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Abstract

Self-consistent magnetospheric equilibrium with _nisotropic pressure is obiained by
empioying an iterative metric method for solving the inveise equilibdium equation in an optimal
flux coordinate system. A method of determining plasma parallel and perpendicular pressures
from either analytic particle distribution or particle distribution measured along the satellite’s path is
presented. The numerical results of axisymmetric magnetospheric equilibrium including the effects
of finite beta, pressure anisotropy, and boundary conditions are presented for a bi-Maxwellian
particle distribution. For the isotropic pressure cases, the finite beta effect produces an outward
expansion of the constant magnetic flux surfaces in relation to the dipole field lines, and along the
magnetic field the toroidal ring current is maximum at the magnetic equator. The effect of pressure
anisotropy is found to further expand the flux surfaces outward. Along the magnetic field lines the
westward ring current can be peak away from the equator due 1o an eastward current contribution
resulting from pressure anisotropy. As pressure anisotropy increases, the peak westward current
can become moie singular. The outer boundary flux surface has significant effect on the /
magnetospheric equilibrium. For the outer flux boundary resembling dayside compressed flux
surface due to solar wind pressure, the deformation of the magnetic field can be quite different
from that for the outer flux boundary resembling the tail-like flux surface.
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1. Intrcduction

The perperual presence of the energetic particles trapped in the magnetosphere and their
ensuing magnetic drift motion in the geomagnetic field give rise to the ring current. Satellite
measurements of the energy density of the ring current particle population indicate that the ring
current plasma beta (B = 2P/B2, where P is the plasma pressure and B is the magnetic fisld
strength) may increase from about 10% during quiet periods to unity during intense geomagnetic
storm times. The enlgancemcnt of the ring current is the result of solar wind interaction with the
magnetosphere that allows some solar wind particles to penetrate into the tail region and to
subsequently magnetic (gradient B and curvature) drift into the ring current region. This ring
current plays the central role in deforming the earth's dipole field and results in the depression of
geomagnetic field. In magnetospheric equilibiium model, plasma currents result from the
requirement of force balance rather than being empirically prescribed. A good knowledge of the
self-consistent magnetospheric equilibrium will provide physical insight into the internal structure
of the magnetosphere. It will greatly improve our understanding of the satellite measurements of
the magnetic field, particle flux, and plasma current. The accurate stability calculation of Alfvén
wave instabilities such as mirror instability and ballooning mode depends sensitively on the local
cquilibrium quantites such as pressure anisotropy, pressure gradient, and magnetic field curvature
{Cheng and Lin, 1987]. Problems of wave propagation, field line resonance, and particle orbit
calculation that simulates the particle transport in the ring current region, also crucially rely on the
knowledge of the equilibrium magnetic field.

The problem of computing the finite beta, static magnetospheric equilibrium has aroacted
much 2ttention from the early days of space physics research. A successive iteration procedure has
been adopted to solve the magnetohydrodynamic (MHD) momentum Lalance equation for the ring
current magnetic field [Akasofu and Chapman, 1961; Hoffman and Bracken, 1965, 1967; Berko et
al,, 1975; Zavriyev and Hasegawa, 1990} on the basis of model current distribution. By
prescribing an analytc form of the ring current particle distribution and choosing a magnetic field
model as the initial approximation, the ring current perpendicular to the magnetic field was
calculated from the momentum balance equation. The parallel ring currsnt is assumed to be zero.
The iterated magnetic field is then computed from the Biot-Savart law. The iteration procedure is
usually stopped at the third iteration because large amount of computing is required and accuracy is
difficuli to obtain. By employing the pressure obtained from the particle distribution measured by
the Active Magnetospheric Particle Tracer Explorers (AMPTE) CCE spacecraft, Lui et al. [1987]
used the same successive iteration procedure, but with curvature current contribution from dipole
field model, to compute the perpendicular ring current. Implicitly assumed in these studies is the



axisymmetric condition, which is in generai not correct for storm time case. Another concem is the
convergence of the iteration scheme, which may require much more than three iterations. The
experience in computing toroidal equilibrium indicates that the number of required iterations when
solving the MHD equilibrium equation is usuaily in the order of 20 or mere, even though the
difference between successive iterations may be less than 1%.

The Grad-Shfranov equation for axisymmetric magnetospheric equilibrium with isotropic
pressure has been studied by Ip and Voigt {1985} and Voigt [1986a, 1986b] for the magnetosphere
of Uranus. These calculations assume that the pressure is proportional to the square of the
magnetic flux so that the Grad-Shfranov equation becomes linear in the magnetic flux. Attempt
was made [Hau and Voigt, 1990] to improve the quadratic pressure assumption for the calculation
of the shape of the two-dimensional magnetotail. Numerical calculation of the two-dimensional
near magnetotail equilibrium for anisonopic pressure was performed [Whipple et al., 1990] by
integrating the Poisson equation for the component of the vector potential in the symmetry
direction. The perpendicular current density in the Poisson equation was obtained by specifying an
analytical bi-Maxwellian particle distribution function. These calculations were done only for the
simplifying rectangular geometry.

Recently, mathematical represeatations of the electric current density and magnetic field
were derived in anisotropic magnetohydrostatic plasma for which the particle motions parallel to
the magnetic field are adiabatic [Heinemann, 1990]. An explicit expression for current density is
obtained by solving the momentum equation, Ampere's law, and charge conservation for the
current density. Their formulation neither provides more information than other formulations, nor
offers any computational advantage. However, it provides some physical insight by expressing
the field-aligned current in terms of an integration of the perpendicular plasma drift along the entire
field line.

In the paper we present accurate numerical solutions of seif-consistent magnetospheric
plasma equilibrium with anisotropic pressure [Cheng, 1990]. The numerical method involves
solving the inverse equilibrium equation by an iterative metric method [DeLucia et al., 1380].
Numerical studies are performed to show the effects of finite beta, pressure anisotropy, and
boundary condition on the axisymmetric magnetospheric equilibrium. For the isotropic pressure
cases, the finite beta effect produces outward expansion of the constant magnetic flux surfaces, and
along the magnetic field the toroidal ring current is maximum at the magnetic equator. The effect of
pressure anisotropy will further expand the flux surfaces outward in the low field region. Along
the magr_dc field lines the westward ring current can be peak away from the equator and becomes



more singular as pressure anisotropy increases. This suggests that, against common belief, the
westward ring current can be peaked away from the equator in the magnetosphere. The
conservation of particle ene.gy and the adiabatic invariance of the magnetic moment dictate that
trapped particles will have relatively larger perpendicular velocity and smaller parallel velocity in
high magnretic field regions than in low field regions, the parallel pressure is enhanced in low field
region accordingly to provide an outward shift of the constant parallel pressure surfaces with
respect to the corresponding constant magnetic flux surfaces. Since the particles are trapped in the
lower magnetic field region with larger perpendicular velocity than parallel velocity, the
perpendicular pressure will be enhanced even more than the paralle! pres<ure. The outer boundary
flux surface has significant effect on the magnetospheric equilibdum. For the outer flux boundary
resembling the dayside compressed flux surface due to solar wind pressure, the deformadon of the
magnetic field can be quite different from that for the outer flux boundary resembling the tail-like
flux surface.

In Section 2, the problem of obtaining general magnetospheric equilibrium with anisotropic
pressure is formulated. An optimal flux coordinate system is prasented. An equilibrivm equation
is derived for axisymmetric magnetospheric equilibrium with anisotropic pressure. The boundary
conditions are discussed. A method of determining plasma pressure from either analytic particle
distribution or particle distribution measured aiong the satellite’s path is presented. In Section 3,
an inverse equilibrium problem is derived to allow for accurate solution of the magnetic flux
function by an iterative metric method. The numerical results for axisymmetric magnetaspheric
equilibrium with the effects of finite beta, pressure anisotropy, and boundary condition are
presented in Section 4. A summary of this paper and a discussion on future extension of this work
to study three-dimensional magnetospheric equilibrium are given in Section 5. .

2. Magnetospheric Equilibrium
2.1 Anisotrapic MHD Equilibrium Model

If the plasma convection in the magnetosphere is smell, the magnetospheric equilibrium can
be approximated by a static MHD equilibrium with anisotropic pressure, which is described by the

system of equations

I xB=VeP =VP, - Ve[(P-P)bb], @.1)



VxB=17, (2.2)

Ve B =0, 2.3)
where b is a unit vector along a magnetic field line, and J. B, and P are the equilibrium current,
magnetic field, and pressure tensor, respectively. Pj and Pjare functions of magnetic flux

function W and the magnitude of the magnetic field B. It is convenient to introduce the functions
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41+ (Pl—Pu)/Bz. (2.4)
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1+ (I/B)@Py/@B)y . (2.5)
If o > 0and t> 0 are satisfied everywhere in the plasma, the magnetosphere is stable to the well-

known MHD "firehose" and "mirror” instabilities, respectively [Grad, 1967). Equation (2.1) can

be rewritten as

6] x B=VPL-(BeVo)B + (1-0)V (B2/2). (2.6)
From Egq. (2.5), the momentum balance equation parallel to the equilibrium magnetic field is given
by

Bevp = (P-P,) beVBE, @7
and the momentvm balance equation perbcndicu!ar to the magnetic field is given by

V,(B2/2 + P.) = X oB?, 2.8)

where K = be v b is the magnetic ficld curvature. From Eq.(2.7), 0 can be expressed as o =
1 - (1/B)(0Py/oB)y.



2.2 Coordinate System

Considerable thought should be given to the choice of coordinate systcm adopted for the
calculadon. From the numerical point of view, an improper choice could introduce the need for a
considerable interpolation with its concomitant introduction of error. A wise choice of a natural
coordinate system for the magnetospheric magnetic field can considerably increase the
computational efficiency and accuracy.

For a general three dimensional magnetospheric equilibrium with nested flux surfaces, the
magnetic field can be expressed as

B=VyxVa, (2.9)

where W is chosen as the magnetic flux functon . Both y and o are constant along magnetic field
lines. The lines where surfaces of constant W and o intersect represent magnetic field lines, Note
that W must be a period function of toroidal angle ¢ in cylindrical (R, ¢, Z) coordinate to ensure
periodicity constraint. In ierms of a flux coordinate system (y,$,%) with ¥ is the generalized
peloidal angle varying between 0 and 2x, @ can be expressed as o =& — qly) x — S(v.4.%)
without loss of generality, where 3(y,$,%) is periodic in both 3 and ¢. The flux coordinate system
is in general not orthogeonal and its meric is complicaied because Vi o Vy 0, Vs e V¢ 2 0, and
Vo o Vi = 0. A straight field line flux coordinate can be constucted by choosing { = ¢ —
S(y.$.%) to replace ¢ so that BeVl / BeVy =q(y). This feature is particularly useful since the
operatar BeV occurs frequently in the stability calculations. The Jacobian of the straight field line
flux coordinate system is given by J = (VyxV{eVy )L The poloidal flux within a magnetic

3 —
surface is ¥ = f d’x BeVy = (2n)®y. We note that computational study for general three-

dimensional magnetospheric equilibrium in terms of the magnetic field representation, Eq.(2.9), is
still in the early stage of development.

For a simplified axisymmewic magnetospheric equilibrium with nested flux surfaces, the
magnetc field can be expressed as

B = Vy x Vé. (2.10)



where v is a function of R and Z only. Since EOVW = BeV =0, the lines of the magnetic field
and the lines of constant y coincide. A natural coordinate system is the flux coordinate system
(v.0,x). Note that the flux cocrdinate system is in general not orthogonal with VyeVy = 0.
Along a flux surface in the poloidal plane we have

ds/dy = J IVy| / R, 2.11)

where ds is the element of arc length along the magnetic field line. The specification of o ,
therefore, determines the % coordinate. By choosing J (R,Z) = AQy) R /IVy|, where A(y) is
given by the requirement that ¥ increases by 2n during one poloidal circuit, we have the equal are

length coordinaie system.

2.3 Equilibrium Equation for Axisymmetric Magnetosphere with Anisotropic
Pressure

In this paper we will limit our studies to axisymmetric magnetospheric equilibrium with
nested flux surfaces. The V¢ component of Eq. (2.6) gives J sVy = 0. The Vy component of
Eq. (2.6) leads to the toroidal ring current density

Jo = R/ 0) [(BPLRY)g+ (T—0) (VyeVB?) [ 2(Vy)). (2.12)

The second term in Eq.(2.12) is due to pressure anisotropy and is responsible for ine peaking of
the ring current away from the equator along the field line. Since JoV¢ = Ve (B x V)= - Ve
(Vy/RY, and

VyeVo = (Vy)? [3(P1-P) )/oylg / B2 + (1 - o) (VyeVB?)/2B2, (2.13)

the anisotropic equilibrium equation [Grad, 1967] for axisymmetric equilibrium can be written in
the familiar form

R2V e (Vy /R} = = (1/ 6) [ R2@PQy)y + VyeVa], (2.14)

which will be used to solve for y if the functional form of Py(y,B) and appropriate boundary
conditions are specified. The isotropic limit of Equation (2.14) is obtained by setting P, = P, so



that © = 1. In the vacuum case, the right hand side of Eq. (2.14) is identically zero. One of the
vacuum solution is the dipole field with W = — M sin?6/r, where r and 6 are the radius and polar
angle in the spherical coordinate system (1,0,4), and M is the dipole moment. The components of
the dipole magnetc field are given by B; = —2M cos8/ r, and Bg = —M sin8/ . Another
vacuum soluton is the uniform interplanetary magnetic field (IMF) along the Z-axis with y =
Bpvp R%/ 2, where Bpyr is the constant IME.

It is important to consider the effect of pressure anisotropy to the ring current. Typically,
both (t—©) and [(V\;MVB2) / (V\p)z] are negative and decrease in magnitude along the field lines
as one moves away from the equator. For example, (PyeVB2) 7 (Vy)? = = 6M (1 + cos20) / £°(1
+ 3 c0s26) < O for a dipole field, and (t ~6) =— (2P, + PPp@PLP-1)/ B? < 0 for a bi-
Maxwellian distribution. Since (T — G) decreases in magnitude faster than [(VyeVB?) / (V)3
along the field line away from the equator, from Eq.(2.12) one expects that pressure anisotropy
contributes to a eastward current which is peaked at the equator.

2.4 Boundary Conditions

There are two ways to impose the boundary conditions in solving the equilibrium equaton:
the fixed boundary and the free boundary conditions. In the fixed boundary problem, the magnetic
flux function y is specified at certain outer boundary of the computational domain such as the
magnetopause. The magnetic boundary conditions at the magnetopause are usually specified either
as closed or open [Toffoletto and Hill, 1986; Voigt, 1981, 1986b]. For the open magnetopause
boundary condition, the magnetosphere and interplanetary magnetic field (IMF) lines are
interconnected through the magnetopause. All the effects due to magnetopause current, tail
current, IMF, and plasma outside the specified boundary are implicitly imposed through the
specification of the boundary shape and it's assigned flux. In the free boundary problem, we have
to employ a magnetospheric current loop systems [Olson and Pfitzer, 1977; Voigt, 1986b] to
approximate the self-consistent magnetopause surface current and magnetotail current distributions.
The shape of the magnetopause beundary consistent with the these current sources is then obtained
as part of the solution.

In the paper we will consider the fixed boundary problem in solving the axisymmetric
equilibrium equation. Since the plasma beta is insignificantly small for r < 2R (R is the earth

radius), the magnetic ficld is approximately a dipole field. Therefore, to reduce the computational
domain and to avoid the singularity at r =0, we will consider a computational domain bounded by



(a) an outer boundary with flux y,,, and with shape to be specified, (b) an inner boundary with

contribution due to dipole magnetic flux and IMF flux, and (c) boundary curves on the earth's
surface between y;; and ,,, curves. The choice of the outer boundary will take in account the

effect of the solar wind [Mead and Beard, 1964; Toffoletto and Hill, 1986; Voigt, 1981, 1986b].

2.5 Anisotropic Pressure Distributions

In solving the equilibrium equasion it is reasonable to specify the functional form of the
two-dimensional parallel pressure Py(y,B). The perpendicular pressure P(y,B) is then
determined from the paralle] momentum balance equation, Eq.(2.7). A better way is to specify P
by prescribing the particle guiding center distribution for each species. For a collisionless piasma
the particle energy (€ = v2/2) and the adiabatic invariants, magnetic moment (u = v,2 /2B) and the
longitudinal invariant (Jy = f ds vy ), are constant during the drift motions, where v; and v, are
the components of the velocity parallel and perpendicular w B respectively. The guiding center
particle distributien function must have the form F = F(€,lL.J)). In general, J; =J; (E.1,y,0) and
F = F(g,n,y,00), where yand a are related to the magnetic field through Eq.(2.9). If all paricles
on each field line share the same drift surface, where W labels the drift surface, then Jy = J; (€,1.W)
and F = F(g,u,Jy). With this form of particle distribution, the parallel and perpendicular pressures
are given by

P - e/B Z(E—IJ.B)
( ") = 2 2nmjf daf du[BF; /vl .
Py 0 0 uB

loy 2.15)

where the summation is over the particle species j and o) which represents the direction of particle
velocity parallel to B, and m; is the particle mass. The parallel velocity vy has the form

vi= o 2(e-uB) . 2.16)

By inspection P and Pjare functions of y and B only. Note that the parallel momentum balance
equation, Eq. (2.7), is automatically satisfied if the particle distribution F(E,L,¥) is used to
compute P, and Py. The guiding-center particle distributions F(E,l., ) can be either prescribed
by an analytical form or obtained from the satellite measurements of the particle flux. The panicle
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density and pressure everywhere along field lines can be integrated from an analytical distribution.
For a bi-Maxwellian particle distribution F(€,1L.y) = N(y) [2nTy(y)/m} ™2 exp[ - me&/T;(y) +
muBo (W) To(y)], the particle density is given by

n(y,B) = N(y) [To(y.B) / Tj(wj] = N(y) [ 1 - BoTy/BTo 17, 2.17)
the parallel pressure is given by
Py(,B) = P(y) TL(y.B) / Ty(y), (2.18)

the perpendicular pressure is given by

PL(y.B) = Py) [T(w.B) / Tyw)l’, (2.19)
and the pressure anisotropy parameter is given by

T=1+ QPL/BH[1-P./Py], (2.20)

* where N(y) and P(y) = N(y)Tj(y) are the density and pressure in the isotropic limit, respectively.
Bo(y) can be chosen as the magnetic field at the magnetic equator. Other forms of analytical
particle guiding center distributions [Longmire, 1963] have also been employed in previous
calculations.

Although the measured particle distribution can only be obtained along a satellite's path, it
can be vsed to construct the density and paralle] pressure everywhere along field lines. let
f(€,vy/v.R) be the measured distribution along a satellite's path in the magnetic equatorial plane,
where the magnetic field is assumed to be Bpq(, the minimum value of B{w,) on each magnetic
field line. Further assuming that B is a monotonically increasing function along a field line as one
moves from the magnetic equator toward the earth, we can set

FE,1L,y;Bmin) = f(€,Yy/v.R). (2.21)
The description can te extended to other value of B(y,x) by choosing F(€,n,y;B) =

F(E.10,¥;Bmin) if B < €/, and F(E,11,y,B) = 0if B > &/}, since W is a constant of motion. Thus
the cffect of mirroring of the particles as the magnetic field field increases is properly represented.



Since Y(R,Z) is the equilibrium solution, the assignment of F(&,1,y;Brin) must be adjusted untl it
coincides with the measured particle distribution for all R values.

It is more accurate to convert back to f{€,V)/v,y) space at each value of y and B and
compute the parallel pressure with

Py(y,B) = mf d3V V; f(E,V“/V.W) » (2.22)

because the distribution f(€,V)/v,y} is usually measured on uniform energy and pitch angle space
grids. The perpendicular pressure can be determined in a similar way, but it is more accurate to use
the parallel momentum balance equation, Eq.(2.7), to calculate it From Eq.(2.7), we have

Pi(y.B) = Py(y,B) — B (aPy/oB)y. (2.23)

If the satellite trajectory is not on the equatorial plane, a similar prescription can be
formulated to construct the guiding center distribution F(€,11,y;B) from the particle distribution
f(e,vy/v,R,Z) measured by satellites.

Recently significant progress has been made in the satellite observational data of ring
current particle distribution from AMPTE/CCE [Lui et al., 1987] and ISEE 2 [Spence et al., 1989,
However, more complete information is required to give the full energy and pitch angle range and
wider spatial coverage. More specifically, information of proton with energy between ! and 25
keV, which is not presented in the earlier study by Lui et al. [1987], may be important. Lower
charge states of oxygen ions, presumably injected from the ionosphere may have energy content as
much as 30% of the total ring current energy, must be included. One of the future effonts will be 1o
explore new satellite data of ring particle distribution as input to the seif-consistent equilibrium
calculation presented. The resuitant equilibrium solution will be used to wnderstand the
magnetosphere phenomena.

3. Inverse Equilibrium Problem
In solving the anisotropic equilibrium equation one typically =xpresses the magnetic flux

Y(R, Z) on a rectangular grid. However, for stability studies, it is not y(R, Z) that is needed but
rather the inverse functons R{y.,x) and Z(y,x), where (y,x) are generalized magnetic flux

i1



coordinates with properties described in Sec. 2. To obtain these inverse functions aumerically,
one employs a mapping procedure to contour levels of coustant y znd %. Thus, the (R,Z)
coordinates of the intersection of the contours ;= i 8y and ;= j 8y, form & discrete set of points
[R{wx): ZO¥5.x)] which collectively define a finite differeace approximation to the exact
mapping [ROy.)0: Z(y.x)). The discrete mapning obtained in this manner is often adequate, but in
general satisfies the flux coordinate form of the finite differenced equilib.ivin equation only to
within some error inroduced by truncation crror in the original (R,Z) solution and in the
contouring. The fact that this arror is limi*ed by the thacation error inherent in the finite difference
equations rather thoe: by an iteration olerance (which can be made arbitrarily smail) can render this
method unacceptable for equilibrium ith large local gradients of flux and current. A finite-
difference method based on equal increments in (R Z) space is not optimnal for resolving these
spatially local steep gradients.

To overcome these difficulties, we will considar solving he inverse equilibrium equation
based on the flux coordinates instead of the equilibrium equation, Eq.(2.14). An iteraive metric
method will be used to snlve for the discrete coordinate functions [R(y.x); Z{y.x)] such that the
flux coordinate form of th= €nite differenced inverse equilibrium equation based on these points is
satisfied to an arhitrarily small toleraics, L addition, the numerical grid on which tinite
differences are evaivated i. tied to the equilibrium solution itself in such a way that grid points
automatically accumulate in rey.ons of step gradients. We note that equilibrium containing
separatrix or ergadic regions will not be found with the inverse equilibrium method unless
provision is made to treac multiple regions and to match solutions where these regions meet.

3.1 Inverse Equilibiivia Equation

To derive the inszrse cquilibrium ¢quation in terms of a right-tianded flux coordinates
{p.4.), where p labels magnetic surfaces of constant y, we note that

> Ve (Vy/R%)= (3p) [T Vy o Vp/R2]+ (o) [T Vy e Vx/RZ]. (3.1)

The Jacobian J = (Vp x V¢ ® V)=t can be expressed as derivatives of the cylindrical spaiial
coordinates (R, Z):

J = R [ (9R/9p) (8Z/2y) - (6R/AY) (3Z/op) ] . (3.2)
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In terms of the covariant representation in cylindrical ccordinate, the vectors Vp and Vy, can be

expressed as

Yp = R[(92/0x) VR-@RAY) VZ] /T, (3.3)
and

Vz = R[(BRp) VZ-@ZAp) VR /7 . 3.4)

By defining y = y(p) so that dy/dy, = 0, the inverse equilibrium equation for axisymmetric
magnetosphere is derived from Eqs.(2.13-14) and takes the form

(@/3p) (@W/op) (@R + BZRXH 1)
— (8/3) ((@w/dp) [(OR/BPXERAY) + (@Z/Bp)(0Ziay)] 7 1}
= -7 o7} @PLAY)g + (t—0) (VyeVBY/ 2Vy)? ), (3.5)

which is regarded as an equation for the two-dimensional coordinats functions R{p,y) and Z7,).
The Jacobian is chosen as

7 = R [(@ROp)(OZAY) - (GR/AX)DZDp) 1 = A(p) R™/IVp|", (3.6)

where mand n are arbitrary integers, so that (R, Z)) is constrainec. By appropriately choosing m
and n, different nonorthogonal magnetic flux coordinate systems can be obtained. For the
numerical solutions presented in Sec. 4 we choose m=n=1, which corresponds to an equal arc
length coordinate along .

3.2 Iterative Metric Method

Numerically, an iterative metric method is employed [DeLucia et al., 1980] for ;olving the
inverse equilibrium equation. An inidal coordinate transformation corresponding to iteration level
k=0 is guessed with [R®(,j); Z¥)(i,j)], where i = 1, N correspond to discrete p grids and j = 1, M
correspond to discrete ) grids. The points corresponding to i = 1 define the inner plasma

boundary and the points corresponding to i = N define the outer plasma boundary. The points
corresponaing to j = 1 and j = M define the boundary curves on the earth’s surface between y;,

and v, curves. The finite difference form of the inverse equilibrium equation is then solved for



the magnetic flux function yw®*1)(i,j) at the new iteration level, k+1, using the coordinate
ransformation at the old iteration level, k, by the successive over-relaxation method [Roache,
1972). To obtain the finite difference formn of the inverse equilibrium equation, a center difference
scheme is employed. The right hand side of the inverse equilibrium equation is evaluated at the old
iteration level, k. Next, the coordinate functions at the new iteration level, [R“‘”’(i,j); AL ’(i,j )1,
are obtained from interpolation technique by using the magnetic flux function at the new iteration
level, w1 j), so that the finite difference forms of the requirement that yw**"? be constant along
constant p surfaces and that the Jacobian constraint, Eg. (3.6), it satisfied; i.c., (1) oy®* gy =
0, and (2) R [{dR/dp)(0Zidy) — (GR/GY)OZ/Fp)} = A(p) R™ /IVp[" at the k+1 iteration Jevel. The
iteration procedure is repeated untl the magnetic flux function is independent of ¢ and converges to

some tolerance.

4. Numerical Results for Axisymmetric Magnetospheric Equilibrium

In the computational dotnain, the flux coordinates {p,¢,x) are chosen with0 Sy < n,0<
¢ < 2m,and 0 £ p £ 1, where p is related to W by W = — Bp Rg?/ [Rin + P(Rmax — Rmin)]. The
equatorial dipole magnetic field intensity is Bp at R = R,. The magnetic flux is Wnax = - BpRo>/
Romax @t the outer magnetic surface and iS Wmin =— Bp Ro> / Rmin at the inner magnetic surface,
The outer magnetic flux surface is specified by '

W = — Bp Ro® 5in%6 /1 + Bs (r - Rg)? cos? 36, 4.1)
and the inner magnetic flux susface is given by
Ymin =— BpRo?sin?0 /r+Brr2sin20 /2. (4.2)

For positive values of Es and Bj, the flux surface is compressed with respect to the dipole field
surface. To enclose the computational domain, the boundaries are set on the earth’s surface for

Vmin SV S Y.

Rather than presenting a survey of anisotropic pressure magnetospheric equilibria with
different particle distributions and pressure profiles, we shall concentrate on the effects of
boundary condition, plasma beta, and pressure anisotropy. To gencrate the axisymmetric
magnetospheric »quilibrium, we need to specify the ring current plasma pressure profiles. In the
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following we will employ the analytical anisotropic pressure, Eqs. (2.17)-(2.19), obtained from a
bi-Maxwellian distribution with the P(y) profile given by

Py) = Po [ (Wmax — WY1 [ (¥ = YrinBI° [ (7 + BV (Wimax = YT, (4.3)

where To(y) and Ty(y) are chosen as constants, and B(y) can be chosen as the magnetic field at
the magnetic equator. Note that for T, >> T the pressure is essentially isotropic.

In the followings we set Rq = 6.6RE, Rpyin = 2RE, Rpax = 10Rg, ¥=2,86=2,Bp=1.
Thus, the dipole magnetic field is normalized to be unity at R = 6.6Rgin the equatorial plane. The

plasma beta effect is studied by varying P,, the effect of pressure anisotropy is scudied by
changing (To/Tp), and the effect of boundary conditior is studied by varying Byand Bs.

4.1 Isotropic Pressure Case

Observed plasma pressure in the magnetosphere is almost always anisotropic. However,
we will first study isotropic pressure cases to understand the effect of finite plasma beta by
choosing a very large value of (To/T)), so that the pressure is practically isotropic and is a function
of yonly. For simplicity we set (To/Tp) = 10* for all flux surfaces and varying P,. The boundary
condition parameters are set to be B = Bg = 0 so that the inner and outer flux surfaces are identical
to the dipole field surfaces. The computation is performed for P, = 0.5 with 50 flux surfaczs and
61 poloidal angle grid points. The constant W contours are shown in Figure 1. The Jolid !'nes
correspond to the equilibrium solution, and the dotted lines represent the dipole magnetic ilux
surfaces. In the low beta region the solid curves and dotted lines coincide for the :ame flux values.
The effect of finite plasma beta is to shift the flux surface outward toward the lower magnetic field
region, and is clearly shown in the large beta region (low field region) in Figure 1. This ourward
shift of flux surface is similarly observed in the tokamak equilibrivm and is called Shfranov shift.
The Shafranov shift is more pronounced for higher beta cases. The toroidal ring current contouss
are shown in Figure 2, which shows that along the magnetic field lines the ring current is peak at
the equator. The dotted lines correspond to the equilibrium constant y surfaces. The ring current
changes sign as one goes away from the earth; the current is castward at small R and is westward
at large R. The radial variations of the plasma pressure P, the plasma beta B = 2P/B2, the toroidal
ring current Jy, and the percentage difference between the self-consistent magnezic field and dipole
field (B-Bp)Bp in the equatorial plane are shown in Figures 3(a)-(d), respectively. Note that the
maxima of P and B are located at different radial locations as shown in Figures 3(a) and 3(b). The
peak pressure is located at R = 3.3Rg, and the peak beta is about 0.25 at R = 7Rg. Figure 3(c)
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shows that the westward current is peaked at R = 6.4Rz, and the eastward current is pcaked at R =
2.5Rg. This is consistent with analytical expression of the toroidal ring current given by Jy =
R(0P/oy); the most intense westward ring current can be several earth radii away from the locadon
of maximum ring current pressure. Since (OP/3y) is constant along the field line, Jy is peak at the
equator and decreases as the latitude increases toward the carth from the equator. ‘The deformation
of the magnetic field due to the ring current plasma pressure is showa in Figure 3(d); the magnetic
field is reduced around the peak pressure gradient, (9P/oy), location. The magnetic field
deformation depends on the pressure profile and the boundary condition. For this case the
magnetic field is reduced for R < 7TRg and enhanced for R > 7Rg. For the same pressure profile
and boundary condidon the distortion of magnetic field is roughiy proportional to . he plasma beta
for P, > 0.2.

4.2 Anisotropic Pressure Case

To study the effect of pressure anisotropy on the magnetospheric equilibrium, we will vary
(To/Ty) but set By = Bs =0, Py = 0.5. For simplicity we let (To/Ty) be independent of y. From
Egs. (2.18) and (2.19) we have Pj(y,B)/P(y) = P, (y,B)/Py(y,B) = [1 =~ BoT/ BT,)™! for a bi-
Maxwellian distribution. Therefore, along field lines as B increases, the pressure anisowopy
decreases. As (To/Ty) decreases, not only the pressure anisotropy increases, but plasma beta also
increases. Figure 4 shows the constant y contours for (To/T)) = 2, which corresponds to a
pressure anisoropy P, /P, = 2 on equator. The solid lines correspond to the equilibrivm magnetic
flux surfzces, and the dotted lines represent the dipole magnetic flux sarfaces. In the high field
region where beta is low, the sclid curves and the dotted lines coincide for the same flux values.
In the low field region the flux surfaces are much more drastically shifted outward than the
isoptropic case due to higher values of paralle]l and perpendicular betas,

Figures 5(a) and 5(b) show the constant Py and P contours for (To/Typ) = 2, respectively.
The dotted lines correspond to the equilibrium constant y surfaces. Note that the surfaces of
constant pressure are quite significandy shified in relation to the surfaces of constant y in low field
region, The P contours are found to be more displaced than the Pysurfaces. This is the result of
the weak dependence of the pressure on y and the ensuing dominant dependence on B near the
equator. Along ficld lines as B becomes large near the earth, the pressure contours coincide with
the constant y surfaces. Near the equator, where B is smaller, the parallel and perpendicular
pressures are enhanced to provide an outward shift of the constant pressure surfaces for region
with (@P/ay) < 0. These behaviors can also be understood from a single particle point of view oy
employing the adiabatic invariance of the magnztic moment, yt = v, 2/2B and the total encrgy € =
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v#/2 conservation. Since a trapped particle has relatively lower v, and higher vy in low field
region than in high field region, the parallel pressure is enhanced in low field region accordingly to
provide an outward shift of the constant parallel pressure surfaces. For a given energy these
particles with Bo/B()) < LBo/E < 1 are trapped in low field region where B < B()) and do not
contribute to pressure in high field region where B > B()). The deeply trapped particles in the low
field mirror regions have larger perpendicular velocity than paralle! velocity and will enhance the
perpendicular pressure even more than the parallel pressure. With the same argument we can
understand that ir: region with (0P/ay) > 0 (small R regionj the constant pressure contours shift
_inward v-ith respect to the constant magnetic flux suriaces as shown in Figs. 5(a) and 5(b).

“™e constant magnetic field (Mod-B) contours are shown in Figure 6, where the dotted
lines correspond to the equilibrium constant W surfaces. Note that the surfaces of constant B are
quite significan:ly deformed in high beta region nzar the 2quator due to the diamagnetic effect.
Since the second term of Eq. (2.12) indicates that the toroidal ring current depends un the gradient
of the magnetic field for anisotropic plasma, the deformation of the magnetic field will greadly
modify the ring current pattern. Figures 7(a) and 7(b) show the the toroidal ring current contours
for (To/Ty) = 3 and 2, respectively; along the magnetic field lines the westward ring current can be
peak away from the equator. The dotted lines correspond to the equilibrium constant y surfaces.
Because the pressure anisotropy will contribute to a eastward current, the eastward current region
expands cutward around the equatorial plane, and the westward current becomes peak away from
the equator. As “efa or pressure anisotropy increase, the westward current contours become more
indented bean shapes and eventuaily develop locai peak away from the equator as shown in Fig.
7(b). Figure 8 shows the ring current versus ¥ along field lines for four flux surfaces for the
(To/T)) = 2 case, where ¥ varies from 0 to = and corresponds to an equal arc length coordinate
along field lines from the southern hemisphere to the northern hemisphere. These four flux
surfaces cross the equator at (a) R = 2Z.1Rg, (b) R = 4.7RE, (¢} R = 8.0RE, and (d) R = 9.9RE,
respectively. As (To/T)) increases, these features related to pressure anisotropy are less
pronounced. Since the plasma pressure is aimost always aniostropic and plasma beta is quite high
in the magnetosphere, the results suggest that, against common belief, the ring current can be
peaked away from the equator.

The radial variations of the perpendicular plasma pressure P, the perpendicular plasma
beta B, = 2P;/B? the toroidal ring current Jy, and the percentage difference between the self-
consistent magnetic field and dipele field (B-Bp)/Bp in the equatorial plane are shown for the
(To/Ty) = 2 case in Figures 9(a)-(d), respectively. The parallcl pressure has same profile as the
perpendicular pressure. Note that the maxima of P, and B are located at different radial locations
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as shown in Figures 9(a) and 9(b). The peak P, is ‘loca(cd at R = 3.5Rg, and the maximum B is
about 1,3 and is located at R = 7Rg. Figure 9(c) shows that the westward current is peaked atK =
8RE, and the eastward current is peaked at R = 2.5Rg. The deformation of the magnetic field due
to the ring current plasma pressure is shown in Figure 9(d); the depression of magretic field is
dominant near the peak pressure gradient, (9P, /0y), location. The deformation of the magnetic
field depends on the pressure profiie and the boundary condition. For this case the magnetic field
is reduced for R < 7Rg and enhanced for R > 7Rg.

4.3 Effect of Quter Boundary Condition

The inner boundary flux surface is usually only slightly changed even during geomagnetic
storm times with a worldwide depression of the magneric field at the earth's surface, and we set Bj
= 0 without loss of generality. The outer boundary flux surface has more significant effect on the
magnetospheric equilibrium, and its effect is examined by varying Bs. For negative values of Bg
the outer flux boundary resembles a dayside compressed flux surface due to solar wind pressure.
For positive Bg the outer flux boundary resembles a tail-like flux surface. The fixed parameter is
P, = G.5.

First, we choose Bs =-0.04, and (To/Ty) = 2.2 to simulate a dayside magnetosphere with
a compressed boundary flux surface. Figure 10 shows the constant y contours with the solid lines
corresponding ta the equilibrium solution and the dotted lines representing the dipole magnetic flux
surfaces. Similar to those shown in Figure 4, the solid curves and the donted lines coincide for the
same flux values in the high field region where plasma beta is low. In the low field region the flux
surfaces are much more drastically shifted outward than those shown in Figure 4 due to the outer
boundary effect. Near the boundary the field lines exhibit relatively angular corners away from

equator, but the ficld line curvature is drastically reduced near the equator. The surfaces of
constant pressure are quite significantly shifted in relation to the surfaces of constant v in low field

Tegion; the P, contours are more drastically displaced than the Py surfaces, similar to the case with
Bs =0 shown in Figure 5. In Figure 11, the solid lines are constant magnetic field conienrs, and
the dotted lines correspond to the equilibrium constant y surfaces. Similar to the case with Bg=0
shown in Figure 6, the constant B contours are quite significantly deformed in high beta region
around the equator due to the diamagnetic effect for R < 7Rg., But, for R > 7R the magnetic field
is very significantly enbanced. For R > 8.5Rg the magnetic field increases with R. Near R = %
the magnetic field develops a sharp gradient which will give a significant contribution to pressure
anisoropy current. Because of the development of sharp magnetic field gradient the computation
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becomes increasingly difficult and more grid points must be employed. As (To/T)) ~ 2, the
magnetic fieid gradient becomes so sharp that the computation does not converge even when 150
grid points along the field lire and 100 flux surfaces are employed. Figure 12 shows similar
toroidal ring current contours as shown in Figure 7(b), but the westward ring current contours
becomes more drastically changed for R > 7Rg. The dotted lines correspond to the equilibrium
constant y surfaces. Figures 13(a)-(d) show the radial variations of the perpendicular plasma
pressure P,, ths perpendicular plasma beta By, the toroidal ring current Jy, and ihe percentage
difference between the self-consistent magnetic field and dipole field (B-Bp)/Bp in the equatorial
plane, respectively. No:e that the B, value shown in Figure 13(b) is about the sane as the B =0
case shown in Figure 9(b). Figure 13(c) shows that the westward current is peakzd at R -« 8.2RE,
and the eastward curren’ is peaked at R = 2.5Rg. The deformation of the magnetic field from
dipole field shown in Figure 13(d) is roughly a factor of 1.5 larger than the Bg = 0 case shown in

Figure 9(d).

To simulate the effect of a tail-like boundary flux surface on the magnetospheric
equilibrium we set B = 0.2, and (T¢/T))) = 2. Figure 14 shows the constant y contours with the
solid lines correspunding to the equilibrium soiution and the dotted lines representing the dipole
magnetic flux. surfaces. The solid curves and the dotted lines coincide for the same flux values in
the high field region where plasma beta is low. In the low field region the flux surfaces shift
inward due to the tail-like outer boundary. The finite beta effect causes the surfaces of constar.t
pressure to significantly shift outward in relation to ihe surfaces of constant y in low field region,
and the P, contours are found to be more displaced than the Py surfaces. In Figure 15 the solid
lines are constant magnetic field contours, and the dotted lines correspond to the equilibrium
constant  surfaces. Similar to the case with Bs = 0 shown in Figure 6, the surfaces of constant B
are quite significantly deformed in high beta region near the equator. Figure 16 shows the toroidal
rii  ~urrent contours with the westward ring current peaking away from the equator. The dotted
lines correspond to the equilibrium constant y surfaces. Figures 17(a)-(d) show the radial
variations of the perpendicular plasma pressure P, the perpendicular plasma beta B, the toroidal
ring current J, and the percentage difference between the self-consistent magnetic field and dipole
field (B-Bp)/Bp in the equatorial plane, respectively. Note that the 3 value shown in Figure 17(b)
is significantly reduced in comparison with the Bg = 0 case shown in Figure 9(b) due to enhanced
magnetic field. Figure 17(c) shows that the westward current is peaked at R = 6Rg, and the
eastward current is peaked at R = 2.5Rg. Contrary to previous cases Figure 17(d) shows that the
magnetic field is enhanced relative to the dipole field for R < 8Rg and is reduced for R > 8Rg.
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5. Summary and Discussion

Self-consistent axisymmetric magnetospheric equilibrium with anisowopic pressure is
obtained by employing an iterative metric method for solving the inverse equilibrium equation.
The iterative metric method uses finite differences in an optimal flux coordinate system which is
iterated for simultaneously with the equilibrium solution until one coordinate coincides with the
magnetic surfaces. The methed automaticaily accumulates grid points in regions of steep
gradients, thus yielding accurate solutions of high P magnetospheric equilibria. A method of
determinizig plasma parallel and perpendicular pressures from either analytic particle distribution or
particle distribution measured along the satellite's path by using invariance of the magnetic moment
to determine its value at each point along field lines is also presented. The numerical results of
axisymmetric magnetospheric equilibriumn including the effects of finite beta, pressure anisotropy,
and boundary conditions are studied for a bi-Maxwellian particle distribution for simplicity. For
the isotropic pressure case, the finite beta effect produces outward expansion of the constant
magnetic flux surfaces in relaiion to the dipole field lines, and along the magnetc field the toroidal
ring current is maximum at the magnetic equator, The effect of pressure anisotropy is found to
further expand the flux surfaces outward. The magnetic field is deformed and is reduced around
the peak perpendicular pressure gradient location. Along the magnetic field lines the westward ring
current is peak away from the equator due to an eastward current contribution resulting from
pressure anisotropy. As pressure anisowopy increases, the peak westward current can become
more singular. The resuirs suggest that, against common belief, along the ficld lines the westward
ring current can be peaked away from the equator in the magnetosphere, where the plasma pressure
is almost always aniostropic and the plasma beta is quite high. The effects of pressure anisotropy
on the pressure contours can be understood by noting that the particles are trapped in the lower
magnetic “ield region. The conservation of particle energy and the adiabatic invariance of the
magnetic mement dictate that rapped particles will have relatively larger perpendicular velocity and
smaller paraliel velocity in high magnetic ficld regions than in low field regions, the parallel
pressure is enhanced in low field region accordingly to provide an outward shift of the constant
parallel pressure surfaces. The deeply trapped particles in the low field mirror regions have larger
perpendicular velocity than parallel veiocity and will enhance the perpendicular pressure even more
than the parallel pressure. The outer boundary flux surface has significant effect on the
magnetospheric equilibrium. For outer flux boundary resembling a dayside compressed flux
surface due to solar wind pressure, these finite beta and pressure anisotropy effects described
above are greatly enhanced. For outer flux boundary resembling a tail-like flux surface, the
deformation of the - gnetic field is quite different .
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The results presented in the paper agree very well qualitatively with satellite observations
[Lui et al., 1987; Williams, 1983]. In order to provide a more conclusive test of the
magnetospheric equilibrium calculations with satellite observations, a detail information of ring
current particle distribution and better boundary conditions may be required. For the information
of particle distribution, issues related to the sources and composidon of ring cuxrent particles as
well as energization and injection processes associated with the storm time ring current formation
are yet to be resolved. Although significant progress has been made in the satellite observationa!
data of ring current particle distribution, more complete information is requirsd to give full energy
and pitch angle range and wider radial and azimuthal spatial coverage. Lower charge states of
Oxygen ions, presumably injected from the ionosphere may have energy content as much as 30%
of the total ring current energy, must also ve included. Exploration of new observational data of
ring current part'cle distributions must be made. For the boundary conditions, we shall explore a
more complicated form of Yy, than that defined by Eq.(4.1) and also employ empirical shapes

from magnetic field modsls.

The whole magnetospheric equilibrium is not axisymmetric and the problem requires a full
three-dimensional treatment with complex topology. The two-dimensionzl inverse method code
presented in this paper can be extended to three-dimensional calculations with.out conceptual
difficulty. A natural extension is to sty a tnree-dimensional eguilibrium without w.roidal
magnetic field by specifying fixed boundary magnetic flux surfaces. The next step is to relax the
constraint of zero toroidal magnedce field. Eventually, our goal is to determine the outer magnetc
flux surface (inagnetopause) self-consistently by considering all the major magnctosphcﬁc curreni
system: outside e magnetopause [Olson and Pfitzer, 1977]. The shape of the magnetopause will
be deeermined iteratively as part of the equilibrium solution by a pressure balance between the
mzgnetic field and a steady solar wind with the requirement that the normal comy onent of the
magnetic field vanish at the boundary [Mead and 3eard, 1964].
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Figure Captions

The constant y contours for isotropic pressure with Py = 0.5, By = Bs = 0, (To/T| ")=104.
Tie solid lines correspond to the equilibritm solution, and the dotted lines represent the
dipolc magnetic flux surfaces.

The toroidal ring current contours with same parameters as in Fig. 1. Along the magnetic
field lines the ring current is peak at the equator. The dorted lines correspond to the
equilibrium constant y surfaces. The ring current is eastward at small R and is westward

at Jarge R.

The radial variadons of (a) the plasma pressure P, (b) the plasma beta f, (c) the toroidal
ring current Jy, and (d) the percentage difference between the self-consistent magnetic
field and dipole field (B-Bp)/Bp in the equatorial plane with same parameters as in Fig, 1.

The constant y contours for P, = 0.5, By = Bg =0, and (To/T)) = 2, which corresponds
10 a pressure anisotropy P,/Py = 2 at the equator, The solid lines correspond to the
equilibrium soluticn, and the dotted lines represent the dipole magnetic flux surfaces.

(a) The constant Py contours and (b) the constant Py contours with same parameters as in
Fig. 4. The dotted lines correspond to the equilibrivm constant y surfaces.

The constant magnetic field (Mod-B) contours with same parameters as in Fig, 4, where
the dotted lines correspond to the equilibrium constant v surfaces.

(2) The toroidal ring current contours with same parameters as in Fig. 4, but (To/T)) = 3.
The dotted lines comrespond to the equilibrium constant v surfaces. The ring current is
eastward at small R and is westward at large R. (b) The toroidal ring current cantours
with same parameters as in Fig. 4 with (To/Ty) =2.

The ring current versus y along field lines for four different flux surfaces, where ¥ varies
from 0 to . These four flux surfaces cross the equator at (a) R = 2.165Rg, (b) R =
4.74RE, (c) R = 8.04RE, and (d) R = 9.9Rg, respectively. The parameters are same as in
Fig. 4.
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The radial variations of (a) the perpendicular plasma pressure Py, (b) the perpendicular
plasma beta By, (c) the toroidal ring current Jg, and (d) the percentage difference between
the self-consistent magnetic field and dipole field (B-Bp)/Bp in the equatarial plane with
same parameters as in Fig. 4.

The constant y contours for P, = 0.3, By =0, (To/Ty) = 2.2, and Bs = -0.4. The
pressure anisotropy P /Py = 1.833 at the equator. The outer boundary flux surface
resembles a dayside compressed flux surface. The solid lines correspond to the
equilibrium solution, and the dotted lines represent the dipole magnetic flux surfaces.

The constant magnetic field (Mod-B) contours with same parameters as in Fig. 10, where
the dotted lines correspond to the equilibrium constant  surfaces.

The torvidal ring current contours with ~ame parameters as in Fig, 10. The dotted lines
corvespond to the equilibrium constant y surfaces. The ring current is eastward at small

R and is westward at large R.

The radial variations of () the perpendicular plasma pressurs P, (b) the perpendicular
plasma beta f3) , {c) the toroidal ring current Jy, and (d) the percentage difference
between the self-consistent magnetic field ana dipole field (B-Bp)/Bp in the equatorial
plane with same parameters as in Fig. 10.

The constant y contours for P, = 0.5, By = 0, (T¢/T)) = 2, and Bs = 0.2. The pressure
anisotropy P1/Py=2 at the equator. The outer boundary flux surface resembles a
tail-like flux surface. The solid lines currespond to the equilibrium solution, and the
dotted lines represent the dipole mapnetic flux surfaces.

The constant magnetic field (Mod-B; contours with same parameters as in Fig. 14, where
the dotted lines correspond to the equilibrium constant y surfaces.

The toroidal ring current contours with same parameters as in Fig. 14. The dotted lines
comespond to the equilibrium constant y surfaces. The ring current is eastward at small

R and is westward at large R.

The radial variations of (a) the perpendicular plasma pressure P, , (b) the perpendicular
plasma beta B, (c) the toroidal ring current J,, and (d) the percentage difference between



the self-consisient magnetic field and dipole field (B-Bp)/Bp in the equatorial plane with
same parameters as in Fig. 14.
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