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Abstract

The algorithms used in the database-driven SLC fast-
feedback system are based on the state space formalism of
digital control theory. These are implemented as a set of
matrix equations which use a Kalman filter to estimate a
vector of states from a vector of measurements, and then
apply a gain matrix to determine the actuator settings
from the state vector. The matrices used in the calcula-
tion are derived offline using Linear Quadratic Gaussian
minimization. For a given noise spectrum, this procedure
minimizes the rms of the states (e.g., the position or energy
of the beam). The offline program also allows simulation
of the loop’s response to arbitrary inputs, and calculates
its frequency response.

INTRODUCTION

The SLAC Linear Collider {(SLC) is a novel accelerator
designed to produce e¥ e~ collisions at center-of-mass ener-
gies up to 100 GeV, i.e., around the mass of the neutral in-
termediate vector boson Z°. The collisions occur between
bunches of electrons and positrons, which are produced,
accelerated, collided, and dumped at a maximum rate of
120 Hz. When the feedback project described here was
started, the SLC had fasti-feedback loops that stabilized
both the energy of the machine [1] and the orbit, through
a set of collimators near the end of the linear accelerator.
These feedback loops were essential to the operation of the
SLC.

We have designed a new system that replaces the cur-
rent software with generic, database-driven software [2].
We rely on the SLC database to specify each different loop.
This is possible because the action of any feedback loop can
be cast into a series of matrix equations in the formalism
of digital control theory [3].

‘Fhis paper briefly introduces the state space formalism
of modern control theory, and then describes how it has
been applied to the SLC feedback system. Some of the
tradeoffs involved in the design of a loop are discussed.

STATE SPACE FORMALISM

The state space formalism provides a simple, elegant
method to describe the dynamics of a linear system in a
single matrix equation. We now give that equation, and
an example of its application to modeling the response of
a section of the SLC. Define the following vectors:

y is a vector of outputs. For our example elements of
this vector are readings of beam positions from Beam
Position Monitors (BPMs).

x is a vector of states. A typical state is the posi-
tion, the angle, or the energy of the beam at a point.
Note that these are not necessarily directly measur-
able with a sensor. Other states are the angular
kicks given to the beam by devices (typically mag-
nets) in the beam. These may be devices directly
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Figure 1. Diagram of actuator dynamics. Normally, either gate
I has a gain of 1 and gate 2 a gain of 0 or vice versa. In the first
case, the actuator is assumed to have an RC time constant due
ta filtering in the power supply. In the second case, the response
is modeled as a delay of two beam pulses. This arcounts for
computation time of the feedback loop and other minor delays.

controlled by the feedback loop, or devices upstream
of the loop whose perturbations must be corrected by
the loop. The state vector should completely describe
the system.
u is a vector of inputs. A typical input is the current
requested for a magnet.
These vectors are then related with a generzl first-order
matrix equation using the four matrices A, B. C, and D:

x(t) = Ax(t)+ Bult)
¥(t) = Cx(t)+ Du(t) .

These two equations can be combined into a single one
by defining the system matrix, S:

A B
S=

C D
This gives the continuous state space equation:

(o) = ()

y(1) u(t)

In the above equation, x, y, and u are all considered to be

continuous functions of time. The equation below is used

for the discrete (sampled) case. The subscript & indicates
Kk+1

the k sample. -

There are multiple advantages to using this formalism.
It is a standard formalism, so there are books and com-
puter tools that can be used to aid in the development.
Secondly, the software tends to be general and streamlined.

APPLICATION TO THE SLC

Modern control theory was developed to handle dy-
namical systems. A satellite attitude control system,
for example, involves an object with a finite moment of
inertia, and its state (spin velocity) at a certain time
is related by a differential equation to its state at a
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Figure 2. Diagram of beam noise dynamics. Normally only two
or three of the gain blocks on the left have nonzero gains. The
time constants of the low-pass filters, and the frequency and
quality factor of the harmonic oscillator filter, can be adjusted
to get the modeled noise spectrum to match the measured one.

previous time. At first glance, the SLC aceelerator has
no dynamics, no inertia. There is a bit of dynamics in the
actuators, typically correction magnets, that are used by
feedback to steer the beam. The model used for this is
shown in Fig. 1. However, the typical magnet is fast on
the scale of the 1/120 second period between beam pulses,
so this dynamics is not essential to the problem.

The important part of modelling the dynamics of the
system is the deseription of what is causing the beam
to move, For example, there may be an oscillating or
slowly varying upstream magnet power supply, causing the
beam to move. The dynamics of the ensemble of all such
power supplies must be modeled. In practice, we measure
the spectrum of disturbances to the SLC beam, and then
tty to match that by adjusting model parameters such as
low-pass filter time constants and oscillation frequencies.
Figure 2 shows the model used for this dynamics of the
noise source.

FEEDBACK ALGGORITHM

Having described the model of the accelerator in the
state space formalism, we can now go on to design
the feedback algorithm. For this, the predictor-corrector
formalism of optimal control theory [3] is used. The first
controller equation is used to estimate the present value of
the state vector:

%Ki = ¥%, +Tu+ Ly - HY,),
where
% is the estimate of the state vector on the k*® pulse.
& is the system matrix, and describes the dynamics of
the accelerator model.
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Figure 3. Simulation resylts: (a) shows frequency response for
a typical loop. (b} shows the response to a step change in the
incoming states. Typical states recover in 0.1 sec (for 2 60 Hz
sample rate).

I’ is the control input matrix. It describes how changes
in the actuators should affect the state.

H is the output matrix. IL maps the siate vector to
the output vector. That is, given an estimate of the
st.ataes, it gives an estimate of what the sensors should
read.

L is the Kalman filter matrix. Given an error on the
estimate of the sensor readings, it applies a correction
term to the estimate of the state vector,

The matrices @, T, and H are obtained from the model
of the accelerator. The L matrix is derived from the other
matrices, and is designed (via the Linear Quadratic Gaus-
sian method) to minimize the rms error on the estimate of
the state.

The second contraller equation calculates the actuator
settings from the estimate of the state vector.

Upyy = Kig+1 + Nr
where
r is the reference vector that contains set points for the
loop.

N is the controller-reference input matrix. It maps the
reference vector to actuator settings and is directly
derivable from the model of the accelerator.

K is the gain matrix. It is derived in a manner similar
to L. It is designed to minimize the rms of selected
state vector elements.
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DESIGN TRADEQFFS

Thete are several design goals for a feedback loop. It
should minimize the rms of the states it is trying to con-
trol, have a good response to a step change in the incom-
ing beam, have a good frequency response, have a good
DC bias rejection, and continue functioning well even if
the accelerator is slightly different than the model used by
feedback. These design goals are conflicting, so tradeoffs
must be made.

The tuning of feedback is done using an offline simula-
tion program. This program is built on top of the Matrix,
control system CAD package written by Integrated Sys-
tems Incorporated. All the figures in this paper are out-
puts from this simulation program. The program takes pa-
rameters (such as filter cutoff frequencies) from the on-line
database, calculates all the matrices needed by the feed-
back loop, saves them for use by the loop, and then cal-
culates and plots the frequency response, the response to
a step function, and so on. The user can vary the param-
eters and rerun the simulation until the desired response
functions are obtained. Two examples of these plots for a
typical loop setup are shown in Fig. 3.

CONCLUSICNS

At present there are seven feedback loops running at
the SLC that are designed and implemented using the state

space formalism of digital control theory described above.
These loops control a total of 52 beam parameters. They
work quite well, and there is demand for more. We expect
to have about 12 feedback loops operating by the end of
the year.

As more loops have been designed and implemented.
the power and generality of a database-driven feedback
system based on the vectors and matrices of modern con-
trol theory have become clear. Implementing new laops
requires little or no new on-line software.
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