s MASTER

?'O‘ uciD- 18185

Lawrence Livermore Laboratory

LCPT: A PROGRAM FOR FINDING LINEAR CANONICAL TRANSFORMATIONS

Bruce W. Char, University of California, Berkeley, and
Brendan McNamara, LLL

May 21, 1979

This 1s an informal repurt intended
ptimanly for internal or limited
exteral distribution. The opnton: 5
and conclusions stated are those of
the author and may or may not be
those of the laboratary

Prepared for U. 5. Depariment of
Energy under contract

No. W-7405-Eng-48.

nﬁ




ore

Lept: a program for finding linear canonical
transformations

Bruce F. Char*~

Computer Science Division
EECS Department , - — womce

University of California, Berkeley Lo ;
i i Eoiie Staes ar 1ed Stales Tepatment at

BerkEIey' Callforma 94720 Tnetgn oor aat ol tien enplesees, wn any ot thei
i sotcnticta s thew emphivees, makes
R iphied, of assumes any Tegal

ot the 2 cunAY  ciBpletEness
N o, apparats, fiodu o1
e lased or tepaesents ihat s s wontd et

e

Brendan McNamara .
e

1

Lawrence Livermore Laboratory T
livermore, California 94550

ABSTRACT

This article describes a MACSYMA®* program o compu =
symbolically a canonical linear transformation between coor-
dinate systems. The difficulties in implementation of this
“*canonical’’ small physics problem are alse discussed, along
with the implications that may be drawn from such
dificulties about widespread MACSYMA usage by the com-
munity of cemputational/thecretical physicists.

1. Infroduction

Hamiltonian mechanics problems can be solved, partially or com-
pletely, by finding canonicar transformations i new coordinates .n wlhich
the Hamiltonian is simpler. A recent paper [McNamara] describes three
diferent Lie transforms which use the method of averaging for oscillatory
systems, examine resonant islands in phase space, and provide super
convergent algorithms for getting high order terms in perturbation series
more easily. The paper also uses more ordinary canonical transforma-
tions to actiom-angle variables or bilinear point {ransformations, to
prepare the Hamilionians for application of the Lie perturbation

*Wor performed while a summer visitor at Lawrence Livermore Laboratory. Work
performed under the ausplesa of the U.S, Dept. of Energy by the Lawrence Livermore Labara-
tery under contract number W.7405-ENG-48.

“Proparation of this paper supported in part by the National Science Foundation
under grent [ICS # 76-07291, and the U 5. Dept. of Energy under contract DE-ATO3-765F00031
and 2A DE-ANUB-THERIC3SE.

*Devaloped by the Mathlab group at the Massachusetts Institute of Technology's La-
boretory for Computer Science, currently supparted, In part, by the U.5. Department of En-
erzy under Contract Number E{11-1)-3070 and by the National Aeronautics and Space Ad-
reinistration und=r Grant NSC 1323,

e
=



-2-

methods. Another paper [Char] describes how the basic algebra of the
Lie transform methods was implemented on MACSYMA. The most difficult
matheraatical operations te implement involved Poisson brackets, and
integrating and averaging operators. This work is intended to be part of a
complete MACSYMA system for doing Hamilionian mechanics— a collec-
tion of tools, rather than a monclithic code to do everything. However,
even the more trivial operators needed for doing Hamiltonian mechanics
have turrned out to be complicated to implement.

Here we describe the program for finding linear canonical transfor-
mations. The mathematical problem is unusual, in that one only needs to
specify the desired properties of a part of the transformation. The rest is
left to be chosen by the program to be as close as possible to the iden-
tity. This fact, that the problem is underdetermined, contributed ta
some of the programming complexity.

In Part I of this paper, a precedure for finding a Linear Canonical
Point Transformation (LCPT), given a list of desired linear relations
between the domain and rang~ coordinate systems, is scribed. The
prcecedure's implementation in MACSYMA so as to facilitai. interactive
usage is also discussed. In part Il we use icpt as an example of a typical
small-scale application problem in physics to illustrate the various imple-
mentation problems currently encountered with such computations in
MACSYMA

PARLT I--The problem, its solution, and implemaentation in MACSYMA

2. Basic definitions

The Hamilionian funciion h(p Pz " * * Paon T1.02  * ° Qaim ) --often writ-
ten as k(p.g)--is an expression of the total energy of a mechanical sys-
t=1r, relating momentum p and positicn g, veclors in dim components, by

ah . ah . . .
—{p.q)Y = —(p.q) = -p; i=1.2,...dimn
api(p qy=a aqi(p g)=-p. ( )

where ¢ and  represent the time derivatives of q and p, respectively®. A
transformation of coordinates T:(p.g)-{P.Q@) also transforms the Hamil-
tonian h(p,q) into the function H(P,Q), T is called = canonical transforma-
tion if the Hamiltonian relations hold for H as well:

a5

g, (P.g)=F; (i=l..dim)

[:2:1 A
'EP—i(F-Q) = Ql

sihie tlme—is_geuerally a parameter of the Hamiltonian h{p.g,t). we limit our
dizcussion to time-independent systems. The compute‘ional method discussed
kere can be easily extended to handle the time-dependert case {see [Coldstein]).


http://Harn.iltoTiia.TR
http://lim.it

Ezamples
Ith{p.g) :=ap; + 8p, let

T1:
Pi=ap,+@p: Q=

Pr=ap,-fp: Q2=

Then H(P.Q}:=P,. Tl is a canonical transformation, since

dh ah
aH i _ %, G2 _ 8py B
aP,(P’Q)_I“q“ 2a 128 za T 28
oH =0= -..
P, PR)=0=4;
9 s adH :
—(F. =0=pFP;, —(P. =0=P
2 ip.a) ) :
However, if we let
T2
1
Py=p,® G1=q9
1
Pz =py? Qz2=qg:

then H{P.g) := a P} + 8 P,° is not a canornical transformation, since

Q:=¢,=a, but ﬂ(P,Q): 3aPlta.
arP,

3. Finding canonical transformations via generating functions

Finding invariant properties of a Hamiltonian system {e.g. iransforms
to action-angle variables [Goldstein], Lie transfarms to find adiabatic
invariants [McNamara)l, etc.) often motivates the compatation of canoni-
cal transformations. In many cases, the problem then is t5 fad a canoni-
cal transformation that is consisteat with desired goal-relations between
the original and transformed ccordinate variables. The well-known
method of generating functions can te used to atlack such problems. We
present in the remainder of this section a brief review of generating func-
tions, referring the interested reader to [Coldstein] for a more complete
presentation of the method.


http://iD.varian.ts

-4

Generating functions have 2dim independent variables as argu-
ments, in one of four possible arrangements:

(3.12)  f1(q.q), where

afy afy

Ligay=p  HHa@) =-P
(3.1b) fe(q.P), where

afe _ af2 -

"a';k—(Q-P)-Pt 3P, {gP)=g

(8.1c) Fas(n.Q), where

9 a
Lz Hr)=-R

apy

{3.1d) I 4(p.P), where
af4 . - af4 s v
35‘_—{?.?)—-% -“‘—apilP-PJ— i

While the basis for these relations can be derived from "Hamilton's
principle” [Goldstein, p. 225], for the purpose of computation they can be
assumed as given. In general, the process of finding a canonical transfor-
maticn censistent with desired coordinate relations and one of (3.1a-d)
involves solving an arbitrary system of partial differential equations.
However, restricting the form of the old-new coordinate relations to only
licear ones, makes the solution considerably easier.

4. Solution in the linear case

If the desired relationships beiween old and new coordinates are
linear* (e.g. P, = apy+ 1, in the first examole above), then the form of
the generating function, if it exists, is also linear*:

Fwtvd) = vi-a + vl Mu2T «u2e

where uf is either p or q, 2 is either P or 4, and

ai Ccy
m
a2 Ca Ty Idim.
a= c= M=
g €gim Mgim1 dimdin

i

sStrictly sreaking, the desired relationships must be such that P=g(p) and
8=h(g) or P=g(q) and §=h(p) for same lirear functions g and h, and that g
and k do rot viglate the restriction that all the §; and P; be mutually indepen-
cert. The "desired” licear relations generated by actual physical problems are
usually in this farm.



are malrices of constants.

The gencrating function relations, in the case vf =p, v2=@q, are then

~q1 =P
.2 = ) 4 = )
=L@ =oruq =)= rpu

~Gdin =FPim
which represent 2 dirn linear equations in 2 dim independent variables
(the p; and ;), with 2 dim + dim? unknowns (e,c, and M).

Thus, the problem in the linear case can be summarized as: Given a
list of desired relations among origin {p.,q) and target {(P.Q) coordinate
systems,

a} select one of the four functional forms (3.1a-d) consistent with the
independence condition for the generating function variables, and

b) solve for a, ¢, and M. If all the components of a, ¢, and M have values
forced upon them by the defining relations, the undetermined
coefficients can be chosen io follow the guidelines of some arbitrary
style, e.g. let elements of a and ¢ be zero, M the identity.

To continue the example above, if we desire
Pi=ap,+Bp2
then
—ap;~fpz=crtmyprtmyzpa
implying
—a=m; ¢61=0 -—-f=my

with my, mg, €, and all of ¢ undefined.

5. The MACSYMA implementation

We now present an overview of the MACSYMA implementation of the
procedure suggested by the discussion in the preceding section.

5.1. Design decisions

We decided to let the user give values to the undetermined
coefficients ir M, a, and ¢ rather thar use a fixed set of rules for deter-
mining them. This was to allow interactive "design” of the target coordi-
nete system’s Hamiltonian through trial.and-retrial of candidate values
for the undetermined coefficients, after part of a transformation had



-6 -

been generaled by constraints input to icp?.

We attemnpted to make the program text reflect the steps of the pro-
cedure cutlined in section 3 cleanly and clearly, with comprehkensibility
chosen over efficiency considerations within the basic framework. We dis-
cuss the performance of the MACSYMA implementation in section 6. The
success of the attempt at "readable” programming is discussed starting
in section 7.

5.2. A user’s guide to lcpt

Detailed information on {cpt can be found in Appendix C, as we.l as
the program listing in Appendix A. Appendices B1 and B2 contain exam.-
ples of interactive lept use. Hasically, one loads the lcpf routines in by
giving the MACSYMA command

(C1) batch(htlept,>,dsk,char):

When the command has finished (i.e., when the BATCH DONE message is
printed), the user then enters the definition of the original Hamiltoniamn,

e.g.,
(C18)  H(P,Q):=P[1]~2/2+P[2];

The list of desired relations between the original (LP,LQ) and target
(BP,BQ) coordinate systems can then be entered:

(C17)  LCDF:[BP[2]=-N~2+N*LP[1].LP[2]=2*BP[1]-BP[2]];

as well as any desired relations between the time derivatives of the origin
and target coordinate variables:

(C18)  LCDOTDF];

The user may also desire to label the lists of origin and target variable
names:

(Ci3) CRIGIN:[LP,LQT;
{C20) TARGET:[BP,BQJ;
as w2} as the dimensionality of the coordinate systems:
(C21) DIM:2;
Lept mey then be invoked by giving it all the pertinent information:

(C22)  LCPT(LCDF,LCDOTDF,ORIGIN,TARGET,DIM H);



-7 -

The results printed include: origin coordinates in terms of target
coordinates and vice versa, the generating function selected, and the
transformed Hamiltonian. Various error or failure messages will be
printed if no generating function can be found. Both the generating func-
tion and the transformed Hamiltonian are given unique names (within one
MACSYMA session) and may be used subsequently like any other MACSYMA
function.

6. Limitations, performance

The present implementation's execution is limited mainly by the
space and time costs of the algorithm used by SOLVE for linear systems,
as the dimension dim of the underlying coordinate sysiem grows. Prantj-
cally speaking, this means that sysiems with dim > 8 cannot he fzasibly
solved by icpi. There are ways to avoid exponential intermediaie expres-
sion growth (e.g. by re-arranging the lcdf equations so as to allow substi-
tution of other{vl] and other[vZ] from the generating function equations
(2a) and (2b), instead of solving them for bp and bq); this couid easily be
instal’led in future versions if the meed arises. The point we wish to
emphasize is that program was designed for execution for small dim; its
inability to handle large systems of high dimension is not an impartant
defect. See Appendices Bl and B2 for execution times for typical dim = 2
systems.

Part H Towards reducing the complexity of the programming task

7. Programming Simple Procedures

The lept procedure can be outlined relatively simply. Furthermore,
for the kinds of transformations the MACSYMA implementation was meant
to find (e.g. see Appendix B1 and B2}, the entire calculation can be doae
by hari quite feasibly. The real advantages to programming it are of
convenience: getiing the computer to do essentially tedious algebra, and
the (supposed) greater speed and reliability of computer versus human
calculaticn. The convenience is compounded because of the interactive
nature cof the "target system Hamiltonian design™ problem.

Unlike many of the programs in tHe published literature, lep? is not a
long, complex ¢asculation where all of the expected payoff is in a few
informative rurs. In gzneral, programs of this sort are worthwhile only if
they cz2n be used widely (say, as part of a library), or if they wevre cheap
to ceestruet (and therefore to dispose of). A realistic hope wonld be that
lept is the sort of calculation that a physicist could work out without
much conzultation with (human) system experts.

Despite the relative simplicity of the lcpt procedure, the actual
MACEYMA code to implement it runs severa! hundrecd lines, and took
several weeks to produce. This, as Fitch has moted [Fitch)], is symp-
tomatic of applicalions programming on symbolic systems. In the sequel,
we sugges! reasons for the complexity of programming icpt, and how the



_B-

difficulty of it and similar programming tasks might be reduced.

8. Gaps in procedural knowledge

There were many gaps between the information presented in the
source text [Goldstein], and the explicit procedure contained in the icpt
code. For example, the text actually describes the inverse of the pro-
cedure implemented (pamely, how to figure out what the coordinate
transformation is, given a generating function), did not explicitly state
how to decide which form of the generating function (3.1a-d) to use, ete.
The implementation problems here are compounded: much of the actual
prc "edure was left implicit in the book and thus must be developed by
the programmer; the major part of the effort and program text of icpt
occurred for thc same tacit details.

We can expect this situation to change with time as the influence of
symbolic systems becomes more widespread, just as many current cal-
culus and numerical analysis texts are influenced by the computer-
oriected approach (e.g. {McNeary], [Gear]). However, it is clearly unrea-
sonable to expect a textbook's readership to need or want to go through
an exposition of gemeral physical principles in program-explicit form.
Rather, attentior naturally turns towards easing the coding process after
the algorithm has been developed from the source text and explicitly
stated.

9. Vhy should anyone care about the readability of MACSYMA pro-
grams?

A language for mathematical symbol manipulatian should serve as a
vehicle for clarification. The ideal from the reader's point of view is to
make the mathematics appear conspicuously, and as similar as possible
to the notation and conventions of the mathematical source. Presum.-
abiy, a languege which allows this sort of abstract representat’on will
develop a literature of well-written programs that are more accessible to
source-readers, and "easier” (i.e. cheaper) for source-writers to produce.
Lept is neither particularly easy to read nor was easy to write. We Lielieve
that tbe MACSYMA language can be improved to support communication
of mathematical cencepts.

Sandewall notes that typical Lisp code is filled with "difficulties of
many kinds, all trivial and uninteresting” [Sandewall, p.62}; that the
comprehersibility of Lisp code comes from breaking up the idioms of the
task icto functions. Since the MACSYMA language is derived from Lisp,
programs written in it also tend to be collections of many small functions
or array definitions. {see [Char], {Gelden] for examples). Thus, currenl
MACSYMA programs are not comprehensible in the same fashion as, say,
well-written Pascal programs-variables will not be type declared, subsidi-
ar7 functions do not have to appear within the lexical scope of their cal-
ling procedures, etc. While writing icpt, we found ourselves constantly
faced with "three temptations™



-9.

The temptation fo do an enlire computation in one expression, as
opposed to line-at-a-time chunks ("APLifcation”). Since MACSYMA
functions cannot be called as concisely as APL operators, this leads
to collections of highly nested function calls. Because lhere are few
MACSYMA “idioms" of function call sequences (see [Perlis]), this
degrades comprehensibility.

The temptation fc make every smoll subcomputaiion a funclion cell
{"Balkanization"). At some poiat the proliferation of functien
definitions means that the defining text is so far removed from the
invocation and there are so many function names that the reader
loses track of what is going on. Toc many functions also tends to
make the invoking lines of computation look like an APLism.

The temptation fo select lisis when other daia structures or non-
tists would be more appropriate (“list- think"). For example, in lept,
ope could always refer to the p and g variables as origin{1] and ori-
gin[?), but that would obscure the physical reason why they were
given different names in the first place, e.g.

diff(apply{h,origin),origin[1])=difi{origin[2].t},
but
diff(apply(h,origin),origin{2])=-diff{origin[1],t)?

While the Lisp-basis of MACSYMA can be uszd for good, the three

temptations can turn it inio a tool for devilish obscurity. Constant vigi-
lance is required to guard against lapses of style.

10. Notation for HFamiltonian Physics

Seme of the verhosity of icp¢é comes from developing and program-

ming convenient representations for the operaticrs implicit in the stan-
dard notation. of Hamiltonian physics. We consider the following to be
examples of the sorts of things th&t should be inclnded in a good library
of symbolic physics notation for a "physics environment” of a symbol
manipulation system:

1.

A dot operator, the derivative with respect to the time variable {by
defeult, say, t), e.g. "f dot" means diff{(f,t), " dot dct” means
diff{£,t,2).
a) Physics texis traditionally establish a notation coatex! {e.z. stat-
ing that p and q are vectors of a certain leagth, part of a particuler
coordinate systern). Once this has been estabiished, the vecters and
their cc 1ponents are used rather loosely, e.g.

9 _

ap 7



2p;
and
<% ) —éi;%' . .a_;f:) = <Qy .G - Giim D
or even
<—ah—=q.1- ﬂ-:qz. —"L=Qd;m >
ap, dp2 8Pesn

all are used to refer to the same equality. Thus, given the user’s.

declaration that
an _
2 =g,

ap

the system should be able to produce the compenentized lists of
equalilies upon demand. For example, if the dimensionality of the

vectors » and ¢ has been declared, then it should be no special efiort

to derive from
diff(h(p.q).q) = -(p dot)
the componentized vector/list described by
diﬁ(h(p,q).q{) = —(p,'_ dOt). i=1,...dim

b) Note also that % is given no ar;uments; once the p-q r:lation is
set up, and the Ha:cfiltonian h defined for the p-q coordinate system,
by default all references to h, g—k ete, imply the use of p and g
unless explicit exception is made. 7

¢} “ametimes the same rymbol is used for both variable and func.
tion name, as in

@ = Qi(g.p.t)

with context providing the disambiguation in further references to
the symbol. A useful physics manipulation system should be able to
record such relations declared in function declarations, .oordinate
system declarations, ete. and then be prepared to haudie the nota-
tignal conventions without further ins..uction by the programmer.

11, Conventivnal pregrammisg notation

As well as physics-based notational extensions, there are also system

augmentations we favor so that data and subprocedures can be more
conveniently defined and manipulacted. For example, in the lept problem,
currently the only connection the reader has relating the origin system



11 -

variables referred to as origin{1] and origia{2], the componentized
representations

Ismp:[origin[1][1].crigin{1}{2].. R
Ismq:fortgin[2][1],origin[2]{2]...].

the list of all components of the origin system
cldvar:append(lsmp.lsmag),

and the list of all coordinate variables
allvar:append(origic,target)

are the names. Not only does this make keeping track of the hierarchy of
data a difficult task, it makes assignments to the p/q variables unneces-
sarily tedious: neither

Ismp:makelist(origin{1]{i],i,1,dim),
ismq:makelist{origin[2]fi],i,1,dim)

nor

o

map(":",[1smp,lsmq],
map(lambda([x],makelist(x[i],i,1,dLx.)}, origin)

seem to adequately reflect the structure of the assignments being made.

The introduction of new functicnal forms would also be highly con-
veaieal in many situetions ir fcpé. MACSYMA already allcws the introduc-
tion of syntax cxtensions for mew or existing functions. However, iniroc-
ducing entirely new forms* is often difficult without substantial
knowledge of the systcn underpinnings, usually difficult to view by users.
Given the limited resources of most system support groups to cater o all
the users’ wishes, more facilities should be provided for user-supplied
extensians. Having a system with modes and modular structure
*Everycre has a favorite set of improvernents to MACSYMA syntax. Two from ours
would te: a CASE statement to clarify muilti-branch IF THEN ELSES (and to keep
the pregiam formatter GRIND from displaying such pestings entirely within in the
last ter eolumns of ocutput!), and a projection operator Il to apply suecinctly
multi-argument functions to composite data structures, e.g. abbreviating

rmap(lambda{[listel],ev(listel,dif)),vectorlist)
to

map{(T] ev(*dif?}),vectorlist)



-12-

definitions (see [Griss], [Barton]} would allaw users to build upon existing
notation without rewriting or having to know the internal workings of the
basic syste.i-supplied routice. Having a language that supports user-
defined data structures would allow the programmer to make the connec-
tions in a hierarchy of symbols more apparent to the reader.

Yhile there is a real danger that given the rep=, users will hang them-
selves by developing mutnally incompatible applications envircnments
and utility routines, we feel that the community of symbolic manipulation
system users is sophisticated enough to use such tools wisely. Further-
more, some large-scale experimental development is necessary before
conflicting or emktryonic viewpoints can be brought into conseasus.

12. The behavior of system-supplied routines: the case of SOLVE
It is often difficult to massage a problem into a form ZOLVE cz2n

accept as input, or to manipulate the output of SOLVE into a form amen-
able for further symbol crunching. We do not intend to discuss here any
computational errors of SOLVE (we didn’t find any while testing the pro-
gram), but wish to enumerate the sticking points we had with it in writing
lept:

1. In maﬁy applications, one can assume (by an accompanying proof,
usually) that there's at most one soluticn, or one may desire to
choose arbitrarily one solutiom from a set of solutions. Yet the
default result of SOLVE is (a list of) one or more lists of labels, which
means both FIRST and EV have to be invoked in order t{o get the
actual solution (so that, for example, it can be used as input to
SUBST, as it is in Icpt).* Thus, in lcpt, some of the SOLVE computa-
ticn has to be cndene via the lept routine PICKCNES.

2. Tbe code for mapufacturing the list of generating function
coefficients for SOLVE to scolve for, once EQUATECOEFS had produced
a system of equations, was quite involved: the direct approach

lvars:append
(append(apply(makelist,
[makelist(m[i.j].j, 1,dim),i,1.dim]}),
makelist(a[1,j].},1,dim).
maXelist{cfj, 1].3,1,dim)),
salve(eqns,lvars)

is baroque, while

*As of April 1973, a PROGRAMMODE flag was installed in order ta allow SOLVE to re-
turn a list of lists of equations instead of lJabels. Thus, use of this flag would make
the EY urrecessary, although tke programmer still would have ta pay attention to
the particular forms that SOLVE's answer may take.

————a



-13 -

mata:genmatnx{a,dim,1),
matc:genmatrix{c,1,dim),
matm:genmatrix(m,dim,dim},
lvars:listofvars([mata,mate,maim]},
solve(eqns,lvars),

is still verbose. Given that the system could easily be instructed as
to the dimensions of o, ¢, and m (since that information had to be
supplied anyway to define the generating function)

solve(eqns,[a,c,m])

seems a desirable and feasible alternative. The situation is a case of
SOLVE not being versatile enough.

3. SOLVE’s input and output restrictions in one case did tao little, in
one case, too much:

a) If there are more non-irivial equations than variables, then
the error message "equations inconsistent” is given, even if the
“extra” equations contain none of the variables to be sclved for.
{In that case, inconsistency is not indicated, merely irrelevance.)
Often in the automatic production of eguations (as in the
EQUATECOEFS process in lept), the desired equations are pro-
duced in a fashicn that generates many more than the ones use-
ful to the solution. This is an example of SOLVE wanting input in
a form different from that naturally generated by the problem;
the user has to work to supply it.

b} Conversely, if SOLVE is given more variables than {lizear}
problem-equations, it returns a list (of lists of labels) of
solution-equativns that makes ne mention of those variables
missing from the proplem-equations. 'The Icpt procedure
INSERTFREE figures out the missing variables and equates them
to "arbitrary values". While admittedly this is not always the
desired outcome when missing variables occur, the action of
INSERTTFREE could be provided as an option. This is an example
of SCLVE's output being in the wrong form; the user has to work
to change things.

There is no easy way out of these difficulties. One alternaiive is ta
"uubundle” the actions of SOLVE. For example, in the linear case, there
could be one routine with one equation and one unknown as input, return-
ing one sclution-ecustion instead of a list or a label, another routine to
handle matrix equations, another cne for systems of linear equations
given as a list, etc. This would satisfy individuals in particular cases, but
would lead to a proliferaticn of routines. It could conceivably t{zke an
expert to decide which one Lo use in a given situation, and the current
“general problem solving” ability of SOLVE, limited as it may be, would be



-14 .

lost. Pertkaps a hierarchy of routines should be available--a general
solver that tries its best to figure out which problem its input presents it
with, and many testing and solving primitives that are available to the
expert or specialist. Besides the formal parameters of the problem, a
general solver should also be built with enough sophistication to allow
command or programmatic direction of its selection of algorithm, its
"anderstanding” of the problem, storage allocation schemes, etc. Cost
functions, relational equalities and inequalities, and keywords or phrases
could all influence suci a general solver, as an alternative to the
currently implemented flag sct- mv. The problems with SOLVE indicate
stumbling blocks any polyalgorithm designer faces in building a
problem-solver of such scope.

13. Cenclusion, Summary
In summary, we find that the significant effort in programming lcp! is

expended on

a) developing a procedural statement of the knowledge taken for
granted by physicists

b) overcoming strictly technical programming difficulties to allow a sue-
cinet, ccmprehensible deseription of the Iept procedure.

While the first task will always coniront someone who wants to auto-
mate physics computations, the second seems largely scluble by sym-
bolic systems designers and user groups, and is itself a considerable bar-
rier towards widespread, casual use of symbolic systems. Since there is
no consensus as to what constitutes a good set of operators and straz-
tures in the various applications areas of symbolic manipulation, the
move towards achieving such a set must for the present be in the form of
allowing users freedom to develop the langnage and notation themselves,
and to encourage the development and sharing of intermediate level
operations for commonly performed mathematical manipulal ons.
Without allowing for easy implementation of human engineering imm sve-
ments, symbolic system usage will be worthwhile for use only in massive,
specialized eforts.

Acknowledgments
VWe wish to acknowledge useful discussions with Richard Fateman and
Barry Trager, who shared their experiences and MACSYMA anecdotes with
us.



-16-

REFERENCES

[Barton]Barton, David. Mode packege for SCA. MIT LCS Internal
femorandum, 1978.

[Char]Char, B. and McNamara, B. "LIEPROC: A MACSYMA Program for
Finding Adiabatic Invariants of Simple Hamiltonian Systems via the
Lie Transform," Lawrence Livermore Laboratory Report UCRL-81674,
November, 1978.

[Fitch]Fitch, John, "Mechanizing the Solution of Perturbation Problems,”
Fourth International Colloguium on Advanced Compuling Methods
in Thearetical Physics. Sponsored by Universite d'Aix-Marseille II,
Universite de Provence, Centre National d= la Recherche Scientifique,
Direction des Recherches et Moyens d'Essais, 1977. pp. 93-98.

[Gear]Gear, C. William. Numerical Initial Value Problems in Ordinary
Differeniial Equations. Prentice-Hall: Englewood Cliffs, NJ, 1971.

[Golden]Gelden, Jefirey P. "MACSYMA’s Symbolic Ordinary Differential
Equation Selver,” in Proceedings of the 1377 MACSYMA User's
Comference, NASA: Washingten, D.C., 1877. pp. 1-10.

[Goldstein]Goldstein, Herbert. Classical Mechanics. Addison-Wesley:
Reading, Massachusetts, 1950.

[Griss]Griss, M. The Definition and Use of Data Structures tu REDUCE, in
Proceedings of the 1976 ACM Symposium o Symbolic and Algebraic
Computelion, R.D. Jenks, ed. ACM: New York, 1978. pp. 53-59.

[McNamara]McNamara, B. "Super Convergent Adiabatic Invariants with
Rescnant Denominators by Lie Transforms,” Journal of Mathemaiical
Physics, vol. 18, no. 10, 1978, pp. 2154-2164.

[McNearyMcNeary, Samuel. Introduction to Computational Methads for
Studenis of Calculus. Prentice-Hall: Englewooad Cliffs, NJ, 1973.

[Perlis]Perlis, Alan J., and Rugaber, Spencer. The APL [diom List, Yale
Research Report #87, April 1977,

[SandewalilSandewall, Erik. Computing Surveys, vol. 10, ne. 1, March
1978, pp. 35-71.



Appendix A
Program listing for LCET
/*closure computes the transitive closura of MAT, a DIM x DIM
1-0 matrix. See algorithin in Gries, Compiler Construction
for Digital Computers®/

clasure(mat,dim}:=clack{{al,a:copymatrix{mat),
for I thru dim do
(for j thru dim do
GirafjIi=1
then for k thru dim do a[§,Xx}:max(af j,k],a[1,k])),
return(a)}$

/*Define "dot” as d by dt */
postfix(’dot”)$
"dot"(x):=d1f1(x,1)$

/*apl-like iota, iota[k]isthe lst of
nuwbers 1 thru k, presumably the nall list if k 15 zero or negative®/

tota[k]:=makelistf jk,jk, 1,k)$

/*Returns the position (one-indexed) of item in list, O if pat fornd 3/

indexin(list,item):=block{[len,ji],
len:length{list),
return(catch(
for ji:1 thru len do if list[ji]=item then throwd{ji),
o3

£51f 1var is not in igt (see Icpt and IcptO for what igt
means), then inserifree will insert a lvar=%randomsym equation into
lgt and return the altered list as a result*/

tnsertfree(lgt,lvar}:=hlock([i],
for i in lvar do if freeof(i,]gt) then 1gt-cons(i=makesym(¥%z),1gt),

return{igi))$

/*makesym returns a symbol name beginning with the value of atsym
(which must be an atomic symbol), ending with an internally generated
suffix which is different each time makesym is called within a macsym®a

session*/
makesym(atsym):=cancat{atsym, ?gensym())$

/*discardfree returns the list 1gt expunged of all equations
that do not rontain any of the variarles in Ivar*/

discardfree{lgt,lvar):=block([],
kil}{t=5tf),
testf{x):=if fresof(lvar,x) then [] else [x],
apply(append,map(testf,1gt)))s



-2-

/*Pickones returns tke first set of sulutions of Isys in
lvar, where Isys and 1var are both lists as they would be as inputs
to SOLVE. There is an error if there is no solution.*/

pickanes(lsys,lvars):=ev{first(solve(lsys,lvars)},evai)$

/*Given an equation eq and a list of independent variables

in the equation, listofindvars, equatecoefs raturns a list of equatinns
that result when the coefficients of an independent variable on both
sides of the equals sign are equated. Since not all

variables will appear on bhath sides of eq, there may be some O=coef
equations, as well as some 0=0 equations. In aditiom, the

constant terms on both sides of the = sign are equated (those torms
free of all independent variables*/

equateccefs{eq,listofindvars):=block([i,len,l,a],

11,
for fir in listofindvars do

{eq:expand(=q),

while (hip:hipow{eq,fir})>0 do
{a:coeff(eq,fir,hip),
l:cons(a,l),
eq:expand(subst(fir~bip=0,eq))
)

),

/*Throw in constants, too*/
if eq£(0=0) then Leonsleq,l),
return(1))$

f*lcpt findcs  linmear
cannnical peint tramsformation satis{ying the coastraints
glven by the user through the variables lcdf, alist of
equations stating the desired relations that shouid hold
between the variables of the origin coordinate system, and
the target system, and lcdotdf, a list of equations stating
the desi*ad relations that should hold between the
dot~derivatives of those variables. origin and target are
lists giving the names of the p/q variables of the two
coordinaie systems respectively (e.g. [Ip,Jg] and
[bigp,bigs}—the momentum variabie Dname is the first,
element of the list, the pcsition variable name tke secord.
dim iz an integer-valuer. variable stating the dimensicn of
the system, h the name of the hamiltonian function of the
origin system {defined as h{p,q):=....) ¥/

lept(ledf, lcdotd f,origin, target, dim, h):=block([oldispfl, Ibigg,lsmg,1bigo,
Ismp,laewvar,loldvar,a,l,jk,dep,allvar,otlen dp,close,genvar 1 ,genvar2,
genzos,doap,endflag,vxl,vx2, depv,vix,genock],
/*initialize arrays®*/
kill{vmake,discnotsub,sm,m,a,c,other,def ,dep,dp,signrs),
f*vmake returas a list of components of the vector vaame*/



-3

vmraka(vname):=makelisi(vnamefil,i, 1.dim),
f*list of origin and target variables,subscripted*/
Inawvar:apoly(append,map(":",[1bigp,1bigg] map(vmaxe target))),
loldvar:appiy{aprend,man(":",[lsmp,lsmq},map(vmake,origin})),
atlvar:append(origin,target),
/*list of possible generating function variable pairs®*f
ganpos:{[origin{1],target[ 1]],[origin[ 1] target[ 2]] | orizin[2],
targat[ 11} [origin[ 2], target[ 2]]],
/*Generate symbolic coefficients of matrices a,c, and m*/
mata:geninatrix(a,dim,1),
matc:gennatrix(c,1,dim),
matm: genmatrix(m,dim,dim),
/*ather returns the other vector name of the pair
of canonical vector names jin either origin or target*/
ather{x}:=if member{x,0origia} then originf3-indexin{origin,x)]
2lse if memban(x,target) then target[3-indexin(target,x)]
else error(print("no other:",x)),
/*Sign for relation between partial derivatives of
generating function and variables*/
signpg{ var]:=if var=origin[1] then -1
else if var = origin[2] then 1
else if var=target{1] then 1
else if var=target[2] then -1,
/*find suitable pair of variables for generating function*/
discnotsub(x):=block([var],
return(if length(x)#1
then []
elsz if member{var:inpart(x,0),allvar)=true
then [var] else [1)),
dep(1, j1:=0,
for eq in lcdf do
{ /*get list of subscripted vars in eq (without
subscripts). Keep only origin, target variables*/
lsubvar:apply({append, man{discnotsub,listcTrazs(aq))),
faor listel in lsubvar do
for listel? in Ilsubvar do
dep[listel,listel2]:1
)i
f*otlen is the length of origin and target combdined, i.e.
four with typical p,q lists*/
otlen:length(target)+length(origin),
dp[i, ]:=dep[allvarilallvar[ j]],
/*C1cse is the transitive closnre of dependency matrix*/
cluse:closure{genmatrix{dp,otlen,atlen),otler),
genvarl:[],
/*Complem(l) returns a list of those integers 1-~otlen which are
NOT in the list 1%/
cc:nzlem(1):=apply(agpend,
makelist(if membes(i,]) then []else [i], 1, 1,0tlen)),
/*compiotal k] produces a list-vecior that
is of length otlen, all ones except for the k~-th position,
which is zero.*/
campiotal k}:=makelist(if le=i then O else 1,i,1,0tlen),
en:1flag:false,



-4-

for i in genpos uniess endflag = true do
(catch(
vx 1:apply(lndexin,[allvar,i[1]]),
vxZ2:apply(indexin,[allvar,if2]]),
/*Must te independent 3/
if close[vx1,vx2]=1 then throw([]),
for listel in complem({[vx1,vx2]) do
/*4ll others must be dependent on vx1! or vx2,
if dependent on anything other than itself,*/
if compiotaflistel]l.col(close,listel) #0 and
close [listel,vx1]=0 2nd close[listel,vx2}=0
then throw([]),
/*Success! Pick these as the generating function variables%/
genvarl:i[1] genvarZ:i[2],endflag:trua
)

)8
if genvarl={]
then error("Couldn’t find valid generating function variables"),

retarn (lcptO{ledf, lcdotd ,origin target genvarl genvarZ,dim,h))}$

leptD(ledf, ledotdf origin target genvarl genvar?,dim,h):=bleck([dispflag,ivi, iv2,
geneq,2t1,gt2,i11 12 dgt1,dgt2,lhamrel lm lmsoleq lensollout ik,
appll2.gt,gtinnsw,gtingld],
{*list of generating function variables, subscripted */
map(:",{1vl,iv2],man{vmake,[genvarl,genvara})),
*Compute generaiing function f{genvarl,genvar2)*/
geneq:{lvl).mata+{lv1).matm.transpose(Iv2)+ matec.transpese(lv2),
J*Also d=2fine genecrating equations in terms of new coords*/
/*Turn off display of intermediate equatious */
oldispfl:dispflag,
dispflag:false,
/*genvarequations(var,genfunceq) is a template for production
ol the equations (3.1a-d}) of sectiun 3 o the accompanying
papers/
genvarequations{var,genfunceq):=makelist{other[var][i]=
signpg{var]*dift(genfunceq,varfil),i, 1,4im),
gtl:pickones(genvarequations(genvar2, geneq),Inanryrar),
g12:pickonezs(genvarequations(genvarl,geneq),lnewvar),
/*Find relations among m[1i,j] implied by ledf
and gemerating equations®/
Icdf:sussi{append(gt1,gt2),ledf),
11: i€ lcdf £ [] then applylappend,
map(lambda([x],equateccefs(x,loldvar))cdf))
else []r
/TList of pew and old target-dot variables (derivatives)
Twith respect to time */
derends{target]1],t),depends{target[2],t),
depends{origin[ 11,t),depends(originf2],t),
1lod:(Icewwvar dot),
lod:{loldvar dot),
/*Express given dotequations in terms
of target dot variables*/
lodetdf:append{lcdotdl,{1cdf dot)),



i lengih(lcdotdf) >0 then

(
/*Generate time derlvs. of gen. egs.*/
dgt1:(zt1 dot),
dgta:(gt2 dot),
/*find values of gdot and pdot from hamiltonia: */
lhamrel:append(makelist((lsmp[i] dot)=-diff(apply(h, origin),
1smqfi])i,1,dim),
1aakelist({lsmg[i] dot)=diff{apply{h, origin),lsmp[i])
Ji,1,dim)

)

/*Substitute g/p det values for g/p dot symbols®/
ledotdf:subst(append(dgtl,dgt2),ledotdr),
lcdotdf:subst(lhamrel,lcdotdf), '
12:apply(append,map(lambda([ x],equatacaefs(x,loldvar)),lcdotdf)}
)

else lz:[],
/*Generate list of m~variables, and selve for them */
1m:listofvars([mata,matm,matc]),
freefmac(x):=if freeof{m,x) and freeof(a,x) and freeof(c,x)
then []else [x],
appliZ:apply{uppend,map(freefmac,append(11,12))),
Imsoleq:av{solve{appl12,lm),eval),
print(if (lensol: length{lmsoleq))=D then "No Scolution”
else if lenscl=1 then "solution"”
else "multiple solution"),
lout:[],
for ik:1 thru lensol do
( .
geneqg:subst(lmsoleq[ik],[mata,matm, matc]),
substarbval(x):=if length(x)>1
then (varname:inpart(x,0),
if varnams='a or varname ='c
ther geneq:subst([x=0],3ereq}
Mse if varoame ='m
then geneq:subst({x=
if jnpart(x,1)
=inpart(x,2)
then 1 else 0],
geneq)

),
map(substarbval,listofvars(geneq)),
genfuncname:makesym{'f),
apply(define,[funmake(genfuncname,[genvari, genvar2]),
1vi.zgeneq[ 11Hvi.genegl 2].transpose(lvz)
+geneq[3].transpose(lv2)]),
genaq:avply(genfuncname,[1vi,Iva]),
/*Restore display flag*/
dispflag:oldispfl,
/*Display generating function, variable transforms™/
gt:avpend(apply(genvarequations,[genvar2,gencql),
apply(genvarequations,[genvari,geneq])),
gtinnew:solve(insertfree(discardiree(gt,lnewvar),Inswvar), lnewv ar),
gtinoll:solve(insertfree(discardfrze{gt,lold var),lollvar),loldv ar),


http://pi.se

-6~

thname:makesym('targeth),
apply{defing [funmake(:areme,targst),
subst{ev(gtinold,eval),apply{h,origin))]),
if dispflag#false then
( print(" "'),print("Generating function is"),
1disp(apply(dispfun,[genfuncname])),
print(” "),print{"Target Hamiltonian is"),
; 1disp(apply(dispfun,[thname]))

l:mt;cons([first(gtin.new),ﬂ:st(gtmold),genfuncname,
thname],lout)

)I
return(lout))$



Appendix BL

One exargie of LCET usage



(D20) [LSK, CHAR]
(C21) BATCH(HTDEM,>)$

(C22) ORIGIN:[LP,LQl$

(C23) TARGET:[P,Ql$

(C24) H(P,Q):=P[1]172/2+P[213%

(C25) LCDF:{P{2]=~N"2+N*LP[1],LP[2]=2%P[11-P[2]]$
(C26) LCDOTDF:[13

(C27) LCPT (LCDF,LCDOTDF,ORIGIN, TARGET, 2, H);

MAKEL FASL DSX MAXOUT being loaded
Loading done

GENMAT FASL DSX MAXOUT being loaded
Loading done
A

1, 1
warning - unbound element - GEMMATRIX
c .

1, 1
warning - urnbound element - GENMATRIX
M

1, 1
warning - unbound element - GENMATRIX

¥D0T FASL DSK MACSYM being load-~d
Loading done

SOLVE FASL DSX MACSYM being loaded
Loeding dons
SCLUTION

CCNCAT FASL DS{ MAXOUT Leing loaded
Lcading done

SCLUTION
(E37) Q = 2 L0
1 2
2
(E38) P =LP N =}
2 1
LQ N - LG
2 1
(£3%) Q = = mmmm——ee———
2 N
2
N -LP N -LP
1 2
(EH0) P S e o s o
1 2

SOLUTION



(E41) 1@ = ==
2 2
2
N + P
2
(EL2) LP = cccm—n=
1 N

(EB3) LD = co o
1 2
(ELY) LP = 2P =P
2 1 2
GENERATING FUNCTICN IS
2
Q N QN Q LP
2 1 1 1 2
(EY45) FGOOEO(LP, Q) :=Q N + ace== + LP («Q N =~ m==x) = ccee-
2 2 1 2 2 2
TARGET HAMILTONIAN IS
2 2
(N + P )
2
(E45) TARGETHGOO0T79 (P, Q) = ~cecnmcaas -P +2°P
2 2 1
2N

(D46) [[[E37, E38, E39, E4O]1, [E41, Eu2, EU3, E4H], FGOO60, TARGETHGO0791]
(Z47) TIME(S);

TIME or [TOTALTIME, GCTIME] in msecs.:
(DU47} [[7155, 30091]

(Cl49) CLOSEFILEZ(HTOUT,>)%



Appendix B2

Another example of LCPT usage



(D18} {DSK, CHAR]
(C19) BATCH(TESTLC,>)$

(C20) DEPENDS(BQ,T)$

(C21) DEPENDS(BP,T)$

(C22) DEPENDS (SMP,T)$

{C23) DEPENDS{(SMQ,T)$

(C24) LCDF:[BP[1] = SMP[2]*BETA+SMP[11*ALPHAIS
(C25) LCDOTDF:[DIFF(BQ[1],T) = 1,DIFF(BRQ[2],T) = 013
(C26) TARGET:[BP,BQJ$

(C27) ORIGIN: [SMP,SMQIS$

(C28) H(P,Q):=ALPHA¥P{1]+BETA*P[21$

{C29) LCPT(LCDF,LCDOTDF,ORIGIN,TARGET,2,H);

MAKZL FASL 23X MAXCUT being loaded
Loading done

GENMAT FASL D3K MAXOUT being loaded
Loading done

3

1, 1
warning - unbound element - GENMATRIX
c

1, 1

warning - unktcund elsment - GENMATRIX
M

1, 1
warning - unbound element - GENMATRIX

MLOT FASL LSK MACSTM being luaded
Lcading done

SCLVE FASL DSX MACSYM being loaded
Loczding don=

ALGSYS FASL D3X MACSYM Being loaded
Loading done
SOLUTICH

CONCAT FA3L DSX MAXCOUT being loaded
Lozsding done

SCLUTION
(E33) BP = SHP BETA + SMP ALPHA
1 2 1
(%R1 + SMQ ) %RY4 + (- 2R2 - SMQ ) %R3
(E34) BQ = - -—-—---—-—1 ———————————————————— f---—7

1 %R3 BETA - %RY4 ALPHA



(%35%) BP = - %K5 ~ SMP %RY ~ SMP 3R3
2 2 1

(%R1 + SMQ ) BETA + (-~ %R2 -~ SMQ ) ALPHA
2

(£36) BQ = - =mmmmemmmmmmm e
2 %R3 BETA - %RU4 ALPHA
SCLUTICH
(%R5 + BP ) BETA + BP %RY
2 1
(E37) SMP = = e
1 %R3 BETA - %RY4 ALPHA
(E38) SMQ = BQ ALPHA - BQ #R3 - %R1
1 1 2
(E39) SMQ = BQ BETA - BQ %RU4 - %R2
2 1 2
(ZR5 + BP ) ALPHA + BP ZR3
2 1
{E40) SMP = mememececmccccwme—ccee——n—————
2 4R3 BETA - %RY ALPHA

CENERATING FUNCTION IS
(E31) FGC18B{SMF, ®8Q) := SMP (BQ %R4Y - BQ BETA)
2 2 1
+ SMP (BQ %R3 - BQ ALPHA) + BQ %RS5 + SHP %R2 + SMP %R1
1 2 1 2 2 1

TARGET HAMILTOMIAN IS

((%ZRS + BP ) ALPHA + BP $R3) BETA

2 1

(E42) TARGETHGO219(BP, BQ) :2 m—m—=e—~=mmmmm—me———m—mmeeammmmmee
IRT BETA - %EY ALPHA

ALPHA ((%R5 + BP ) BETA + BP %RA4)
2

4R3 BETA - %R4 ALPHA
(Dp42) [[[E33, =34, E35, E361, [E37, E38, E39, E40], FGO188, TARGETHGO0Z219]1]
(CHY) TIME(E);
TIME or [TOTALTIME, GCTIME] in msees.:

(Duk) [[12450, 486711

(C45) CLOSEFILE(ATOUTZ2,>)$



-16 -

APPENDIX C
Detailed description of icpt

1. Input to the procedure

Procedure lcpt (origin,target,ledf,ledotdf,dim,h) has as input param-

eters:

-origin: a list of the vector names of the original coordinate system's
variables, e.g. [ip.ig]. Momentum is first, position second in the list.

target: a similar list of names for the desired coordinate system, e.g.
[bp.bg].

lcdi: a list of defining equations, e.g.

[ep[1l=a=1tp[1] + 8 * tp[2]]).

ledotdf: 2 list of defining relations among the time derivatives of the
cocrdinates (e.g. [dif f (bg[1}.¢) = 1, diff (bq{0].t) = OI}*

dim: the dimension of the coordinate systems {origin and target have
the same dimension).

b: tke name of the origin system’s Hamiltonian function, defined
within the MACSYMA prior to the invocation of lcpt.

2. Output of procedure

a)

b)
c)

d)

The qutput of lept is a list whose components consist of:

A list of labels for the equations expressing the target coordinates
(op.bq) in terms of origin coordinates {Ip.lg).

A list of labels for tke equations expressing (ip.lg) in terms of (bp.bg).
The generating function f(genvarf,gervar2}, where genvar? and gen-
verZ are the vector names of the generating function variables,
selected from [ip.lg.8p.bg].

The Hamiltonian of the target coordinate system, H (op.bg).

If the global variable DISPFLAG is true, then the equations produced

in a) and b} above will be printed out at the terminal during the computa-
tion, iz addition to the list of pointers returned as the result. Demonstra-
tion input and output for lcpt can be found in Appendices Bl and B2,

*Note: MACSYMA must be informed beforehand that the coordinate symbols in
fact do deperd or t via the depends ccmmand, e.g. depends(bq.t).


http://bp.bg

- 17 -

3. OQulline ol MACSYMA version of lcpt
The details of the ’cpt implementation are outlined below. The
numbering corresponds to that in the program listing, for the MACSYMA
function lept of Appendix B.

1.

Select generating function variables genvar? and genvar2, given the
interdependencies implicit in equations ledf. Since genwvar/ and gen-
var? must be independent, this involves construcling a dependency
matrix, taking its transitive closure, and choosing {arbitrarily) one of

the four possibilities
[{tp.bp). {ip.bg), (ig.57), (lg.bg}]

which is consistent with the independence restriction.
Compute generating equations

signpg[genvar?] - other[geruari] = %;%&;(genuaﬂ genvar2)

= a + genward M

signpg [genvar?] - other[genvart] = Eﬁ%ﬂ—rz—(gmvaﬂ genvarz)

= genvar!-if + ¢

where
ip ifz=1g
lg ifz=10p
other[z]:= bp ifz = bg
bg ifz =bp

{2a)

(20)

{i-e. th= othzr variable of the pair of {amil.onian coordinates), and

~1 fz=Ip

i ifz =Ig
ﬁgnpgfx] = 1 ifz = bp
-1 ifz =bg

Signpg reflects the necessary sign changes for the four possible gen-

erating functioas.

Rearrange (2a,b) to express (other[genvart].other[genvar2]) in terms

of (genvar2,genveri):
otrer[genvar?] = signpg [genvart] {a + genvarz - M)

other[genvar2)] = signpg[genvar2){a + genvar? - M)

(3a)

(3b)


http://ge-n.va.T2

-18 -

Put (3a,b) in another form:
bp; = a linear function of{otker[genvari ],genvar2) (4a)
bq; = a linear function of{other [genvar2].genvart). (4b)

{This can always be done, since it is a system of 2 * dim linear equa-
tions with the 4 * dim variables.)

Substitute the right hand sides of (4a,b) for bp; and bg; in ledf. This
produces equations with only lp and lq as independent variables.
Equate the right and left hand side coefficients of the (ip,lg} vari-
ables, This generates up to 2*dim*ien(ledf) linear equations involving
a, M, and ¢, completely free of any coordinate variables.

Differentiate (3a) and (3b) with respect to time, generating the equa-
tions:

other[genvar!] = genvarZ M {8a)
other[genvarz] = genvart-M {6b)

Solve these equations for (bp,bg).

Equate (Ba,b) with (3a,b). For tq, and {p, substitute the expressions
for aaTi; and —%’;— respectively. This results in a system of equations
whose independent variables are only those found in the expressions
for Fa% and %h— Equate the coefficients of each independent vari-
able taken from the right and left hand side of each eguation, as well

as the constant terms of each equation.

Solve the system formed from combining the results of {5} and (7)
for the coefficients #, ¢, and c. Assign "arbitrary sywnbois” %ZRi (i
varying) to those coefficients not determined by the given equations.

1f DISTFLAG is truev, outpu? equations:

{6p.bgq) in terms of (ip,lq), {9a)
(ip.lg) in terms of (bp.bg), (3b)
the generating function f {genvar!,genvar2) (8c)

by substiluting the result of {8) into the basic generating function
expressions given by (2a,b) and solving for the appropriate variables.
Also print the

the transformed Hamiltonian H (bp,bg ). (9d}

The wvalue returned by lcpf is a list consisting of: a list of labels for
{9a), a list of labels for (9b), i{he name of ihe generating function
{9¢), and the name of the Hamiltonian function (9e).



