

Idaho National Engineering Laboratory

February 1998

Main Drive Selection for the Windstorm Simulation Center

MAR 1 3 1998 OSTI

J. M. Lacy J. S. Earl

LOCKHEED MARTIN

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Main Drive Selection for the Windstorm Simulation Center

J. M. Lacy J. S. Earl

Published February 1998

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Idaho National Engineering and Environmental Laboratory
The Partnership for Natural Disaster Reduction
Lockheed Martin Idaho Technologies Company
Idaho Falls, Idaho 83415

MASTER

Prepared for the
U.S. Department of Energy
Idaho Operations Office
Under DOE Idaho Operations Office
Contract DE-AC07-94ID13223

DISCLAIMER

Portions of this document may be illegible electronic image products. Images are produced from the best available original document.

ABSTRACT

Operated by the Partnership for Natural Disaster Reduction, the Windstorm Simulation Center (WSC) will be a structural test center dedicated to studying the performance of civil structural systems subjected to hurricanes, tornadoes, and other storm winds. Within the WSC, a bank of high-power fans, the main drive, will produce the high velocity wind necessary to reproduce these storms. Several options are available for the main drive, each with advantages and liabilities. This report documents a study to identify and evaluate all candidates available, and to select the most promising system such that the best possible combination of real-world performance attributes is achieved at the best value.

Four broad classes of candidate were identified: electric motors, turbofan aircraft engines, turboshaft aircraft engines, and turboshaft industrial engines. Candidate systems were evaluated on a basis of technical feasibility, availability, power, installed cost, and operating cost.

iv

EXECUTIVE SUMMARY

Operated by the Partnership for Natural Disaster Reduction, the Windstorm Simulation Center (WSC) will be a structural test center dedicated to studying the performance of civil structural systems subjected to hurricanes, tornadoes, and other storm winds. Within the WSC, a bank of high-power fans, the main drive, will produce the high velocity wind necessary to reproduce these storms. Several options are available for the main drive, each with advantages and liabilities. This report documents a study to identify and evaluate all candidates available, and to select the most promising system such that the best possible combination of real-world performance attributes is achieved at the best value.

To identify candidates, minimum performance criteria were developed, and a request for information was posted in four different sections of the Commerce Business Daily. The literature was surveyed, and phone calls were placed to a multitude of vendors.

Four broad classes of candidates were identified: electric motors, turbofan aircraft engines, turboshaft aircraft engines, and turboshaft industrial engines.

Candidate systems were evaluated on a basis of technical feasibility, availability, power, installed cost, and operating cost.

The application of turbofan aircraft engines was rejected on the basis of technical feasibility. These engines generate very high temperature airflows, and modifications to reduce the temperature to acceptable levels would be a lengthy and expensive process.

Electric motor systems are feasible, but have several disadvantages, ranking third overall. The entire system, including the power supply, motors, gear-boxes, and propellers, would have to be built from scratch. Some re-invention of liquid rheostat controller technology may be necessary for appropriately sized motors, and the WSC may require significantly more structure to house the massive components. The lead time to bring such a system on-line may be three years or more, at an installed cost of \$200M. Supplying energy to the facility would cost another \$2M/month.

Application of industrial turboshaft (gas turbine) engines is attractive technically, but less so from a cost and schedule perspective, earning a rank of second. A wide variety of these compact, reliable, fuel efficient engines are available, yielding a broad choice of engine sizes and configurations. However, this would be a novel application for this powerplant, and a learning curve should be anticipated. Both propeller and gearbox would be specially designed and fabricated, requiring up to two years. Installed cost is estimated between \$140M and \$194M.

The result for aircraft turboshaft engines varied significantly from model to model. U.S. made engines appear to be highly optimized for military flight service, and are consequently somewhat expensive. Because the individual

engines deliver relatively low power, a large number would be required for the main drive, impacting feasibility, installed cost, and operational cost.

The NK-12MV, manufactured in Russia, offers a variety of attractive features. These units have a long service history, both in the air and on the ground, with good reliability statistics (Appendix E). Engines, gearboxes, and propellers are extant, and delivery could occur within months of an order. They produce 11.2 MW each, and run relatively cool, simplifying exhaust management. With modifications, they can burn natural gas if desired. Finally, the installed cost for these units is estimated at \$32M, approximately \$110M less than the next cheapest alternative. This combination of simplicity of application, low cost, and possibly rapid delivery earned the NK-12MV a ranking of first.

However, more detailed information about the operational characteristics, maintenance, and life cycle cost must be ascertained prior to the final decision to use this unit as the WSC main drive. It is recommended that

- 1. An in-depth investigation of the NK-12MV will be initiated, including ground-based operating characteristics, detailed life cycle costs, and availability.
- 2. WSC analysis, design, and project management studies assume a main drive system composed of NK-12MV units until the detailed analysis substantiates the unit's suitability for this application.
- 3. If the NK-12MV is determined to be unsuitable, then the industrial turboshaft engine should be investigated as the next logical choice.
- 4. Finally, the possibility of a hybrid system should be explored. In this case, a core of 2 4 electric motor driven fans might be placed in the center of the array, providing airflow for checkout and low-speed tests. This arrangement would avoid the large infrastructure costs of a purely electric system, while allowing a simple and rapid means of performing low velocity tests, calibration, and instrument check-out.

ACKNOWLEDGMENTS

The authors would like to thank the many individuals who assisted us in identifying and investigating options for the Windstorm Simulation Center main drive. Their expertise and experience were invaluable to this effort. The names of these contributors are given in Appendix C.

We would also like to thank our technical review team for their perspective and insight, to which this document owes much. Reviewers were

- Mr. J. A. Alberico, Procurement Agent, Lockheed Martin Idaho Technologies Co. (LMITCO), Idaho Falls, ID
- Mr. J. A. Dearien, Mechanical Engineering, LMITCO, Idaho Falls, ID
- Mr. W. Johnson, Sverdrup Technology Inc./ Technology Group, Tullahoma, TN
- Mr. T. K. Larson, Fluid Mechanics, LMITCO, Idaho Falls, ID
- Dr. D. G. Moore, Chief Engineer, LMITCO, Idaho Falls, ID
- Mr. G. L. Parlier, Systems Engineering, LMITCO, Idaho Falls, ID
- Mr. M. L. Perry, Lead Projects Engineer, Lockheed Martin Low Speed Wind Tunnel, Smyrna, GA
- Mr. W. D. Richins, Applied Mechanics, LMITCO, Idaho Falls, ID
- Mr. G. D. Seifert, Ascension Island Wind Energy Project Manager, LMITCO, Idaho Falls, ID

CONTENTS

ABS	TRAC	Т		iii						
EXE	CUTI	E SUMM	ARY	v						
ACI	KNOW	LEDGMEN	TTS	vii						
1.	INTI	RODUCTION								
2.	SYSTEM DESCRIPTION									
	2.1	General		1						
	2.2	Main Driv	ve Configuration	2						
3.	MAI	MAIN DRIVE REQUIREMENTS								
	3.1 Airflow									
		3.1.2 T 3.1.3 A 3.1.4 A	est Section Airflow Speed est Duration	2 2 2 3 3						
	3.2	ental Considerations	3							
		3.2.2 P	ombustion Products and Airborne Pollutants	3 3 3						
	3.3	3.3 Construction, Maintenance, and Operations								
			vailabilityystem Control Issues	3						
4.	GY AND CONSIDERATIONS	3								
	4.1	Candidate Identification								
	4.2	Ranking Criteria								
	4.3	Propellers and Drive Gears								
5.	ELECTRIC MOTORS									
	5.1	1 Description								
	5.2	2 Application								

	5.3	Infrastructure	5
		5.3.1 Power Transmission	5 6
	5.4	Summary	6
6.	AIRO	CRAFT TURBOFAN ENGINES	6
	6.1	Description	6
	6.2	Infrastructure Requirements	7
	6.3	Application	8
	6.4	Summary	8
7.	AIRO	CRAFT TURBOSHAFT ENGINES	9
	7.1	Description	9
	7.2	Candidates	10
		7.2.1 U.SMade Turboprops	10 10
	7.3	Summary	12
8.	IND	USTRIAL TURBOSHAFT ENGINES	13
	8.1	Description	13
	8.2	Application	13
	8.3	Summary	13
9.	CON	NCLUSIONS	13
	9.1	Feasibility	13
	9.2	Availability	15
	9.3	Power	15
	9.4	Installed Cost	15
	9.5	Operating Cost	15
	9.6	Rank	15

	9.7 Recommendations	16
10.	REFERENCES	17
Appe	endix A—Conceptual Windstorm Simulation Center Main Drive Power Calculations	
Appe	endix B—Request for Information Commerce Business Daily	
Appe	endix C—List of Contacts	
Appe	endix D—Characteristics of Candidate Systems	
Appe	endix E—Kuznetsov NK12-MV Properties	
	FIGURES	
1.	The Windstorm Simulation Center	1
2.	Electric Fan Array at NASA Ames 40 ft × 80 ft wind tunnel	5
3.	The Pratt & Whitney Series 4000 turbofan.	9
4.	Cutaway view of the Allison T56.	10
5.	NK-12MV on test stand	11
6.	The 45 MW GE LM6000 gas turbine engine	13
	TABLES	
1.	Summary evaluation of electric motors	7
2.	Fuel supply intrastructure costs.	8
3.	Summary evaluation of turboshaft aircraft engines.	12
4	Summary evaluation of industrial gas turbine engines	14

Main Drive Selection for the Windstorm Simulation Center

1. INTRODUCTION

The Windstorm Simulation Center (WSC) will be a structural test facility dedicated to studying the performance of civil structural systems subjected to hurricanes, tornadoes, and other storm winds. A bank of high-power fans, the main drive, will produce airflow at velocities up to 90 m/s (200 mph) at the test section. Because of the large power consumption expected of the main drive, costs associated with its installation and operation will be a significant portion of the overall facility costs. Therefore, a careful evaluation of all possible candidate systems is appropriate to ensure that the best possible combination of attributes is achieved in the final installed system.

This document reports the methodology and findings of a study to identify, evaluate, and rank candidate main drive systems. Candidates were evaluated by the technical feasibility, availability for installation, power, and order-of-magnitude installation and operating cost to

achieve the published performance specifications for the WSC. Where appropriate, other data is included in the discussion and analysis. Because of the conceptual nature of the WSC design, life cycle cost data could not be applied as a measure of comparison.

2. SYSTEM DESCRIPTION

2.1 General

The conceptual design of the WSC,¹ developed by the Idaho National Engineering and Environmental Laboratory (INEEL), uses a straight-through, open circuit, open test section layout, as shown in Figure 1. Directly downstream of the bell-mouth inlet, a bank of fans produces the required airflow. Placement of the fans upstream of the test section protects them from debris that may be generated, by either injection into the airflow or failure of the test specimen. Fans will be individually ducted and faired to optimize efficiency. Airflow produced by the fan array flows through a contraction, to a

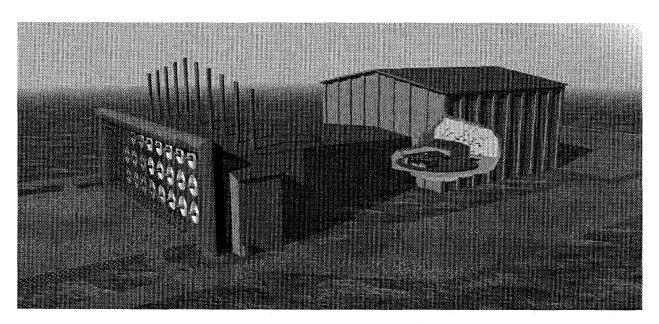


Figure 1. The Windstorm Simulation Center.

throat measuring approximately 24 m (80 ft) wide by 12 m high (40 ft), producing a high-velocity jet.

The jet then passes through an open test section area, where a test specimen rests on a 24 m (80 ft) diameter turntable, and then proceeds outdoors without further treatment.

Storm wind turbulence is produced in an active, mechanical manner. Longitudinal gusting is produced by individually controlling and cycling the thrust of the fans in the array. This turbulence is then intensified, and the lateral component added, by an active vertical airfoil cascade mounted at the throat of the contraction.

Because test time in the WSC will be quite valuable, a construction facility will be provided nearby. There, test articles will be constructed and instrumented before being transported into the WSC. Once a test article is mounted on the turntable, sensors can be connected to the data collection system, and checked out prior to testing. This approach ensures efficient, cost effective use of the facility, and offers high potential throughput.

2.2 Main Drive Configuration

The main drive array may be either of two basic configurations: direct drive, or remote drive. In the "direct drive" configuration, each fan is directly mounted to the output shaft of an engine, which is mounted in the array shown in Figure 1. In the "remote drive" configuration each fan is attached to a gearbox mounted in the array. The gearbox is driven by a shaft from a motor or engine mounted in a room below the fan array.

Direct drive systems have the advantage of simplicity of design, fabrication, and installation, and require less structure to house. Thus the initial cost would be lower. Engine overhauls or significant maintenance may require that fans be removed from the array by crane.

Remote drive systems require more structure and machinery, but offer a wider array of options for type and size of motor, and may offer the option of driving multiple fans from each motor.

3. MAIN DRIVE REQUIREMENTS

The Partnership for Natural Disaster Reduction has developed a set of functional requirements for the WSC^{2,3,4} for full-scale structural wind testing. In summary, the WSC is required to reproduce Category 5 hurricane wind and rain on full-scale two-story residential structures, and other structures or components of similar size, in a controllable, repeatable manner. This, in turn, generates requirements specific to the main drive. These requirements are listed and discussed in the following paragraphs.

3.1 Airflow

3.1.1 Test Section Airflow Speed

The WSC shall be capable of generating a sustained wind speed of 70 m/s (160 mph), with a maximum of 90 m/s (200 mph) averaged across the 300 m² (3,200 ft²) test cross section, producing a maximum volumetric flow rate of 27,000 m³/sec (57.2 million cfm). Airflow is expected to pass through a contraction from the fan section to the throat to achieve this speed. The contraction ratio is currently not specified, although a ratio near unity is preferred to maintain the lateral turbulence content of the flow. Initial calculations (Appendix A) indicate that the power required to achieve this airflow will fall between 250 MW and 300 MW, depending on the outcome of ongoing design optimization studies.

3.1.2 Test Duration

To simulate the passage of a storm, the WSC shall be able to produce hurricane intensity wind for up to 6 hours, and lower intensity wind for up to 12 hours, without interruption.

3.1.3 Airflow Turbulence

The WSC shall be capable of reproducing turbulence representative of surface winds. This requirement is to be applied only across those

ranges of frequency and mean velocity pertinent to structural response. (35–90m/s [80–200 mph], 0.1–20 Hz). The main drive system is expected to contribute to the longitudinal wind speed variation by varying the thrust of each fan in a controlled fashion.

3.1.4 Airflow Temperature

The temperature of the airflow at the test cross section shall be substantially uniform, and remain less than 40°C. A water spray system, designed for rain injection, will be available to cool abnormally high temperature airflows for brief periods.

3.1.5 Noise

Noise at the test section shall be limited such that functionality of instruments on or near the test article is not impacted, and the behavior of the test article is not affected. It is anticipated that noise reduction technology will be employed in the contraction and test section; however, detailed information on the acoustic energy produced by candidate main drive systems will be required for design and evaluation of these systems.

3.2 Environmental Considerations

3.2.1 Combustion Products and Airborne Pollutants

Production of combustion products and airborne pollutants shall be limited to levels deemed acceptable by the INEEL and the state of Idaho, without resort to special waiver.

3.2.2 Process Waste Products

Waste streams produced by candidate main drive systems shall be identified so that suitable treatment and associated costs may be determined. Examples of waste products might be coolants, lubricants, cleaning agents, or other substances used during the normal operation and maintenance of the main drive system.

3.2.3 Environmental Noise

Excessive noise outside the WSC building may adversely affect local fauna, occupants of neighboring facilities, or travelers on the adjacent Highway 20. Therefore, sufficient information on noise generated by candidate systems is required to characterize the noise in the surrounding area.

3.3 Construction, Maintenance, and Operations

3.3.1 Availability

The current construction schedule requires delivery of the main drive system to start in mid-2000 and end in early 2001. Requisition is not expected to occur until 1999, leaving a maximum of two years to prepare and deliver the main drive. This short schedule is driven by the needs of the facility's potential customers.

3.3.2 System Control Issues

Preliminary model studies indicate that a minimum of six fans may be required to create the velocity profiles and turbulence content required of the WSC. As the array increases, finer control will be available to manipulate the airflow. However, costs associated with system construction, maintenance, operation, and reliability can be expected to increase significantly with the number of fans. In lieu of a parametric study to determine the optimum number of fans, this report will simply recognize that system feasibility will become problematic for candidates requiring a very large array.

4. METHODOLOGY AND CONSIDERATIONS

4.1 Candidate Identification

In early March of 1997, an extensive search was initiated to identify and characterize main drive candidates. An announcement was published in four different sections of the Commerce Business Daily (Appendix B) in June requesting information from vendors. Reference

texts, such as Jane's Aero Engines,⁵ proved invaluable to develop much of the information on aircraft based turbomachinery. However, most information was gathered by phone conversations with system vendors and engineers. These contacts are listed in the References and in Appendix C.

4.2 Ranking Criteria

Systems that could reasonably be expected to meet the requirements listed above were evaluated by the following criteria.

- Technical Feasibility: High marks were given to candidates that currently exist and require no, or only slight, modifications for this application; followed by candidates designed and fabricated by vendors with significant experience in wind tunnel drive applications. Low marks were given to candidates that would require extensive modification with low confidence in the resulting performance.
- Availability: This category represents the lead time to procure and install the candidates. It is assumed that main drives must begin to arrive on-site in mid-2000.
- Installed Cost: This includes the purchase price of the main drives, and energy supply systems to support them.
- Operating Cost: Operating Cost was calculated assuming the main drive will operate for 30 hours per month at an average of 70% full power.

Other life cycle cost data, such as reliability, maintainability, and emissions are reported where available. But, because this information is not consistently available for all systems, it was not included as a factor in the analysis.

4.3 Propellers and Drive Gears

As critical components of the main drive system, the cost of propellers and reduction gearing from the engine/motor to the propeller must be considered. With the exception of aircraft turbofans, all power sources discussed in the following sections will require a gear and propeller system. For special design systems, the cost to design and fabricate new propellers and gears must be included in the installed cost. Production gears and propellers are available for aircraft-derived systems at significantly less cost and quicker delivery, although they may not be optimized for ground test applications.

Propellers would be fabricated from aluminum in smaller sizes (less than 17 ft) or composites in larger sizes, and are expected to cost between \$3M and \$4M per set. Variable pitch control does not affect this cost significantly. Propellers in the size range contemplated typically require 1 to 2 years to deliver the first set, with subsequent sets following more rapidly.⁶

Reduction gears are necessary to transmit engine power, typically at 3,000–5,000 rpm, to the propeller at a much lower speed. Stress considerations limit propeller speed to approximately 700 rpm. Single-stage reduction gears transmitting 100,000 ft-lb of torque (11.2 MW @ 700 rpm) have been estimated to cost \$130,000 per set, and require 38–40 weeks to deliver.⁷

5. ELECTRIC MOTORS

5.1 Description

Electric motors are traditionally the first choice main drive for wind tunnel applications.⁸ Electric motor driven wind tunnels range in size from table-top models to the 40 ft × 80 ft/80 ft × 120 ft facility at Moffett Field operated by NASA Ames Research Center (Figure 2). Electric systems offer control and reliability at the cost of large supporting infrastructure and system size.

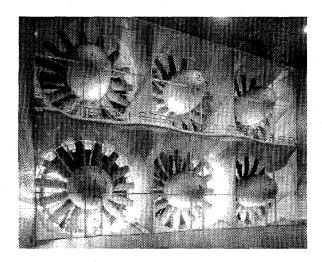


Figure 2. Electric Fan Array at NASA Ames 40 ft × 80 ft wind tunnel.^a

5.2 Application

An electric motor-driven system would be specially designed and fabricated for the WSC. Therefore the properties of the system cannot be comparatively discussed in this document. However, very large electric motors are currently used in wind tunnels and other applications around the world, and the general properties of these systems are well known.

While form factors are not fixed, electric motors are typically dimensionally large and massive in comparison with combustion engines of similar output. A typical 10,000 hp (7.5 MW) coupled synchronous motor weighs between 45,000 and 70,000 lb.9

General Electric¹⁰ has provided AC motors for wind tunnel applications at sizes up to 19 MW. These motors typically cost approximately \$250/kW. These large systems have in the past employed liquid rheostat technology for the controller, which has since been abandoned in favor of the Load Commutated Inverter (LCI) controller. While LCI motors are more economical, they do not permit the power levels achiev-

able with liquid rheostat motors. Because the technology for liquid rheostat control is in essence lost, new drive motors could be limited to 10,000 hp (7.5 MW) each, without some technology development effort. It is estimated that these motors would cost \$2M each.

Because of the large size and extreme weight of the electric motors, they would be placed below grade. A remote drive configuration (drive shaft to gear box to propeller) would be used in this instance.

5.3 Infrastructure

The energy required by electric motors may be supplied by transmitting power from a remote site, or by generating and conditioning the power locally (cogeneration).

5.3.1 Power Transmission

The Idaho Power Company Planning Department investigated the possibility of supplying power to the WSC at levels between 120 MW and 300 MW. 11,12 While the analysis of the power supply infrastructure assumes a peak demand of 300MW, very large motors can draw up to 7 times their rated current when first started (locked rotor current). Without proper consideration, this effect could cause severe voltage sag in both the local and surrounding regions. Detailed analysis is required to confirm the peak demand, which may be greater than 300 MW.

Existing lines into the INEEL could not support this load, so a new transmission line would be required from the Brady Substation at American Falls to the Antelope Station at INEEL, a distance of 56 miles, and new line from there to the WSC site. These lines would be either 230 kV or 345 kV, depending on the outcome of detailed analysis. Upgrades would be required to both the Brady and Antelope substations, along with a new substation at the WSC site. Idaho Power estimates the total installation cost at \$30M for 230kV line, and \$40M if a 345kV line is necessary.

a. J. Allmen, "Aeroacoustic Wind Tunnel Modification Underway," National Aeronautics and Space Administration, http://ccf.arc.nasa.gov/windtunnel/article.html July 8, 1997.

Sufficient cheap hydroelectric power is anticipated to be unavailable to supply the anticipated demand, making more expensive coal-generated power necessary. This is reflected in the estimated electric power cost of \$0.05/kWhr. The facility would also be charged a demand fee on the peak power demand of \$5.00/kW per month. Idaho Power estimated that the monthly cost could range as high as \$3.6M/month.

Idaho Power was not certain that 300 MW of power is available in the region to supply the facility. With very little margin available, future demand growth in the region could have a serious negative impact on the operation of the WSC.

Approximately 3 years would be required to place the transmission system: up to 2 years to site, permit, and acquire the route, and one year to construct the facilities.

5.3.2 On-site Power Generation

Rather than bringing electric power in from the outside, a power generation facility could be sited near the WSC. One option is to use 2 or 3 large gas turbine engines to generate the required power.

A survey of available gas turbine engines, developed by Turbine Systems Engineering, Inc.¹³ is shown in Appendix C. This survey shows that the purchase cost of gas turbines with output between 40 and 60 MW average around \$300/kW. Conversations with General Electric, Salt Lake City¹⁴ confirm this estimate. GE estimates that the gas-turbines alone (such as the 7FA) would cost \$96M. Idaho Power estimates the cost of the associated substation at \$10M–\$15M, placing the installed cost to \$106–\$111M.

A previous project at the INEEL¹⁵ sought to design and build a rail-car mounted mobile generating station. In cooperation with Stewart and Stevenson, a system was developed to deliver 40–50MW of electricity. Each rail-car unit would have cost \$15M. This confirms the above estimate of \$300/kW. Operating cost, including amortization over 15 years, was

between 7 and 12 cents/kWh, with fuel accounting for approximately 4¢ of that. At the time the project was halted, no customers had been identified on the INEEL site for the power, although the market appeared to be strong on a nationwide scale.

No upcoming projects at the INEEL have been identified which would share the costs to bring this amount of power to the site.

5.4 Summary

Because an electric motor driven system would be a special design-build project, the performance characteristics could be tailored to meet the WSC requirements exactly. Disadvantages are the large system size, which would require larger facilities and subsequent costs, and long lead time to procure. The installed cost for an electric motor system is expected to fall between \$173M and \$240M, with operating costs between \$20M and \$25M per year (Table 1).

6. AIRCRAFT TURBOFAN ENGINES

6.1 Description

A variety of modern high-bypass turbofan aircraft engines are available in the power ranges of interest. These engines, developed for large commercial transport aircraft, boast high power, energy efficiency, and reliability in a compact, lightweight package. They typically have a diameter less than 3 m and weigh less than 4 tonnes, producing 25 to 60 MW of power.

The modern turbofan engine is essentially a turbojet with an oversized stage 1 compressor. This fan compresses air flowing into the engine (core flow), and also pushes air around the outside of the engine (bypass flow). By using turbine power to drive a large mass of bypass air, the overall exit velocity is reduced, increasing propulsive efficiency and decreasing noise. Typically, the ratio of bypass flow to core flow (the bypass ratio) ranges between 5 and 8 in newer turbofans.

Table 1. Summary evaluation of electric motors.

Summary Analysis	Electric Motors	3								
Feasibility on scale of 0-4	2.75									
Installation practical	4 Units are commonly used in smaller wind tunnel applications									
Vendors exist	4	4 GE, Westinghouse are only identified vendors capable of the size required								
Technology available	2	Some re-invention of starter technology may be necessary								
Resources available	1	Power may not be available. May require on-site generation.								
Availability / Installation Schedule	3 years	Power infrastru	cture crit	ical						
				System	System Cos	t Range	, ,			
Installed Cost	Unit Co	st Range	Unit	Quantity	(\$M)				
Engine/Motor	\$250	\$350	kW	300,000	\$75	\$105				
Transmission/ gearing	\$10	\$15	kW	300,000	\$3	\$5				
Propeller	\$3,000,000	\$4,000,000	each	20	\$60	\$80				
Remote Drive Costs	\$5,000,000	\$10,000,000	each	1	\$5	\$10				
Fuel /Energy Supply	\$30,000,000	\$40,000,000	power	1	\$30	\$40				
Total (\$M)					\$173	\$240				
Operating Cost (per month)										
Maintenance	\$10,000	\$50,000	month	1	\$0.010	\$0.050 No Data				
Fuel /Energy	\$0.035	\$0.050	kWHr	6.30E+06	\$0.221	\$0.315				
Demand Fee	\$5	\$5	kW	300,000	\$1.500	\$1.500				
Monthly Cost (\$M)					\$1.73	\$1.87				

Assumptions:

20 - 15MW motors driving array of 20 fans @ 2.9 million cfm each Run time 30 hours/month at an average of 70% full power: 6,300,000 kWhr/month

To increase fuel efficiency, modern designs use very high combustion chamber temperatures, which in turn lead to high exhaust temperatures. Estimates for the averaged exit air temperature, including bypass air, range from 800K to 1000K (525–725°C).

6.2 Infrastructure Requirements

Turbomachinery requires an infrastructure to supply energy much as electric systems do. This infrastructure includes the tankage, supply lines, pumps, temperature control, and truck depot facilities necessary to transport, store, condition, and deliver fuel to the engines. These systems are common to all liquid fueled

turbomachinery discussed in this and following sections.

Reference 1 considered the cost to construct the fuel storage, delivery and truck depot facilities necessary to support a liquid fueled main drive system. It was calculated that a capacity for 200,000 gal of fuel was required initially, with a capability to expand to 400,000 gal if desired in the future.

The conceptual facility design included

- Two 100,000 gal tanks
- Concrete foundations and curbs to prevent spills

- Tank heaters and insulation to maintain fuel temperature
- A continuous recirculation pump system to provide 600 gpm fuel flow with 25% return flow at maximum engine consumption
- Heated 4 in. fuel lines
- Fuel control valving
- Tank truck depot.

The associated cost, detailed in Table 2, summed to \$2.2M, including overhead and procurement fees. Addition of tankage, lines, and pumps for a 400,000 gal capacity would add \$1.8M for a total of \$4M. Fuel costs for turbomachinery have been estimated by other INEEL projects 15 at approximately \$0.04/kWhr, which compares favorably with electric power.

Table 2. Fuel supply infrastructure costs.

Infrastructure Construction: 200,000 gal Fuel Storage with Environmental Protection						
Sitework—excavation/backfill	\$21,225					
Concrete—pads/foundation	65,000					
Metals—pipe stand and guard post	26,000					
Thermal and moisture protection—insulation	125,440					
Finishes—painting, etc.	80,000					
Special construction—pump house	6,500					
Mechanical—tank, piping, pumps, etc.	1,821,397					
Electrical—control system	60,000					
Total, 200,000 gallon capacity	\$2,205,562					
Additional 200,000 gallons	1,821,397					
Total, 400,000 gallon capacity	\$4,026,959					

It is also possible to fuel internal combustion systems with natural gas. Upon request, Intermountain Gas Company¹⁶ developed an estimate of the cost to deliver natural gas to the INEEL site. A line would be laid from the Northwest pipeline at the Aberdeen Tap, near the city of American Falls, 69 miles to the

INEEL Central Facilities Area (CFA), and thence to the Disaster Prevention Center site.

It was assumed for this estimate that the WSC peak demand would be 15,000 therms/ hour (1 therm = 100,000 BTU), and that the gas must be delivered at 300 psi to the INEEL site. This could be accomplished with a 12-in. line, at an approximate cost of \$20M. If detailed analysis shows that a 16-in. line is required, the cost would rise to \$30M. The accuracy of the estimate is plus or minus 15%.

If a gas line were supplied, the cost of natural gas is expected, at the worst case, to range near \$0.25/therm, or \$0.0085/kWhr.

6.3 Application

Table D-1 in Appendix D lists some of the significant engine families, along with power and cost ranges. Engineers from Boeing,¹⁷ General Electric,¹⁸ and Pratt & Whitney¹⁹ (Figure 3) were contacted to discuss the applicability of these engines to wind tunnel operations.

These engines have been extensively optimized for aircraft use, and modifications required for this application would be extensive. Among several difficulties and re-design issues raised by the specialists was the assertion that it is not possible to duct the hot core exhaust away from the bypass flow without damaging the engine. Thus it is not possible to decrease the airflow temperature from the 800–1,000K range to within the required range of less than 310K.

6.4 Summary

Aircraft turbofans have been optimized over the years to produce very high thrust from a small, lightweight, and reliable package. Much of this progress has been made by developing new materials, coatings, and cooling schemes to survive increasingly hot exhaust gas temperatures. Although exhaust gas is mixed with a larger volume of bypass air, the average airflow temperature is still much hotter than acceptable in the WSC. Because all the airflow that passes

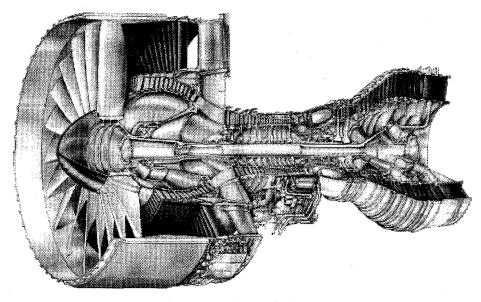


Figure 3. The Pratt & Whitney Series 4000 turbofan.

through the facility must pass through the main drive first, there is no opportunity to cool it by any other mixing. In addition, the intended strategy of cycling the main drive power continuously cannot be employed without cycling the engine rotational speed, which degrades the life of the engines. For these reasons turbofans do not meet the requirements of the WSC, and will not be considered further.

7. AIRCRAFT TURBOSHAFT ENGINES

7.1 Description

Aircraft turboshaft (commonly called turboprop) engines are another modification of the turbojet. In this case, turbine power is used to drive a shaft, to which a propeller set is attached. Residual thrust from the turbine exhaust typically accounts for approximately 5% of the total thrust, with the remainder attributable to the propeller. Bypass ratios for turboprop engines range around a value of 20. Thus, for a given power output and air mass flow rate, the outlet air velocity is lower, reducing noise and increasing efficiency, with respect to turbofans. In aircraft applications, these improvements

come at the cost of lower aircraft speed, which accounts for their lack of popularity in western countries today.

A relatively new development in turboprop design is the propfan. In this case thrust is generated by a propeller with multiple (usually six or more) blades of exceptionally thin profile, sharp edges and a curved scimitar-like planform. For highest efficiency two such propellers counter-rotate. The propellers may be open or shrouded. Such an engine gives turboprop economy at jet speed. As a high-speed version of a turboprop, the propfan has all the advantages of a turboprop, with significantly higher power output. Most propfans are being developed in the Ukraine or Russia and employ state-of-theart technology.

Thrust is usually controlled by a combination of the fuel flow and the pitch of the propeller blades, leaving the engine rotational speed relatively constant. This provides an advantage because thrust, or airflow, can be changed more quickly than with other aircraft engines. As mentioned previously, almost all exhaust gas energy is consumed by the power turbine, making exhaust gas management more tractable.

U.S. Turbine Corp. 20 indicates that in industrial

applications the exhaust from turboshaft engines is commonly ducted away with simple stainless steel ductwork. This removes the difficulty of overheating the airflow encountered with turbofans.

7.2 Candidates

Table D-2 in Appendix D shows the turboprop and propfan engines currently in development, production, or available as used from around the world. It is readily apparent that almost all high-power turboprop engine development is being performed in former Soviet bloc countries. Only two are manufactured in the U.S.: the Allison T56 and AE 2100. Costs for turboprop engines range from \$75/kW for the Kuznetsov NK-12MV to \$360/kW for the AE 2100.

7.2.1 U.S.-Made Turboprops

The Allison T56 series (Figure 4) has a long and distinguished record, serving as the powerplant of aircraft such as the Lockheed C-130 "Hercules" transport and variants since 1954. Power output ranges from 3,700 shaft horsepower (shp) in earlier models, to 4,500 shp in later models. One variant, the A-427, attained 5200 shp. Currently, the U.S. military is upgrading to the "J" series of the C-130, which employs the newer AE 2100 engine. Therefore,

in early 1997, Allison²¹ discontinued production of the T56 in favor of the AE 2100, and no longer has any T56 models available. In production, the T56 cost approximately \$800,000 per unit. The WSC would require an array of 90 T56 engines to meet the expected peak power requirement.

The first Allison AE 2100 completed flight testing in 1990, making it the newest production turboprop available today. The engine produces thermodynamic power of 6,000 hp; however, all models currently in production have been derated to between 3,200 shp and 4,500 shp. The C-130J program employs the AE 2100D3 model, flat rated at 4,591 shp, with a Dowty Aerospace six-bladed R391 propeller. Cost is reported by Allison to be approximately \$1.2M per unit, not including propellers.

It is not known whether a 6,000 shp rated version will be available in time to support the WSC. 68–6,000 shp engines or 90–4,500 shp engines would be required to meet the WSC peak power demand.

7.2.2 Russian-Made Turboprops

The Kuznetsov NK-12MV (Figure 5) is a large counter-rotating turboprop engine, in service in various configurations with the former Soviet Union for approximately 40 years. It is the most powerful conventional turboprop

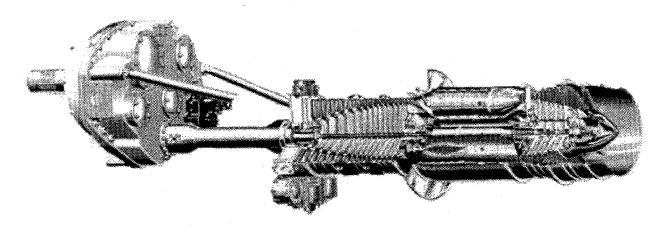


Figure 4. Cutaway view of the Allison T56.

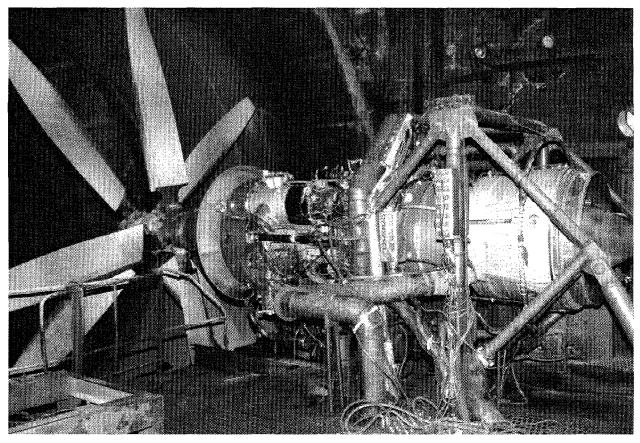


Figure 5. NK-12MV on test stand.

aircraft engine in the world, rated at 14,750 shp. Variants of this engine—up to 30,000 shp—have been built for powerplant and pipeline pumping applications.

At 14,750 shp, 28 units would be required to meet the predicted WSC peak power demand.

The MV design has been used extensively on both military and civil aircraft. Typically, a 6.2m (20 ft-4 in.) reversible pitch propeller set is used in military applications, while civilian applications employ a 5.6m (18 ft-4 in.) propeller set. All propeller configurations employ two sets of four variable pitch blades on independent counter-rotating coaxial shafts (The counter-rotating and independent nature of the propellers is appealing in this application because it provides a simple means of controlling the vorticity and subsequent lateral turbulence content of the airflow).

The NK12-MV also has prior experience as a wind tunnel main drive. Kuznetsov factory representatives²² report that a wind tunnel was built to test the NK93 propfan (discussed below) that was driven by a single NK12-MV. This effort produced valuable data on engine ground test properties including propeller behavior, reliability data, and operating costs. Some effort will be required to predict life cycle costs for U.S.-based operation from the Russian-based cost data.

The problem of noise with turboprop engines appears to be exacerbated somewhat in the NK-12. Factory reported sound pressures for indoor operation reach 143 dB at the engine outlet. While engine outlet noise would be significantly reduced by ducting the exhaust out of the airflow, further effort will be required to determine whether engine noise would affect WSC operations.

It is reported that this engine has been modified to burn natural gas rather than liquid jet fuel with positive results. This modification requires replacement of fuel orifices, fuel pipelines, and fuel delivery controllers.

Information from the U.S. Defense Technical Information Center and extrapolation to include civilian applications indicate that in excess of 3,000 NK-12MV series engines have been produced. Ongoing disarmament activities have caused a large supply of these engines to be available, however, firm data is not yet available on the delivery time for 28 units.

The Dvigatel NK-93 is the most powerful propfan known to be under development anywhere in the world. This engine generates 22.4 MW (30,000 shp), which is over twice the power output of the NK-12MV. The NK-93 has a front fan with 8 blades (40% power) and a rear fan with 10 blades (60% power) which counterrotate similar to the NK-12 turboprop. The high power of the NK-93 points to an array one-half the size of the preliminary design.

Unfortunately, this and other large propfans are still in development phase and not ready for production at this time. The designer indicates that, because of a protracted budget shortfall, development will continue to lag behind schedule, and the engine will not enter production in time to support this program.

7.3 Summary

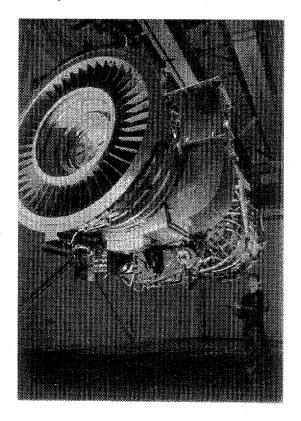
Table 3 summarizes the analysis of turboshaft engines as main drive candidates. The system-installed cost of the candidates shows a very large range: from \$32M to \$221M. This range reflects the difference between the NK-12MV and its lighter, flight optimized American counterparts. The use of turboprop engines is attractive for a variety of reasons: high power output, direct drive compatibility, long service history, and low cost. Although the most attractive candidates are manufactured overseas, a U.S. supplier has been identified²³ to develop and deliver complete main drive systems from the basic engines.

Table 3. Summary evaluation of turboshaft aircraft engines.

Turboprop Aire	craft Engines				
3.75					
4	Previous exper-	ience as wir	ndtunnel prime mo	ver.	
3	Few vendors w	ith large end	ough engines. Ve	ry high interes	st in supporting the program.
4	No technology	developmen	nt issues identified	Ļ	
. 4	Engines, fuel a	nd qualified	mechanics are lik	ely available	
3 mo - 2 yrs	Single Kuznets	ov NK12-N		•	
			•	-	v
	~				
*	,		,		\$105.0
, , ,	• -				\$0.0 included with engine
			28		\$112.0
\$2,200,000	\$4,000,000	power	1		\$4.0
				\$31.8	\$221.0
\$10,000	\$50,000	month	1	\$0.010	\$0.050 Limited Data for one engine (NK-12Mv)
\$0.035	\$0.050) kWHr	6.30E+06	\$0.221	\$0.315
\$0	\$0	kW .	300,000	\$0.000	\$0,000
				\$0.23	\$0.37
	4 3 4 4 3 mo - 2 yrs Unit Co \$82 \$0 \$180,000 \$2,200,000	4 Previous exper 3 Few vendors w 4 No technology 4 Engines, fuel an 3 mo - 2 yrs Single Kuznets Unit Cost Range \$82 \$350 \$0 \$0 \$180,000 \$4,000,000 \$2,200,000 \$4,000,000 \$10,000 \$50,000 \$0.035 \$0.050	4 Previous experience as wir 3 Few vendors with large en 4 No technology developmes 4 Engines, fuel and qualified 3 mo - 2 yrs Single Kuznetsov NK12-M Unit Cost Range Unit \$82 \$350 kW \$0 \$0 kW \$180,000 \$4,000,000 prop \$2,200,000 \$4,000,000 power \$10,000 \$50,000 month \$0.035 \$0.050 kWHr	4 Previous experience as windtunnel prime mo 3 Few vendors with large enough engines. Ver 4 No technology development issues identified 4 Engines, fuel and qualified mechanics are lik 3 mo - 2 yrs Single Kuznetsov NK12-MV available 90 da System Unit Cost Range Unit Quantity \$82 \$350 kW 300,000 \$0 \$0 kW 300,000 \$180,000 \$4,000,000 prop 28 \$2,200,000 \$4,000,000 power 1 \$10,000 \$50,000 month 1 \$0.035 \$0.050 kWHr 6,30E+06	4 Previous experience as windtunnel prime mover. 3 Few vendors with large enough engines. Very high interest No technology development issues identified. 4 Engines, fuel and qualified mechanics are likely available and of the control of the contr

Assumptions

Run time 30 hours/month at an average of 70% full power: 6,300,000 kWhr/month


28 - 11MW engines in an array

8. INDUSTRIAL TURBOSHAFT ENGINES

8.1 Description

Industrial turboshaft engines, or gas-turbines (Figure 6), are ground-based derivatives of aircraft turbofan or turboprop engines.

Employed in a wide variety of mechanical drive and power production applications, they feature high power, high efficiency, low exhaust emissions, and installation flexibility. Table D-3 in Appendix D shows a sampling of gas-turbines on the market. Many of the engines surveyed are designed to operate on either liquid or natural gas fuels, further enhancing their flexibility.

Figure 6. The 45 MW GE LM6000 gas turbine engine

8.2 Application

The application of gas turbine engines is quite flexible. They may be installed in a remote

drive configuration as with electric motors, or, depending on engine and gearbox dimensions, they may be set up in a direct drive configuration. The availability of engines over a wide power output range would simplify the design of the main drive array, and the balance of the WSC. Drive gears and propeller sets would be specially designed and built to match the operating characteristics particular to the selected engine. Because these engines are designed to operate at constant speed, airflow speed control would require variable pitch propellers. As noted in Section 4.3, this technology is readily available and would not add significantly to the system cost. Infrastructure costs would be similar to those enumerated in Section 6.2 for turbofan engines.

To our knowledge, gas turbines have not been used in a wind tunnel application. It is therefore difficult to estimate the life cycle costs for the unique application envisioned for the WSC.

8.3 Summary

Gas turbine engines appear to be well suited for this application. They offer the power, compact size, low exhaust emissions, and application flexibility to facilitate the design, permitting, construction, and operation of the WSC. Countering these advantages are the lack of history in this application, high initial cost, and long lead time to procure. The specific cost (\$/kW) of these systems is 3 to 5 times greater than that for select aircraft turboshaft engines, while delivery time is constrained by propeller design and fabrication to two years (Table 4).

9. CONCLUSIONS

9.1 Feasibility

The aircraft turbofan is the only candidate determined to be infeasible for this application. While it would be possible to overcome the exhaust temperature and power cycling issues, the cost and development time associated with the effort would be similar to that for a new

Table 4. Summary evaluation of industrial gas turbine engines.

Summary Analysis		Industrial Gas	Turbines					
Feasibility on scale o	f 0-4	3.5						
Installation	practical	3	Installation ar	nd operati	on similar to e	lectric motor	s, speed co	ontrol may be an issue
Vendors ex	cist	4	Several vendo	ors exist.	Those contacte	ed show inter	est in sup	porting this project
Technolog	y available	3	May require o	ycling en	gine speed to o	change flow	rate	
Resources	available	4	Engines, fuel	and quali	fied mechanics	are likely a	vailable	
Availability		2 years	Limited by propellers and reduction gears					
					System	System Cos	t Range	
Installed Cost		Unit Cos	st Range	Unit	Quantity	(\$M)	
Engine/Ma	otor	\$250	\$350	kW	300,000	\$75	\$105	
Transmiss	ion/gearing	\$10	\$15	kW	300,000	\$3	\$5	
Propeller		\$3,000,000	\$4,000,000	prop	20	\$60	\$80	
Fuel /Ener	gy Supply	\$2,200,000	\$4,000,000	power	1	\$2	\$4	
Total		·. · · ·				\$140	\$194	
Operating Cost (per	month)							
Maintenan		\$10,000	\$50,000	month	1	\$0.010	\$0.050	No Data
Fuel /Ener	gy	\$0.035	\$0.050	kWHr	6.30E+06	\$0.221	\$0.315	
Demand F	<u>.</u>	\$0	\$0	kW	300,000	\$0.000	\$0.000	
Monthly	Cost (\$M)				······································	\$0.23	\$0.37	
							,	

Assumptions:

20 - 15MW motors driving array of 20 fans @ 2.9 million cfm each

Run time 30 hours/month at an average of 70% full power: 6,300,000 kWhr/month

product line, and not compatible with the construction schedule of the WSC. Turbofans will not be discussed in the comparisons to follow.

The remaining candidates—electric, aircraft turboprop, and industrial turboshafts—are all technically feasible. However, they differ in the quantity of technical development required, and the risk associated with the development effort.

The use of electric motors would not be simple for this particular application. Current motor control technology appears to have a power limit of 7.5 MW, above which development would become much more involved. The real limitation, however, appears to be the infrastructure requirements to deliver power to the system. The WSC's large predicted power

demand, combined with the proposed site location relative to major power sources, make the cost of power prohibitive. Electric motors rank third in this category.

Aircraft turboshafts are well suited to this application. No significant modifications are necessary prior to installation. And the systems are well understood: they have logged millions of hours coupled with the gears and propeller sets that would be used in the WSC. The NK-12 has prior application as a wind tunnel main drive. This historical information would facilitate the prediction and solution of installation issues and maintenance requirements, and improve the accuracy of predicted lifecycle costs. Aircraft turboshafts rank first in this category.

Industrial turboshaft engines also appear to be well suited for this application. While no obstacles or significant modifications are foreseen, this would be a novel application for these systems, and a learning curve can be expected in developing appropriate propeller sets and operating parameters. Thus, industrial engines rank second in feasibility.

9.2 Availability

Electric motors will depend upon the electric power delivery infrastructure, which has been predicted to take as long as 3 years. Aircraft turboshafts have a distinct advantage in availability. Because the engines, gears, and propellers are currently extant and in storage, the delivery time for a single fully operational engine is advertised to be six months. Gas turbines are constrained by design and fabrication of the propellers, which could take up to 2 years. Thus aircraft turboshafts lead this category, followed by industrial engines and electric motors.

9.3 Power

In the category of power output, electric motors again rank third. While it is theoretically possible to build electric motors in any size, current controller technology appears to set a practical upper bound of about 7.5 MW per unit.

Industrial gas turbines not only provide the most power of any of the candidates, but also provide a wide range of options, from less than 1 to over 50 MW output. This range provides great flexibility in the facility design, allowing the selection of unit power after the balance of the facility has been designed and characterized. This flexibility earns a first place ranking.

Aircraft turboprops do not exhibit the power range of industrial engines. The maximum is represented by the NK-12MV at 11 MW, earning a rank of second.

9.4 Installed Cost

In general, all systems investigated would cost between \$250/kW and \$350/kW, plus supporting infrastructure costs. Infrastructure for an electric system was calculated to be \$30–\$40M, while that for liquid fueled systems was \$2–\$4M. An exception to this trend was the NK-12MV aircraft turboshaft, costing less than \$100/kW with the propellers included. The installed cost for an array of these units is estimated to be \$32M (Table 3), while the next candidate, industrial gas turbines, will cost a minimum of \$140M (Table 4). Thus aircraft turboprops rank first, followed by industrial turboshafts and electric motors.

9.5 Operating Cost

Operating cost data, as shown in the summary tables, is currently limited to estimated fuel/energy costs based on a fixed output per month. While reliability information is available for some extant candidates (Appendix E), it is difficult to meaningfully extrapolate what the reliability of novel combinations of engine/motor/gear/propeller might be. Therefore, ranking is not performed in this category.

9.6 Rank

Aircraft turboshaft engines are ranked first overall, having earned first in the categories of feasibility, availability, and installed cost, and second in power. This ranking is almost entirely due to the remarkable combination of attributes found in the NK-12MV.

Industrial turboshaft engines rank second, having placed first in power, and second in all other categories.

Electric motors are third choice, being a feasible, but difficult and expensive solution for this application.

Finally, aircraft turbofans are ranked last, as they do not appear to be a viable option.

9.7 Recommendations

In the course of this investigation the remarkable attributes of NK-12MV have become readily apparent. These units have a long service history, both in the air and on the ground, with good reliability statistics (Appendix E). They are already built, and can be overhauled and begin delivery to the WSC site within months, rather than years. They produce very respectable power, at 11.2 MW each, and run relatively cool, simplifying exhaust management. Finally, the installed cost for these units is approximately \$110M less than the next alternative.

However, more detailed information about the operational characteristics, maintenance, and life cycle cost must be ascertained prior to the final decision to employ this unit as the WSC main drive.

It is recommended that

- 1. An in-depth investigation of the NK-12MV be initiated, including groundbased operating characteristics, life cycle costs, and availability.
- 2. WSC analysis, design, and project management studies assume a main drive system composed of NK-12MV units until the recommended detailed analysis substantiates the unit's suitability for this application.
- 3. If further investigation reveals that the NK-12MV is not suitable, then the industrial turboshaft engine should be investigated as the next logical choice
- 4. Finally, the possibility of a hybrid system should be explored. In this case, a core of 2–4 electric motor driven fans might be placed in the center of the array, providing airflow for checkout and low-speed tests. This arrangement would avoid the large infrastructure costs of a purely electric system, while allowing a simple and rapid means of performing low velocity tests, calibration, and instrument check-out.

10. REFERENCES

- 1. Idaho National Engineering and Environmental Laboratory, Conceptual Design Report, PNDR Partnership for Natural Disaster Reduction Test Complex Phase 1, INEL/EXT-97-00436, May 7, 1997.
- 2. INEEL, "Program Plan for the Partnership for Natural Disaster Reduction," Draft, January 1998.
- 3. C. C. O'Brien, "Full-Scale Structural Testing for Severe Wind, 1995," INEL-96/0123, May 1996.
- 4. J.E. Beavers, Chair, "Report on Wind and Earthquake Facility Needs," IMMP Committee on Wind and Earthquake Facility Needs, Draft, January 1996.
- 5. Bill Gunston, Editor, Jane's Aero-Engines, Jane's Information Group Inc., 1996.
- 6. Dave Johnston, New Philadelphia Fan Co., October 1997.
- 7. Bill Clifton, Philadelphia Gear Corp., King of Prussia, PN, September 1997.
- 8. W. H. Rae, Jr., and A. Pope, Low Speed Wind Tunnel Testing, 2nd Ed., John Wiley & Sons, Inc., New York, 1984.
- 9. E. A. Avallone, and T. Baumeister, III, *Marks' Standard Handbook for Mechanical Engineers*, *Eighth Edition*, McGraw-Hill Book Co., New York, 1978.
- 10. Lew Brown, GE Motors and Industrial Systems, Denver, CO, August 1997.
- 11. Ron Shelburg, Idaho Power Planning Department, Boise, ID, March 1997.
- 12 Kent McCarthy, Idaho Power Planning Department, Boise, ID, July 1997.
- 13. Turbine Systems Engineering, Inc., 205 S. Broadway, Coweta Ok. 74429, Tel: 918-486-3085, Fax:918-486-6290, http://www.gas-turbines.com/
- 14. Keith Long, GE Power Systems, Salt Lake City, UT, July 1997.
- 15. John Dearien, Idaho National Engineering and Environmental Laboratory, August 1997.
- 16. Rick Moore, Intermountain Gas Company, Pocatello, ID, December 1997.
- 17. Mike Mohageh, Boeing (Structures Division), Seattle, WA, July 1997.
- 18. Doug Baird, GE Aircraft Parts, Cincinnati, OH, July 1997.
- 19. Joel Gissendanner, Pratt & Whitney, CN, July 1997.
- 20. Charles Brown, U.S. Turbine Corp., Mainville, OH, March 1997.

- 21. Dean Mosser, Allison Engine Co., Indianapolis, IN, November 1996.
- 22. Valentin Ovchinnikov, Samara Machine-building Design Bureau, Samara, Russia, December 1996.
- 23. Bosch Aerospace, Letter to J. M. Lacy, "High Power Fans for Wind Tunnel Applications," 18 July 1997.

Appendix A

Conceptual Windstorm Simulation Center Main Drive Power Calculations

Wind Tunnel Flow Losses and Power Requirements

4/1/97 J. M. Lacy

References:

Rouse, H., Elementary Mechanics of Fluids, Dover Publications, Inc., New York, 1946.

Rae, W. H. Jr., and Pope, A., Low Speed Wind Tunnel Testing, 2nd Ed., John Wiley & Sons, New York, 1984.

Design Parameters:

Max airflow speed at test section

 $V_{\text{test}} = 200 \cdot \text{mph}$

Jet Width

 $W_{jet} = 80 \cdot ft$

Jet Height

 $H_{iet} = 40 \cdot ft$

Propeller efficiency

 $\eta := 80.\%$

Assumptions, Definitions, and Properties:

Intake air is still

Incompressible fluid flow

Density of air

 $\gamma := 11.8 \cdot \frac{\text{newton}}{\text{m}^3}$

 $\rho := \frac{\gamma}{g}$

 $\rho = 1.203 \cdot \frac{\text{kg}}{\text{m}^3}$

Dynamic Viscosity (T=80F)

 $\mu := 3.85 \cdot 10^{-7} \cdot lbf \cdot \frac{sec}{ft^2}$

 $\mu = 1.843 \cdot 10^{-5} \cdot \frac{\text{kg}}{\text{m} \cdot \text{sec}}$

Units:

kPa = 1000 · Pa

 $MW = 10^6 \cdot watt$

Section Definitions (see attached figure)

Volume 1: Bell mouth contraction to fans Volume 2: Fan exit contraction to jet

Volume 0: High bay/test section flow Section 3: High bay exhaust to ambient

Test Section Characteristics

Test Section Area

 $A_{test} := W_{jet} \cdot H_{jet}$

 $A_{\text{test}} = 297.29 \cdot \text{m}^2$

 $A_0 := A_{test}$

 $V_{\text{test}} = 89.408 \cdot \frac{\text{m}}{\text{sec}}$

 $V_0 := V_{test}$

Volumetric Flow Rate

 $Q := A_{test} \cdot V_{test}$

 $Q = 2.658 \cdot 10^4 \cdot \frac{m^3}{\text{sec}}$

Jet Dynamic Pressure

 $q0 := \left[\frac{1}{2} \cdot \rho \cdot \left(V_{test}\right)^2\right]$

 $q0 = 4.809 \cdot kPa$

Velocity Profile through Tunnel

Bellmouth entrance (1)

$$V_1 := 50 \cdot mph$$

$$A_1 := \frac{Q}{V_1}$$

$$A_1 := \frac{Q}{V_1}$$
 $A_1 = 1.189 \cdot 10^3 \cdot m^2$ $\sqrt{A_1} = 113.137 \cdot ft$

$$\sqrt{A_1} = 113.137 \cdot fi$$

Entrance to Fans (2)

Assume an array of 20' Diameter fans. Exit area is equal to array of 20' squares:

$$N_{fan} := 28$$

$$A_2 := N_{fan} \cdot 400 \cdot ft$$

$$A_2 := N_{fan} \cdot 400 \cdot ft^2$$
 $A_2 = 1.041 \cdot 10^3 \cdot m^2$ $V_2 := \frac{Q}{A_2}$

$$V_2 := \frac{Q}{A_2}$$

$$\sqrt{A_2} = 105.83 \cdot ft$$

High Bay

Open Section Area is normally 4x the jet area:

$$A_3 := 4 \cdot A_0$$

$$A_3 = 1.189 \cdot 10^3 \cdot m^2$$
 $V_3 := \frac{Q}{\Delta}$

$$V_3 := \frac{Q}{A_3}$$

$$\sqrt{A_3} = 113.137 \cdot ft$$

Equivalent Diameter of Sections

$$D := \sqrt{4 \cdot \frac{A}{\pi}}$$

$$D = \begin{bmatrix} 19.456 \\ 38.911 \\ 36.398 \\ 38.911 \end{bmatrix} \cdot m$$

$$D = \begin{bmatrix} 19.456 \\ 38.911 \\ 36.398 \\ 38.911 \end{bmatrix} \cdot m \qquad V = \begin{bmatrix} 89.408 \\ 22.352 \\ 25.545 \\ 22.352 \end{bmatrix} \cdot \frac{m}{\text{sec}}$$

Energy Loss By Section and Volume

Bellmouth entrance (section 1)

Loss Coefficient
$$C_{L_1} := 0.35$$

$$\Delta p_1 := \gamma \cdot C_{L_1} \cdot \frac{(V_2)^2}{2 \cdot g}$$
 $\Delta p_1 = 0.137 \cdot kPa$

$$\Delta p_1 = 0.137 \cdot kP$$

$$K_{0_1} \coloneqq \frac{\Delta p_1}{q0}$$

$$K_{0_1} = 0.029$$

Contraction from Fans to Jet (volume 2)

$$V_{avg} := \frac{V_0 + V_2}{2} \qquad V_{avg} = 57.477 \cdot \frac{m}{sec}$$

$$V_{avg} = 57.477 \cdot \frac{m}{sec}$$

$$L := \frac{D_2 + D_0}{2}$$
 L = 27.927 • m

$$L = 27.927 \cdot m$$

$$R := \frac{\rho}{\mu} \cdot V_{avg} \cdot L \qquad \qquad R = 1.048 \cdot 10^8$$

$$R = 1.048 \cdot 10^8$$

Skin Friction (Table Lookup based on R, Rouse)

$$\lambda := 0.001$$

$$K_{0_2} := \frac{0.32 \cdot \lambda \cdot L_{\text{sec}}}{D_0}$$
 $K_{0_2} = 9.525 \cdot 10^{-4}$

$$K_{0_2} = 9.525 \cdot 10^{-7}$$

$$\Delta p_2 := K_{0_2} \cdot q0$$

$$\Delta p_2 = 0.005 \cdot kPa$$

Jet Losses in open test section

$$L_{\text{sec}} := 160 \cdot \text{ft}$$

$$\lambda := 0.08$$

From Rae & Pope

$$K_{0_0} := \frac{\lambda \cdot L_{sec}}{D_0}$$

$$K_{0_0} = 0.201$$

$$\Delta p_0 := K_{0_0} \cdot q_0$$

$$\Delta p_0 = 0.964 \cdot kPa$$

High Bay Exhaust to Ambient (section 3)

$$C_{L_3} = 1.0$$

$$\Delta p_3 := \gamma \cdot C_{L_3} \cdot \frac{\left(V_0\right)^2}{2 \cdot g}$$

$$\Delta p_3 = 4.809 \cdot kPa$$

$$\mathbb{K}_{0_3}\coloneqq\frac{\Delta p_3}{q0}$$

$$\mathbf{K}_{0_3} = 1$$

Note: This assumes the length of high bay is not enough to extract much energy. Therefore loss is calculated assuming full jet velocity.

Summary of Losses

Total Pressure Drop

 $\sum \Delta p = 5.916 \cdot kPa$

Total Loss Coefficient

$$\mathbf{K}_0 = \begin{bmatrix} 0.201 \\ 0.029 \\ 9.525 \cdot 10^{-4} \end{bmatrix}$$

 $\Sigma K_0 = 1.23$

Tunnel Energy Ratio

$$ER := \frac{1}{\sum K_0}$$

ER = 0.813

Composite Energy Ratio

 $ER_{comp} := \eta \cdot ER$

 $ER_{comp} = 0.65$

Static Pressure Profile Through Tunnel

$$P_{atm} := 1 \cdot atm - \gamma \cdot 5000 \cdot ft$$

$$P_{atm} = 83.342 \cdot kPa$$

$$v_{atm} := 0 \cdot \frac{m}{sec}$$

$$\frac{v_1^2}{2g} + \frac{p_1}{\gamma} + z_1 + h_p = \frac{v_2^2}{2g} + \frac{p_2}{\gamma} + z_2 + h_{10}$$

$$p_0 := \left[v_{atm}^2 - (V_0)^2 \right] \cdot \frac{\rho}{2} + P_{atm} + \Delta p_3 + \Delta p_0$$

$$p_0 = 84.306 \cdot kPa$$

$$p_2 := \left[v_{atm}^2 - (V_2)^2 \right] \cdot \frac{\rho}{2} + P_{atm} + \Delta p_0 + \Delta p_2 + \Delta p_3$$

$$p_2 = 88.728 \cdot kPa$$

$$\mathbf{p}_{1} := \left[\mathbf{P}_{atm} + \left[\mathbf{v}_{atm}^{2} - \left(\mathbf{V}_{2} \right)^{2} \right] \cdot \frac{\rho}{2} \right] - \Delta \mathbf{p}_{1}$$

$$p_1 = 82.812 \cdot kPa$$

Fan Power:
$$P := \frac{(p_2 - p_1) \cdot Q}{\eta}$$
 $P = 196.551 \cdot MW$ $P = 2.636 \cdot 10^5 \cdot hp$

$$P = 196.551 \cdot MW$$

$$P = 2.636 \cdot 10^5 \cdot hp$$

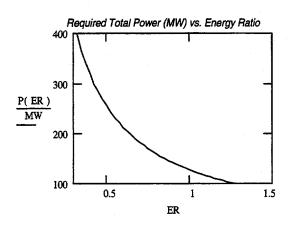
$$P_{fan} := \frac{P}{N_{fan}}$$

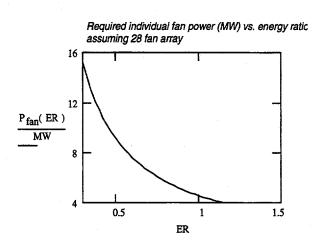
$$P_{fan} := \frac{P}{N_{fan}}$$
 $P_{fan} = 9.414 \cdot 10^3 \cdot hp$

A review of the literature indicates that an Energy Ratio greater than 0.5 may be difficult to achieve. Examine the power required assuming the composite ER ranges between 0.3 and 0.8

$$ER := 0.3, 0.325...1.5$$

Required Composite Power


$$P(ER) := \frac{.5 \cdot \rho \cdot A_{test} \cdot V_{test}^{3}}{ER}$$


$$P(0.5) = 255.664 \cdot MW$$

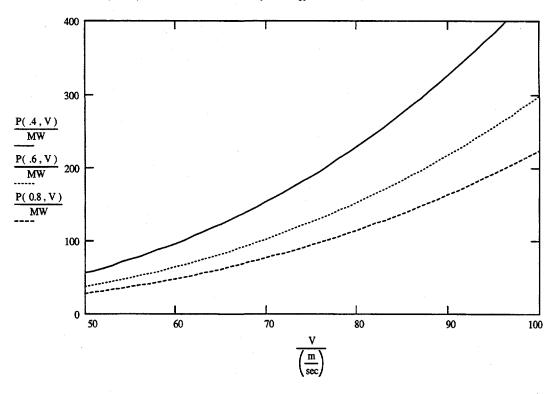
Required Shaft Power per Fan:

$$P_{fan}(ER) := \frac{P(ER)}{N_{fan}}$$

$$P_{fan}(0.5) = 9.131 \cdot MW$$

The design baseline assumes the use of 28 Kuznetsov NK-12MV turboprop engines. These engines are rated at 14750 shp (11.0 MW) each. Therefore this configuration can be expected to deliver the required jet velocities for energy ratios down to approximately 0.4. Design enhancements, such as the addition of an exhaust diffuser, that increase the composite ER from 0.4 to, for example 0.55, would decrease power requirements by 87MW.

Power required as a function of energy ratio and jet velocity


$$P(ER,V) := \frac{.5 \cdot \rho \cdot A_{test} \cdot V^{3}}{ER}$$

$$V := 50 \cdot \frac{m}{sec} .. 100 \cdot \frac{m}{sec}$$

$$Test section area$$

$$A_{test} = 297.29 \cdot m^{2}$$

Composite power vs. test section velocity at energy ratios of 0.4, 0.6, and 0.8

Appendix B

Request for Information Commerce Business Daily

[Commerce Business Daily: Posted June 17, 1997] From the Commerce Business Daily Online via GPO Access [cbdnet.access.gpo.gov]

PART: U.S. GOVERNMENT PROCUREMENTS

SUBPART: SUPPLIES, EQUIPMENT AND MATERIAL CLASSCOD: 99—Miscellaneous—Potential Sources Sought

OFFADD: Lockheed Idaho Technologies Company, P.O. Box 1625, Falls, ID 83415-3521

SUBJECT: 99-HIGH POWER FANS FOR WIND TUNNEL APPLICATION

SOL cbdO78 DUE 071897 POC Jeff Lacy

DESC: Lockheed Martin Idaho Technologies Company (LMITCO), a management and operating contractor for the Department of Energy (DOE) at the Idaho National Engineering & Environmental Laboratory (INEEL) is seeking sources only. There is no solicitation available. The Idaho National Engineering and Environmental Laboratory is developing a design for a large-scale structural wind test facility as a critical activity of the Partnership for Natural Disaster Reduction. The conceptual design for this facility is an open-circuit, open-test section wind tunnel, with fans mounted in an array upstream of the test section. An airflow of 90 m/s is required over a throat area of 300 sq. meters. It is estimated that between 250 and 300 MW will be required to provide this airflow, subject to design optimization of the facility. Current schedule will require delivery of fan system in early 2000. Sources are sought for candidate propulsion systems to provide the described airflow. There is currently no restriction on type of power source, however, the ability to prescribe and vary the longitudinal large scale turbulence produced is required. It is expected that an array of fans will be employed, with numerical limits imposed by control and maintenance issues. Interested firms with either pre-existing or proposed design solutions are invited to respond within 30 days of this notice. Responses should include candidate physical dimensions, power, efficiency and reliability and maintainability statistics, as available.

LINKURL: http://www.inel.gov/procurement/litco/index.html

LINKDESC: LMITCO Procurement area

EMAILADD: lcy@inel.gov EMAILDESC: Jeff Lacy CITE: (W-168 SN085782)

Appendix C List of Contacts

Appendix C

Contact List

Company	Contact	Phone No.	Location	Notes
Aiolos Engine	ers		Toronto, Canada	
	Elfstrom, Gary	416.674.3017	- J. Willy, Walkieu	
Misen		217 220 2000	Indiananalia IN	
diison	t instance Tam	317.230.2000	Indianapolis, IN	December 150400
	Lindsey, Tom	317.230.6375		Program Manager AE2100
	Eddy, Bill	317.230.3232		T56 Program Manager
	Mosser, Dean Owens, Jim	317.230.2323 317.230.3740		AE2100 - T56 Industrial Sales
	Cworls, our	017.200.0740		industrial Gales
viaexport (R	ussia)		Moscow, Russia	Export firm for Russian engines
	Aliaev, Sergei	095.417.0144		Director, Engine Division
	Khrenov, Alex	095.417.0435		Chief Specialist, Engine Division
				· · · · · ·
loeing	Mohageh, Mike	206.234.0200		Structures
	Honomen, Art	206.717.0616		Structures
iosch Aerosp		205.882.9394		Markets Kuznetsov engines in U.S.
	Boschma, James	205.882.9394		Technical Director
F14 t	1	E40 EE0 0000	Cincinnati C''	
FM Internati		513.552.3300	Cincinnati, OH	
	Calendar, John	513.552.3404		
owty (SIEC)		01235 559999	Abingdon, Oxfordshire, Gr	reat Britain No Contact
owty (UK)	Hansen, Jeff	44.1452.711.422	Aungum, Oxiorusinie, Gr	Director, Engine Division
	Hariseri, seri	77.1702.711.722		Director, Linguise Division
resser-Rand	Turbo Products		Olean, NY	
	Richards, Larry	716.375.3293/3146		(Gas turbine packager)
	Ray, Elias (GE)	513.552.6053		(oil & gas only)
	,			(
RMO/DRMS		616.961.7307		Defense reutilization office
	Bemus, John	616.961.5630		
luid Techno	logy (subsidiary of Howden)		Salt Lake City, UT	
	Woodward, Brent	801.268.0600		
`	·		Cincinnati Oli	
GE Aircraft E	Baird, Doug	513.552.2000	Cincinnati, OH	Aircraft Engines
	Stowell, Tom	513.552.2479		Engine Division
	Westerkamp, Doug	513.552.5574		Marketing
	Millhelm, Bill	513.552.5050		Marine
	Sailor, Ed	513.552.5432		Marketing
	Oganowski, Greg	513.552.5409		Manager, No. Am. Marketing
	Anthony, Rob	513.552.5200		managor, morrain managing
		A 14:44=:000A		
E Motors ar	nd Industrial Systems		Denver, CO	
	Brown, Lew	303.753.2261		Motors & Drives
	Harris, Dave	303.932.7891		
	Sperry, Howard	303.753.2263		
	Marquez, Rigo	219.439.2000		
		•		
BE Power Sy			Sait Lake City, UT	
	Long, Keith	801.468.5720		
	Shide, Matt	801.468.5712		
			Maria Maria PMA	
E Power Ge		E40 00E 4404	New York, NY	
	Smith, Stan	518.385.4131		
daha Pausa	Company		Poins ID	
daho Power		300 300 AEEE	Boise, ID	Blanning Dont
	McCarthy, Kent	208.388.2565		Planning Dept.
	Shelburg, Ron	208.388.		Planning Dept.
/			Comerc Decesio	
Cuznetsov	Bourmiotou Ciornadi	EARO DER DED	Samara, Russia	Ganaral Director - Chief Designer
Cuznetsov	Bourmistrov, Giennadi	5462.256.253 8462.203.705	Samara, Russia	General Director - Chief Designer
Kuznetsov	Bourmistrov, Giennadi Ovchinnikov, Valetin Ermikov, Anry	5462.256.253 8462.293.795 8462.251.263	Samara, Russia	General Director - Chief Designer Deputy Chief Designer Deputy Chief Designer

Lockheed Martin Aeronautical System	ms	Smyrna, GA		
Searle, Norm	770.494.0938		Technical Engineer	
Kays, Steve	770.494.7338		Procurement Manager	
Bangert, Lou	770.793.0049		P&W engine for F22 Developmen	nt
Dupack, Joe	770.494.8472		Recommended Dowty of U.K.	
Pounds, Gerald	770.494.4158		Dept. Manager, Wind Tunnels & .	Aircraft Systems
Perry, Mark	770.494.5619		Lead Project Engineer, Wind Tur	nnel & Aircraft Systems
Lockheed Martin Astronautical Syste	ems	Denver, CO		
Giere, David	303.977.1147		Experience with Kuznetsov rocke	et engines
Parsons, Don	303.971.7594			
New Philadelphia Fan Co. (subsidiar	y of Howden)			
Johnston, Dave	330.339.1111 ext 23	3		
Philadelphia Gear Corp.	610.265.3000	King of Prussia, PA		
Clifton, Bill	ext 4553			
Pratt & Whitney		East Hartford, CN		
Gissander, Joel	860.565.6546		Technical Engineer	
Cavina, Mike	404.714.3432		Technical Engineer	
Stewart & Stevenson Services Inc.	713.868.7700	Houston, TX		
Axford, Mark H.	713.868.7650			
NASA Ames Research Center		Moffet Field, CA		
Kidwell, George	415.604.5060		Deputy Director of Aeronautics	
Bufton, Dan	415.604.4107		Unitary Wind Tunnel	
Nguyen, Nhan	415.694.5876		Facility Engineer	
Ospring, Mike	415.604.4077		Engineering Manager	
Presley, Roy	415.604.5851		Aero Test & Simulation Division	
Rolls-Royce (UK)	44.133.266.1461			No Contact
US Air Force		San Antonio, TX		
Aker, Rick	210.925.3687		Engine Management office	No Contact
Sverdrup Technology, Inc.	615.455.6400	Tullahoma, TN		
Starr, Rogers	615.393.6694		Vice President	
Jenke, Leroy	615.393.6311			
Johnson, Ward	615.393.6674			
Westinghouse	407.281.2000			
Rothos, Dan	407.281.2140			
Jones, Ken	801.566.3600		Sales Engineer	

Appendix D Characteristics of Candidate Systems

Table D-1. Aircraft turbofan engine characteristics.

	Fan Dia.	Rated Thrust	Fan Mass Flow Rate	Rated Bypass Ratio	Fuel Consump- tion	Average Exhaust Temp.	Ex-core Mass Flow Rate	Core mass Flow Rate	Average Exit Velocity	Power Output	Cost/ Status	Approximate Cost per MW of Power
	(m)	(kN)	(kg/sec)	(BPR)	(mg/Ns)	(K)	(kg/sec)	(kg/sec)	(m/sec)	(MW)	(\$ Millions)	(\$/MW)
USA GE90-76B	3.12	339.9	1,361.0	8.65	-	600	1,220.0	141.0	249.74	42.44	\$10 - 11 M	247,386
USA GE90-85B	3.12	376.8	1,415.0	8.65	-	600	1,268.4	146.6	266.29	50.17	\$11 - 12 M	229,225
USA GE90-90B	3.12	400.4	1,449.0	8.65	-	600	1,298.8	150.2	276.33		\$12 - 13 M	225,954
USA GE90-92B	3.12	409.3	1,461.0	8.65	-	600	1,309.6	151.4	280.15	57.33	\$12 - 13 M	218,025
USA P&W JT3D-1	1.35	75.6	209.0	1.36	15.15	818	120.4	88.6	361.53	13.66	Out of production	-
USA P&W JT3D-8B	1.35	93.4	209.0	1.36	15.85	750	120.4	88.6	446.89	20.87	Out of production	-
USA P&W JT9D-3A	2.43	200.8	684.0	5.17	17.67	725	573.1	110.9	293.57	29.47	Out of production	
USA P&W JT9D-59A	2.46	236.0	769.0	5.15	17.87	853	644.0	125.0	306.89	36.21	Out of production	-
USA P&W JT9D-7R4	2.46	249.0	769.0	5.01	17.42	848	641.0	128.0	323.80	40.31	Out of production	-
USA P&W 2037	1.99	170.1	608.0	6.00	9.35	733	521.1	86.9	279.77	23.70	\$6 - 7 M	252,160
USA P&W 2040	1.99	181.9		6.00		750		86.9	299.18		\$7 - 8 M	257,256
USA P&W 2043	1.99	191.2	608.0	6.00	9.35	750		86.9	314.47		\$8 - 9 M	266,102
		····										
USA P&W 4052	2.46	232.1	773.0	4.85	8.81	750	640.9	132.1	300.26		\$9 - 10 M	272,636
USA P&W 4168	2.54	302.5	773.0	4.85	9.35	750	640.9	132.1	391.33	59.19	\$10 - 12 M	185,845
USA TF39-GE-1	2.44	182.8	700.0	8.00	8.93	750	622.2	77.8	261.14	23.87	Out of production	-
USA TF39-GE-1C	2.44	191.3	700.0	8.00	8.93	750	622.2	77.8	273.29	26.14	Out of production	-
USA CF6-50A	2.20	218.0	653.0	4.40	10.90	750	532.1	120.9	333.84	36.39	Out of production	-
USA CF6-50E	2.20	233.5	673.0	4.40	10.65	750	548.4	124.6	346.95	40.51	Out of production	-
USA CF6-80C2A1	2.69	257.4	802.0	5.03	9.46	750	669.0	133.0	320.95	41.31	\$12 - 13 M	302,620
USA CF6-80C2A5F	2.69	267.3	1	5.06					332.05		\$12 - 13 M	281,668
GB Rolls-Trent 768	2.47	300.3	876.0	5.75	16.00	750	746.2	129.8	342.81	51.43	7 \$11 - 12 M	223,420
GB Rolls-Trent 772	2.47	316.3		5.75				132.9	352.62		\$11 - 12 M	206,216
GB Rolls-Trent 875	2.79	346.5	1,126.0	5.75					307.75		2 \$11 - 12 M	215,667
GB Rolls-Trent 877	2.79	356.2	1,169.0	5.75	15.77	750	995.8	173.2	304.73	54.2	\$11 - 12 M	211,876
GB Rolls-Trent 884	2.79	384.8		5.75		750			318.81		\$12 - 13 M	203,787
GB Rolls-Trent 890	2.79	406.1	1,234.0	5.75	15.77	750	1,051.2	182.8	329.12	66.84	\$12 - 13 M	187,027
Germany BR710	1.22	65.8	197.0	3.00	17.81	750	147.8	49.3	334.16	11.00	-	-
INT. CFM 56-2	1.74	97.9	357.4	6.00	18.61	750	306.3	51.1	273.92	13.4	1 \$4 - 5M	298,318
INT. CFM 56-3	1.52	104.5	309.8	5.00	18.55	750	258.2	51.6	337.31	17.62	2 \$5 - 6M	283,693
INT. CFM 56-5	1.84	151.3		6.20					380.60		\$ \$5 - 6M	208,458
INT. CFM 56-7	1.55	117.4		5.60				1			3 \$5 - 6M	238,922
INT. CFM 56-9(Lite)	1.40	104.5	268.0	5.17	16.06	750	224.6	6 43.4	389.93	20.3	7 \$5 - 6M	245,410

Table D-2. Aircraft turboshaft engine characteristics.

	T-O Power (MW)	T-O Power (shp)	Pressure Ratio	Mass Flow Rate (kg/sec)	Fuel Consumption (lb/h/shp)	Length	Diameter of Power Section (in)	Dry Weight	Engine Cost (\$M)	Specific Cost (\$/M(W)
	(141.44.)	(эпр)		(Kg/Sec)	(III/II/SMP)	(111)	(ш)	(10)	(\$141)	(4VIVIVV)
Allison T56-A-425	3.42	4,591	9.6	14.7	0.501	146.3	27.0	1,899	0.8	\$233,645
Allison T56-A-42 7	3.91	5,250	12.0	15.2	0.470	146.1	27.0	1,940	0.8	\$204,604
Allison AE 2100A	4.47	6,000		-	0.41	-	24.5	1,548	1.2	\$268,216
Allison AE 2100C	4.47	6,000	-	-	0.41	-	24.5	1,548	1.2	\$268,216
Czech Walter M602	1.36	1,824	4.2	7.3	0.559	105.1	29.7	570	-	
Dvigatel NK-93 (propfan)	22.40	30,000	37.0	1000	0.490	216.5	124.0	8,047	-	
France Turbomeca Astazou	0.93	877	- 4	-	0.525	80.6	21.5	454	-	•
Kuznetsov NK-12	8.95	11,995	13.0	62	0.501	188.4	46.9	6,393	0.9	\$100,615
Kuznetsov NK-12M	11.18	14,995	13.0	65	0.501	188.4	46.9	6,393	0.9	\$80,486
Kuznetsov NK-12MV	11.03	14,795	13.0	65	0.501	185.8	46.9	5,710	0.9	\$81,573
Kuznetsov NK-12MA	11.19	15,000	13.0	65	0.501	197.0	46.9	5,710	0.9	\$80,458
Poland TWD-10B	0.75	1,000	7.4	4.6	0.570	81.1	21.9	661	-	
P&WC PT6A-6	0.43	578	6.7	3.1	0.200	62.0	19.0	270	-	
P&WC PT6A-27	0.55	715	6.7	3.1	0.200	62.0	19.0	335	-	
P&WC PT6A-65	0.88	1174	10.0	4.3	0.200	74.0	19.0	481		-
Russia TV7-117	1.84	2,467	16.0	8.0	0.397	84.4	34.9	1,146	-	
Russia TVD-20	1.04	1,400	9.0	5.4	0.506	69.7	33.5	628	-	
US GE CT7-6	1.49	2,000	-	-	0.476	79.0	26.0	720	-	
US GE T64	3.27	4,380	13.4	-	0.477	79.0	26.0	720	-	
Ukraine AI-20D	3.86	5,180	9.2	20.7	0.529	121.9	33.2	2,293	-	
Ukraine AI-24	1.88	2,515	7.6	13.1	0.54	92.4	26.7	1,323	-	
Ukraine D-236 (propfan)	8.09	10,850	-	-	0.359	-	-	-	-	
Ukraine D-27 (propfan)	10.29	13,800	-	-	0.57	212.6	109.9	9,039	-	
UK Rolls-Royce Dart	2.24	3,000	5.4	9.75	0.578	98.4	37.9	1,268		
UK Rolls-Royce Tyne+	4.92	6,600	14.0	21.1	0.485	108.7	55.0	2,177	-	-

Table D-3. Gas turbine engine prices from Gas Turbine Engineering, Inc. (http://www.gas-turbines.com) as of July 6, 1996.

			Output	Heat	Cost	
Manufacturer	Model	Rpm	(kW)	Rate	(\$M)	\$ / KW
ABB	GT35	3600	16,360	10,600	8	\$489.00
ABB	GT10	7700	21,800	10,405	9.5	\$435.78
ABB	GT10	7700	24,630	9,965	10.1	\$410.07
ABB	GT8	6300	48,500	10,750	15.6	\$321.65
ABB	GT8C	6200	52,600	9,980	16	\$304.18
ABB	GT11N	3600	81,600	10,700	20.5	\$251.23
ABB	GT11N	3600	83,880	10,370	20.5	\$244.40
ABB	GT11N2	3600	109,200	10,030	24.5	\$224.36
ABB	GT13D2	3000	100,500	10,600	22.5	\$223.88
ABB	GT13E	3000	148,000	9,855	31	\$209.46
ABB	GT13E2	3000	164,300	9,560	36	\$219.11
ALLISON	501KB5	14250	3,725	12,317		\$483.22
ALLISON	501KH	14600	3,740	12,363	2.1	\$561.50
ALLISON	570KA	11500	4,610	12,225	2.6	\$563.99
ALLISON	571KA	11500	5,590	10,650	2.8	
DRESSER	DC990	7200	4,200	11,820	2	
GE	5271RA	5100	20,260	12,800	5.7	
GE	5371PA	5100	26,785	11,730	7.5	
GE	M5382C	4670	28,337	11,667	7.7	
GE	6541B	5100	39,325	10,560	10.5	\$267.01
GE	6101FA	5100	71,750	9,740	18.5	
GE	7111EA	3600	84,920	10,212	19.3	
GE	7171EF	3600	126,200	9,990	28.8	\$228.21
GE	7191F	3600	151,300	9,625	30.4	\$200.93
GE	7221FA	3600	161,650	9,243	34	\$210.33
GE	9161E	3000	119,355	10,105	23.8	\$199.41
GE	9171E	3000	125,940	9,890	24.5	\$194.54
GE	9231EC	3000	173,680	9,435	32.2	\$185.40
GE	9281F	3000	217,870	9,625	39.9	\$183.14
GE	9301F	3000	214,000	9,700	42	\$196.26
GE	9311FA	3000	228,195	9,360	45	
GE	LM500	7000	3,880	11,430	1.9	
GE	LM1600	7000	13,430	9,560	6.9	•
GE	LM2500	3600	22,216	9,404	9.5	-
GE	LM2500PH	3600	19,700	9,630	10.3	
GE	LM5000PD	3600	33,350	9,390		\$407.80
GE	LM5-ST80	3600	46,300	8,170		\$317.49
GE	LM5-ST120	3600	51,500	7,885	15.3	
GE	LM5000PC	3600	33,700	9,350	13.8	
GE	LM6000PA	3600	41,020	8,720	12.1	\$294.98
GE	LM6 50HZ	3600	40,410	8,850	12.6	
KWU	V64.3	5400	60,650	9,705	18.5	•
KWU	V84.2	3600	103,200	10,220	23.5	
KWU	V84.2	3600	106,200	10,124	23.3	\$219.40
KWU	V84.3	3600	139,000	9,560	33	\$237.41
KWU	V84.3	3600	152,700	9,450	34.5	
KWU	V94.2	3000	148,800	10,210	30.2	•
KWU	V94.2 V94.2	3000	154,000	10,210	30.2	
KWU	V94.2 V94.3	3000	200,360	9,550	41	\$204.63
- IXVV	V 74.J	3000	200,300	9 ,550	41	φευ4.03

Table D-3. (continued).

KWU	V94.3	3000	219,000	9,450	45	\$205.48
MITSUBISHI	MF111A	9660	12,835	11,175	5.8	\$451.89
MITSUBISHI	MF111B	9660	14,845	10,895	6.2	\$417.65
MITSUI	SB60	5680	12,650	11,460	5.9	\$466.40
NUOVO PIGNONE	PGT10	7900	9,980	10,500	5.2	\$521.04
RR	SPEY SK15	5220	11,630	10,510	5.7	\$490.11
RR	AVON	5500	14,610	11,885	4.8	\$328.54
RR	RB211	4800	25,250	9,550	11.1	\$439.60
RR	RB211	4800	27,240	9,575	11.5	\$422.17
RUSTON	TB5000	7950	3,830	13,450	1.7	\$443.86
RUSTON	TORNADO	11085	6,215	11,340	2.9	\$466.61
RUSTON	TYPHOON	16570	3,945	11,360	2	\$506.97
RUSTON	TYPHOON	17380	4,550	11,350	2.1	\$461.54
RUSTON	HURRICANE	27245	1,575	13,820	1.1	\$698.41
SOLAR	SATURN	22120	1,080	14,685	8.0	\$740.74
SOLAR	CENTAUR	14950	3,880	12,250	1.7	\$438.14
SOLAR	TAURUS	14950	4,370	12,250	1.9	\$434.78
SOLAR	MARS	8568	8,840	10,975	4.3	\$486.43
SOLAR	MARS	9000	10,000	10,550	4.6	\$460.00
TURBOMECA	М	22000	1,086	13,125	0.9	\$828.73
TP&M	FT4C-3F	3600	29,810	10,875	5.7	\$191.21
TP&M	FT8	3600	25,600	8,875	11	\$429.69
WESTINGHOUSE	251 B10A	5420	42,300	10,600	11	\$260.05
WESTINGHOUSE	251 B12	5400	47,660	10,420	13	\$272.77
WESTINGHOUSE	251 B12A	5400	49,200	10,440	14	\$284.55
WESTINGHOUSE	501 D5	3600	106,800	10,100	22.1	\$206.93
WESTINGHOUSE	501 D5	3600	109,350	10,010	23	\$210.33
WESTINGHOUSE	501 D5	3600	121,300	9,890	25	\$206.10
WESTINGHOUSE	501F	3600	163,530	9,470	34.5	\$210.97
WESTINGHOUSE	701D5	3000	133,750	9,960	26.5	\$198.13
WESTINGHOUSE	701DA	3000	138,520	10,040	27.5	\$198.53
WESTINGHOUSE	701F	3000	235,720	9,280	47	\$199.39

Table D-4. Gas turbine engines listed by supplier.

MANUFACTURER	MODEL	OUTPUT MW	HEAT RATE BTU / KW
Allied Signal Engines	AS 4055	4	8960
Allison Engine Company	501-KH (STEAM INJ	6.75	8560
Allison Engine Company	571-K	5.91	10074
Allison Engine Company	501-KB7	5.22	10826
Allison Engine Company	501-KB5S	4.1	11570
Allison Engine Company	501-KB4 (STANDBY	4.33	11697
Allison Engine Company	501-KB3	2.84	13136
Ansaldo Energia	V84.3	154	9426
Ansaldo Energia	V94.3	222	9426
Ansaldo Energia	V64.3	63	9640
Ansaldo Energia	V94.2	159	9977
Ansaldo Energia	V84.2	109	10126
Centrax Gas Turbine	CX501-KH	6	9115
Centrax Gas Turbine	CX501-KN7	5.6	10992
Centrax Gas Turbine	CX571	5.4	11260
Centrax Gas Turbine	CX501-KN5	4.5	11394
Centrax Gas Turbine	CX501-KB7	5	11662
Centrax Gas Turbine	CX501-KB5	3.8	
Centrax Gas Turbine	CX501-KN3	3.1	12601
Centrax Gas Turbine	CX501-KB3	2.7	
Cooper Rolls, Inc.	Coberra 6000	27.21	9534
Cooper Rolls, Inc.	Coberra 2000	14.58	
•			
Dresser Rand	DR63G	41.95	
Dresser Rand	DR61 PLUS	28.5	-
Dresser Rand	DR61G	23.28	
Dresser Rand	DR61	22.98	
Dresser Rand	DR61G PLUS	27.6	
Dresser Rand	DR60G	14.07	
Dresser Rand	DR990	4.4	
Dresser-Rand	DR-63G	40.67	8694
Dresser-Rand	DR-61 PLUS	27.63	
Dresser-Rand	DR-61G	22.8	
Dresser-Rand	DR-61G PLUS	27.04	
Dresser-Rand	DR-61	22.06	
Dresser-Rand	DR-60G	13.58	
Dresser-Rand	KG2-3E (STANDBY)		
Dresser-Rand	KG2-3E	1.85	
Dresser-Rand	KG2-3C (STANDBY)	1.8	21278
Dresser-Rand	KG2-3C	1.45	21620

Table D-4. (continued).

Ebara	PW7M	0.78	14538
Ebara	PW14M	1.56	14538
Ebara	PW6M	0.64	15168
Ebara	PW12M		
EDara	PVV 12IVI	1.28	15168
Ebara Corporation	FT 8 Twin	51.1	8905
Ebara Corporation	FT 8	25.42	8950
Ebara Corporation	PW 7E	0.7	15535
Ebara Corporation	PW 6E		
Lbara Corporation	FW OE	0.57	16300
European Gas Turbines	RLM6000	40.6	8632
European Gas Turbines	RLM5000	35.05	9019
European Gas Turbines	RLM2500	23.3	9080
European Gas Turbines	RLM2500+	27.6	9139
European Gas Turbines	RLM1600	13.98	9189
European Gas Turbines	RLM2500-PE	22.8	9270
European Gas Turbines	RLM5000-PC		
European Gas Turbines		34.3	9270
•	RLM2500+	27	9335
European Gas Turbines	RLM5000-PC	34.3	9355
European Gas Turbines	M5352	26.56	9370
European Gas Turbines	M5322R	23.87	9477
European Gas Turbines	PG 9331 FA	226.5	9570
European Gas Turbines	RLM2500-PE	21.9	9597
European Gas Turbines	RLM1600	13.4	9633
European Gas Turbines	M3142R	10.44	9933
European Gas Turbines	PG 9171 E	123.4	10100
European Gas Turbines	G3142R(J)	10	10370
European Gas Turbines	TORNADO	6.64	10760
European Gas Turbines	PG 6541 B		
European Gas Turbines		38.3	10860
	Typhoon	4.9	11145
European Gas Turbines	Tornado	6.2	11265
European Gas Turbines	Typhoon	4.2	11405
European Gas Turbines	M5382	28.35	11662
European Gas Turbines	PG 5371 PA	26.3	11990
European Gas Turbines	TB5000	4.03	12586
European Gas Turbines	M3142	10.89	12775
European Gas Turbines	TB5000	3.8	13240
European Gas Turbines	G3142(J)	10.4	13320
European Gas Turbines		1.6	13920
First Avio Downer Division	LM0000 (00 11)	,	
Fiat Avio Power Division	LM6000 (60 Hz)	41.09	8607
Fiat Avio Power Division	LM6000 (50 Hz)	40.48	8738
Fiat Avio Power Division	LM2500 (60 Hz)	22.82	9273
Fiat Avio Power Division	701 F	233.95	9290
Fiat Avio Power Division	LM2500 (50 Hz)	21.87	9600
Fiat Avio Power Division	TG50D5S	147.75	9880
Fiat Avio Power Division	TG50D5	140.77	9890
Fiat Avio Power Division	TG20B11/12	47.8	10200
Fiat Avio Power Division	TG20B7/8U	39.36	11430
· / THE DIVISION	1 42007/00	33.30	11430

Table D-4. (continued).

FIAT TTG	TG7	8.6	14110
FIAT TTG	TG16	18.4	12720
FIAT TTG	TG20	38.43	11130
FIAT TTG	TG50	92.65	10930
HAIHa	1430	OE.00	10000
Greenwich Turbine, Inc.	FT4A-9	19.8	12150
Greenwich Turbine, Inc.	FT4C-3F	28.1	11100
-			
Greenwich Turbine, Inc.	LM2500	22.8	9273
Greenwich Turbine, Inc.	LM6000	39.9	8790
Greenwich Turbine, Inc.	PG6541B	38.3	10880
·			
John Brown Engineering	PG5371	26.3	11990
John Brown Engineering	PG6541	38.34	10880
John Brown Engineering	PG6101	70.14	9980
John Brown Engineering	PG7111	83.5	10480
John Brown Engineering	PG7231	167.8	9420
John Brown Engineering	PG9171	123.4	10110
John Brown Engineering	PG9331	226.5	9570
John Brown Engineering	LM6000	39.97	8790
John Brown Engineering	LIVIOUUU	39.97	6/90
KAWASAKI H.I. LTD.	S1A-02	0.21	20740
KAWASAKI H.I. LTD.	S1T-02	0.42	21100
KAWASAKI H.I. LTD.	S2A-01	0.7	15610
KAWASAKI H.I. LTD.	M1A-01	1.17	16310
		1.47	15610
KAWASAKI H.I. LTD.	M1A-03		
KAWASAKI H.I. LTD.	M1T-01	2.26	16710
KAWASAKI H.I. LTD.	M1T-03	2.82	15970
KAWASAKI H.I. LTD.	M1A-11	1.3	13900
KAWASAKI H.I. LTD.	M1A-13	1.55	13400
KAWASAKI H.I. LTD.	M1A-23	2.15	13000
KAWASAKI H.I. LTD.	M1T-13	3.06	13590
KAWASAKI H.I. LTD.	M1T-23	4.19	13140
KAWASAKI H.I. LTD.	M1A-13CC	1.37	15330
KAWASAKI H.I. LTD.	M1A-13CC STM. IN.	2.42	10140
KAWASAKI H.I. LTD.	M7A-01	5.96	11200
KVAERNER ENERGY A	SLM1600 PA	13.4	9565
KVAERNER ENERGY A	SLM2500 PE	22.2	9404
KVAERNER ENERGY A		39.56	8593
KVAERNER ENERGY A		26.3	11990
KVAERNER ENERGY A		38.34	10880
KVAERNER ENERGY A		70.14	9980
		83.5	10480
KVAERNER ENERGY A			
KVAERNER ENERGY A		159	9500
KVAERNER ENERGY A		123.4	10100
KVAERNER ENERGY A	SPG9331 FA	226.5	9570

Table D-4. (continued).

MITSUBISHI H.I. LTD.	MF-61	5.92	11915
MITSUBISHI H.I. LTD.	MF-111A	12.61	11250
MITSUBISHI H.I. LTD.	MF-111B	14.57	11020
MITSUBISHI H.I. LTD.	MF-221	30	10655
MITSUBISHI H.I. LTD.	MW-251	36.8	11790
MITSUBISHI H.I. LTD.	MW-501	104.5	10255
MITSUBISHI H.I. LTD.	MW-701	130.5	10233
MITSUBISHI H.I. LTD.	MW-701DA	136.9	10070
MITSUBISHI H.I. LTD.	501F	158.6	
MITSUBISHI H.I. LTD.	701F		9475
MITSUBISHI H.I. LTD.	501G	234.2	9330
MITSUBISHI H.I. LTD.		230	8859
MITSUBISHI H.I. LID.	MFT-8	26.78	8825
MITSUI ENG.& S.B.CO.	SB5	1.08	12200
MITSUI ENG.& S.B.CO.	SB15	2.72	13390
MITSUI ENG.& S.B.CO.	SB30		13330
MITSUI ENG.& S.B.CO.	SB60	5.41	13140
MITSUI ENG.& S.B.CO.	SB60	12.49	11530
MITSUI ENG.& S.B.CO.	SB120	13.57	11490
MITOUI LING. & S.B.CO.	3D12U	23	11190
Nuovo Pignone	PGT 2	2	13642
Nuovo Pignone	PGT 5	5.22	12676
Nuovo Pignone	PGT 10	10.14	11046
Nuovo Pignone	PGT 16	13.39	9692
Nuovo Pignone	PGT 25	21.91	9621
Nuovo Pignone	LM2500	22.33	9445
Nuovo Pignone	MS5001	26.3	
Nuovo Pignone	MS6001		11984
Nuovo Pignone	LM6000	38.34	10858
Nuovo Pignone	MS6001FA	40	8764
Nuovo Pignone		70.14	9976
	MS7001E	83.5	10469
Nuovo Pignone	MS9001E	123.4	10090
Nuovo Pignone	MS9001EC	169.2	9759
Nuovo Pignone	MS9001FA	226.5	9559
Parsons Power Generation	RR211	27.21	0524
Parsons Power Generation		51.19	9534
Parsons Power Generation			8210
Parsons Power Generation		49.2	10440
Parsons Power Generation		138.3	9990
raisons rower denerand	7016	236.7	9280
Solar	Mars 100 & 100s	10.69	10505
Solar	Mars 90 & 90s	9.29	10765
Solar	Taurus 70 & 70s	6.3	10900
Solar	Taurus 60 & 60s	5.5	11250
Solar	Centaur 50 & 50s		
Solar	Centaur 40 & 40s	4.35	11865
Solar		3.52	12240
Oolai	Saturn 20	1.14	14075

Table D-4. (continued).

Stewart and Stevenson	TG 5000 / STIG 120	51.62	7790
Stewart and Stevenson	TG 5000 / STIG 80	48.1	8070
Stewart and Stevenson	TG 2500 / STIG 50	28.05	8325
Stewart and Stevenson	TG 6000	40.76	8590
Stewart and Stevenson	TG 1600 / STIG 30	16.5	8641
Stewart and Stevenson	TG 5000	34.4	9180
Stewart and Stevenson	TG 2500	22.8	9280
Stewart and Stevenson	TG 2500 +	27.05	9330
Stewart and Stevenson	TG 1600	13.44	9545
Stewart and Stevenson	Tempest	7.5	10876
Stewart and Stevenson	Typhoon	4.91	11142
Stewart and Stevenson	Tornado	6.25	11265
Thomassen International	G3142	10.45	13337
Thomassen International	G3142R	10	10378
Thomassen International	PG5271	20.26	12835
Thomassen International	PG5371	26.3	12000
Thomassen International	PG6541	38.34	10871
Thomassen International	PG9171	123.4	10112
Thomassen International	PG9331	226.5	9581
Thomassen International	PG6101	70.14	9960
Thomassen International	PG9231	168.9	9790
Tuma Turbomach	TGC105CS	1.1	14102
Tuma Turbomach	TGC308CC	3.5	12233
Tuma Turbomach	TGC378CH	4.1	12170
Tuma Turbomach	TGC435CT	4.8	11271
Tuma Turbomach	TGC880CM	9.3	10741
Tuma Turbomach	TGC100CM	10.7	10534
Tuma Turbomach	TGC111MF	14.3	10351

Appendix E Kuznetsov NK12-MV Properties

Appendix E

Kuznetsov NK12-MV Properties

T	able	E-1.	General	dimensions	
---	------	------	---------	------------	--

Mass Longth	(engine) (engine + packing crate)	< 3,300 kg 5,500 kg
Length Diameter	engine engine	4.72 m 1.20 m
Diameter Diameter	Engine mount points Propeller AB-60K	1.37 m 5.3 m

Table E-2. Reliability information for ground-based operation with AB-60k propeller.

Mean time between failure (with gearbox & propellers in ground application)	23,500 hours
Time between overhaul (gearbox only)	4000 hours
Time between overhaul (engine)	12 years ^a
Mean time to repair	10,000 hours
Mean recovery time	5 hours
Probablility of failure free operation per	
1,000 hours	0.819

Table E-3. Particle ingestion limits for normal service life.

a. Vendor language

Atmospheric Dust Content Limits for Normal Service Life				
Average dust content	0.3 mg/m			
Diameter >20 mm	0.03 mg/m3			
Short Term Conditions (not to exceed 5% of Service Life)				
Dust content	5 mg/m3			
Maximum particle size	30 mm			

Table E-4. Combustion products at standard atmospheric conditions.

Combustion Product	Level (mg/m3)	
Nox	142	
CO	114	
СхНу	132	
Benzopyrene	0,000021	

Table E-5. Sound pressures for NK12-MV on indoor test stand.

Source	Level (dB)	Range (kHz)
Engine Inlet	140	1 - 10
Engine Outlet	143	1 - 10
Engine Casing Vibration (near air intake)	113	0.8 - 16
Engine Casing Vibration (near exhaust nozzle)	120	0.8 - 16

Note: Sound pressure level drops 2 - 5 % in outdoor environment

Table E-6. NK12-MV engine operation parameters.

Engine Core Air Flow	
Maximum	56 kg/s
Maximum Continuous	56 kg/s
Propeller Air Flow (no power given)	
AB-60K (5.3 m)	930 kg/sec
AB-90 $(6.2 \text{ m})^a$	1,950 kg/sec
Fuel Consumption	
Maximum	0.847 kg/s
Maximum Continuous	0.740 kg/s
Exhaust Gas Temperature ^b	
Start-up (up to 15 sec)	600 C
Maximum Power at 25 C ambient	550 C
Maximum Power at 60 C ambient	580 C
Starting & Control System	
Voltage	24 - 27 VDC
Engine Start Current (4 - 8 sec)	< 3 kW
Engine Start Current (2 min)	< 1 kW
Fuel pump rate	80 l/min
Oil pump rate	40 l/min
DC generator (for starting other engines)	18 kW

a. AB-90 prop produces high vibration in ground application, shortening service life by 1.7 times

b. INEEL observed max EGT of 410 C at Maximum power (ambient 0 C).