
ORNL/CSD-48UCC-ND
NUCLEAR
DIVISION

W UNION
ICARBIDEj

Lanczos Software
Symmetric Eigenvalue Problems

D. S. Scott

KASIBt

OPERATED BY
UNION CARBIDE CORPORATION
FOR THE UNITED STATES
DEPARTMENT OF ENERGY

Yll8TR!BUf10N OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER
Portions of this document may be illegible in electronic image

products. Images are produced from the best available

original document.

Printed in the United States of America. Available from
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Road, Springfield, Virginia 22161

NTIS price codes—Printed Copy: AOS Microfiche A01

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States nor any agency thereof, nor
any of their employees, makes any warranty, expressed or implied, or assumes
any legal liability or responsibility for any third party's use or the results of such
use of any information, apparatus, product or process disclosed in this report, or
represents that its use by such third party would not infringe privately owned
rights.

ORNL/CSD-48
Distribution Category UC-32

Contract No. W-7405-eng-26

COMPUTER SCIENCES DIVISION

BLOCK LANCZOS SOFTWARE FOR SYMMETRIC EIGENVALUE PROBLEMS

D. S. Scott

Sponsor:Originator: D. A. Gardiner D. S. Scott

Date Published: November 1979

UNION CARBIDE CORPORATION, NUCLEAR DIVISION operating the
Oak Ridge Gaseous Diffusion Plant . Oak Ridge National Laboratory Oak Ridge Y-12 Plant . Paducah Gaseous Diffusion Plant

for the
DEPARTMENT OF ENERGY

-- DISCLAIMER ---

This book was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency thereof.

W8TW8UTtCN OF THIS DlKUMcHT 13 UNUMITEB
M

f

Table of Contents

Page

ABSTRACT ... 1

INTRODUCTION ... 1

1. THE LANCZOS ALGORITHM ... 2
2. MAJOR DESIGN DECISIONS ... 9

2.1 Standardization and Modularization 9

2.2 Problem Definition 10
2.3 Matrix-Vector Products 11

2.4 Storage of Lanczos Vectors 11
2.5 Storage of Ritz Vectors..................................... 12

2.6 Limits and Recall Capability 12

2.7 Local Reorthogonalization 13

3. ALGORITHMIC DETAILS ... 13

3.1 Flowchart I........................ 14
3.2 Inefficiencies in Flowchart 1................................ 15

3.3 Limited Storage... 16

3.4 Multiple Eigenvalues 17
3.5 Flowchart II... 18
3.6 Forming the Starting Block 21
3.7 Ordering the Inner Loop21

4. SUBROUTINE STRUCTURE ... 22

4.1 Introduction... 22

4.2 Subroutine Naming Conventions 24
4.3 Subroutine Glossary 25

5. TERTIARY SUBROUTINES ... 27

5.1 SMVPC...28

iii

Table of Contents (Cont'd)
Page

5.1.1 The Calling Sequence 28
5.1.2 Internal Variables *................................. 29
5.1.3 Sequence Blocks..................................... 29

5.1.4 Special Note......................................
5.2 SORTQR... 30

5.2.1 The Calling Sequence................................. 31

5.2.2 Internal Variables 31

5.2.3 Sequence Blocks.................................... 32
5.3 SVZERO... 33

5.3.1 The Calling Sequence................................. 33
5.3.2 Internal Variables 33
5.3.3 Sequence Blocks.................................... 33

6. SNLASO..34

6.1 The Calling Sequence....................................... 34

6.2 Internal Variables 36

6.3 Sequence Blocks... 36
7. SNWLA... 37

7.1 The Calling Sequence....................................... 37
7.2 Internal Variables 43
7.3 Sequence Blocks... 47

8. SNPPLA... 51
8.1 The Calling Sequence....................................... 51

8.2 Internal Variables 53

Table of Contents (Cont'd)
Page

8.3 Sequence Blocks... 54
9. INTERVAL TYPE PROBLEMS... 55

9.1 Problem Definition 55

9.2 SILASO... 55
9.2.1 The Calling Sequence................................. 55

9.2.2 Internal Variables 56

9.2.3 Other Changes....................................... 57
9.3 SIWLA... 57

9.3.1 Calling Sequence 57
9.3.2 Internal Variables 58

9.3.3 Other Changes....................................... 59
9.4 SIPPLA... 60

9.4.1 Calling Sequence 60
9.4.2 Internal Variables 61

REFERENCES... 62

APPENDIX 1... 63
User guides for SNLASO/DNLASO...............................64

User guides for SILAS0/DILAS0............................... 74
APPENDIX 2... 85

Program Listings (microfiche, inside back cover)

V

ABSTRACT

The Lanczos algorithm is a powerful method of computing
a few eigenvalues and eigenvectors of a large sparse symmetric
matrix. Selective orthogonalizing is an efficient method of
maintaining the stability of the algorithm. This report docu­
ments the design and implementation of two distinct block
Lanczos algorithms with selective orthogonalization.

INTRODUCTION

This report gives detailed documentation of the implementation of a

package of subroutines for solving large sparse symmetric eigenvalue pro­

blems. There are two driver subroutines. The user guides for these two

subroutines are given in Appendix 1 and it is recommended that the reader

become familiar with the user guides before reading the body of the report.

The package is available in both single and double precision. This
report explicitly documents the single precision version although periodic

references to the double precision version are also made. The four major
changes between single and double precision are:

1. The names of the subroutines are different.
2. All real variables and constants are double precision (except

URAND, see 4).
3. There are discrepancies in the sequence numbers due to the extra

continuation lines needed in the double precision version.
4. Modifications are necessary due to the fact that the function URAND

exists only in single precision.

2

1. THE LANCZOS ALGORITHM
This section gives a brief synopsis of the Lanczos algorithm. No

proofs are given and only those results which are pertinent to the rest
of the report are included. The reader is directed to Scott [12] for

a more thorough treatment of the subject.
The Lanczos algorithm is an iterative procedure for computing eigen­

values of a symmetric matrix A, which starts with an arbitrary vector r^

and Qq E 0. Then for j = 1,2,...DO 1 to 5,
1. II

C
_J

.

1 H*

2. If -0 stop

else q.J = r. /£.3-1 3
3. u.3 - - q^Bj

4. a.J = q.*u.J 1
5. r.J = u. - q.a. .3 3 3
Note that the only way that the matrix

through the formation of the product Aq^. This is a very attractive
feature of the algorithm with respect to sparse matrices since A may be
stored in any compact manner which permits the formation of matrix vector
products. Note also that only the previous two Lanczos vectors (q's) are
needed at any step j.

There are several mathematically equivalent formulations of the

Lanczos algorithm. The one given here is the most stable numerically as
shown in Paige [8].

3

Defining (q1,q2,...q^) and

T.3

6
e2 c,2 B

3 '

6.
3 a.3

then it can be shown that, in exact arithemtic,

AQ. - Q.T. = r.e.* 3 3 3 3 3

and

1 - Q.*Q. = 0, 3 3

where e* ~ (0,0,...,!) is a j-vector and rjej* i-s a compact way of writing
an n x j matrix all of whose entries are zero except the last column which
is r..3

The columns of Q. are an orthonormal basis for the Krylov subspace.

,•••,1q1)Kj(qi) = span(q1,Aq1

4

Multiplying (1) by Qj*> we find that since Q-*rj =

T. = Q.*AQ. . j J J

Let Tj = Sj0jSj*> with s| = Sj_1 and 0_. = diag(01 (j) ,02),...,6^)) , be

the spectral decomposition of T.. Let Y. = (y ^,y ^ \ .,y • ^^) = Q.S..
J J ^ 'J J J

Then the pairs (y^"* ^ , 0^"^) are the (optimal) approximations to eigen-

pairs of A obtained from the Krylov subspace (q-^) by the Rayleigh-Ritz
procedure.

Futhermore the residual norm of a Ritz pair (y.^\0.^^) can be computed

as

llAyi (j) y.(j)0.(j)ll = S-.t |s. . |EB. .
i j+11 ji1 ji (1)

thwhere s^ is the (j,i)— element of . Thus the accuracy of the Ritz
value 0_^ ^ can be estimated without computing the Ritz vector at all.

Only a j x j tridiagonal eigenproblem need be solved and such problems can
be solved quickly and accurately using established techniques.

Therefore the Lanczos algorithm can be terminated as soon as the de­
sired Ritz values are sufficiently accurate and the Ritz vectors need

only be accumulated at the end. Since only the previous two Lanczos

vectors (q's) are needed by the algorithm itself, it is possible to place
the earlier Lanczos vectors in secondary store until they are needed for

forming the Ritz vectors. Indeed if eigenvectors are not of interest,

there is no need to save the Lanczos vectors at all!
We now let the symbols Q, T, Y, etc. stand for the corresponding

quantities actually computed on a machine with a relative presision £.

5

Unfortunately the simple Lanczos algorithm is unstable when implemented in

finite precision. This instability is manifested in the Lanczos vectors by

a loss of orthogonality. Indeed the columns of Q become dependent to working
precision. It is still possible to compute the eigensystem of T_. and to form
the matrix Y. = Q.S. and we will continue to call these quantities Ritz values J 11
and Ritz vectors even though they are not the true Ritz pairs derivable from

the subspace spanned by the columns of .
It can be shown (Paige [7] or Scott [12]) that the loss of orthogonality

is quite correlated.

Theorem (Paige) At any step j of the Lanczos algorithm
and all i,

yi (j)’ q.= Y. .ellAll/B. . 1+1 li li

where Y..-1 and 3.. is defined as in equation (1) li li

Thus the quantity which is the residual norm of the Ritz pair
(y^^ ^ , 0^^)), is important both in determining the accuracy of 0^"^

and in measuring the loss of orthogonality at step j. In words

loss of orthogonality convergence .

This theorem is the basis for selective orthogonalization, a scheme for

stabilizing the Lanczos algorithm, described in Parlett and Scott [9] and

analyzed in detail in Scott [12]. Selective orthogonalization explicitly

6

orthogonalizes against any Ritz vector which satisfies

3.. < ZeIIaIIji

Such Ritz vectors are called good. If the tolerance is chosen much less than
/ellAll then the y's in Paiges Theorem may grow and 3._^ is no longer an accurate

measure of the loss of orthogonality. See Scott [12] for more details.
Since 3.^ is the residual norm of the Ritz pair (y^^\ G^^), a good Ritz

vector is quite accurate, having converged to about half the precision of the
machine. Therefore few (if any) of the Ritz pairs will be good at any one
step which explains the computational success of the scheme.

The simple Lanczos algorithm (even with selective orthogonalization)
suffers from two defects. If any eigenvector of A is orthogonal to then
it will be orthogonal to all subsequent q's and will not be detected by the

algorithm. In particular multiple or closely cluster eigenvalues inevitably
cause difficulties. Furthermore if the matrix is in secondary storage and

is brought into core a slice at a time to form the matrix vector product, it

is inefficient to only multiply one vector at each access. For these reasons
block Lanczos algorithms are appealing and have been analyzed by Cullum and

Donath [1] and Underwood [14].

Block Lanczos replaces each q-vector in the simple algorithm by an ortho­
normal block of m vectors which we label P.. m is called the block size.J
The block algorithm starts with R^, an arbitrary n x m matrix, and P^ = 0 .
Then for j = 1,2,...

1. Factor R. , = P.B. where P is orthonormal and B is upper 1-1 1 1 j J
triangular.

If Bj is singular, stop.2.

7

3. U.3 = AP. - P. - B* 3 3-1 3
4. A.3 = P.*U. .3 3
5. R.3 = U. - P.A. .3 3 3

The matrix Q. = (P^, P„,...,P.) is orthonormal (in theory) and the 3 1 2 3
matrix

T.3

A, B*X it.

B3

B3

B*3
B,j A.3

is block tridiagonal. If T. = S.0.S* and Y. = Q S then the pairs ----- 3333 333
(y1^\ 6^^^) are the Ritz pairs and

HAy.(j) - y.(:i)9 (j)|| = llB.^s.JI
i i i 3+1 31

where s^ is the m-vector of the last m elements of s^^\ the eigenvector
of Tj associated with 0^^\ Therefore it is still possible to compute the

residual norm of y^ without computing y^.
Block Lanczos solves the two main problems associated with simple

Lanczos. Eigenvalues are missed only when the corresponding eigenvectors

8

are orthogonal to the subspace spanned by the block of starting vectors.
Thus multiple eigenvalues can be found up to m, the block size. Also m

vectors are multiplied for each access of the matrix, which is more

efficient than simple Lanczos, particularly if the matrix is in secondary
storage.

However, block Lanczos suffers from the same loss of orthogonality

as simple Lanczos. The generalization of Paige's theorem is

Theorem. At any step j of the block Lanczos algorithm

and for all i

|y*P -j-i B • ,-i 3 • • I = Y. .ell All ,i 1+1 1+1 li li

with Y. .-1 and s. . is the last m elements of s. li li i

This shows that the quantity B_.+^s^^ is again the key factor in both

accuracy and loss of orthogonality but it now takes two different inter­
pretations. The residual norm of (y^^ , 0^^^) is but ortho­

gonality between y and some vector in Pj+^ is lost if the corresponding
element of B.,,s.. is small. We define |3. . = llB.11s..li as before and let ------- 1+1 li li 1+1 li
a). . be the absolute value of the smallest element of B. ,, s. . . Thus li 1+1 li

Convergence => loss of orthogonality

but not vice versa. For example, let m = 2,q-| be arbitrary and
Rq = (q^, Aq^). Then since

9

2span(R0, ARq) = span(q1, Aq^^, Aq1> A q1)

has dimension 3, R^ will be rank 1. Numerically R^ will not be exactly rank
1 but the severe cancellation which occurs in its calculation will cause

drastic loss of orthogonality even though no convergence has occurred. Despite

this distinction it is still straight forward to implement selective orthogon­
alization in the block Lanczos context.

So far we have discussed the two factors which favor the choice of a
large block size. However, there are two other factors which favor a small

block size. The cost of computing eigenvalues of increases as a quadratic

function of the blocksize and the number of vector inner products of length n
needed at each step of the algorithm is linear in m. Furthermore, the
asymptotic convergence of the algorithm depends on the number of steps taken
before the algorithm must be iterated. So for difficult problems with limited

storage available it is important to take a small block size in order to max­
imize the number of steps taken in each iteration.

2. MAJOR DESIGN DECISIONS

2.1 STANDARDIZATION AND MODULARIZATION

It was decided to adhere strictly to the 1966 FORTRAN standard to help

assure portability. This standardization was checked by running the codes

through the PFORT verifier [11]. It was also decided to avoid the use of

private common blocks and the use of the EQUIVALENCE statement completely.

It was decided to make use of existing high quality software for three

reasons: to make the codes more efficient, to improve modularity of the
codes, and to improve readability of the source code. EISPACK subroutines

10

(Smith et al. [13] and Garbow et al. [4]) were used for all subsidiary

eigenvalue calculations on dense matrices, a subset of the basic linear alge­

bra subprograms (BLAS) (Lawson et al. [5] and Dongarra et al. [2]) was used
for all vector manipualtion, and URAND (Forsythe et al. [3]) was used for

uniform random number generation.

2.2 PROBLEM DEFINITION

The two major questions to be resolved are:
1. Are eigenvalues to be computed at both ends of the spectrum of A

or only one?
2. Are a fixed number of eigenvalues to be computed or all the

eigenvalues outside some boundary to be found?

At first glance, one end only is the answer to question 1. In almost
all applications, A will be the discretation of some continuous operator on
a function space. One end of the spectrum of A will be an accurate repre­
sentation of the spectrum of the original operator while the other end will
be discretation noise.

However, one of the more powerful techniques of eigenvalue extraction

is sectioning, in which a few eigenvalues of

(A - al)-1

are found for various values of the shift O. The inversion of the spectrum

changes a problem of finding all the eigenvalues of A inside a given inter-
-1

val to finding all the eigenvalues of (A - 01) outside a given (different)

interval. For this reason it was decided to allow two types of problems.
1. Find some eigenvalues at one end of the spectrum.

2. Find all the eigenvalues outside a given interval.

11

It was decided to specify a fixed number of eigenvalues in case 1. The

problem of finding all the eigenvalues of A smaller than some number a can be

handled (with only minor inefficiencies) by case 2 using a very large number
for the right end point of the excluded interval.

2.3 MATRIX-VECTOR PRODUCTS

The Lanczos algorithm requires the formation of matrix-vector products.

There are two possible approaches to supplying this information. Either a

user supplied subroutine is needed or reverse communication is used, in which

control is returned to the calling program, for each matrix multiply.

Four reasons favored the use of a user supplied subroutine. The matrix

multiply is needed in the inner loop of the algorithm which is likely to be

buried several layers deep in the subroutine structure of the code. To re­

turn to the main program each time would significantly increase the number
of subroutine linkages required at execution time.

Reverse communication would also violate the FORTRAN standard since the
standard does not require that local variables in subroutines maintain their

values between calls. Furthermore reverse communication, which allows the
user to change parameter values is much more prone to accidental contamination.

Finally, the source code using a user supplied subroutine is much
cleaner and easier to read since there is no need to monitor different types

of entry conditions.

2.4 STORAGE OF LANCZOS VECTORS

There are three approaches to storage of the Lanczos vectors (q's).

One approach is to require that they be stored in core (either in common
or in workspace provided in the calling sequence). This method was rejected

12

immediately since the main point of selective orthogonalization is to maintain

robust linear independence among the Lanczos vectors without having to keep
them in core.

Another possibility is to require the user to supply a logical unit

number for storing Lanczos vectors and store them using unformatted WRITE
statements. The disadvantage of this approach is that it forces the vectors

to be stored on disk even if sufficient core exists (as might easily be true
for a machine with virtual memory).

The approach actually chosen was for the user to supply a subroutine for

storing and recalling Lanczos vectors. This allows greater flexibility at
the cost of extra subroutine linkages.

2.5 STORAGE OF RITZ VECTORS

Is is feasible for the Ritz vectors (y's) to be put into secondary store?
The answer is a strongly qualified yes, provided that sufficient core storage
exists for one Ritz vector. However, the overhead involved is quite high.
Each time a Ritz vector is needed for orthogonalization it would have to be

recalled from disk. Even more important, the formation of each single Ritz

vector would require recalling all the Lanczos vectors, instead of forming
all the Ritz vectors needed simultaneously with one pass through the Lanczos

vectors. Finally, it would be impossible to assure that the computed Ritz
vectors were orthogonal to working accuracy.

For these reasons, it was decided to require that the desired Ritz
vectors be kept in fast memory.

2.6 LIMITS AND RECALL CAPABILITY

Eigenvalue extraction is inevitably an iterative process. Therefore it
is necessary to provide some external stopping criterion to avoid the

13

possibility of an infinite loop. This is especially true in the Lanczos con­
text where an error in the matrix multiply routine will almost always prevent
the algorithm from converging.

It was decided to use the number of calls to the matrix multiply sub­

routine, OP, as the stopping criterion. However, since it is impossible for
the code to determine a priori a "reasonable" value for this limit, it is

necessary for the user to set this limit on input. If the limit on the number

of calls to OP is reached the program terminates, returning all the eigenpairs

which have been determined and resetting the parameters so that the subroutine

can be immediately recalled to continue working on the problem.

This restart capability allows a user who knows one (or more) eigenpairs

of the matrix to supply this information so that the code does not expend

effort recomputing known eigenpairs. However, it should be noted that any
such user supplied eigenpairs are counted as desired eigenpairs as far as
solving the given problem.

2.7 LOCAL REORTHOGONALIZATION

Several authors including Lewis [6] and Ruhe [LO] recommend the use of
local reorthogonalization in which the latest block of Lanczos vectors are
reorthogonalized against the two previous ones (which are still in core).

Since the cost is small relative to the cost of a matrix multiply,it was
decided to use local reorthogonalization.

3. ALGORITHMIC DETAILS
The programs basic purpose is to implement the block Lanczos algorithm

with selective orthogonalization and to stop as soon as all the desired

14

eigenvalues are sufficiently accurate (acceptable). Let 0)^ be defined as the

absolute value of the smallest element of the vector B.,.s.. (see Section 1) .J+1 Ji
Then the Ritz vector y. ^ ^ is good whenever 10j^ v^llAll and the next Lanczos

vector should be orthogonalized against

3.1 FLOWCHART 1

A naive flowchart of the algorithm would be as follows.

Enough acceptable
eigenpairs?

Return

Initialize

Ritz pairs
Compute desired

Compute good
Ritz vectors
(if any) .

Take a Lanczos step.
Orthogonalize against
the good Ritz vectors.

The above algorithm is inefficient in three respects and incomplete in

several more as we describe below.

15

3.2 INEFFICIENCIES IN FLOWCHART 1

In theory all the Ritz vectors change at every Lanczos step and so the
good Ritz vectors should be recomputed at every step. This would be ruin­
ously expensive. Fortunately, the good Ritz vectors change very little from
one step to the next and so a good Ritz vector computed at some earlier step

can be used for orthogonalization at the current step.
Furthermore it is not necessary to orthogonalize against a good Ritz

vector at every step. In Parlett and Scott [9] it is shown that if (y,0) is
a good Ritz pair and ly*q.,1| ^ T. , and I y*q.I ^ T, then1+1 1-1 1 l' 1

Cl9 “ Ct. |t. + 3.T.]/g = T.,,
1+1 11 1 1“1 1+1 1+1

except for terms of order e.

For blocksize greater than 1 the above formula must be modified. If
lly*P. . II ^ T. .. and lly*P.II ^ T. then1-1 j-1 1 i

lly*Pj+1ll < [110 It. + a. . . s-iI/aj+i = Tj+1

L Swhere O^ is the largest singular value of and is the smallest singular
value of Whenever Tj+1 ^ ve , P_.+^ and l>j+2 are orthogonalized against

y and x. , and T.,„ are set to e .1+1 1+2
Finally, it is not necessary to compute all the desired eigenvalues of

T at each step. In general the Lanczos algorithm will converge faster to the

extreme eigenvalues of the spectrum of A,i.e. convergence will occur mon-

otonlcally inward from the edge of the spectrum. Therefore for a number type

16

problem it is necessary to compute only 2 eigenpairs at most steps. First

the most interior desired eigenpair is computed to see if it is acceptable.
If it is acceptable, then all the desired eigenpairs are computed to insure
that they are all acceptable. If not all the eigenvalues are acceptable, then

the most extreme eigenpair which has not been declared good is computed. If
it is still not good, then the next Lanczos step is taken. If it is good

then all of the desired eigenpairs are computed and all the good Ritz vectors

are computed. It seems reasonable to recompute known good Ritz vectors for

two reasons. First the eigenpairs continue to converge so that the newer
version of a good Ritz vector is more accurate than the old one. Secondly

the major cost of forming the Ritz vectors is in recalling the sequence of
Lanczos vectors. Since this must be done anyway for the new good Ritz vectors

there is little extra cost in updating the old ones as well.

For an interval type problem no more than six eigenvalues of T are com­
puted at one step. The details are left for a later chapter.

3.3 LIMITED STORAGE
Since the available storage on a computer is limited, it may not be pos­

sible to take another Lanczos step despite the fact that not all the desired
eigenvalues are acceptable. The computer code must allow the user to specify

this limit. If the limit is reached the code computes and stores all accept­

able eigenpairs (we refer to such vectors as permanent vectors) and then
forms a new starting block from linear combinations of the remaining eigen­

vectors. The Lanczos algorithm is then restarted with this starting block.
This restarting of the algorithm requires one additional precaution.

The new Lanczos sequence must be kept orthogonal to the permanent vectors.

As before it is not necessary to orthogonalize against the permanent vectors

17

at each step. Instead a scalar recurrence is used to monitor the decay of
orthogonality. The recurrence for permanent vectors is the same as the re­

currence for good vectors except that the term p/o.+^ must be added to
where p is the residual norm of the permanent vector y (llAy - y0l| s 8..).

It should be noted that restarting the algorithm is always detrimental
to the convergence rate of the algorithm. So that provided the user subrou­

tines are known to be reliable, all the available storage should be used.

3.4 MULTIPLE EIGENVALUES

As mentioned in Chapter 1, the block Lanczos algorithm cannot find more

than m (the blocksize) eigenvectors associated with a multiple eigenvalue.

For numerical purposes this means that if the code computes m eigenvalues

which are tightly clustered then it is possible that there are more eigen­

values in the cluster. After the code has computed the desired eigenvalues

it checks to see if a cluster of m eigenvalues exists. If such a cluster is

found the algorithm is restarted just as if not all the desired eigenpairs
were acceptable, except that random vectors are used for the starting block.
This causes several complications. The codes must now be able to terminate

in the middle of a Lanczos run when it decides that no new eigenvalues exist
in the cluster. Furthermore, if solving a number type problem (see Section

2.2) the code must throw away a permanent vector if a new member of the
cluster is found.

For example, suppose that the five smallest eigenvalues of A are 0,0,0,1,
and 2. If the three smallest eigenvalues are desired and a blocksize m = 2

is used. Then the eigenvalues 0,0, and 1 will be found by the first Lanczos

sequence. Since a multiplicity of 2 exists in the determined eigenvalues

18

a check run would be started. Soon after, the third copy of zero would be

found and the eigenvalue 1 (and its eigenvector) would be discarded to make
room for it. On the other hand if the zero eigenvalue were only double, the
check run would terminate after some number of steps and the values 0,0, and 1

would be returned.
From the point of view of efficiency, it is desirable that the block size

be larger than the largest multiplicity of the desired eigenvalues, so that

no check run need be made. In particular a block size of one is recommended
only for number type problems and only when one eigenvalue is desired. (Of
course storage constraints may require the use of a block size one.)

3.5 FLOWCHART II

The following flowchart reflects the results of the previous sections.

The abbreviation e.v.s. stands for eigenvalues (of T).

19

Out of storage?

Is this a check run

Return

Calculate all
desired e.v.s?

Pass?

Initialize

Calculate some e.v.s

Take a Lanczos step
Update x recurrence
Orthogonalize as needed

20

All acceptable? or
A new good vector? or
Out of storage?

All acceptable? or
Out of storage?

All acceptable? Need a
checkrun?

Return

Form starting block Random Starting block

Calculate all
desired e.v.s

Form needed Ritz vectors

This flowchart is a fairly accurate representation of the two codes. The

specific details of the implementations will be discussed in the sections

covering the individual subroutines. However, there are two more topics of
sufficient generality to be discussed here.

21

3.6 FORMING THE STARTING BLOCK
If storage has been exhausted, it is necessary to compute m vectors to

form the new starting block. The simplest approach is to take the first m

desired eigenvectors which are not acceptable. However, if there are more

than m unacceptable desired vectors, this means that some eigenvectors are

completely ignored. At best this is a waste of valuable information and at

worst it can lead to the algorithm failing to find some eigenvalues.
On the other hand to simply sum up all the unacceptable vectors is also

ineffective since it is possible for a fairly accurate Ritz vector to be

swamped by one or more completely inaccurate Ritz vectors. To avoid these

two extremes the code has all the unacceptable Ritz vectors contribute to
the starting block but weights the contributions by the inverse of the residual

norm of the vector. Thus almost acceptable vectors will have large weights
compared to very poor vectors.

Finally, it should be noted that the unacceptable Ritz vectors are not
calculated individually. Rather the appropriate linear combinations of eigen­
vectors of T are formed and these are used to form the starting block directly.

3.7 ORDERING THE INNER LOOP

It turns out to be better to rearrange the inner loop so that the ortho-
gonalizations occur at the top, as follows:

Given P- = 0, R^, = p' and B./ =1. For i = 1,2,... 0 0 1 1 9 • • •

1. Orthogonalize P. against any vector indicated by the x recurrence.

2. If necessary (j = 1 or some orthogonalization done) reorthognoralize so

that

P. = P.B. = R 1 3 3

22

and set B. = B*.B.
J 3 3

3. U. = AP. - P. R*3 3 3-1 3
4. A. = P*AP.3 3 j
5. R. = U. - P.A.3 3 3 3
6. R. = P*. , ,B.,' with P'. ,, orthonormal3 3+1 3+1 3+1
7. Update the T relations

We do not actually need the orthonormality of until the following
Lanczos step but we do need the matrix B*. , in order to compute 3.. and a)..3+1 31 3i
(the residual norm and the orthogonality coefficient) for the eigenvalues we

compute.
This ordering has several advantages. Firstly, we do not have to do any

special coding (other than initializing the T recurrence properly) to handle

the first step. The initial block is naturally orthogonalized against the
known vectors (if any) and then orthonormalized). Furthermore the decisions
about terminating, restarting, or computing new good Ritz vectors are made
before any unnecessary orthogonalizations are performed.

One final note: throughout this report we have used the subscript j to
denote the step number. In the code we found it more convenient to use J as

the dimension of T., that is, J = j*m .3

4. SUBROUTINE STRUCTURE

4.1 INTRODUCTION
Implementing the Lanczos algorithm requires temporary storage space for

a variety of purposes. Unfortunately FORTRAN does not allow EQUIVALENCE to

be used with formal parameters. For this reason it is impossible to break

23

the allotted work space into different named areas inside the first subroutine

called. There are three possible ways to circumvent this problem.

One approach is to require the user to break up the workspace in the
original calling sequence by having a number of separate workspace parameters.

This method was rejected because it greatly increases the probability of user

errors in calling the subroutine. Another approach is to use various integer
variables to keep track of the offsets for different work space areas. This

method makes the corresponding code quite intricate (especially when following

the standard restrictions on the form of array subscripts) and almost inde­

cipherable.
Instead it was decided to have the driver subroutine be almost a dummy

routine which did little more than call other routines to do most of the
work. Thus the available workspace could be subdivided in the calling

sequences to these subsidiary subroutines.
In the end, two such subroutines were written. The major one implements

the block Lanczos algorithm with selective orthogonalization to solve the
given problem and the second one post-processes the eigenvectors that were

computed by the first.
In addition a number of additional functions and subroutines are used

for specific computational tasks. Three of these tertiary subroutines were

written by the author, while the rest were taken from published sources.
It turned out to be inconvenient to solve both types of problems de­

scribed in Section 2.1 with the same subroutine. Two separate driver sub­

routines were written for the two different problem types. This in turn
required separate subsidiary subroutines, but the specific computational
modules (tertiary subroutines) are the same for both problem types.

24

4.2 SUBROUTINE NAMING CONVENTIONS

Each of the major subroutines has a root name, a letter preceding the

root name which identifies which of the two problem types it is used for,
preceded by a letter indicating the precision employed. The codes are

LASO root name. driver subroutine.

PPLA root name. post processor.
WLA root name. main computation subroutine.

N identifier, problem type 1 (some number of eigenvalues at
one end of the spectrum).

I identifier, problem type 2 (all the eigenvalues outside a
given interval).

S single precision.

D double precision.

Thus SNLASO is the single precision driver program for a number type

problem, while DIPPLA is the double precision post-processor for an interval
type problem.

The tertiary subroutines have naming conventions which depend on their

source. EISPACK subroutine names are fixed, regardless of whether they are
in single or double precision. The basic linear algebra subroutines (BLAS)
in UNPACK have a root name preceded by an S or a D to indicate the level of
precision. The tertiary subroutines written by the author also have a root

name preceded by an S or a D. Finally URAND, taken from [3] exists

only in single precision since double precision integers are not provided for
in the 1966 FORTRAN standard.

25

4.3 SUBROUTINE
BANDR:

BANDV:

BISECT:

DAXPY:

DCOPY:

DDOT:

DILASO:
DIPPLA:

DIWLA:

DMVPC:

DNLASO:

DNPPLA:
DNRM2:

DIWLA:

DORTQR:

GLOSSARY
EISPACK subroutine for reducing a symmetric band matrix to

tridiagonal form.
EISPACK subroutine for computing eigenvectors of a band matrix

by inverse iteration.
EISPACK subroutine for computing all the eigenvalues of a
symmetric tridiagonal matrix inside a given interval. Used

only in interval type problems.
double precision BLAS subroutine for adding a scalar multiple

of one vector to another.

double precision BLAS subroutine for copying one vector into

another.
double precision BLAS function for computing a vector inner

product.
double precision driver for interval type problems,

double precision post processor for interval type problems,

double precision computation subroutine for interval type
problems.

double precision subroutine for computing the residual norm

and orthogonality coefficient for given Ritz pairs,
double precision driver for number type problems,

double precision post processor for number type problems,

double precision BLAS function for computing a vector norm,

double precision computation subroutine for number type

problems.

double precision subroutine for orthonormalizing a set of
vectors.

26

DSCAL:

DSWAP:

DVZERO:
IMTQL1:

IMTQL2:

SAXPY:

SCOPY:

SDOT:

SILASO:

SIPPLA:
SIWLA:

SMVPC:

SNLASO:
SNPPLA:
SNRM2:

SNWLA:

SORTQR:

double precision BLAS subroutine for multiplying a vector by
a scalar.
double precision BLAS subroutine for swapping two vectors,
double precision subroutine for zeroing a given vector.

EISPACK subroutine for computing all the eigenvalues of a
symmetric tridiagonal matrix.

EISPACK subroutine for computing all the eigenvalues and

eigenvectors of a symmetric tridiagonal matrix,

single precision BLAS subroutine for adding a scalar multiple

of one vector to another.

single precision BLAS subroutine for copying one vector onto
another.
single precision BLAS function for computing a vector inner
product.
single precision driver for interval type problems,

single precision post processor for interval type problems,
single precision computation subroutine for interval type

problems.
single precision subroutine for computing the residual norm
and orthogonality coefficient for given Ritz pairs,
single precision driver for number type problems,

single precision post processor for number type problems,
single precision BLAS function for computing a vector norm,
single precision computation subroutine for number type

problems.
single precision subroutine for orthonormalizing a set of

vectors.

27

SSCAL:

SSWAP:

SVD:

SVZERO:

TRED1:

TRED2:

URAND:

single precision BLAS subroutine for multiplying a vector by
a scalar.

single precision BLAS subroutine for swapping two vectors.
EISPACK subroutine for computing the singular values of a

matrix.
single precision subroutine for zeroing a vector.

EISPACK subroutine for reducing a symmetric matrix to tri­

diagonal form. The transformations are not accumulated.

EISPACK subroutine for reducing a symmetric matrix to tri­
diagonal form. The transformations are accumulated,

a single precision function for generating uniform random num­
bers on the interval [0,1].

5. TERTIARY SUBROUTINES

The EISPACK subroutines used (BANDR, BANDV, BISECT, IMTQL1, IMTQL2, SVD,
TRED1, and TRED2) are documented in Smith et al. [13] and B. S. Barbow it al.
[4]. The Basic Linear Algebra Subroutines are taken from LINPACK which is
documented in Dongarra et al. [2]. URAND is documented in Forsythe et al.
[3]. The three remaining routines were written by the author and will be

documented here. Only the single precision versions will be explicitly

documented. The arguments of each subroutine are classified according to the

following table.

28

SI Strict input: The original value is always referenced.
I Input: The original value is sometimes referenced.

SO Strict output: A new value is always returned.
0 Output: A new value is sometimes returned.
W Workspace: The original value is never referenced and the final value

is meaningless.

Table 1. Argument Glassifications

5.1 SMVPC

SMVPC is used to compute the residual norm estimate 8j^ and the ortho­
gonality coefficient (see Chapter 1) for one or more eigenvectors of T^.

(3j^ is used in determining the accuracy of the corresponding eigenvalue while

is used to monitor the loss of orthogonality. Since the major cost of

computing either or 8^ is in forming the product SMVPC always
returns both values.

5.1.1 The Calling Sequence

SUBROUTINE SMVPC(NBLOCK, BET, MAXJ, J, S, NUMBER, RESNRM, ORTHCF, RV)

Table 2. The Calling Sequence

Name Type Dimension Classification Remarks

NBLOCK integer scalar SI Blocksize.

BET real NBLOCK*NBLOCK SI Bj+1 ’
MAXJ integer scalar SI Leading dimension of S.

J integer scalar SI Dimension of the eigenvectors

29

Table 2. (Cont'd)

Name Type Dimension Classification Remarks

S real MAXJ*NUMBER SI The eigenvector(s) of T^.

NUMBER integer scalar SI The number of eigenvector(s).

RESNRM real NUMBER SO The 6...Ji
ORTHCF real NUMBER SO The U). . .

RV real NBLOCK W Workspace for forming B^^s^.

5.1.2 Internal Variables
The subroutine uses three internal variables:

Table 3. Internal Variables

Name Type Remarks

I integer DO loop index over the eigenvectors (1 to NUMBER)

K integer DO loop index over the rows of B.,.. (1 to NBLOCK)3+1
M integer Subscript, set to J - NBLOCK + 1. S(M,I) is the

element of s..Ji-

5.1.3 Sequence Blocks

In reference to the listing of SMVPC in appendix 2.

Sequence Numbers

10-200

210

Table 4. Sequence Blocks

Remarks
Initial declarations and comments.

Set M = J-NBLOCK + 1.
220-340 DO loop in I over number of vectors.

30

Table 4. (Cont'd)

Sequence Numbers

250-290

310
320
350-370

Remarks
DO loop in K over rows of BET. Forms matrix vector

product and updates minimum element (ORTHCF (I)).

Computes RESNRM (I) = ^ •
Scales ORTHCF (I).
Exit.

5.1.4 Special Note
The orthogonality coefficients do not reflect the use of local reortho-

gonalization. This will cause vectors to be declared good somewhat sooner
than necessary. This is particularly evident when the starting block contains

a good approximation to an eigenvector. Then cancellation will cause loss of
orthogonality to the second block but reorthogonalization of the second block
to the first corrects the problem. To account for the reorthogonalization

against the first block we found it advantageous to scale the orthogonality
coefficient by a factor lls^H 1 where s^ is the J - 2*NBL0CK vector ob­

tained from s^ by deleting the top 2*NBL0CK elements. This always delays the
classification of a good vector and if the corresponding eigenvector of T has

most of its mass concentrated in the first few components (as is the case if
the starting block contains a near eigenvector) this delay is significant.

5.2 SORTQR

SORTQR is used to orthonormalize a block of Lanczos vectors. This
simplest (cheapest) approach is to use modified Gram-Schmidt. Unfortunately

31

this requires either pivoting or reorthogonalization for stability. If piv­

oting is used the corresponding matrix of coefficients is not triangular and

this increases the band width of the matrix T.
So following Lewis [6] we decided to use householder transformations to

orthogonalize the blocks. Indeed SORTQR is essentially Lewis' QRDECM modified

to incorporate the Basic Linear Algebra Subprograms.

5.2.1 The Calling Sequence
Table 5. SUBROUTINE SORTQR(N,NBLOCK,Z,B)

Name Type Dimension Classification Remarks
N integer scalar SI Length of vectors.
NBLOCK integer scalar SI Number of vectors.

Z real N*NBLOCK SI-SO The block of vectors on input and

the orthonormalized vectors on

output.

B real NBLOCK* SO The upper triangular matrix.
NBLOCK

5.2.2 Internal Variables

Table 6. Internal Variables

Name Type Remarks
I integer Index over the columns of Z (one to NBLOCK in reduction

phase and NBLOCK to one in the accumulation phase.)

J integer Set equal to I + 1 to index a DO loop (twice).
LENGTH integer Set equal to the length (dimension) of the current

Householder reflection.

M integer Used as the DO loop variable when I is counting downward.

32

Table 6. (Cont'd)

Name Type Remarks

SIGMA real Set to the norm (with sign chosen for stability) of the

current vector used for forming the Householder reflection.

TAU real Set to the normalizing factor for the current reflection.

TEMP real Used to hold the multiplier for the following call to
SAXPY. Not strictly needed but included for readability.

5.2.3 Sequence Blocks
In reference to the listing of SORTQR in appendix 2

Table 7. Sequence Blocks

Sequence Numbers Remarks

10-180 Initial comments and Declarations.

190-410 DO loop in I over number of vectors.

230-290 tilForm I— reflections.

330-390 DO loop in K applying the reflection to the rest of

the vectors.
450-660 DO loop in M over the number of vectors as I runs

490-550

backwards through the vectors.

Recreate I— reflection.
590-620 DO loop in K applying this reflection to the pre­

viously accumulated reflections.
640-650 Construct current column.
670-690 Exit.

33

5.3 SVZERO
SVZERO is used to initialize a given vector to zero. The structure of

the subroutine is copied from SCOPY except that the increment is known to

be one.

5.3.1 The Calling Sequence

SUBROUTINE SVZERO (N,Q)

Table 8. SUBROUTINE SVZERO (N,Q)

Name Type Dimension Classification Remarks
N integer scalar SI Length of vector.

Q real N SO The vector.

5.3.2 Internal Variables

Table 9. Internal Variables (M,MP1,I)

Name Type Remarks

M integer Set to N mod 7.

MP1 integer Set to M + 1.

I integer DO loop variable (1 to M and MP1 to N by 7)

5.3.3 Sequence Blocks
In reference to the listing of SVZERO in appendix 2:

34

Table 10. Sequence Blocks

Sequence Numbers

10-130
140-210
220-320

330-350

Remarks
Initial comments and declarations.
Clean up loop.

Main loop.

Exit.

6. SNLASO

SNLASO is the driver program for number type problems. It checks the

consistency of the calling parameters, orthonormalizes any user supplied

eigenvectors, and calls the subroutines SNWLA and SNPPLA.

6.1 THE CALLING SEQUENCE

SUBROUTINE SNLASO (OP,I0VECT,N,NVAL,NFIG,NPERM,NMVAL,VAL,NMVEC,VEC,

NBLOCK,MAXOP,MAXJ,WORK,IND,TERR) .

Table 11. The Calling Sequence

Name Type Dimension Classification Remarks
OP external - I User supplied subroutine for ma-

trix-vector products.
I0VECT external I User supplied subroutine for

storing and recalling vectors.
N integer scalar SI The dimension of the matrix.
NVAL integer scalar SI Indicates the number of desired

eigenvalues.

Table 11. (Cont'd)
35

Name Type Dimension Classification Remarks

NFIG integer scalar SI The number of decimal digits of

accuracy desired.

NPERM integer scalar SI-SO The number of eigenvectors known.

NMVAL integer scalar SI The row dimension of VAL.
VAL real NMVAL*4 1-0 The eigenvalues and accuracy

estimates.
NMVEC integer scalar SI The row dimension of VEC.
VEC real NMVEC*NVAL 1-0 The eigenvectors.
NBLOCK integer scalar SI The block size (number of vectors

per block).
MAXOP integer scalar SI The maximum number of calls to OP.
MAXJ integer scalar SI The limit on the number of vectors

stored by IOVECT. It also effects

WORK.
WORK real (see below) 1-0 Workspace. The first N*NBLOCK

elements are the starting block.
IND integer NVAL so Used for workspace and to return

the actual number of calls to OP.
IERR integer scalar so An error completion code.

The array WORK must be at least as long as

NBLOCK*(3*N + 2*NBL0CK) + MAXJ*(3*NBL0CK + ABS(NVAL) + 6)

+ 3*ABS(NVAL).

For a more detailed description of the calling sequence see Appendix 1.

36

6.2 INTERNAL VARIABLES

Table 12. Internal Variables

Name Type Remarks

DELTA real Returned from SNWLA as the eigenvalue of A closest to the
desired eigenvalues. Used in SNPPLA for computing the ac­

curacy estimates.

I integer Used as the primary DO loop index.

11-114 integer Used as subscripts in the calls to SNWLA and SNPPLA.
K integer Used as the secondary DO loop index.
M integer Used as a DO loop limit and as an array subscript.
NOP integer Returned from SNWLA and SNPPLA as the actual number of calls

to OP. Stored in IND(l) just before exit.

NV integer Set to abs(NVAL).
RARITZ logical Returned from SNWLA and passed to SNPPLA. RARITZ is .TRUE.

if a final Rayleigh-Ritz procedure is needed.
SMALL logical Set to .TRUE, if the leftmost eigenvalues are desired.

Passed to SNWLA and SNPPLA.
TEMP real Used for temporary storage for sorting etc.

6.3 SEQUENCE BLOCKS
In reference to the listing of SNLASO in Appendix 2:

Table 13. Sequence Blocks

Sequence Numbers Remarks
10-1860 Initial comments and declarations.

1870-2070 Check consistency and set local parameters.

37

Table 13. (Cont'd)

Sequence Numbers

2080-2810

2820-3100

3110-3220
3230-3250

Remarks

Orthonormalize user supplied eigenvectors.

Call SNWLA.

Call SNPPLA.
Set IND(l) and exit.

7. SNWLA

SNWLA is the subroutine which implements the block Lanczos algorithm with

selective orthogonalization to compute the desired eigenvalues. If the largest

(rightmost) eigenvalues are desired (SMALL = .FALSE.) the code implicitly uses
the negative of the matrix (by negating the matrix T) and otherwise always
computes the smallest eigenvalues.

7.1 THE CALLING SEQUENCE

SUBROUTINE SNWLA(OP,IOVECT,N,NVAL,NFIG,NPERM,VAL,NMVEC,VEC,NBLOCK,MAXOP,
MAXJ,NOP,P0,PI,P2,RES,TAU,OTAU,T,ALPHA,BETA,BETA2,ALP,BET,RV,RV6,S,IND,SMALL,
RARITZ,DELTA,IERR).

Table 14. The Calling Sequence

Name Type Dimension Classification Remarks

OP external - SI Forms matrix vector products.
IOVECT external - SI Used to store and recall vectors.
N integer scalar SI Dimension of the matrix.
NVAL integer scalar SI The number of eigenvalues desired

(positive).

38

Table 14. (Cont'd)

Name Type

NFIG integer

NPERM integer

VAL real

NMVEC integer
VEC real

NBLOCK integer

Dimension

scalar

scalar

NVAL

scalar
NMVEC*NVAL

scalar

Classification ____________ Remarks_____________

SI The number of decimal digits of

accuracy desired in the eigen­

values .

SI-0 On input, the number of user
supplied eigenpairs. On output
the number of eigenpairs now
known (usually NVAL). In between,
the number of permanent vectors.

1-0 On input, the user specified
eigenvalues. Internally, the

permanent eigenvalues, followed
by the good eigenvalues, followed

by the eigenvalues computed at

the current step. On output, all

the known eigenvalues.
SI The row dimension of VEC.

1-0 On input, the user supplied eigen­

vectors. Internally the permanent
eigenvectors followed by the good

eigenvectors. On output, all the
known eigenvectors.

SI The number of vectors in each

Lanczos block.

39

Table 14. (Cont d)

Name Type Dimension Classification _____________ Remarks

MAXOP integer scalar SI

MAXJ integer scalar SI

NOP integer scalar SO
PO real N*NBLOCK W

PI real N*NBLOCK SI

The maximum number of calls to

OP. SNWLA is aborted (IERR = -2)

if this maximum is reached. Note

that the comparison is turned off

if the code is making a check run

to test for multiplicities so
that the number of calls to OP
may be larger than MAXOP before
termination of SNWLA.

The maximum number of Lanczos

vectors which can be stored. The
algorithm is restarted (iterated)

if this maximum is reached.
The number of calls to OP.

The "oldest" block of Lanczos
vectors kept in fast storage.

The "middle" block of Lanczos
vectors. On input PI must con­
tain the desired starting vectors.

Zero vectors are replaced by ran­
dom vectors. On output, if IERR =

-2, PI will contain the best vec­
tors for restarting the algorithm.

40

Table 14. (Cont'd)

Name Type Dimension Classification Remarks
P2 real N*NBLOCK W The "newest" block of Lanczos

vectors.
RES real NVAL W Holds the residual norms of the

permanent vectors. Needed to up­

date the T recurrence.
TAU real NVAL W Holds the current value of T for

each eigenvector.
OTAU real NVAL W Holds the previous value for T for

for each eigenvector. Note that
whenever an orthogonalization is
performed it is necessary to
orthogonalize two successive

blocks against the indicated

eigenvector. Rather than keep a
separate pointer the code sets

TAU = 0 and OTAU = 1 the first

time an orthogonalization is per­
formed. Since OTAU = 1 the TAU
at the next step will be bigger
than /£ so another orthogonali­

zation is performed. However the
fact that TAU = 0 is used to

suppress a third orthogonalization
by not setting OTAU = 1 again.

41

Table 14. (Cont’d)

Name Type

T real

ALPHA real

BETA real

BETA2 real

ALP real

BET real

RV real

Dimension Classification

MAXJ* W
(NBLOCK+1)

MAXJ W

MAXJ W

MAXJ W

NBLOCK*NBLOCK W

NBLOCK*NBLOCK W

MAXJ* W
(2*NBL0CK+1)

Remarks

Holds the band matrix.

Holds the diagonal elements of

T reduced to tridiagonal form
(by a call to BANDR).
Holds the off diagonal elements
of T reduced to tridiagonal form.

Holds the squares of the off
diagonal elements.

Holds the lower triangle of the

current diagonal block of the
band matrix T. The full square

of storage is used for ease of
addressing.
Holds the next off diagonal

block of T (which is actually

upper triangular).
Used as workspace for various

subroutines. Only BANDV re­
quires the full array. The first
column of RV contains the ortho­

gonality coefficients on exit

from SMVPC.

42

Name
RV6

S

IND

SMALL

RARITZ

DELTA

Table 14 (Cont'd)

Type
real

Dimension Classification _____________ Remarks____________

MAXJ W Used as workspace for various
subroutines. RV6 contains the

residual norms (3 .) on exit from Ji
SMVPC.

real MAXJ*NVAL W

integer NVAL W

logical scalar SI

logical scalar SO

real scalar SO

Used to hold eigenvectors of T
on exit from BANDV. Also used

to manipulate the eigenvectors
of T to form the appropriate
linear combination needed in com­
puting the new starting vectors.
Used in various EISPACK sub­
routines. Also used for pointers
in various sorting operations.

SMALL = .TRUE, if the smallest

(leftmost) eigenvalues are desired.

If SMALL = .FALSE, then the matrix
T is negated.

Set to .TRUE, if a Rayleigh-Ritz

procedure is to be done in SNPPLA.
This happens if a cluster of more
than NBLOCK eigenvalues are found.
Set to the smallest undesired

eigenvalue of T. That is the

eigenvalue closest to the desired

eigenvalues.

43

Table 14. (Cont'd)

Name Type Dimension Classification Remarks

IERR integer scalar 0 An error completion code. Set to

-2 if too many calls to OP and -3

if an error flag in an EISPACK

subroutine is encountered.

7.2 INTERNAL VARIABLES

Table 15. Internal Variables

Name Type
ANORM real

BNORM real

ENOUGH logical

EPS real

EPS1 real

Remarks
Current estimate of llAll . Computed as the infinity norm of

the tridiagonal matrix obtained by taking the 2-norm of the
blocks of T. This estimate is modified to reflect any user

supplied eigenvalues.
Holds the 2-norm (largest singular value) of the previous

off diagonal block (see SINGL). Needed in the update form­

ula for the T-recurrence.

Used to keep track of whether enough desirable eigenvalues
have been found.
Set to an approximation to the relative machine precision
by the repeated halving technique.
Indicates the desired accuracy of the eigenvalues computed

by TRIDIB. When set to 0.0 the eigenvalues are found to
working accuracy.

44

Table 15. (Cont'd)

Name Type Remarks

EPSRT real Set to the square root of EPS. Used in assessing the ortho­
gonality coefficients to determine if a given eigenvector is
good. (The vector is good if ^ /ellAll).

I integer Used as a DO loop variable in many places.

11 integer Used as an array subscript for manipulating vectors in
forming good Ritz vectors and starting vectors. Also used
as a temporary location for swapping integers.

IER integer Used as the error completion code variable in all calls to
EISPACK subroutines. If a nonzero completion code is en­

countered SNWLA is aborted with IERR = -3.

INDG integer Used as the index (in T) of the smallest eigenvalue of T
which has not been declared good.

IURAND integer Used as the seed for the pseudo-random number generator

URAND.

J integer Used as the current dimension of the matrix T. Thus J equals
NBLOCK times the number of Lanczos steps taken.

K integer Used as the secondary DO loop index (after I).

L integer Used as the tertiary DO loop index (after K). Also used as

the secondary array subscript or DO loop limit (after M) .

LB real Needed for EISPACK subroutine TRIDIB. LB is never referenced.
M integer Used as the primary array subscript or DO loop limit.
NG integer Used to count the number of good eigenpairs found at any

step. If this number is bigger than the number known pre­
viously (NGOOD) then all the good Ritz vectors are re-
computed.

45

Name

NGOOD

NLEFT

NSTART

NTHETA

NUMBER

NV
PNORM

RNORM

Table 15. (Cont'd)

Type __________________________ Remarks__________________________

integer The number of good Ritz pairs currently known. Just before
a restart, NGOOD is equal to the number of new eigenpairs

which will become permanent vectors when the algorithm
starts over.

integer The number of eigenvalues remaining to be found (= NVAL -
NPERM).

integer

integer

integer

integer
real

real

Set to the number of unacceptable vectors. This number is
then used to construct the appropriate linear combination

of these vectors for the new starting block if needed.
Set to the number of eigenvalues of T which are to be com­

puted. This is usually NLEFT+1 but may not be larger than

J/2 to prevent any confusion with converging eigenvalues at
the large end of the spectrum. If NTHETA=NLEFT+1, DELTA is

updated and then NTHETA is set to NLEFT.

The actual number of vectors in VEC. (Equal to NPERM+NGOOD).
Set to MAXJ*(2*NBL0CK+1). Used as a parameter in calls to BANDV.

Set to the largest eigenvalue (in absolute value) of the

desired eigenvalues. Used instead of ANORM in evaluating
the accuracy of the desired eigenvalues. Thus NFIG decimal
digits of accuracy are obtained in the eigenvalues relative

to themselves rather than to ANORM.
Set to the largest eigenvalue (in absolute value) of the

permanent eigenpairs. Used in updating PNORM.

46

Name

SINGL

SINGS

TEMP
TEST

THETA

THETG

TOLA

TOLG

Table 15. (Cont'd)

TyPe
real

real

real
logical

real

real

Remarks
Set to the 2-norm (largest singular value) of BET. Passed
on to BNORM. Used in the update formulas for the T-

recurrence.
Set to the smallest singular value of BET. Used in the up­
date formula for the T-recurrence.

Used as a temporary storage location.

Used as a flag in three places. TEST is .TRUE, if it is
necessary to reorthonormalize the current Lanczos block.
TEST is .TRUE, if a restart is necessary. Later TEST is

modified to indicate that a restart is necessary and start­
ing vectors must be computed.

Computed as the eigenvalue of T of index NLEFT. If THETA
is sufficiently accurate then all the desired eigenvalues

are computed and examined.

Computed as the eigenvalue of T of index INDG. If THETG is
found to be good all the desired eigenvalues are computed
and examined.

real Set to UTOL*PNOEM (or RNORM). Used as the acceptance tol­
erance. An eigenpair (y,0) is acceptable if

2min(p../ (6-0),g..) < TOLA , where g,. is the residual norm
Ji Ji Ji

of the Ritz pair (y,0).
real Set to EPSRT*ANORM. Used to determine if an eigenpair is

good. An eigenpair is good if
0). . < TOLGji

47

Table 15. (Cont'd)

Name Type Remarks

UB real

where is the orthogonality coefficient of the eigenpair

Needed for the EISPACK subroutine TRIDIB. UB is never

referenced.
UTOL real Set to max(N*EPS,10**(-NFIG)) used as the relative accept­

ability tolerance.

. 3 SEQUENCE BLOCKS

In reference to the listing of SNWLA given Appendix 2:

Table 16. Sequence Blocks

Sequence Numbers Remarks
10-1080 Initialize declarations and comments.

1090-1170 Initialize IURAND.

1180-1290 Initialize EPS.
1300-1410 Initialize other parameters.
1420-1580 Replace zero vectors in starting block by random

vectors.
1590-1650 Start the T-recurrence, if necessary.
1660-1710 Reset the Lanczos parameters. TEST is set to .TRUE.

to indicate that the starting block must be ortho-

normalized .
1720-3420 The Lanczos step.

1770 Update J.
1780-2010 Selective orthogonalization.

48

Table 16. (Cont'd)

Sequence Numbers Remarks
2020-2250 Reorthonormalize the block and update BET.
2290 The call to OP.
2310-2320 The call to I0VECT.
2320-2540 Computation of P2 = P2 - P0*BET - P1*ALP.
2550-2680 Local reotthogonajiz; tion.
2690-2860 Store ALP and BET in T.
28?0*3000 Negate T if needed.
3010-3070 Shift the blocks and orthonormalize the newest one.
3080-3280 Compute the 2-norm of ALP and the largest and smal­

lest singular values of BET. Note that the EISPACK
version of SVD does not order the singular values.

3290-3420 Update the T-recurrence if needed.
3430-3540 On the first two steps only, don't examine any eigen­

values of T.

3550-4210 Compute and examine 2 eigenvalues of T to see if all
the desired eigenvalues should be examined.

3550-3660 Set some parameters.
3670-3740 Reduce T to tridiagonal form.
3750-3760 Check to see if a restart is needed.
3770-3870 Compute THETG and S the smallest nongood eigenpair

of T and the corresponding resi al norm and ortho­
gonality coefficient.

3880-4030 If NLEFT = 0 (check run) see if the check is suc­

cessful. A check run is successful if at least 6
steps have been taken and the residual norm interval

49

Table 16. (Cont'd)

Sequence Numbers Remarks

around THETG does not extend to the left of the
accuracy interval around the largest permanent value.

That is the eigenvalue of A closest to THETG is

greater than or equal to the largest permanent value

to within the desired accuracy. On the other hand

if THETG is smaller than the largest permanent value
then the largest permanent value is thrown away,
NLEFT is set to 1 and the Lanczos run continues as

a "normal" run.

4040-4070 If NLEFT ^ 0 then the orthogonality coefficient is

examined to see if the eigenpair is now good. If it

4080-4210
is than all the desired eigenpairs are examined.

THETA and S, the (NLEFT)— smallest eigenpair is com­
puted along with the corresponding residual norm and
orthogonality coefficient. (Except that no exami­
nation is made if NLEFT > J/2 since examining eigen­

values from the wrong end of the spectrum can lead

to spurious results.) If this eigenvalue has changed

from the corresponding eigenvalue computed at the

previous step by less than one tenth of the desired

accuracy, then all the desired eigenpairs are computed
and examined.

50

Table 16. (Cont'd)

Sequence Numbers Remarks
4220-4680 This section computes min(NLEFT+1,J/2) eigenvalues

of T. If indicated NLEFT is updated. If NLEFT is
increased some permanent vectors are discarded,
all the good vectors are discarded (if any) and more

eigenvalues are computed. If possible DELTA is up­
dated. Then the corresponding residual norms and

orthogonality coefficients are computed.
4690-5130 This section examines the computed eigenpairs, first

to see whether all the computed eigenpairs are suf­

ficiently accurate and then to see if more good eigen­
pairs have been found. In either case it is necessary
to compute some Ritz vectors.

5140-5510 The previous section divided (using IND) the eigen­

vectors of T into two sets, namely those vectors
corresponding to Ritz vectors needed in their own

right and those needed only for constructing starting
vectors (or not at all). This section sorts the

eigenvectors of T so that the first set comes first.
5520-5800 If needed (TEST = .TRUE.) this section forms the

appropriate linear combinations of the second set of
vectors for forming starting vectors.

5810-5890 This stores the residual norms of the new permanent

vectors (if any) in RES for use in the T-recurrence.

51

Sequence Numbers

5900-6290

6300-6430

6450-6720

6730-6750
6760-7150

7160-7330

7340-7480

7480

7490-7640

Table 16 (Cont'd)

Remarks

This forms the Ritz vectors (including the starting

vectors) by sequentially recalling the Lanczos vectors.

This resets the T-recurrence if the algorithm is not
starting over.

This sorts the permanent vectors.

This updates NPERM, NLEFT, and RNORM.
This orthonormalizes the permanent vectors ordered

by increasing residual norm.

This section decides whether to start over or whether
to terminate.
This section sets RARITZ to .TRUE, if too large a

cluster of eigenvalues was found.
Normal exit.

This sets various error conditions before exiting.

8. SNPPLA

SNPPLA post processes the eigenpairs computed by SNWLA. If needed a final
Rayleigh-Ritz procedure is performed on the eigenvectors. Then the Rayleigh

quotients and residual norms are computed. Finally the accuracy estimates are
computed.

8.1 THE CALLING SEQUENCE

SUBROUTINE SNPPLA(OP,I0VECT,N,NPERM,NOP,NMVAL,VAL,NMVEC,VEC,NBLOCK,H,P,

0, DELTA,SMALL,RARITZ,IERR).

52

Table 17. The Calling Sequence

Name Type Dimension Classification Remarks

OP external - SI Forms matrix vector products.

IOVECT external — I Needed only for Rayleigh-Ritz

procedure.

N integer scalar SI Dimension of the matrix.

NPERM integer scalar SI The number of eigenvectors.

NOP integer scalar SI-SO The cumulative number of calls
to OP.

NMVAL integer scalar SI The row dimension of VAL.

VAL real NMVAL*4 SO The eigenvalues and accuracy
estimates.

NMVEC integer scalar SI The row dimension of VEC.

VEC real NMVEC*NPERM SI-0 The eigenvectors, which are modi­
fied only if a Rayleigh-Ritz

procedure is computed.
NBLOCK integer scalar SI The blocksize. Used to minimize

the number of calls to OP.
H real NPERM*NPEEM w Holds the reduced matrix in the

Rayleigh-Ritz procedure.
P real N*BLOCK w Used for forming block matrix

vector products.

Q real N*BLOCK w Used for forming block matrix
vector products

53

Table 17. (Cont’d)

Name Type Dimension Classification _____________ Remarks_____________
DELTA real scalar SI-0 Input as the eigenvalue of A

closest to the desired eigenvalues.

If SMALL is .FALSE. DELTA must be
negated to account for the fact

that SNWLA was implicitly using -A

as the matrix.
SMALL logical scalar

RARITZ logical scalar

IERR integer scalar
only to indicate a failure of an
EISPACK subroutine (IMTQL2).

SI SMALL is .TRUE, if the leftmost
eigenvalues are desired.

SI RARITZ is .TRUE, if a Rayleigh-

Ritz procedure is needed.

1-0 The error indicator. Used here

Note that the workspaces P and Q are needed to form block matrix vector
products since the array VEC has row dimension NMVEC instead of N and the sub­
routine OP assumes a row dimension of N.

8.2 INTERNAL VARIABLES

Table 18. Internal Variables

Name Type __________________________ Remarks___________________________

I integer Primary DO loop index.

IER integer Error completion code in a call to IMTQL2. A nonzero com­

pletion is almost impossible. If it occurs the code sets IERR
to -3 and exits.

54

Table 18. (Cont'd)

Name Type Remarks

J integer Secondary DO loop index.
K integer Tertiary DO loop index.

L integer Array subscript.

M integer DO loop limit.

TEMP real Temporary storage. In the Rayleigh-Ritz procedure TEMP is
used to negate the matrix H when SMALL = .FALSE. This forces

IMTQL2 to return the eigenvectors sorted in the appropriate
order.

8.3 SEQUENCE BLOCKS
In reference to the listing of SNPPLA given in Appendix 2

Table 19. Sequence Blocks

Sequence Numbers Remarks
10-200 Initial declarations and comments.
210-770 Construction of the reduced matrix H needed in the

Rayleigh-Ritz procedure. The initial eigenvectors
are stored by calls to IOVECT.

780-910 Spectral decomposition of H using EISPACK subroutines.

920-1280 Formation of the Ritz vectors (improved eigenvectors)

as linear combinations of the original eigenvectors.

1290-1720 Computation of the Rayleigh quotient and residual norms

of the eigenvectors.

1730-1870 Computation of the accuracy estimates and exit.

55

9. INTERVAL TYPE PROBLEMS

In this chapter we discuss the differences between SNLASO, SNWLA, and

SNPPLA discussed earlier and SILASO, SIWIA, and SIPPLA which solve interval

type problems.

9.1 PROBLEM DEFINITION

For interval type problems the user specifies XL and XR the left and right

endpoints of the excluded interval and SILASO is supposed to find all the

eigenvalues of the given matrix A outside the excluded interval. Thus it is

necessary to examine eigenvalues at both ends of the spectrum of T. Furthermore

problems occur if an eigenvalue of A lies pathologically close to one of the

endpoints. For numerical reasons alone it is impossible to specify as sharp a
boundary as the variables XL and XR suggest. Instead it is necessary to intro­
duce a fuzzy region around each endpoint related to the desired accuracy in the
eigenvalues. An eigenvalue which equals XL to the desired accuracy should be
returned to the user even if computing it to working accuracy might disclose
that it actually lies inside the excluded interval.

However while the eigenvector is returned to the user, the eigenvalue is
explicitly set to the boundary so that all the returned eigenvalues do lie

outside the excluded interval. Any such eigenpairs are marked to indicate that

the returned eigenvalue is not the Rayleigh quotient of the eigenvector.
In the following sections we indicate the differences in the subroutines.

9.2 SILASO

9.2.1 The Calling Sequence

SUBROUTINE SILASO(OP,IOVECT,N,XL,XR,NFIG,NPERM,NMVAL,VAL,NMVEC,MAXVEC,

VEC,NBLOCK,MAXOP,MAXJ,WORK,IND,IERR).

56

Table 20. The Calling Sequence

Name Type Dimension Classification Remarks

tiki Not needed by SILASO.

XL real scalar SI Left endpoint.

XR real scalar SI Right endpoint.

MAXVEC Integer scalar SI The column dimension of VEC. The

maximum number of Ritz vectors which

can be stored.

9.2.2 Internal Variables

Table 20. Internal Variables

Name Type Remarks

mu Replaced by DELTAL and DELTAR.

DELTAL real Returned from SIWLA as the excluded eigenvalue closest to
XL. Used in SIPPLA to compute the accuracy estimates.

DELTAR real Returned from SIWLA as the excluded eigenvalue closest to XR.

Used in SIPPLA to compute the accuracy estimates.

NP integer Set to NPERM and passed to SIPPLA. NP is used to dimension

arrays in SIPPLA. This legalizes changing the value of NPERM
which may be necessary in SIPPLA.

jGV Not used.

mtt Not used.

57

9.2.3 Other Changes
In examining user supplied eigenpairs, SILASO will abort (IERR = -4) if

a user supplied eigenvalue is inside the excluded interval.

9.3 SIWLA

There are two major differences between SIWLA and SNWLA. Since eigenvalues

at both ends of the spectrum of A are of interest, SIWLA must examine both ends
of the spectrum of T at each step. Also the termination criterion for SIWLA

is rather different than for SNWLA. SIWLA must continue until the most extreme

excluded eigenvalues have settled down enough to know that they are not going
to drift into the desired region. Thus the first eigenvalues computed at each

step are DELTAL and DELTAR, the most extreme excluded eigenvalues (of T). Only
if their residual norm intervals do not overlap the boundary are the desired
eigenvalues investigated to see if they are acceptable. Finally the most ex­
treme non good eigenvalues are examined to see if a new good Ritz vector must
be computed.

9.3.1 Calling Sequence

SUBROUTINE SIWLA(OP,IOVECT,N,XL,XR,NFIG,NPERM,VAL,NMVEC,MAXVEC,VEC,NBLOCK,
MAXOP,MAXJ,NOP,PO,PI,P2,RES,TAU,OTAU,T.ALPHA,BETA,BETA2,ALP,BET,RV,RV6,S,IND,
RARITZ,DELTAL,DELTAR,IERR).

Table 21. The Calling Sequence

Name Type Dimension Classification Remarks
MU Not needed.
MAXVEC integer scalar SI The column dimension of VEC.

tVtUl Not needed.

MttA Replaced by DELTAL and DELTAR.

58

Table 21. (Cont'd)

Name Type Dimension Classification Remarks

DELTAL real scalar SO Smallest excluded eigenvalue.
DELTAR real scalar SO Largest excluded eigenvalue.

9.3.2 Internal Variables

Table 22. Internal Variables

Name TyPe Remarks

AXL real XL perturbed (to the right) by the desired accuracy. Thus
any eigenvalue to the right of AXR is known to be not wanted.

AXR real XR perturbed (to the left) by the desired accuracy.
DONE logical A flag set to .TRUE, when DELTAL and DELTAR have settled down

tMUt Replaced by DONE.
INDAL integer The index of DELTAL in T.
INDAR integer The index of DELTAR in T.

twt Replaced by INDGL and INDGR.
INDGL integer The index of THETGL in T.

INDGR integer The index of THETGR in T.

titn Not needed.

NUML integer The number of eigenvalues of T less than AXL.
NUMR integer The number of eigenvalues of T greater than AXR.

tMU- Not needed.

Not needed.

tuu Replaced by THETAL and THETAR.

59

Table 22. (Cont'd)

Name Type Remarks

THETAL real The largest desired eigenvalue of T less than AXL (of index

INDAL-1).

THETAG real The smallest desired eigenvalue of T greater than AXR (of

index INDAR+1).
tttti Replaced by THETGL and THETGR.

THETGL real The smallest non good eigenvalue (of index INDGL in T).

THETGR real The largest non good eigenvalue (of index INDGR in T).
TOLA real Set to UT0L*max (XR, -XL) and used as the acceptability

criterion.

9.3.3 Other Changes
The necessity of determining which side of the boundary an eigenvalue lies

leads to two additional IERR codes. If J = MAXJ is reached when no desired

eigenvalues are found but DELTAL or DELTAR has not settled down then IERR is

set to -5. If NOP = MAXOP occurs in the same situation then IERR is set to
-6. In either case the vectors corresponding to DELTAL and DELTAR are put in
the starting block (as they are anytime the algorithm starts over) so that
SILASO can be immediately recalled to continue working on the problem.

Furthermore, if more than MAXVEC eigenvalues are found it is necessary to

stop. All acceptable eigenvectors are computed and the rest are put in the
starting block. 100* (the number of surplus eigenvalues) is subtracted from

IERR to indicate this result.

60

9.4 SIPPLA
The major difference between SIPPLA and SNPPLA is that SIPPLA must examine

the eigenvalues to see if any of them lie inside the excluded interval. If an

eigenvalue's residual norm interval ([0^ - + 3^1) lies entirely inside

the excluded interval, that eigenvalue is deleted (and the appropriate DELTA
is redefined). If the residual norm interval overlaps the boundary then three

changes are made. The eigenvalue is set equal to the boundary, the residual

norm is recomputed and made negative, and 10 is subtracted from IERR. If ten
or more such eigenvalues occur than IERR will be misleading since IERR ^ -100

usually indicates that too many eigenvalues where found but this is quite
unlikely.

9.4.1 Calling Sequence

SUBROUTINE SIPPLA(OP,IOVECT,N,XL,XR,NP.NPERM,NOP,NMVAL,VAL,NMVEC,VEC,NBLOCK
H,P,Q,DELTAL,DELTAR,RARITZ,IERR).

Table 23. The Calling Sequence

Name TyPe Dimension Classification Remarks
XL real scalar SI Left endpoint.
XR real scalar SI Right endpoint.
NP integer scalar SI Equal to NPERM. Used to dimension

arrays.
NPERM integer scalar SI-0 May change value.
tttn Replaced by DELTAL and DELTAR.
DELTAL real scalar SI-0 Smallest excluded eigenvalue.

61

Table 23. (Cont'd)

Name Type Dimension Classification Remarks

DELTAR real scalar SI-0 Largest excluded eigenvalue.

Not needed.

9.4.2 Internal Variables

No changes.

62

REFERENCES

[1] J. Cullum and W. E. Donath, "A Block Generalization of the Symmetric S-Step
Lanczos Algorithm," Report #RC 4845 (#21570), IBM Thomas J. Watson
Research Center, Yorktown Heights, New York, (1974).

[2] J. J. Dongarra, J. R. Bunch, C. B. Holer, and G. W. Stewart, LinpcLck U-iCAA1
Gtu.de, SIAM, 1979.

[3] G. E. Forsythe, M. A. Malcolm, and C. B. Moler, CompateA. Muthodi faofl
MathmcutLcaZ ComputationA, Series in Automatic Computing, Prentice-
Hall, 1977.

[4] B. S. Garbow, J. M. Dongarra, and C. B. Moler, ModTttX EujewAt/A-tem RouuLlyiZA -
E^iipaak GLU.de ExtenAi-OVU,, Lecture Notes in Computer Science 51,
Springer-Verlag, 1977.

[5] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, "Basic Linear
Algebra Subprograms for FORTRAN Usage," to appear in TOMS.

[6] J. Lewis, "Algorithms for Sparse Matrix Eigenvalue Problems," Technical
Report STAN-CS-77-595, Computer Science Department, Stanford
University (1977).

[7] C. C. Paige, "The Computation of Eigenvalues and Eigenvectors of Very
Large Sparse Matrices," Ph.D. Thesis, University of London (1971).

[8] C. C. Paige, "Computational Variants of the Lanczos Method for the Eigen-
problem," J. Znit. Mcutk. kppLLeA. 10, 373-81, 1972.

[9] B. N. Parlett and D. S. Scott, "The Lanczos Algorithm with Selective
Orthogonalization," Math, otf Comp. 33, 217-38, 1979.

[10] A. Ruhe, "Implementation Aspects of Band Lanczos Algorithms for Compu­
tation of Eigenvalues of Large Sparse Symmetric Matrices," Math.Comp.
33, 680-7, 1979.

[11] B. G. Ryder and A. D. Hall, "PFORT Verifier," Computing Science Technical
Report #12, Bell Labs, Murray-Hill, NJ, (1975).

[12] D. S. Scott, "Analysis of the Symmetric Lanczos Process," Ph.D. Thesis,
ERL Technical Report # M78/40, June 1978, Berkeley, CA 94720.

[13] B. T. Smith et al.. Matrix. EtgenAi/Atem Routine!) - Ecipack Guide, Lecture
Notes in Computer Science 6, 2nd edition, Springer-Verlag, 1976.

[14] R. Underwood, "An Iterative Block Lanczos Method for the Solution of Large
Sparse Symmetric Eigenproblems," Ph.D. Thesis, Stanford University,
STAN-CS-75-496 (1975).

APPENDIX 1
User guides for SNLASO/DNLASO

and SILASO/DILASO

64

SNLASO/DNLASO

A FORTRAN IV subroutine for determining a few eigenvalues and
eigenvectors at one end of the spectrum of a large sparse sym­
metric matrix. SNLASO is in single precision and DNLASO is in
double precision. This documentation explicitly describes
SNLASO. For DNLASO all subroutine' and function names start with
D instead of S (except SVD) and all floating point variables are
double precision.

David S. Scott
Union Carbide Corporation, Nuclear Division

Oak Ridge, TN 37830
July, 1979

1. Purpose

The FORTRAN IV subroutine SNLASO determines a few eigenvalues
and eigenvectors at one end of the spectrum of a large sparse
symmetric matrix, hereafter called A. SNLASO uses the block
Lanczos algorithm with selective orthogonalization to compute
Rayleigh-Ritz approximations to eigenpairs of A.

2. Usage
A. Calling sequence.

The subroutine statement is

SUBROUTINE SNLASO (OP, IOVECT, N, NVAL, NFIG, NPERM,
NMVAL, VAL, NMVEC, VEC, NBLOCK, MAXOP, MAXJ, WORK, IND,
IERR)

On input:
OP specifies a user supplied subroutine for

entering information about the matrix A
with calling sequence 0P(N,M,P,Q). See
section B. for further information.

IOVECT specifies a user supplied subroutine for
storing and recalling vectors with calling
sequence IOVECT (N,M,Q,J,K). See section
B. for further information.

N specifies the dimension of the matrix.

65

NVAL

NFIG

NPERM

NMVAL

VAL

NMVEC

VEC

NBLOCK

MAXOP

MAXJ

specifies which eigenvalues are desired,
abs (NVAL) eigenvalues are to be found.
If NVAL < 0 the algebraically smallest
(leftmost) are found while if NVAL > 0
the algebraically largest (rightmost)
are found. NVAL must not be zero.
specifies the number of decimal digits of
accuracy desired in the eigenvalues.

is an integer variable specifying the
number of eigenpairs presupplied by the
user. In most cases NPERM will be zero.
See section H. for information on using
NPERM > 0. NPERM must not be less than
zero.
specifies the row dimension of the real
array VAL. NMVAL must be greater than or
equal to abs (NVAL).

is a two dimensional real array with NMVAL
rows and at least four columns. If NPERM > 0
on input, VAL must contain certain informa­
tion. See section H. for details.
specifies the row dimension of the real
array VEC. NMVEC must be greater than or
equal to N.

is a two dimensional real array with NMVEC rows
and at least abs (NVAL) columns. If NPERM > 0
on input VEC must contain certain information.
See section H. for details.

specifies the number of vectors in each Lanczos
block. See section F. for guidelines in choos­
ing a value for NBLOCK. NBLOCK must be greater
than zero and less than or equal to MAXJ/6.

specifies an upper bound on the number of calls
to the subroutine OP. SNLASO terminates when
this maximum is reached. See section G. for
guidelines in choosing a value for MAXOP.
specifies an indication of the available storage
see WORK in this section and IOVECT in section B
The larger the value of MAXJ the faster the con­
vergence rate of the algorithm. However, there
is no advantage in having MAXJ > MAX0P*NBL0CK.
MAXJ must not be less than 6* NBLOCK.

66

WORK is a one dimensional real array at least as
large as
NBLOCK*(3*N + 2*NBL0CK) + MAXJ* (3*NBL0CK +
abs(NVAL) + 6) + 3*abs(NVAL)
used for workspace. The first N*BLOCK elements
of work must contain the starting vectors for
the algorithm. See section E. for details.

IND is an integer array of dimension at least

abs (NVAL),
used for workspace.

IERR is an integer variable.
On output:

NPERM is the number of eigenpairs now known.

VAL contains information about the eigenpairs.
The first column of VAL contains the eigen­
values, ordered from the most extreme one
inward. The second, third, and fourth
columns of VAL contain information on the
accuracy of the eigenvalues and eigenvectors.
See section D. for details.

VEC contains the corresponding eigenvectors.

WORK if IERR / 0, the first N*BL0CK elements
of WORK will contain vectors for restarting
the algorithm. See section E. for details.

IND (1) contains the actual number of calls to the
subroutine OP. In some circumstances this
may be slightly larger than MAXOP

IERR is an error completion code. The normal
completion code is zero. See section C.
for the interpretation of non-zero comple­
tion codes.

B. User supplied subroutines.

The two user supplied subroutines must be declared
EXTERNAL in the calling program and must conform as
follows:

OP (N,M,P,Q). P and Q are N x M real arrays. Q
should be returned as AP where A represents the
matrix whose eigenpairs are to be determined.

67

M will never be larger than NBLOCK but it may be
smaller. This subroutine is the only way in which
the matrix enters the calculation, so the user is
free to take advantage of any sparsity structure
in the matrix. The user should adequately test
the subroutine OP because SNLASO has no way of de­
tecting errors made in OP.

IOVECT (N,M,Q,J,K). Q is an N x M real array. M will
never be larger than NBLOCK but it may be smaller. IOVECT
is used to store Lanczos vectors as they are computed and
to periodically recall all the currently stored Lanczos
vectors. If K = 0 then the M columns of Q should be stored
as the (J - M + 1) _th through the J th Lanczos vectors.
If K = 1 then the columns of Q should be returned as the
(J - M + 1) th through the J _th Lanczos vectors which were
previously stored.

The Lanczos vectors are computed sequentially. They are
stored by calls to IOVECT with K = 0 and increasing values
of J up to some internally derived value J = I which sig­
nals a pause. These vectors are then recalled by calls
to IOVECT with K = 1 and the same sequence of J values.
The first J value of any sequence is equal to M. After the
pause more Lanczos vectors are computed and these are
stored by calls to IOVECT with K = 0 and J values greater
than I until the next pause at which time all the Lanczos
vectors currently stored are recalled with calls to IOVECT
with K = 1 and J = M, ...

After any pause the algorithm may discard the current
Lanczos vectors and start a new sequence of Lanczos
vectors by a call to IOVECT with K = 0 and J = M. At
subsequent pauses only the current sequence of Lanczos
vectors is recalled. In solving a problem SNLASO may pause
many times and discard the previous Lanczos vectors
several times before converging to the final solution.
The largest value to J which can appear in a call to IOVECT
is J = MAXJ.

We give two examples for IOVECT. The first example requires
that logical unit 20 be assigned to a secondary storage
medium.

SUBROUTINE IOVECT (N,M,Q,J,K)
INTEGER N,M,J,K,I,L
DIMENSION Q(N,M)
IF (J.EQ.M) Rewind 20
IF (K.EQ.O) Write (20) ((Q(I,L), I = 1,N), L = 1,M)
IF (K.EQ.l) Read (20) ((Q(I,L), I = 1,N), L = 1,M)
RETURN
END

The Lanczos vectors can also be kept in fast store. In this
example we assume that N < 100 and MAXJ < 50.

68

SUBROUTINE IOVECT (N,M,Q,J,K)
INTEGER N,M,J,K,I,L,L1
DIMENSION Q(N,M)
COMMON QVEC (100,50)
IF (K. EQ. 1) GO TO 30
DO 20 L = 1,M

LI = J - M + L
DO 10 I = 1,N

QVEC (I,LI) = Q(I,L)
10 CONTINUE
20 CONTINUE

RETURN
30 DO 50 L = 1, M

LI = J - M + L
DO 40 I = 1, N
Q (I,L) = QVEC (I, LI)

40 CONTINUE
50 CONTINUE

RETURN
END

C. ERROR completion codes.
IERR = 0 indicates a normal completion. abs (NVAL) eigenpairs
have been determined. See section D. for the information returned.
IERR > 0 and IERR < 1024 indicates that some inconsistency in the
calling parameters was discovered and no computation was performed.

1-bit is set if N < 6*NBL0CK
2-bit is set if NFIG < 0
4-bit is set if NMVEC < N
8-bit is set if NPERM < 0

16-bit is set if MAXJ < 6*NBL0CK
32-bit is set if abs (NVAL) < max (1,NPERM)
64-bit is set if abs(NVAL) > NMVAL

128-bit is set if abs(NVAL) > MAXOP
256-bit is set if abs(NVAL) > MAXJ/2
512-bit is set if NBLOCK < 1

Thus IERR can be decoded to determine the errors. For example, IERR = 68
indicates both NMVEC < N and abs(NVAL) > NMVAL. IERR may take on any value
between 1 and 1023 indicating all combinations of the above conditions.

IERR =-1 can occur only if NPERM > 0 on input. It indicates that
either some user supplied eigenvector was zero or that significant
cancellation occured when the user supplied vectors were orthogonal-
ized. Some modification of the user supplied eigenvectors will have
occurred but no other computation will have been done.

69

IERR = -2 indicates that MAXOP calls to the subroutine OP occurred
without finding the desired eigenvalues. Partial information is
returned in this case, see section G. When IERR =-2, the first
N*NBLOCK elements of work contain the best vectors for restart­
ing the algorithm. Thus SNLASO may be immediately recalled to
continue working on the problem

IERR = -3 indicates a non-zero error completion code was encountered
after a call to an EISPACK subroutine. EISPACK is a certified sub­
routine package. Errors are due to improper inputs. The follow­
ing is a list of possible causes for an IERR = -3 completion:

1. Improper calling sequence for SNLASO.
2. Insufficient storage in the array WORK.
3. Mixture of single and double precision.
4. Improper version of EISPACK for the machine used.

IERR = -8 indicates that disastrous loss of orthogonality occurred.
Usually due to errors in the user supplied subroutines OP or IOVECT.

D. Information returned when IERR = 0.

IERR = 0 indicates that the desired eigenpairs have been found. The
eigenvalues are in the first column of VAL. If NVAL < 0 the eigen­
values are in ascending order (smallest at the top) while if NVAL > 0
the eigenvalues are in descending order. The corresponding orthonormal
eigenvectors are in the first abs(NVAL) columns of VEC. The second
column of VAL contains the residual norms (=11 Ay^-y^ 0^11 for the
eigenvalue 0_^ and its associated eigenvector y.) which are bounds on
the accuracy of the eigenvalues.
In most cases the residual norm is a gross underbound on the accuracy
of an eigenvalue. To obtain a more realistic estimate, the program
remembers 6, its best estimate of the eigenvalue of the matrix which
is closest to the desired eigenvalues. The third column of VAL is
set to p?/abs(0^-6) which is a much more realistic estimate of
accuracy of the eigenvalues. The fourth column of VAL contains
p^/abs(0^-6) which estimates the accuracy of the eigenvectors.

If the user has supplied some eigenpairs of the matrix, it is possible
that some of these eigenpairs have been discarded in favor of eigen­
pairs computed by the algorithm. (See section H. for additional
information.)

E. Choosing the starting vectors.

SLASO requires NBLOCK starting vectors to be stored in the first
N*NBL0CK elements of the array WORK. Zero vectors are replaced
by randomly chosen vectors so that a set of random starting vectors
may be selected by simply initializing the first N*NBL0CK elements
of WORK to zero. However, convergence is enhanced if the starting
vectors are chosen to have large components in the directions of
the desired eigenvectors. Therefore, if the user knows approximat­
ions to the desired eigenvectors he should choose his starting
vectors as linear combinations of these approximations.

70

If some of the desired eigenpairs are already known to sufficient
accuracy, it is possible to avoid having SNLASO recompute these
eigenpairs. See section H. for details.

F. Choosing a value for NBLOCK.
NBLOCK specifies the number of vectors in each block of Lanczos
vectors. Two factors may favor a large value for NBLOCK. The
convergence of the algorithm is faster if NBLOCK is larger than
the largest multiplicity of eigenvalues among the desired eigen­
values. For instance if a desired eigenvalue has multiplicity
two, then NBLOCK equal to three or more is best. Even more import­
ant in some cases, if the matrix is stored on disk and brought in
a slice at a time to form the matrix vector product then a large
value of NBLOCK will lower the number of calls to OP and hence
the number of disk accesses. On the other hand the number of vector
inner products needed for each Lanczos step is a quadratic function
of NBLOCK. Furthermore, the convergence of the algorithm is de­
graded if NBLOCK > t/MAXJ. In conclusion if the matrix multiply is
inexpensive a small value of NBLOCK (2 or 3) is best while if the
matrix multiply is expensive larger values of NBLOCK are to be pre­
ferred. NBLOCK = 1 is recommended only if abs(NVAL) = 1 as well.

G. Choosing a value for MAXOP

SNLASO is an iterative procedure. The user may limit the effort by
SNLASO on a given problem by choosing a value for MAXOP. If more
than MAXOP calls to the subroutine OP are needed to solve the given
problem, then SNLASO will terminate at that point and set IERR = -2.
If cost is not a factor and the subroutine OP is known to be reliable
MAXOP should be set to N/NBLOCK. Choosing MAXOP much less than
abs(NVAL) /N/NBLOCK and repeatedly recalling SNLASO will delay con­
vergence of the algorithm. Setting MAXOP < abs(NVAL) is not allowed
while setting MAXOP < MAXJ/NBLOCK will waste the storage indicated
by MAXJ.

H. Setting NPERM > 0.

SNLASO allows known eigenpairs to be input directly so that they
need not be recomputed. The first column of VAL must contain the
eigenvalues (in any order) and the second column of VAL must contain
the residual norms (II Ay^-y^0 J| , for the eigenpair 9^7^) • The co-
rect order of magnitude is sufficient. Columns 3 and 4 of VAL are
arbitrary. The first NPERM columns of VEC must contain the eigen­
vectors (which will be orthonormalized by SNLASO). The eigenvectors
associated with VAL(I,1) must be in the I th column of VEC.

71

The user supplied eigenvalues are counted toward the number
of desired eigenpairs and so NPERM must be less than or equal
to abs(NVAL). If in the course of the computation it appears
that a user supplied eigenpair is not one of the desired eigen­
pairs, it will be discarded. In particular if NPERM = abs(NVAL),
the algorithm will either confirm that the supplied eigenpairs
are indeed the desired eigenpairs or it will discard one or more
in favor of newly computed eigenpairs.

3. Applicability and Restrictions

SNLASO is designed to find a few extreme eigenpairs of a large sparse
symmetric matrix. For small dense matrices the subroutines provided
in EISPACK are to be preferred. It is not necessary for the matrix
to be explicitly represented. It is only necessary to provide a sub­
routine OP to compute matrix-vector products. For example, consider
the generalized eigenvalue problem (A - AM)x = 0 where M is positive

T -1 -Tdefinite and can be factored as LL . The matrix L AL can be implic­
itly coded in OP as a triangular solve, a matrix multiply, and
another triangular solve. Thus a generalized eigenproblem can
be reduced to a standard eigenproblem without the cost of explic-

-1 -Titly forming L AL . More complex operators can also be handled
efficiently.

SNLASO calls a number of subsidiary functions and subroutines, namely:

SNWLA which implements the block Lanczos algorithm with selective orthogonalization.

SNPPLA which post processes the output of SNWLA.

SMVPC which computes residual norms and orthogonality
coefficients.

SORTQR which orthonormalizeS a block of vectors.
SVZERO which zeroes a given vector.
URAND, a FORTRAN IV random number generator given in
Forsythe, Malcolm, and Moler [6].
BANDR, BANDV, IMTQL1, IMTQL2, SVD, TRED1, TRED2, and TRIDIB,
which are EISPACK Subroutines ([3], [4]).

SAXPY, SCOPY, SDOT, SNRM2, SSCAL and SSWAP which are subset of
the BLAS (Basic Linear Algebra Subprograms) written by Lawson,
et. al [7] and modified by Dongarra, et. al [8] for use in
LINPACK. If the BLAS are available in assembly language they
should be used in place of the FORTRAN IV source code provided

The user must not use any of the above names in his driver program.

72

4* Discussion of method and algorithm.

The Lanczos algorithm is an efficient scheme for computing a
series of vectors q , q , ... q. which form an orthonormal

i 2 1
basis for the Krylov subspace, span (q , Aq ,..., A'' ^q).

i l l

At each step of the algorithm the Krylov subspace grows
larger and one more Lanczos vector is added to the list. The
Lanczos algorithm can be interrupted at any step and the
Rayleigh-Ritz approximations to eigenpairs of A can be derived
from the Krylov subspace quite easily. Thus the algorithm need
only continue until the desired approximations a sufficiently
accurate.
The block Lanczos algorithm (as described in detail by Underwood
[5]) replaces each vector in the simple Lanczos algorithm by an
orthonormal block of vectors. Block Lanczos has theoretical
advantages over simple Lanczos with respect to finding multiple
eigenvalues and has advantages in efficiency if the cost of
forming a matrix-vector product is high.
Unfortunately finite precision arithmetic causes the vectors com­
puted by the Lanczos algorithm (both simple and block) to lose
orthogonality and approach linear dependence. To maintain robust
independence among the Lanczos vectors, SNLASO augments the
algorithm with selective orthogonalization which causes some of
the Lanczos vectors to be orthogonalized against a few selected
Ritz vectors, as described in [l] and [2],

The algorithm is terminated when the desired Ritz values are suffic­
iently accurate. If necessary, SNLASO then makes another Lanczos
run to test for undisclosed multiplicities. Finally in some cases,
SNLASO performs a Rayleigh-Ritz procedure on the determined eigenvalues
to resolve any clusters.

73

5. References

[1] B. N. Parlett and D. S. Scott, "The Lanczos Algorithm with
Selective Orthogonalization," Math, ofi Comp. 33, 217-238, 1979.

[2] D. S. Scott, "Analysis of the Symmetric Lanczos Process,"
Ph.D. Thesis, ERL technical report No. M78/40, June 1978,
Electronics Research Lab, University of California,
Berkeley, CA 94720

[3] B. T. Smith et al., Matrix Eigensystem Routines - Eispaok
Guide, Lecture Notes in Computer Science 6, 2nd edition,
Springer-Verlag, 1976.

[4] B. S. Garbow, J. M. Dongarra, and C. B. Moler, Matrix
Eigensystem Routines - Eispaok Guide Extensions, Lecture
Notes in Computer Science 51, Springer-Verlag, 1977.

[5] R. Underwood, "An Iterative Block Lanczos Method for the
Solution of Large Sparse Symmetric Eigenproblems," Ph. D.
Thesis, Stanford University, STAN-CS-75-496 (1975).

[6] G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer
Methods for Mathematical Computations, Series in Automatic
Computing, Prentice-Hall.

[7] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh,
"Basic Linear Algebra Subprograms for FORTRAN Usage," to
appear in TOMS.

[8] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart,
Unpack U&eAA' Gutdc, SIAM, 1979.

74

SILASO/DILASO

A FORTRAN IV subroutine for determining all the eigenvalues and eigen­
vectors of a large sparse symmetric matrix outside a user defined
excluded interval. SILASO is in single precision and DILASO is in
double precision. This documentation explicitly describes SILASO. For
DILASO all subroutine and function names start with D instead of S
(except SVD) and all floating point variables are double precision.

David S. Scott
Union Carbide Corporation, Nuclear Division

Oak Ridge, TN 37830
July, 1979

1. Purpose
The FORTRAN IV subroutine SILASO determines all the eigenvalues
and eigenvectors of a large sparse symmetric matrix, hereafter
called A, outside a user defined excluded interval. SILASO
uses the block Lanczos algorithm with selective orthogonalization
to compute Rayleigh-Ritz approximations to the eigenpairs of A.

2. Usage
A. Calling sequence.

The subroutine statement is

SUBROUTINE SILASO (OP, IOVECT, N, XL, XR, NFIG, NPERM,
NMVAL, VAL, NMVEC, MAXVEC, VEC, NBLOCK, MAXOP, MAXJ,
WORK, IND, IERR)

On input:
OP specifies a user supplied subroutine for

entering information about the matrix A
with calling sequence 0P(N,M,P,Q). See
section B. for further information.

IOVECT specifies a user supplied subroutine for
storing and recalling vectors with calling
sequence IOVECT (N,M,Q,J,K). See section
B. for further information.

N specifies the dimension of the matrix.

XL specifies the left endpoint of the excluded
interval.

75

XR specifies the right endpoint of the excluded
interval.

NFIG specifies the number of decimal digits of
accuracy desired in the eigenvalues.

NPERM is an integer variable specifying the
number of eigenpairs presupplied by the
user. In most cases NPERM will be zero.
See section H. for information on using
NPERM > 0. NPERM must not be less than
zero.

NMVAL specifies the row dimension of the real
array VAL. NMVAL must be greater than or
equal to MAXVEC,

VAL is a two dimensional real array with NMVAL
rows and at least four columns. If NPERM > 0
on input, VAL must contain certain informa­
tion. See section H. for details.

NMVEC specifies the row dimension of the real
array VEC. NMVEC must be greater than or
equal to N.

MAXVEC specifies the maximum number of eigenpairs
which can be determined. MAXVEC must not
exceed the column dimension of the array VEC.

VEC is a two dimensional real array with NMVEC rows
and at least MAXVEC columns. If NPERM > 0
on input VEC must contain certain information.
See section H. for details.

NBLOCK specifies the number of vectors in each Lanczos
block. See section F. for guidelines in
choosing a value for NBLOCK. NBLOCK must be
greater than zero and less than or equal to
MAXJ/6.

MAXOP specifies an upper bound on the number of calls
to the subroutine OP. SILASO terminates when
this maximum is reached. See section G. for
guidelines in choosing a value for MAXOP.

76

MAXJ specifies an indication of the available stor­
age, see WORK in this section and IOVECT in
section B. The larger the value of MAXJ the
faster the convergence rate of the algorithm.
However, there is no advantage in having
MAXJ > MAXOP*NBLOCK. MAXJ must not be less
than 6* NBLOCK.

WORK is a one dimensional real array at least as
large as
NBLOCK*(3*N + 2*NBL0CK) + MAXJ* (3*NBL0CK +
MAXVEC + 6) + 3*MAXVEC)
used for workspace. The first N*BLOCK ele­
ments of work must contain the starting vectors
for the algorithm. See section E. for details.

IND is an integer array of dimension at least

MAXVEC ,
used for workspace.

IERR is an integer variable.

On output:

NPERM is the number of eigenpairs now known.

VAL contains information about the eigenpairs.
The first column of VAL contains the eigen­
values, ordered from the leftmost to the
right. The second, third, and fourth
columns of VAL contain information on the
accuracy of the eigenvalues and eigenvectors.
See section D. for details.

VEC contains the corresponding eigenvectors.

WORK if IERR ^ 0, the first N*BL0CK elements of
WORK will contain vectors for restarting
the algorithm. See section E. for details.

IND (1) contains the actual number of calls to the
subroutine OP. In some circumstances this
may be slightly larger than MAXOP.

IERR is an error completion code. The normal com­
pletion code is zero. See section C. for the
interpretation of non-zero completion codes.

77

B. User supplied subroutines.

The two user supplied subroutines must be declared
EXTERNAL in the calling program and must conform as
follows:

OP (N,M,P,Q). P and Q are N x M real arrays. Q should
be returned as AP where A represents the matrix whose
eigenpairs are to be determined. M will never be larger
than NBLOCK but it may be smaller. This subroutine is
the only way in which the matrix enters the calculation,
so the user is free to take advantage of any sparsity
structure in the matrix. The user should adequately
test the subroutine OP because SILASO has no way of de­
tecting errors made in OP.

IOVECT (N,M,Q,J,K). Q is an N x M real array. M will
never be larger than NBLOCK but it may be smaller. IOVECT
is used to store Lanczos vectors as they are computed and
to periodically recall all the currently stored Lanczos
vectors. If K = 0 then the M columns of Q should be stored
as the (J - M + 1) th through the J th Lanczos vectors
which were previously stored.

The Lanczos vectors are computed sequentially. They are
stored by calls to IOVECT with K = 0 and increasing values
of J up to some internally derived value J = I which sig­
nals a pause. These vectors are then recalled by calls
to IOVECT with K = 1 and the same sequence of J values.
The first J value of any sequence is equal to M. After the
pause more Lanczos vectors are computed and these are
stored by calls to IOVECT with K = 0 and J values greater
than I until the next pause at which time all the Lanczos
vectors currently stored are recalled with calls to IOVECT
with K = 1 and J = M, ...

After any pause the algorithm may discard the current
Lanczos vectors and start a new sequence of Lanczos
vectors by a call to IOVECT with K = 0 and J = M. At
subsequent pauses only the current sequence of Lanczos
vectors is recalled. In solving a problem SILASO may
pause many times and discard the previous Lanczos vectors
several times before convergint to the final solution.
The largest value to J which can appear in a call to IOVECT
is J - MAXJ.

We give two examples for IOVECT. The first example
requires that logical unit 20 be assigned to a secondary
storage medium.

78

SUBROUTINE IOVECT (N,M,Q,J,K)
INTEGER N,M,J,K,I,L
DIMENSION Q(N,M)
IF (J.EQ.M) REWIND 20
IF (K.EQ.O) WRITE (20) ((Q(I,L), I = 1,N), L = 1,M)
IF (K.EQ.l) READ (20) ((Q(I,L), I = 1,N), L = 1,M)
RETURN
END

The Lanczos vectors can also be kept in fast store. In
this example we assume that N ^ 100 and MAXJ ^ 50.

SUBROUTINE IOVECT (N,M,Q,J,K)
INTEGER N,M,J,K,I,L,L1
DIMENSION Q(N,M)
COMMON QVEC (100,50)
IF (K.EQ.l) GO TO 30
DO 20 L = 1,M
LI = J - M + L
DO 10 I = 1,N
QVEC (I,LI) = Q(I,L)

10 CONTINUE
20 CONTINUE

RETURN
30 DO 50 L = 1,M

LI = J - M + L
DO 40 I = 1,N
Q(I,L) = QVEC (I,LI)

40 CONTINUE
50 CONTINUE

RETURN
END

C. Error completion codes.

IERR = 0 indicates a normal completion. NPERM eigenpairs
have been determined. See section D. for the information
returned.
IERR > 0 and IERR < 1024 indicates that some inconsistency
in the calling parameters was discovered and no computation
was performed.

1-bit is set if N < 6* NBLOCK
2-bit is set if NFIG < 0
4-bit is set if NMVEC < N
8-bit is set if NPERM < 0

16-bit is set if MAXJ < 6*NBL0CK
32-bit is set if MAXVEC < NPERM
64-bit is set if MAXVEC > NMVAL

128-bit is set if MAXVEC > MAXOP
256-bit is set if XL > XR
512-bit is set if NBLOCK < 1

79

Thus IERR can be decoded to determine the errors. For
example, IERR = 68 indicates both NMVEC < N and MAXVEC > NMVAL.
IERR may take on any value between 1 and 1023 indicating all
combinations of the above conditions.
IERR = -1 can occur only if NPERM > 0 on input. It indi­
cates that either some user supplied eigenvector was zero
or that significant cancellation occured when the user sup­
plied vectors were orthogonalized. Some modification of
the user supplied eigenvectors may have occurred but no
other computation will have been done.
IERR = -2 indicates that MAXOP calls to the subroutine OP
occurred without finding the desired eigenvalues. Partial
information is returned in this case, see section G. When
IERR = -2, the first N*BL0CK elements of work contain the
best vectors for restarting the algorithm. Thus SILASO
may be immediately recalled to continue working on the
problem.

IERR = -3 indicates a non-zero error completion code was
encountered after a call to an EISPACK subroutine. EISPACK
is a certified subroutine package. Errors are due to im­
proper inputs. The following is a list of possible causes
for an IERR = -3 completion:

1. Improper calling sequence for SILASO.
2. Insufficient storage in the array WORK.
3. Mixture of single and double precision.
4. Improper version of EISPACK for the machine used.

IERR = -4 can occur only if NPERM > 0 on input. It indi­
cates that a user supplied eigenvalue lies inside the
excluded interval. Some modification of the user supplied
vectors may have occurred but no other computation will
have been done.
IERR = -5 and IERR = -6 indicate that the program termi-
ated without full assurance that all the desired eigen­
values had been located due to an eigenvalue near the
boundary of the excluded interval which had not converged
to sufficient accuracy. IERR = -5 if J = MAXJ while
IERR = -6 if MAXOP calls to the subroutine OP occurred.
To obtain further assurance that all the eigenvalues have
been found it is possible to recall SILASO to continue
working on the problem.

IERR = -7 indicates that more than 4*MAXVEC eigenvalues
are found. The program terminates without computing any
new eigenpairs,
IERR = -8 indicates that disastrous loss of orthogonality
occurred. Usually due to errors in the user supplied sub­
routines OP or IOVECT.

80

IERR -10 indicates that some of the eigenvalues found
by the program lie inside the excluded interval but have
error bounds which overlap the boundary. Such eigenvalues
are explicitly set equal to the boundary and marked as
described in section D. The ten's digit of IERR indicates
the number of such eigenvalues while the units digit indi­
cates the same result as single digit IERR codes described
above.
IERR ^ - 100 indicates that more than MAXVEC (but not more
than 4*MAXVEC) eigenvalues were found. The hundreds digit
of IERR gives the number of extra eigenvalues found. Any
eigenpairs returned by the program are correct and after
raising the value of MAXVEC it is possible to immediately
recall SILASO to keep working on the problem. Of course
the extra storage space indicated by the larger value of
MAXVEC must be available. The tens and units digits of the
IERR code are as described above.

D. Information returned when IERR = 0.

IERR = 0 indicates that NPERM desired eigenpairs have been
found. The eigenvalues are in the first column of VAL.
The eigenvalues are in ascending order (smallest at the
top). The corresponding orthonormal eigenvectors are in
the first NPERM columns of VEC, The second column of VAL
contains the residual norms p.(=llAy. - y.0.1! for thex 1 11

eigenvalue 0^ and its associated eigenvector y^) which are
bounds on the accuracy of the eigenvalues.
In most cases the residual norm is a gross underbound on
the accuracy of an eigenvalue. To obtain a more realistic
estimate, the program remembers 6 and 6 the leftmost andL K
rightmost excluded eigenvalue of A. The third column of

2VAL is set to p./MIN(0. - <5 , <$ - 0.) which is a muchl i L R i
more realistic estimate of the accuracy of the eigenvalues.
The fourth column of VAL contains p /MIN(0. - d. > 6D ~ 9.)i i L R i
which estimates the accuracy of the eigenvectors.

If IERR < 10, then the eigenvalues which have been moved
are marked by setting the residual norm negative.

E. Choosing the starting vectors.

SILASO requires NBLOCK starting vectors to be stored in the
first N*BLOCK elements of the array WORK. Zero vectors are
replaced by randomly chosen vectors so that a set of random

81

starting vectors may be selected by simply initializing
the first N*BLOCK elements of WORK to zero. However,
convergence is enhanced if the starting vectors are chosen
to have large components in the directions of the desired
eigenvectors. Therefore, if the user knows approximations
to the desired eigenvectors he should choose his starting
vectors as linear combinations of these approximations.
If some of the desired eigenpairs are already known to
sufficient accuracy, it is possible to avoid having SILASO
recompute these eigenpairs. See section H. for details.

F. Choosing a value for NBLOCK.
NBLOCK specifies the number of vectors in each block of
Lanczos vectors. Two factors may favor a large value for
NBLOCK. The convergence of the algorithm is faster if NBLOCK
is larger than the largest multiplicity of eigenvalues among
the desired eigenvalues. For instance if a desired eigen­
value has multiplicity two, then NBLOCK equal to three or
more is best. Even more important in some cases, if the
matrix is stored on disk and brought in a slice at a time
to form the matrix vector product then a large value of
NBLOCK will lower the number of calls to OP and hence the
number of disk accesses. On the other hand, the number of
vector inner products needed for each Lanczos step is a
quadratic function of NBLOCK. Furthermore, the convergence
of the algorithm is degraded if NBLOCK > v^MAXJ . In con­
clusion if the matrix multiply is inexpensive a small value
of NBLOCK (2 or 3) is best, while if the matrix multiply is
expensive larger values of NBLOCK are to be preferred.
NBLOCK = 1 is not recommended unless required by storage
limitations.

G. Choosing a value for MAXOP.
SILASO is an iterative procedure. The user may limit the
effort by SILASO on a given problem by choosing a value for
MAXOP. If more than MAXOP calls to the subroutine OP are
needed to solve the given problem, then SILASO will terminate
at that point and set IERR = -2.
If cost is not a factor and the subroutine OP is known to be
reliable MAXOP should be set to N/BLOCK. Choosing MAXOP much
less than MAXVEC /N/NBLOCK and repeatedly recalling SILASO
will delay convergence of the algorithm. Setting
MAXOP < MAXVEC is not allowed while setting MAXOP < MAXJ/NBLOCK
will waste the storage indicated by MAXJ.

82

H. Setting NPERM > 0.

SILASO allows known eigenpairs to be input directly so that they
need not be recomputed. The first column of VAL must contain
the eigenvalues (in any order) and the second column of VAL must
contain the residual norms (llAy^-y^0 Jl , for the eigenpair •
The correct order of magnitude is sufficient. Columns 3 and 4
of VAL are arbitrary. The first NPERM columns of VEC must con­
tain the eigenvectors (which will be orthonormalized by SILASO).
The eigenvectors associated with VAL(I,1) must be in the I th
column of VEC.
NPERM must be less than or equal to MAXVEC. If NPERM = MAXVEC
the program will either confirm that no other desired eigenvalues
exist or it will terminate (IERR = -100) as soon as another de­
sired eigenvalue appears.

3. Applicability and Restrictions

SILASO is designed to find all the eigenvalues of a large sparse
symmetric matrix lying outside a user defined excluded interval.
For small dense matrices, the subroutines provided in EISPACK are to
be preferred. It is not necessary for the matrix to be explicitly
represented. It is only necessary to provide a subroutine OP to
compute matrix-vector products.

In particular SILASO can be combined with a sparse factorization
program to compute eigenvalues of A by sectioning. To find all
the eigenvalues of A inside an interval [a,b]:

1. Choose a shift ae[a,b].
2. Factor (A - al) = LDL^ .
3. Code the subroutine OP to compute (A - al) ^x by solving

(A - al)y = x using L and D.

4. Set XL = l/(a - a)
and XR = l/(b - a).

5. Call SILASO.

6. The eigenvectors returned by SILASO are correct while the
eigenvalues must be back transformed as

0" = 1/0 + a

where 0 is the eigenvalue computed by SILASO and Q' is the
eigenvalue of A.

83

Thus it is possible to compute eigenvalues over a wide range by
breaking the range into subinterval and sequentially solve for
eigenvalues in each subinterval using different shifts 0 .

SILASO calls a number of subsidiary functions and subroutines, namely:

SIWLA which implements the block Lanczos algorithm with
selective orthogonalization.

SIPPLA which post processes the output of SWLA.
SMVPC which computes residual norms and orthogonality

coefficients.
SORTQR which orthonormalizes a block of vectors.

SVZERO which zeroes a given vector.
URAND a FORTRAN IV random number generator given in Forsythe,

Malcolm, and Moler [6].
BANDR, BANDV, IMTQL1, IMTQL2, SVD, TRED1, TRED2, and TRIDIB,

which are EISPACK Subroutines ([3], [4]).

SAXPY, SCOPY, SDOT, SNRM2, SSCAL and SSWAP which are subset
of the BLAS (Basic Linear Algebra Subprograms) written
by Lanwson, et. al [7] and modified by Dongarra, et. al
[8] for use in LINPACK. If the BLAS are available in
assembly language they should be used in place of the
FORTRAN IV source code provided.

The user must not use any of the above names in his driver program.

4 . Discussion of method and algorithm

The Lanczos algorithm is an efficient scheme for computing a series
of vectors q , q„, ... q. which form an orthonormal basis for the-*■ z 3

Krylov subspace, span (q^> Aq^, ..., AJ cl^) •
At each step of the algorithm the Krylov subspace grows larger and
one more Lanczos vector is added to the list. The Lanczos algorithm
can be interrupted at any step and the Rayleigh-Ritz approximations
to eigenpairs of A can be derived from the Krylov subspace quite
easily. Thus the algorithm need only continue until the desired
approximations are sufficiently accurate.
The block Lanczos algorithm (as described in detail by Underwood
[5]) replaces each vector in the simple Lanczos algorithm by an
orthornormal block of vectors. Block Lanczos has theoretical
advantages over simple Lanczos with respect to finding multiple
eigenvalues and has advantages in efficiency if the cost of forming
a matrix^vector product is high.

84

Unfortunately finite precision arithmetic causes the vectors com­
puted by the Lanczos algorithm (both simple and block) to lose
orthogonality and approach linear dependence. To maintain robust
independence among the Lanczos vectors, SILASO augments the al­
gorithm with selective orthogonalization which causes some of the
Lanczos vectors to be orthogonalized against a few selected Ritz
vectors, as described in [1] and [2].
The algorithm is terminated when the desired Ritz value are suffic­
iently accurate. If necessary, SILASO then makes another Lanczos
run to test for undisclosed multiplicities. Finally in some
cases, SILASO performs a Rayleigh-Ritz procedure on the determined
eigenvalues to resolve any clusters.

5. References
[1] B. N. Parlett and D. S. Scott, "The Lanczos Algorithm with

Selective Orthogonalization," Mcuth. otf Comp. 33, 217-38, 1979.

[2] D. S. Scott, "Analysis of the Symmetric Lanczos Process,"
Ph. D. Thesis, ERL technical report No. M78/40, June 1978,
Electronics Research Lab., University of California, Berkeley,
CA 94720.

[3] B. T. Smith et al., Mcut/Ux E4.ge.nAyAtm RouttneA - EtApack
Gouide., Lecture Notes in Computer Science 6, 2nd Edition,
Springer-Verlag, 1976.

[4] B. S. Garbow, J. M. Dongarra, and C. B. Moler, MatSitx
Etg&nAyAtm RoutineA - ExApack Guide ExtenAtonA, Lecture
Notes in Computer Science 51, Springer-Verlag, 1977.

[5] R. Underwood, "An Iterative Block Lanczos Method for the
Solution of Large Sparse Symmetric Eigenproblems," Ph. D.
Thesis, Stanford University, STAN-CS-75-496 (1975).

[6] G. E. Forsythe, M. A. Malcolm, and C. B. Moler, ComputeA
MethodA fioH Mathmatteal. ComputattonA, Series in Automatic
Computing, Prentice-Hall.

[7] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh,
"Basic Linear Algebra Subprograms for FORTRAN Usage," to
appear in TOMS.

[8] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart,
Linpadz LlAeUA ’ Gutde,, SIAM, 1979.

APPENDIX II

Program Listings
(microfiche, inside back cover)

87

ORNL/CSD-48
Distribution Category UC-32

INTERNAL DISTRIBUTION
1-2. Central Research Library 14. R. E. Funderlie

3. Patent Office 15. P. W. Gaffney
4. ORNL Technical Library, 16. D. A. Gardiner

Document Reference Section 17. M. T. Heath
5. Laboratory Records, ORNL R.C. 18-33. D. S. Scott

6-8. Laboratory Records Department 34. C. A. Serbin
9. A. A. Brooks 35. A. D. Solomon

10. H. P. Carter/CSD X-10 Library 36. C. M. Stegall
11. S.-J. Chang 37. w. C. T. Stoddai
12. L. A. Charlton 38. R. E. Textor
13. R. A. Dory 39. R. C. Ward

EXTERNAL DISTRIBUTION

40. Dr. T. D. Butler, T-3, Hydrodynamics, Los Alamos Scientific Laboratory,
P.0. Box 1663, Los Alamos, NM 87545

41. Dr. Bill L. Buzbee, C-l Applications Support and Research, Los Alamos
Scientific Laboratory, P.0. Box 1663, Los Alamos, NM 87545

42. Dr. L. Lynn Cleland, Engineering Research Division, Lawrence Livermore
Laboratory, P.0. Box 808, Livermore, CA 94550

43. R. E. Cline, Mathematics Department, University of Tennessee, Knoxville,
Tennessee 37916

44. Paul Concus, Computer Science and Applied Mathematics Department,
Lawrence Berkeley Laboratory, Berkeley, CA 94720

45. Dr. James Corones, Ames Laboratory, Iowa State University, Ames,
IA 50011

46. J. Cullum, IBM T. J. Watson Research Center, Yorktown Heights, NY
47. I. Duff, Computer Science and Systems Division AERE Harwell, England
48. Dr. Marvin D. Erickson, Computer Technology, Systems Department, Pacific

Northwest Laboratory, P.0. Box 999, Richland, WA 99352
49. Paul Garabedian, Director, Courant Mathematics and Computing Lab­

oratory, Courant Institute of Mathematical Sciences, New York University,
251 Mercer Street, New York, NY 10012

50. A. George, Computer Science Department, University of Waterloo,
Waterloo, Ontario, Canada, N2L 3G1

51. David Gilbert, Tennessee Valley Authority, Knoxville, Tennessee 37916
52. Gene H. Golub, Computer Science Department, Stanford University,

Stanford, CA 94305

88

53. Robert T. Gregory, Computer Sciences Department, University of
Tennessee, Knoxville TN 37916

54. R. J. Hanson, Numerical Mathematics Division, 5122, Sandia Laboratories,
P. 0. Box 5800, Albuquerque, NM 87115

55. R. L. Hooper, Statistics, Systems Department, Pacific Northwest Lab­
oratory, P.0. Box 999, Richland, WA 99352

56. Robert Huddleston, Supervisor, Applied Mathematics Division 8325,
Sandia Laboratories, Livermore, CA 94550

57. William M. Kahan, Department of Computer Science, University of
California, Berkeley, CA 94720

58. R. J. Kee, Applied Mathematics Division, 8331, Sandia Laboratories,
Livermore, CA 94550

59. H. B. Keller, Department of Applied Mathematics, 101-50, California
Institute of Technology, Pasadena, CA 91109

60. Peter D. Lax, Director, Courant Institute of Mathematical Sciences,
New York University, New York, NY 10012

61. John Lewis, Department of Mathematical Sciences, John Hopkins University,
Baltimore, Maryland 21215

62. R. K. Lohrding, S-l Statistics, Los Alamos Scientific Laboratory, P.0.
Box 1663, Los Alamos, NM 87545

63. P. C. Messina, Applied Mathematics Division, Argonne National Laboratory,
Argonne, IL 60439

64. James Ortega, Chairman, Department of Applied Mathematics and Computer
Science, University of Virginia, Charlottesville, VA 22903

65. C. C. Paige, School of Computer Science, McGill University, Montreal,
Canada

66. B. N. Parlett, Mathematics Department, University of California,
Berkeley, CA 94720

67. A. Peshkin, Applied Mathematics Department, Brookhaven National Lab­
oratory, Upton, NY 11973

68. Robert J. Plemmons, Computer Sciences Department, University of
Tennessee, Knoxville, TN 37916

69. James C. T. Pool, Office of Basic Energy Sciences, Mail Stop J-309,
U.S. Department of Energy, Washington, DC 20545

70. C. Quong, Computer Science and Applied Mathematics Department,
Lawrence Berkeley Laboratory, Berkeley, CA 94720

71. Donald Rose, Bell Laboratories, Inc., Murray Hill, NY 07974
72. A. Ruhe, Department of Information Processing, Umea University,

S-90187, Umea, Sweden
73. Lawrence F. Shampine, Supervisor, Numerical Mathematics Division,

5122, Sandia Laboratories, P.0. Box 5800, Albuquerque, NM 87115
74. G. W. Stewart, Computer Science Department, University of Maryland,

College Park, MD 20742
75. Richard Underwood, CIS Department, Ohio State University, Columbus,

OH 43221
76. C. VanLoan, Computer Science Department, Cornell University, Ithaca,

NY 14853
77. Richard S. Varga, Department of Mathematics, Kent State University,

Kent, OH 44240
78. B. Wendroff, T-7 Mathematical Modeling & Analysis, Los Alamos Scientific

Laboratory, P.0. Box 1663, Los Alamos, NM 87545

89

79. Olof Widland, Courant Institute of Mathematical Sciences, 251 Mercer
Street, New York, NY 10012

80. J. H. Wilkinson, Division of Numerical Analysis and Computer Science,
National Physical Laboratory, Teddington, Middlesex TW11 OLW England

81. Office of Energy Research and Development DOE, 0R0
82-272. Given distribution as shown in TID-4500 under Mathematics and

Computers category (25 copies-NTIS)

