UCC-ND

NUCLEAR
DIVISION

W UNION
ICARBIDE])

OPERATED BY

UNION CARBIDE CORPORATION
FOR THE UNITED STATES
DEPARTMENT OF ENERGY

ORNL/CSD-48

Lanczos Software
Symmetric Eigenvalue Problems

D. S. Scott

KASIBE

1118TR!BU£10N OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available

original document.

Printed in the United States of America. Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road, Springfield, Virginia 22161
NTIS price codes—Printed Copy: AOS Microfiche A01

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States nor any agency thereof, nor
any of their employees, makes any warranty, expressed or implied, or assumes
any legal liability or responsibility for any third party's use or the results of such
use of any information, apparatus, product or process disclosed in this report, or
represents that its use by such third party would not infringe privately owned
rights.

ORNL/CSD-48
Distribution Category UC-32

Contract No. W-7405-eng-26

COMPUTER SCIENCES DIVISION

BLOCK LANCZOS SOFTWARE FOR SYMMETRIC EIGENVALUE PROBLEMS

D. S. Scott

Sponsor: D. A. Gardiner
Originator: D. S. Scott

Date Published: November 1979

UNION CARBIDE CORPORATION, NUCLEAR DIVISION
operating the
Oak Ridge Gaseous Diffusion Plant . Oak Ridge National Laboratory
Oak Ridge Y-12 Plant . Paducah Gaseous Diffusion Plant
for the
DEPARTMENT OF ENERGY

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government,
Neither the United States Govemment nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,

or of any ir , product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does
not itute or imply its ion, or favoring by the United
States Government or any agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency thereof.

W8TWSUTLCN OF THIS DIKUMcHT 13 UNUMITEB
M

Table of Contents

iii

Page
ABSTRACT . . ittt ittt ittt it e tiee ettt eeennnnneeeeeeeeennnnneeeeeeeenns 1
INTRODUCTION ...ttt ittt tintieee et ennnnnaaeeeeeeeennnnneeeeeennns 1
THE LANCZOS ALGORITHM it itiiiitttttittnnnnnaneeeeennn 2
MAJOR DESIGN DECISIONSt iiiiiittttnnnnnneeeeeeennnnnnaeeens 9
2.1 Standardization and Modularization 9
2.2 Problem Definition i i 10
2.3 Matrix-Vector Products i, 11
2.4 Storage of Lanczos Vectorsc.ciiiiiiiiiiiinnenn. 11
2.5 Storage of Ritz Vectors........ 12
2.6 Limits and Recall Capabilitycciiiiiiiiinnnnn. 12
2.7 Local Reorthogonalizationc0iiiiiiiinnnn. 13
ALGORITHMIC DETAILS ...ttt ittt ttitiiteteeeeennnnneeeeeeennnnnas 13
3.1 Flowchart I, 14
3.2 Inefficiencies in Flowchartd i, 15
3.3 Limited Storage.......... ..ttt e e e 16
3.4 Multiple Eigenvaluesttt ttneteneeeneennens 17
3.5 Flowchart Tttt ittt ittt ittt ittt 18
3.6 Forming the Starting Block 21
3.7 Ordering the Inner LOOPiiiiiiiiiiininnennneneennns 21
SUBROUTINE STRUCTUREttt eeennnnnnneeen 22
4.1 Introduction...........t i i i i e 22
4.2 Subroutine Naming Conventions 00u... 24
4.3 Subroutine GloSSaryi.tiiiitiitttttiii e 25
TERTIARY SUBROUTINES iiiitttt ittt eeieennnnaeeeees 27
5.1 S AT 1= 28

Table

Page
5.1.1 The Calling SeqUEeNCEettt tmneeenenenanennnnn 28
5.1.2 1Internal Variablest itiiiiiiinnnennnns 29
5.1.3 Sequence BlocCKS..........iiiiiiiitiinttnneennennnn. 29
5.1.4 Special Note......... ...ttt
5.2 SORTOR. ...ttt ittt ittt ittt ittt ettt ineeneneneeenens 30
5.2.1 The Calling SeQUENCE...........ttiietmneenneennennns 31
5.2.2 1Internal Variablesc. ittt 31
5.2.3 Sequence BlocCKkS............iiiiiiiit it 32
5.3 SVZERO. ...ttt ittt ittt ittt ittt ittt 33
5.3.1 The Calling SeQUENCE.ttt titnneenneennnenns 33
5.3.2 1Internal Variables iiiitiiiiiiininnnns 33
5.3.3 Sequence BlocCKkS............iiiiiiiitiii i 33
£ 1 N 34
6.1 The Calling SE@QUENCE.ttt 34
6.2 Internal Variablesttt 36
6.3 Sequence BloCKS......... .ttt e 36
ES 1 37
7.1 The Calling SeUENCE.ttt ittt tnattnneenneenneen 37
7.2 Internal Variables ittt 43
7.3 Sequence BloCKS.ttt neeeneeeneeenans 47
S L = = 51
8.1 The Calling SE@QUEINCE.ttt ittt etnneinneennenn 51

8.2 Internal Variables

of Contents (Cont'd)

53

Table of Contents (Cont'd)

Page
8.3 Sequence BloCKS......... .ttt e e e e 54
9. INTERVAL TYPE PROBLEMS.ttt ittt ttaeeeaeeeaeeeneennnnn 55

9.1 Problem Definition i i 55

9.2 ST L ASO . it ittt ittt e e e e e e e e e e e 55
9.2.1 The Calling SeqUENCE.ttt ennaennaeennns 55

9.2.2 1Internal Variablesciiiiiiiininnnnnnnn 56

9.2.3 Other ChangesSttt tenneenneennens 57

0.3 ST A . . e e e e e e e e e e e e 57
9.3.1 Calling SeqUEeNCEutiiuetnnennnennnennnenns 57

9.3.2 1Internal Variablesiiiiiiiinnennnnnns 58

9.3.3 Other ChangesSttt tttteeeteeeeeaaeennnnn 59

9.4 ST P P I . .ttt et e e e e e e e e 60
9.4.1 Calling SeqUENCEttt eneeenneenneennenns 60

9.4.2 Internal Variablesiiiiiniiiiininnnnnnns 61

REFERENCE S.ttt ittt ittt ettt ennnneaeeeeeeeennnneeeeeeeennns 62

APPENDTX L ...ttt t ittt ettt et et e et e e e 63
User guides for SNLASO/DNLASO.ttt tneneeneneneeeenennns 64

User guides for SILASO/DILASOD.cutuetnenennnnenennnennn 74

APPEND I X 2 . ..ttt ittt ettt e ettt et et e e 85

Program Listings (microfiche, inside back cover)

ABSTRACT
The Lanczos algorithm is a powerful method of computing
a few eigenvalues and eigenvectors of a large sparse symmetric
matrix. Selective orthogonalizing is an efficient method of
maintaining the stability of the algorithm. This report docu-

ments the design and implementation of two distinct block
Lanczos algorithms with selective orthogonalization.

INTRODUCTION
This report gives detailed documentation of the implementation of a
package of subroutines for solving large sparse symmetric eigenvalue pro-
blems. There are two driver subroutines. The user guides for these two
subroutines are given in Appendix 1 and it is recommended that the reader
become familiar with the user guides before reading the body of the report.
The package is available in both single and double precision. This
report explicitly documents the single precision version although periodic
references to the double precision version are also made. The four major
changes between single and double precision are:
1. The names of the subroutines are different.
2. All real variables and constants are double precision (except
URAND, see 4).
3. There are discrepancies in the sequence numbers due to the extra
continuation lines needed in the double precision version.
4. Modifications are necessary due to the fact that the function URAND

exists only in single precision.

1. THE LANCZOS ALGORITHM
This section gives a brief synopsis of the Lanczos algorithm. No
proofs are given and only those results which are pertinent to the rest
of the report are included. The reader is directed to Scott [12] for
a more thorough treatment of the subject.
The Lanczos algorithm is an iterative procedure for computing eigen-
values of a symmetric matrix A, which starts with an arbitrary vector r*

and Qo E 0. Then for j = 1,2,...D0 1 to 5,

ot
2 If -0 stop
else qJ = r3_1/£3
3 v - - 9”Bj
! 3 7 qJ_*ul
S T TR b

Note that the only way that the matrix
through the formation of the product Ag” This is a very attractive
feature of the algorithm with respect to sparse matrices since A may be
stored in any compact manner which permits the formation of matrix vector
products. Note also that only the previous two Lanczos vectors (q's) are
needed at any step j.

There are several mathematically equivalent formulations of the
Lanczos algorithm. The one given here is the most stable numerically as

shown in Paige [8].

Defining (q1,92,...9") and
b
e2 ¢2 B
3
T.
3
0.
3 a

then it can be shown that, in exact arithemtic,

and

where e* ~ (0,0,...,!) is a j-vector and rjej* i-s a compact way of writing

an n x j matrix all of whose entries are zero except the last column which

is r..
3

The columns of Q. are an orthonormal basis for the Krylov subspace.

Kj(qi) = span(ql,Aql 7 = ° -1all

Multiplying (1) by Qj*> we find that since Q-*rj =

T. = Q.*AQ

j J 0 3J
Let Tj = Sj0jsj*> with s| = Sj_1 and 0. = diag(01l(j) ,0=),...,6~)), be
the spectral decomposition of T.. Let Y. = (y ~,v ~\ Lyt = Q.S..

J J A R J dJd
Then the pairs (y*"**,07"~) are the (optimal) approximations to eigen-

pairs of A obtained from the Krylov subspace (q-*) by the Rayleigh-Ritz
procedure.

Futhermore the residual norm of a Ritz pair (y.~\0.”~") can be computed

as

(3 y.(3)0.(3) = S-.1|s. . |EB.

HAyi i J+1 3il §i

(1)

where s” is the (j,i)EE-element of . Thus the accuracy of the Ritz
value (0 * * can be estimated without computing the Ritz vector at all.
Only a j x j tridiagonal eigenproblem need be solved and such problems can
be solved quickly and accurately using established techniques.

Therefore the Lanczos algorithm can be terminated as soon as the de-
sired Ritz values are sufficiently accurate and the Ritz vectors need
only be accumulated at the end. Since only the previous two Lanczos
vectors (q's) are needed by the algorithm itself, it is possible to place
the earlier Lanczos vectors in secondary store until they are needed for
forming the Ritz vectors. Indeed if eigenvectors are not of interest,
there is no need to save the Lanczos vectors at all!

We now let the symbols Q, T, Y, etc. stand for the corresponding

quantities actually computed on a machine with a relative presision £.

Unfortunately the simple Lanczos algorithm is unstable when implemented in
finite precision. This instability is manifested in the Lanczos vectors by
a loss of orthogonality. Indeed the columns of Q become dependent to working
precision. It is still possible to compute the eigensystem of 1. and to form
the matrix YI.I = Qf%. and we will continue to call these quantities Ritz values
and Ritz vectors even though they are not the true Ritz pairs derivable from
the subspace spanned by the columns of

It can be shown (Paige [7] or Scott [12]) that the loss of orthogonality

is quite correlated.

Theorem (Paige) At any step j of the Lanczos algorithm

and all i,

(3) -
; . =Y, .ellAll/B, .
y: ﬁl 1ie / 1i

where Yi:—l and 3i: is defined as in equation (1)
i i

Thus the quantity which is the residual norm of the Ritz pair

(y*** , 0%%)), 1is important both in determining the accuracy of 0~"%

and in measuring the loss of orthogonality at step j. In words
loss of orthogonality convergence
This theorem is the basis for selective orthogonalization, a scheme for

stabilizing the Lanczos algorithm, described in Parlett and Scott [9] and

analyzed in detail in Scott [12]. Selective orthogonalization explicitly

orthogonalizes against any Ritz vector which satisfies

3.. < ZEllAl
JI

Such Ritz vectors are called good If the tolerance is chosen much less than
/ellAll then the y's in Paiges Theorem may grow and 3. * is no longer an accurate
measure of the loss of orthogonality. See Scott [12] for more details.

Since 3.7~ is the residual norm of the Ritz pair (y**\ G~”"), a good Ritz
vector is quite accurate, having converged to about half the precision of the
machine. Therefore few (if any) of the Ritz pairs will be good at any one
step which explains the computational success of the scheme.

The simple Lanczos algorithm (even with selective orthogonalization)
suffers from two defects. If any eigenvector of A is orthogonal to then
it will be orthogonal to all subsequent gq's and will not be detected by the
algorithm. In particular multiple or closely cluster eigenvalues inevitably
cause difficulties. Furthermore if the matrix is in secondary storage and
is brought into core a slice at a time to form the matrix wvector product, it
is inefficient to only multiply one vector at each access. For these reasons
block Lanczos algorithms are appealing and have been analyzed by Cullum and
Donath [l] and Underwood [14].

Block Lanczos replaces each g-vector in the simple algorithm by an ortho-
normal block of m vectors which we label P&. m is called the block size.

The block algorithm starts with R*, an arbitrary n x m matrix, and P* = 0
Then for j = 1,2,...

1. Factor Ri—i = PiBi where Pj is orthonormal and BJ is upper

triangular

2, If Bj is singular, stop.

3. U. = AP, - P -B¥
3 3 3-13

The matrix Q.3 = (Pl", Pﬁ" "Pé) is orthonormal (in theory) and the
matrix
*
1
B3
B
3
T
3
B*
3
B, A.
J 3
is block tridiagonal. If T. = S.0.S* and Y. = Q S then the pairs
————— 2333 =233

(y1~\ 6~"**) are the Ritz pairs and

HAy.(j) - y-(:1)9 (j)II = 11B.”s.JI
i i i 3+1 31
where s” is the m-vector of the last m elements of s”~”~\ the eigenvector

of Tj associated with O~~\ Therefore it is still possible to compute the

residual norm of y”* without computing y*.
Block Lanczos solves the two main problems associated with simple

Lanczos. Eigenvalues are missed only when the corresponding eigenvectors

are orthogonal to the subspace spanned by the block of starting wvectors.
Thus multiple eigenvalues can be found up to m, the block size. Also m
vectors are multiplied for each access of the matrix, which is more
efficient than simple Lanczos, particularly if the matrix is in secondary
storage.

However, block Lanczos suffers from the same loss of orthogonality

as simple Lanczos. The generalization of Paige's theorem is

Theorem. At any step j of the block Lanczos algorithm

and for all i

ly*P-iBi,i3ssl = Y. ellAl
i 1J|'l 1+i 1i 1i

with Y. .-1 and s. . is the last m elements of s.
1i 1i i

This shows that the quantity B _.+%s*”* is again the key factor in both

accuracy and loss of orthogonality but it now takes two different inter-

pretations. The residual norm of (y*~*, 0***) is but ortho-

gonality between y and some vector in Pj+* is lost if the corresponding

element of B.,,s.. is small. We define |3 , = 11B.lls,.li as before and let
——————— i#H71 1i 141 14
a), , be the absolute value of the smallest element of B , s. . Thus

1i 141714

Convergence => loss of orthogonality

but not vice versa. For example, let m = 2,q-| be arbitrary and

Ro = (q*, Ag”). Then since

2
span (RO, ARq) = span(ql, Aq**, Aqgl> A ql)

has dimension 3, R” will be rank 1. Numerically R” will not be exactly rank

1 but the severe cancellation which occurs in its calculation will cause
drastic loss of orthogonality even though no convergence has occurred. Despite
this distinction it is still straight forward to implement selective orthogon-
alization in the block Lanczos context.

So far we have discussed the two factors which favor the choice of a
large block size. However, there are two other factors which favor a small
block size. The cost of computing eigenvalues of increases as a quadratic
function of the blocksize and the number of vector inner products of length n
needed at each step of the algorithm is linear in m. Furthermore, the
asymptotic convergence of the algorithm depends on the number of steps taken
before the algorithm must be iterated. So for difficult problems with limited
storage available it is important to take a small block size in order to max-

imize the number of steps taken in each iteration.

2. MAJOR DESIGN DECISIONS

2.1 STANDARDIZATION AND MODULARIZATION
It was decided to adhere strictly to the 1966 FORTRAN standard to help
assure portability. This standardization was checked by running the codes
through the PFORT verifier [l1]. It was also decided to avoid the use of
private common blocks and the use of the EQUIVALENCE statement completely.
It was decided to make use of existing high quality software for three
reasons: to make the codes more efficient, to improve modularity of the

codes, and to improve readability of the source code. EISPACK subroutines

10

(Smith et al. [13] and Garbow et al. [4]) were used for all subsidiary
eigenvalue calculations on dense matrices, a subset of the basic linear alge-
bra subprograms (BLAS) (Lawson et al. [5] and Dongarra et al. [2]) was used
for all vector manipualtion, and URAND (Forsythe et al. [3]) was used for

uniform random number generation.

2.2 PROBLEM DEFINITION

The two major questions to be resolved are:

1. Are eigenvalues to be computed at both ends of the spectrum of A

or only one?

2. Are a fixed number of eigenvalues to be computed or all the

eigenvalues outside some boundary to be found?

At first glance, one end only is the answer to question 1. In almost
all applications, A will be the discretation of some continuous operator on
a function space. One end of the spectrum of A will be an accurate repre-
sentation of the spectrum of the original operator while the other end will
be discretation noise.

However, one of the more powerful techniques of eigenvalue extraction

is sectioning, in which a few eigenvalues of

(A - al)-1

are found for various values of the shift 0. The inversion of the spectrum

changes a problem of finding all the eigenvalues of A inside a given inter-

-1
val to finding all the eigenvalues of (A - 01) outside a given (different)
interval. For this reason it was decided to allow two types of problems.
1. Find some eigenvalues at one end of the spectrum.

2, Find all the eigenvalues outside a given interval.

11

It was decided to specify a fixed number of eigenvalues in case 1. The
problem of finding all the eigenvalues of A smaller than some number a can be
handled (with only minor inefficiencies) by case 2 using a very large number

for the right end point of the excluded interval.

2.3 MATRIX-VECTOR PRODUCTS

The Lanczos algorithm requires the formation of matrix-vector products.
There are two possible approaches to supplying this information. Either a
user supplied subroutine is needed or reverse communication is used, in which
control is returned to the calling program, for each matrix multiply.

Four reasons favored the use of a user supplied subroutine. The matrix
multiply is needed in the inner loop of the algorithm which is likely to be
buried several layers deep in the subroutine structure of the code. To re-
turn to the main program each time would significantly increase the number
of subroutine linkages required at execution time.

Reverse communication would also violate the FORTRAN standard since the
standard does not require that local variables in subroutines maintain their
values between calls. Furthermore reverse communication, which allows the
user to change parameter values is much more prone to accidental contamination.

Finally, the source code using a user supplied subroutine is much
cleaner and easier to read since there is no need to monitor different types

of entry conditions.

2.4 STORAGE OF LANCZOS VECTORS
There are three approaches to storage of the Lanczos vectors (q's).
One approach is to require that they be stored in core (either in common

or in workspace provided in the calling sequence). This method was rejected

12

immediately since the main point of selective orthogonalization is to maintain
robust linear independence among the Lanczos vectors without having to keep
them in core.

Another possibility is to require the user to supply a logical unit
number for storing Lanczos vectors and store them using unformatted WRITE
statements. The disadvantage of this approach is that it forces the vectors
to be stored on disk even if sufficient core exists (as might easily be true
for a machine with virtual memory).

The approach actually chosen was for the user to supply a subroutine for
storing and recalling Lanczos vectors. This allows greater flexibility at

the cost of extra subroutine linkages.

2.5 STORAGE OF RITZ VECTORS

Is is feasible for the Ritz vectors (y's) to be put into secondary store?
The answer is a strongly qualified yes, provided that sufficient core storage
exists for one Ritz vector. However, the overhead involved is quite high.
Each time a Ritz vector is needed for orthogonalization it would have to be
recalled from disk. Even more important, the formation of each single Ritz
vector would require recalling all the Lanczos vectors, instead of forming
all the Ritz vectors needed simultaneously with one pass through the Lanczos
vectors. Finally, it would be impossible to assure that the computed Ritz
vectors were orthogonal to working accuracy.

For these reasons, it was decided to require that the desired Ritz

vectors be kept in fast memory.

2.6 LIMITS AND RECALL CAPABILITY
Eigenvalue extraction is inevitably an iterative process. Therefore it

is necessary to provide some external stopping criterion to avoid the

13

possibility of an infinite loop. This is especially true in the Lanczos con-
text where an error in the matrix multiply routine will almost always prevent
the algorithm from converging.

It was decided to use the number of calls to the matrix multiply sub-
routine, OP, as the stopping criterion. However, since it is impossible for
the code to determine a priori a "reasonable" value for this limit, it is
necessary for the user to set this limit on input. If the limit on the number
of calls to OP is reached the program terminates, returning all the eigenpairs
which have been determined and resetting the parameters so that the subroutine
can be immediately recalled to continue working on the problem.

This restart capability allows a user who knows one (or more) eigenpairs
of the matrix to supply this information so that the code does not expend
effort recomputing known eigenpairs. However, it should be noted that any
such user supplied eigenpairs are counted as desired eigenpairs as far as

solving the given problem.

2.7 LOCAL REORTHOGONALIZATION

Several authors including Lewis [6] and Ruhe [l0] recommend the use of
local reorthogonalization in which the latest block of Lanczos vectors are
reorthogonalized against the two previous ones (which are still in core)
Since the cost is small relative to the cost of a matrix multiply,it was

decided to use local reorthogonalization.

3. ALGORITHMIC DETAILS
The programs basic purpose is to implement the block Lanczos algorithm

with selective orthogonalization and to stop as soon as all the desired

14

eigenvalues are sufficiently accurate (acceptable). Let 0)~ be defined as the

absolute value of the smallest element of the wvector B.

J+i

Then the Ritz vector y. #* is good whenever 10-j <~ v*lIAll and the next Lanczos

s.. (see Section 1) .

vector should be orthogonalized against

3.1 FLOWCHART 1

A naive flowchart of the algorithm would be as follows.

Initialize

Take a Lanczos step.
Orthogonalize against
the good Ritz vectors.

Enough acceptable Compute desired
eigenpairs? Ritz pairs

Compute good
Ritz vectors

(if any) . Return

The above algorithm is inefficient in three respects and incomplete in

several more as we describe below.

15

3.2 INEFFICIENCIES IN FLOWCHART 1

In theory all the Ritz vectors change at every Lanczos step and so the
good Ritz vectors should be recomputed at every step. This would be ruin-
ously expensive. Fortunately, the good Ritz vectors change very little from
one step to the next and so a good Ritz vector computed at some earlier step
can be used for orthogonalization at the current step.

Furthermore it is not necessary to orthogonalize against a good Ritz
vector at every step. In Parlett and Scott [9] it is shown that if (y,0) is
a good Ritz pair and ly*qi*:]:-L ~ Ti—i and liy*cii ~ Tl, then

cl9 ™ ct. |T. + 3.T. 1/g =rT.,,
1+1 11 I 11 7141 151

except for terms of order e.
For blocksize greater than 1 the above formula must be modified. If

lly*p, I ~ T. ., and 1lly*P.II ~ T, then
1-1 j-1 1 1

lly*Pj+1l < [110 IT + a —i'I/aSj+i =T
j+1
L. . S : .
where 0" is the largest singular value of and is the smallest singular
value of Whenever Tj+l ©~ ve , P .+* and Dj+2 are orthogonalized against

y and x. and T. are set to e
1+1

i+2
Finally, it is not necessary to compute all the desired eigenvalues of
T at each step. In general the Lanczos algorithm will converge faster to the

extreme eigenvalues of the spectrum of A,i.e. convergence will occur mon-

otonlcally inward from the edge of the spectrum. Therefore for a number type

16

problem it is necessary to compute only 2 eigenpairs at most steps. First
the most interior desired eigenpair is computed to see if it is acceptable.

If it is acceptable, then all the desired eigenpairs are computed to insure

that they are all acceptable. If not all the eigenvalues are acceptable, then
the most extreme eigenpair which has not been declared good is computed. If
it is still not good, then the next Lanczos step is taken. If it is good

then all of the desired eigenpairs are computed and all the good Ritz vectors

are computed. It seems reasonable to recompute known good Ritz vectors for
two reasons. First the eigenpairs continue to converge so that the newer
version of a good Ritz vector is more accurate than the old one. Secondly

the major cost of forming the Ritz wvectors is in recalling the sequence of
Lanczos vectors. Since this must be done anyway for the new good Ritz vectors
there is little extra cost in updating the old ones as well.

For an interval type problem no more than six eigenvalues of T are com-

puted at one step. The details are left for a later chapter.

3.3 LIMITED STORAGE
Since the available storage on a computer is limited, it may not be pos-
sible to take another Lanczos step despite the fact that not all the desired
eigenvalues are acceptable. The computer code must allow the user to specify
this limit. If the limit is reached the code computes and stores all accept-
able eigenpairs (we refer to such vectors as permanent vectors) and then
forms a new starting block from linear combinations of the remaining eigen-
vectors. The Lanczos algorithm is then restarted with this starting block.
This restarting of the algorithm requires one additional precaution.
The new Lanczos sequence must be kept orthogonal to the permanent vectors.

As before it is not necessary to orthogonalize against the permanent vectors

17

at each step. Instead a scalar recurrence is used to monitor the decay of

orthogonality. The recurrence for permanent vectors is the same as the re-
currence for good vectors except that the term p/o.+* must be added to
where p is the residual norm of the permanent vector y (llAy - y0l| s 8..).

It should be noted that restarting the algorithm is always detrimental
to the convergence rate of the algorithm. So that provided the user subrou-

tines are known to be reliable, all the available storage should be used.

3.4 MULTIPLE EIGENVALUES

As mentioned in Chapter 1, the block Lanczos algorithm cannot find more
than m (the blocksize) eigenvectors associated with a multiple eigenvalue.
For numerical purposes this means that if the code computes m eigenvalues
which are tightly clustered then it is possible that there are more eigen-
values in the cluster. After the code has computed the desired eigenvalues
it checks to see if a cluster of m eigenvalues exists. If such a cluster is
found the algorithm is restarted just as if not all the desired eigenpairs
were acceptable, except that random vectors are used for the starting block.
This causes several complications. The codes must now be able to terminate
in the middle of a Lanczos run when it decides that no new eigenvalues exist
in the cluster. Furthermore, if solving a number type problem (see Section
2.2) the code must throw away a permanent vector if a new member of the
cluster is found.

For example, suppose that the five smallest eigenvalues of A are 0,0,0,1,
and 2. If the three smallest eigenvalues are desired and a blocksize m = 2
is used. Then the eigenvalues 0,0, and 1 will be found by the first Lanczos

sequence. Since a multiplicity of 2 exists in the determined eigenvalues

18

a check run would be started. Soon after, the third copy of zero would be
found and the eigenvalue 1 (and its eigenvector) would be discarded to make
room for it. On the other hand if the zero eigenvalue were only double, the
check run would terminate after some number of steps and the values 0,0, and 1
would be returned.

From the point of view of efficiency, it is desirable that the block size
be larger than the largest multiplicity of the desired eigenvalues, so that
no check run need be made. 1In particular a block size of one is recommended
only for number type problems and only when one eigenvalue is desired. (of

course storage constraints may require the use of a block size one.)

3.5 FLOWCHART II
The following flowchart reflects the results of the previous sections.

The abbreviation e.v.s. stands for eigenvalues (of T).

19

Initialize

Take a Lanczos step
Update x recurrence
Orthogonalize as needed

Out of storage?

Calculate some e.v.s

Is this a check run

Pass? Return

Calculate all
desired e.v.s?

20

Calculate all
desired e.v.s

All acceptable? or
A new good vector? or
Out of storage?

Form needed Ritz vectors

All acceptable? or
Out of storage?

All acceptable? Need a Return
checkrun?
Form starting block Random Starting block
This flowchart is a fairly accurate representation of the two codes. The

specific details of the implementations will be discussed in the sections
covering the individual subroutines. However, there are two more topics of

sufficient generality to be discussed here.

21

3.6 FORMING THE STARTING BLOCK

If storage has been exhausted, it is necessary to compute m vectors to
form the new starting block. The simplest approach is to take the first m
desired eigenvectors which are not acceptable. However, if there are more
than m unacceptable desired vectors, this means that some eigenvectors are
completely ignored. At best this is a waste of valuable information and at
worst it can lead to the algorithm failing to find some eigenvalues.

On the other hand to simply sum up all the unacceptable vectors is also
ineffective since it is possible for a fairly accurate Ritz vector to be
swamped by one or more completely inaccurate Ritz vectors. To avoid these
two extremes the code has all the unacceptable Ritz vectors contribute to
the starting block but weights the contributions by the inverse of the residual
norm of the vector. Thus almost acceptable vectors will have large weights
compared to very poor vectors.

Finally, it should be noted that the unacceptable Ritz vectors are not
calculated individually. Rather the appropriate linear combinations of eigen-

vectors of T are formed and these are used to form the starting block directly.

3.7 ORDERING THE INNER LOOP
It turns out to be better to rearrange the inner loop so that the ortho-
gonalizations occur at the top, as follows:

heos,

Given PB =0, R, = p& and B{ =1. For i = 1,2

0
1. Orthogonalize P. against any vector indicated by the x recurrence.
2. If necessary (j = 1 or some orthogonalization done) reorthognoralize so
that

22

and set B. = B*.B.
J 33
3 U. = AP. - P. *
3 3 3-1 3
4 A. = P*AP.
3 3 3
5 R. =U. - P.A
3 3 33
6. R. = p*, ,B.,' with P'.,, orthonormal
3 3+1 3+1 3+1

7. Update the T relations

We do not actually need the orthonormality of until the following

Lanczos step but we do need the matrix B*., in order to compute 3.. and a)..
3+1 31 3i

(the residual norm and the orthogonality coefficient) for the eigenvalues we

compute

This ordering has several advantages. Firstly, we do not have to do any
special coding (other than initializing the T recurrence properly) to handle
the first step. The initial block is naturally orthogonalized against the
known vectors (if any) and then orthonormalized). Furthermore the decisions
about terminating, restarting, or computing new good Ritz vectors are made
before any unnecessary orthogonalizations are performed.

One final note: throughout this report we have used the subscript j to
denote the step number. In the code we found it more convenient to use J as

the dimension of Té' that is, J = j*m

4. SUBROUTINE STRUCTURE

4.1 INTRODUCTION
Implementing the Lanczos algorithm requires temporary storage space for
a variety of purposes. Unfortunately FORTRAN does not allow EQUIVALENCE to

be used with formal parameters. For this reason it is impossible to break

23

the allotted work space into different named areas inside the first subroutine
called. There are three possible ways to circumvent this problem.

One approach is to require the user to break up the workspace in the
original calling sequence by having a number of separate workspace parameters.
This method was rejected because it greatly increases the probability of user
errors in calling the subroutine. Another approach is to use various integer
variables to keep track of the offsets for different work space areas. This
method makes the corresponding code quite intricate (especially when following
the standard restrictions on the form of array subscripts) and almost inde-
cipherable.

Instead it was decided to have the driver subroutine be almost a dummy
routine which did little more than call other routines to do most of the
work. Thus the available workspace could be subdivided in the calling
sequences to these subsidiary subroutines.

In the end, two such subroutines were written. The major one implements
the block Lanczos algorithm with selective orthogonalization to solve the
given problem and the second one post-processes the eigenvectors that were
computed by the first.

In addition a number of additional functions and subroutines are used
for specific computational tasks. Three of these tertiary subroutines were
written by the author, while the rest were taken from published sources.

It turned out to be inconvenient to solve both types of problems de-
scribed in Section 2.1 with the same subroutine. Two separate driver sub-
routines were written for the two different problem types. This in turn
required separate subsidiary subroutines, but the specific computational

modules (tertiary subroutines) are the same for both problem types.

24

4.2 SUBROUTINE NAMING CONVENTIONS
Each of the major subroutines has a root name, a letter preceding the

root name which identifies which of the two problem types it is used for,

preceded by a letter indicating the precision employed. The codes are
LASO root name. driver subroutine.
PPLA root name. post processor
WLA root name. main computation subroutine.
N identifier, problem type 1 (some number of eigenvalues at

one end of the spectrum)
I identifier, problem type 2(all the eigenvalues outside a

given interval)

S single precision.

D double precision.

Thus SNLASO is the single precision driver program for a number type
problem, while DIPPLA is the double precision post-processor for an interval
type problem.

The tertiary subroutines have naming conventions which depend on their
source. EISPACK subroutine names are fixed, regardless of whether they are
in single or double precision. The basic linear algebra subroutines (BLAS)
in UNPACK have a root name preceded by an S ora D to indicate the level of
precision. The tertiary subroutines written by the author also have a root
name preceded by an § or a D. Finally URAND, taken from [3] exists
only in single precision since double precision integers are not provided for

in the 1966 FORTRAN standard.

4.

25

SUBROUTINE GLOSSARY

BANDR:

BANDV:

BISECT:

DAXPY:

DCOPY

DDOT:

DILASO:

DIPPLA:

DIWLA:

DMVPC:

DNLASO:

DNPPLA:

DNRM2 :

DIWLA:

DORTQR:

EISPACK subroutine for reducing a symmetric band matrix to
tridiagonal form.

EISPACK subroutine for computing eigenvectors of a band matrix
by inverse iteration.

EISPACK subroutine for computing all the eigenvalues of a
symmetric tridiagonal matrix inside a given interval. Used
only in interval type problems.

double precision BLAS subroutine for adding a scalar multiple
of one vector to another.

double precision BLAS subroutine for copying one vector into
another

double precision BLAS function for computing a vector inner
product.

double precision driver for interval type problems,

double precision post processor for interval type problems,
double precision computation subroutine for interval type
problems

double precision subroutine for computing the residual norm
and orthogonality coefficient for given Ritz pairs,

double precision driver for number type problems,

double precision post processor for number type problems,
double precision BLAS function for computing a vector norm,
double precision computation subroutine for number type
problems.

double precision subroutine for orthonormalizing a set of

vectors

DSCAL

DSWAP:

DVZERO

IMTQL1:

IMTQL2:

SAXPY:

SCOPY:

SDOT:

SILASO:

SIPPLA:

SIWLA:

SMVPC:

SNLASO:

SNPPLA:

SNRM2 :

SNWLA:

SORTQR:

double precision
a scalar.
double precision

double precision

26

BLAS subroutine for multiplying a vector by

BLAS subroutine for swapping two vectors,

subroutine for zeroing a given vector.

EISPACK subroutine for computing all the eigenvalues of a

symmetric tridiagonal matrix.

EISPACK subroutine for computing all the eigenvalues and

eigenvectors of a symmetric tridiagonal matrix,

single precision
of one vector to
single precision
another.

single precision
product

single precision
single precision
single precision
problems.

single precision

BLAS subroutine for adding a scalar multiple
another.

BLAS subroutine for copying one vector onto

BLAS function for computing a vector inner

driver for interval type problems,

post processor for interval type problems,

computation subroutine for interval type

subroutine for computing the residual norm

and orthogonality coefficient for given Ritz pairs,

single precision
single precision
single precision
single precision
problems

single precision

vectors.

driver for number type problems,
post processor for number type problems,
BLAS function for computing a vector norm,

computation subroutine for number type

subroutine for orthonormalizing a set of

27

SSCAL: single precision BLAS subroutine for multiplying a vector by
a scalar.

SSWAP: single precision BLAS subroutine for swapping two vectors.

SVD: EISPACK subroutine for computing the singular values of a
matrix.

SVZERO: single precision subroutine for zeroing a vector.

TRED1: EISPACK subroutine for reducing a symmetric matrix to tri-

diagonal form. The transformations are not accumulated.

TRED2: EISPACK subroutine for reducing a symmetric matrix to tri-
diagonal form. The transformations are accumulated,

URAND: a single precision function for generating uniform random num-

bers on the interval [0,1].

5. TERTIARY SUBROUTINES

The EISPACK subroutines used (BANDR, BANDV, BISECT, IMTQL1l, IMTQL2, SVD,
TRED1, and TRED2) are documented in Smith et al. [13] and B. S. Barbow it al.
[4]. The Basic Linear Algebra Subroutines are taken from LINPACK which is
documented in Dongarra et al. [2]. URAND is documented in Forsythe et al.
[3]. The three remaining routines were written by the author and will be
documented here. Only the single precision versions will be explicitly

documented. The arguments of each subroutine are classified according to the

following table.

28

Table 1. Argument Glassifications

SI Strict input: The original value is always referenced.

I Input: The original value is sometimes referenced.

{o) Strict output: A new value is always returned.

0 Output: A new value is sometimes returned.

w Workspace: The original value is never referenced and the final wvalue

is meaningless.

5.1 SMVPC
SMVPC is used to compute the residual norm estimate 8j” and the ortho-
gonality coefficient (see Chapter 1) for one or more eigenvectors of T#.
(3j* is used in determining the accuracy of the corresponding eigenvalue while
is used to monitor the loss of orthogonality. Since the major cost of
computing either or 8”7 is in forming the product SMVPC always

returns both wvalues.

5.1.1 The Calling Sequence

SUBROUTINE SMVPC (NBLOCK, BET, MAXJ, J, S, NUMBER, RESNRM, ORTHCF, RV)

Table 2. The Calling Sequence

Name Type Dimension Classification Remarks
NBLOCK integer scalar SI Blocksize.

BET real NBLOCK*NBLOCK SI Bj+1 '
MAXJ integer scalar SI Leading dimension of S.

J integer scalar SI Dimension of the eigenvectors

Name

NUMBER

RESNRM

ORTHCF

RV

Type
real
integer
real
real

real

29

Table 2. (Cont'd)

Dimension Classification Remarks
MAXJ*NUMBER SI The eigenvector(s) of T#.
scalar SI The number of eigenvector(s).
NUMBER SO The 6...

Ji
NUMBER SO The U). ..
NBLOCK W Workspace for forming BA*s”.

5.1.2 Internal Variables

The subroutine uses three internal variables:

Name

Type

integer
integer

integer

Table 3. Internal Variables

Remarks
DO loop index over the eigenvectors (1 to NUMBER)

DO loop index over the rows of B (1 to NBLOCK)

I+1
Subscript, set to J - NBLOCK + 1. S(M,I) is the

element of s..
Ji-

5.1.3 Sequence Blocks

In reference to the listing of SMVPC in appendix 2.

Sequence Numbers

10-200

210

220-

340

Table 4. Sequence Blocks

Remarks
Initial declarations and comments.
Set M = J-NBLOCK + 1.

DO loop in I over number of vectors.

30

Table 4. (Cont'd)

Sequence Numbers Remarks
250-290 DO loop in K over rows of BET. Forms matrix vector

product and updates minimum element (ORTHCF (I)).

310 Computes RESNRM (I) = A
320 Scales ORTHCF (I).
350-370 Exit.

5.1.4 Special Note

The orthogonality coefficients do not reflect the use of local reortho-
gonalization. This will cause vectors to be declared good somewhat sooner
than necessary. This is particularly evident when the starting block contains
a good approximation to an eigenvector. Then cancellation will cause loss of
orthogonality to the second block but reorthogonalization of the second block
to the first corrects the problem. To account for the reorthogonalization
against the first block we found it advantageous to scale the orthogonality
coefficient by a factor 1lls"H 1 where s” is the J - 2*NBLOCK vector ob-
tained from s” by deleting the top 2*NBLOCK elements. This always delays the
classification of a good vector and if the corresponding eigenvector of T has
most of its mass concentrated in the first few components (as is the case if

the starting block contains a near eigenvector) this delay is significant.

5.2 SORTQR
SORTQR is used to orthonormalize a block of Lanczos vectors. This

simplest (cheapest) approach is to use modified Gram-Schmidt. Unfortunately

31

this requires either pivoting or reorthogonalization for stability. If piv-
oting is used the corresponding matrix of coefficients is not triangular and
this increases the band width of the matrix T.

So following Lewis [6 | we decided to use householder transformations to
orthogonalize the blocks. Indeed SORTQR is essentially Lewis' QRDECM modified

to incorporate the Basic Linear Algebra Subprograms.

5.2.1 The Calling Sequence

Table 5. SUBROUTINE SORTQR (N,NBLOCK, Z,B)

Name Type Dimension Classification Remarks
N integer scalar SI Length of vectors.
NBLOCK integer scalar SI Number of vectors.
Z real N*NBLOCK SI-SsO The block of vectors on input and

the orthonormalized vectors on
output.

B real NBLOCK¥* SO The upper triangular matrix.
NBLOCK

5.2.2 1Internal Variables

Table 6. Internal Variables

Name Type Remarks

I integer Index over the columns of Z (one to NBLOCK in reduction
phase and NBLOCK to one in the accumulation phase.)

J integer Set equal to I + 1 to index a DO loop (twice).

LENGTH integer Set equal to the length (dimension) of the current
Householder reflection.

M integer Used as the DO loop variable when I is counting downward.

Name Type
SIGMA real
TAU real
TEMP real

32

Table 6. (Cont'd)

Remarks
Set to the norm (with sign chosen for stability) of the
current vector used for forming the Householder reflection.
Set to the normalizing factor for the current reflection.
Used to hold the multiplier for the following call to

SAXPY. Not strictly needed but included for readability.

5.2.3 Sequence Blocks

In reference to the listing of SORTQR in appendix 2

Sequence Numbers

10-180

190-410

230-290

330-390

450-660

490-550

590-620

640-650

670-690

Table 7. Sequence Blocks

Remarks
Initial comments and Declarations.
DO loop in I over number of vectors.
Form }Ei reflections.
DO loop in K applying the reflection to the rest of
the vectors.
DO loop in M over the number of vectors as I runs
backwards through the vectors.
Recreate I— reflection.
DO loop in K applying this reflection to the pre-
viously accumulated reflections.
Construct current column.

Exit.

5.3 SVZERO

SVZERO is used to initialize a given vector to zero.

the subroutine is copied from SCOPY except that the increment

be one.

5.3.1 The Calling Sequence

33

The structure of

is known to

SUBROUTINE SVZERO (N,Q)
Table 8. SUBROUTINE SVZERO (N,Q)

Name Type Dimension Classification Remarks

N integer scalar SI Length of vector.
Q real N SO The vector.

5.3.2 1Internal Variables

Table 9. Internal Variables (M,MP1,I)

Name Type Remarks

M integer Set to N mod 7.
MP1 integer Set to M + 1.

I integer DO loop variable (1 to M and MP1l to N by 7)
5.3.3 Sequence Blocks

In reference to the listing of SVZERO in appendix 2:

Table 10.

Sequence Numbers

10-130

140-210

220-320

330-350

34

Sequence Blocks

Remarks
Initial comments and declarations.
Clean up loop.
Main loop.

Exit.

6. SNLASO

SNLASO is the driver program for number type problems. It checks the

consistency of the calling parameters,

eigenvectors,

6.1 THE CALLING SEQUENCE

SUBROUTINE SNLASO

NBLOCK ,MAXOP,MAXJ, WORK, IND, TERR)

Name

oP

IOVECT

NVAL

Type

external

external

integer

integer

Table

Dimension

scalar

scalar

orthonormalizes any user supplied

and calls the subroutines SNWLA and SNPPLA.

(OP,IOVECT,N,NVAL,NFIG,NPERM, NMVAL, VAL ,NMVEC,VEC,

11. The Calling Sequence

Classification Remarks

SI

SI

User supplied subroutine for ma-
trix-vector products.

User supplied subroutine for
storing and recalling vectors.
The dimension of the matrix.
Indicates the number of desired

eigenvalues

Name

NFIG

NPERM

NMVAL

VAL

NMVEC

VEC

NBLOCK

MAXOP

MAXJ

WORK

IND

IERR

Type

integer

integer

integer

real

integer

real

integer

integer

integer

real

integer

integer

Table 11.
Dimension Classification
scalar SI
scalar SI-SO
scalar SI
NMVAL*4 1-0
scalar SI
NMVEC*NVAL 1-0
scalar SI
scalar SI
scalar SI

(see below)

NVAL

scalar

35

1-0

SO

SO

(Cont'd)

Remarks
The number of decimal digits of
accuracy desired.
The number of eigenvectors known.
The row dimension of VAL.
The eigenvalues and accuracy
estimates
The row dimension of VEC.
The eigenvectors.
The block size (number of vectors
per block).
The maximum number of calls to OP.
The limit on the number of vectors
stored by IOVECT. It also effects
WORK.
Workspace. The first N*NBLOCK
elements are the starting block.
Used for workspace and to return
the actual number of calls to OP.

An error completion code.

The array WORK must be at least as long as

NBLOCK* (3*N + 2*NBLOCK)

+ 3*ABS (NVAL).

+ MAXJ* (3*NBLOCK + ABS (NVAL) + 6)

For a more detailed description of the calling sequence see Appendix 1.

36

6.2 INTERNAL VARIABLES

Table 12. Internal Variables

Name Type Remarks
DELTA real Returned from SNWLA as the eigenvalue of A closest to the
desired eigenvalues. Used in SNPPLA for computing the ac-

curacy estimates.
I integer Used as the primary DO loop index.

11-114 integer Used as subscripts in the calls to SNWLA and SNPPLA.

K integer Used as the secondary DO loop index.
M integer Used as a DO loop limit and as an array subscript.
NOP integer Returned from SNWLA and SNPPLA as the actual number of calls

to OP. Stored in IND(l) Jjust before exit.

NV integer Set to abs(NVAL).

RARITZ logical Returned from SNWLA and passed to SNPPLA. RARITZ is .TRUE.
if a final Rayleigh-Ritz procedure is needed.

SMALL logical Set to .TRUE, if the leftmost eigenvalues are desired.
Passed to SNWLA and SNPPLA.

TEMP real Used for temporary storage for sorting etc.

6.3 SEQUENCE BLOCKS

In reference to the listing of SNLASO in Appendix 2:

Table 13. Sequence Blocks

Sequence Numbers Remarks
10-1860 Initial comments and declarations.

1870-2070 Check consistency and set local parameters.

37

Table 13. (Cont'd)
Sequence Numbers Remarks
2080-2810 Orthonormalize user supplied eigenvectors.
2820-3100 Call SNWLA.
3110-3220 Call SNPPILA.
3230-3250 Set IND(l) and exit.
7. SNWLA

SNWLA is the subroutine which implements the block Lanczos algorithm with
selective orthogonalization to compute the desired eigenvalues. If the largest
(rightmost) eigenvalues are desired (SMALL = .FALSE.) the code implicitly uses
the negative of the matrix (by negating the matrix T) and otherwise always

computes the smallest eigenvalues.

7.1 THE CALLING SEQUENCE
SUBROUTINE SNWLA (OP,IOVECT,N,NVAL,NFIG,NPERM, VAL, NMVEC, VEC,NBLOCK , MAXOP,
MAXJ,NOP,PO,PI,P2,RES,TAU,OTAU, T, ALPHA,BETA,BETA2 ALP,BET,RV,RV6,S, IND, SMALL,

RARITZ,DELTA, IERR) .

Table 14. The Calling Sequence

Name Type Dimension Classification Remarks

oP external - SI Forms matrix vector products.
IOVECT external - SI Used to store and recall vectors.
N integer scalar SI Dimension of the matrix.

NVAL integer scalar SI The number of eigenvalues desired

(positive).

Name

NFIG

NPERM

VAL

NMVEC

NBLOCK

Type

integer

integer

real

integer

real

integer

Dimension

scalar

scalar

NVAL

scalar

NMVEC*NVAL

scalar

38

Remarks

Table 14. (Cont'd)
Classification
SI

SI-0

SI

1-0

SI

The number of decimal digits of
accuracy desired in the eigen-
values .

On input, the number of user
supplied eigenpairs. On output
the number of eigenpairs now
known (usually NVAL). In between,
the number of permanent vectors.
On input, the user specified
eigenvalues. Internally, the
permanent eigenvalues, followed
by the good eigenvalues, followed
by the eigenvalues computed at
the current step. On output, all
the known eigenvalues.

The row dimension of VEC.

On input, the user supplied eigen-
vectors. Internally the permanent
eigenvectors followed by the good
eigenvectors. On output, all the
known eigenvectors.

The number of vectors in each

Lanczos block.

39

Table 14. (Cont d)
Name Type Dimension Classification Remarks
MAXOP integer scalar SI The maximum number of calls to

OP. SNWLA is aborted (IERR = -2)
if this maximum is reached. Note
that the comparison is turned off
if the code is making a check run
to test for multiplicities so
that the number of calls to OP
may be larger than MAXOP before
termination of SNWLA.

MAXJ integer scalar SI The maximum number of Lanczos
vectors which can be stored. The
algorithm is restarted (iterated)
if this maximum is reached.

NOP integer scalar SO The number of calls to OP.

PO real N*NBLOCK W The "oldest" block of Lanczos
vectors kept in fast storage.

PI real N*NBLOCK SI The "middle" block of Lanczos
vectors. On input PI must con-
tain the desired starting vectors.
Zero vectors are replaced by ran-
dom vectors. On output, if IERR =
-2, PI will contain the best vec-

tors for restarting the algorithm.

Name

P2

TAU

OTAU

Type

real

real

real

real

Dimension

N*NBLOCK

NVAL

NVAL

NVAL

40

Table 14. (Cont'd)

Classification

W

Remarks
The "newest" block of Lanczos
vectors.
Holds the residual norms of the
permanent vectors. Needed to up-
date the T recurrence.
Holds the current value of T for
each eigenvector.
Holds the previous value for T for
for each eigenvector. Note that
whenever an orthogonalization is
performed it is necessary to
orthogonalize two successive
blocks against the indicated
eigenvector. Rather than keep a
separate pointer the code sets
TAU = 0 and OTAU = 1 the first
time an orthogonalization is per-
formed. Since OTAU = 1 the TAU
at the next step will be bigger
than /£ so another orthogonali-
zation is performed. However the
fact that TAU = 0 is used to
suppress a third orthogonalization

by not setting OTAU = 1 again.

Name

ALPHA

BETA

BETA2

ALP

BET

RV

Type

real

real

real

real

real

real

real

Table 14.
Dimension Classification
MAXJ* W
(NBLOCK+1)
MAXJ W
MAXJ
MAXJ
NBLOCK*NBLOCK 17)
NBLOCK*NBLOCK W
MAXJ* W
(2*NBLOCK+1)

(Cont’d)

Remarks

Holds the band matrix.

Holds the diagonal elements of

T reduced to tridiagonal form
(by a call to BANDR)

Holds the off diagonal elements
of T reduced to tridiagonal form.
Holds the squares of the off
diagonal elements.

Holds the lower triangle of the
current diagonal block of the
band matrix T. The full square
of storage is used for ease of
addressing.

Holds the next off diagonal
block of T (which is actually
upper triangular)

Used as workspace for various
subroutines. Only BANDV re-
quires the full array. The first
column of RV contains the ortho-
gonality coefficients on exit

from SMVPC.

42

Table 14 (Cont'd)

Name Type Dimension Classification Remarks

RV6 real MAXJ W Used as workspace for various
subroutines. RV6 contains the
residual norms (3Ji) on exit from
SMVPC.

S real MAXJ*NVAL W Used to hold eigenvectors of T

on exit from BANDV. Also used
to manipulate the eigenvectors
of T to form the appropriate
linear combination needed in com-
puting the new starting vectors.
IND integer NVAL W Used in various EISPACK sub-
routines. Also used for pointers
in various sorting operations.
SMALL logical scalar SI SMALL = .TRUE, if the smallest
(leftmost) eigenvalues are desired.
If SMALL = .FALSE, then the matrix
T is negated.
RARITZ logical scalar S0 Set to .TRUE, if a Rayleigh-Ritz
procedure is to be done in SNPPLA.
This happens if a cluster of more
than NBLOCK eigenvalues are found.
DELTA real scalar SO Set to the smallest undesired
eigenvalue of T. That is the
eigenvalue closest to the desired

eigenvalues

43

Table 14. (Cont'd)

Name Type Dimension Classification Remarks

IERR integer scalar 0 An error completion code. Set to
-2 if too many calls to OP and -3
if an error flag in an EISPACK

subroutine is encountered.

7.2 INTERNAL VARIABLES

Table 15. Internal Variables

Name Type Remarks

ANORM real Current estimate of llAll . Computed as the infinity norm of
the tridiagonal matrix obtained by taking the 2-norm of the
blocks of T. This estimate is modified to reflect any user
supplied eigenvalues.

BNORM real Holds the 2-norm (largest singular value) of the previous
off diagonal block (see SINGL). Needed in the update form-
ula for the T-recurrence.

ENOUGH logical Used to keep track of whether enough desirable eigenvalues
have been found.

EPS real Set to an approximation to the relative machine precision
by the repeated halving technique.

EPS1 real Indicates the desired accuracy of the eigenvalues computed
by TRIDIB. When set to 0.0 the eigenvalues are found to

working accuracy.

44

Table 15. (Cont'd)
Name Type Remarks
EPSRT real Set to the square root of EPS. Used in assessing the ortho-

gonality coefficients to determine if a given eigenvector is

good. (The vector is good if ~ [ellall).
I integer Used as a DO loop variable in many places.
11 integer Used as an array subscript for manipulating vectors in

forming good Ritz vectors and starting vectors. Also used
as a temporary location for swapping integers.

IER integer Used as the error completion code variable in all calls to
EISPACK subroutines. If a nonzero completion code is en-
countered SNWLA is aborted with IERR = -3.

INDG integer Used as the index (in T) of the smallest eigenvalue of T

which has not been declared good.

IURAND integer Used as the seed for the pseudo-random number generator
URAND.
J integer Used as the current dimension of the matrix T. Thus J equals

NBLOCK times the number of Lanczos steps taken.

K integer Used as the secondary DO loop index (after I)
L integer Used as the tertiary DO loop index (after K). Also used as

the secondary array subscript or DO loop limit (after M) .

LB real Needed for EISPACK subroutine TRIDIB. LB is never referenced.
M integer Used as the primary array subscript or DO loop limit.
NG integer Used to count the number of good eigenpairs found at any

step. If this number is bigger than the number known pre-
viously (NGOOD) then all the good Ritz vectors are re-

computed

45

Table 15. (Cont'd)
Name Type Remarks
NGOOD integer The number of good Ritz pairs currently known. Just before

a restart, NGOOD is equal to the number of new eigenpairs
which will become permanent vectors when the algorithm
starts over.

NLEFT integer The number of eigenvalues remaining to be found (= NVAL -
NPERM) .

NSTART integer Set to the number of unacceptable vectors. This number is
then used to construct the appropriate linear combination
of these vectors for the new starting block if needed.

NTHETA integer Set to the number of eigenvalues of T which are to be com-
puted. This is usually NLEFT+l1 but may not be larger than
J/2 to prevent any confusion with converging eigenvalues at
the large end of the spectrum. If NTHETA=NLEFT+1, DELTA is
updated and then NTHETA is set to NLEFT.

NUMBER integer The actual number of vectors in VEC. (Equal to NPERM+NGOOD)

NV integer Set to MAXJ* (2*NBLOCK+1l). Used as a parameter in calls to BANDV.
PNORM real Set to the largest eigenvalue (in absolute value) of the

desired eigenvalues. Used instead of ANORM in evaluating

the accuracy of the desired eigenvalues. Thus NFIG decimal

digits of accuracy are obtained in the eigenvalues relative
to themselves rather than to ANORM.
RNORM real Set to the largest eigenvalue (in absolute value) of the

permanent eigenpairs. Used in updating PNORM.

Name

SINGL

SINGS

TEMP

TEST

THETA

THETG

TOLA

TOLG

TyPe

real

real

real

logical

real

real

real

real

46

Table 15. (Cont'd)

Remarks

Set to the 2-norm (largest singular value) of BET. Passed
on to BNORM. Used in the update formulas for the T-
recurrence.
Set to the smallest singular value of BET. Used in the up-
date formula for the T-recurrence.
Used as a temporary storage location.
Used as a flag in three places. TEST is .TRUE, if it is
necessary to reorthonormalize the current Lanczos block.
TEST is .TRUE, if a restart is necessary. Later TEST is
modified to indicate that a restart is necessary and start-
ing vectors must be computed.
Computed as the eigenvalue of T of index NLEFT. If THETA
is sufficiently accurate then all the desired eigenvalues
are computed and examined.
Computed as the eigenvalue of T of index INDG. If THETG is
found to be good all the desired eigenvalues are computed
and examined.
Set to UTOL*PNOEM (or RNORM). Used as the acceptance tol-
erance. An eigenpair (y,0) is acceptable if
min(pﬁf/(G—O),g::)<< TOLA , where g,. is the residual norm

Ji Ji Ji
of the Ritz pair (y,0).
Set to EPSRT*ANORM. Used to determine if an eigenpair is
good. An eigenpair is good if

0)., < TOLG
Ji

Name Type
UB real
UTOL real

47

Table 15. (Cont'd)

Remarks
where is the orthogonality coefficient of the eigenpair
Needed for the EISPACK subroutine TRIDIB. UB is never
referenced
Set to max (N*EPS,10** (-NFIG)) used as the relative accept-

ability tolerance.

.3 SEQUENCE BLOCKS

In reference to the listing of SNWLA given Appendix 2:

Sequence Numbers

10-1080

1090-1170

1180-1290

1300-1410

1420-1580

1590-1650

1660-1710

1720-3420

1770

1780-2010

Table 16. Sequence Blocks

Remarks
Initialize declarations and comments.
Initialize IURAND.
Initialize EPS.
Initialize other parameters.
Replace zero vectors in starting block by random
vectors.
Start the T-recurrence, if necessary.
Reset the Lanczos parameters. TEST is set to .TRUE.
to indicate that the starting block must be ortho-
normalized.
The Lanczos step.
Update J.

Selective orthogonalization.

Sequence Numbers
2020-2250
2290
2310-2320
2320-2540
2550-2680
2690-2860
2820%3000
3010-3070

3080-3280

3290-3420

3430-3540

3550-4210

3550-3660
3670-3740
3750-3760

3770-3870

3880-4030

48

Table 16. (Cont'd)

Remarks
Reorthonormalize the block and update BET.
The call to OP.
The call to IOVECT.
Computation of P2 = P2 - PO*BET - P1*ALP.
Local reotthogonajiz; tion.
Store ALP and BET in T.
Negate T if needed.
Shift the blocks and orthonormalize the newest one.
Compute the 2-norm of ALP and the largest and smal-
lest singular values of BET. Note that the EISPACK
version of SVD does not order the singular values.
Update the T-recurrence if needed.
On the first two steps only, don't examine any eigen-
values of T.
Compute and examine 2 eigenvalues of T to see if all
the desired eigenvalues should be examined.
Set some parameters.
Reduce T to tridiagonal form.
Check to see if a restart is needed.
Compute THETG and S the smallest nongood eigenpair
of T and the corresponding resi al norm and ortho-
gonality coefficient.
If NLEFT = 0 (check run) see if the check is suc-
cessful. A check run is successful if at least 6

steps have been taken and the residual norm interval

49

Table 16. (Cont'd)

Sequence Numbers Remarks
around THETG does not extend to the left of the
accuracy interval around the largest permanent value.
That is the eigenvalue of A closest to THETG is
greater than or equal to the largest permanent value
to within the desired accuracy. On the other hand
if THETG is smaller than the largest permanent value
then the largest permanent value is thrown away,
NLEFT is set to 1 and the Lanczos run continues as
a "normal" run.

4040-4070 If NLEFT ~ 0 then the orthogonality coefficient is
examined to see if the eigenpair is now good. If it
is than all the desired eigenpairs are examined.

4080-4210 THETA and S, the (NLEFT)— smallest eigenpair is com-
puted along with the corresponding residual norm and
orthogonality coefficient. (Except that no exami-
nation is made if NLEFT > J/2 since examining eigen-
values from the wrong end of the spectrum can lead
to spurious results.) If this eigenvalue has changed
from the corresponding eigenvalue computed at the
previous step by less than one tenth of the desired

accuracy, then all the desired eigenpairs are computed

and examined.

Sequence Numbers

4220-4680

4690-5130

5140-5510

5520-5800

5810-5890

50

Table 16. (Cont'd)

Remarks
This section computes min (NLEFT+1,J/2) eigenvalues
of T. If indicated NLEFT is updated. If NLEFT is
increased some permanent vectors are discarded,
all the good vectors are discarded (if any) and more
eigenvalues are computed. If possible DELTA is up-
dated. Then the corresponding residual norms and
orthogonality coefficients are computed.
This section examines the computed eigenpairs, first
to see whether all the computed eigenpairs are suf-
ficiently accurate and then to see if more good eigen-
pairs have been found. 1In either case it is necessary
to compute some Ritz vectors.
The previous section divided (using IND) the eigen-
vectors of T into two sets, namely those vectors
corresponding to Ritz vectors needed in their own
right and those needed only for constructing starting
vectors (or not at all). This section sorts the
eigenvectors of T so that the first set comes first.
If needed (TEST = .TRUE.) this section forms the
appropriate linear combinations of the second set of
vectors for forming starting vectors.
This stores the residual norms of the new permanent

vectors (if any) in RES for use in the T-recurrence.

51

Table 16 (Cont'd)

Sequence Numbers Remarks
5900-6290 This forms the Ritz vectors (including the starting
vectors) by sequentially recalling the Lanczos vectors.
6300-6430 This resets the T-recurrence if the algorithm is not

starting over.

6450-6720 This sorts the permanent vectors.
6730-6750 This updates NPERM, NLEFT, and RNORM.
6760-7150 This orthonormalizes the permanent vectors ordered

by increasing residual norm.

7160-7330 This section decides whether to start over or whether
to terminate.

7340-7480 This section sets RARITZ to .TRUE, if too large a

cluster of eigenvalues was found.

7480 Normal exit.
7490-7640 This sets various error conditions before exiting.
8. SNPPLA

SNPPLA post processes the eigenpairs computed by SNWLA. If needed a final
Rayleigh-Ritz procedure is performed on the eigenvectors. Then the Rayleigh
quotients and residual norms are computed. Finally the accuracy estimates are

computed

8.1 THE CALLING SEQUENCE
SUBROUTINE SNPPLA (OP,IOVECT,N,NPERM,NOP ,NMVAL,VAL,NMVEC,VEC, NBLOCK, H, P,

0, DELTA, SMALL,RARITZ, IERR).

Name

oP

IOVECT

NPERM

NOP

NMVAL

VAL

NMVEC

NBLOCK

Table 17.
Type Dimension
external -
external -

integer scalar
integer scalar

integer scalar

integer scalar

real NMVAL*4

integer scalar

real NMVEC*NPERM

integer scalar

real NPERM*NPEEM
real N*BLOCK
real N*BLOCK

52

Classification

SI

SI

SI

SI-SO

SI

SO

SI

SI-0

SI

The Calling Sequence

Remarks
Forms matrix vector products.
Needed only for Rayleigh-Ritz
procedure.
Dimension of the matrix.
The number of eigenvectors.
The cumulative number of calls
to OP.
The row dimension of VAL.
The eigenvalues and accuracy
estimates
The row dimension of VEC.
The eigenvectors, which are modi-
fied only if a Rayleigh-Ritz
procedure is computed.
The blocksize. Used to minimize
the number of calls to OP.
Holds the reduced matrix in the
Rayleigh-Ritz procedure.
Used for forming block matrix
vector products.
Used for forming block matrix

vector products

Name

DELTA

SMALL

RARITZ

IERR

Type

real

logical

logical

integer

Dimension

scalar

scalar

scalar

scalar

53

Table 17. (Cont’d)

Classification

SI-0

SI

SI

Remarks
Input as the eigenvalue of A
closest to the desired eigenvalues.
If SMALL is .FALSE. DELTA must be
negated to account for the fact
that SNWLA was implicitly using -A
as the matrix.
SMALL is .TRUE, if the leftmost
eigenvalues are desired.
RARITZ is .TRUE, if a Rayleigh-
Ritz procedure is needed.
The error indicator. Used here
only to indicate a failure of an

EISPACK subroutine (IMTQL2).

Note that the workspaces P and Q are needed to form block matrix vector

products since the array VEC has row dimension NMVEC instead of N and the sub-

routine OP assumes a row dimension of N.

8.2 INTERNAL VARIABLES

Name

IER

Type

integer

integer

Table 18.

Internal Variables

Remarks

Primary DO loop index.

pletion is almost impossible.

to -3 and exits.

Error completion code in a call to IMTQL2. A nonzero com-

If it occurs the code sets IERR

Name Type

J integer
K integer
L integer
M integer

TEMP real

54

Table 18. (Cont'd)

Remarks
Secondary DO loop index.
Tertiary DO loop index.
Array subscript.
DO loop limit.
Temporary storage. In the Rayleigh-Ritz procedure TEMP is
used to negate the matrix H when SMALL = .FALSE. This forces
IMTQL2 to return the eigenvectors sorted in the appropriate

order

8.3 SEQUENCE BLOCKS

In reference to the listing of SNPPLA given in Appendix 2

Sequence Numbers

10-200

210-770

780-910

920-1280

1290-1720

1730-1870

Table 19. Sequence Blocks

Remarks
Initial declarations and comments.
Construction of the reduced matrix H needed in the
Rayleigh-Ritz procedure. The initial eigenvectors
are stored by calls to IOVECT.
Spectral decomposition of H using EISPACK subroutines.
Formation of the Ritz vectors (improved eigenvectors)
as linear combinations of the original eigenvectors.
Computation of the Rayleigh quotient and residual norms
of the eigenvectors.

Computation of the accuracy estimates and exit.

55

9. INTERVAL TYPE PROBLEMS

In this chapter we discuss the differences between SNLASO, SNWLA, and
SNPPLA discussed earlier and SILASO, SIWIA, and SIPPLA which solve interval

type problems.

9.1 PROBLEM DEFINITION

For interval type problems the user specifies XL and XR the left and right
endpoints of the excluded interval and SILASO is supposed to find all the
eigenvalues of the given matrix A outside the excluded interval. Thus it is
necessary to examine eigenvalues at both ends of the spectrum of T. Furthermore
problems occur if an eigenvalue of A lies pathologically close to one of the
endpoints. For numerical reasons alone it is impossible to specify as sharp a
boundary as the variables XL and XR suggest. Instead it is necessary to intro-
duce a fuzzy region around each endpoint related to the desired accuracy in the
eigenvalues. An eigenvalue which equals XL to the desired accuracy should be
returned to the user even if computing it to working accuracy might disclose
that it actually lies inside the excluded interval.

However while the eigenvector is returned to the user, the eigenvalue is
explicitly set to the boundary so that all the returned eigenvalues do lie
outside the excluded interval. Any such eigenpairs are marked to indicate that
the returned eigenvalue is not the Rayleigh quotient of the eigenvector.

In the following sections we indicate the differences in the subroutines.

9.2 SILASO
9.2.1 The Calling Sequence
SUBROUTINE SILASO(OP,IOVECT,N,XL,XR,NFIG,NPERM NMVAL,VAL NMVEC MAXVEC,

VEC,NBLOCK ,MAXOP ,MAXJ ,WORK, IND, IERR) .

56

Table 20. The Calling Sequence

Name Type Dimension Classification Remarks
tiki Not needed by SILASO.
XL real scalar SI Left endpoint.
XR real scalar SI Right endpoint.
MAXVEC Integer scalar SI The column dimension of VEC. The

maximum number of Ritz vectors which

can be stored.

9.2.2 Internal Variables

Table 20. Internal Variables

Name Type Remarks
171z Replaced by DELTAL and DELTAR.
DELTAL real Returned from SIWLA as the excluded eigenvalue closest to

XL. Used in SIPPLA to compute the accuracy estimates.

DELTAR real Returned from SIWLA as the excluded eigenvalue closest to XR.
Used in SIPPLA to compute the accuracy estimates.

NP integer Set to NPERM and passed to SIPPLA. NP is used to dimension
arrays in SIPPLA. This legalizes changing the value of NPERM
which may be necessary in SIPPLA.

jGV Not used.

mtt Not used.

57

9.2.3 Other Changes
In examining user supplied eigenpairs, SILASO will abort (IERR = -4) if

a user supplied eigenvalue is inside the excluded interval.

9.3 SIWLA

There are two major differences between SIWLA and SNWLA. Since eigenvalues
at both ends of the spectrum of A are of interest, SIWLA must examine both ends
of the spectrum of T at each step. Also the termination criterion for SIWLA
is rather different than for SNWLA. SIWLA must continue until the most extreme
excluded eigenvalues have settled down enough to know that they are not going
to drift into the desired region. Thus the first eigenvalues computed at each
step are DELTAL and DELTAR, the most extreme excluded eigenvalues (of T). Only
if their residual norm intervals do not overlap the boundary are the desired
eigenvalues investigated to see if they are acceptable. Finally the most ex-
treme non good eigenvalues are examined to see if a new good Ritz vector must

be computed.

9.3.1Calling Sequence
SUBROUTINE SIWLA (OP,IOVECT,N,XL,XR,NFIG,NPERM, VAL NMVEC MAXVEC,VEC, NBLOCK,
MAXOP,MAXJ,NOP,PO,PI,P2,RES,TAU,OTAU, T .ALPHA,BETA,BETA2,ALP,BET,RV,RVs, S, IND,

RARITZ,DELTAL,DELTAR, IERR).

Table 21. The Calling Sequence

Name Type Dimension Classification Remarks

NMT Not needed.
MAXVEC integer scalar SI The column dimension of VEC.
tVtUl Not needed.

MttA Replaced by DELTAL and DELTAR.

Name

DELTAL

DELTAR

9.3.2

Name

DONE

tMUT

INDAL

INDAR

twt

INDGL

INDGR

titn

NUML

NUMR

tMU—-

tuu

58

Table 21. (Cont'd)
Type Dimension Classification Remarks
real scalar SO Smallest excluded eigenvalue.
real scalar SO Largest excluded eigenvalue.

Internal Variables

Table 22. Internal Variables

TyPe Remarks
real XL perturbed (to the right) by the desired accuracy. Thus
any eigenvalue to the right of AXR is known to be not wanted.
real XR perturbed (to the left) by the desired accuracy.
logical A flag set to .TRUE, when DELTAL and DELTAR have settled down
Replaced by DONE.
integer The index of DELTAL in T.
integer The index of DELTAR in T.
Replaced by INDGL and INDGR.
integer The index of THETGL in T.
integer The index of THETGR in T.
Not needed.
integer The number of eigenvalues of T less than AXL.
integer The number of eigenvalues of T greater than AXR.
Not needed.
Not needed.

Replaced by THETAL and THETAR.

59

Table 22. (Cont'd)
Name Type Remarks
THETAL real The largest desired eigenvalue of T less than AXL (of index
INDAL-1).
THETAG real The smallest desired eigenvalue of T greater than AXR (of

index INDAR+1).

tttti Replaced by THETGL and THETGR.

THETGL real The smallest non good eigenvalue (of index INDGL in T).

THETGR real The largest non good eigenvalue (of index INDGR in T).

TOLA real Set to UTOL*max (XR, -XL) and used as the acceptability
criterion.

9.3.3 Other Changes

The necessity of determining which side of the boundary an eigenvalue lies
leads to two additional IERR codes. If J = MAXJ is reached when no desired
eigenvalues are found but DELTAL or DELTAR has not settled down then IERR is
set to -5. If NOP = MAXOP occurs in the same situation then IERR is set to
-6. In either case the vectors corresponding to DELTAL and DELTAR are put in
the starting block (as they are anytime the algorithm starts over) so that
SILASO can be immediately recalled to continue working on the problem.

Furthermore, if more than MAXVEC eigenvalues are found it is necessary to
stop. All acceptable eigenvectors are computed and the rest are put in the
starting block. 100* (the number of surplus eigenvalues) is subtracted from

IERR to indicate this result.

60

9.4 SIPPLA

The major difference between SIPPLA and SNPPLA is that SIPPLA must examine
the eigenvalues to see if any of them lie inside the excluded interval. If an
eigenvalue's residual norm interval ([o* - + 3 1) lies entirely inside
the excluded interval, that eigenvalue is deleted (and the appropriate DELTA
is redefined). If the residual norm interval overlaps the boundary then three
changes are made. The eigenvalue is set equal to the boundary, the residual
norm is recomputed and made negative, and 10 is subtracted from IERR. If ten
or more such eigenvalues occur than IERR will be misleading since IERR ~ -100
usually indicates that too many eigenvalues where found but this is quite

unlikely.

9.4.1 Calling Sequence

SUBROUTINE SIPPLA(OP,IOVECT,N,6XL,XR,NP.NPERM,NOP,NMVAL, VAL NMVEC,VEC,NBLOCK

H,P,Q,DELTAL,DELTAR,RARITZ, IERR).

Table 23. The Calling Sequence

Name TyPe Dimension Classification Remarks

XL real scalar SI Left endpoint.

XR real scalar SI Right endpoint.

NP integer scalar SI Equal to NPERM. Used to dimension
arrays.

NPERM integer scalar SI-0 May change value.

tttn Replaced by DELTAL and DELTAR.

DELTAL real scalar SI-0 Smallest excluded eigenvalue.

Name

Type

DELTAR real

9.4.2

61

Table 23. (Cont'd)
Dimension Classification Remarks
scalar SI-0 Largest excluded eigenvalue.

Not needed.

Internal Variables

No changes.

[1]

[2]

(3]

[4]

(5]

[&]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

62

REFERENCES

Cullum and W. E. Donath, "A Block Generalization of the Symmetric S-Step
Lanczos Algorithm," Report #RC 4845 (#21570), IBM Thomas J. Watson
Research Center, Yorktown Heights, New York, (1974).

J. Dongarra, J. R. Bunch, C. B. Holer, and G. W. Stewart, LinpcLck U-iCAA
Gtu.de, s1am, 1979.

E. Forsythe, M. A. Malcolm, and C. B. Moler, CompateA. Muthodi faofl
MathmcutLcaZ ComputationA, Series in Automatic Computing, Prentice-
Hall, 1977.

S. Garbow, J. M. Dongarra, and C. B. Moler, ModTttX EujewAt/A-tem ROUULLYIZA -
E%iipaak GLU.de ExtenAi-OVU,, Lecture Notes in Computer Science 51,
Springer-Verlag, 1977.

L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, "Basic Linear
Algebra Subprograms for FORTRAN Usage," to appear in JOMS.

Lewis, "Algorithms for Sparse Matrix Eigenvalue Problems," Technical
Report STAN-CS-77-595, Computer Science Department, Stanford
University (1977).

C. Paige, "The Computation of Eigenvalues and Eigenvectors of Very
Large Sparse Matrices," Ph.D. Thesis, University of London (1971).

C. Paige, "Computational Variants of the Lanczos Method for the Eigen-
problem," J. Znit. Mcutk. kppLLeA. 10, 373-81, 1972.

N. Parlett and D. S. Scott, "The Lanczos Algorithm with Selective
Orthogonalization," Math, off Comp. 33, 217-38, 1979.

Ruhe, "Implementation Aspects of Band Lanczos Algorithms for Compu-
tation of Eigenvalues of Large Sparse Symmetric Matrices," Math.Comp.
33, 680-7, 1979.

G. Ryder and A. D. Hall, "PFORT Verifier," Computing Science Technical
Report #12, Bell Labs, Murray-Hill, NJ, (1975).

S. Scott, "Analysis of the Symmetric Lanczos Process," Ph.D. Thesis,
ERL Technical Report # M78/40, June 1978, Berkeley, CA 94720.

T. Smith et al.. Matrix. EtgenAi/Atem Routine!) - Ecipack Guide, Lecture
Notes in Computer Science 6, 2nd edition, Springer-Verlag, 1976.

Underwood, "An Iterative Block Lanczos Method for the Solution of Large
Sparse Symmetric Eigenproblems," Ph.D. Thesis, Stanford University,
STAN-CS-75-496 (1975).

APPENDIX 1

User guides for SNLASO/DNLASO

and SILASO/DILASO

64

SNLASO/DNLASO

A FORTRAN IV subroutine for determining a few eigenvalues and
eigenvectors at one end of the spectrum of a large sparse sym-
metric matrix. SNLASO is in single precision and DNLASO is in
double precision. This documentation explicitly describes
SNLASO. For DNLASO all subroutine' and function names start with
D instead of S (except SVD) and all floating point variables are
double precision.

David S. Scott
Union Carbide Corporation, Nuclear Division
Oak Ridge, TN 37830
July, 1979

1. Purpose

The FORTRAN IV subroutine SNLASO determines a few eigenvalues
and eigenvectors at one end of the spectrum of a large sparse
symmetric matrix, hereafter called A. SNLASO uses the block
Lanczos algorithm with selective orthogonalization to compute
Rayleigh-Ritz approximations to eigenpairs of A.

2. Usage
A. Calling sequence.
The subroutine statement is
SUBROUTINE SNLASO (OP, IOVECT, N, NVAL, NFIG, NPERM,
NMVAL, VAL, NMVEC, VEC, NBLOCK, MAXOP, MAXJ, WORK,
IERR)
On input:

OoP specifies a user supplied subroutine for
entering information about the matrix A
with calling sequence OP(N,M,P,Q). See
section B. for further information.

IOVECT specifies a user supplied subroutine for
storing and recalling vectors with calling
sequence IOVECT (N,M,Q,J,K). See section

B. for further information.

N specifies the dimension of the matrix.

IND,

NFIG

NPERM

NMVAL

VAL

NMVEC

NBLOCK

MAXOP

MAXJ

65

specifies which eigenvalues are desired,
abs (NVAL) eigenvalues are to be found.
If NVAL < 0 the algebraically smallest
(leftmost) are found while if NVAL > 0
the algebraically largest (rightmost)
are found. NVAL must not be zero.

specifies the number of decimal digits of
accuracy desired in the eigenvalues.

is an integer variable specifying the
number of eigenpairs presupplied by the
user. In most cases NPERM will be zero.
See section H. for information on using
NPERM > 0. NPERM must not be less than
zero

specifies the row dimension of the real
array VAL. NMVAL must be greater than or
equal to abs (NVAL).

is a two dimensional real array with NMVAL
rows and at least four columns. If NPERM > 0
on input, VAL must contain certain informa-

tion. See section H. for details.

specifies the row dimension of the real
array VEC. NMVEC must be greater than or
equal to N.

is a two dimensional real array with NMVEC rows
and at least abs (NVAL) columns. If NPERM > 0
on input VEC must contain certain information.

See section H. for details.

specifies the number of vectors in each Lanczos
block. See section F. for guidelines in choos-
ing a value for NBLOCK. NBLOCK must be greater
than zero and less than or equal to MAXJ/s.

specifies an upper bound on the number of calls
to the subroutine OP. SNLASO terminates when
this maximum is reached. See section G. for
guidelines in choosing a value for MAXOP.

specifies an indication of the available storage
see WORK in this section and IOVECT in section B
The larger the value of MAXJ the faster the con-
vergence rate of the algorithm. However, there
is no advantage in having MAXJ > MAXOP*NBLOCK.
MAXJ must not be less than e* NBLOCK.

WORK

IND

IERR
On output:
NPERM

VAL

WORK

IND (1)

IERR

66

is a one dimensional real array at least as
large as

NBLOCK* (3*N + 2*NBLOCK) + MAXJ* (3*NBLOCK +
abs (NVAL) + &) + 3*abs(NVAL)

used for workspace. The first N*BLOCK elements
of work must contain the starting vectors for
the algorithm. See section E. for details.

is an integer array of dimension at least
abs (NVAL),
used for workspace.

is an integer variable.

is the number of eigenpairs now known.

contains information about the eigenpairs.
The first column of VAL contains the eigen-
values, ordered from the most extreme one
inward. The second, third, and fourth
columns of VAL contain information on the
accuracy of the eigenvalues and eigenvectors.
See section D. for details.

contains the corresponding eigenvectors.

if IERR / 0, the first N*BLOCK elements
of WORK will contain vectors for restarting
the algorithm. See section E. for details.

contains the actual number of calls to the
subroutine OP. In some circumstances this
may be slightly larger than MAXOP

is an error completion code. The normal
completion code is zero. See section C.
for the interpretation of non-zero comple-
tion codes.

B. User supplied subroutines.

The two user supplied subroutines must be declared
EXTERNAL in the calling program and must conform as

follows

OP (N,M,P,Q). P and Q are N x M real arrays. Q
should be returned as AP where A represents the
matrix whose eigenpairs are to be determined.

67

M will never be larger than NBLOCK but it may be
smaller. This subroutine is the only way in which
the matrix enters the calculation, so the user is
free to take advantage of any sparsity structure
in the matrix. The user should adequately test
the subroutine OP because SNLASO has no way of de-
tecting errors made in OP.

IOVECT (N,M,Q,J,K). Q is an N x M real array. M will
never be larger than NBLOCK but it may be smaller. IOVECT
is used to store Lanczos vectors as they are computed and
to periodically recall all the currently stored Lanczos
vectors. If K= 0 then the M columns of Q should be stored
as the (J - M + 1) _th through the J th Lanczos vectors.

If K = 1 then the columns of Q should be returned as the
(- M+ 1) th through the J _th Lanczos vectors which were
previously stored.

The Lanczos vectors are computed sequentially. They are
stored by calls to IOVECT with K = 0 and increasing values
of J up to some internally derived value J = I which sig-
nals a pause. These vectors are then recalled by calls

to IOVECT with K = 1 and the same sequence of J values.
The first J value of any sequence is equal to M. After the
pause more Lanczos vectors are computed and these are
stored by calls to IOVECT with K = 0 and J values greater
than I until the next pause at which time all the Lanczos
vectors currently stored are recalled with calls to IOVECT
with K= 1 and J = M,

After any pause the algorithm may discard the current
Lanczos vectors and start a new sequence of Lanczos

vectors by a call to IOVECT with K =0 and J = M. At
subsequent pauses only the current sequence of Lanczos
vectors is recalled. In solving a problem SNLASO may pause
many times and discard the previous Lanczos vectors

several times before converging to the final solution.

The largest value to J which can appear in a call to IOVECT
is J = MAXJ.

We give two examples for IOVECT. The first example requires
that logical unit 20 be assigned to a secondary storage
medium.

SUBROUTINE IOVECT (N,M,Q,J,K)

INTEGER N,M,J,K,I,L

DIMENSION Q(N,M)

IF (J.EQ.M) Rewind 20

IF (K.EQ.O0) Write (20) ((Q(I,Ln), I = 1,N), L = 1,M)
IF (K.EQ.l) Read (20) ((Q(I,L), I = 1,N), L = 1,M)
RETURN

END

The Lanczos vectors can also be kept in fast store. In this
example we assume that N < 100 and MAXJ < 50.

68

SUBROUTINE IOVECT (N,M,Q,J,K)
INTEGER N,M,J,K,I,L,L1
DIMENSION Q(N,M)
COMMON QVEC (100,50)
IF (K. EQ. 1) GO TO 30
DO 20 L = 1,M
LI =J -M+ L
DO 10 I = 1,N
QVEC (I,LI) = Q(I,L)
10 CONTINUE
20 CONTINUE
RETURN
30 DO 50 L. = 1, M

LI =J -M+ L
DO 40 I =1, N
Q@ (I,L) = QVEC (I, LI)
40 CONTINUE
50 CONTINUE
RETURN
END
C. ERROR completion codes.
IERR = 0 indicates a normal completion. abs (NVAL) eigenpairs
have been determined. See section D. for the information returned.

IERR > 0 and IERR < 1024 indicates that some inconsistency in the
calling parameters was discovered and no computation was performed.

1-bit is set if N < 6*NBLOCK
2-bit is set if NFIG < 0
4-bit is set if NMVEC < N
g-bit is set if NPERM < 0
16-bit is set if MAXJ < 6*NBLOCK
32-bit is set if abs (NVAL) < max (1,NPERM)
64-bit is set if abs(NVAL) > NMVAL
128-bit is set if abs(NVAL) > MAXOP
256-bit is set if abs(NVAL) > MAXJ/2
512-bit is set if NBLOCK < 1

Thus IERR can be decoded to determine the errors. For example, IERR = o¢s
indicates both NMVEC < N and abs(NVAL) > NMVAL. IERR may take on any value
between 1 and 1023 indicating all combinations of the above conditions.

IERR =-1 can occur only if NPERM > 0 on input. It indicates that
either some user supplied eigenvector was zero or that significant
cancellation occured when the user supplied vectors were orthogonal-
ized. Some modification of the user supplied eigenvectors will have
occurred but no other computation will have been done.

69

IERR = -2 indicates that MAXOP calls to the subroutine OP occurred
without finding the desired eigenvalues. Partial information is
returned in this case, see section G. When IERR =-2, the first
N*NBLOCK elements of work contain the best vectors for restart-
ing the algorithm. Thus SNLASO may be immediately recalled to
continue working on the problem

IERR = -3 indicates a non-zero error completion code was encountered
after a call to an EISPACK subroutine. EISPACK is a certified sub-
routine package. Errors are due to improper inputs. The follow-
ing is a list of possible causes for an IERR = -3 completion:

1. Improper calling sequence for SNLASO.

2. Insufficient storage in the array WORK.

3. Mixture of single and double precision.

4. Improper version of EISPACK for the machine used.

IERR = -8 indicates that disastrous loss of orthogonality occurred.
Usually due to errors in the user supplied subroutines OP or IOVECT.

Information returned when IERR = 0.

IERR = 0 indicates that the desired eigenpairs have been found. The
eigenvalues are in the first column of VAL. If NVAL < 0 the eigen-
values are in ascending order (smallest at the top) while if NVAL > 0
the eigenvalues are in descending order. The corresponding orthonormal
eigenvectors are in the first abs(NVAL) columns of VEC. The second
column of VAL contains the residual norms (Fl1Ay~-y~ 011 for the

eigenvalue 0' and its associated eigenvector y.) which are bounds on
the accuracy of the eigenvalues.

In most cases the residual norm is a gross underbound on the accuracy

of an eigenvalue. To obtain a more realistic estimate, the program
remembers o6, its best estimate of the eigenvalue of the matrix which
is closest to the desired eigenvalues. The third column of VAL is

set to p?/abs(0”-6) which is a much more realistic estimate of

accuracy of the eigenvalues. The fourth column of VAL contains
p~/abs(0”*-6) which estimates the accuracy of the eigenvectors.

If the user has supplied some eigenpairs of the matrix, it is possible
that some of these eigenpairs have been discarded in favor of eigen-
pairs computed by the algorithm. (See section H. for additional
information.)

Choosing the starting vectors.

SLASO requires NBLOCK starting vectors to be stored in the first
N*NBLOCK elements of the array WORK. Zero vectors are replaced
by randomly chosen vectors so that a set of random starting vectors
may be selected by simply initializing the first N*NBLOCK elements

of WORK to zero. However, convergence is enhanced if the starting
vectors are chosen to have large components in the directions of
the desired eigenvectors. Therefore, if the user knows approximat-

ions to the desired eigenvectors he should choose his starting
vectors as linear combinations of these approximations.

G.

70

If some of the desired eigenpairs are already known to sufficient
accuracy, it is possible to avoid having SNLASO recompute these
eigenpairs. See section H. for details.

Choosing a value for NBLOCK.

NBLOCK specifies the number of vectors in each block of Lanczos
vectors. Two factors may favor a large value for NBLOCK. The
convergence of the algorithm is faster if NBLOCK is larger than

the largest multiplicity of eigenvalues among the desired eigen-
values. For instance if a desired eigenvalue has multiplicity

two, then NBLOCK equal to three or more is best. Even more import-
ant in some cases, if the matrix is stored on disk and brought in

a slice at a time to form the matrix vector product then a large
value of NBLOCK will lower the number of calls to OP and hence

the number of disk accesses. On the other hand the number of vector
inner products needed for each Lanczos step is a quadratic function
of NBLOCK. Furthermore, the convergence of the algorithm is de-
graded if NBLOCK > t/MAXJ. In conclusion if the matrix multiply is
inexpensive a small value of NBLOCK (2 or 3) is best while if the
matrix multiply is expensive larger values of NBLOCK are to be pre-
ferred. NBLOCK = 1 is recommended only if abs(NVAL) = 1 as well.

Choosing a value for MAXOP

SNLASO is an iterative procedure. The user may limit the effort by
SNLASO on a given problem by choosing a value for MAXOP. If more

than MAXOP calls to the subroutine OP are needed to solve the given
problem, then SNLASO will terminate at that point and set IERR = -2.

If cost is not a factor and the subroutine OP is known to be reliable
MAXOP should be set to N/NBLOCK. Choosing MAXOP much less than

abs (NVAL) /N/NBLOCK and repeatedly recalling SNLASO will delay con-
vergence of the algorithm. Setting MAXOP < abs(NVAL) is not allowed
while setting MAXOP < MAXJ/NBLOCK will waste the storage indicated
by MAXJ.

Setting NPERM > 0.

SNLASO allows known eigenpairs to be input directly so that they
need not be recomputed. The first column of VAL must contain the
eigenvalues (in any order) and the second column of VAL must contain
the residual norms (I Ay”*-y~o0J|, for the eigenpair 9%7%) + The co-

rect order of magnitude is sufficient. Columns 3 and 4 of VAL are
arbitrary. The first NPERM columns of VEC must contain the eigen-
vectors (which will be orthonormalized by SNLASO). The eigenvectors
associated with VAL(I,l1) must be in the I th column of VEC.

71

The user supplied eigenvalues are counted toward the number

of desired eigenpairs and so NPERM must be less than or equal

to abs (NVAL). If in the course of the computation it appears
that a user supplied eigenpair is not one of the desired eigen-
pairs, it will be discarded. In particular if NPERM = abs (NVAL),
the algorithm will either confirm that the supplied eigenpairs
are indeed the desired eigenpairs or it will discard one or more
in favor of newly computed eigenpairs.

Applicability and Restrictions

SNLASO is designed to find a few extreme eigenpairs of a large sparse
symmetric matrix. For small dense matrices the subroutines provided
in EISPACK are to be preferred. It is not necessary for the matrix
to be explicitly represented. It is only necessary to provide a sub-
routine OP to compute matrix-vector products. For example, consider
the generalized eigenvalue problem (A - AM)x = 0 where M is positive

T —1 -T
definite and can be factored as LL . The matrix L AL can be implic-

itly coded in OP as a triangular solve, a matrix multiply, and

another triangular solve. Thus a generalized eigenproblem can
be reduced to a standard eigenproblem without the cost of explic-
-T

itly forming L AL More complex operators can also be handled

efficiently

SNLASO calls a number of subsidiary functions and subroutines,
namely:

SNWLA which implements the block Lanczos algorithm with
selective orthogonalization

SNPPLA which post processes the output of SNWLA.

SMVPC which computes residual norms and orthogonality
coefficients

SORTQR which orthonormalizeS a block of vectors.
SVZERO which zeroes a given vector.

URAND, a FORTRAN IV random number generator given in
Forsythe, Malcolm, and Moler [&].

BANDR, BANDV, IMTQL1l, IMTQL2, SVD, TRED1l, TRED2, and TRIDIB,
which are EISPACK Subroutines ([3], [4]).

SAXPY, SCOPY, SDOT, SNRM2, SSCAL and SSWAP which are subset of
the BLAS (Basic Linear Algebra Subprograms) written by Lawson,
et. al [7] and modified by Dongarra, et. al [8] for use in
LINPACK. If the BLAS are available in assembly language they
should be used in place of the FORTRAN IV source code provided

The user must not use any of the above names in his driver program.

4%

72

Discussion of method and algorithm.

The Lanczos algorithm is an efficient scheme for computing a

series of vectors q , 9 , ... q. which form an orthonormal
i 2 1

basis for the Krylov subspace, span (9@ , &q ,..., &' *q).
. 1 :

At each step of the algorithm the Krylov subspace grows

larger and one more Lanczos vector is added to the list. The
Lanczos algorithm can be interrupted at any step and the
Rayleigh-Ritz approximations to eigenpairs of A can be derived
from the Krylov subspace quite easily. Thus the algorithm need
only continue until the desired approximations a sufficiently
accurate

The block Lanczos algorithm (as described in detail by Underwood
[5]) replaces each vector in the simple Lanczos algorithm by an
orthonormal block of vectors. Block Lanczos has theoretical
advantages over simple Lanczos with respect to finding multiple
eigenvalues and has advantages in efficiency if the cost of
forming a matrix-vector product is high.

Unfortunately finite precision arithmetic causes the vectors com-
puted by the Lanczos algorithm (both simple and block) to lose
orthogonality and approach linear dependence. To maintain robust
independence among the Lanczos vectors, SNLASO augments the
algorithm with selective orthogonalization which causes some of
the Lanczos vectors to be orthogonalized against a few selected
Ritz vectors, as described in [1] and [2],

The algorithm is terminated when the desired Ritz wvalues are suffic-
iently accurate. If necessary, SNLASO then makes another Lanczos

run to test for undisclosed multiplicities. Finally in some cases,
SNLASO performs a Rayleigh-Ritz procedure on the determined eigenvalues
to resolve any clusters.

73

5. References

[1] B. N. Parlett and D. S. Scott, "The Lanczos Algorithm with
Selective Orthogonalization," Math, ofi comp. 33, 217-238, 1979.

[2] D. S. Scott, "Analysis of the Symmetric Lanczos Process,"
Ph.D. Thesis, ERL technical report No. M78/40, June 1978,
Electronics Research Lab, University of California,
Berkeley, CA 94720

[3] B. T. Smith et al., Matrix Eigensystem Routines - Eispaok
Guide, Lecture Notes in Computer Science &, 2nd edition,
Springer-Verlag, 1976.

[4] B. S. Garbow, J. M. Dongarra, and C. B. Moler, Matrix
Eigensystem Routines - Eispaok Guide Extensions, Lecture
Notes in Computer Science 51, Springer-Verlag, 1977.

[5] R. Underwood, "An Iterative Block Lanczos Method for the
Solution of Large Sparse Symmetric Eigenproblems," Ph. D.
Thesis, Stanford University, STAN-CS-75-496 (1975).

[6] G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer
Methods for Mathematical Computations, Series in Automatic
Computing, Prentice-Hall.

[71 C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh,
"Basic Linear Algebra Subprograms for FORTRAN Usage," to
appear in TOMS.

[g] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart,
Unpack UseAA' Gutdc, SIAM, 1979.

74

SILASO/DILASO

A FORTRAN IV subroutine for determining all the eigenvalues and eigen-
vectors of a large sparse symmetric matrix outside a user defined
excluded interval. SILASO is in single precision and DILASO is in
double precision. This documentation explicitly describes SILASO. For
DILASO all subroutine and function names start with D instead of S
(except SVD) and all floating point variables are double precision.

David S. Scott
Union Carbide Corporation, Nuclear Division
Oak Ridge, TN 37830
July, 1979

1. Purpose

The FORTRAN IV subroutine SILASO determines all the eigenvalues
and eigenvectors of a large sparse symmetric matrix, hereafter
called A, outside a user defined excluded interval. SILASO

uses the block Lanczos algorithm with selective orthogonalization
to compute Rayleigh-Ritz approximations to the eigenpairs of A.

2. Usage
A. Calling sequence.
The subroutine statement is

SUBROUTINE SILASO (OP, IOVECT, N, XL, XR, NFIG, NPERM,
NMVAL, VAL, NMVEC, MAXVEC, VEC, NBLOCK, MAXOP, MAXJ,
WORK, IND, IERR)

On input:

OoP specifies a user supplied subroutine for
entering information about the matrix A
with calling sequence OP(N,M,P,Q). See
section B. for further information.

IOVECT specifies a user supplied subroutine for
storing and recalling vectors with calling
sequence IOVECT (N,M,Q,J,K). See section
B. for further information.

N specifies the dimension of the matrix.

XL specifies the left endpoint of the excluded
interval

75

XR specifies the right endpoint of the excluded
interval
NFIG specifies the number of decimal digits of

accuracy desired in the eigenvalues.

NPERM is an integer variable specifying the
number of eigenpairs presupplied by the
user. In most cases NPERM will be zero.

See section H. for information on using
NPERM > 0. NPERM must not be less than
zero.

NMVAL specifies the row dimension of the real
array VAL. NMVAL must be greater than or
equal to MAXVEC,

VAL is a two dimensional real array with NMVAL
rows and at least four columns. If NPERM > 0
on input, VAL must contain certain informa-

tion. See section H. for details.

NMVEC specifies the row dimension of the real
array VEC. NMVEC must be greater than or
equal to N.

MAXVEC specifies the maximum number of eigenpairs

which can be determined. MAXVEC must not
exceed the column dimension of the array VEC.

VEC is a two dimensional real array with NMVEC rows
and at least MAXVEC columns. If NPERM > 0
on input VEC must contain certain information.
See section H. for details.

NBLOCK specifies the number of vectors in each Lanczos
block. See section F. for guidelines in
choosing a value for NBLOCK. NBLOCK must be
greater than zero and less than or equal to
MAXJ/ s,

MAXOP specifies an upper bound on the number of calls
to the subroutine OP. SILASO terminates when
this maximum is reached. See section G. for
guidelines in choosing a value for MAXOP.

76

MAXJ specifies an indication of the available stor-
age, see WORK in this section and IOVECT in
section B. The larger the value of MAXJ the
faster the convergence rate of the algorithm.
However, there is no advantage in having
MAXJ > MAXOP*NBLOCK. MAXJ must not be less
than &* NBLOCK.

WORK is a one dimensional real array at least as
large as

NBLOCK* (3*N + 2*NBLOCK) + MAXJ* (3*NBLOCK +
MAXVEC + &) + 3*MAXVEC)

used for workspace. The first N*BLOCK ele-
ments of work must contain the starting vectors

for the algorithm. See section E. for details.
IND is an integer array of dimension at least
MAXVEC |,

used for workspace.

IERR is an integer variable.

On output:
NPERM is the number of eigenpairs now known.
VAL contains information about the eigenpairs.

The first column of VAL contains the eigen-
values, ordered from the leftmost to the
right. The second, third, and fourth
columns of VAL contain information on the
accuracy of the eigenvalues and eigenvectors.
See section D. for details.

VEC contains the corresponding eigenvectors.

WORK if IERR ~ 0, the first N*BLOCK elements of
WORK will contain vectors for restarting
the algorithm. See section E. for details.

IND (1) contains the actual number of calls to the
subroutine OP. In some circumstances this
may be slightly larger than MAXOP.

IERR is an error completion code. The normal com-
pletion code is zero. See section C. for the
interpretation of non-zero completion codes.

71

User supplied subroutines.

The two user supplied subroutines must be declared
EXTERNAL in the calling program and must conform as
follows

OP (N,M,P,Q). P and Q are N x M real arrays. Q should
be returned as AP where A represents the matrix whose
eigenpairs are to be determined. M will never be larger
than NBLOCK but it may be smaller. This subroutine is
the only way in which the matrix enters the calculation,
so the user is free to take advantage of any sparsity
structure in the matrix. The user should adequately
test the subroutine OP because SILASO has no way of de-
tecting errors made in OP.

IOVECT (N,M,Q,J,K). Q is an N x M real array. M will
never be larger than NBLOCK but it may be smaller IOVECT
is used to store Lanczos vectors as they are computed and
to periodically recall all the currently stored Lanczos
vectors. If K= 0 then the M columns of Q should be stored
as the (J - M+ 1) th through the J th Lanczos vectors
which were previously stored.

The Lanczos vectors are computed sequentially. They are
stored by calls to IOVECT with K = 0 and increasing values
of J up to some internally derived value J = I which sig-
nals a pause. These vectors are then recalled by calls

to IOVECT with K = 1 and the same sequence of J values.
The first J value of any sequence is equal to M. After the
pause more Lanczos vectors are computed and these are
stored by calls to IOVECT with K = 0 and J values greater
than I until the next pause at which time all the Lanczos
vectors currently stored are recalled with calls to IOVECT
with K =1 and J = M,

After any pause the algorithm may discard the current
Lanczos vectors and start a new sequence of Lanczos
vectors by a call to IOVECT with K= 0 and J = M. At
subsequent pauses only the current sequence of Lanczos
vectors is recalled. In solving a problem SILASO may
pause many times and discard the previous Lanczos vectors
several times before convergint to the final solution.

The largest value to J which can appear in a call to IOVECT
is J - MAXJ.

We give two examples for IOVECT. The first example
requires that logical unit 20 be assigned to a secondary
storage medium.

20

30

78

SUBROUTINE IOVECT (N,M,Q,J,K)

INTEGER N,M,J,K,I,L

DIMENSION Q(N,M)

IF (J.EQ.M) REWIND 20

IF (K.EQ.0) WRITE (20) ((Q(I,L), I = 1,N), L = 1,M)
IF (K.EQ.l) READ (20) ((Q(I,L), I = 1,N), L = 1,M)
RETURN

END

The Lanczos vectors can also be kept in fast store. In
this example we assume that N ~ 100 and MAXJ © 50.

SUBROUTINE IOVECT (N,M,Q,J,K)
INTEGER N,M,J,K,I,L,L1
DIMENSION Q(N,M)
COMMON QVEC (100,50)
IF (K.EQ.1l) GO TO 30
DO 20 L = 1,M

II =J - M+ L

DO 10 I = 1,N

QVEC (I,LI) = Q(I,L)
CONTINUE

CONTINUE

RETURN

DO 50 L = 1,M

II =J - M+ L

DO 40 I = 1,N

Q(I,L) = QVEC (I,LI)

40 CONTINUE
50 CONTINUE

RETURN
END

Error completion codes.

IERR = 0 indicates a normal completion. NPERM eigenpairs
have been determined. See section D. for the information
returned

IERR > 0 and IERR < 1024 indicates that some inconsistency
in the calling parameters was discovered and no computation
was performed.

1-bit is set if N < 6* NBLOCK

2-bit is set if NFIG < 0

4-bit is set if NMVEC < N

s-bit is set if NPERM < 0
16-bit is set if MAXJ < 6*NBLOCK
32-bit is set if MAXVEC < NPERM
64-bit is set if MAXVEC > NMVAL
128-bit is set if MAXVEC > MAXOP
256-bit is set if XL > XR
512-bit is set if NBLOCK < 1

79

Thus IERR can be decoded to determine the errors. For

example, IERR = 68 indicates both NMVEC < N and MAXVEC > NMVAL.
IERR may take on any value between 1 and 1023 indicating all
combinations of the above conditions.

IERR = -1 can occur only if NPERM > 0 on input. It indi-
cates that either some user supplied eigenvector was zero
or that significant cancellation occured when the user sup-
plied vectors were orthogonalized. Some modification of
the user supplied eigenvectors may have occurred but no
other computation will have been done.

IERR = -2 indicates that MAXOP calls to the subroutine OP

occurred without finding the desired eigenvalues. Partial
information is returned in this case, see section G. When
IERR = -2, the first N*BLOCK elements of work contain the

best vectors for restarting the algorithm. Thus SILASO
may be immediately recalled to continue working on the
problem.

IERR = -3 indicates a non-zero error completion code was
encountered after a call to an EISPACK subroutine. EISPACK
is a certified subroutine package. Errors are due to im-
proper inputs. The following is a list of possible causes
for an IERR = -3 completion:

1. Improper calling sequence for SILASO.

2. Insufficient storage in the array WORK.

3. Mixture of single and double precision.

4. Improper version of EISPACK for the machine used.
IERR = -4 can occur only if NPERM > 0 on input. It indi-
cates that a user supplied eigenvalue lies inside the
excluded interval. Some modification of the user supplied

vectors may have occurred but no other computation will
have been done.

IERR = -5 and IERR = -¢ indicate that the program termi-
ated without full assurance that all the desired eigen-
values had been located due to an eigenvalue near the
boundary of the excluded interval which had not converged
to sufficient accuracy. IERR = -5 if J = MAXJ while

IERR = -6 if MAXOP calls to the subroutine OP occurred.
To obtain further assurance that all the eigenvalues have
been found it is possible to recall SILASO to continue
working on the problem.

IERR = -7 indicates that more than 4*MAXVEC eigenvalues
are found. The program terminates without computing any
new eigenpairs,

IERR = -8 indicates that disastrous loss of orthogonality
occurred. Usually due to errors in the user supplied sub-
routines OP or IOVECT.

80

IERR -10 indicates that some of the eigenvalues found
by the program lie inside the excluded interval but have
error bounds which overlap the boundary. Such eigenvalues

are explicitly set equal to the boundary and marked as

described in section D. The ten's digit of IERR indicates
the number of such eigenvalues while the units digit indi-
cates the same result as single digit IERR codes described

above

IERR ~ - 100 indicates that more than MAXVEC (but not more
than 4*MAXVEC) eigenvalues were found. The hundreds digit
of IERR gives the number of extra eigenvalues found. Any
eigenpairs returned by the program are correct and after
raising the value of MAXVEC it is possible to immediately
recall SILASO to keep working on the problem. Of course
the extra storage space indicated by the larger value of
MAXVEC must be available. The tens and units digits of the
IERR code are as described above.

Information returned when IERR = 0.

IERR = 0 indicates that NPERM desired eigenpairs have been
found. The eigenvalues are in the first column of VAL.

The eigenvalues are in ascending order (smallest at the
top). The corresponding orthonormal eigenvectors are in
the first NPERM columns of VEC, The second column of VAL
contains the residual norms pi((==ZI.lAy.l - ygEE! for the

eigenvalue 0”* and its associated eigenvector y") which are

bounds on the accuracy of the eigenvalues.

In most cases the residual norm is a gross underbound on
the accuracy of an eigenvalue. To obtain a more realistic
estimate, the program remembers 6y, and g the leftmost and

rightmost excluded eigenvalue of A. The third column of

2
VAL is set to PI/MIN(Oi -8 G - Oi) which is a much

L' 'R
more realistic estimate of the accuracy of the eigenvalues.
The fourth column of VAL contains pi/MIN(O.i - dL> 63 ~ 99

which estimates the accuracy of the eigenvectors.

If IERR < 10, then the eigenvalues which have been moved
are marked by setting the residual norm negative.

Choosing the starting vectors.
SILASO requires NBLOCK starting vectors to be stored in the

first N*BLOCK elements of the array WORK. Zero vectors are
replaced by randomly chosen vectors so that a set of random

81

starting vectors may be selected by simply initializing
the first N*BLOCK elements of WORK to zero. However,
convergence is enhanced if the starting vectors are chosen
to have large components in the directions of the desired
eigenvectors. Therefore, if the user knows approximations
to the desired eigenvectors he should choose his starting
vectors as linear combinations of these approximations.

If some of the desired eigenpairs are already known to
sufficient accuracy, it is possible to avoid having SILASO
recompute these eigenpairs. See section H. for details.

Choosing a value for NBLOCK.

NBLOCK specifies the number of vectors in each block of
Lanczos vectors. Two factors may favor a large value for
NBLOCK. The convergence of the algorithm is faster if NBLOCK
is larger than the largest multiplicity of eigenvalues among
the desired eigenvalues. For instance if a desired eigen-
value has multiplicity two, then NBLOCK equal to three or
more is best. Even more important in some cases, if the
matrix is stored on disk and brought in a slice at a time

to form the matrix vector product then a large value of
NBLOCK will lower the number of calls to OP and hence the
number of disk accesses. On the other hand, the number of
vector inner products needed for each Lanczos step is a
quadratic function of NBLOCK. Furthermore, the convergence
of the algorithm is degraded if NBLOCK > v*MAXJ . In con-
clusion if the matrix multiply is inexpensive a small value
of NBLOCK (2 or 3) is best, while if the matrix multiply is
expensive larger values of NBLOCK are to be preferred.
NBLOCK = 1 is not recommended unless required by storage
limitations

Choosing a value for MAXOP.

SILASO is an iterative procedure. The user may limit the
effort by SILASO on a given problem by choosing a value for
MAXOP. If more than MAXOP calls to the subroutine OP are
needed to solve the given problem, then SILASO will terminate
at that point and set IERR = -2.

If cost is not a factor and the subroutine OP is known to be
reliable MAXOP should be set to N/BLOCK. Choosing MAXOP much
less than MAXVEC /N/NBLOCK and repeatedly recalling SILASO

will delay convergence of the algorithm. Setting

MAXOP < MAXVEC is not allowed while setting MAXOP < MAXJ/NBLOCK
will waste the storage indicated by MAXJ.

82

H. Setting NPERM > 0.

SILASO allows known eigenpairs to be input directly so that they
need not be recomputed. The first column of VAL must contain

the eigenvalues (in any order) and the second column of VAL must
contain the residual norms (llAy*-y*0Jl, for the eigenpair '

The correct order of magnitude is sufficient. Columns 3 and 4
of VAL are arbitrary. The first NPERM columns of VEC must con-
tain the eigenvectors (which will be orthonormalized by SILASO)
The eigenvectors associated with VAL(I,1) must be in the I th
column of VEC.

NPERM must be less than or equal to MAXVEC. If NPERM = MAXVEC
the program will either confirm that no other desired eigenvalues
exist or it will terminate (IERR = -100) as soon as another de-
sired eigenvalue appears.

Applicability and Restrictions

SILASO is designed to find all the eigenvalues of a large sparse
symmetric matrix lying outside a user defined excluded interval.

For small dense matrices, the subroutines provided in EISPACK are to
be preferred. It is not necessary for the matrix to be explicitly
represented. It is only necessary to provide a subroutine OP to
compute matrix-vector products.

In particular SILASO can be combined with a sparse factorization
program to compute eigenvalues of A by sectioning. To find all
the eigenvalues of A inside an interval [a,b]:

1. Choose a shift ae[a,b].

2., Factor (A - al) = LDL®

3. Code the subroutine OP to compute (A - al) “x by solving
(A - al)y = x using L and D.

4. Set XL
and XR

1/(a - a)
1/(b - a).

5. Call SILASO.

6. The eigenvectors returned by SILASO are correct while the
eigenvalues must be back transformed as

o" = 1/0 + a

where 0 is the eigenvalue computed by SILASO and Q' is the
eigenvalue of A.

83

Thus it is possible to compute eigenvalues over a wide range by
breaking the range into subinterval and sequentially solve for
eigenvalues in each subinterval using different shifts o

SILASO calls a number of subsidiary functions and subroutines, namely:

SIWLA which implements the block Lanczos algorithm with
selective orthogonalization.

SIPPLA which post processes the output of SWLA.

SMVPC which computes residual norms and orthogonality
coefficients.

SORTQR which orthonormalizes a block of vectors.

SVZERO which zeroes a given vector.

URAND a FORTRAN IV random number generator given in Forsythe,
Malcolm, and Moler [&].

BANDR, BANDV, IMTQL1, IMTQL2, SVD, TRED1, TRED2, and TRIDIB,
which are EISPACK Subroutines ([3], [4]).

SAXPY, SCOPY, SDOT, SNRM2, SSCAL and SSWAP which are subset
of the BLAS (Basic Linear Algebra Subprograms) written
by Lanwson, et. al [7] and modified by Dongarra, et. al
[8] for use in LINPACK. If the BLAS are available in
assembly language they should be used in place of the
FORTRAN IV source code provided.

The user must not use any of the above names in his driver program.

Discussion of method and algorithm

The Lanczos algorithm is an efficient scheme for computing a series
of vectors q _, q,, ... q. which form an orthonormal basis for the

Krylov subspace, span (gq*> Ag®, ..., AJ ")

At each step of the algorithm the Krylov subspace grows larger and
one more Lanczos vector is added to the list. The Lanczos algorithm
can be interrupted at any step and the Rayleigh-Ritz approximations
to eigenpairs of A can be derived from the Krylov subspace quite
easily. Thus the algorithm need only continue until the desired
approximations are sufficiently accurate.

The block Lanczos algorithm (as described in detail by Underwood
[5]) replaces each vector in the simple Lanczos algorithm by an
orthornormal block of vectors. Block Lanczos has theoretical
advantages over simple Lanczos with respect to finding multiple
eigenvalues and has advantages in efficiency if the cost of forming
a matrix“vector product is high.

84

Unfortunately finite precision arithmetic causes the vectors com-
puted by the Lanczos algorithm (both simple and block) to lose
orthogonality and approach linear dependence. To maintain robust
independence among the Lanczos vectors, SILASO augments the al-
gorithm with selective orthogonalization which causes some of the
Lanczos vectors to be orthogonalized against a few selected Ritz
vectors, as described in [1] and [2].

The algorithm is terminated when the desired Ritz value are suffic-
iently accurate. If necessary, SILASO then makes another Lanczos
run to test for undisclosed multiplicities. Finally in some

cases, SILASO performs a Rayleigh-Ritz procedure on the determined
eigenvalues to resolve any clusters.

References

[1] B. N. Parlett and D. S. Scott, "The Lanczos Algorithm with
Selective Orthogonalization," Mcuth. otf Comp. 33, 217-38, 1979.

[2] D. S. Scott, "Analysis of the Symmetric Lanczos Process,"
Ph. D. Thesis, ERL technical report No. M78/40, June 1978,
Electronics Research Lab., University of California, Berkeley,
CA 94720.

[31 B. T. Smith et al., Mcut/Ux E4.ge.ndyAtm RouttneA - EtApack
GOMd&, Lecture Notes in Computer Science &, 2nd Edition,
Springer-Verlag, 1976.

[4] B. S. Garbow, J. M. Dongarra, and C. B. Moler, MatSitx
EtgénAyAtm RoutineA - ExApack Guide ExtenAtonA, Lecture

Notes in Computer Science 51, Springer-Verlag, 1977.

[5] R. Underwood, "An Iterative Block Lanczos Method for the
Solution of Large Sparse Symmetric Eigenproblems," Ph. D.
Thesis, Stanford University, STAN-CS-75-496 (1975).

[6] G. E. Forsythe, M. A. Malcolm, and C. B. Moler, ComputeA
MethodA fioH Mathmatteal. ComputattonA, Series in Automatic
Computing, Prentice-Hall.

[7] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh,
"Basic Linear Algebra Subprograms for FORTRAN Usage," to
appear in TOMS.

[8] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart,
Linpadz L1AeUA' Gutde,, sIaM, 1979.

APPENDIX II

Program Listings

(microfiche, inside back cover)

1-2.

9.
10.
11.
12.
13.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.
52.

87

ORNL/CSD-48
Distribution Category UC-32

INTERNAL DISTRIBUTION

Central Research Library 14. R. E. Funderlie
Patent Office 15. P. W. Gaffney
ORNL Technical Library, 16. D. A. Gardiner
Document Reference Section 17. M. T. Heath
Laboratory Records, ORNL R.C. 18-33. D. S. Scott
Laboratory Records Department 34. C. A. Serbin

A. A. Brooks 35. A. D. Solomon
H. P. Carter/CSD X-10 Library 36. C. M. Stegall
S.-J. Chang 37. W. C. T. Stoddai
L. A. Charlton 38. R. E. Textor

R. A. Dory 39. R. C. Ward

EXTERNAL DISTRIBUTION

Dr. T. D. Butler, T-3, Hydrodynamics, Los Alamos Scientific Laboratory,
P.0. Box 1663, Los Alamos, NM 87545

Dr. Bill L. Buzbee, C-1 Applications Support and Research, Los Alamos
Scientific Laboratory, P.0. Box 1663, Los Alamos, NM 87545

Dr. L. Lynn Cleland, Engineering Research Division, Lawrence Livermore
Laboratory, P.0. Box 808, Livermore, CA 94550

R. E. Cline, Mathematics Department, University of Tennessee, Knoxville,
Tennessee 37916

Paul Concus, Computer Science and Applied Mathematics Department,
Lawrence Berkeley Laboratory, Berkeley, CA 94720

Dr. James Corones, Ames Laboratory, Iowa State University, Ames,

IA 50011

J. Cullum, IBM T. J. Watson Research Center, Yorktown Heights, NY

I. Duff, Computer Science and Systems Division AERE Harwell, England

Dr. Marvin D. Erickson, Computer Technology, Systems Department, Pacific
Northwest Laboratory, P.0. Box 999, Richland, WA 99352

Paul Garabedian, Director, Courant Mathematics and Computing Lab-
oratory, Courant Institute of Mathematical Sciences, New York University,
251 Mercer Street, New York, NY 10012

A. George, Computer Science Department, University of Waterloo,
Waterloo, Ontario, Canada, N2L 3Gl

David Gilbert, Tennessee Valley Authority, Knoxville, Tennessee 37916
Gene H. Golub, Computer Science Department, Stanford University,
Stanford, CA 94305

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.
72.

73.

74.

75.

76.

7.

78.

88

Robert T. Gregory, Computer Sciences Department, University of
Tennessee, Knoxville TN 37916

R. J. Hanson, Numerical Mathematics Division, 5122, Sandia Laboratories,
P. 0. Box 5800, Albuquerque, NM 87115

R. L. Hooper, Statistics, Systems Department, Pacific Northwest Lab-
oratory, P.0. Box 999, Richland, WA 99352

Robert Huddleston, Supervisor, Applied Mathematics Division 8325,
Sandia Laboratories, Livermore, CA 94550

William M. Kahan, Department of Computer Science, University of
California, Berkeley, CA 94720

R. J. Kee, Applied Mathematics Division, 8331, Sandia Laboratories,
Livermore, CA 94550

H. B. Keller, Department of Applied Mathematics, 101-50, California
Institute of Technology, Pasadena, CA 91109

Peter D. Lax, Director, Courant Institute of Mathematical Sciences,
New York University, New York, NY 10012

John Lewis, Department of Mathematical Sciences, John Hopkins University,
Baltimore, Maryland 21215

R. K. Lohrding, S-1 Statistics, Los Alamos Scientific Laboratory, P.O.
Box 1663, Los Alamos, NM 87545

P. C. Messina, Applied Mathematics Division, Argonne National Laboratory,
Argonne, IL 60439

James Ortega, Chairman, Department of Applied Mathematics and Computer
Science, University of Virginia, Charlottesville, VA 22903

C. C. Paige, School of Computer Science, McGill University, Montreal,
Canada

B. N. Parlett, Mathematics Department, University of California,
Berkeley, CA 94720

A. Peshkin, Applied Mathematics Department, Brookhaven National Lab-
oratory, Upton, NY 11973

Robert J. Plemmons, Computer Sciences Department, University of
Tennessee, Knoxville, TN 37916

James C. T. Pool, Office of Basic Energy Sciences, Mail Stop J-309,
U.S. Department of Energy, Washington, DC 20545

C. Quong, Computer Science and Applied Mathematics Department,
Lawrence Berkeley Laboratory, Berkeley, CA 94720

Donald Rose, Bell Laboratories, Inc., Murray Hill, NY 07974

A. Ruhe, Department of Information Processing, Umea University,
S-90187, Umea, Sweden

Lawrence F. Shampine, Supervisor, Numerical Mathematics Division,
5122, Sandia Laboratories, P.0. Box 5800, Albuquerque, NM 87115

G. W. Stewart, Computer Science Department, University of Maryland,
College Park, MD 20742

Richard Underwood, CIS Department, Ohio State University, Columbus,
OH 43221

C. VanlLoan, Computer Science Department, Cornell University, Ithaca,
NY 14853

Richard S. Varga, Department of Mathematics, Kent State University,
Kent, OH 44240

B. Wendroff, T-7 Mathematical Modeling & Analysis, Los Alamos Scientific
Laboratory, P.0. Box 1663, Los Alamos, NM 87545

89

79. Olof Widland, Courant Institute of Mathematical Sciences, 251 Mercer
Street, New York, NY 10012
80. J. H. Wilkinson, Division of Numerical Analysis and Computer Science,
National Physical Laboratory, Teddington, Middlesex TW1ll OLW England
8l. Office of Energy Research and Development DOE, ORO
82-272. Given distribution as shown in TID-4500 under Mathematics and
Computers category (25 copies-NTIS)

