SANDIA REPORT o e (VED
SANQ98—8201 o UC—411 1997
Unlimited Release DEC R *

Printed October 1997 0 S -\— \

Parallel Unconstrained Minimization of
Potential Energy in LAMMPS

Todd Plantenga

OF THIS DOCUMENT IS mméaa;”

Prepared by
Sandia National Laboratories
Albuquergue, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,

a Lockheed Martin Company, for the United States Department of

Energy under Contract DE-AC04-94A185000.
i

L
Approved for public release,ﬁ%tﬁﬁuf@n is unlimited.

SF2900Q(8-81)

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise, does -
not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: AO1

DISCLAIMER

Portions of this document may be illegible
electronic image products. Images are
produced from the best available original
document.

Distribution
Category UC-411

SAND98-8201
Unlimited Release
Printed October 1997

Parallel Unconstrained Minimization
of Potential Energy in LAMMPS

Todd Plantenga
Scientific Computing Department
Sandia National Laboratories
Livermore, CA

October 13, 1997

- ABSTRACT

This report describes a new minimization capability added to LAMMPS
V4.0. Minimization of potential energy is used to find molecular conforma-
tions that are close to structures found in nature. The new minimization
algorithm uses LAMMPS subroutines for calculating energy and force vec-
tors, and follows the LAMMPS partitioning scheme for distributing large
data objects on multiprocessor machines. Since gradient-based algorithms
cannot tolerate nonsmoothness, a new Coulomb style that smoothly cuts off
to zero at a finite distance is provided. This report explains the minimiza-
tion algorithm and its parallel implementation within LAMMPS. Guidelines
are given for invoking the algorithm and interpreting results.

Acknowledgement

The author acknowledges support by the Department of Energy through Sandia National Lab-
oratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed

Martin Company, for the United States Department of Energy under Contract DE-AC04-
94AL85000.

Contents

1 Introduction 7
2 Minimization Algorithm 7
2.1 Hessian-free algorithm o 8
2.2 Parallel implementationissues. e 10
3 Smoothed Potential Energy Function 12
4 Using the Software 14
4.1 Inputs o . e e e e e e e e e e e e e e e e e 14
4.2 0Outputs e e e e e e e e e e e e e e e 14
4.3 Software structure e e 17
5 Performance of the Minimization Algorithm 17
6 Conclusion 21
Appendix A LAMMPS Source File Status 23

List of Figures

1 Outline of a generic minimization algorithm 8
2 Sample output from the minimization algorithm 15
3 Minimization performance on a protein containing 455 atoms 18
-4 Speedups plotted from Table IIT 20

List of Tables

I Algorithm performance - 455 atoms 19
II Algorithm performance - 10,954 atoms 19
IIT Speedups —455 atoms i it i i e e e e e e e e 20

IV Speedup — 10,954 atoms i it e e e e e 21

Intentionally Left Blank

Parallel Unconstrained Minimization
of Potential Energy in LAMMPS

1 Introduction

LAMMPS ! [1] is a parallel code developed at Sandia National Laboratories for simulating
molecular dynamics. LAMMPS can model very large systems of covalently connected atoms
(up to 100,000 on the Sandia Teraflop machine), including the calculation of empirical potential
energy and associated force vector. This paper describes a new capability for LAMMPS Version
4.0: the determination of molecular conformations that minimize potential energy.

Some form of gradient-based energy minimization is available in most molecular modeling
codes (e.g., QUANTA, AMBER, GROMOS). The goal is to find molecular structures cor-
responding to a local minimum of potential energy (there are usually many local minima).
Gradient minimization is important for relaxing initial “guessed” conformations that are in-
advertently at high energies, and for investigating structural changes near the global energy
minimum. Potential energy minimization of very large systems is relevant to Sandia work on
polymer aging, chem/bio sensor analysis and design, and protein-protein docking.

The minimization algorithm added to LAMMPS is an implicit Newton method; thus, it
enjoys a fast asymptotic rate of convergence to a highly accurate solution, but requires only
energy and force information. Potential energy and force calculations are made with calls
to existing LAMMPS subroutines. The algorithm also requires storage and manipulation of
several large vectors. These vectors are partitioned for distributed computing in the same
manner as other LAMMPS vectors.

In the next section, the minimization algorithm and its parallel implementation is described
in detail. §3 discusses modifications to the empirical potential energy function that make it
smooth enough for gradient minimization. The final two sections show how minimization is
invoked, and how it performs on massively parallel machines.

2 Minimization Algorithm

Gradient-based minimization methods start with an arbitrary molecular conformation, then
iteratively adjust atom positions in a manner that steadily decreases the potential energy;
eventually, a local energy minimum is reached. Consider a system of N atoms, and let the
vector p contain the 3N position coordinates of these atoms. The potential energy E(p) is an
algebraic function of the 3N unknowns, and —VE(p) is the force vector. At iteration & of a
minimization algorithm, atom positions are modified by adding a “step” vector d to produce
the next iterate py,; = pi + d. Figure 1 gives a general outline of the minimization process.

The simplest algorithm, gradient descent, uses d = —~aVE(pg), a step of length « in the
direction of maximum energy decrease. The step moves each atom along the force vector that
it experiences. Gradient descent is easy to code and always works, but is usually very slow in
reaching a minimum (the asymptotic convergence rate is only linear).

!Contact Steve Plimpton, sjplimp@cs.sandia.gov. See http:/ /www.cs.sandia.gov/~sjplimp/main.html.

start with position vector pg
for k=0 to max.iters
if sufficiently close to a local minimum then stop
calculate a step d
if E(p + d) is sufficiently less than E(pg)
then pry1=pr+d
else pry1 = pr, do something that modifies calculation of d
continue

Figure 1: Outline of a generic minimization algorithm

More efficient minimization algorithms are based on Newton’s method. They converge
much faster (theoretically at a quadratic rate), but require solving linear systems involving the
second partial derivatives of E. The Hessian matrix of E(p) is defined as

O E(p) 9E(p)
8pi8p1 OpiOpn
d*E(p) 9*E(p)
dpndp1 OpnOpN

and the exact Newton step is given by d = —[V2E(p)]"!VE(p).

In LAMMPS applications the Hessian matrix is large, expensive to compute and invert,
and difficult to store as a distributed object. An excellent alternative is to compute the Newton
step inexactly, using a modified form of conjugate gradient. Conjugate gradient (CG) requires
only Hessian matrix-vector products, which can be approximated without calculating second
derivatives. This class of optimization algorithm is known as a Hessian-free truncated Newton
method, and dates back to the work of Dembo, Eisenstat and Steihaug [2] and O’Leary [3].
It’s use in molecular modeling was pioneered by Schlick and Overton [4], and is becoming more
common [5, 6].

2.1 Hessian-free algorithm

The detailed pseudo-code for the algorithm implemented in LAMMPS is provided in Algo-
rithms 1 and 2. The main procedure, Algorithm 1, describes the outer iteration, indexed by
k. Algorithm 2 shows an inner CG-based iteration, indexed by ¢, that calculates an inexact
“truncated” Newton step. Algorithm 2 is invoked by Algorithm 1 at (3).

Algorithm 1 encodes a trust region technique that adds robustness to the Newton method
{7, pp. 95-107]. Newton’s method is based on a two-term Taylor series expansion of the
potential energy that is constructed around the conformation described by pi:

E(p + d) = E(p) + dT VE(p;) + 0.5dT [V2E(py,)]d.

This quadratic function is referred to as the model energy. Note that when the Hessian matrix
is positive definite, the minimum of the model is reached by taking the exact Newton step
d = —[V2E(p)] "' VE(pr).

Algorithm 1 Hessian-free trust region method for energy minimization

start with position vector pg, trust radius Ay (1)
for k=0 to maxiters
if ||[VE(pr)lloo < stop-tol then stop (2)
calculate d using HFTNCG(p = pi, A = A, p = min{0.1/%, || VE(pr)||2}) (3)
compute a_red = E(p;) — E(pr + d) (4)
if |ared| < €macn then stop (5)
compute p_red = ~dT VE(p;) — 0.5d% [V2E(py)]d,
approximating [V2E(py)]d with (2.1) or (2.2) (6)
if (pred >0 and arxed > 0.1 * p_red) (7)
then prpi=pr+d, App >4 (8)
repartition atoms, make new neighbor lists, recompute E(pr+1) (9)
else pry1 =, Apy1 < D (10)
if Ak+1 < 105mach”pk“oo then stop (11)
continue
Algorithm 2 HFTNCG subroutine for calculating d
enter with atom positions p, trust radius A, and stop tol p
do=0, 7o =~-VE(p), to =1¢ (12)
for i =0 to max_sub.iters
approximate w; = [V2E(p)]t; using (2.1) or (2.2) (13)
if 'wiTti < fmachtthi (14)
then find 7 such that ||d; + 7¢;|jo = A and return d < d; + 7¢; (15)
oG = rfri/tfwi (16)
diy1 = d; + oyt an
if |lditallz > A (18)
then find 7 such that ||d; + 7¢;]j2 = A and return d < d; + 7¢; (19)
Ti+1 = Ty — QjWw; (20)
if |lrivallz/lirollz < p (21)
then return d « d;4; (22)
Bi = ripri/rir (23)
tiv1 = Tiy1 + Bil; (24)

continue

The quadratic model is a better approximation when the step d is small. Trust region
methods exploit this fact by insisting that each step satisfy ||d||2 < A, where A is the trust
region radius (the inequality is enforced in Algorithm 2). Step (4) of Algorithm 1 computes
the actual reduction (a-red) in potential energy made by d. Step (6) computes the “predicted”
reduction (p_red) corresponding to the quadratic energy model. Step (7) determines whether
the actual reduction is close enough to the predicted reduction - if so, then d is accepted;
otherwise, d is rejected, the radius Agy; is made smaller, and a new d is calculated. Trust
region methods are robust precisely because they reduce A when the actual and predicted
reductions disagree. Eventually A becomes small enough that the quadratic Taylor series

expansion can be “trusted” for every step satisfying [|d||2 < A,

Algorithm 2 computes an approximation to the Newton step using conjugate gradient.
The CG subiteration can terminate at (15), (19), or (22), in each case returning a truncated
Newton step d. Step (21) is the usual CG termination test based on reduction of the residual
in the linear system being solved. The residual tolerance p is set in step (3) of Algorithm 1.
It is designed to make d cheap to compute during early iterations, but accurate enough near
an energy minimum to give the overall algorithm an asymptotic quadratic rate of convergence
[2]. Steps (14)-(15) handle the situation in which the Hessian is not positive definite. They
detect a direction of negative curvature and reduce the energy by following the direction to
the edge of the trust region. Step (19) enforces the trust region inequality. Steihaug proved in
[8] that the steps d; generated by Algorithm 2 are monotonically increasing in length, so it is
appropriate to stop as soon as A is exceeded.

Steps (6) and (13) multiply the Hessian matrix by a vector. Geometrically, the product cor-
responds to the curvature of the energy function in the direction of the vector; mathematically,
it is a type of directional derivative. To avoid forming the Hesslan, the directional derivative
is estimated with a finite difference formula. A forward difference approximation,

VE(pr +0ry) — VE(py)
05 ’

[V?E(pi)ly = (2.1)

requires one extra gradient/force evaluation. The approximation uses the safeguarded value
05 = 24/1000€mach/|[¥ll2 [9, PP. 94-99]. When the algorithm is close to an energy minimum, a
more accurate central difference approximation is used:

. VE(px + 0cy) — VE(pr — 6cy)
= 20, ’

[V2E(pi)ly (2.2)

with 8, = (3 x 1000€mac1) /3 /[|lyl|2. The central difference estimate requires two extra gradi-
ent/force evaluations.

Algorithm 1 normally terminates when the convergence criterion at (2) is met. The user can
stop it sooner by limiting the number of outer iterations, or the total number of gradient/force
calculations. The algorithm also includes a safeguard at (11) that stops execution before
underflow errors can occur (underflow is measured in terms of the machine precision €pqach,
approximately 2.2 x 107® on most machines). Step (11) provides an escape for the algorithm
if the stop_tol in (2) is set too small.

2.2 Parallel implementation issues

LAMMPS is a data-parallel SPMD application tailored for massively parallel distributed
computing architectures. LAMMPS employs a spatial decomposition of data objects based
on the Cartesian coordinates of the atoms [10]. First, a box with sides oriented along the
coordinate axes is constructed to enclose all atoms. Each side of the bounding box is subdivided
(usually by a power of 2) into uniform intervals, creating a grid of equal-sized subblocks that
are assigned to processors on a one-to-one basis. Each processor is assigned “ownership” of the
atoms located in its subblock, including the data and force calculations associated with those
atoms. Potential energy interactions extend only a limited distance, involving just the nearest
neighbors of each atom. For this reason, the spatial decomposition scheme usually makes a
good balance between memory needs, CPU work, and communication costs [10].

10

The minimization algorithm accesses atom positions and the force vector. Both of these
are DOUBLE PRECISION arrays of up to 3*maxown elements per processor. Algorithms 1 and 2
need storage for 8 other vectors that are used to hold intermediate results. Thus, minimization
requires 8*3*maxown DOUBLE PRECISION words on each processor. The 8 arrays are local
variables, so LAMMPS memory requirements are changed only if the minimizer is invoked.

All vectors in the minimization algorithm follow the same spatial decomposition layout as
the atom position and force arrays. LAMMPS subroutines are called to compute the energy
and force. Additional work by the algorithm is in the form of the Level One BLAS [11]
operations daxpy, dcopy, ddot, dnrm2 and dscal. Two of these, ddot and dnrm2, require
simple modifications for parallel execution. As will be seen is §5, the linear algebra costs of
the algorithm are negligible compared to the costs of computing the energy and force.

When a new step is accepted in Algorithm 1, atom positions are updated at (8). This
change can impact further calculations in three ways:

e neighbor lists for non-bonded interactions might change, thus altering the energy and
force values,

e processors might transfer the ownership of atoms that move out of their subblock,
e the bounding box surrounding all atoms might change (if the domain is not periodic).

LAMMPS has subroutines for molecular dynamics that address these problems, and they are
called at (9) in Algorithm 1. The user can control the frequency with which these subroutines
are called (see §4.1), but it is recommended that repartitioning and reneighboring take place
after every accepted step.

Notice that the energy E(pyr + d) computed at (4) does not include reneighboring, even
though the step d might move atoms a significant distance. This is because minimization must
evaluate d with respect to the quadratic model potential defined around p;. The model should
not be changed until a step passes the acceptance test at (7). Then a new model is constructed
around py41, and minimization continues on this model. It is possible that the new E(pg41)
computed at (9) will differ from the value E(p; +d) computed at (4), but the two values should
not be compared because they correspond to two different definitions of the potential function.
In practice these discrepancies are rare and do not affect convergence.

When LAMMPS repartitions and transfers atoms to new processors, it assumes that no
atom moves more than one subblock from its previous location (the shift can be one subblock
in each coordinate). This is a reasonable assumption for molecular dynamics because of the
small time step used in integration, and it limits parallel communication costs. However, one
iteration of minimization can cause much larger shifts in position, especially for a “stressed”
conformation with high potential energy. To prevent an error, a check is made and the step d
rejected at (7) if it causes any atom to jump more than one processor. The check includes the
effect of redefining the bounding box in nonperiodic problems. Rejection of the step causes A
to decrease at (10), so that the next step d will not move atoms as far.

11

3 Smoothed Potential Energy Functioﬂ

The potential energy function used by LAMMPS is patterned after the standard CHARMM
{12, 13] formulation. It is described parametrically by

E = Y k(rij—r9)*+ > ka(Bijr — 055)°
bonds angles
+ > Ean(@uyr)+ Y. Eimp(€ijn)
dihedrals Tmpropers
q.q. a-. 12 U.. 6
+ Y Weout(iglkeou—2 + wr.i(rij) deij [(-ﬂ) - (—t-’—) } (3.1)
e i Tij Tij Tij
pairs 2,7

(LAMMPS also supplies lumped approximations for long range forces, but these are not con-
sidered here). The terms comprising E model, respectively, covalent bond lengths, valence
angles, dihedral rotation barriers between four atoms, improper angles (out-of-plane motions)
between four atoms, and non-bonded coulombic and Lennard-Jones potentials (multiplied by
cutoff functions weey and w;_;, respectively). The variables of interest are r;;, the Euclidean
distance between atoms 4 and j. Only r;j, ik, $ijki, and & depend on atom positions; all
other quantities are constants.

Newton-based minimization requires that the function being minimized have continuous
second derivatives. The potential energy function used in LAMMPS meets this criteria, except
for the cutoff options. Both the coulomb and Lennard-Jones interactions typically use a sharp
cutoff function defined by the rules

if r<rew then w(r)=1
if r>ree then w(r)=0.

This function is not continuous, and causes a significant jump in the magnitude of the coulomb
potential unless rcy; is very large (for keoy = 332.0636, g; = g; = 0.5, the discontinuity at 204 is
4.15 kcal/mol). The jump creates insurmountable problems for a gradient-based minimization
algorithm, causing it to halt prematurely. The reason for this is not too hard to explain.

Suppose a pair of atoms with charges of like sign become situated during minimization with
interatomic distance r;; slightly greater than r.,;. The atoms are considered “neighbors” and
a repulsive coulomb force exists, but is truncated to zero by weey. If other forces conspire to
push the atoms closer together, then the trial step d generated by Algorithm 2 will change the
atom positions so that their distance is less than r.,:. Step (4) suddenly sees the repulsive force
when computing E(py + d), but it is still truncated to zero in the quadratic model employed
in (6). The step is therefore rejected at (7), the trust radius is decreased, and the algorithm
seeks a new, shorter, step d with the same quadratic model. Iterations continue in this manner
until A is so close to zero that the algorithm halts at (11). No step can be accepted because
the smooth quadratic model cannot represent the nonsmooth coulomb cutoff function. And it
is easy to see that the “unlucky” circumstance of two repulsive atoms becoming situated with
7i; just slightly greater than rc,; is not coincidental. When r;; is larger, steps that cross the
discontinuity are rejected, but a shorter step pi + d that does not decrease r;; below reys is
accepted. The algorithm therefore accepts a series of small steps that nudge the atoms closer
and closer towards an interatomic distance of rey.

12

To make minimization possible, the new release of LAMMPS includes the smooth coulomb
cutoff function used in CCEMD [14]. This cutoff is a cubic polynomial fitted between the
cutoff distance 7y, and a smaller threshold distance rjpper:

if 7 < Tinner then weou(r) =1
(Tcut - 7') Teut + 21 — 3"'inner)

('rcut Tinner) 3

if Tipner 7 < Tinner then wcoul(r)

if 7> Teut then weyy(r) =0.

This function has continuous second derivatives, and has the virtue of leaving coulomb potential
terms unchanged when 7 < ripner. It executes about 10% slower than the simpler sharp cutoff
function.

A corresponding smooth cubic cutoff function for Lennard-Jones potentials was not imple-
mented. LAMMPS Version 4.0 currently supplies the sharp cutoff function described earlier,
and a “switched” cutoff option defined by

12 o 6
if r < 'rinner then EL_J(T) = 46 [(r) -—_ (;)] — b

if Tipper <7 <7Tee then EL-J(T) = ap—ai (7” - 7'inner) — 02("' - "'inner)2/2
"'013(7' - Tinner)3/3 - a4(7' - Tinner)4/4 —-b
if 7 > Teut then E, ,(r) = 0,
where

w = 4|(;2) ()
0 |:"'znne7' Tinner
12 6
o= e (GE) (G
Tinner Tinner Tinner

o 6

a; = —2 3x48<) —7><24()

Tinner Tznne‘r Tinner
as = - 2 [al + = "'cut - "'inner)G'ZJ

(Tcut - rznner
ay = laz + 2(rcu: — Tmner)a3]

3("”cut - Tz'nner)z

2
b = Q) —aj (rcut - 'rinner) — a2 (Tcut - Tinner) /2

—as ("'cut - Tinner)3/3 — a4 ('rcut - r"inner)‘i/‘l-

The switched Lennard-Jones cutoff is smooth and goes to zero for r > ryu; however, it does
not equal the standard Lennard-Jones potential for r < ripner.

The sharply cutoff Lennard-Jones potential usually has only a small discontinuity. For
example, the Lennard-Jones interaction between two alpha carbons is characterized by € =
0.0498,0 = 2.265. The discontinuity at 10A is 2.69 x 1075 kcal/mol, and the jump at 20A is
only 4.20 x 1077 kcal/mol. Unless minimization is carried to extremely high accuracy, these
minute discontinuities will not cause difficulties. Thus, the Lennard-Jones cutoff style can be
used, provided that r.,; is not too small.

13

4 Using the Software

4.1 Inputs

LAMMPS uses a text file of control commands to set up parameters and direct execution.
Three new commands are defined for the minimization algorithm:

min file filename
min style hftn
minimize stop_tol maz_iters maz_force_calculations

The first command specifies a filename for the minimization output. Any existing file is
deleted as soon as minimization begins. If the line is omitted, no output file will be created.

The second command selects a minimization algorithm. Currently only hftn is defined,
but other algorithms may be implemented in the future.

The last command begins execution of the minimizer. Its three parameters determine how
the algorithm stops. The parameter stop_tol maps directly to step (2) of Algorithm 1, and stops
execution as soon as the magnitude of every force vector component is less than or equal to it.
The parameter maz_iters caps the number of outer iterations made by Algorithm 1. The third
parameter limits the number of force calculations made by the algorithm. It provides the best
way to control execution time, because force calculations are the dominant cost in large prob-
lems. The algorithm may make one or two force calculations beyond maz._force_calculations if it
is in the middle of a finite difference approximation. Default values for these three parameters
are 0.0001, 100, and 1000. Since this command starts the algorithm, the first two commands
should precede it.

A few other LAMMPS input commands have an effect on the minimization algorithm. As
described in §3, the coulomb force field option must be

coulomb style coul/smooth inner outer
Two of the parameters set by the “neighbor” command also have an effect:
neighbor skin neighstyle neighfreq neighdelay neightrigger

The skin parameter implicitly limits step sizes by causing any step which moves an atom
more than 1/2 the skin depth to be rejected. If skin is zero, atoms can move up to 5A. The
neighfreq parameter controls how many accepted steps elapse between the repartitioning and
reneighboring calls made at (9) in Algorithm 1. The recommended value is one (reneighbor
after every step), since the costs are small compared to the large number of force calculations
made to compute each step d.

4.2 Outputs

Figure 2 shows a portion of the output created by the minimizer. At the top of the output
the stopping criteria, force field styles, and other input control parameters are echoed. Then
comes a detailed breakdown of the potential energy at the start of minimization — a similar
breakdown is printed at the bottom of the output for the final conformation generated by the
algorithm. These two printouts should match the LAMMPS log file output exactly.

14

Find local energy minimum using truncated Newton CG
Stop minimization if:

{{grad||_inf .LE. 1.000E-05 OR
- . max number force calculations > 50000 OR
max number iterations > 1000
Max atom displacement per step is 5.000 Ang
Exchange & reneighbor after 1 accepted steps
" Coulomb forces smooth, cut off between 10.00 and 20.00 Angstroms
L-J forces sharply cut off at 20.00 Angstroms
Total PE = -1263.6073
E (bond) = $.0474 E {(coulomb) = -1353.2352
E (angle) = 25.0634 E (VDW) = -19.7982
E {(dih) = 71.1870 E (long) = 0.0000
E (impxrp) = 4.1283
Truncated Newton CG with trust regions on 1365 unknowns
Iter £(x) |lgrad||_inf Delta ||step]| £ evals ared pred CG iters
0 -1.2636E+03 7.2020E+01 3.695E+00 1
<forward diffs>
1 -1.4801E+03 1.5901E+02 7.389E+00 3.695E+00 12 2.165E+02 2.394E+02 9 TR
(-1.4800E+03 1.5898E+02 13 after reneighboring)
2 =~1.5786E+03 1.6475E+02 7.389E+00 7.389E+00 28 9.856E+01 2.993E+402 13 TR
(-1.5787E+03 1.6475E+02 29 after reneighboring }
rej 3 -1.2944E+03 3.010E+00 7.3B9E+(C0 48 -2.844E+02 3.959E+02 17 TR
4 -1.87B4E+03 1.8260E+D02 6.021E+00 3.010E+00 63 2.996E+02 3.033%E+02 13 TR
{ -1.8783E+03 1.8262E+02 64 after reneighboring)

273 -2.B846E+03 6.3343E-02 1.474E+00 7.372E-01 24480

6 1.966E-02 2.003E-02 376 TR
(-2.8846E+03 6.3343E-02 24481 after reneighboring)
- 274 -2.8846E+03 9.6155E-03 1.474E+00 1.308E-01 25698 5.458E-04 5.445E-04 1215 Nw
(. -2.8846E+03 1.0489E-02 25699 after reneighboring)
275 -2.8846E+03 1.9118E-05 1.474E+00 4.134E-03 26767 1.098E-06 1.022E-06 1066 Nw
(-2.8846E+03 1.9118E-05 26768 after reneighboring)
<central diffs>
276 -2.8846E+03 1.9220E-07 1.474E+00 4.015E-05 30257 4.1292E-10 4.091E-11 1743 Nw
- { -2.8846E+03 1

.9220E-07 30258 after reneighboring)
+++ |lg]|_inf less than tolerance ;

Number of force calcs = 30258
Number of force calcs without non-bonded E = 29777
Number of repartitionings = 205
CPU time for minimization, per proc (secs): N
{raw) avg = 7630.21 (per f&g eval) avg = 0.2522
max = 7664.60
CPU time in Compute_f_g, total:
{raw)} avg = 7393.13 (per f&g eval) avg = 0.2443
max = 7434.39
CPU time in Compute_f_g, just energy:
{raw) avg = 88.37 (per f&g eval) avg = 6.0029
max = 89.29
CPU time in Compute_f_g, lost due to load imbalance:
(raw) avg = 3744.59 (per f&g eval) avg = 0.1238
max = 5619.92

CPU times from LAMMPS, per proc (secs), % of 7630.2050
Avg Time % Max Time %

Bond 20.5361 0.27 40.0022 0.52
Angle 67.4046 0.88 135.0166 1.77
Dihedral 127.4567 1.67 260.9897 3.42
Improper 29.3723 0.38 60.1945 0.79
Nonbond 3268.8508 42.84 6785.8693 88.93
Long 0.8139 0.01 0.8210 0.01
Neighbor 25.4444 0.33 46.3401 0.61
Chk neigh 0.3487 0.00 0.6540 0.01
Exchange 0.4386 0.01 0.5142 0.01
Comm 84,1061 1.10 92.3113 1.21
Rev Comm 41.0251 0.54 50.9747 0.67
I0 15.3540 0.20 17.0566 0.22
{other) ' 3949.0538 51.76
Total PE = -2884.5698
= E (bond) = 12.3621 E (coulomb) = ~-3029.2057
E (angle) = 72.1164 E (VDW} = -68.1287
E {(dih) = 122,8032 E (long} = 0.0000
E (imprp) = 5.4828

Figure 2: Sample output from the minimization algorithm

15

The middle of the output contains a long table with nine columns of information. Each
numbered line in the table gives a summary of one minimization iteration. If the iteration
resulted in a step that was rejected, then the letters rej appear at the beginning of the line;
otherwise, it may be assumed the trial step was accepted. Data in the nine columns refer to
values at the end of an iteration, except for the trust region radius. The nine columns of data
are:

Iter Iteration number & in Algorithm 1
£(x) Energy at the end of the iteration (units here are kcal/mol)
|lgrad||.inf Largest magnitude of a force component (i.e., ||[VE(p)|lc)
Delta Trust radius A at the start of the iteration

(note all other data refers to the end of the iteration)
[Istepll Length of the step d in Angstroms (i.e., ||d||2)
f evals Cumulative number of force evaluations made so far
ared Actual reduction in energy made by d (see (4) in Algorithm 1)
pred Predicted reduction in energy (see (6) in Algorithm 1)
CG iters Number of inner iterations in Algorithm 2, and why it exited:

TR - exceeded the trust radius at (19)

Nw - converged to a Newton step at (22)

ng - encountered a direction of negative curvature at (15)
it - reached max_sub_ters in Algorithm 2

FD - approximation (2.1) was inadequate in (13)

After each accepted step a line in parentheses shows the new energy and gradient/force norm
computed after repartitioning and reneighboring. For example, the energy after iterations 1,
2, and 4 changed slightly as a result of reneighboring, but iterations 275 and 276 did not
(step sizes near a solution are usually very small). Before iteration 276 the message <central
diffs> indicates that the algorithm switched from equation (2.1) to (2.2) for greater accuracy.

At the end of the table in Figure 2 is a message beginning with +++ that tells why the
minimizer stopped - in this example because it converged. Then come three lines of summa-
rizing totals. Next are a group of four CPU times. The cumulative raw time, averaged over
all processors, is listed, followed by the same time divided by the number of force calculations
(per f&g eval). This last average is the best way to assess scalability of the software, since
the exact number of minimization iterations is sensitive to the number of processors (roundoff
errors change the inner iteration at which Algorithm 2 exits). The first of the four CPU times
gives the total time of LAMMPS execution. The second measures the time spent computing
energy and force vectors. The third and fourth numbers break the second number down into
more detail. Procedure Compute_f_g first uses LAMMPS subroutines to compute local force
vector components in parallel, then swaps information between processors to get the total
force, then makes an additional calculation of non-bonded potential energy. Usually the mini-
mization algorithm only wants the force, so the energy calculation is skipped. The third CPU
time gives the cost of the additional energy computations, averaged over all force calculations
(which is admittedly a little misleading). The fourth CPU time is measured between the end
of the local force calculations and the start of synchronous interprocessor force vector com-
munications; thus, it gives time lost due to work load imbalances. Of course there are other
places where time is lost due to load imbalance, but this is by far the most significant.

Finally, Figure 2 contains a list of CPU times and percentages from LAMMPS timers.
The second and third columns are the most useful. They show the CPU time spent by an

16

average processor on each task. The other time is largely accounted for by adding the times
for Compute f_g, just energy and Compute f_g, lost due to load imbalance. In this
example, those tasks take 88.97 + 3744.59 = 3833.56 of the 3949.05 seconds in other. The rest
of other is largely due to linear algebra computations in the minimization algorithm.

4.3 Software structure

Algorithms 1 and 2 are coded in the Fortran source filemin_algs.f. Supporting subroutines
that interface it to LAMMPS are in the file min_support.f. The minimization algorithm
requires the following standard BLAS [11] routines, which can be obtained from netlib@ornl.gov
or http://www.netlib.org: daxpy.f, dcopy.f, ddot.f, dnrm2.f, and dscal.f. Appendix A
provides a table of source files in the new release of LAMMPS.

A small number of global variables were added to the LAMMPS set defined in the file
lammps.h. The source code for these additions is given below.

CHARACTER*80 opt_outfile
INTEGER opt_algthm, opt_max_iters, opt_max_fns
REAL*8 opt_stop_tol

DOUBLE PRECISION opt_timel, opt_time2, opt_time3

COMMON /bk150/ opt_outfile

COMMON /bki51/ opt_algthm, opt_max_iters, opt_max_fns
COMMON /bk152/ opt_stop_tol

COMMON /bk153/ opt_timel, opt_time2, opt_time3

5 Performance of the Minimization Algorithm

Newton-based minimization methods have a characteristic convergence behavior on molec-
ular structures with covalent bonds. Figure 3 plots the potential energy F and force magnitude
|IVE|l against execution time for a test molecule (Transcription Regulation Protein 1ROP
[15], consisting of 455 atoms). Only data for accepted steps are plotted, so the energy de-
creases monotonically. Note that the lower graph plots the log of ||V E|c; thus, at the final
conformation all force vector components have magnitudes smaller than 2 x 107 kcal/mol-A.

Figure 3 shows that most of the energy decrease occurred in the first 1000 seconds of
execution — the last 7000 seconds reduced the energy only 63 kcal/mol. Algorithm behavior
from 2000 seconds to 4000 seconds was particularly vexing. Here the potential energy decreased
only 1.1 kcal/mol, yet the force magnitude indicated the conformation was still far from a local
minimum. This poor performance is due to ill-conditioning in the potential energy function,
which can be traced primarily to the covalent bond terms [4, 16]. Ill-conditioning can be
reduced with special preconditioners [4, 5, 17] or distance constraints [16, 18].

The minimization algorithm has been tested on the Sandia Teraflop machine, Intel Paragon,
and a Silicon Graphics Power Challenge. Tests indicate that 95% of CPU time is spent in
subroutine Compute_f_g, which uses LAMMPS routines to calculate force vectors and potential
energy. Thus, the linear algebra of minimization accounts for less than 5% of CPU time, and
the parallel scalability of minimization should be quite similar to the scalability of molecular
dynamics simulations. Minimization requires use of the new coul/smooth force field, which
appears to run about 10% slower than the coul/cut option.

17

-1400

-1800

-2200

Energy

-2600

AT 1

-3000

2.0

log | Force |
I

-7.0 1] | 1]]] J
0 2000 4000 6000 8000

CPU time (seconds)

Figure 3: Minimization performance on a protein containing 455 atoms
The upper graph shows the decrease in potential energy (in kcal/mol) as a function of execution time. The
lower graph plots the corresponding change in the logarithm of ||VE||o. Atoms experience forces of more than
one kcal/mol-A for the first 6000 seconds of minimization, even though the energy barely decreases after 2000
seconds. The slow convergence in this region is due to ill-conditioning. Final convergence (beyond the 6000
second mark) is at a quadratic rate.

The minimization algorithm did not always obtain good performance when scaled to a large
number of processors. Subroutine Compute _f_g, where 95% of CPU time is spent, incurs some
losses due to processor load imbalance. Each processor computes force terms on the atoms it
“owns”, then synchronously distributes the results to neighboring processors. The time delay
between the last local force term calculation and receipt of the first communication message
is idle time. It is reported in the output as CPU time in Compute f_g, lost due to load

imbalance (near the bottom in Figure 2). The time loss is larger in processors that are lightly
loaded.

Tables I and II show algorithm performance for different numbers of processors. Table I
results from minimization of the 1ROP protein on the Teraflop machine. Table II contains
data from the Paragon for a periodic block of cross-linked polymer strands (sulfur cuared EPDM

18

rubber 2) containing 10,954 atoms. If perfect scaling were achieved on these tests, then the total
time (2nd column) would decrease in proportion to the number of processors. The 5th column
indicates that some speedup loss is due to interprocessor communication costs. However, much
greater loss is due to work load imbalance of the force calculations, as shown by the 4th column.
The work load becomes more unbalanced because the spatial decomposition reflects fine grain
inhomogeneities in the molecule’s geometry. The imbalance ratios (last two columns) measure
mismatch in the work load. For example, a perfectly balanced distribution of 455 atoms over
64 processors would put 7 or 8 atoms in each processor; in practice, the geometry of 1IROP
concentrates 29 atoms in one processor (giving a ratio of (455/64)/29 = 0.25) and leaves zero
atoms in several others.

Table I: Algorithm performance — 455 atoms

Time per eval, in msec Communication Imbalance ratios
procs total | E and force | imbalance costs local # atoms | local # neighbors
1 123.6 120.1 0.0 0.0 % 1.00 1.00
2 75.1 71.0 10.9 1.2 % 0.86 0.83
4 65.8 62.0 30.9 22 % 0.51 0.47
8 40.1 34.7 19.0 4.8 % 0.44 0.45
16 333 28.6 20.0 71 % 0.31 0.26
32 20.9 16.4 11.6 12.2 % 0.28 0.26
64 16.3 114 8.4 182 % 0.25 0.19

Table II: Algorithm performance — 10,954 atoms

Time per eval, in msec Communication Imbalance ratios
procs total | E and force | imbalance costs local # atoms | local # neighbors
128 1731.2 1512.4 438.5 35 % 0.75 0.70
256 927.1 800.2 258.5 58 % 0.68 0.63
512 554.9 467.2 178.6 9.0 % 0.58 0.54
1024 353.6 288.2 131.0 13.7 % 0.49 0.51

Each line in a table shows the performance for a different number of processors (# procs). All values are
the average for one processor. Columns under Time per eval are further averaged over the number of calls to
subroutine Compute_f.g. The three columns give the average time spent in one call to the subroutine (fotal),
average time for one force/energy computation (E and force), and the average time wasted in a force computation
due to load imbalance (imbalance). Communication costs are a percentage of CPU time measured by adding
the LAMMPS times labeled Exchange, Comm, and Rev Comm near the bottom of Figure 2. Imbalance ratios are
derived from LAMMPS summary statistics. The two columns give the average number of atoms owned by a
processor divided by the maximum number owned by the most heavily loaded processor (local # atoms), and a

similar ratio involving the number of neighboring atoms stored by a processor (local # neighbors).

Table III and Figure 4 summarize the speedup analysis for the 455 atom example. Force
computation imbalance and interprocessor communication costs account for most of the perfor-
mance decrease observed in this problem. The last column of Table III implies that some other
loss mechanism becomes significant for large numbers of processors, probably a load imbalance
in Level One BLAS linear algebra operations. Practically, one may conclude it doesn’t make
much sense to run this small problem on more than 4 or 8 processors.

2Supplied by J.-L. Faulon, Sandia National Laboratories.

19

Table III: Speedups — 455 atoms

Speedup after Speedup after
procs || Speedup (ideal) tmbalance imbalance and comm
removed removed
1 -) - -
2 1.65 (2) 1.95 1.98
4 1.88 (4) 3.84 3.92
8 3.08 8) 6.92 7.28
16 3.7 (16) 13.0 14.0
32 591 (32) 21.9 25.0
64 7.58 (64) 34.5 421

Data is derived from Table 1. Speedup is the total time for one processor (123.6 msec) divided by the total time
for a larger number of processors; ideally, it equals the number of processors used. This speedup is divided
by the average of the two imbalance ratios in Table I to estimate the speedup efter imbalance removed. The
last column estimates the speedup if communication costs are also factored out. Example calculation: for 2
processors, speedup is 123.6/75.1 = 1.65, after removing load imbalance it is 1.65/0.845 = 1.95, and after further

removing communication costs it is 1.95/(1.000 — 0.012) = 1.98.

64 Ideal speedup
— — - After removing imbalance and comm
----- After removing imbalance . -
32 Actual speedup RGPt
R
. /’l
c’/{”
16— SC
Q. . /‘*'{'{
L®) .);("
O s P
) i
o 25
dp) K
4 /’”
W
<
e
2+ e
Z
1 - | i]]] J
1 2 4 8 16 32 64

Number processors

Figure 4: Speedups plotted from Table III

20

o

Table IV shows speedup for the 10,954 atom polymer. This molecular system is one piece
of a much larger polymer structure, so it should be more homogeneous; nevertheless, for a
sufficiently large number of processors, local geometric inhomogeneities again cause significant
work load imbalance.

Table IV: Speedup - 10,954 atoms

procs || Speedup (ideal)
128 - (1)
256 1.87 2)
512 312 (4)

1024 4.90 (8)

6 Conclusion

A gradient-based minimization algorithm has been added to LAMMPS V4.0 to enable cal-
culation of molecular conformations with minimal potential energy. The algorithm is a Newton
method, but uses conjugate gradient and finite difference approximations to avoid construct-
ing the Hessian matrix of second derivatives. The parallel implementation uses distributed
vectors that follow the LAMMPS spatial decomposition scheme, and linear algebra operations
performed by parallelized Level One BLAS routines. A smooth coulomb cutoff function based
on cubic spline interpolation has been added to overcome pathological minimization behav-
ior. Testing shows that the algorithm has an asymptotic quadratic rate of convergence, but
progresses slowly during intermediate stages of minimization because of ill-conditioning in the
potential energy function. Nearly all CPU time is spent computing force vectors. This calcu-
lation became significantly unbalanced for both test problems when the number of processors
increased too much.

References

[1] S.J. Plimpton, R. Pollock, and M. Stevens. Particle-mesh Ewald and rRESPA for parallel molecular dynam-
ics simulations. In EFighth SIAM Conference on Parallel Processing for Scientific Computing, Minneapolis,
MN, March 1997.

[2] R.S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact Newton methods. STAM J. Numer. Anal., 19:400~
408, 1982.

[38] D. P. O’Leary. A discrete Newton algorithm for minimizing a function of many variables. Math. Prog.,
23:20-33, 1982.

[4] T. Schlick and M. Overton. A powerful truncated Newton method for potential energy minimization. J.
Comp. Chem., 8:1025-1039, 1987.

[5] P. Derreumaux, G. Zhang, and T. Schlick. A truncated Newton minimizer adapted for CHARMm and
biomolecular applications. J. Comp. Chem., 15:532-552, 1994.

[6] D. A. Pearlman, D. A. Case, J. W. Caldwell, W. S. Ross, T. E. Cheatham III, S. DeBolt, D. Ferguson,
G. Seibel, and P. Kollman. AMBER, a package of computer programs for applying molecular mechanics,
normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and
energetic properties of molecules. Computer Physics Communications, 91:1-41, 1995.

[7] R. Fletcher. Practical Methods of Optimization. Wiley & Sons, Chichester, UK, second edition, 1990.

[8] T. Steihaug. The conjugate gradient method and trust regions in large scale optimization. SIAM J. Numer.
Anal., 20:626-637, 1983.

21

[9]
[10]
[11]

[12]

(13]

[16]

{17]

[18]

J. E. Dennis, Jr. and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear
Egquations. Prentice-Hall, Englewood Cliffs, N.J., 1983.

S. J. Plimpton. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys., 117:1-19,
1995.

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, S. Ostronchov, and D. Sorensen. LAPACK User’s Guide. SIAM, Philadelphia, 1992.

B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminatha, and M, Karplus. CHARMm: A

program for macromolecular energy, minimization, and dynamics calculations. J. Comp. Chem., 4:187-217,
1983.

Lennart Nilsson and Martin Karplus. Empirical energy functions for energy minimization and dynamics
of nucleic acids. J. Comp. Chem., 7:531-616, 1986.

R. Judson, D. Barsky, T. Faulkner, D. McGarrah, C. Melius, J. Meza, E. Mori, T. Plantenga, and A. Winde-
muth. CCEMD - Center for Computational Engineering Molecular Dynamics: Theory and user’s guide,
version 2.2. Technical Report SAND95-8258, Sandia National Laboratories, Livermore, CA, 1995.

D. W. Banner, M. Kokkinidis, and D. Tsernoglou. Structure of the col*E1 ROP protein at 1.7 angstroms
resolution. J. Mol. Biol., 196:657, 1987.

T. D. Plantenga and R. S. Judson. Energy minimization along dihedrals in Cartesian coordinates using
constrained optimization. Technical Report SAND95-8724, Sandia National Laboratories, Livermore, CA,
1995.

Tamar Schlick. Optimization methods in computational chemistry. In K. B. Lipkowitz and D. B. Boyd,
editors, Reviews in Computational Chemistry, volume 3, pages 1-72. VCH Publishers, New York, 1992.

T. D. Plantenga and R. S. Judson. Fast energy minimization of large polymers using constrained optimiza-
tion. In progress, 1997.

22

n

communicate.f
daxpy.f
dcopy.£
ddot.f
diagnostic.f
dnrm2.f
dscal.f
ewald.f

ewald coeff.f
finish.f
fix.f
force.f

force bond.f
force class2.f
force_many.f
forcerespa.f
initialize.f
input.f
integrate.f
integrate_respa.f
lammps.f
lammps.h

min algs.f
min_support.f
misc.f
neighbor.f
output.f
param.h
parlibunix.f

pppm. £
pppm.coeff.f

pppm2.
pppm2_coeff.f
pppm2_remap.f
random. f
read_data.f
read.restart.f
setup.f
setup_special.f
start.f
string.f
stringlibunix.f
thermo.f
velocity.f

Appendix A LAMMPS Source File Status

unchanged

new file

new file

new file

unchanged

new file

new file

unchanged

unchanged

modified for smooth coulomb
unchanged

modified for smooth coulomb
unchanged

unchanged

unchanged

modified for smooth coulomb
modified for minimization
modified for minimization and smooth coulomb
modified for smooth coulomb
unchanged

modified for smooth coulomb
modified for minimization and smooth coulomb
new file

new file

unchanged

unchanged

unchanged

unchanged

unchanged

unchanged

unchanged

unchanged

unchanged

unchanged

unchanged

unchanged

unchanged

unchanged

unchanged

modified for smooth coulomb
unchanged

unchanged

modified for smooth coulomb
unchanged

23

DISTRIBUTION:

i 1 MS 9001 Thomas Hunter, 8000
Attn: J. B. Wright, 2200
J. F. Ney (A), 5200
M. E. John, 8100
. J. McLean, 8300
C. Wayne, 8400
N. Smith, 8500
E. Brewer, 8600
T. M. Dyer, 8700
L. A. Hiles, 8800
D. L. Crawford, 8900

W
R.
P.
P.

1 MS 9012 Juan C. Meza, 8950

H MS 9214 L. M. Napolitano, Jr., 8130

20 MS 9214 Todd Plantenga, 8950

3 MS 9018 Central Technical Files, 8940-2

4 MS 0899 Technical Library, 4916

1 MS 9021 Technical Communications Department, 8815/Technical Library, MS
, 0899, 4916
* 2 MS 9021 Technical Communications Department, 8815 for DOE/OSTI

24

