d d i t i v e  present and a l s o  

the response i n  5.5% 0 when 10-' t -butanol  i s  added. The symbols 2 - 

0 show the changes i n  response when d i f f e r e n t  [ E ~ O H ]  ' s  a re  tes ted  

i n  5.5% 02. Refer t o  the  t e x t  f o r  a d iscussion o f  these resu l t ' s .  
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Figure 7. A b i l i t y  o f  d i f f e r e n t  compounds t o , p r o t e c t  E.  c o l i  .B - -  
a t  0' C,as a func t i on  o f  t h e i r  r a t e ' o f  i n t e r a c t i o n  w i t h  'OH. '(A) 

and w i t h  e- ( 0 ) .  respec t i ve l y  (sannkr and P i h l  1969). The re la -  
. aq 

I 
t i v e  s e n s i t i v i t y  observed i n  the  presence o f  the compounds i s  

I 
p l o t t e d ' v e r s u s  the  . product . of the  p ro tec to r  concentrat'.ion and 

the  respect ive second-order r a t e  constants f o r  the i n t e r a c t i o n  

~ 
I 

' o f  t he  d i f f e r t n t  p ro tec to rs  w i t h  .OH and w i t h  e- . The f u l l y .  
aq 

I drawn curve i n  A i s  a  t h e o r e t i c a l  curve c a l c u 1 a t e d . a ~  descri,bed 

i n  the  t e x t .  The r a d i a t i o n  s e n s i t i v i . t y  i n  the absence of added 

compounds was se t  equal t o  1. A l l  values are  based on dose- 

e f f e c t  curves. Abbreviat ions: Ad, adenine; Cyt, cytosine;. EtOH, 

e thanol ;  Form, sodium formate; Glu, glucose; Gly, g l yce ro l ;  Glygly,  . . 

gy l cy lg l yc ine ;  MeOH, methanol;'RSH, cysteamine; Th, thymine. 

. ..  
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Figure 8. P ro tec t i on  o f  - -  E. co l  i :B/r (~ohansen.and Howard-F1.anders 

.. 1965). The e f f e c t i v e  concentrat ions o f  var ious substances i n  pro- 

t e c t i n g  bac te r ia  aga ins t  x - i r r a d i a t i o n  a r e  p l o t t e d  against  data 

f o r  the  reac t  ion ra tes  of these substances w i t h  hydroxy 1 rad i ca l s  . . 

I ' 

( top  panel) and w i t h  the  reducing species (bottom panel). Oxygen 

- 2 
a t  2 x M, carbon d iox ide  a t  7 x 10 M, and sodium n i t r a t e  

a t  8 x 10-I M d i d  no t  p r o t e c t  bac ter ia ;  these substances a r e  plot- 
. . 

ted below the in te rcep t  i n  both f i gu res .  
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~ i ~ u r e  9 .  A re -ca l cu la t i on  and comparison o f , t h e  e f fec ts  added 

1 OH rad i ca l  scavengers have on the  anoxic (Sanner.and P i h l  1969) 

. and aerobic (Johansen and Howard-Fl anders 1965) r a d i a t i o n  sens i - 
6 .  

t i v i  t y  o f  E. c o l  i . More recent values o f  t h e  scavengers ' reac- - -  

I t i o n  r a t e  constants w i t h  OH rad i ca l s  were used (Ross and Ross 

1977) f o r  t h i s  comparison, and some o f  the data po in ts .  a re  s h i f t -  

ed from t h e i r  o r i g i n a l  s i t e s  ( c f .  Figures 7.and 8) .  More recent 
- 

values f o r  e scavenging (Anbar e t  a1 : 1973) were no t  s u f f i c i e n t -  
aq 

l y  d i f f e r e n t  from' those o r i g i n a l l y  used t o  warrent our r e p l o t t i n g  
. . . . 

1 

I those data. As the t e x t  expla ins;  t he  aerobic t e s t  w i t h  NO was 
. . 

omi t ted  from t h i s  comparison. 
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F igure  10. a) The chemical radioprotect ' ion by va.rious 'OH scaven- 

gers o f  the mu.1.t i - t a r g e t  i n a c t i v a t i o n  r a t e  o f  a i r - sa tu ra ted  Chi - 
nese hamster c e l l  s; b) The c o r r e l a t i o n  between the  rec i proca 1 o f  

p ro tec to r  concentrat ion e f f e c t i n g  50% o f  the maximum radioprotec-  
. . ,: , 

. . 

t i o n  and the  absolute r a t e  constants o f  'OH w i t h  the  s p e c i f i c  . . 

chemical p ro tec to r  (chapman e t  a1 . 1975). 
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