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ABSTRACT

The Lanczos algorithm is a powerful method of computing 
a few eigenvalues and eigenvectors of a large sparse symmetric 
matrix. Selective orthogonalizing is an efficient method of 
maintaining the stability of the algorithm. This report docu­
ments the design and implementation of two distinct block 
Lanczos algorithms with selective orthogonalization.

INTRODUCTION

This report gives detailed documentation of the implementation of a 

package of subroutines for solving large sparse symmetric eigenvalue pro­

blems. There are two driver subroutines. The user guides for these two 

subroutines are given in Appendix 1 and it is recommended that the reader 

become familiar with the user guides before reading the body of the report.

The package is available in both single and double precision. This 
report explicitly documents the single precision version although periodic 

references to the double precision version are also made. The four major 
changes between single and double precision are:

1. The names of the subroutines are different.
2. All real variables and constants are double precision (except 

URAND, see 4).
3. There are discrepancies in the sequence numbers due to the extra 

continuation lines needed in the double precision version.
4. Modifications are necessary due to the fact that the function URAND 

exists only in single precision.
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1. THE LANCZOS ALGORITHM
This section gives a brief synopsis of the Lanczos algorithm. No 

proofs are given and only those results which are pertinent to the rest 
of the report are included. The reader is directed to Scott [12] for 

a more thorough treatment of the subject.
The Lanczos algorithm is an iterative procedure for computing eigen­

values of a symmetric matrix A, which starts with an arbitrary vector r^ 

and Qq E 0. Then for j = 1,2,...DO 1 to 5,
1. II

C
_J

.

1 H*

2. If -0 stop

else q.J = r. /£.3-1 3
3. u.3 - - q^Bj

4. a.J = q.*u.J 1
5. r.J = u. - q.a. .3 3 3
Note that the only way that the matrix

through the formation of the product Aq^. This is a very attractive 
feature of the algorithm with respect to sparse matrices since A may be 
stored in any compact manner which permits the formation of matrix vector 
products. Note also that only the previous two Lanczos vectors (q's) are 
needed at any step j.

There are several mathematically equivalent formulations of the 

Lanczos algorithm. The one given here is the most stable numerically as 
shown in Paige [8].
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Defining (q1,q2,...q^) and

T.3

6
e2 c,2 B 

3 '

6.
3 a.3

then it can be shown that, in exact arithemtic,

AQ. - Q.T. = r.e.* 3 3 3 3 3

and

1 - Q.*Q. = 0, 3 3

where e* ~ (0,0,...,!) is a j-vector and rjej* i-s a compact way of writing
an n x j matrix all of whose entries are zero except the last column which
is r..3

The columns of Q. are an orthonormal basis for the Krylov subspace.

,•••,1q1)Kj(qi) = span(q1,Aq1
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Multiplying (1) by Qj*> we find that since Q-*rj =

T. = Q.*AQ. . j J J

Let Tj = Sj0jSj*> with s| = Sj_1 and 0_. = diag(01 (j) ,02),...,6^ ) ) , be

the spectral decomposition of T.. Let Y. = (y ^,y ^ \ .,y • ^^) = Q.S..
J J ^ 'J J J

Then the pairs (y^"* ^ , 0^"^) are the (optimal) approximations to eigen- 

pairs of A obtained from the Krylov subspace (q-^) by the Rayleigh-Ritz 
procedure.

Futhermore the residual norm of a Ritz pair (y.^\0.^^) can be computed

as

llAyi (j) y.(j)0.(j)ll = S-.t |s. . |EB. .
i j+11 ji1 ji (1)

thwhere s^ is the (j,i)— element of . Thus the accuracy of the Ritz 
value 0_^ ^ can be estimated without computing the Ritz vector at all.

Only a j x j tridiagonal eigenproblem need be solved and such problems can 
be solved quickly and accurately using established techniques.

Therefore the Lanczos algorithm can be terminated as soon as the de­
sired Ritz values are sufficiently accurate and the Ritz vectors need 

only be accumulated at the end. Since only the previous two Lanczos 

vectors (q's) are needed by the algorithm itself, it is possible to place 
the earlier Lanczos vectors in secondary store until they are needed for 

forming the Ritz vectors. Indeed if eigenvectors are not of interest, 

there is no need to save the Lanczos vectors at all!
We now let the symbols Q, T, Y, etc. stand for the corresponding

quantities actually computed on a machine with a relative presision £.
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Unfortunately the simple Lanczos algorithm is unstable when implemented in

finite precision. This instability is manifested in the Lanczos vectors by

a loss of orthogonality. Indeed the columns of Q become dependent to working
precision. It is still possible to compute the eigensystem of T_. and to form
the matrix Y. = Q.S. and we will continue to call these quantities Ritz values J 11
and Ritz vectors even though they are not the true Ritz pairs derivable from 

the subspace spanned by the columns of .
It can be shown (Paige [7] or Scott [12]) that the loss of orthogonality 

is quite correlated.

Theorem (Paige) At any step j of the Lanczos algorithm 
and all i,

yi (j)’ q.= Y. .ellAll/B. . 1+1 li li

where Y..-1 and 3.. is defined as in equation (1) li li

Thus the quantity which is the residual norm of the Ritz pair
(y^^ ^ , 0^^)), is important both in determining the accuracy of 0^"^

and in measuring the loss of orthogonality at step j. In words

loss of orthogonality convergence .

This theorem is the basis for selective orthogonalization, a scheme for 

stabilizing the Lanczos algorithm, described in Parlett and Scott [9] and 

analyzed in detail in Scott [12]. Selective orthogonalization explicitly
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orthogonalizes against any Ritz vector which satisfies

3.. < ZeIIaIIji

Such Ritz vectors are called good. If the tolerance is chosen much less than 
/ellAll then the y's in Paiges Theorem may grow and 3._^ is no longer an accurate 

measure of the loss of orthogonality. See Scott [12] for more details.
Since 3.^ is the residual norm of the Ritz pair (y^^\ G^^), a good Ritz 

vector is quite accurate, having converged to about half the precision of the 
machine. Therefore few (if any) of the Ritz pairs will be good at any one 
step which explains the computational success of the scheme.

The simple Lanczos algorithm (even with selective orthogonalization) 
suffers from two defects. If any eigenvector of A is orthogonal to then 
it will be orthogonal to all subsequent q's and will not be detected by the 

algorithm. In particular multiple or closely cluster eigenvalues inevitably 
cause difficulties. Furthermore if the matrix is in secondary storage and 

is brought into core a slice at a time to form the matrix vector product, it 

is inefficient to only multiply one vector at each access. For these reasons 
block Lanczos algorithms are appealing and have been analyzed by Cullum and 

Donath [1] and Underwood [14].

Block Lanczos replaces each q-vector in the simple algorithm by an ortho­
normal block of m vectors which we label P.. m is called the block size.J
The block algorithm starts with R^, an arbitrary n x m matrix, and P^ = 0 . 
Then for j = 1,2,...

1. Factor R. , = P.B. where P is orthonormal and B is upper 1-1 1 1 j J
triangular.

If Bj is singular, stop.2.
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3. U.3 = AP. - P. - B* 3 3-1 3
4. A.3 = P.*U. .3 3
5. R.3 = U. - P.A. .3 3 3

The matrix Q. = (P^, P„,...,P.) is orthonormal (in theory) and the 3 1 2 3
matrix

T.3

A, B*X it.

B3

B3

B*3
B,j A.3

is block tridiagonal. If T. = S.0.S* and Y. = Q S then the pairs ----- 3333 333
(y1^\ 6^^^) are the Ritz pairs and

HAy.(j) - y.(:i)9 (j)|| = llB.^s.JI 
i i i 3+1 31

where s^ is the m-vector of the last m elements of s^^\ the eigenvector 
of Tj associated with 0^^\ Therefore it is still possible to compute the

residual norm of y^ without computing y^.
Block Lanczos solves the two main problems associated with simple 

Lanczos. Eigenvalues are missed only when the corresponding eigenvectors
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are orthogonal to the subspace spanned by the block of starting vectors. 
Thus multiple eigenvalues can be found up to m, the block size. Also m 

vectors are multiplied for each access of the matrix, which is more 

efficient than simple Lanczos, particularly if the matrix is in secondary 
storage.

However, block Lanczos suffers from the same loss of orthogonality 

as simple Lanczos. The generalization of Paige's theorem is

Theorem. At any step j of the block Lanczos algorithm 

and for all i

|y*P -j-i B • ,-i 3 • • I = Y. .ell All ,i 1+1 1+1 li li

with Y. .-1 and s. . is the last m elements of s. li li i

This shows that the quantity B_.+^s^^ is again the key factor in both 

accuracy and loss of orthogonality but it now takes two different inter­
pretations. The residual norm of (y^^ , 0^^^) is but ortho­

gonality between y and some vector in Pj+^ is lost if the corresponding
element of B.,,s.. is small. We define |3. . = llB.11s..li as before and let ------- 1+1 li li 1+1 li
a). . be the absolute value of the smallest element of B. ,, s. . . Thus li 1+1 li

Convergence => loss of orthogonality

but not vice versa. For example, let m = 2,q-| be arbitrary and 
Rq = (q^, Aq^). Then since
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2span(R0, ARq) = span(q1, Aq^^, Aq1> A q1)

has dimension 3, R^ will be rank 1. Numerically R^ will not be exactly rank 
1 but the severe cancellation which occurs in its calculation will cause 

drastic loss of orthogonality even though no convergence has occurred. Despite 

this distinction it is still straight forward to implement selective orthogon­
alization in the block Lanczos context.

So far we have discussed the two factors which favor the choice of a 
large block size. However, there are two other factors which favor a small 

block size. The cost of computing eigenvalues of increases as a quadratic 

function of the blocksize and the number of vector inner products of length n 
needed at each step of the algorithm is linear in m. Furthermore, the 
asymptotic convergence of the algorithm depends on the number of steps taken 
before the algorithm must be iterated. So for difficult problems with limited 

storage available it is important to take a small block size in order to max­
imize the number of steps taken in each iteration.

2. MAJOR DESIGN DECISIONS

2.1 STANDARDIZATION AND MODULARIZATION

It was decided to adhere strictly to the 1966 FORTRAN standard to help 

assure portability. This standardization was checked by running the codes 

through the PFORT verifier [11]. It was also decided to avoid the use of 

private common blocks and the use of the EQUIVALENCE statement completely.

It was decided to make use of existing high quality software for three 

reasons: to make the codes more efficient, to improve modularity of the
codes, and to improve readability of the source code. EISPACK subroutines
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(Smith et al. [13] and Garbow et al. [4]) were used for all subsidiary 

eigenvalue calculations on dense matrices, a subset of the basic linear alge­

bra subprograms (BLAS) (Lawson et al. [5] and Dongarra et al. [2]) was used 
for all vector manipualtion, and URAND (Forsythe et al. [3]) was used for 

uniform random number generation.

2.2 PROBLEM DEFINITION

The two major questions to be resolved are:
1. Are eigenvalues to be computed at both ends of the spectrum of A 

or only one?
2. Are a fixed number of eigenvalues to be computed or all the 

eigenvalues outside some boundary to be found?

At first glance, one end only is the answer to question 1. In almost 
all applications, A will be the discretation of some continuous operator on 
a function space. One end of the spectrum of A will be an accurate repre­
sentation of the spectrum of the original operator while the other end will 
be discretation noise.

However, one of the more powerful techniques of eigenvalue extraction 

is sectioning, in which a few eigenvalues of

(A - al)-1

are found for various values of the shift O. The inversion of the spectrum

changes a problem of finding all the eigenvalues of A inside a given inter-
-1

val to finding all the eigenvalues of (A - 01) outside a given (different) 

interval. For this reason it was decided to allow two types of problems.
1. Find some eigenvalues at one end of the spectrum.

2. Find all the eigenvalues outside a given interval.
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It was decided to specify a fixed number of eigenvalues in case 1. The 

problem of finding all the eigenvalues of A smaller than some number a can be 

handled (with only minor inefficiencies) by case 2 using a very large number 
for the right end point of the excluded interval.

2.3 MATRIX-VECTOR PRODUCTS

The Lanczos algorithm requires the formation of matrix-vector products. 

There are two possible approaches to supplying this information. Either a 

user supplied subroutine is needed or reverse communication is used, in which 

control is returned to the calling program, for each matrix multiply.

Four reasons favored the use of a user supplied subroutine. The matrix 

multiply is needed in the inner loop of the algorithm which is likely to be 

buried several layers deep in the subroutine structure of the code. To re­

turn to the main program each time would significantly increase the number 
of subroutine linkages required at execution time.

Reverse communication would also violate the FORTRAN standard since the 
standard does not require that local variables in subroutines maintain their 

values between calls. Furthermore reverse communication, which allows the 
user to change parameter values is much more prone to accidental contamination.

Finally, the source code using a user supplied subroutine is much 
cleaner and easier to read since there is no need to monitor different types 

of entry conditions.

2.4 STORAGE OF LANCZOS VECTORS

There are three approaches to storage of the Lanczos vectors (q's).

One approach is to require that they be stored in core (either in common 
or in workspace provided in the calling sequence). This method was rejected



12

immediately since the main point of selective orthogonalization is to maintain 

robust linear independence among the Lanczos vectors without having to keep 
them in core.

Another possibility is to require the user to supply a logical unit 

number for storing Lanczos vectors and store them using unformatted WRITE 
statements. The disadvantage of this approach is that it forces the vectors 

to be stored on disk even if sufficient core exists (as might easily be true 
for a machine with virtual memory).

The approach actually chosen was for the user to supply a subroutine for 

storing and recalling Lanczos vectors. This allows greater flexibility at 
the cost of extra subroutine linkages.

2.5 STORAGE OF RITZ VECTORS

Is is feasible for the Ritz vectors (y's) to be put into secondary store? 
The answer is a strongly qualified yes, provided that sufficient core storage 
exists for one Ritz vector. However, the overhead involved is quite high.
Each time a Ritz vector is needed for orthogonalization it would have to be 

recalled from disk. Even more important, the formation of each single Ritz 

vector would require recalling all the Lanczos vectors, instead of forming 
all the Ritz vectors needed simultaneously with one pass through the Lanczos 

vectors. Finally, it would be impossible to assure that the computed Ritz 
vectors were orthogonal to working accuracy.

For these reasons, it was decided to require that the desired Ritz 
vectors be kept in fast memory.

2.6 LIMITS AND RECALL CAPABILITY

Eigenvalue extraction is inevitably an iterative process. Therefore it 
is necessary to provide some external stopping criterion to avoid the
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possibility of an infinite loop. This is especially true in the Lanczos con­
text where an error in the matrix multiply routine will almost always prevent 
the algorithm from converging.

It was decided to use the number of calls to the matrix multiply sub­

routine, OP, as the stopping criterion. However, since it is impossible for 
the code to determine a priori a "reasonable" value for this limit, it is 

necessary for the user to set this limit on input. If the limit on the number 

of calls to OP is reached the program terminates, returning all the eigenpairs 

which have been determined and resetting the parameters so that the subroutine 

can be immediately recalled to continue working on the problem.

This restart capability allows a user who knows one (or more) eigenpairs 

of the matrix to supply this information so that the code does not expend 

effort recomputing known eigenpairs. However, it should be noted that any 
such user supplied eigenpairs are counted as desired eigenpairs as far as 
solving the given problem.

2.7 LOCAL REORTHOGONALIZATION

Several authors including Lewis [6] and Ruhe [LO] recommend the use of 
local reorthogonalization in which the latest block of Lanczos vectors are 
reorthogonalized against the two previous ones (which are still in core).

Since the cost is small relative to the cost of a matrix multiply,it was 
decided to use local reorthogonalization.

3. ALGORITHMIC DETAILS
The programs basic purpose is to implement the block Lanczos algorithm

with selective orthogonalization and to stop as soon as all the desired
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eigenvalues are sufficiently accurate (acceptable). Let 0)^ be defined as the

absolute value of the smallest element of the vector B.,.s.. (see Section 1) .J+1 Ji
Then the Ritz vector y. ^ ^ is good whenever 10j^ v^llAll and the next Lanczos 

vector should be orthogonalized against

3.1 FLOWCHART 1

A naive flowchart of the algorithm would be as follows.

Enough acceptable 
eigenpairs?

Return

Initialize

Ritz pairs
Compute desired

Compute good 
Ritz vectors 
(if any) .

Take a Lanczos step. 
Orthogonalize against 
the good Ritz vectors.

The above algorithm is inefficient in three respects and incomplete in

several more as we describe below.
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3.2 INEFFICIENCIES IN FLOWCHART 1

In theory all the Ritz vectors change at every Lanczos step and so the 
good Ritz vectors should be recomputed at every step. This would be ruin­
ously expensive. Fortunately, the good Ritz vectors change very little from 
one step to the next and so a good Ritz vector computed at some earlier step 

can be used for orthogonalization at the current step.
Furthermore it is not necessary to orthogonalize against a good Ritz 

vector at every step. In Parlett and Scott [9] it is shown that if (y,0) is
a good Ritz pair and ly*q.,1| ^ T. , and I y*q.I ^ T, then1+1 1-1 1 l' 1

Cl9 “ Ct. |t. + 3.T. ]/g = T.,,
1+1 11 1 1“1 1+1 1+1

except for terms of order e.

For blocksize greater than 1 the above formula must be modified. If 
lly*P. . II ^ T. .. and lly*P.II ^ T. then1-1 j-1 1 i

lly*Pj+1ll < [110 It. + a. . . s-iI/aj+i = Tj+1

L Swhere O^ is the largest singular value of and is the smallest singular
value of Whenever Tj+1 ^ ve , P_.+^ and l>j+2 are orthogonalized against

y and x. , and T.,„ are set to e .1+1 1+2
Finally, it is not necessary to compute all the desired eigenvalues of 

T at each step. In general the Lanczos algorithm will converge faster to the 

extreme eigenvalues of the spectrum of A,i.e. convergence will occur mon-

otonlcally inward from the edge of the spectrum. Therefore for a number type
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problem it is necessary to compute only 2 eigenpairs at most steps. First 

the most interior desired eigenpair is computed to see if it is acceptable.
If it is acceptable, then all the desired eigenpairs are computed to insure 
that they are all acceptable. If not all the eigenvalues are acceptable, then 

the most extreme eigenpair which has not been declared good is computed. If 
it is still not good, then the next Lanczos step is taken. If it is good 

then all of the desired eigenpairs are computed and all the good Ritz vectors 

are computed. It seems reasonable to recompute known good Ritz vectors for 

two reasons. First the eigenpairs continue to converge so that the newer 
version of a good Ritz vector is more accurate than the old one. Secondly 

the major cost of forming the Ritz vectors is in recalling the sequence of 
Lanczos vectors. Since this must be done anyway for the new good Ritz vectors 

there is little extra cost in updating the old ones as well.

For an interval type problem no more than six eigenvalues of T are com­
puted at one step. The details are left for a later chapter.

3.3 LIMITED STORAGE
Since the available storage on a computer is limited, it may not be pos­

sible to take another Lanczos step despite the fact that not all the desired 
eigenvalues are acceptable. The computer code must allow the user to specify 

this limit. If the limit is reached the code computes and stores all accept­

able eigenpairs (we refer to such vectors as permanent vectors) and then 
forms a new starting block from linear combinations of the remaining eigen­

vectors. The Lanczos algorithm is then restarted with this starting block.
This restarting of the algorithm requires one additional precaution.

The new Lanczos sequence must be kept orthogonal to the permanent vectors.

As before it is not necessary to orthogonalize against the permanent vectors
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at each step. Instead a scalar recurrence is used to monitor the decay of 
orthogonality. The recurrence for permanent vectors is the same as the re­

currence for good vectors except that the term p/o.+^ must be added to 
where p is the residual norm of the permanent vector y (llAy - y0l| s 8..).

It should be noted that restarting the algorithm is always detrimental
to the convergence rate of the algorithm. So that provided the user subrou­

tines are known to be reliable, all the available storage should be used.

3.4 MULTIPLE EIGENVALUES

As mentioned in Chapter 1, the block Lanczos algorithm cannot find more 

than m (the blocksize) eigenvectors associated with a multiple eigenvalue.

For numerical purposes this means that if the code computes m eigenvalues 

which are tightly clustered then it is possible that there are more eigen­

values in the cluster. After the code has computed the desired eigenvalues 

it checks to see if a cluster of m eigenvalues exists. If such a cluster is 

found the algorithm is restarted just as if not all the desired eigenpairs 
were acceptable, except that random vectors are used for the starting block. 
This causes several complications. The codes must now be able to terminate 

in the middle of a Lanczos run when it decides that no new eigenvalues exist 
in the cluster. Furthermore, if solving a number type problem (see Section 

2.2) the code must throw away a permanent vector if a new member of the 
cluster is found.

For example, suppose that the five smallest eigenvalues of A are 0,0,0,1, 
and 2. If the three smallest eigenvalues are desired and a blocksize m = 2 

is used. Then the eigenvalues 0,0, and 1 will be found by the first Lanczos 

sequence. Since a multiplicity of 2 exists in the determined eigenvalues
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a check run would be started. Soon after, the third copy of zero would be 

found and the eigenvalue 1 (and its eigenvector) would be discarded to make 
room for it. On the other hand if the zero eigenvalue were only double, the 
check run would terminate after some number of steps and the values 0,0, and 1 

would be returned.
From the point of view of efficiency, it is desirable that the block size 

be larger than the largest multiplicity of the desired eigenvalues, so that 

no check run need be made. In particular a block size of one is recommended 
only for number type problems and only when one eigenvalue is desired. (Of 
course storage constraints may require the use of a block size one.)

3.5 FLOWCHART II

The following flowchart reflects the results of the previous sections.

The abbreviation e.v.s. stands for eigenvalues (of T).
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Out of storage?

Is this a check run

Return

Calculate all
desired e.v.s?

Pass?

Initialize

Calculate some e.v.s

Take a Lanczos step 
Update x recurrence 
Orthogonalize as needed
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All acceptable? or 
A new good vector? or 
Out of storage?

All acceptable? or
Out of storage?

All acceptable? Need a 
checkrun?

Return

Form starting block Random Starting block

Calculate all
desired e.v.s

Form needed Ritz vectors

This flowchart is a fairly accurate representation of the two codes. The 

specific details of the implementations will be discussed in the sections 

covering the individual subroutines. However, there are two more topics of 
sufficient generality to be discussed here.
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3.6 FORMING THE STARTING BLOCK
If storage has been exhausted, it is necessary to compute m vectors to 

form the new starting block. The simplest approach is to take the first m 

desired eigenvectors which are not acceptable. However, if there are more 

than m unacceptable desired vectors, this means that some eigenvectors are 

completely ignored. At best this is a waste of valuable information and at 

worst it can lead to the algorithm failing to find some eigenvalues.
On the other hand to simply sum up all the unacceptable vectors is also 

ineffective since it is possible for a fairly accurate Ritz vector to be 

swamped by one or more completely inaccurate Ritz vectors. To avoid these 

two extremes the code has all the unacceptable Ritz vectors contribute to 
the starting block but weights the contributions by the inverse of the residual 

norm of the vector. Thus almost acceptable vectors will have large weights 
compared to very poor vectors.

Finally, it should be noted that the unacceptable Ritz vectors are not 
calculated individually. Rather the appropriate linear combinations of eigen­
vectors of T are formed and these are used to form the starting block directly.

3.7 ORDERING THE INNER LOOP

It turns out to be better to rearrange the inner loop so that the ortho- 
gonalizations occur at the top, as follows:

Given P- = 0, R^, = p' and B./ =1. For i = 1,2,... 0 0 1 1 9 • • •

1. Orthogonalize P. against any vector indicated by the x recurrence.

2. If necessary (j = 1 or some orthogonalization done) reorthognoralize so

that

P. = P.B. = R 1 3 3
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and set B. = B*.B.
J 3 3

3. U. = AP. - P. R*3 3 3-1 3
4. A. = P*AP.3 3 j
5. R. = U. - P.A.3 3 3 3
6. R. = P*. , ,B.,' with P'. ,, orthonormal3 3+1 3+1 3+1
7. Update the T relations

We do not actually need the orthonormality of until the following
Lanczos step but we do need the matrix B*. , in order to compute 3.. and a)..3+1 31 3i
(the residual norm and the orthogonality coefficient) for the eigenvalues we 

compute.
This ordering has several advantages. Firstly, we do not have to do any

special coding (other than initializing the T recurrence properly) to handle

the first step. The initial block is naturally orthogonalized against the
known vectors (if any) and then orthonormalized). Furthermore the decisions
about terminating, restarting, or computing new good Ritz vectors are made
before any unnecessary orthogonalizations are performed.

One final note: throughout this report we have used the subscript j to
denote the step number. In the code we found it more convenient to use J as

the dimension of T., that is, J = j*m .3

4. SUBROUTINE STRUCTURE

4.1 INTRODUCTION
Implementing the Lanczos algorithm requires temporary storage space for 

a variety of purposes. Unfortunately FORTRAN does not allow EQUIVALENCE to 

be used with formal parameters. For this reason it is impossible to break
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the allotted work space into different named areas inside the first subroutine 

called. There are three possible ways to circumvent this problem.

One approach is to require the user to break up the workspace in the 
original calling sequence by having a number of separate workspace parameters. 

This method was rejected because it greatly increases the probability of user 

errors in calling the subroutine. Another approach is to use various integer 
variables to keep track of the offsets for different work space areas. This 

method makes the corresponding code quite intricate (especially when following 

the standard restrictions on the form of array subscripts) and almost inde­

cipherable.
Instead it was decided to have the driver subroutine be almost a dummy 

routine which did little more than call other routines to do most of the 
work. Thus the available workspace could be subdivided in the calling 

sequences to these subsidiary subroutines.
In the end, two such subroutines were written. The major one implements 

the block Lanczos algorithm with selective orthogonalization to solve the 
given problem and the second one post-processes the eigenvectors that were 

computed by the first.
In addition a number of additional functions and subroutines are used 

for specific computational tasks. Three of these tertiary subroutines were 

written by the author, while the rest were taken from published sources.
It turned out to be inconvenient to solve both types of problems de­

scribed in Section 2.1 with the same subroutine. Two separate driver sub­

routines were written for the two different problem types. This in turn 
required separate subsidiary subroutines, but the specific computational 
modules (tertiary subroutines) are the same for both problem types.
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4.2 SUBROUTINE NAMING CONVENTIONS

Each of the major subroutines has a root name, a letter preceding the 

root name which identifies which of the two problem types it is used for, 
preceded by a letter indicating the precision employed. The codes are

LASO root name. driver subroutine.

PPLA root name. post processor.
WLA root name. main computation subroutine.

N identifier, problem type 1 (some number of eigenvalues at
one end of the spectrum).

I identifier, problem type 2 (all the eigenvalues outside a
given interval).

S single precision.

D double precision.

Thus SNLASO is the single precision driver program for a number type 

problem, while DIPPLA is the double precision post-processor for an interval 
type problem.

The tertiary subroutines have naming conventions which depend on their 

source. EISPACK subroutine names are fixed, regardless of whether they are 
in single or double precision. The basic linear algebra subroutines (BLAS) 
in UNPACK have a root name preceded by an S or a D to indicate the level of
precision. The tertiary subroutines written by the author also have a root

name preceded by an S or a D. Finally URAND, taken from [3] exists 

only in single precision since double precision integers are not provided for
in the 1966 FORTRAN standard.
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4.3 SUBROUTINE 
BANDR:

BANDV:

BISECT:

DAXPY:

DCOPY:

DDOT:

DILASO:
DIPPLA:

DIWLA:

DMVPC:

DNLASO:

DNPPLA:
DNRM2:

DIWLA:

DORTQR:

GLOSSARY
EISPACK subroutine for reducing a symmetric band matrix to 

tridiagonal form.
EISPACK subroutine for computing eigenvectors of a band matrix 

by inverse iteration.
EISPACK subroutine for computing all the eigenvalues of a 
symmetric tridiagonal matrix inside a given interval. Used 

only in interval type problems.
double precision BLAS subroutine for adding a scalar multiple 

of one vector to another.

double precision BLAS subroutine for copying one vector into 

another.
double precision BLAS function for computing a vector inner 

product.
double precision driver for interval type problems, 

double precision post processor for interval type problems, 

double precision computation subroutine for interval type 
problems.

double precision subroutine for computing the residual norm 

and orthogonality coefficient for given Ritz pairs, 
double precision driver for number type problems, 

double precision post processor for number type problems, 

double precision BLAS function for computing a vector norm, 

double precision computation subroutine for number type 

problems.

double precision subroutine for orthonormalizing a set of
vectors.
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DSCAL:

DSWAP: 

DVZERO: 
IMTQL1:

IMTQL2:

SAXPY:

SCOPY:

SDOT:

SILASO: 

SIPPLA: 
SIWLA:

SMVPC:

SNLASO:
SNPPLA:
SNRM2:

SNWLA:

SORTQR:

double precision BLAS subroutine for multiplying a vector by 
a scalar.
double precision BLAS subroutine for swapping two vectors, 
double precision subroutine for zeroing a given vector. 

EISPACK subroutine for computing all the eigenvalues of a 
symmetric tridiagonal matrix.

EISPACK subroutine for computing all the eigenvalues and 

eigenvectors of a symmetric tridiagonal matrix, 

single precision BLAS subroutine for adding a scalar multiple 

of one vector to another.

single precision BLAS subroutine for copying one vector onto 
another.
single precision BLAS function for computing a vector inner 
product.
single precision driver for interval type problems, 

single precision post processor for interval type problems, 
single precision computation subroutine for interval type 

problems.
single precision subroutine for computing the residual norm 
and orthogonality coefficient for given Ritz pairs, 
single precision driver for number type problems, 

single precision post processor for number type problems, 
single precision BLAS function for computing a vector norm, 
single precision computation subroutine for number type 

problems.
single precision subroutine for orthonormalizing a set of

vectors.
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SSCAL:

SSWAP:

SVD:

SVZERO: 

TRED1:

TRED2:

URAND:

single precision BLAS subroutine for multiplying a vector by 
a scalar.

single precision BLAS subroutine for swapping two vectors. 
EISPACK subroutine for computing the singular values of a 

matrix.
single precision subroutine for zeroing a vector.

EISPACK subroutine for reducing a symmetric matrix to tri­

diagonal form. The transformations are not accumulated. 

EISPACK subroutine for reducing a symmetric matrix to tri­
diagonal form. The transformations are accumulated, 

a single precision function for generating uniform random num­
bers on the interval [0,1].

5. TERTIARY SUBROUTINES

The EISPACK subroutines used (BANDR, BANDV, BISECT, IMTQL1, IMTQL2, SVD, 
TRED1, and TRED2) are documented in Smith et al. [13] and B. S. Barbow it al. 
[4]. The Basic Linear Algebra Subroutines are taken from LINPACK which is 
documented in Dongarra et al. [2]. URAND is documented in Forsythe et al. 
[3]. The three remaining routines were written by the author and will be 

documented here. Only the single precision versions will be explicitly 

documented. The arguments of each subroutine are classified according to the

following table.
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SI Strict input: The original value is always referenced.
I Input: The original value is sometimes referenced.

SO Strict output: A new value is always returned.
0 Output: A new value is sometimes returned.
W Workspace: The original value is never referenced and the final value 

is meaningless.

Table 1. Argument Glassifications

5.1 SMVPC

SMVPC is used to compute the residual norm estimate 8j^ and the ortho­
gonality coefficient (see Chapter 1) for one or more eigenvectors of T^.

(3j^ is used in determining the accuracy of the corresponding eigenvalue while 

is used to monitor the loss of orthogonality. Since the major cost of 

computing either or 8^ is in forming the product SMVPC always
returns both values.

5.1.1 The Calling Sequence

SUBROUTINE SMVPC(NBLOCK, BET, MAXJ, J, S, NUMBER, RESNRM, ORTHCF, RV) 

Table 2. The Calling Sequence

Name Type Dimension Classification Remarks

NBLOCK integer scalar SI Blocksize.

BET real NBLOCK*NBLOCK SI Bj+1 ’
MAXJ integer scalar SI Leading dimension of S.

J integer scalar SI Dimension of the eigenvectors
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Table 2. (Cont'd)

Name Type Dimension Classification Remarks

S real MAXJ*NUMBER SI The eigenvector(s) of T^.

NUMBER integer scalar SI The number of eigenvector(s).

RESNRM real NUMBER SO The 6...Ji
ORTHCF real NUMBER SO The U). . .

RV real NBLOCK W Workspace for forming B^^s^.

5.1.2 Internal Variables
The subroutine uses three internal variables:

Table 3. Internal Variables

Name Type Remarks

I integer DO loop index over the eigenvectors (1 to NUMBER)

K integer DO loop index over the rows of B.,.. (1 to NBLOCK)3+1
M integer Subscript, set to J - NBLOCK + 1. S(M,I) is the

element of s..Ji-

5.1.3 Sequence Blocks

In reference to the listing of SMVPC in appendix 2.

Sequence Numbers 

10-200 

210

Table 4. Sequence Blocks

Remarks
Initial declarations and comments. 

Set M = J-NBLOCK + 1.
220-340 DO loop in I over number of vectors.
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Table 4. (Cont'd)

Sequence Numbers

250-290

310
320
350-370

Remarks
DO loop in K over rows of BET. Forms matrix vector 

product and updates minimum element (ORTHCF (I)). 

Computes RESNRM (I) = ^ •
Scales ORTHCF (I).
Exit.

5.1.4 Special Note
The orthogonality coefficients do not reflect the use of local reortho- 

gonalization. This will cause vectors to be declared good somewhat sooner 
than necessary. This is particularly evident when the starting block contains 

a good approximation to an eigenvector. Then cancellation will cause loss of 
orthogonality to the second block but reorthogonalization of the second block 
to the first corrects the problem. To account for the reorthogonalization 

against the first block we found it advantageous to scale the orthogonality 
coefficient by a factor lls^H 1 where s^ is the J - 2*NBL0CK vector ob­

tained from s^ by deleting the top 2*NBL0CK elements. This always delays the 
classification of a good vector and if the corresponding eigenvector of T has 

most of its mass concentrated in the first few components (as is the case if 
the starting block contains a near eigenvector) this delay is significant.

5.2 SORTQR

SORTQR is used to orthonormalize a block of Lanczos vectors. This 
simplest (cheapest) approach is to use modified Gram-Schmidt. Unfortunately
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this requires either pivoting or reorthogonalization for stability. If piv­

oting is used the corresponding matrix of coefficients is not triangular and 

this increases the band width of the matrix T.
So following Lewis [6 ] we decided to use householder transformations to 

orthogonalize the blocks. Indeed SORTQR is essentially Lewis' QRDECM modified 

to incorporate the Basic Linear Algebra Subprograms.

5.2.1 The Calling Sequence
Table 5. SUBROUTINE SORTQR(N,NBLOCK,Z,B)

Name Type Dimension Classification Remarks
N integer scalar SI Length of vectors.
NBLOCK integer scalar SI Number of vectors.

Z real N*NBLOCK SI-SO The block of vectors on input and

the orthonormalized vectors on

output.

B real NBLOCK* SO The upper triangular matrix.
NBLOCK

5.2.2 Internal Variables

Table 6. Internal Variables

Name Type Remarks
I integer Index over the columns of Z (one to NBLOCK in reduction

phase and NBLOCK to one in the accumulation phase.)

J integer Set equal to I + 1 to index a DO loop (twice).
LENGTH integer Set equal to the length (dimension) of the current 

Householder reflection.

M integer Used as the DO loop variable when I is counting downward.
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Table 6. (Cont'd)

Name Type Remarks

SIGMA real Set to the norm (with sign chosen for stability) of the

current vector used for forming the Householder reflection.

TAU real Set to the normalizing factor for the current reflection.

TEMP real Used to hold the multiplier for the following call to
SAXPY. Not strictly needed but included for readability.

5.2.3 Sequence Blocks
In reference to the listing of SORTQR in appendix 2

Table 7. Sequence Blocks

Sequence Numbers Remarks

10-180 Initial comments and Declarations.

190-410 DO loop in I over number of vectors.

230-290 tilForm I— reflections.

330-390 DO loop in K applying the reflection to the rest of

the vectors.
450-660 DO loop in M over the number of vectors as I runs

490-550

backwards through the vectors.

Recreate I— reflection.
590-620 DO loop in K applying this reflection to the pre­

viously accumulated reflections.
640-650 Construct current column.
670-690 Exit.
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5.3 SVZERO
SVZERO is used to initialize a given vector to zero. The structure of 

the subroutine is copied from SCOPY except that the increment is known to 

be one.

5.3.1 The Calling Sequence 

SUBROUTINE SVZERO (N,Q)

Table 8. SUBROUTINE SVZERO (N,Q)

Name Type Dimension Classification Remarks
N integer scalar SI Length of vector.

Q real N SO The vector.

5.3.2 Internal Variables

Table 9. Internal Variables (M,MP1,I)

Name Type Remarks

M integer Set to N mod 7.

MP1 integer Set to M + 1.

I integer DO loop variable (1 to M and MP1 to N by 7)

5.3.3 Sequence Blocks
In reference to the listing of SVZERO in appendix 2:



34

Table 10. Sequence Blocks

Sequence Numbers 

10-130 
140-210 
220-320 

330-350

Remarks
Initial comments and declarations. 
Clean up loop.

Main loop.

Exit.

6. SNLASO

SNLASO is the driver program for number type problems. It checks the 

consistency of the calling parameters, orthonormalizes any user supplied 

eigenvectors, and calls the subroutines SNWLA and SNPPLA.

6.1 THE CALLING SEQUENCE

SUBROUTINE SNLASO (OP,I0VECT,N,NVAL,NFIG,NPERM,NMVAL,VAL,NMVEC,VEC,

NBLOCK,MAXOP,MAXJ,WORK,IND,TERR) .

Table 11. The Calling Sequence

Name Type Dimension Classification Remarks
OP external - I User supplied subroutine for ma-

trix-vector products.
I0VECT external I User supplied subroutine for

storing and recalling vectors.
N integer scalar SI The dimension of the matrix.
NVAL integer scalar SI Indicates the number of desired

eigenvalues.
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Name Type Dimension Classification Remarks

NFIG integer scalar SI The number of decimal digits of

accuracy desired.

NPERM integer scalar SI-SO The number of eigenvectors known.

NMVAL integer scalar SI The row dimension of VAL.
VAL real NMVAL*4 1-0 The eigenvalues and accuracy

estimates.
NMVEC integer scalar SI The row dimension of VEC.
VEC real NMVEC*NVAL 1-0 The eigenvectors.
NBLOCK integer scalar SI The block size (number of vectors

per block).
MAXOP integer scalar SI The maximum number of calls to OP.
MAXJ integer scalar SI The limit on the number of vectors

stored by IOVECT. It also effects

WORK.
WORK real (see below) 1-0 Workspace. The first N*NBLOCK

elements are the starting block.
IND integer NVAL so Used for workspace and to return

the actual number of calls to OP.
IERR integer scalar so An error completion code.

The array WORK must be at least as long as

NBLOCK*(3*N + 2*NBL0CK) + MAXJ*(3*NBL0CK + ABS(NVAL) + 6)

+ 3*ABS(NVAL).

For a more detailed description of the calling sequence see Appendix 1.
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6.2 INTERNAL VARIABLES

Table 12. Internal Variables

Name Type Remarks

DELTA real Returned from SNWLA as the eigenvalue of A closest to the
desired eigenvalues. Used in SNPPLA for computing the ac­

curacy estimates.

I integer Used as the primary DO loop index.

11-114 integer Used as subscripts in the calls to SNWLA and SNPPLA.
K integer Used as the secondary DO loop index.
M integer Used as a DO loop limit and as an array subscript.
NOP integer Returned from SNWLA and SNPPLA as the actual number of calls

to OP. Stored in IND(l) just before exit.

NV integer Set to abs(NVAL).
RARITZ logical Returned from SNWLA and passed to SNPPLA. RARITZ is .TRUE.

if a final Rayleigh-Ritz procedure is needed.
SMALL logical Set to .TRUE, if the leftmost eigenvalues are desired.

Passed to SNWLA and SNPPLA.
TEMP real Used for temporary storage for sorting etc.

6.3 SEQUENCE BLOCKS
In reference to the listing of SNLASO in Appendix 2:

Table 13. Sequence Blocks

Sequence Numbers Remarks
10-1860 Initial comments and declarations.

1870-2070 Check consistency and set local parameters.
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Table 13. (Cont'd)

Sequence Numbers

2080-2810

2820-3100

3110-3220
3230-3250

Remarks

Orthonormalize user supplied eigenvectors. 

Call SNWLA.

Call SNPPLA.
Set IND(l) and exit.

7. SNWLA

SNWLA is the subroutine which implements the block Lanczos algorithm with 

selective orthogonalization to compute the desired eigenvalues. If the largest 

(rightmost) eigenvalues are desired (SMALL = .FALSE.) the code implicitly uses 
the negative of the matrix (by negating the matrix T) and otherwise always 
computes the smallest eigenvalues.

7.1 THE CALLING SEQUENCE

SUBROUTINE SNWLA(OP,IOVECT,N,NVAL,NFIG,NPERM,VAL,NMVEC,VEC,NBLOCK,MAXOP, 
MAXJ,NOP,P0,PI,P2,RES,TAU,OTAU,T,ALPHA,BETA,BETA2,ALP,BET,RV,RV6,S,IND,SMALL, 
RARITZ,DELTA,IERR).

Table 14. The Calling Sequence

Name Type Dimension Classification Remarks

OP external - SI Forms matrix vector products.
IOVECT external - SI Used to store and recall vectors.
N integer scalar SI Dimension of the matrix.
NVAL integer scalar SI The number of eigenvalues desired

(positive).
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Table 14. (Cont'd)

Name Type

NFIG integer

NPERM integer

VAL real

NMVEC integer 
VEC real

NBLOCK integer

Dimension

scalar

scalar

NVAL

scalar
NMVEC*NVAL

scalar

Classification ____________ Remarks_____________

SI The number of decimal digits of

accuracy desired in the eigen­

values .

SI-0 On input, the number of user
supplied eigenpairs. On output 
the number of eigenpairs now 
known (usually NVAL). In between, 
the number of permanent vectors.

1-0 On input, the user specified
eigenvalues. Internally, the 

permanent eigenvalues, followed 
by the good eigenvalues, followed 

by the eigenvalues computed at 

the current step. On output, all 

the known eigenvalues.
SI The row dimension of VEC.

1-0 On input, the user supplied eigen­

vectors. Internally the permanent 
eigenvectors followed by the good 

eigenvectors. On output, all the 
known eigenvectors.

SI The number of vectors in each

Lanczos block.
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Table 14. (Cont d)

Name Type Dimension Classification _____________ Remarks

MAXOP integer scalar SI

MAXJ integer scalar SI

NOP integer scalar SO
PO real N*NBLOCK W

PI real N*NBLOCK SI

The maximum number of calls to 

OP. SNWLA is aborted (IERR = -2) 

if this maximum is reached. Note 

that the comparison is turned off 

if the code is making a check run 

to test for multiplicities so 
that the number of calls to OP 
may be larger than MAXOP before 
termination of SNWLA.

The maximum number of Lanczos 

vectors which can be stored. The 
algorithm is restarted (iterated) 

if this maximum is reached.
The number of calls to OP.

The "oldest" block of Lanczos 
vectors kept in fast storage.

The "middle" block of Lanczos 
vectors. On input PI must con­
tain the desired starting vectors. 

Zero vectors are replaced by ran­
dom vectors. On output, if IERR = 

-2, PI will contain the best vec­
tors for restarting the algorithm.
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Table 14. (Cont'd)

Name Type Dimension Classification Remarks
P2 real N*NBLOCK W The "newest" block of Lanczos

vectors.
RES real NVAL W Holds the residual norms of the

permanent vectors. Needed to up­

date the T recurrence.
TAU real NVAL W Holds the current value of T for

each eigenvector.
OTAU real NVAL W Holds the previous value for T for

for each eigenvector. Note that
whenever an orthogonalization is 
performed it is necessary to 
orthogonalize two successive 

blocks against the indicated 

eigenvector. Rather than keep a 
separate pointer the code sets 

TAU = 0 and OTAU = 1 the first 

time an orthogonalization is per­
formed. Since OTAU = 1 the TAU 
at the next step will be bigger 
than /£ so another orthogonali­

zation is performed. However the 
fact that TAU = 0 is used to 

suppress a third orthogonalization 
by not setting OTAU = 1 again.
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Table 14. (Cont’d)

Name Type 

T real

ALPHA real

BETA real

BETA2 real

ALP real

BET real

RV real

Dimension Classification

MAXJ* W
(NBLOCK+1)

MAXJ W

MAXJ W

MAXJ W

NBLOCK*NBLOCK W

NBLOCK*NBLOCK W

MAXJ* W
(2*NBL0CK+1)

Remarks

Holds the band matrix.

Holds the diagonal elements of 

T reduced to tridiagonal form 
(by a call to BANDR).
Holds the off diagonal elements 
of T reduced to tridiagonal form. 

Holds the squares of the off 
diagonal elements.

Holds the lower triangle of the 

current diagonal block of the 
band matrix T. The full square 

of storage is used for ease of 
addressing.
Holds the next off diagonal

block of T (which is actually 

upper triangular).
Used as workspace for various 

subroutines. Only BANDV re­
quires the full array. The first 
column of RV contains the ortho­

gonality coefficients on exit

from SMVPC.



42

Name
RV6

S

IND

SMALL

RARITZ

DELTA

Table 14 (Cont'd)

Type
real

Dimension Classification _____________ Remarks____________

MAXJ W Used as workspace for various
subroutines. RV6 contains the

residual norms (3 .) on exit from Ji
SMVPC.

real MAXJ*NVAL W

integer NVAL W

logical scalar SI

logical scalar SO

real scalar SO

Used to hold eigenvectors of T 
on exit from BANDV. Also used 

to manipulate the eigenvectors 
of T to form the appropriate 
linear combination needed in com­
puting the new starting vectors. 
Used in various EISPACK sub­
routines. Also used for pointers 
in various sorting operations.

SMALL = .TRUE, if the smallest 

(leftmost) eigenvalues are desired. 

If SMALL = .FALSE, then the matrix 
T is negated.

Set to .TRUE, if a Rayleigh-Ritz 

procedure is to be done in SNPPLA. 
This happens if a cluster of more 
than NBLOCK eigenvalues are found. 
Set to the smallest undesired 

eigenvalue of T. That is the 

eigenvalue closest to the desired

eigenvalues.
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Table 14. (Cont'd)

Name Type Dimension Classification Remarks

IERR integer scalar 0 An error completion code. Set to

-2 if too many calls to OP and -3 

if an error flag in an EISPACK 

subroutine is encountered.

7.2 INTERNAL VARIABLES

Table 15. Internal Variables

Name Type 
ANORM real

BNORM real

ENOUGH logical

EPS real

EPS1 real

Remarks
Current estimate of llAll . Computed as the infinity norm of 

the tridiagonal matrix obtained by taking the 2-norm of the 
blocks of T. This estimate is modified to reflect any user 

supplied eigenvalues.
Holds the 2-norm (largest singular value) of the previous 

off diagonal block (see SINGL). Needed in the update form­

ula for the T-recurrence.

Used to keep track of whether enough desirable eigenvalues 
have been found.
Set to an approximation to the relative machine precision 
by the repeated halving technique.
Indicates the desired accuracy of the eigenvalues computed 

by TRIDIB. When set to 0.0 the eigenvalues are found to 
working accuracy.
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Table 15. (Cont'd)

Name Type Remarks

EPSRT real Set to the square root of EPS. Used in assessing the ortho­
gonality coefficients to determine if a given eigenvector is
good. (The vector is good if ^ /ellAll).

I integer Used as a DO loop variable in many places.

11 integer Used as an array subscript for manipulating vectors in
forming good Ritz vectors and starting vectors. Also used
as a temporary location for swapping integers.

IER integer Used as the error completion code variable in all calls to
EISPACK subroutines. If a nonzero completion code is en­

countered SNWLA is aborted with IERR = -3.

INDG integer Used as the index (in T) of the smallest eigenvalue of T
which has not been declared good.

IURAND integer Used as the seed for the pseudo-random number generator

URAND.

J integer Used as the current dimension of the matrix T. Thus J equals
NBLOCK times the number of Lanczos steps taken.

K integer Used as the secondary DO loop index (after I).

L integer Used as the tertiary DO loop index (after K). Also used as

the secondary array subscript or DO loop limit (after M) .

LB real Needed for EISPACK subroutine TRIDIB. LB is never referenced.
M integer Used as the primary array subscript or DO loop limit.
NG integer Used to count the number of good eigenpairs found at any

step. If this number is bigger than the number known pre­
viously (NGOOD) then all the good Ritz vectors are re-
computed.
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Name

NGOOD

NLEFT

NSTART

NTHETA

NUMBER

NV
PNORM

RNORM

Table 15. (Cont'd)

Type __________________________ Remarks__________________________

integer The number of good Ritz pairs currently known. Just before 
a restart, NGOOD is equal to the number of new eigenpairs 

which will become permanent vectors when the algorithm 
starts over.

integer The number of eigenvalues remaining to be found ( = NVAL - 
NPERM).

integer

integer

integer

integer
real

real

Set to the number of unacceptable vectors. This number is 
then used to construct the appropriate linear combination 

of these vectors for the new starting block if needed.
Set to the number of eigenvalues of T which are to be com­

puted. This is usually NLEFT+1 but may not be larger than 

J/2 to prevent any confusion with converging eigenvalues at 
the large end of the spectrum. If NTHETA=NLEFT+1, DELTA is 

updated and then NTHETA is set to NLEFT.

The actual number of vectors in VEC. (Equal to NPERM+NGOOD).
Set to MAXJ*(2*NBL0CK+1). Used as a parameter in calls to BANDV. 

Set to the largest eigenvalue (in absolute value) of the 

desired eigenvalues. Used instead of ANORM in evaluating 
the accuracy of the desired eigenvalues. Thus NFIG decimal 
digits of accuracy are obtained in the eigenvalues relative 

to themselves rather than to ANORM.
Set to the largest eigenvalue (in absolute value) of the 

permanent eigenpairs. Used in updating PNORM.
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Name

SINGL

SINGS

TEMP
TEST

THETA

THETG

TOLA

TOLG

Table 15. (Cont'd)

TyPe
real

real

real
logical

real

real

Remarks
Set to the 2-norm (largest singular value) of BET. Passed 
on to BNORM. Used in the update formulas for the T- 

recurrence.
Set to the smallest singular value of BET. Used in the up­
date formula for the T-recurrence.

Used as a temporary storage location.

Used as a flag in three places. TEST is .TRUE, if it is 
necessary to reorthonormalize the current Lanczos block. 
TEST is .TRUE, if a restart is necessary. Later TEST is 

modified to indicate that a restart is necessary and start­
ing vectors must be computed.

Computed as the eigenvalue of T of index NLEFT. If THETA 
is sufficiently accurate then all the desired eigenvalues 

are computed and examined.

Computed as the eigenvalue of T of index INDG. If THETG is 
found to be good all the desired eigenvalues are computed 
and examined.

real Set to UTOL*PNOEM (or RNORM). Used as the acceptance tol­
erance. An eigenpair (y,0) is acceptable if 

2min(p../ (6-0),g..) < TOLA , where g,. is the residual norm 
Ji Ji Ji

of the Ritz pair (y,0).
real Set to EPSRT*ANORM. Used to determine if an eigenpair is

good. An eigenpair is good if
0). . < TOLGji
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Table 15. (Cont'd)

Name Type Remarks

UB real

where is the orthogonality coefficient of the eigenpair

Needed for the EISPACK subroutine TRIDIB. UB is never

referenced.
UTOL real Set to max(N*EPS,10**(-NFIG)) used as the relative accept­

ability tolerance.

. 3 SEQUENCE BLOCKS

In reference to the listing of SNWLA given Appendix 2:

Table 16. Sequence Blocks

Sequence Numbers Remarks
10-1080 Initialize declarations and comments.

1090-1170 Initialize IURAND.

1180-1290 Initialize EPS.
1300-1410 Initialize other parameters.
1420-1580 Replace zero vectors in starting block by random

vectors.
1590-1650 Start the T-recurrence, if necessary.
1660-1710 Reset the Lanczos parameters. TEST is set to .TRUE.

to indicate that the starting block must be ortho-

normalized .
1720-3420 The Lanczos step.

1770 Update J.
1780-2010 Selective orthogonalization.
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Table 16. (Cont'd)

Sequence Numbers Remarks
2020-2250 Reorthonormalize the block and update BET.
2290 The call to OP.
2310-2320 The call to I0VECT.
2320-2540 Computation of P2 = P2 - P0*BET - P1*ALP.
2550-2680 Local reotthogonajiz; tion.
2690-2860 Store ALP and BET in T.
28?0*3000 Negate T if needed.
3010-3070 Shift the blocks and orthonormalize the newest one.
3080-3280 Compute the 2-norm of ALP and the largest and smal­

lest singular values of BET. Note that the EISPACK
version of SVD does not order the singular values.

3290-3420 Update the T-recurrence if needed.
3430-3540 On the first two steps only, don't examine any eigen­

values of T.

3550-4210 Compute and examine 2 eigenvalues of T to see if all
the desired eigenvalues should be examined.

3550-3660 Set some parameters.
3670-3740 Reduce T to tridiagonal form.
3750-3760 Check to see if a restart is needed.
3770-3870 Compute THETG and S the smallest nongood eigenpair

of T and the corresponding resi al norm and ortho­
gonality coefficient.

3880-4030 If NLEFT = 0 (check run) see if the check is suc­

cessful. A check run is successful if at least 6
steps have been taken and the residual norm interval
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Table 16. (Cont'd)

Sequence Numbers Remarks

around THETG does not extend to the left of the
accuracy interval around the largest permanent value.

That is the eigenvalue of A closest to THETG is

greater than or equal to the largest permanent value

to within the desired accuracy. On the other hand

if THETG is smaller than the largest permanent value
then the largest permanent value is thrown away,
NLEFT is set to 1 and the Lanczos run continues as

a "normal" run.

4040-4070 If NLEFT ^ 0 then the orthogonality coefficient is

examined to see if the eigenpair is now good. If it

4080-4210
is than all the desired eigenpairs are examined.

THETA and S, the (NLEFT)— smallest eigenpair is com­
puted along with the corresponding residual norm and
orthogonality coefficient. (Except that no exami­
nation is made if NLEFT > J/2 since examining eigen­

values from the wrong end of the spectrum can lead

to spurious results.) If this eigenvalue has changed

from the corresponding eigenvalue computed at the

previous step by less than one tenth of the desired

accuracy, then all the desired eigenpairs are computed 
and examined.
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Table 16. (Cont'd)

Sequence Numbers Remarks
4220-4680 This section computes min(NLEFT+1,J/2) eigenvalues

of T. If indicated NLEFT is updated. If NLEFT is
increased some permanent vectors are discarded,
all the good vectors are discarded (if any) and more

eigenvalues are computed. If possible DELTA is up­
dated. Then the corresponding residual norms and

orthogonality coefficients are computed.
4690-5130 This section examines the computed eigenpairs, first

to see whether all the computed eigenpairs are suf­

ficiently accurate and then to see if more good eigen­
pairs have been found. In either case it is necessary
to compute some Ritz vectors.

5140-5510 The previous section divided (using IND) the eigen­

vectors of T into two sets, namely those vectors
corresponding to Ritz vectors needed in their own

right and those needed only for constructing starting
vectors (or not at all). This section sorts the

eigenvectors of T so that the first set comes first.
5520-5800 If needed (TEST = .TRUE.) this section forms the

appropriate linear combinations of the second set of
vectors for forming starting vectors.

5810-5890 This stores the residual norms of the new permanent

vectors (if any) in RES for use in the T-recurrence.
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Sequence Numbers

5900-6290

6300-6430

6450-6720

6730-6750
6760-7150

7160-7330

7340-7480

7480

7490-7640

Table 16 (Cont'd)

Remarks

This forms the Ritz vectors (including the starting 

vectors) by sequentially recalling the Lanczos vectors. 

This resets the T-recurrence if the algorithm is not 
starting over.

This sorts the permanent vectors.

This updates NPERM, NLEFT, and RNORM.
This orthonormalizes the permanent vectors ordered 

by increasing residual norm.

This section decides whether to start over or whether 
to terminate.
This section sets RARITZ to .TRUE, if too large a 

cluster of eigenvalues was found.
Normal exit.

This sets various error conditions before exiting.

8. SNPPLA

SNPPLA post processes the eigenpairs computed by SNWLA. If needed a final 
Rayleigh-Ritz procedure is performed on the eigenvectors. Then the Rayleigh 

quotients and residual norms are computed. Finally the accuracy estimates are 
computed.

8.1 THE CALLING SEQUENCE

SUBROUTINE SNPPLA(OP,I0VECT,N,NPERM,NOP,NMVAL,VAL,NMVEC,VEC,NBLOCK,H,P,

0, DELTA,SMALL,RARITZ,IERR).
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Table 17. The Calling Sequence

Name Type Dimension Classification Remarks

OP external - SI Forms matrix vector products.

IOVECT external — I Needed only for Rayleigh-Ritz

procedure.

N integer scalar SI Dimension of the matrix.

NPERM integer scalar SI The number of eigenvectors.

NOP integer scalar SI-SO The cumulative number of calls
to OP.

NMVAL integer scalar SI The row dimension of VAL.

VAL real NMVAL*4 SO The eigenvalues and accuracy
estimates.

NMVEC integer scalar SI The row dimension of VEC.

VEC real NMVEC*NPERM SI-0 The eigenvectors, which are modi­
fied only if a Rayleigh-Ritz

procedure is computed.
NBLOCK integer scalar SI The blocksize. Used to minimize

the number of calls to OP.
H real NPERM*NPEEM w Holds the reduced matrix in the

Rayleigh-Ritz procedure.
P real N*BLOCK w Used for forming block matrix

vector products.

Q real N*BLOCK w Used for forming block matrix
vector products
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Table 17. (Cont’d)

Name Type Dimension Classification _____________ Remarks_____________
DELTA real scalar SI-0 Input as the eigenvalue of A

closest to the desired eigenvalues. 

If SMALL is .FALSE. DELTA must be
negated to account for the fact 

that SNWLA was implicitly using -A 

as the matrix.
SMALL logical scalar

RARITZ logical scalar

IERR integer scalar
only to indicate a failure of an 
EISPACK subroutine (IMTQL2).

SI SMALL is .TRUE, if the leftmost
eigenvalues are desired.

SI RARITZ is .TRUE, if a Rayleigh-

Ritz procedure is needed.

1-0 The error indicator. Used here

Note that the workspaces P and Q are needed to form block matrix vector 
products since the array VEC has row dimension NMVEC instead of N and the sub­
routine OP assumes a row dimension of N.

8.2 INTERNAL VARIABLES

Table 18. Internal Variables

Name Type __________________________ Remarks___________________________

I integer Primary DO loop index.

IER integer Error completion code in a call to IMTQL2. A nonzero com­

pletion is almost impossible. If it occurs the code sets IERR
to -3 and exits.
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Table 18. (Cont'd)

Name Type Remarks

J integer Secondary DO loop index.
K integer Tertiary DO loop index.

L integer Array subscript.

M integer DO loop limit.

TEMP real Temporary storage. In the Rayleigh-Ritz procedure TEMP is
used to negate the matrix H when SMALL = .FALSE. This forces

IMTQL2 to return the eigenvectors sorted in the appropriate
order.

8.3 SEQUENCE BLOCKS
In reference to the listing of SNPPLA given in Appendix 2

Table 19. Sequence Blocks

Sequence Numbers Remarks
10-200 Initial declarations and comments.
210-770 Construction of the reduced matrix H needed in the

Rayleigh-Ritz procedure. The initial eigenvectors
are stored by calls to IOVECT.

780-910 Spectral decomposition of H using EISPACK subroutines.

920-1280 Formation of the Ritz vectors (improved eigenvectors)

as linear combinations of the original eigenvectors.

1290-1720 Computation of the Rayleigh quotient and residual norms

of the eigenvectors.

1730-1870 Computation of the accuracy estimates and exit.
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9. INTERVAL TYPE PROBLEMS

In this chapter we discuss the differences between SNLASO, SNWLA, and 

SNPPLA discussed earlier and SILASO, SIWIA, and SIPPLA which solve interval 

type problems.

9.1 PROBLEM DEFINITION

For interval type problems the user specifies XL and XR the left and right 

endpoints of the excluded interval and SILASO is supposed to find all the 

eigenvalues of the given matrix A outside the excluded interval. Thus it is 

necessary to examine eigenvalues at both ends of the spectrum of T. Furthermore 

problems occur if an eigenvalue of A lies pathologically close to one of the 

endpoints. For numerical reasons alone it is impossible to specify as sharp a 
boundary as the variables XL and XR suggest. Instead it is necessary to intro­
duce a fuzzy region around each endpoint related to the desired accuracy in the 
eigenvalues. An eigenvalue which equals XL to the desired accuracy should be 
returned to the user even if computing it to working accuracy might disclose 
that it actually lies inside the excluded interval.

However while the eigenvector is returned to the user, the eigenvalue is 
explicitly set to the boundary so that all the returned eigenvalues do lie 

outside the excluded interval. Any such eigenpairs are marked to indicate that 

the returned eigenvalue is not the Rayleigh quotient of the eigenvector.
In the following sections we indicate the differences in the subroutines.

9.2 SILASO

9.2.1 The Calling Sequence

SUBROUTINE SILASO(OP,IOVECT,N,XL,XR,NFIG,NPERM,NMVAL,VAL,NMVEC,MAXVEC,

VEC,NBLOCK,MAXOP,MAXJ,WORK,IND,IERR).



56

Table 20. The Calling Sequence

Name Type Dimension Classification Remarks

tiki Not needed by SILASO.

XL real scalar SI Left endpoint.

XR real scalar SI Right endpoint.

MAXVEC Integer scalar SI The column dimension of VEC. The

maximum number of Ritz vectors which

can be stored.

9.2.2 Internal Variables

Table 20. Internal Variables

Name Type Remarks

mu Replaced by DELTAL and DELTAR.

DELTAL real Returned from SIWLA as the excluded eigenvalue closest to
XL. Used in SIPPLA to compute the accuracy estimates.

DELTAR real Returned from SIWLA as the excluded eigenvalue closest to XR.

Used in SIPPLA to compute the accuracy estimates.

NP integer Set to NPERM and passed to SIPPLA. NP is used to dimension

arrays in SIPPLA. This legalizes changing the value of NPERM 
which may be necessary in SIPPLA. 

jGV Not used.

mtt Not used.
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9.2.3 Other Changes
In examining user supplied eigenpairs, SILASO will abort (IERR = -4) if 

a user supplied eigenvalue is inside the excluded interval.

9.3 SIWLA

There are two major differences between SIWLA and SNWLA. Since eigenvalues 

at both ends of the spectrum of A are of interest, SIWLA must examine both ends 
of the spectrum of T at each step. Also the termination criterion for SIWLA 

is rather different than for SNWLA. SIWLA must continue until the most extreme 

excluded eigenvalues have settled down enough to know that they are not going 
to drift into the desired region. Thus the first eigenvalues computed at each 

step are DELTAL and DELTAR, the most extreme excluded eigenvalues (of T). Only 
if their residual norm intervals do not overlap the boundary are the desired 
eigenvalues investigated to see if they are acceptable. Finally the most ex­
treme non good eigenvalues are examined to see if a new good Ritz vector must 
be computed.

9.3.1 Calling Sequence

SUBROUTINE SIWLA(OP,IOVECT,N,XL,XR,NFIG,NPERM,VAL,NMVEC,MAXVEC,VEC,NBLOCK, 
MAXOP,MAXJ,NOP,PO,PI,P2,RES,TAU,OTAU,T.ALPHA,BETA,BETA2,ALP,BET,RV,RV6,S,IND, 
RARITZ,DELTAL,DELTAR,IERR).

Table 21. The Calling Sequence

Name Type Dimension Classification Remarks
MU Not needed.
MAXVEC integer scalar SI The column dimension of VEC.

tVtUl Not needed.

MttA Replaced by DELTAL and DELTAR.
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Table 21. (Cont'd)

Name Type Dimension Classification Remarks

DELTAL real scalar SO Smallest excluded eigenvalue.
DELTAR real scalar SO Largest excluded eigenvalue.

9.3.2 Internal Variables

Table 22. Internal Variables

Name TyPe Remarks

AXL real XL perturbed (to the right) by the desired accuracy. Thus
any eigenvalue to the right of AXR is known to be not wanted.

AXR real XR perturbed (to the left) by the desired accuracy.
DONE logical A flag set to .TRUE, when DELTAL and DELTAR have settled down

tMUt Replaced by DONE.
INDAL integer The index of DELTAL in T.
INDAR integer The index of DELTAR in T.

twt Replaced by INDGL and INDGR.
INDGL integer The index of THETGL in T.

INDGR integer The index of THETGR in T.

titn Not needed.

NUML integer The number of eigenvalues of T less than AXL.
NUMR integer The number of eigenvalues of T greater than AXR.

tMU- Not needed.

Not needed.

tuu Replaced by THETAL and THETAR.
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Table 22. (Cont'd)

Name Type Remarks

THETAL real The largest desired eigenvalue of T less than AXL (of index

INDAL-1).

THETAG real The smallest desired eigenvalue of T greater than AXR (of

index INDAR+1).
tttti Replaced by THETGL and THETGR.

THETGL real The smallest non good eigenvalue (of index INDGL in T).

THETGR real The largest non good eigenvalue ( of index INDGR in T).
TOLA real Set to UT0L*max (XR, -XL) and used as the acceptability

criterion.

9.3.3 Other Changes
The necessity of determining which side of the boundary an eigenvalue lies 

leads to two additional IERR codes. If J = MAXJ is reached when no desired 

eigenvalues are found but DELTAL or DELTAR has not settled down then IERR is 

set to -5. If NOP = MAXOP occurs in the same situation then IERR is set to 
-6. In either case the vectors corresponding to DELTAL and DELTAR are put in 
the starting block (as they are anytime the algorithm starts over) so that 
SILASO can be immediately recalled to continue working on the problem.

Furthermore, if more than MAXVEC eigenvalues are found it is necessary to 

stop. All acceptable eigenvectors are computed and the rest are put in the 
starting block. 100* (the number of surplus eigenvalues) is subtracted from

IERR to indicate this result.
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9.4 SIPPLA
The major difference between SIPPLA and SNPPLA is that SIPPLA must examine 

the eigenvalues to see if any of them lie inside the excluded interval. If an 

eigenvalue's residual norm interval ([0^ - + 3^1) lies entirely inside

the excluded interval, that eigenvalue is deleted (and the appropriate DELTA 
is redefined). If the residual norm interval overlaps the boundary then three 

changes are made. The eigenvalue is set equal to the boundary, the residual 

norm is recomputed and made negative, and 10 is subtracted from IERR. If ten 
or more such eigenvalues occur than IERR will be misleading since IERR ^ -100 

usually indicates that too many eigenvalues where found but this is quite 
unlikely.

9.4.1 Calling Sequence

SUBROUTINE SIPPLA(OP,IOVECT,N,XL,XR,NP.NPERM,NOP,NMVAL,VAL,NMVEC,VEC,NBLOCK 
H,P,Q,DELTAL,DELTAR,RARITZ,IERR).

Table 23. The Calling Sequence

Name TyPe Dimension Classification Remarks
XL real scalar SI Left endpoint.
XR real scalar SI Right endpoint.
NP integer scalar SI Equal to NPERM. Used to dimension

arrays.
NPERM integer scalar SI-0 May change value.
tttn Replaced by DELTAL and DELTAR.
DELTAL real scalar SI-0 Smallest excluded eigenvalue.
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Table 23. (Cont'd)

Name Type Dimension Classification Remarks

DELTAR real scalar SI-0 Largest excluded eigenvalue.

Not needed.

9.4.2 Internal Variables 

No changes.
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SNLASO/DNLASO

A FORTRAN IV subroutine for determining a few eigenvalues and 
eigenvectors at one end of the spectrum of a large sparse sym­
metric matrix. SNLASO is in single precision and DNLASO is in 
double precision. This documentation explicitly describes 
SNLASO. For DNLASO all subroutine' and function names start with 
D instead of S (except SVD) and all floating point variables are 
double precision.

David S. Scott
Union Carbide Corporation, Nuclear Division 

Oak Ridge, TN 37830 
July, 1979

1. Purpose

The FORTRAN IV subroutine SNLASO determines a few eigenvalues 
and eigenvectors at one end of the spectrum of a large sparse 
symmetric matrix, hereafter called A. SNLASO uses the block 
Lanczos algorithm with selective orthogonalization to compute 
Rayleigh-Ritz approximations to eigenpairs of A.

2. Usage
A. Calling sequence.

The subroutine statement is

SUBROUTINE SNLASO (OP, IOVECT, N, NVAL, NFIG, NPERM,
NMVAL, VAL, NMVEC, VEC, NBLOCK, MAXOP, MAXJ, WORK, IND, 
IERR)

On input:
OP specifies a user supplied subroutine for

entering information about the matrix A 
with calling sequence 0P(N,M,P,Q). See 
section B. for further information.

IOVECT specifies a user supplied subroutine for
storing and recalling vectors with calling 
sequence IOVECT (N,M,Q,J,K). See section
B. for further information.

N specifies the dimension of the matrix.
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NVAL

NFIG

NPERM

NMVAL

VAL

NMVEC

VEC

NBLOCK

MAXOP

MAXJ

specifies which eigenvalues are desired, 
abs (NVAL) eigenvalues are to be found.
If NVAL < 0 the algebraically smallest 
(leftmost) are found while if NVAL > 0 
the algebraically largest (rightmost) 
are found. NVAL must not be zero.
specifies the number of decimal digits of 
accuracy desired in the eigenvalues.

is an integer variable specifying the 
number of eigenpairs presupplied by the 
user. In most cases NPERM will be zero.
See section H. for information on using 
NPERM > 0. NPERM must not be less than 
zero.
specifies the row dimension of the real 
array VAL. NMVAL must be greater than or 
equal to abs (NVAL).

is a two dimensional real array with NMVAL 
rows and at least four columns. If NPERM > 0 
on input, VAL must contain certain informa­
tion. See section H. for details.
specifies the row dimension of the real 
array VEC. NMVEC must be greater than or 
equal to N.

is a two dimensional real array with NMVEC rows 
and at least abs (NVAL) columns. If NPERM > 0 
on input VEC must contain certain information. 
See section H. for details.

specifies the number of vectors in each Lanczos 
block. See section F. for guidelines in choos­
ing a value for NBLOCK. NBLOCK must be greater 
than zero and less than or equal to MAXJ/6.

specifies an upper bound on the number of calls 
to the subroutine OP. SNLASO terminates when 
this maximum is reached. See section G. for 
guidelines in choosing a value for MAXOP.
specifies an indication of the available storage 
see WORK in this section and IOVECT in section B 
The larger the value of MAXJ the faster the con­
vergence rate of the algorithm. However, there 
is no advantage in having MAXJ > MAX0P*NBL0CK. 
MAXJ must not be less than 6* NBLOCK.
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WORK is a one dimensional real array at least as 
large as
NBLOCK*(3*N + 2*NBL0CK) + MAXJ* (3*NBL0CK + 
abs(NVAL) + 6) + 3*abs(NVAL)
used for workspace. The first N*BLOCK elements 
of work must contain the starting vectors for 
the algorithm. See section E. for details.

IND is an integer array of dimension at least

abs (NVAL),
used for workspace.

IERR is an integer variable.
On output:

NPERM is the number of eigenpairs now known.

VAL contains information about the eigenpairs.
The first column of VAL contains the eigen­
values, ordered from the most extreme one 
inward. The second, third, and fourth 
columns of VAL contain information on the 
accuracy of the eigenvalues and eigenvectors. 
See section D. for details.

VEC contains the corresponding eigenvectors.

WORK if IERR / 0, the first N*BL0CK elements 
of WORK will contain vectors for restarting 
the algorithm. See section E. for details.

IND (1) contains the actual number of calls to the 
subroutine OP. In some circumstances this
may be slightly larger than MAXOP

IERR is an error completion code. The normal 
completion code is zero. See section C. 
for the interpretation of non-zero comple­
tion codes.

B. User supplied subroutines.

The two user supplied subroutines must be declared 
EXTERNAL in the calling program and must conform as 
follows:

OP (N,M,P,Q). P and Q are N x M real arrays. Q 
should be returned as AP where A represents the 
matrix whose eigenpairs are to be determined.
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M will never be larger than NBLOCK but it may be 
smaller. This subroutine is the only way in which 
the matrix enters the calculation, so the user is 
free to take advantage of any sparsity structure 
in the matrix. The user should adequately test 
the subroutine OP because SNLASO has no way of de­
tecting errors made in OP.

IOVECT (N,M,Q,J,K). Q is an N x M real array. M will 
never be larger than NBLOCK but it may be smaller. IOVECT 
is used to store Lanczos vectors as they are computed and 
to periodically recall all the currently stored Lanczos 
vectors. If K = 0 then the M columns of Q should be stored 
as the (J - M + 1) _th through the J th Lanczos vectors.
If K = 1 then the columns of Q should be returned as the 
(J - M + 1) th through the J _th Lanczos vectors which were 
previously stored.

The Lanczos vectors are computed sequentially. They are 
stored by calls to IOVECT with K = 0 and increasing values 
of J up to some internally derived value J = I which sig­
nals a pause. These vectors are then recalled by calls 
to IOVECT with K = 1 and the same sequence of J values.
The first J value of any sequence is equal to M. After the 
pause more Lanczos vectors are computed and these are 
stored by calls to IOVECT with K = 0 and J values greater 
than I until the next pause at which time all the Lanczos 
vectors currently stored are recalled with calls to IOVECT 
with K = 1 and J = M, ...

After any pause the algorithm may discard the current 
Lanczos vectors and start a new sequence of Lanczos 
vectors by a call to IOVECT with K = 0 and J = M. At 
subsequent pauses only the current sequence of Lanczos 
vectors is recalled. In solving a problem SNLASO may pause 
many times and discard the previous Lanczos vectors 
several times before converging to the final solution.
The largest value to J which can appear in a call to IOVECT 
is J = MAXJ.

We give two examples for IOVECT. The first example requires 
that logical unit 20 be assigned to a secondary storage 
medium.

SUBROUTINE IOVECT (N,M,Q,J,K)
INTEGER N,M,J,K,I,L 
DIMENSION Q(N,M)
IF (J.EQ.M) Rewind 20
IF (K.EQ.O) Write (20) ((Q(I,L), I = 1,N), L = 1,M)
IF (K.EQ.l) Read (20) ((Q(I,L), I = 1,N), L = 1,M)
RETURN
END

The Lanczos vectors can also be kept in fast store. In this 
example we assume that N < 100 and MAXJ < 50.
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SUBROUTINE IOVECT (N,M,Q,J,K) 
INTEGER N,M,J,K,I,L,L1 
DIMENSION Q(N,M)
COMMON QVEC (100,50)
IF (K. EQ. 1) GO TO 30 
DO 20 L = 1,M 

LI = J - M + L 
DO 10 I = 1,N

QVEC (I,LI) = Q(I,L)
10 CONTINUE
20 CONTINUE

RETURN
30 DO 50 L = 1, M

LI = J - M + L 
DO 40 I = 1, N 
Q (I,L) = QVEC (I, LI)

40 CONTINUE
50 CONTINUE

RETURN 
END

C. ERROR completion codes.
IERR = 0 indicates a normal completion. abs (NVAL) eigenpairs 
have been determined. See section D. for the information returned.
IERR > 0 and IERR < 1024 indicates that some inconsistency in the 
calling parameters was discovered and no computation was performed.

1-bit is set if N < 6*NBL0CK
2-bit is set if NFIG < 0
4-bit is set if NMVEC < N
8-bit is set if NPERM < 0

16-bit is set if MAXJ < 6*NBL0CK
32-bit is set if abs (NVAL) < max (1,NPERM)
64-bit is set if abs(NVAL) > NMVAL

128-bit is set if abs(NVAL) > MAXOP
256-bit is set if abs(NVAL) > MAXJ/2
512-bit is set if NBLOCK < 1

Thus IERR can be decoded to determine the errors. For example, IERR = 68 
indicates both NMVEC < N and abs(NVAL) > NMVAL. IERR may take on any value 
between 1 and 1023 indicating all combinations of the above conditions.

IERR =-1 can occur only if NPERM > 0 on input. It indicates that 
either some user supplied eigenvector was zero or that significant 
cancellation occured when the user supplied vectors were orthogonal- 
ized. Some modification of the user supplied eigenvectors will have 
occurred but no other computation will have been done.
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IERR = -2 indicates that MAXOP calls to the subroutine OP occurred 
without finding the desired eigenvalues. Partial information is 
returned in this case, see section G. When IERR =-2, the first 
N*NBLOCK elements of work contain the best vectors for restart­
ing the algorithm. Thus SNLASO may be immediately recalled to 
continue working on the problem

IERR = -3 indicates a non-zero error completion code was encountered 
after a call to an EISPACK subroutine. EISPACK is a certified sub­
routine package. Errors are due to improper inputs. The follow­
ing is a list of possible causes for an IERR = -3 completion:

1. Improper calling sequence for SNLASO.
2. Insufficient storage in the array WORK.
3. Mixture of single and double precision.
4. Improper version of EISPACK for the machine used.

IERR = -8 indicates that disastrous loss of orthogonality occurred. 
Usually due to errors in the user supplied subroutines OP or IOVECT.

D. Information returned when IERR = 0.

IERR = 0 indicates that the desired eigenpairs have been found. The 
eigenvalues are in the first column of VAL. If NVAL < 0 the eigen­
values are in ascending order (smallest at the top) while if NVAL > 0 
the eigenvalues are in descending order. The corresponding orthonormal 
eigenvectors are in the first abs(NVAL) columns of VEC. The second 
column of VAL contains the residual norms (=11 Ay^-y^ 0^11 for the
eigenvalue 0_^ and its associated eigenvector y.) which are bounds on 
the accuracy of the eigenvalues.
In most cases the residual norm is a gross underbound on the accuracy 
of an eigenvalue. To obtain a more realistic estimate, the program 
remembers 6, its best estimate of the eigenvalue of the matrix which 
is closest to the desired eigenvalues. The third column of VAL is 
set to p?/abs(0^-6) which is a much more realistic estimate of
accuracy of the eigenvalues. The fourth column of VAL contains 
p^/abs(0^-6) which estimates the accuracy of the eigenvectors.

If the user has supplied some eigenpairs of the matrix, it is possible 
that some of these eigenpairs have been discarded in favor of eigen­
pairs computed by the algorithm. (See section H. for additional 
information.)

E. Choosing the starting vectors.

SLASO requires NBLOCK starting vectors to be stored in the first 
N*NBL0CK elements of the array WORK. Zero vectors are replaced 
by randomly chosen vectors so that a set of random starting vectors 
may be selected by simply initializing the first N*NBL0CK elements 
of WORK to zero. However, convergence is enhanced if the starting 
vectors are chosen to have large components in the directions of 
the desired eigenvectors. Therefore, if the user knows approximat­
ions to the desired eigenvectors he should choose his starting 
vectors as linear combinations of these approximations.
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If some of the desired eigenpairs are already known to sufficient 
accuracy, it is possible to avoid having SNLASO recompute these 
eigenpairs. See section H. for details.

F. Choosing a value for NBLOCK.
NBLOCK specifies the number of vectors in each block of Lanczos 
vectors. Two factors may favor a large value for NBLOCK. The 
convergence of the algorithm is faster if NBLOCK is larger than 
the largest multiplicity of eigenvalues among the desired eigen­
values. For instance if a desired eigenvalue has multiplicity 
two, then NBLOCK equal to three or more is best. Even more import­
ant in some cases, if the matrix is stored on disk and brought in 
a slice at a time to form the matrix vector product then a large 
value of NBLOCK will lower the number of calls to OP and hence 
the number of disk accesses. On the other hand the number of vector 
inner products needed for each Lanczos step is a quadratic function 
of NBLOCK. Furthermore, the convergence of the algorithm is de­
graded if NBLOCK > t/MAXJ. In conclusion if the matrix multiply is 
inexpensive a small value of NBLOCK (2 or 3) is best while if the 
matrix multiply is expensive larger values of NBLOCK are to be pre­
ferred. NBLOCK = 1 is recommended only if abs(NVAL) = 1 as well.

G. Choosing a value for MAXOP

SNLASO is an iterative procedure. The user may limit the effort by 
SNLASO on a given problem by choosing a value for MAXOP. If more 
than MAXOP calls to the subroutine OP are needed to solve the given 
problem, then SNLASO will terminate at that point and set IERR = -2.
If cost is not a factor and the subroutine OP is known to be reliable 
MAXOP should be set to N/NBLOCK. Choosing MAXOP much less than 
abs(NVAL) /N/NBLOCK and repeatedly recalling SNLASO will delay con­
vergence of the algorithm. Setting MAXOP < abs(NVAL) is not allowed 
while setting MAXOP < MAXJ/NBLOCK will waste the storage indicated 
by MAXJ.

H. Setting NPERM > 0.

SNLASO allows known eigenpairs to be input directly so that they 
need not be recomputed. The first column of VAL must contain the 
eigenvalues (in any order) and the second column of VAL must contain 
the residual norms (II Ay^-y^0 J| , for the eigenpair 9^7^) • The co-
rect order of magnitude is sufficient. Columns 3 and 4 of VAL are 
arbitrary. The first NPERM columns of VEC must contain the eigen­
vectors (which will be orthonormalized by SNLASO). The eigenvectors 
associated with VAL(I,1) must be in the I th column of VEC.
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The user supplied eigenvalues are counted toward the number 
of desired eigenpairs and so NPERM must be less than or equal 
to abs(NVAL). If in the course of the computation it appears 
that a user supplied eigenpair is not one of the desired eigen­
pairs, it will be discarded. In particular if NPERM = abs(NVAL), 
the algorithm will either confirm that the supplied eigenpairs 
are indeed the desired eigenpairs or it will discard one or more 
in favor of newly computed eigenpairs.

3. Applicability and Restrictions

SNLASO is designed to find a few extreme eigenpairs of a large sparse 
symmetric matrix. For small dense matrices the subroutines provided 
in EISPACK are to be preferred. It is not necessary for the matrix 
to be explicitly represented. It is only necessary to provide a sub­
routine OP to compute matrix-vector products. For example, consider 
the generalized eigenvalue problem (A - AM)x = 0 where M is positive

T -1 -Tdefinite and can be factored as LL . The matrix L AL can be implic­
itly coded in OP as a triangular solve, a matrix multiply, and 
another triangular solve. Thus a generalized eigenproblem can 
be reduced to a standard eigenproblem without the cost of explic- 

-1 -Titly forming L AL . More complex operators can also be handled 
efficiently.

SNLASO calls a number of subsidiary functions and subroutines, namely:

SNWLA which implements the block Lanczos algorithm with selective orthogonalization.

SNPPLA which post processes the output of SNWLA.

SMVPC which computes residual norms and orthogonality 
coefficients.

SORTQR which orthonormalizeS a block of vectors.
SVZERO which zeroes a given vector.
URAND, a FORTRAN IV random number generator given in 
Forsythe, Malcolm, and Moler [6].
BANDR, BANDV, IMTQL1, IMTQL2, SVD, TRED1, TRED2, and TRIDIB, 
which are EISPACK Subroutines ([3], [4]).

SAXPY, SCOPY, SDOT, SNRM2, SSCAL and SSWAP which are subset of 
the BLAS (Basic Linear Algebra Subprograms) written by Lawson, 
et. al [7] and modified by Dongarra, et. al [8] for use in 
LINPACK. If the BLAS are available in assembly language they 
should be used in place of the FORTRAN IV source code provided

The user must not use any of the above names in his driver program.
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4* Discussion of method and algorithm.

The Lanczos algorithm is an efficient scheme for computing a
series of vectors q , q , ... q. which form an orthonormal 

i 2 1
basis for the Krylov subspace, span (q , Aq ,..., A'' ^q ).

i l l

At each step of the algorithm the Krylov subspace grows 
larger and one more Lanczos vector is added to the list. The 
Lanczos algorithm can be interrupted at any step and the 
Rayleigh-Ritz approximations to eigenpairs of A can be derived 
from the Krylov subspace quite easily. Thus the algorithm need 
only continue until the desired approximations a sufficiently 
accurate.
The block Lanczos algorithm (as described in detail by Underwood
[5] ) replaces each vector in the simple Lanczos algorithm by an 
orthonormal block of vectors. Block Lanczos has theoretical 
advantages over simple Lanczos with respect to finding multiple 
eigenvalues and has advantages in efficiency if the cost of 
forming a matrix-vector product is high.
Unfortunately finite precision arithmetic causes the vectors com­
puted by the Lanczos algorithm (both simple and block) to lose 
orthogonality and approach linear dependence. To maintain robust 
independence among the Lanczos vectors, SNLASO augments the 
algorithm with selective orthogonalization which causes some of 
the Lanczos vectors to be orthogonalized against a few selected 
Ritz vectors, as described in [l] and [2],

The algorithm is terminated when the desired Ritz values are suffic­
iently accurate. If necessary, SNLASO then makes another Lanczos 
run to test for undisclosed multiplicities. Finally in some cases, 
SNLASO performs a Rayleigh-Ritz procedure on the determined eigenvalues 
to resolve any clusters.
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SILASO/DILASO

A FORTRAN IV subroutine for determining all the eigenvalues and eigen­
vectors of a large sparse symmetric matrix outside a user defined 
excluded interval. SILASO is in single precision and DILASO is in 
double precision. This documentation explicitly describes SILASO. For 
DILASO all subroutine and function names start with D instead of S 
(except SVD) and all floating point variables are double precision.

David S. Scott
Union Carbide Corporation, Nuclear Division 

Oak Ridge, TN 37830 
July, 1979

1. Purpose
The FORTRAN IV subroutine SILASO determines all the eigenvalues 
and eigenvectors of a large sparse symmetric matrix, hereafter 
called A, outside a user defined excluded interval. SILASO 
uses the block Lanczos algorithm with selective orthogonalization 
to compute Rayleigh-Ritz approximations to the eigenpairs of A.

2. Usage
A. Calling sequence.

The subroutine statement is

SUBROUTINE SILASO (OP, IOVECT, N, XL, XR, NFIG, NPERM,
NMVAL, VAL, NMVEC, MAXVEC, VEC, NBLOCK, MAXOP, MAXJ, 
WORK, IND, IERR)

On input:
OP specifies a user supplied subroutine for

entering information about the matrix A 
with calling sequence 0P(N,M,P,Q). See 
section B. for further information.

IOVECT specifies a user supplied subroutine for
storing and recalling vectors with calling 
sequence IOVECT (N,M,Q,J,K). See section 
B. for further information.

N specifies the dimension of the matrix.

XL specifies the left endpoint of the excluded
interval.
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XR specifies the right endpoint of the excluded 
interval.

NFIG specifies the number of decimal digits of 
accuracy desired in the eigenvalues.

NPERM is an integer variable specifying the 
number of eigenpairs presupplied by the 
user. In most cases NPERM will be zero.
See section H. for information on using
NPERM > 0. NPERM must not be less than
zero.

NMVAL specifies the row dimension of the real 
array VAL. NMVAL must be greater than or 
equal to MAXVEC,

VAL is a two dimensional real array with NMVAL 
rows and at least four columns. If NPERM > 0 
on input, VAL must contain certain informa­
tion. See section H. for details.

NMVEC specifies the row dimension of the real 
array VEC. NMVEC must be greater than or 
equal to N.

MAXVEC specifies the maximum number of eigenpairs 
which can be determined. MAXVEC must not 
exceed the column dimension of the array VEC.

VEC is a two dimensional real array with NMVEC rows 
and at least MAXVEC columns. If NPERM > 0 
on input VEC must contain certain information. 
See section H. for details.

NBLOCK specifies the number of vectors in each Lanczos 
block. See section F. for guidelines in 
choosing a value for NBLOCK. NBLOCK must be 
greater than zero and less than or equal to 
MAXJ/6.

MAXOP specifies an upper bound on the number of calls 
to the subroutine OP. SILASO terminates when 
this maximum is reached. See section G. for 
guidelines in choosing a value for MAXOP.
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MAXJ specifies an indication of the available stor­
age, see WORK in this section and IOVECT in 
section B. The larger the value of MAXJ the 
faster the convergence rate of the algorithm. 
However, there is no advantage in having
MAXJ > MAXOP*NBLOCK. MAXJ must not be less 
than 6* NBLOCK.

WORK is a one dimensional real array at least as 
large as
NBLOCK*(3*N + 2*NBL0CK) + MAXJ* (3*NBL0CK + 
MAXVEC + 6) + 3*MAXVEC)
used for workspace. The first N*BLOCK ele­
ments of work must contain the starting vectors 
for the algorithm. See section E. for details.

IND is an integer array of dimension at least

MAXVEC ,
used for workspace.

IERR is an integer variable.

On output:

NPERM is the number of eigenpairs now known.

VAL contains information about the eigenpairs.
The first column of VAL contains the eigen­
values, ordered from the leftmost to the 
right. The second, third, and fourth 
columns of VAL contain information on the 
accuracy of the eigenvalues and eigenvectors. 
See section D. for details.

VEC contains the corresponding eigenvectors.

WORK if IERR ^ 0, the first N*BL0CK elements of
WORK will contain vectors for restarting 
the algorithm. See section E. for details.

IND (1) contains the actual number of calls to the 
subroutine OP. In some circumstances this 
may be slightly larger than MAXOP.

IERR is an error completion code. The normal com­
pletion code is zero. See section C. for the 
interpretation of non-zero completion codes.
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B. User supplied subroutines.

The two user supplied subroutines must be declared 
EXTERNAL in the calling program and must conform as 
follows:

OP (N,M,P,Q). P and Q are N x M real arrays. Q should 
be returned as AP where A represents the matrix whose 
eigenpairs are to be determined. M will never be larger 
than NBLOCK but it may be smaller. This subroutine is 
the only way in which the matrix enters the calculation, 
so the user is free to take advantage of any sparsity 
structure in the matrix. The user should adequately 
test the subroutine OP because SILASO has no way of de­
tecting errors made in OP.

IOVECT (N,M,Q,J,K). Q is an N x M real array. M will 
never be larger than NBLOCK but it may be smaller. IOVECT 
is used to store Lanczos vectors as they are computed and 
to periodically recall all the currently stored Lanczos 
vectors. If K = 0 then the M columns of Q should be stored 
as the (J - M + 1) th through the J th Lanczos vectors 
which were previously stored.

The Lanczos vectors are computed sequentially. They are 
stored by calls to IOVECT with K = 0 and increasing values 
of J up to some internally derived value J = I which sig­
nals a pause. These vectors are then recalled by calls 
to IOVECT with K = 1 and the same sequence of J values.
The first J value of any sequence is equal to M. After the 
pause more Lanczos vectors are computed and these are 
stored by calls to IOVECT with K = 0 and J values greater 
than I until the next pause at which time all the Lanczos 
vectors currently stored are recalled with calls to IOVECT 
with K = 1 and J = M, ...

After any pause the algorithm may discard the current 
Lanczos vectors and start a new sequence of Lanczos 
vectors by a call to IOVECT with K = 0 and J = M. At 
subsequent pauses only the current sequence of Lanczos 
vectors is recalled. In solving a problem SILASO may 
pause many times and discard the previous Lanczos vectors 
several times before convergint to the final solution.
The largest value to J which can appear in a call to IOVECT 
is J - MAXJ.

We give two examples for IOVECT. The first example 
requires that logical unit 20 be assigned to a secondary 
storage medium.
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SUBROUTINE IOVECT (N,M,Q,J,K)
INTEGER N,M,J,K,I,L 
DIMENSION Q(N,M)
IF (J.EQ.M) REWIND 20
IF (K.EQ.O) WRITE (20) ((Q(I,L), I = 1,N), L = 1,M)
IF (K.EQ.l) READ (20) ((Q(I,L), I = 1,N), L = 1,M)
RETURN
END

The Lanczos vectors can also be kept in fast store. In 
this example we assume that N ^ 100 and MAXJ ^ 50.

SUBROUTINE IOVECT (N,M,Q,J,K) 
INTEGER N,M,J,K,I,L,L1 
DIMENSION Q(N,M)
COMMON QVEC (100,50)
IF (K.EQ.l) GO TO 30 
DO 20 L = 1,M 
LI = J - M + L 
DO 10 I = 1,N 
QVEC (I,LI) = Q(I,L)

10 CONTINUE 
20 CONTINUE 

RETURN
30 DO 50 L = 1,M 

LI = J - M + L 
DO 40 I = 1,N 
Q(I,L) = QVEC (I,LI)

40 CONTINUE 
50 CONTINUE 

RETURN 
END

C. Error completion codes.

IERR = 0 indicates a normal completion. NPERM eigenpairs 
have been determined. See section D. for the information 
returned.
IERR > 0 and IERR < 1024 indicates that some inconsistency 
in the calling parameters was discovered and no computation 
was performed.

1-bit is set if N < 6* NBLOCK
2-bit is set if NFIG < 0
4-bit is set if NMVEC < N
8-bit is set if NPERM < 0

16-bit is set if MAXJ < 6*NBL0CK
32-bit is set if MAXVEC < NPERM
64-bit is set if MAXVEC > NMVAL

128-bit is set if MAXVEC > MAXOP
256-bit is set if XL > XR
512-bit is set if NBLOCK < 1
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Thus IERR can be decoded to determine the errors. For 
example, IERR = 68 indicates both NMVEC < N and MAXVEC > NMVAL. 
IERR may take on any value between 1 and 1023 indicating all 
combinations of the above conditions.
IERR = -1 can occur only if NPERM > 0 on input. It indi­
cates that either some user supplied eigenvector was zero 
or that significant cancellation occured when the user sup­
plied vectors were orthogonalized. Some modification of 
the user supplied eigenvectors may have occurred but no 
other computation will have been done.
IERR = -2 indicates that MAXOP calls to the subroutine OP 
occurred without finding the desired eigenvalues. Partial 
information is returned in this case, see section G. When 
IERR = -2, the first N*BL0CK elements of work contain the 
best vectors for restarting the algorithm. Thus SILASO 
may be immediately recalled to continue working on the 
problem.

IERR = -3 indicates a non-zero error completion code was 
encountered after a call to an EISPACK subroutine. EISPACK 
is a certified subroutine package. Errors are due to im­
proper inputs. The following is a list of possible causes 
for an IERR = -3 completion:

1. Improper calling sequence for SILASO.
2. Insufficient storage in the array WORK.
3. Mixture of single and double precision.
4. Improper version of EISPACK for the machine used.

IERR = -4 can occur only if NPERM > 0 on input. It indi­
cates that a user supplied eigenvalue lies inside the 
excluded interval. Some modification of the user supplied 
vectors may have occurred but no other computation will 
have been done.
IERR = -5 and IERR = -6 indicate that the program termi- 
ated without full assurance that all the desired eigen­
values had been located due to an eigenvalue near the 
boundary of the excluded interval which had not converged 
to sufficient accuracy. IERR = -5 if J = MAXJ while 
IERR = -6 if MAXOP calls to the subroutine OP occurred.
To obtain further assurance that all the eigenvalues have 
been found it is possible to recall SILASO to continue 
working on the problem.

IERR = -7 indicates that more than 4*MAXVEC eigenvalues 
are found. The program terminates without computing any 
new eigenpairs,
IERR = -8 indicates that disastrous loss of orthogonality 
occurred. Usually due to errors in the user supplied sub­
routines OP or IOVECT.
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IERR -10 indicates that some of the eigenvalues found 
by the program lie inside the excluded interval but have 
error bounds which overlap the boundary. Such eigenvalues 
are explicitly set equal to the boundary and marked as 
described in section D. The ten's digit of IERR indicates 
the number of such eigenvalues while the units digit indi­
cates the same result as single digit IERR codes described 
above.
IERR ^ - 100 indicates that more than MAXVEC (but not more 
than 4*MAXVEC) eigenvalues were found. The hundreds digit 
of IERR gives the number of extra eigenvalues found. Any 
eigenpairs returned by the program are correct and after 
raising the value of MAXVEC it is possible to immediately 
recall SILASO to keep working on the problem. Of course 
the extra storage space indicated by the larger value of 
MAXVEC must be available. The tens and units digits of the 
IERR code are as described above.

D. Information returned when IERR = 0.

IERR = 0 indicates that NPERM desired eigenpairs have been
found. The eigenvalues are in the first column of VAL.
The eigenvalues are in ascending order (smallest at the
top). The corresponding orthonormal eigenvectors are in
the first NPERM columns of VEC, The second column of VAL
contains the residual norms p.(=llAy. - y.0.1! for thex 1 11

eigenvalue 0^ and its associated eigenvector y^) which are 
bounds on the accuracy of the eigenvalues.
In most cases the residual norm is a gross underbound on
the accuracy of an eigenvalue. To obtain a more realistic
estimate, the program remembers 6 and 6 the leftmost andL K
rightmost excluded eigenvalue of A. The third column of 

2VAL is set to p./MIN(0. - <5 , <$ - 0.) which is a muchl i L R i
more realistic estimate of the accuracy of the eigenvalues.
The fourth column of VAL contains p /MIN(0. - d. > 6D ~ 9.)i i L R i
which estimates the accuracy of the eigenvectors.

If IERR < 10, then the eigenvalues which have been moved 
are marked by setting the residual norm negative.

E. Choosing the starting vectors.

SILASO requires NBLOCK starting vectors to be stored in the 
first N*BLOCK elements of the array WORK. Zero vectors are 
replaced by randomly chosen vectors so that a set of random
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starting vectors may be selected by simply initializing 
the first N*BLOCK elements of WORK to zero. However, 
convergence is enhanced if the starting vectors are chosen 
to have large components in the directions of the desired 
eigenvectors. Therefore, if the user knows approximations 
to the desired eigenvectors he should choose his starting 
vectors as linear combinations of these approximations.
If some of the desired eigenpairs are already known to 
sufficient accuracy, it is possible to avoid having SILASO 
recompute these eigenpairs. See section H. for details.

F. Choosing a value for NBLOCK.
NBLOCK specifies the number of vectors in each block of 
Lanczos vectors. Two factors may favor a large value for 
NBLOCK. The convergence of the algorithm is faster if NBLOCK 
is larger than the largest multiplicity of eigenvalues among 
the desired eigenvalues. For instance if a desired eigen­
value has multiplicity two, then NBLOCK equal to three or 
more is best. Even more important in some cases, if the 
matrix is stored on disk and brought in a slice at a time 
to form the matrix vector product then a large value of 
NBLOCK will lower the number of calls to OP and hence the 
number of disk accesses. On the other hand, the number of 
vector inner products needed for each Lanczos step is a 
quadratic function of NBLOCK. Furthermore, the convergence 
of the algorithm is degraded if NBLOCK > v^MAXJ . In con­
clusion if the matrix multiply is inexpensive a small value 
of NBLOCK (2 or 3) is best, while if the matrix multiply is 
expensive larger values of NBLOCK are to be preferred.
NBLOCK = 1 is not recommended unless required by storage 
limitations.

G. Choosing a value for MAXOP.
SILASO is an iterative procedure. The user may limit the 
effort by SILASO on a given problem by choosing a value for 
MAXOP. If more than MAXOP calls to the subroutine OP are 
needed to solve the given problem, then SILASO will terminate 
at that point and set IERR = -2.
If cost is not a factor and the subroutine OP is known to be 
reliable MAXOP should be set to N/BLOCK. Choosing MAXOP much 
less than MAXVEC /N/NBLOCK and repeatedly recalling SILASO 
will delay convergence of the algorithm. Setting 
MAXOP < MAXVEC is not allowed while setting MAXOP < MAXJ/NBLOCK 
will waste the storage indicated by MAXJ.
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H. Setting NPERM > 0.

SILASO allows known eigenpairs to be input directly so that they 
need not be recomputed. The first column of VAL must contain 
the eigenvalues (in any order) and the second column of VAL must 
contain the residual norms (llAy^-y^0 Jl , for the eigenpair •
The correct order of magnitude is sufficient. Columns 3 and 4 
of VAL are arbitrary. The first NPERM columns of VEC must con­
tain the eigenvectors (which will be orthonormalized by SILASO). 
The eigenvectors associated with VAL(I,1) must be in the I th 
column of VEC.
NPERM must be less than or equal to MAXVEC. If NPERM = MAXVEC 
the program will either confirm that no other desired eigenvalues 
exist or it will terminate (IERR = -100) as soon as another de­
sired eigenvalue appears.

3. Applicability and Restrictions

SILASO is designed to find all the eigenvalues of a large sparse 
symmetric matrix lying outside a user defined excluded interval.
For small dense matrices, the subroutines provided in EISPACK are to 
be preferred. It is not necessary for the matrix to be explicitly 
represented. It is only necessary to provide a subroutine OP to 
compute matrix-vector products.

In particular SILASO can be combined with a sparse factorization 
program to compute eigenvalues of A by sectioning. To find all 
the eigenvalues of A inside an interval [a,b]:

1. Choose a shift ae[a,b].
2. Factor (A - al) = LDL^ .
3. Code the subroutine OP to compute (A - al) ^x by solving 

(A - al)y = x using L and D.

4. Set XL = l/(a - a) 
and XR = l/(b - a).

5. Call SILASO.

6. The eigenvectors returned by SILASO are correct while the 
eigenvalues must be back transformed as

0" = 1/0 + a

where 0 is the eigenvalue computed by SILASO and Q' is the 
eigenvalue of A.
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Thus it is possible to compute eigenvalues over a wide range by 
breaking the range into subinterval and sequentially solve for 
eigenvalues in each subinterval using different shifts 0 .

SILASO calls a number of subsidiary functions and subroutines, namely:

SIWLA which implements the block Lanczos algorithm with 
selective orthogonalization.

SIPPLA which post processes the output of SWLA.
SMVPC which computes residual norms and orthogonality 

coefficients.
SORTQR which orthonormalizes a block of vectors.

SVZERO which zeroes a given vector.
URAND a FORTRAN IV random number generator given in Forsythe, 

Malcolm, and Moler [6].
BANDR, BANDV, IMTQL1, IMTQL2, SVD, TRED1, TRED2, and TRIDIB, 

which are EISPACK Subroutines ([3], [4]).

SAXPY, SCOPY, SDOT, SNRM2, SSCAL and SSWAP which are subset
of the BLAS (Basic Linear Algebra Subprograms) written 
by Lanwson, et. al [7] and modified by Dongarra, et. al 
[8] for use in LINPACK. If the BLAS are available in 
assembly language they should be used in place of the 
FORTRAN IV source code provided.

The user must not use any of the above names in his driver program.

4 . Discussion of method and algorithm

The Lanczos algorithm is an efficient scheme for computing a series 
of vectors q , q„, ... q. which form an orthonormal basis for the-*■ z 3

Krylov subspace, span (q^> Aq^, ..., AJ cl^) •
At each step of the algorithm the Krylov subspace grows larger and 
one more Lanczos vector is added to the list. The Lanczos algorithm 
can be interrupted at any step and the Rayleigh-Ritz approximations 
to eigenpairs of A can be derived from the Krylov subspace quite 
easily. Thus the algorithm need only continue until the desired 
approximations are sufficiently accurate.
The block Lanczos algorithm (as described in detail by Underwood
[5]) replaces each vector in the simple Lanczos algorithm by an 
orthornormal block of vectors. Block Lanczos has theoretical 
advantages over simple Lanczos with respect to finding multiple 
eigenvalues and has advantages in efficiency if the cost of forming 
a matrix^vector product is high.
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Unfortunately finite precision arithmetic causes the vectors com­
puted by the Lanczos algorithm (both simple and block) to lose 
orthogonality and approach linear dependence. To maintain robust 
independence among the Lanczos vectors, SILASO augments the al­
gorithm with selective orthogonalization which causes some of the 
Lanczos vectors to be orthogonalized against a few selected Ritz 
vectors, as described in [1] and [2].
The algorithm is terminated when the desired Ritz value are suffic­
iently accurate. If necessary, SILASO then makes another Lanczos 
run to test for undisclosed multiplicities. Finally in some 
cases, SILASO performs a Rayleigh-Ritz procedure on the determined 
eigenvalues to resolve any clusters.
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