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Abstract 

Self-consistent magnetospheric equilibrium with .jnisotropic pressure is obtained by 
employing an iterative metric method for solving the inverse equilibrium equation in an optimal 
flux coordinate system. A method of determining plasma parallel and perpendicular pressures 
from either analytic particle distribution or particle distribution measured along the satellite's path is 
presented. The numerical results of axisymmetric magnetospheric equilibrium including the effects 
of finite beta, pressure anisotropy, and boundary conditions are presented for a bi-Maxwellian 
particle distribution. For the isotropic pressure cases, the finite beta effect produces an outward 
expansion of the constant magnetic flux surfaces in relation to the dipole field lines, and along the 
magnetic field the toroidal ring current is maximum at the magnetic equator. The effect of pressure 
anisotropy is found to further expand the flux surfaces outward. Along the magnetic field lines the 
westward ring current can be peak away from the equator due to an eastward current contribution 
resulting from pressure anisotropy. As pressure anisotropy increases, the peak westward current 
can become more singular. The outer boundary flux surface has significant effect on the 
magnetospheric equilibrium. For the outer flux boundary resembling dayside compressed flux 
surface due to solar wind pressure, the deformation of the magnetic field can be quite different 
from that for the outer flux boundary resembling the tail-like flux surface. 
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1. Introduction 

The perpetual presence of the energedc particles trapped in the magnetosphere and their 
ensuing magnetic drift morion in the geomagnetic field give rise to the ring current. Satellite 
measurements of the energy density of the ring current particle population indicate that the ring 
current plasma beta (|J = 2P/B2, where P is the plasma pressure and B is the magnetic field 
strength) may increase from about 10% during quiet periods to unity during intense geomagnetic 
storm times. The enhancement of the ring current is the result of solar wind interaction with the 
magnetosphere that allows some solar wind particles to penetrate into the tail region and to 
subsequently magnetic (gradient B and curvature) drift into the ring current region. This ring 
current plays the central role in deforming the earth's dipole field and results in the depression of 
geomagnetic field. In magnetospheric equilibrium model, plasma currents result from the 
requirement of force balance rather than being empirically prescribed. A good knowledge of the 
self-consistent magnetospheric equilibrium will provide physical insight into the internal structure 
of the magnetosphere. It will greatly improve our understanding of the satellite measurements of 
the magnetic field, particle flux, and plasma current. The accurate stability calculation of Alfven 
wave instabilities such as mirror instability and ballooning mode depends sensitively on the local 
equilibrium quantities such as pressure anisotropy, pressure gradient, and magnetic field curvature 
[Cheng and Lin, 1987]. Problems of wave propagation, field line resonance, and particle orbit 
calculation that simulates the particle transport in the ring current region, also crucially rely on the 
knowledge of the equilibrium magnetic field. 

The problem of computing the finite beta, static magnetospheric equilibrium has attracted 
much attention from the early days of space physics research. A successive iteration procedure has 
been adopted to solve the magnetohydrodynamic (MHD) momentum balance equation for the ring 
current magnetic field [Akasofu and Chapman, 1961; Hoffman and Bracken, 1965,1967; Berko et 
al„ 1975; Zavriyev and Hasegawa, 1990] on the basis of model current distribution. By 
prescribing an analytic form of the ring current particle distribution and choosing a magnetic field 
model as the initial approximation, the ring current perpendicular to the magnetic field was 
calculated from the momentum balance equation. The parallel ring current is assumed to be zero. 
The iterated magnetic field is then computed from the Biot-Savart law. The iteration procedure is 
usually stopped at the third iteration because large amount of computing is required and accuracy is 
difficult to obtain. By employing the pressure obtained from the particle distribution measured by 
the Active Magnetospheric Particle Tracer Explorers (AMPTE) CCE spacecraft, Lui et al. [ 1987J 
used the same successive iteration procedure, but with curvature current contribution from dipole 
field model, to compute the perpendicular ring current. Implicitly assumed in these studies is the 
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axisymmetric condition, which is in general not correct for storm time case. Another concern is the 
convergence of the iteration scheme, which may require much more than three iterations. The 
experience in computing toroidal equilibrium indicates that the number of required iterations when 
solving the MHD equilibrium equation is usually in the order of 20 or more, even though the 
difference between successive iterations may be less than 1%. 

The Grad-Shfranov equation for axisymmetric magnetospheric equilibrium with isotropic 
pressure has been studied by Ip and Voigt [1985] and Voigt [1986a, 1986b] for the magnetosphere 
of Uranus. These calculations assume that the pressure is proportional to the square of the 
magnetic flux so that the Grad-Shfranov equation becomes linear in the magnetic flux. Attempt 
was made [Hau and Voigt, 1990] to improve the quadratic pressure assumption for the calculation 
of the shape of the two-dimensional magnetotail. Numerical calculation of the two-dimensional 
near magnetotail equilibrium for anisotiopic pressure was performed [Whipple et al., 1990] by 
integraHng the Poisson equation for the component of the vector potential in the symmetry 
direction. The perpendicular current density in the Poisson equation was obtained by specifying an 
analytical bi-Maxwellian panicle distribution function. These calculations were done only for the 
simplifying rectangular geometry. 

Recently, mathematical representations of the electric current density and magnetic field 
were derived in anisotropic magnetohydrostatic plasma for which the particle motions parallel to 
the magnetic field are adiabatic [Heinemann, 1990], An explicit expression for current density is 
obtained by solving the momentum equation, Ampere's law, and charge conservation for the 
current density. Their formulation neither provides more information than other formulations, nor 
offers any computational advantage. However, it provides some physical insight by expressing 
the field-aligned current in terms of an integration of the perpendicular plasma drift along the entire 
field line. 

In the paper we present accurate numerical solutions of self-consistent magnetospheric 
plasma equilibrium with anisotropic pressure [Cheng, 1990]. The numerical method involves 
solving the inverse equilibrium equation by an iterative metric method [DeLucia et al., 1980]. 
Numerical studies are performed to show the effects of finite beta, pressure anisotropy, and 
boundary condition on the axisymmetric magnetospheric equilibrium. For the isotropic pressure 
cases, the finite beta effect produces outward expansion of the constant magnetic flux surfaces, and 
along the magnetic field the toroidal ring current is maximum at the magnetic equator. The effect of 
pressure anisotropy will further expand the flux surfaces outward in the low field region. Along 
the magp.ac field lines the westward ring current can be peak away from the equator and becomes 
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more singular as pressure anisotropy increases. This suggests that, against common belief, the 
westward ring current can be peaked away from the equator in the magnetosphere. The 
conservation of particle energy and the adiabatic invariance of the magnetic moment dictate that 
trapped particles will have relatively larger perpendicular velocity and smaller parallel velocity in 
high magnetic field regions than in low field regions, the parallel pressure is enhanced in low field 
region accordingly to provide an outward shift of the constant parallel pressure surfaces with 
respect to the corresponding constant magnetic flux surfaces. Since the particles are trapped in the 
lower magnetic field region with larger perpendicular velocity than parallel velocity, the 
perpendicular pressure will be enhanced even more than the parallel pressure. The, outer boundary 
flux surface has significant effect on the magnetospheric equilibrium. For the outer flux boundary 
resembling the dayside compressed flux surface due to solar wind pressure, the deformation of the 
magnetic field can be quite different from that for the outer flux boundary resembling the tail-tike 
flux surface. 

In Section 2, the problem of obtaining general magnetospheric equilibrium with anisotropic 
pressure is formulated. An optimal flux coordinate system is presented. An equilibrium equation 
is derived for axisymmetric magnetospheric equilibrium with anisotropic pressure. The boundary 
conditions are discussed. A method of determining plasma pressure from either analytic particle 
distribution or particle distribution measured along the satellite's path is presented. In Section 3, 
an inverse equilibrium problem is derived to allow for accurate solution of the magnetic flux 
function by an iterative metric method. The numerical results for axisymmetric magnetospheric 
equilibrium with the effects of finite beta, pressure anisotropy, and boundary condition are 
presented in Section 4. A summary of this paper and a discussion on future extension of this work 
to study three-dimensional magnetospheric equilibrium are given in Section 5. 

2. Magnetospheric Equilibrium 

2.1 Anisotropic MHO Equilibrium Model 

If the plasma convection in the magnetosphere is smdl, the magnetospheric equilibrium can 
be approximated by a static MHD equilibrium with anisotropic pressure, which is described by the 
system of equations 

J x B = V . P = V P X - V»I (P .L-P | | )bb l , (2.1) 
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V x B = J , (2.2) 

V» B = 0 , (2.3) 

where b is a unit vector along a magnetic field line, and J, B, and P are the equilibrium current, 
magnetic field, and pressure tensor, respectively. Px and P|| are functions of magnetic flux 
function \y and the magnitude of the magnetic field B. It is convenient to introduce the functions 

O = 1+ ( P x - P | | ) / B 2 , (2.4) 

and 

t = 1+ (l/B)@Pj/3B)v. (2.5) 

If o > 0 and t > 0 are satisfied everywhere in the plasma, the magnetosphere is stable to the well-
known MHD "firehose" and "mirror" instabilities, respectively [Gad, 1967]. Equation (2.1) can 
be rewritten as 

CJ x B = V P x - ( B » V c ) B + ( l - a ) v * ( B 2 / 2 ) . (2.6) 

From Eq. (2.6), the momentum balance equation parallel to the equilibrium magnetic field is given 
by 

B . V P „ = ( P J I - P J . ) b . V B , (2.7) 

and the momentum balance equation perpendicular to the magnetic field is given by 

V x ( B 2 / 2 + P X ) = K O B * , ( 2 .8) 

where K = b • V b is the magnetic field curvature. From Eq.(2.7), a can be expressed as cr = 
1 - (1/B)(3PB/3B)V. 
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2.2 Coordinate System 

Considerable thought should be given to the choice of coordinate system adopted for the 
calculation. From the numerical point of view, an improper choice could introduce the need for a 
considerable interpolation with its concomitant introduction of error. A wise choice of a natural 
coordinate system for the magnetospheric magnetic field can considerably increase the 
computational efficiency and accuracy. 

For a general three dimensional magnetospheric equilibrium with nested flux surfaces, the 
magnetic field can be expressed as 

B = V\|/ x Vet , (2.9) 

where \jr is chosen as the magnetic flux function. Both \y and cc are constant along magnetic field 
lines. The lines where surfaces of constant \|/ and a intersect represent magnetic field lines. Note 
that y must be a period function of toroidal angle <j> in cylindrical (R, $, Z) coordinate to ensure 
periodicity constraint. In terms of a flux coordinate system (y,<t>,x) with x is the generalized 
poloidal angle varying between 0 and 2K, a can be expressed as a = <(> - qty) ^ - 5(\|/,<)>,x) 
without loss of generality, where 5(V,<t>,X) is periodic in both x and<j>. The flux coordinate system 
is in general not orthogonal and its metric is complicated because Vy • V% * 0, Vy • V<b * 0, and 
V$ • Vx * 0. A straight field line flux coordinate can be constructed by choosing £ = $ -
5(v,<fi,x) to replace (J) so diat B»V£ / B»Vx = qty)- This feature is particularly useful since the 
operator B«V occurs frequently in the stability calculations. The Jacobian of the straight field line 
flux coordinate system is given by J = (Vi|rxV£«Vx ) - 1 - The poloidal flux within a magnetic 

surface is *¥ = I d x B»Vx = (2ic)2y. We note that computational study for general three-

dimensional magnetospheric equilibrium in terms of the magnetic field representation, Eq.(2.9), is 

still in the early stage of development. 

For a simplified axisymmetric magnetospheric equilibrium with nested flux surfaces, the 
magnetic field can be expressed as 

B = Vy x V(ji. (2.10) 
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where y is a function of R and Z only. Since B« Vy = §• V<|> = 0, the lines of the magnetic field 
and the lines of constant y coincide. A natural coordinate system is the flux coordinate system 
(Wl'.X)- N ° t e t n a t t n e fiux coordinate system is in general not orthogonal with V\y«Vj£ * 0. 
Along a flux surface in the poloidal plane we have 

ds/dx = J IVy| / R, (2.11) 

where ds is the element of arc length along the magnetic field line. The specification of J , 
therefore, determines the % coordinate. By choosing J (R,Z) = \{y) R / lVy|, where \(W) is 
given by the requirement that % increases by 2JI during one poloidal circuit, we have the equal arc 
length coordinate system. 

2.3 Equilibrium Equation for Axisymmetric Magnetosphere with Anisotropic 
Pressure 

In this paper we will limit our studies to axisymmetric magnetospheric equilibrium with 
nested flux surfaces. The V<|) component of Eq. (2.6) gives J »V\ji = 0. The Vy component of 
Eq. (2.6) leads to the toroidal ring current density 

J* = (R/ o) [ OPjyav)B + (t - o) (V V .VB 2) / 2( V V ) 2 ] . (2.12) 

The second term in Eq.(2.12) is due to pressure anisotropy and is responsible for the peaking of 
the ring current away from me equator along the field line. Since J •V*]) = V»(Sx V<j>) = - V » 
(Vy/R2), and 

VyVo- = (V\|r)2 [3(P±-P|| )/3y] B / B 2 + (x - a) (Vy»VB2) / 2B2, (2.13) 

the anisotropic equilibrium equation [Grad, 1967] for axisymmetric equilibrium can be written in 
the familiar form 

R 2 V • (Vy / R2) = - (1/ o) [ R 2 @P||/3\|/)B + V y Va ] , (2.14) 

which will be used to solve for y/ if the functional form of P|j(y,B) and appropriate boundary 
conditions are specified. The isotropic limit of Equation (2.14) is obtained by setting Pj_ = Pj, so 
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that a - 1. In the vacuum case, the right hand side of Eq. (2.14) is identically zero. One of the 
vacuum solution is the dipole field with y = - M sin 28/ r, where r and G are the radius and polar 
angle in the spherical coordinate system (r,&,$), and M is the dipole moment. The components of 
the dipole magnetic field are given by B, = - 2M cos9/ r5, and Be = - M sin9/ r3. Another 
vacuum solution is the uniform interplanetary magnetic field (IMF) along the Z-axis with \if = 
BiMF R 2 / 2, where BJMF is the constant IMF. 

It is important to consider the effect of pressure anisotropy to the ring current. Typically, 
both (T. - <J) and [(v*\p«VB2) / (V\j/)2] are negative and decrease in magnitude along the field lines 
as one moves away from the equator. For example, (Vy* VB2) / (Vy) 2 = - 6M (1 + cos29) / r'f 1 
+ 3 cos2G) < 0 for a dipole field, and (t - c) = - (2Pj. + PJI)(PI /P | - 1) / B 2 < 0 for a bi-
Maxwellian distribution. Since (x - c) decreases in magnitude faster than [(V\|/» VB2) / (V\y)2] 
along the field line away from the equator, from Eq.(2.12) one expects that pressure anisotropy 
contributes to a eastward current which is peaked at the equator. 

2.4 Boundary Conditions 

There are two ways to impose the boundary conditions in solving the equilibrium equation: 
the fixed boundary and the free boundary conditions. In the fixed boundary problem, the magnetic 
flux function y is specified at certain outer boundary of the computational domain such as the 
magnetopause. The magnetic boundary conditions at the magnetopause are usually specified either 
as closed or open [Toffoletto and Hill, 1986; Voigt, 1981, 1986b]. For the open magnetopause 
boundary condition, the magnetosphere and interplanetary magnetic field (IMF) lines are 
interconnected through the magnetopause. All the effects due to magnetopause current, tail 
current, IMF, and plasma outside the specified boundary are implicitly imposed through the 
specification of the boundary shape and it's assigned flux. In the free boundary problem, we have 
to employ a magnetospheric current loop systems [Olson and Pfitzer, 1977; Voigt, 1986b] to 
approximate the self-consistent magnetopause surface current and magnetotail current distributions. 
The shape of the magnetopause boundary consistent with the these current sources is dien obtained 
as part of the solution. 

In the paper we will consider the fixed boundary problem in solving the axisym metric 
equilibrium equation. Since the plasma beta is insignificantly small for r < 2R E (RE is the earth 
radius), the magnetic field is approximately a dipole field. Therefore, to reduce the computational 
domain and to avoid the singularity at r = 0, we will consider a computational domain bounded by 



(a) an outer boundary with flux vp o u t and with shape to be specified, (b) an inner boundary with 
contribution due to dipole magnetic flux and IMF flux, and (c) boundary curves on the earth's 
surface between y j n and y&It curves. The choice of the outer boundary will take in account the 
effect of the solar wind [Mead and Beard, 1964; Toffoletto and Hill, 1986; Voigt, 1981,1986b]. 

2.5 Anisotropic Pressure Distributions 

In solving the equilibrium equation it is reasonable to specify the functional form of the 
two-dimensional parallel pressure P||(\|/,B). The perpendicular pressure Pi(YiB) is then 
determined from the parallel momentum balance equation, Eq.(2.7). A better way is to specify P 
by prescribing the particle guiding center distribution for each species. For a collisionless plasma 
the particle energy (£ = v2/2) and the adiabatic invariants, magnetic moment (u. = vj.2 /2B) and the 

longitudinal invariant (Jj| = f ds V|t), are constant during the drift motions, where vj and vi are 

the components of the velocity parallel and perpendicular to B respectively. The guiding center 
particle distribution function must have the form F = F(£,uJ||). In general, J|| = J|j (E,n,Y,a) and 
F = F(E,H,y,a), where y and a are related to the magnetic field through Eq.(2.9). If all panicles 
on each field line share the same drift surface, where \|/ labels the drift surface, men J|| = J|j (£,u\,v) 
and F = F(E,u., J(|). With this form of particle distribution, the parallel and perpendicular pressures 
are given by 

(pi) = S ^J^/^fBVhi'J 
ion (2.15) 

where the summation is over the particle species j and Oj| which represents the direction of panicle 
velocity parallel to B, and mj is the particle mass. The parallel velocity vg has the form 

v„ = 0 | |V2(£-nB) . (2.16) 

By inspection Pj_ and P| are functions of \t and B only. Note that die parallel momentum balance 
equation, Eq. (2.7), is automatically satisfied if the particle distribution F(E,u.,\y) is used to 
compute Px and P||. The guiding-center particle distributions F(£,u,Y) can be either prescribed 
by an analytical form or obtained from the satellite measurements of the particle flux. The particle 
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density and pressure everywhere along field lines can be integrated from an analytical distribution. 
For a bi-Maxwellian particle distribution F(£,n,v) = N(y) [2jtT|j(i/)/mr3/2 exp[ - m£/T||(y) + 
mjiB0(\|r)/T0(v)]. the particle density is given by 

n(y,B) = N( V ) [Tj.(v,B) / TN(v)] = N(y) t 1 - B 0 T U / BT 0 )~\ (2.17) 

the parallel pressure is given by 

P|l(y,B) = P(y) Tx(v,B) / T ^ ) . (2.18) 

the perpendicular pressure is given by 

Px(i|/,B) = P(V) [Tx(V,B) / T|,(y)]2, (2.19) 

and the pressure anisotropy parameter is given by 

t = 1+ (2Px/B2) [ l -P j . /P | | ] , (2.20) 

where N(y) and P(\|0 = N(\y)T||0i0 are the density and pressure in the isotropic limit, respectively. 
Bo(\0 can be chosen as the magnetic field at the magnetic equator. Other forms of analytical 
particle guiding center distributions [Longmire, 1963] have also been employed in previous 
calculations. 

Although the measured particle distribution can only be obtained along a satellite's path, it 
can be used to construct the density and parallel pressure everywhere along field lines. Ixt 
f(£,vl|/v,R) be the measured distribution along a satellite's path in the magnetic equatorial plane, 
where the magnetic field is assumed to be Bmind die minimum value of B(y,x) on each magnetic 
field line. Further assuming that B is a monotonically increasing function along a field line as one 
moves from the magnetic equator toward the earth, we can set 

F(£,H,Y;Bmin) = f(£ ,Vv,R). (2.21) 

The description can be extended to other value of B(y,%) by choosing F(e,u,y;B) = 
FCE.n.YiBmin) if B < &t\i, and F(E,|i,\|/,B) = 0 if B > E/\i, since u. is a constant of motion. Thus 
the effect of mirroring of the particles as the magnetic field field increases is properly represented. 
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Since y(R,Z) is the equilibrium solution, the assignment of F(£,u.,Y;Bmin) must be adjusted until it 
coincides with the measured particle distribution for all R values. 

It is more accurate to convert back to f(£,V||/v,\|f) space at each value of y and B and 
compute the parallel pressure with 

Pl,(y3) = m J d 3v vj f«e.,yv,y), (2.22) 

because the distribution f(£,V|̂ v,\y) is usually measured on uniform energy and pitch angle space 
grids The perpendicular pressure can be determined in a similar way, but it is more accurate to use 
the parallel momentum balance equation, Eq.(2.7), to calculate it From Eq.(2.7), we have 

Px(V,B) = P||(V,B> - B 0 P „ / a B ) ¥ . (2.23) 

If die satellite trajectory is not on the equatorial plane, a similar prescription can be 
formulated to construct the guiding center distribution F(£,u,\(f;B) from the particle distribution 
f(e,V||/v,R,Z) measured by satellites. 

Recently significant progress has been made in the satellite observational data of ring 
current particle distribution from AMPTE/CCE [Lui et al., 1987] and ISEE 2 [Spence et al., 1989]. 
However, more complete information is required to give the full energy and pitch angle range and 
wider spatial coverage. More specifically, information of proton with energy between 1 and 25 
keV, which is not presented in the earlier study by Lui et al. [1987], may be important. Lower 
charge states of oxygen ions, presumably injected from the ionosphere may have energy content as 
much as 30% of the total ring current energy, must be included. One of the future efforts will be to 
explore new satellite data of ring particle distribution as input to the self-consistent equilibrium 
calculation presented. The resultant equilibrium solution will be used to understand the 
magnetosphere phenomena. 

3. Inverse Equilibrium Problem 

In solving the anisotropic equilibrium equation one typically expresses the magnetic flux 
V(R, Z) on a rectangular grid. However, for stability studies, it is not y(R, Z) that is needed but 
rather the inverse functions R{y,X) and Z{\j,%), where (\u-,%) are generalized magnetic flux 
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coordinates with properties described in Sec. 2. To obtain these inverse functions numerically, 
one employs a mapping procedure to contour levels of constant y and X- Thus, the (R,Z) 
coordinates of the intersection of the contours y t = i Sy and %j - j $X form i. discrete set of points 
[R(yi,Xj); Z(yj,Xj)] which collectively define a finite difference approximation to the exact 
mapping [R(y,x); Z(y,x)]. The discrete mapping obtained in this manner is often adequate, but in 
general satisfies the flux coordinate form of the finite differenced cquilib.iv.rn equation only to 
within some error introduced by truncation error in the original (R,Z) solution and in the 
contouring. The fact that this error is limi'ed by the truncation error inherent in the finite difference 
equations rather fhfix by an iteration tolerance (which can be made arbitrarily small) can render this 
method unacceptable for equilibrium -vith large local gradients of flux and current. A finite-
difference method based on equal increments in (R Z) space is not optimal for resolving these 
spatially local steep gradients. 

To overcome these difficulties, we will consider solving die inverse equilibrium equation 
based on the flux coordinates instead af the equilibrium equation, Eq,(2.14). An iterative metric 
method will be used to s^lve for trie discrete coordinate functions (R(y,x); Z(y,x)] such that the 
flux coordinate form of th- finite differenced inverse equilibrium equation based on these points is 
satisfied to an arbitrarily small tolerar.es. lit addition, the numerical grid on which finite 
differences are evaluated L tied to the equilibrium solution itself in such a way that grid points 
automatically accumulate in reb.ons of step gradients. We note that equilibrium containing 
separatrix or ergodic regions will not be found with the inverse equilibrium method unless 
provision is made to treat multiple regions and to match solutions where these regions meet. 

3.1 Inverse Equilibrium Equation 

To derive the in\;rsc equilibrium equation in terms of a right-handed flux coordinates 
(p,th,x), where p labels magnetic surfaces of constant y , we note that 

j - V» (Vy (R2) = (3/3p) [ J Vy • Vp / R 2 ] + 0/5*) [ j Vy • V% / R 2 ] . (3.1) 

The Jacobian J" = (Vp x V<j> • Vx) - 1 can be expressed as derivatives of the cylindrical spaiial 
coordinates (R, Z): 

J = R [ @R/aP) OZ/?x) - OR/3%) @Z0P) 1 - (3.2) 

http://tolerar.es
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In teims of the covariant representation in cylindrical coordinate, the vectors Vp and V% can be 
expressed as 

Vp = R [ QZ/dx) VR - 0R0]O VZ ] / J" , (3.3) 
and 

Vx = R [ 0R/9p) VZ - 0Z/3p) VR ] / j . (3.4) 

By defining \y = \|j(p) so that dy/d% = 0, the inverse equilibrium equation for axisymmetric 
magnetosphere is derived from Eqs.(2.13-14) and takes the form 

(5/3p) (Ov/9p) [@R%) 2 + @Z#x)2l J " 1 ) 
- 0/9z) (Oy/3p) K3R/3p)(3R/3x) + @Z/3p)@Z/3x)] J " 1 } 
= - J a" 1 { O P a ^ H + (t - a) (Vy.VB2) / 2(V V ) 2 !, (3.5) 

which is regarded as an equation for the two-dimensional coordinate functions R(p,x) and 2/y,x). 
The Jacobian is chosen as 

J = R [ @R/dp)OZ/0X> - GR%)0Z/3p) ] = Up) R m / IVp|n, (3.6) 

where m and n are arbitrary integers, so that (R, Z) is constrained. By appropriately choosing m 
and n, different nonorthogonal magnetic flux coordinate systems can be obtained. For the 
numerical solutions presented in Sec. 4 we choose m=n=l, which corresponds to an equal arc 
length coordinate along %• 

3.2 Iterative Metric Method 

Numerically, an iterative metric method is employed [DeLucia et al., 1980] for .solving the 
inverse equilibrium equation. An initial coordinate transformation corresponding to iteration level 
k=0 is guessed with [ R ^ i j); Z w ( i j)], where i = )., N correspond to discrete p grids and j = 1, M 
correspond to discrete % grids. The points corresponding to i = 1 define the inner plasma 
boundary and the points corresponding to i = N define the outer plasma boundary. The points 
corresponding to j = 1 and j = M define the boundary curves on the earth's surface between yin 

and \ |r o u t curves. The finite difference form of the inverse equilibrium equation is then solved for 
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the magnetic flux function V^^Cij) at the new iteration level, k+1, using the coordinate 
transformation at the old iteration level, k, by the successive over-relaxation method [Roache, 
1972]. To obtain the finite difference form of the inverse equilibrium equation, a center difference 
scheme is employed. The right hand side of the inverse equilibrium equation is evaluated at the old 
iteration level, k. Next, the coordinate functions at the new iteration level, (R*+1)(i,j): Z* + , )(i j)], 
are obtained from interpolation technique by using the magnetic flux function at the new iteration 
level, ij/* + 1\i j), so that die finite difference forms of the requirement that \ | / k + 1 ) be constant along 
constant p surfaces and that the Jacobian constraint, Eq. (3.6), is satisfied; i.e., (1) d^+l)/d% = 
0, and (2) R l0R/dp)&Z/^X> - @R/dx)(dZ/dp)] = X(p) R m /I VpF* at the Jc+1 iteration level. The 
iteration procedure is repeated until the magnetic flux function is independent of x and converges to 
some tolerance. 

4. Numerical Results for Axisymmetric Magnetospheric Equilibrium 

In the computational domain, the flux coordinates (p,<j>>X) are chosen with 0 < v ^ 7t, 0 < 
$ £ 2TI, and 0 £ p £ 1, where p is related to y by y = - B D R 0

3 / [R m i n + p(R m „ - Rmin)]- The 
equatorial dipole magnetic field intensity is BD at R = Ro. The magnetic flux is \fmlx = - BD R«3 / 
Rm»i at the outer magnetic surface and is y^n = - BD R 0

3 / Rmin at the inner magnetic surface. 
The outer magnetic: flux surface is specified by 

Vm«x = - B D Ro3 sin28 / r + B s (r - RE) 2 cos2 36, (4.1) 

and the inner magnetic flux surface is given by 

Vmin = - B D R 0

3 s i n 2 e / r + B i r 2 s i n 2 8 / 2 . (4.2) 

For positive values of Bs and Bi, the flux surface is compressed with respect to the dipolc field 
surface. To enclose the computational domain, the boundaries are set on the earth's surface for 
VminSySVnux. 

Rather dian presenting a survey of anisotropic pressure magnetosphcric equilibria with 
different particle distributions and pressure profiles, we shall concentrate on the effects of 
boundary condition, plasma beta, and pressure anisotropy. To generate the axisymmetric 
magnetospheric equilibrium, we need to specify the ring current plasma pressure profiles. In the 
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following we will employ the analytical anisotropic pressure, Eqs. (2.17)-(2.19), obtained from a 
bi-Maxwftllian distribution with the P(\|») profile given by 

P(Y> = Po [ CY™, - V)/7]Y [ Of - Vmm)/8]5 [ (Y + 5)/(y m „ - V^F**, (4.3) 

where T 0(y) and Tfi\r) are chosen as constants, and B 0 ( Y ) can be chosen as the magnetic field at 
the magnetic equator. Note that for T 0 » T|| the pressure is essentially isotropic. 

In the foilowings we set R 0 = 6.6RE, Rmi„ = 2RE, R m « - IORE. Y = 2 , 5 = 2, B D = I. 
Thus, the dipole magnetic field is normalized to be unity at R = 6.6Rein the equatorial plane. The 
plasma beta effect is studied by varying P 0 , the effect of pressure anisotropy is studied by 
changing CTo/T[|), and the effect of boundary condition is studied by varying Bi and Bs-

4.1 Isotropic Pressure Case 

Observed plasma pressure in the magnetosphere is almost always anisotropic. However, 
we will first study isotropic pressure cases to understand the effect of finite plasma beta by 
choosing a very large value of (To/T||), so that the pressure is practically isotropic and is a function 
of Y only. For simplicity we set (Tc/Tp) = 104 for all flux surfaces and varying P 0. The boundary 
condition parameters are set to be Bi = B$ = 0 so that the inner and outer flux surfaces are identical 
to the dipole field surfaces. The computation is performed for P„ = 0.5 with 50 flux surfacis and 
61 poloidal angle grid points. The constant y contours are shown in Figure 1. The jolid lines 
correspond to the equilibrium solution, and the dotted lines represent the dipole magnetic flux 
surfaces. In the low beta region the solid curves and dotted lines coincide for the Lame flux values. 
The effect of finite plasma beta is to shift the flux surface outward toward the lower magnetic field 
region, and is clearly shown in the large beta region (low field region) in Figure 1. This outward 
shift of flux surface is similarly observed in the tokamak equilibrium and is called Shfranov shift. 
The Shafranov shift is more pronounced for higher beta cases. The toroidal ring current contours 
are shown in Figure 2, which shows that along the magnetic field lines the ring current is peak at 
the equator. The dotted lines correspond to the equilibrium constant \\f surfaces. The ring current 
changes sign as one goes away from the earth; the current is eastward at small R and is westward 
at large R. TV radial variations of the plasma pressure P, the plasma beta P = 2P/3 2, the toroidal 
ring current 3$, and the percentage difference between the self-consistent magnistic field and dipole 

field (B-BD)/BD in the equatorial plane are shown in Figures 3(a)-(d), respectively. Note that the 
maxima of P and Jl are located at different radial locations as shown in Figures 3(a) and 3(b). The 
peak pressure is located at R = 3.3RE, and the peak beta is about 0.25 at R « 7RE. Figure 3(c) 
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shows that the westward current is peaked atR» 6.4RE, and the eastward current is peaked at R = 
2.5RE- This is consistent with analytical expression of the toroidal ring current given by J$ = 
R(3P/d\|0; the most intense westward ring current can be several earth radii away from the location 
of maximum ring current pressure. Since (3P/3\|f) is constant along the field line, J$ is peak at the 
equator and decreases as the latitude increases toward the earth from the equator. The deformation 
of the magnetic field due to the ring current plasma pressure is shown in Figure 3(d); the magnetic 
field is reduced around the peak pressure gradient, (3P/3y). location. The magnetic field 
deformation depends on the pressure profile and the boundary condition. For this case the 
magnetic field is reduced for R < 7RE and enhanced for R > 7Rg. For the same pressure profile 
and boundary condition the distortion of magnetic field is roughly proportional to he plasma beta 
for P 0 > 0.2. 

4.2 Anisotropic Pressure Case 

To study the effect of pressure anisotropy on the magnetospheric equilibrium, we will vary 
(To/T|j) but set Bi = Bs = 0, P 0 = 0.5. For simplicity we let (T<>/T||) be independent of \(r. From 
Eqs. (2.18) and (2.19) we have P||(y,B)/P(y) = Pj.(vir,B)/P||(y,B) = [1 - B 0 T b / BT 0]" 1 for a bi-
Maxwellian distribution. Therefore, along field lines as B increases, the pressure anisotropy 
decreases. As (TQ/TJ) decreases, not only the pressure anisotropy increases, but plasma beta also 
increases. Figure 4 shows the constant y contours for (TcfT\\) = 2, which corresponds to a 
pressure anisotropy Pj/P|| = 2 on equator. The solid lines correspond to the equilibrium magnetic 
flux surfaces, and the dotted lines represent the dipole magnetic flux surfaces. In the high field 
region where beta is low, the solid curves and the dotted lines coincide for the same flux values. 
In the low field region the flux surfaces are much more drastically shifted outward than the 
isoptropic case due to higher values of parallel and perpendicular betas. 

Figures 5(a) and 5(b) show the constant Pj and Pj. contours for (To/Ty) = 2, respectively. 
The dotted lines correspond to the equilibrium constant y surfaces. Note that the surfaces of 
constant pressure are quite significantly shifted in relation to the surfaces of constant y in low field 
region. The Pj. contours arc found to be more displaced than the P| surfaces. This is the result of 
the weak dependence of the pressure on \\r and the ensuing dominant dependence on B near the 
equator. Along field lines as B becomes large near the earth, the pressure contours coincide with 
the constant \y surfaces. Near the equator, where B is smaller, the parallel and perpendicular 
pressures are enhanced to provide an outward shift of the constant pressure surfaces for region 
with (3P/3y) < 0. These behaviors can also be understood from a single particle point of view oy 
employing the adiabatic invariance of the magnetic moment, ji = vj_J/2B and the total energy £ = 



v2/2 conservation. Since a trapped particle has relatively lower v± and higher vg in low field 
region than in high field region, the parallel pressure is enhanced in low field region accordingly to 
provide an outward shift of the constant parallel pressure surfaces. For a given energy these 
particles with B„/B(x) < \iBj£ < 1 are trapped in low field region where B < B(%) and do not 
contribute to pressure in high field region where B > B(x). The deeply trapped particles in the low 
field mirror regions have larger perpendicular velocity than parallel velocity and will enhance the 
perpendicular pressure even more than the parallel pressure. With the same argument we can 
understand that in region with (3P/9xy) > 0 (small R region) the constant pressure contours shift 
inward v/ith respect to the constant magnetic flux surfaces as shown in Figs. 5(a) and 5(b). 

""•e constant magnetic field (Mod-B) contours are shown in Figure 6, where the dotted 
lines correspond to the equilibrium constant y surfaces. Note that the surfaces of constant B are 
quite significantly deformed in high beta region nsar the jquator due to the diamagnetic effect. 
Since the second term of Eq. (2.12) indicates that the toroidal ring current depends on the gradient 
of the magnetic field for anisotropic plasma, the deformation of the magnetic field will gready 
modify the ring current pattern. Figures 7(a) and 7(b) show the the toroidal ring current contours 
for (T</T||) = 3 and 2, respectively; along the magnetic field lines the westward ring current can be 
peak away from the equator. The dotted lines correspond to the equilibrium constant x? surfaces. 
Because the pressure anisotropy will contribute to a eastward current, the eastward current region 
expands outward around the equatorial plane, and the westward current becomes peak away from 
the equator. As 'ieta or pressure anisotropy increase, the westward current contours become more 
indented bean shapes and eventually develop local peak away from the equator as shown in Fig. 
7(b). Figure 8 shows the ring current versus % along field lines for four flux surfaces for the 
(To/T||) = 2 case, where % varies from 0 to 7t and corresponds to an equal arc length coordinate 
along field lines from the southern hemisphere to the northern hemisphere. These four flux 
surfaces cross the equator at (a) R = 2.1RE, (b) R = 4.7RE, (c) R = 8.0RE, and (d) R = 9.9RE, 

respectively. As (T0/T (|) increases, these features related to pressure anisotropy are less 
pronounced Since the plasma pressure is almost always aniostropic and plasma beta is quite high 
in the magnetosphere, the results suggest that, against common belief, the ring current can be 
peaked away from the equator. 

The radial variations of the perpendicular plasma pressure Pi, the perpendicular plasma 
beta Px = 2Pj/B 2, the toroidal ring current J$, and the percentage difference between the self-
consistent magnetic field and dipole field (B-BD)/BD in the equatorial plane are shown for the 
(To/T||) = 2 case in Figures 9(a)-(d), respectively. The parallel pressure has same profile as die 
perpendicular pressure. Note that the maxima of Pi and pi are located at different radial locations 



as shown in Figures 9(a) and 9(b). The peak Px is located at R * 3.5RE, and the maximum Px is 
about 1,3 and is located at R = 7RE- Figure 9(c) shows that the westward current is peaked at R = 
8RE, and the eastward current is peaked at R = 2.5RE- The deformation of the magnetic field due 
to the ring current plasma pressure is shown in Figure 9(d); the depression of magnetic field is 
dominant near the peak pressure gradient, (dPx/dy)> location. The deformation of the magnetic 
field depends on the pressure profile and die boundary condition. For this case the magnetic field 
is reduced for R < 7RE and enhanced for R > 7RE-

4.3 Effect of Outer Boundary Condition 

The inner boundary flux surface is usually only slightly changed even during geomagnetic 
storm times with a worldwide depression of the magneric field at the earth's surface, and we set Bi 
= 0 without loss of generality. The outer boundary flux surface has more significant effect on the 
magnetospheric equilibrium, and its effect is examined by varying Bs. For negative values of Bs 
the outer flux boundary resembles a dayside compressed flux surface due to solar wind pressure. 
For positive Bs the outer flux boundary resembles a tail-like flux surface. The fixed parameter is 
P 0 = 0.5. 

First, we choose Bs - -0.04, and (To/Tj) = 2.2 to simulate a dayside magnetosphere with 
a compressed boundary flux surface. Figure 10 shows the constant y contours with the solid lines 
corresponding to the equilibrium solution and the dotted lines representing the dipole magnetic flux 
surfaces. Similar to those shown in Figure 4, die solid curves and the dotted lines coincide for the 
same flux values in the high field region where plasma beta is low. In the low field region the flux 
surfaces are much more drastically shifted outward than those shown in Figure 4 due to the outer 
boundary effect. Near the boundary the field lines exhibit relatively angular corners away from 
equator, but die field line curvature is drastically reduced near the equator. The surfaces of 
constant pressure are quite significantly shifted in relation to the surfaces of constant \y in low field 
Tegion; the Px contours are more drastically displaced than the P| surfaces, similar to the case with 
Bs = 0 shown in Figure 5. In Figure 11, the solid lines arc constant magnetic field contours, and 
the dotted lines correspond to the equilibrium constant V surfaces. Similar to the case with B$ = 0 
shown in Figure 6, die constant B contours are quite significantly deformed in high beta region 
around the equator due to the diamagnetic effect for R < 7RE. But, for R > 7RE the magnetic field 
is very significandy enhanced. For R > 8.5RE die magnetic field increases with R. Near R = SP-E 

the magnetic field develops a sharp gradient which will give a significant contribution to pressure 
anisotropy current. Because of the development of sharp magnetic field gradient the computation 



becomes increasingly difficult and more grid points must be employed. As (T,>/T||) -» 2, the 
magnetic ficid gradient becomes so sharp that the computation does not converge even when 150 
grid points along the field line and 100 flux surfaces are employed. Figure 12 shows similar 
toroidal ring current contours as shown in Figure 7(b), but the westward ring current contours 
becomes more drastically changed for R > 7RE. The dotted lines correspond to the equilibrium 
constant y surfaces. Figures 13{a)-(d) show the radial variations of the perpendicular plasma 
pressure Pi, the perpendicular plasma beta pi, the toroidal ring current J^, and ihe percentage 
difference between the self-consistent magnetic field and dipole field (B-BD)/BD in the equatorial 
plane, respectively. Note that the Pi value shown in Figure 13(b) is about the sane as the B; = 0 
case shown in Figure 9(b). Figure 13(c) shows that the westward current is p-ikid at R -- 8.2RE, 

and the eastward curren' is peaked at R - 2.5RE- The deformation of the magnetic field from 
dipole field shown in Figure 13(d) is roughly a factor of 1.5 larger than the Bs = 0 case shown in 
Figure 9(d). 

To simulate the effect of a tail-like boundary flux surface on the magnetospheric 
equilibrium we set Bs = 0.2, and (J</T\\) = 2. Figure 14 shows the constant \y contours with the 
solid lines corresponding to the equilibrium solution and the dotted lines representing the dipole 
magnetic flux surfaces. The solid curves and the dotted lines coincide for the same flux values in 
die high field region where plasma beta is low. In the low field region the flux surfaces shift 
inward due to the tail-like outer boundary. The finite beta effect causes the surfaces of constar.t 
pressure to significantly shift outward in relation to the surfaces of constant \|/ in low field region, 
and the P i contours are found to bs more displaced than the Pj surfaces. In Figure 15 the solid 
lines are constant magnetic field contours, and the dotted lines correspond to the equilibrium 
constant \y surfaces. Similar to the case widi Bs = 0 shown in Figure 6, the surfaces of constant B 
are qi'tte significantly deformed in high beta region near the equator. Figure 16 shows the toroidal 
ri: ":urrem contours with the westward ring current peaking away from the equator. The dotted 
lines correspond to the equilibrium constant \|/ surfaces. Figures 17(a)-(d) show the radial 
variations of the perpendicular plasma pressure Pi, the perpendicular plasma beta pi, the toroidal 
ring current J^, and the percentage difference between the self-consistent magnetic field and dipole 
field (B-BD)/BD in the equatorial plane, respectively. Note that the Pi value shown in Figure 17(b) 
is significamly reduced in comparison with the Bs = 0 case shown in Figure 9(b) due to enhanced 
magnetic field. Figure 17(c) shows that the westward current is peaked at R = 6RE, and the 
eastward current is peaked at R = 2.5RE. Contrary to previous cases Figure 17(d) shows that the 
magnetic field is enhanced relative to the dipole field for R < 8RE and is reduced for R > 8RE-
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5. Summary and Discussion 

Self-consistent axisymmetric magnetospheric equilibrium with anisotropic pressure is 
obtained by employing an iterative metric method for solving the inverse equilibrium equation. 
The iterative metric method uses finite differences in an optimal flux coordinate system which is 
iterated for simultaneously with the equilibrium solution until one coordinate coincides with the 
magnetic surfaces. The method automatically accumulates grid points in regions of steep 
gradients, thus yielding accurate solutions of high p magnetospheric equilibria. A method of 
determining plasma, parallel and perpendicular pressures from either analytic particle distribution or 
particle distribution measured along the satellite's path by using invariance of the magnetic moment 
to determine its value at each point along field lines is also presented. The numerical results of 
axisymmetric magnetospheric equilibrium including the effects of finite beta, pressure anisotropy, 
and boundary conditions are studied for a bi-Maxwellian panicle distribution for simplicity. For 
the isotropic pressure case, the finite beta effect produces outward expansion of the constant 
magnetic flux surfaces in relation to the dipole field lines, and along the magnetic field the toroidal 
ring current is maximum at the magnetic equator. The effect of pressure anisotropy is found to 
further expand the flux surfaces outward. The magnetic field is deformed and is reduced around 
the peak perpendicular pressure gradient location. Along the magnetic field lines the westward ring 
current is peak away from the equator due to an eastward current contribution resulting from 
pressure anisotropy. As pressure anisotropy increases, the peak westward current can become 
more singular. The resui<s suggest that, against common belief, along the field lines the westward 
ring current can be peaked away from the equator in the magnetosphere, where the plasma pressure 
is almost always aniostropic and the plasma beta is quite high. The effects of pressure anisotropy 
on the pressure contours can be understood by noting that the particles are trapped in the lower 
magnetic leld region. The conservation of particle energy and the adiabatic invariance of the 
magnetic moment dictate that trapped particles will have relatively larger perpendicular velocity and 
smaller parallel velocity in high magnetic field regions than in low field regions, the parallel 
pressure is enhanced in low field region accordingly to provide an outward shift of the constant 
parallel pressure surfaces. The deeply trapped panicles in the low field mirror regions have larger 
perpendicular velocity than parallel velocity and will enhance the perpendicular pressure even more 
than the parallel pressure. The outer boundary flux surface has significant effect on the 
magnetospheric equilibrium. For outer flux boundary resembling a dayside compressed flux 
surface due to solar wind pressure, these Finite beta and pressure anisotropy effects described 
above are greatly enhanced. For outer flux boundary resembling a tail-like flux surface, the 
deformation of the T.rgnetic field is quite different. 
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The results presented in the paper agree very well qualitatively with satellite observations 
[Lui et al., 1987; Williams, 1983]. In order to provide a more conclusive test of the 
rnagnetospheric equilibrium calculations with satellite observations, a detail information of ring 
current panicle distribution and better boundary conditions may be required. For the information 
of particle distribution, issues related to the sources and composition of ring current particles as 
well as energization and injection processes associated with the storm time ring current formation 
are yet to be resolved. Although significant progress has been made in die satellite observational 
data of ring current particle distribution, more complete information is required to give full energy 
and pitch angle range and wider radial and azimuthal spatial coverage. Lower charge states of 
Oxygen ions, presumably injected from the ionosphere may have energy content as mL.*.h as 30% 
of die total ring current energy, must also be included. Exploration of new observational data of 
ring current particle distributions must be made. For the boundary conditions, we shall explore a 
more complicated form of \|fmax than chat defined by Eq.(4.1) and also employ empirical shapes 
from magnetic field models. 

The whole mag/ietospheric eo'Jllbnum is not axisymmetric and the problem requires a full 
three-dimensional treatment with complex topology. The two-dimensional inverse method code 
presented in this paper can be extended to three-dimensional calculations without conceptual 
difficulty. A natural extension is to stvdy a tnree-dimensional equilibrium without toroidal 
magnetic field by specifying fixed boundary magnetic flux surfaces. The next step is to relax the 
constraint of zero toroidal magnetic field. Eventually, our goal is to determine 'he outer magnetic 
flux surface (magnetopause) self-consistendy by considering all the major magnetospheric current 
systems outside Jte magnetopausc [Olson and Pfitzer, 1977]. The shape of the magnetopause will 
be determined iteratively as part of the equilibrium solution by a pressure balance between the 
magnetic field and a steady solar wind with the requirement that the normal component of the 
magnetic field vanish at the boundary [Mead and Beard, 1964]. 
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Figure Captions 

Fig. 1 The constant \r contours for isotropic pressure with P 0 = 0.5, Bj = Bs = 0, (To/T||)=104. 
Tue solid lines correspond to the equilibrium solution, and the dotted lines represent the 
dipolc magnetic flux surfaces. 

Fig. 2 The toroidal ring current coiAours with same parameters as in Fig. 1. Along the magnetic 
field lines the ring current is peak at the equator. The dotted lines correspond to the 
equilibrium constant y surfaces. The ring current is eastward at small R and is westward 
at large R. 

Fig.3 The radial variations of (a) the plasma pressure P, (b) the plasma beta (J, (c) the toroidal 
ring current J$, and (d) the percentage difference between the self-consistent magnetic 
field and dipole field (B-BD)/BD in die equatorial plane with same parameters as in Fig. 1. 

Fig.4 The constant \y contours for P 0 = 0.5, Bj = B$ = 0, and (T</T||) = 2, which corresponds 
to a pressure anisotropy Pj/P| = 2 at the equator. The solid lines correspond to the 
equilibrium solution, and the dotted lines represent the dipole magnetic flux surfaces. 

Fig. 5 (a) The constant Pj contours and (b) the constant Px contours with same parameters as in 
Fig. 4 . The dotted lines correspond to the equilibrium constant V surfaces. 

Fig. 6 The constant magnetic field (Mod-B) contours with same parameters as in Fig. 4, where 
the dotted lines correspond to the equilibrium constant y surfaces. 

Fig. 7 (a) The toroidal ring current contours with same parameters as in Fig. 4, but (TQ/TIJ) = 3. 
The dotted lines correspond to the equilibrium constant y surfaces. The ring current is 
eastward at small R and is westward at large R. (b) The toroidal ring current contours 
with same parameters as in Fig. 4 with (T</T||) = 2. 

Fig. 8 The ring current versus % along field lines for four different flux surfaces, where % varies 
from 0 to re. These four flux surfaces cross the equator at (a) R = 2.165R& (b) R = 
4.74RE, (C) R = 8.04RE, and (d) R = 9.9RE, respectively. The parameters are same as in 
Fig. 4. 
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Fig.9 The radial variations of (a) the perpendicular plasma pressure Pi, (b) the perpendicular 
plasma beta pj., (c) the toroidal ring current J$, and (d) the percentage difference between 
the self-consistent magnetic field and dipole field (B-BD)/BD in the equatorial plane with 
same parameters as in Fig. 4. 

Fig. 10 The constant y contours for P 0 = 0.5, Bi = 0, (To/T||) = 2.2, and 3 S = -0.04. The 
pressure anisotropy Pi/P|j = 1.833 at the equator. The outer boundary flux surface 
resembles a dayside compressed flux surface. The solid lines correspond to the 
equilibrium solution, and the dotted lines represent the dipole magnetic flux surfaces. 

Fig. 11 The constant magnetic field (Mod-B) contours with same parameters as in Fig. 10, where 
the dotted lines correspond to the equilibrium constant y surfaces. 

Fig. 12 The toroidal ring current contours with -ame parameters as in Fig. 10. The dotted lines 
correspond to the equilibrium constant y surfaces. The ring current is eastward at small 
R and is westward at large R. 

Fig. 13 The radial variations of (a) the perpendicular plasma pressure Pjj (b) the perpendicular 
plasma beta p\i_, (c) the toroidal ring current J^, and (d) the percentage difference 
between the self-consistent magnetic field ana dipole field (B-BD)/BD in the equatorial 
plane with same parameters as in Fig. 10. 

Fig. 14 The constant y contours for P Q = 0.5, Bi = 0, (To/T||) = 2, and B s = 0.2. The pressure 
anisotropy PJ/PJ = 2 at the equator. The outer boundary flux surface resembles a 
tail-like flux surface. The solid lines correspond to the equilibrium solution, and the 
dotted lines represent the dipole magnetic flux surfaces. 

Fig. 15 The constant magnetic field (Mod-B^ contours with same parameters as in Fig. 14, where 
the dotted lines correspond to the equilibrium constant y surfaces. 

Fig. 16 The toroida' ring current contours with same parameters as in Fig. 14. The dotted lines 
correspond to the equilibrium constant \\f surfaces. The ring current is eastward at small 
R and is westward at large R. 

Fig. 17 The radial variations of (a) the perpendicular plasma pressure P±, (b) the perpendicular 
plasma beta |Jj_, (c) the toroidal ring current J$, and (d) die percentage difference between 
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the self-consistent magnetic field and dipole field (B-BD)/BD in the equatorial plane with 
same parameters aa in Fig. 14. 
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