
S?t **
o^, MASTER

UCID- 18185

Lawrence Livermore Laboratory

LCPT: A PROGRAM FOR FINDING LINEAR CANONICAL TRANSFORMATIONS

Bruce H. Char, Univers i ty of C a l i f o r n i a , Berkeley, and
Brendan McNamara, LLL

May 2 1 , 1979

is This is an informal report in tended
primanly for internal or limited
external distribution. The opinions
and conclusions stated are those of
the author and may or may not be
those of the laboratory
Prepared foi <J. S Department of
Energy under contract
No. W-740S-Eng-4B.

' " I T

Lcpt; a program for finding l i n e a r c a n o n i c a l
t rans format ions

Bruce W. Char * ~
Computer Science Division

EECS Department
University of California, Berkeley

Berkeley, California 94720

Brendan McNamaxa
Lawrence Livermore Laboratory

Livermore, California 94550

ABSTRA CT

This article describes a MACSYMA* program to compu e
symbolically a canonical linear t ransformation between coor­
dinate systems. The difficulties in implementat ion of this
"canonica l" small physics problem are also discussed, along
with the implications tha t may be drawn from such
difficulties about widespread MACSYMA usage by the com­
munity of computa t iona l / theore t ica l physicists.

1. In t roduc t ion
Hamiltonian mechan ics problems can be solved, part ial ly or com­

pletely, by finding canonical t ransformations to new coordinates m which
t h e Hamiltonian is simpler. A recen t paper [McNamara] descr ibes th ree
different Lie t ransforms which use the method of averaging for oscillatory
sys tems, examine resonant islands in phase space, and provide su p e r
convergent algori thms for getting high order t e rms in pe r tu rba t ion series
m o r e easily. The pape r also uses more ordinary canonical t ransforma­
tions to action-angle variables or bilinear point t ransformat ions , to
p r epa re the HamiUonians for application of the Lie pe r tu rba t ion

"̂ fforlf performed while a summer visitor at Lawrence livermore Laboratory. Work
performed under the auspices of the U.S. Dept. of Energy by the Lawrence livermore Labora­
tory under contract number W-7405-ENG-46.

"Preparation of this paper supported fn part by the National Science Foundation
under g-ant : !CS S) 75-07291, and the U S. Dept. of Energy under contact DE-AT03-76SF00034
and PA DS-Ai'03-79EHtC35a

•Developed by the Mathlab group at the Massachusetts Institute of Technology's La­
boratory for Computer Science, currently supported, in part, by the U.S. Department of En­
ergy under Contract Number E{ll-l)-3070 and by the National Aeronautics and Space Ad­
ministration undsr Grant NSC 1323.

- 2 -

methods . Another paper [Char] describes how the basic algebra of the
Lie t ransform methods was implemented on MACSYMA. The mos t difficult
ma themat ica l operat ions to implement involved Poisson b r a c k e t s , and
integrating and averaging opera tors . This work is in tended to be p a r t of a
complete MACSYMA sys tem for doing Hamiltonian mechanics— a collec­
tion of tools, r a t h e r t h a n a monolithic code to do everything. However,
even the more trivial opera tors needed for doing Hamiltonian mechan ic s
have tu rned out to be complicated to implement .

Here we descr ibe the p rogram for finding linear canonical t ransfor­
mat ions. The ma themat i ca l problem is unusual, in t h a t one only needs to
specify t h e desired proper t i es of a pa r t of the t ransformation. The res t is
left to be chosen by the p rog ram to be as close aa possible to t h e iden­
tity. This fact, tha t the problem is underde te rmined , con t r ibu ted to
some of the programming complexity.

In Pa r t I of this paper , a p rocedure for finding a Linear Canonical
Point Transformation (LCPT), given a list of desired l inear re la t ions
between the domain and rang' ; coordinate sys tems, is scr ibed. The
p rocedure ' s implementa t ion in MACSYMA so as to facilitate in terac t ive
usage is also discussed. In pa r t II we use lept as an example of a typical
small-scale application problem in physics to i l lustrate the various imple­
menta t ion problems cur rent ly encountered with such computa t ions in
MACSYMA.

PAST I -The p rob lem, i ts solut ion, and i m p l e m e n t a t i o n in MACSYMA

2. Basic definitions
The Harn.iltoTiia.TR. function h.(pi.pz, • • • p&m,<]\,qz. • • • <Jdm) —often writ­

t e n as h(p.q)~is an expression of the tota l energy of a mechanica l sys­
t em, rel-ati-ig momen t i 'm p and position q, "ec tors in dim, components , by

a—(p.?) = ?t -rr-(p.<?) = -Pi (i=i.2,...<«m)

where q and p r e p r e s e n t the t ime derivatives of q and p , respectively*. A
t ransformat ion of coordinates T:(p,q)-*(P,Q) also t ransforms the Hamil-
tcn ian h(p,q) into the function H(P,Q), T is called c. canonical t ransforma­
tion if t he Hamiltonian relat ions hold for H as well:

•fffciie time is generally a parameter of the Hamiltonian h{p,q,t). we lim.it our
discussion to time-independent systems. The compuU. lianal method discussed
here can be easily extended ta handle the lime-dependent ease (see [Goldstein]).

http://Harn.iltoTiia.TR
http://lim.it

- 3 -

Examples
If h(p,q) := api + /Sp a , let

TV.

2 a 2/9
P z = a P) - p P z Q i = l l - - l l .

ThenH(P,Q}:= Pt. Tl is a canonical t ransformation, s ince
Sh aft

d P l \ •"' ' " 2 a 2 ^ 2 a 2/S

M-iP.V-^-P.M-(P.Q) = G = Pl -Ze-(p,Q) = o = pz

However, if we let

T2:
I

9i = ?i

Pz = Pz3 Qz = qz

then H(P,Q) := a P , 3 + ff F 2

3 is not a canonical t ransformat ion, since

Q, = g. = a, but jj^(P,Q) = 3 a P , 2 * a.

3 . Finding canonical t r ans format ions via gene ra t ing func t ions
Finding invariant proper t ies of a Hamiltonian sys tem (e.g. t r ans forms

to action-angle variables [Goldstein], l i e t ransforms to find adiabat ic
iD.varian.ts [McNamara], etc .) often motivates the computa t ion of canoni­
cal t ransformations. In many cases, the problem then is t o find a canoni­
cal t ransformation tha t is consistent with desired goal-relations between
the original and t ransformed coordinate variables. The well-known
method of generating functions can be used to a t tack such problems. We
presen t in the remainder of this section a brief review of genera t ing func­
tions, referring the interes ted reader to [Goldstein] for a more complete
presentat ion of the method.

http://iD.varian.ts

- 4 -

Generatirjg functions have 2 dim independent variables as a rgu­
ments , in one of four possible a r rangements :
(3.1a) / i (g .Q) , where

e / t « / i ,

(3.1b) fs(q.P), where

-£r(<}.Q) = p< -~r(9.Q) = -P<.

dqi (g.-P> = ?t

(3.1c) faip.Q), where

a/a

3ft

3 / g

e / a

(? ^) = 9i

a 7 l

(p.9) = - g 4 - 57r{p.«3) = - / I

{

(3.Id) ftipJ3), where

^ < P . P > — *

S9t

a/<
a^ (p.i°) = ft

While the basis for these relat ions can be derived from "Hamilton's
principle" [Goldstein, p. 225], for the purpose of computa t ion they can be
assumed as given. In general , the process of finding a canonical t ransfor­
mat ion consis tent with desired coordinate relat ions and one of (3.1a-d)
involves solving an arbi t rary sys tem of par t ia l differential equat ions .
However, res t r ic t ing the form of the old-new coordinate relat ions to only
linear ones, makes t h e solution considerably easier .

4 . Solu t ion i n the l i nea r case
If the des i red relat ionships between old and new coordinates are

l inear* fe.g. P t = api + fipi in the first example above \ then the form of
the genera t ing function, if it exists, is also linear*:

f(-u1.v2) :=-v1-a + v1if--v2T -f- vZ-c

where v1 is e i ther p or q, v2 is e i ther P or Q, and

O l C |

a2

C =

c 2

u =
win

Z&m c i£ im
"Viml " '

Mrfim

m&mdrjn.

•Strictly sneaking, the desired relationships must be such that P=g(j>) and
Q=h(g) or P~g{q) and(J=A.(p) for some linear functions g and h, and that g
and h do r.ot violate the restriction that all the {},- and Pt be mutually indepen­
dent. The "desired" linear relations generated by actual physical probleras are
usually in this form.

- 5 -

are matr ices of constants .

The genu rating function relations, in the case v1 = p, v2 = Q, a re t h e n

- ? t

~1dm.

| £ (p . «) = a +M-QT

-P,

~*dbm

= ZLtp.Q) = c+P-M

which r ep resen t 2 dim linear equations in 2 dim independent variables
(the pi and £J,), with 2 dim + dim 3 unknowns (a ,c , and M).

Thus, the problem in t h e linear case can be summarized as: Given a
list of desired relations among origin (j>,q) and t a rge t (P,Q) coordinate
sys tems,
a) select one of the four functional forms (3.1a-d) consis tent with the

independence condition for the generating function variables, and
h) solve for a, c, and M. If all the components of a, c, and M have values

forced upon t h e m by the defining relations, the unde te rmined
coefficients can be chosen to follow the guidelines of some arbi t rary
style, e.g. let e lements of a and c be zero, M t h e identity.

To continue the example above, if we desire

P\= « P t + 0P2
then

- « P i _ §Pz = i-'i + "MiPi + rrlizPs
implying

— a — TTlii C l = 0 — § — 772.EJ1

with m B l , m ^ , c 2 , and all of a undefined.

5. The MACSYMA implementation
"We now presen t an overview of the MACSYMA implementat ion of t h e

p rocedure suggested by the discussion in the preceding section.

5 .1 . Design decis ions
We decided to let the use r give values to the unde te rmined

coefficients in. M, a, and c r a the r than use a fixed se t of rules for de te r ­
mining them. This was to allow interactive "design" of the t a rge t coordi­
na te sys tem's Hamiltonian through tr ial-and-retrial of candidate values
for the undetermined coefficients, after par t of a t ransformation had

- 6 -

been genera ted by const ra in ts input t o Icpt.
We a t t emp ted to m a k e the p rogram tex t reflect the s teps of the pro­

cedure outlined in section 3 cleanly and clearly, with comprehensibil i ty
chosen over efficiency considerations within the basic framework. We dis­
cuss the performance of the MACSYMA implementa t ion in sect ion 6. The
success of the a t t e m p t a t "readable" programming is discussed start ing
in section 7.

5.2- A u s e r ' s gu ide to Icpt
Detailed information, on Icpt can be found in Appendix C, a s weil as

the program listing in Appendix A. Appendices Bl and B2 conta in exam­
ples of interact ive Icpt use . Hasically, one loads the Icpt rou t ines in by
giving the MACSYMA command

(CI) ba tch(ht lcp t .> ,dsk ,char) ;

When the command h a s finished (i.e., when the BATCH DONE message is
pr inted) , the use r t hen en te r s the definition of t h e original Hamiltonian.
e.g.,

(C16) H(P ,q) :=? [l3 -2 /2+P[2] ;

The list of desired relat ions between the original (LP.LQ) and ta rge t
(BP.BQ) coordinate sys tems can then be en te red :

(C17) LCDF:[BP[2]=-N-2+N*LP[l],LP[2]=2*BP[l]-BP[2]];

as well as any desired relat ions between the t ime derivatives of t h e origin
and t a rge t coordinate variables:

VC16) LCDOTDF:[];

The user may also des i re to label the lists of origin and t a rge t variable
names :

(C19) ORIGIN:[LP.LQ];

(C20) TARGST:[BP,BQ];

as wsll as t he dimensionality of the coordinate sys tems:

(C21) DM:2:

Lcpi m«?.y then be invoked by giving it all the pe r t inen t information:

(C2Z) LCPT(LCDF,LCDOTDF,ORIGIN,TARCET,DIM,H);

- 7 -

The results printed include; origin coordinates in terms of target
coordinates and vice versa, the generating function selected, and the
transformed Hamiltonian. Various error or failure messages will be
printed if no generating function can be found. Both the generating func­
tion and the transformed Hamiltonian are given unique names (within one
MACSYMA session) and may bs used subsequently like any other MACSYMA
function.

6. limitations, performance
The present implementation's execution is limited mainly by the

space and time costs of the algorithm used by SOLVE for linear systems,
as the dimension dim of the underlying coordinate system grows. Practi­
cally speaking, this means that systems with dim- > 6 cannot he feasibly-
solved by icpt. There are ways to avoid exponential intermediate expres­
sion growth (e.g. by re-arranging the ledf equations so as to allow substi­
tution of cther[vl] and otherfv2] from, the generating function equations
(2a) and (2b), instead of solving them for bp and bq); this could easily be
installed in future versions if the need arises. The point we wish to
emphasize is that program was designed for execution for small dim; its
inability to handle large systems of high dimension is not an important
defect. See Appendices Bl and B2 for execution times for typical dim = 2
systems.

Part II Towards reducing the complexity of the programming task

7. Programming Simple Procedures
The lept procedure can be outlined relatively simply. Furthermore,

for the kinds of transformations the MACSYMA implementation was meant
to find (e.g. see Appendix Bl and B2), the entire calculation can be done
by har.i quite feasibly. The real advantages to programming it are of
convenience: getting the computer to do essentially tedious algebra, and
the (supposed) greater speed and reliability of computer versus human
calculation. The convenience is compounded because of the interactive
nature of the "target system Hamiltonian design" problem.

Unlike many of the programs in the published literature, lept is not a
long, complex calculation where all of the expected payoff is in a few
informative ruiis. In gsneral, programs of this sort are worthwhile only if
they can be ussd widely (say, as part of a library), or if they weve cheap
to cc.nstruct (and therefore to dispose of). A realistic hope would be that
lepi is the sort of calculation that a physicist could work out without
much consultation with (human) system experts.

Dsspite the relative simplicity of the lept procedure, the actual
MACSYMA code to implement it runs several hundred lines, and took
several weeks to produce. This, as Fitch has noted [Fitch], is symp­
tomatic of applications programming on symbolic systems. In the sequel,
we suggest reasons for the complexity of programming lept, and how the

- B -

difficulty of it and similar programming tasks might be reduced.

B, Gaps in procedural knowledge
There were many gaps between the information presented in the

source text [Goldstein], and the explicit procedure contained in the lept
code. For example, the text actually describes the inverse of the pro­
cedure implemented (namely, how to figure out what the coordinate
transformation is, given a generating function), did not explicitly state
how to decide which form of the generating function (3.1a-d) to use, etc.
The implementation problems here are compounded: much of the actual
pre 'edure was left implicit in the book and thus must be developed by
the programmer; the major part of the effort and program text of lept
occurred for th(same tacit details.

We can expect this situation to change with time as the influence of
symbolic systems becomes more widespread, just as many current cal­
culus and numerical analysis texts are influenced by the computer-
oriented approach (e.g. [McNeary], [Gear]). However, it is clearly unrea­
sonable to expect a textbook's readership to need or want to go through
an exposition of general physical principles in program-explicit form.
Rather, attention naturally turns towards easing the coding process after
the algorithm has been developed from the source text and explicitly
stated.

9. Why should anyone care about the readability of MACSYMA pro­
grams?

A language for mathematical symbol manipulation should serve as a
vehicle for clarification. The ideal from the reader's point of view is to
make the mathematics appear conspicuously, and as similar as possible
to the notation and conventions of the mathematical source. Presum­
ably, a 1-iLguc.ge which allocs- this sort of abstract reprussntafon will
develop a literature of well-written programs that are more accessible to
source-readers, and "easier" (i.e. cheaper) for source-writers to produce.
Lvpt is neither particularly easy to read nor was easy to write. We believe
that the MACSYMA language can be improved to support communication
of mathematical concepts.

Sandewall notes that typical Lisp code is filled with "difficulties of
many kinds, all trivial and uninteresting" [Sandewall, p.62]; that the
comprehensibility of Lisp code comes from breaking up the idioms of the
task into functions. Since the MACSYMA language is derived from Lisp,
programs written in it also tend to be collections of many small functions
or array definitions, (see [Char], [Golden] for examples). Thus, curreiil
MACSYMA programs are not comprehensible in the same fashion as, say,
well-written Pascal programs—variables will not be type declared, subsidi-
ar 7 functions do not have to appear within the lexical scope of their cal­
ling procedures, etc. While writing lept, we found ourselves constantly
faced with "three temptations":

- 9 -

The temptation to do an entire computation in one expression, as
opposed to line-at-a-time chunks ("APLification"). Since MACSYMA
functions cannot be called as concisely as APL operators, this leads
to collections of highly nested function calls. Because there are few
MACSYMA "idioms" of function call sequences (see [Perlis]), this
degrades comprehensibility.

The temptation to make every small sub computation a function ccdt
("Balkanization"). At some point the proliferation of function
definitions means that the defining text is so far removed from the
invocation and there are so many function names that the reader
loses track of -what is going on. Too many functions also tends to
make the invoking lines of computation look like an APLism.

The temptation to select lists when other data structures or non-
lists would be more appropriate ("list- think"). For example, in.lcpt,
one could always refer to the p and q variables as origin[l] and ori-
gin[2], but that would obscure the physical reason why they irere
given different names in the first place, e.g.

diff (apply (h.origin), origin[l]) =diff (origin[2], t),
but

diff(apply(hrorigm),origin[2])=-diff(origin[l],t)?

While the Lisp-basis of MACSYMA can be used for good, the three
temptations can turn it into a tool for devilish obscurity. Constant vigi­
lance is required to guard against lapses of style.

10. Notation for Hamiltonian Physics
Seme of the verbosity of lept comes from developing and program­

ming convenient representations for the operations implicit in the stan­
dard notation, of Hamiltonian physics. We consider the following to be
examples of the sorts of things that should be included in a good library
of symbolic physics notation for a "physics environment" of a symbol
manipulation system:
1. A dot operator, the derivative with respect to the time variable (by

default, say, t), e.g. "f dot" means diff(f.t), "f dot dot" means
diff(f,t,2).

2. a) Physics texts traditionally establish a notation context (e.g. stat­
ing that p and q are vectors of a certain length, part of a particular
coordinate system). Once this has been established, the vectors and
their cc lponents are used rather loosely, e.g.

dh

- 10-

dh
-3p7 = q i

a n d

< dh dh
dp i ' dpz' • • • a > = <<Jl ><Iz >—q<8m

of even

„ dh
dp i

aft • 3ft
a„ "" ? e • a,, = 9 t t t m "* °PS °Pim

all are used to refer to the same equality. Thus, given the user's
declaration that

dh

the system should be able to produce the componentized lists of
equalities upon demand. For example, if the dimensionality of the
vectors p and g has been declared, then it should be no special effort
to derive from

diff(h(p.q),q) = -(p dot)
the componentized vector/list described by

d'.ff(/i(p,g),gi) = -(p4 dot), i=l,...dim

b) Note also that —— is given no arprments; once the p-q relation is
set up, and the Hamiltonian h defined for the p-q coordinate system,
by default all references to h, ——, etc. imply the use of p and q
unless explicit exception is made.
c) 'omefcimes the same rymbol is used for both variable and func­
tion name, as in

Qt = Qd7.p.t)
•with context providing the disambiguation in further references to
the symbol. A useful physics manipulation system should be able to
record such relations declared in function declarations, coordinate
system declarations, etc. and then be prepared to handle the nota^-
tional conventions without further ins^-uction by the programmer.

11. Conventional programming notation
As well as physics-based notational extensions, there are also system

augmentations we favor so that data and subprocedures can be more
conveniently defined and manipulated. For example, in the lupt problem,
currently the only connection the reader has relating tLe origin system.

-11 -

variables referred to as origin[l] and origix;[2], the componentized
representations

lsmp:[origm[l][l],origin[l][2]...],
lsmq:[origm[2][l],origin[2][2]...],

the list of all components of the origin system

oldvar.append(lsmp,2smq),

and the list of all coordinate variables

allvar: append (origin,target)

are the names. Not only does this make keeping track of the hierarchy of
data a difficult task, it makes assignments to the p /q variables unneces­
sarily tedious: neither

lsmp:makelist(orig'n[l][i],i,l,dim),
ismq:makehst(origin[2][i] ri, l.dim)

nor
map(":",[Ismp,lsmq],

map(lambda([x],makenst(x[i],i4.dhnu}),origin))
seem to adequately reflect the structure of the assignments being made.

The introduction of new functional forms would also be highly con­
venient In many situations in lept. MACSYMA already allows th j introduc­
tion of syntax extensions for new or existing functions. However, intro­
ducing entirely new forms* is often difficult without substantial
knowledge of the system underpinnings, usually difficult to view by users.
Given the limited resources of most system support groups to cater to all
the users' wishes, more facilities should be provided for user-supplied
extensions. Having a system with modes and modular structure
+Everyoce has a favorite set of improvements to MACSYMA syntax. Two from ours
would t e : a CASE statement to clarify multi-branch IF THEN ELSES (and to keep
the program formatter GRIND from displaying such nestings entirely within in the
last ten columns of output'), and a projection operator II to apply succinctly
multi-argument functions to composite data structures, e.g. abbreviating

raap(!ambda{[li3te]],e'.'(liste!.diS)).vector]ist)

to

map((Jl ev(*,difI}),vectorIist)

- 12-

definitions (see [Griss], [Barton]} would allow use r s to build upon existing
notation without rewriting or having to know the internal workings of the
basic syste.;.i-supplied routine. Having a language tha t suppor t s user-
defined da ta s t ruc tu res would allow the p rogrammer to make the connec­
tions in a hierarchy of symbols more apparent to the reader .

While there is a real danger tha t given the rope, users will hang t hem­
selves by developing mutually incompatible applications environments
and utility routines, we feel tha t the community of symbolic manipulat ion
system users is sophist icated enough to use such tools wisely. Fur the r ­
more , some large-scale exper imental development is necessary before
conflicting or embryonic viewpoints can be brought into consensus .

12. The behavior of system-supplied routines: the caae of SOLVE
It is often difficult to massage, a problem into 3. forrr* SOLVE can

accept as input, or to manipula te the output of SOLVE into a form amen­
able for fur ther symbol crunching. We da not in tend to discuss here any
computat ional er rors of SOLVE (we didn' t find any while test ing the pro­
gram), but wish to enumera te the sticking points we had with i t in writing
lept:
1. In many applications, one can assume (by an accompanying proof,

usually) tha t the re ' s at most one solution, or one may desire to
choose arbitrari ly one solution from a set of solutions. Yet the
default resul t of SOLVE is (a list of) one or more lists of labels, which
means both FIRST and EV have to be invoked in order t o ge t the
actual solution (so tha t , for example, it can be used as input t o
SUBST, as it is in lept).* Thus, in lept, some of the SOLVE computa­
tion has to be u n d e n t via the Icpt rout ine PICKONES.

2. The code for manufactur ing the list of generat ing function
coefficients for SOLVE to solve for, once EQUATECOEFS had produced
a sys tem of equations, was quite involved: the d i rec t approach

lvars:append
(append(apply(makelist ,

[makelist(m[i,j],j, l ,dim),i,l.dim]}),
makel is t (a[l ,j],j, 1 ,dim),
makelist(c[j , l] , j , l ,dim)),

salve(eqns,lvars)

is baroque, while

* As of April 1973. a PE0GRA1IMODE flag Has installed in order to allow SOLVE to re­
turn a list of lists of equatiocs instead of labels. Thus, use of this flag would make
the EV unnecessary, although the programmer still vrauld have to pay attention to
the particular forms that SOLVE's answer may take.

- 13-

mata:genmatnx(a,dim, 1),
matc:gennatrix(c,l,dim),
ma tm:genmatr ix(m, dim, dim),
lvars:listofvars([niata,niatc,matm])1

solve (eqns .Ivars),
is still verbose. Given that the system could easily be instructed as
to the dimensions of o, c, and m (since that information had to be
supplied anyway to define the generating function)

solve(eqns,[a,c,m])
seems a desirable and feasible alternative. The situation is a case of
SOLVE not being versatile enough.

3. SOLVE's input and output restrictions in one case did too little, in
one case, too much:

a) If there are more non-trivial equations than variables, then
the error message "equations inconsistent" is given, even if the
"extra" equations contain none of the variables to be solved for.
{In that case, inconsistency is not indicated, merely irrelevance.)
Often in the automatic production of equations (as in the
EQUATECOEFS process in lept), the desired equations are pro­
duced in a fashion that generates many more than the ones use­
ful to the solution. This is an example of SOLVE wanting input in
a form different from that naturally generated by the problem;
the user has to work to supply it.

b) Conversely, if SOLVE is given more variables than (linear)
problem-equations, it returns a list (of lists of labels) of
solution-equations that makes no mention of those variables
missing from the proDlem-equations. The Lcpt procedure
INSEHTFREE figures out the missing variables and equates them
to "arbitrary values". While admittedly this is not always the
desired outcome when missing variables occur, the action of
INSERTFREE could be provided as an option. This is an example
of SOLVE's output being in the wrong form; the user has to work
to change things.

There is no easy way out of these difficulties. One alternative is to
"unbundle" the actions of SOLVE. For example, in the linear case, there
could be one routine with one equation and one unknown as input, return­
ing one solution-equation instead of a list or a label, another routine to
handle matrix equations, another one for systems of linear equations
given as a list, etc. This would satisfy individuals in particular cases, but
would lead to a proliferation of routines. It could conceivably take an
expert to decide which one to use in a given situation, and the current
"general problem solving" ability of SOLVE, limited as it may be, would be

-U-

Iost. Perhaps a hierarchy of routines should be available—a general
salver that tries its best to figure out which problem its input presents it
with, and many testing and solving primitives that are available to the
expert or specialist. Besides the formal parameters of the problem, a
general solver should also be built with enough sophistication to allow
command or programmatic direction of its selection of algorithm, its
"understanding" of the problem, storage allocation schemes, etc. Cost
functions, relational equalities and inequalities, and keywords or phrases
could all influence such a general solver, as an alternative to the
currently implemented flag sch- mc. The problems with SOLVE indicate
stumbling blocks any polyalgorithm designer faces in building a
problem-solver of such scope.

13. Conclusion, Summary
In summary, we find that the significant effort in programming Lcpl is

expended on
a) developing a procedural statement of the knowledge taken for

granted by physicists
b) overcoming strictly technical programming difficulties to allow a suc­

cinct, comprehensible description of the lept procedure.
•While the first task will always confront someone who wants to auto­

mate physics computations, the second seems largely soluble by sym­
bolic systems designers and user groups, and is itself a considerable bar­
rier towards widespread, casual use of symbolic systems. Since there is
no consensus as to what constitutes a good set. of operators and struc­
tures in the various applications areas of symbolic manipulation, the
move towards achieving such a set must for the present be in the form of
allowing users freedom to develop the language and notation themselves,
and to encourage the development and sharing of intermediate level
operations for commonly performed mathematical manipula) ons.
Without allowing for easy implementation of human engineering impi c e ­
ments, symbolic system usage will be worthwhile for use only in massive,
specialized efforts.

Acknowledgments
Yfe wish to acknowledge useful discussions with Richard Fateman and

Barry Trager, who shared their experiences and MACSYMA anecdotes with
us.

- 1 5 -

REFERENCES
[Barton]Barton, David. Made package for SCA. MIT LCS Internal

Memorandum, 1978.
[Char]Char, B. and McNamara, B. "LIEPROC: A MACSYMA Program for

Finding Adiabatic Invariants of Simple Hamiltonian Sys tems via the
Lie Transform," Lawrence Livermore Laboratory Report UCRL-81974,
November, 197B.

[FitchJFitch, John. "Mechanizing the Solution of Per turba t ion Problems,"
Fourth International Colloquium on Advanced Computing Methods
in Theoretical Physics. Sponsored by Universite d'ALx-Marseille II.
Universite de Provence, Centre National de la Recherche Scientifique,
Direction des Reeherches et Moyens d'Essais, 1977. pp. 93-9B.

[Gear]Gear, C. William. Numerical Initial Value Problems in Ordinary
Differential Equations. Prentice-Hall: Englewood Cliffs, NJ, 1971.

[GoldenJGolden, Jeffrey P. "MACSYMA's Symbolic Ordinary Differential
Equation Solver." in Proceedings of the 1977 MACSYMA User's
Conference, NASA; Washington, D.C., 1977. pp . 1-10.

[Goldsteln]Goldstein. Herber t . Classical Mechanics. Addison-Wesley:
Reading, Massachusetts , 1950.

[GrissJGriES, M. The Definition and Use of Data S t ruc tu res in REDUCE, in
Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic
Computation, R.D. Jenks, ed. ACM: New York, 1976. pp. 53-59.

[McNarnarajMcNamara, B. "Super Convergent Adiabatic Invariants with
Resonant Denominators by Lie Transforms," Journal of Mathematical
Physics, vol. 19, no. 10, 1978. pp. 2154-2164.

[McNearyjMcNeary, Samuel. Introduction to Computational Methods far
Students cf Calczl-.is. P-entice-Hall: Englewood Cliffs, NJ, 1973.

[Perlis]PerIis. Alan J., and Rugaber, Spencer. The APL Idiom List, Yale
Research Report #87, April 1977.

[SandeTvalijSande-wall, Erik. Computing Surveys, vol. 10, no. 1, March
1973, pp . 35-71.

Appendix A
Program l i s t i n g for LCPT

/"closure computes the transitive closure of MAT, a DIM z DIM
1-0 matrix. See algorithm in Cries, Compiler Construction
for Digital Computers'/

<3osure(mat,dim}:=clook([al,a:copvmatTix(inat),
for I thru dim do

(for j thru dim do
(ifa[j,I] = l

then for k. thru dim do a[j,k]:mai(a[j (t],a[l,fc]))),
return(a))$

/'Define "dot" as d by dt »/

pcstfix("dot")$

"dot"U)r=diffCs,t)$

"apl-like iota. iotaTjfc] is the list of

Bun*b°rs 1 thru k, presumably the null list if k is zero or negative*/

iota[k] :=makelist(jk,jk, l ,k)$

/ 'Returns the position (one-indexed) of item in list, 0 if not found V
tedexin(list4tem):=Wock([len,ji],

len:lfiagth(list),
retura(catch{

for ji-.l thru len do if list[ji]=item then throwtjO,
oms

/ ' If lvar is not in lgt (see lcpt and IcptO for what Igt
means), then insertfree will insert a lvar=%randomsym equation into
Igt and return the altered list as a result ' /

insertfree(lgt,lvar):=Mcck([i],
for i in lvar do if freeof(i,lgt) then lgt:cons(i=makesym(*/.r)Agt),
return(3gt))$

/ 'makesym returns a symbol name beginning -with the value of atsym
(which must he an atomic symbol), ending w i th an internally generated
suffix •which is different each time makesym is called within a macsyma
session*/

raakesjrm(atsym):=concat(atsym,?gensyia.())S

/'discardfree returns the list Igt expunged of all equations
that do not contain any of the variables in lvar ' /

discaxdfree{Jgt,lvar):=block(n.

testf(x):=if freeof(lvar.x) then [] else [x] ,
apply(append,map(testf,lgt)))$

- 2 -

/'Pickones returns the flist set of solutions of Isys in
lvar, •where lsys and lvar are "aoth lifts as they would be as inputs
to SOLVE. There is an error if there is no solution.*/

pi<&cmes(lsy.s,lvars):=ev{first(solve(lsys,lvars))Jeval)$

/'Given an equation, eq and a list of independent variables
in the equation, listofindvars, equatecoefs returns a list of equations
that result when the coefficients of an independent variable on both
sides of the equals sign, are equated. Since not all
variables will appear on both sides of eq, there may be some O=coef
equations, as -well as some 0=0 equations. In addition, the
constant terms on both sides of the = sign are equated (these terms
free of all independent variables*/

equatecoefsCeq4istofindvars)j=block([i,len,l,a],

for fir in listofindvars do
<eq:expand(eq),
while (hip:hipowCeq,fir))>0 do

(a:coeff(eq,fir,hip),
l:cons(a,l),
eq:expand(subst(fir~hip=CI,eq))
)

),
/*Thraw in constants, too*/

if eq£'(0=0) then bconsteq,!),
return(y)S

/*lcpt finds a linear
canonical pcint transformation satisfying the constraints
given by the user through the variables ledf, a list of
equations stating the desired relations that should hold
between the variables of the origin coordinate system, and
the target system, and ledotdf, a list of equations stating
the desirad relations that should hold between the
dot-derivatives- of those variables, origin and target are
lists giving the names of the p/q variables of the two
coordinate systems respectively (e.g. [lp.lq] and
[bigp.bigc])—the momentum variable name is the first.
element of the list, the petition variable name the second,
dim. is an. integer-valued variable stating the dimension of
the system, h the name of the hamiltonian function of the
origin system (defined as h(p,q):=... .) V

lcpt(lcdf,lcdotdf,origin,targat,dim,h):=blocJt([oldispfl,lbigq,lsmq4bigp,
lsmp,lnew ,/ar,loldvar,3,i,j,k>dep lallvar,otlen,dp,close,genvarl^envar2,
genpos,doap,endflag,vxl,vx2,depv,vis:,geno3i.],

/•initialize arrays ' /
kiil(vmake,discnot3ub,sm,m,a,c,otherJdef,dep,dp,signpg>,

/*vmake returns a list of components of the vector vnameV

- 3 ~

VTr_ak^Cvname):=mak.elAsi(vnaine[i'|,i, 1 .dim),
/•list of origin and target variablsSjSubscripted*/

ln2Wvar:applyCappen.d,niap(":",[ltiigp,llDigqJ;inap(vinake,taTget))),
loldvar:appiy(apFend(maa(":",[lsnip,bniq]1map(vniak.e>origiii)))r

allvarrappendCoriginvtarget),
/ ' l ist of possible generating function variable pairs*/

ganpo*[[origin[i],target[l]],[origin[l],target[2]],i origin[2],
targ«[l]],[oiigin[Z],target[2]]L
/'Generate symbolic coefficients of matrices a,c, and mV

matargeninatrucfa.diai, 1),
matc.-genriatrixCc, l,dim),
matm: gerimatrix(m,diin,dim),

/*ather returns the other vector name of the pair
of canonical vector names in either origin or target*/

other[x].--if membexte.origm) then origin[3-indejrin(origin,x)]
else if mam"bej:(x,target) then target[3-mdexin(target,.x)]

else error(priat("no other:",x)),
/'Sign for relation "between partial derivatives of
generating function and variables*/

signpg[var]:=if vax=origin[l] then -1
else if var = origin[2] then 1

else if var=target[1] then 1
else if var=targstf2] then - 1 ,

/T ind suitable pair of variables for generating function 1/
discnatsub(x):=block([var],

returnCif lengtaCx-)#l
then []
else if mamfcer{var:inpart(x,0),a]lvar)=true

then [var] else [])),
aep[U]==0,
for eq in lcdf do
(/*get list of subscripted vars in eq (without

subscripts). Keep only origin, target variables 1/
lsabvar:appl7<appe.nd,Tna.'5(di5rnotsubJlistcf/ais(^q))),
lot Ustel in Isubvar do

for listel2 in lsnbvar do
dep[listel,lLstel2]:l

),
/*otlen is the length of origin, and target combined, i.e.
four wi th typical p,q lists*/

otlen:leagth(target)+lengthCorigin),
dp[i, j] : =dep[all var[i],allvar [j]] ,

/*clcse is the transitive closure of dependency matrix*/
cluse:c!osTire(gemnatri3r(dp,otleB,otlen),otIen),
genvarl : [] ,

/'Complemd) returns a list of those integers 1-otlen which are
NOT in the list 1*/

cc-iclsniClJ^applyCasper-d,
makelistQf memb«-(i,l) then [] else [i], i , l.otlsn)),
/*compiota[Vi] produces a list-vector that
is of length otlen, ail ones except for the k-th position,
which is zero.*/

comjJiota[k]:=inakelisi(if k=i then 0 else l,i,l,otlen),
en:lfiag:f^:sci,

- 4 -

for i to genpos unless endflag = true do
(catch(

vxl:apply(indexin,[allvar,i[l]]),
vx2':applyCindexin,[allvar,i[2]]),
/ 'Must t e independent V
if close[vxl,vx2]=l then throw<[]) f

for listel in comp]em([vil,vx2]) do
/'All others must be dependent on v x l or vx2,
if dependent on anything other than itself.*/
if coxapiota[listel].colCclose,listel)#0 and

close [listel,vxl]=0 m d close[listel,vx2]=0
then throwCfJ),

/'Success! Pick, these as the generating function variables*/
genvar 1 :i[l],genvar2:i[2],endflag:trua
)

),
if gsnvarl=[]

then errorC'Couldn't find valid generating function variables"),
ret-jni.ClcptO(lcdf,lcdotdf,origin stargat,genvarl^envar2,dim,h)»$

Icpt0(loif,lcdotdf,origin,target^envail^envaxa,dini^i)t=block([dispflag,lvl rlv2,
geneq^tl^t2,i,il^2,dgtI,dgt2.1haT"reI,linJmsoleq rtensol,lont ;ik>

appll 2,gt,gtinii9W,gtinoia],
/*Iist of generating function variables, subscripted V

map('':',[lvl,lv2],map(vmaie,[genvarl,genvar2])),
/'Compute generating function f(genvarl,genvar2)V

geneq:(lvl).:n.ata+(lvl).inatitt.transpo£eUv2)+ matc.transpcse(lv2),
/*Also define generating equations in terms of new coords*/
/*Tum off display of intermediate ecpiations */

oldispflidispflag,
dispflagrfalse,

/*gen*are(ruations(var,genfunce<i) is a template for production
of the equations (3.1a-d) of section 3 at the accompanying
paper*/

genvarsqT:ations(var^enfunceq):=makfilist(other[var][i]=
signpg[var]*diff (genfunce<T,var[i]),i, 1 ,dim),

gtl:?iciones{genvai'eqjiiationsCgenvar2^en£(j)rlns»A'V2r),
gt2 ;pickon3s(genvarequations(genvarl,geneq),lnewvar) J

/•Find relations among m[i,j] implied by lcdf
and generating equations*/

lcdT;subst(appendCgt 1 ,gt2),lcdf),
11; if lcdf f [] then applyfappend^

map(lambda([x],equatecoefs(x,loldvar)),lcdf))
else [],

/ rList of new and old target-dot variables (derivatives)
wi 'h respect to time */

depsndsUaxgetCll.D.dependsCtarget^]^),
depend3(origjn[l],t),depends(origin[2],t),
lnd;(lEewvar dot),
lod:(loldvar dot),

/'Express given dotetfuations in terms
of target dot variables*/

lcdctdf:append(lcdotdf,(lcdf dot)),

- 5 -

if length(lcdotdf)>0 then
c

/'Generate time derivs. of gen. eqs.V
dgtl :(gti dot),
dgt2:(gt2 dot),

/ ' f ind values of qdot and pdot from hamiltonia.: V
lhamrel:appeiLd(mafcelist((lsmp[i] dot)=-diff (appryCh. origin),

lsmq[i]),i,l,dim),
iaakelist((lsmq[i] dot)=diff(apply(:a,origin),lSEtp[i]}

,i,l,dim)
),

/•Substitute q/p dot values for q/p dot symbols*/
lcdotdf:subst(append(dgtl,dgt2),lcdotdf),
lcdotdf:subst(lhamrel/lcdotdf),
12:applyCappend,mapClam'bda(r_x],eqtEatecoefsCxKloldvar)),lcdotdf))
)

elsel2:[],
/"Generate list of m-variables, and solve for them V

lm:listofvars([mata,inatin,matc]),
freefmacCx):=if freeof(ia,x) and freeof(a,x) and freeof(c,x)

then [] else [x],
appll2:apply(append,map(freBfmac,apj?end(ll,12))),
lmsoleq:ev(solve(appl 12,lm),eval),
print(if (lensol: length.(lmsoleq))=0 then "Wo Solution"

else if lensol=l then "solution"
else "multiple solution"),

lout:[],
for ifcj 1 thru lensol do
(

geneq:subst(lmsoleq[ikJ,[mata,matin>matc]),
substarbval(x):=if length(x)> 1

then (varaam.e:inpart(x,0),
if varnam8='a or varname ='c

then geneq:subst([x=0],geneg)
pi.se if vara?.me -'m

then geneq:subst([x=
if inpartfx.l)
=inpart(x,2)
then 1 else 0],

geneq)
),

map(substarbval,listofvars(geneq)),
genfuncname:maltesym('f),
applyCdefine^funmalceCgenfuncnams^genvarljgeavara]),

lvl.geneq[I]+lvl.geneq[2].transpose(lv2)
+geneq[3].transpose(lv2)]),

geneq:apply(g9nfuncname,[lvl,lv2]),
/"Restore display flag"/

dispflag:oldispfl,
/*Display generating function, variable transforms*/
gt:appendCapply(genvarequations,[ganvar2,genaq]),

applyCoSiivareguations.fgarivar l,geneq])),
gtinnew:solve(insertfree(discar'lfree(gt,lnewvar),ln2Wvur),lae^vvar),
gtinoM:iolve(insertfreeCdi^cardx>=;e(^t,loldvar),loldvar),loldvar)(

http://pi.se

- 6

thnaTTtPiffiaXesyraCtargeth).
apply(defiDe,[funmake(i «i2:i:me,taiget>,

subst(ev(gtiiioId,eval),apply(h,origitt))]),
if dispflag#false then
C print(" "),print("Generating function is"),

ldisp(arply(dispfun,[geiifuncname])),
print(" "),print("Target Hamiltonian is"),
ldisp(apply<dispfim,[ainameP)

h
lout:cons([first(gtinnew),first(gtiiiold),genfiinciiame,

tan ame],lout)
).
ietum(lout))$

Appendix Bl

One exar-plf of LCFT usage

(D20) [DSK, CHAR]

(C21) BATCH(HTDEM,>)$

(C2?) ORIGIN:[LP,LQ]$

(C23) TARGET: [P ,Q]$

(C24) H (P , Q) : = P [1] * 2 / 2 + P [2] $

(C25) L C D F : [P [2] = - N " 2 + N * L P [1] , L P [2] = 2 * P [1] - P [2]] $

(C26) LCDOTDF:[]$

(C27) LCPTCLCDF.LCDOTDF,ORIGIN,TARGET,2,H);

MAKEL FASL DSK MAXOUT b e i n g loaded
Load ing done

GENMAT FASL DSK HAXOUT b e i n g l oaded
Load ing done
A
1, 1

warning - unbound element - GENHATRIX
C
1, 1

warning - unbound element - GENMATRIX
M
1, 1

warning - unbound element - GENMATRIX
MDOT FASL DSK MACSYM being load-i
Loading done
SOLVE FASL DSK" MACSYM being loaded
Loading done
SOLUTION'
CCMCAT FASL DS.< MAXOUT being loaded
Leading done
SOLUTION
(E37) Q = 2 LQ

1 2
2

(E38) P = LP N - H 2 1
LQ N - LQ
2 1

(E39) Q =
2 N

2
N - LP N - LP

1 2
(E40) P

1
SOLUTION

Q
1

CE41) LQ = —
2 2
2
N + P

2
(E42) LP =

1 N
(2 0 + Q) N

2 1
(E43) LQ =

1 2
(E44) LP = 2 P - P

2 1 2
GENERATING FUNCTION IS

2
Q N Q N Q LP

2 1 1 1 2
<E45) FG0060CLP, Q) := Q N + + LP (- Q N)

2 2 1 2 2 2

TARGET HAMILTONIAN IS
2 2

(N + P)
2

(E46) TARGETHG0079CP, Q) := P + 2 P
2 2 1

2 N
(D46) [[[E37, E38, E39, E40], [E41, E42r E43, E44], FG0060, TARGETHG0079]]
C W) TIME(S);
TIME or tTOTALTIHE, GCTIME] in msecs.:
(D47) [[7155, 30091]
(C49) CLOSEFILE(HTOUT,>)$

Appendix B2

Another example of LCPT usage

(D i e) [DSK, CHAR]

(C19) BATCH(TESTLC,>)$

(C20) D£PENDS(BQ,T)$

(C21) DEPENDS(BP,T>$

(C22) DEPENDS(SMP,T)$

(C23) DEPENDS(SMQ,T)$
(C21) LCDF:[BP[1] = SMP [2]*BETA+SMP[1]*ALPHA]$

(C25) LCD0TDF:[DIFF'(BQ[1],T) = 1,DIFF(BQ[2],T) = 0]$

(C26) TARGET: [BP,P,Q]$

CC27) ORIGIN:[SMP,SMQ]$

(C28) H(P,Q):=ALPHA»P[1]+BETA*P[2:$

(C29) LCPT(LCDF,LCD0TDF,ORIGIN,TARGET,2,H);

MAKEL FASL DSK MAXOUT being loaded
Loading done
GENMAT FASL DSK MAXOUT being loaded
Loading done
A
1, 1

warning - unbound element - GEMMATRIX
C
warning - unbound element - GENMATRIX
\.\
1, 1 warning - unbound element - GENMATRIX

MCOT FASL CSK .MACS'.'M being loaded
Leading done
SOLVE FASL DSK MACSYM being loaded •
Loading done
ALGSYS FASL ZSZ MAC3YM being loaded
Loading done
SOLUTION'
CONCAT FASL DSK MAXOUT being loaded
Losding done
SOLUTION'
CE53) BP = SKP BETA + SMP ALPHA

1 2 1
(SR1 + SMQ) 3R4 + (- 3R2 - SMQ) SR3

1 2
(E31) BQ =

1 %R3 BETA - %R4 ALPHA
1

<K35) BP = - %R5 - SMP SR« - SMP SR3
2 2 1
(SSR1 + SKQ) BETA + (- SR2 - SMQ) ALPHA

1 2
(£36) BQ = - - —

2 ?R3 BETA - SR'I ALPHA
SOLUTION

(SR5 + BP) BETA +• BP *R4
2 1

(E37) SMP =
1 SR3 BETA - 5R1 ALPHA

CE38) SMQ = BQ ALPHA - BQ %R3 - SRI
1 1 2

(E39) SMQ = BQ BETA - BQ SRM - %R2
2 1 2

(SER5 + BP) ALPHA + BP %R3
2 1

CE40) SMP =
2 *R3 BETA - %RH ALPHA

GENERATING FUNCTION IS
(£ 4 1) FGC188CSMF, ?Q) := SMP (EQ $R4 - BQ BETA)

2 2 1

+ SMP {BQ ^R3 - BQ ALPHA) + BQ %R5 + SMP SR2 + SMP JR1
1 2 1 2 2 1

TARGET HAMILTONI AN IS
((36R5 + BP) ALPHA + BP $R3) BETA

2 1
(E42) TARGETHG0219CBP, BQ) :=

JRI BETA - 1F.H ALPHA

ALPHA ((%R5 •*• BP) BETA + BP SRt)
2 1

*R3 BETA - %R4 ALPHA

(DU2) [[[E 3 3 , ES^, E35, E 3 6] , [E37, E38, E39, E 4 0] , FG0188, TARGETHG0219]]

(C4-M) TIME(5) ;
TIME o r [T07.UTIME, GCTIME] in m s e c s . :
(BUM) [[1 2 1 5 0 , 4 8 6 7]]

(C«5) CL05EFILE(HT0UT2,>)$

;

- 1 6 -

APPENDIX C
Detailed description of lept

1. Input to the procedure
Procedure lept (origin,target,lcdf,lcdotdf,dim,h) has as input pa ram­

eters :

-origin: a list of the vector names of the original coordinate sys tem's
variables, e.g. [Ip.lq]. Momentum is first, position second in the list.

target: a similar list of names for the desired coordinate system, e.g.
[bp.bq].

lcdf: a list of defining equations, e.g.

lbp[l] = a • lp[l] + (3 • lp[Z]].

lcdotdf: a list of defining relations among the t ime derivatives of the
coordinates (e.g. [diff(bq[l],t) = 1. <iiff{bq[G].t) = 0]} +

dim: the dimension of the coordinate systems (origin and ta rge t have
the same dimension).

hi the name of the origin sys tem's Hamiltonian function, defined
within the MACSYMA prior t o the invocation of lept.

2. Output of p rocedure
The output of lept is a list whose components consist of:

a) A list of labels for the equations expressing the t a rge t coordinates
(bp.bq) in t e r m s of origin coordinates (Ip.lq).

b) A list of labels for the equations expressing (ip.lq) in t e r m s of (bp.bg).
c) The generat ing function f (tjenvarl ,ge7iuar2), where genvarl and gsn-

VCT2 are the vector names of the generating function variables,
selected from [Ip.lq,bp.bq].

d) The Hamiltonian of the t a rge t coordinate system, H(bp.bq).
If the global variable DISPFLAG is t rue , then the equations produced

in a) and b) above will be printed out at the terminal during the computa­
tion, in addition to the list of pointers re turned as the result . Demonstra­
tion input and output for lept can be found in Appendices Bl and B2.

+Note: A3ACSYMA must be informed beforehand that the coordinate symbols in
fact do depend on t via the depends command, e.g. depends(b^.t).

http://bp.bg

- 1 7 -

3. Outline of MACSYMA version of lcpt
The details of the 'cpt implementat ion are outlined below. The

numbering corresponds to that in the program Jisting, for the MACSYMA
function lept of Appendix B.
1. Select generat ing function variables genvarl and genvarZ, given the

i n t e r d e p e n d e n c e s implicit in equations lcdf. Since genvarl and gen-
VO.T2 must be independent , this involves construct ing a dependency
matr ix , taking its t ransi t ive closure, and choosing (arbitrari ly) one of
the four possibilities

[(Ip.bp), (Ip.bq). (iq.bp). (l<l,f>g)]
which is cons is tent with the independence res t r ic t ion.

2. Compute generat ing equations

signpg[genvaTl] • other[gemjar1~\ = *-—— (genvari ,gemja.T2) (2a)
ogenvarl

= a. + genvarS-M

signpg[gsnvaT2] • othvr[genva.r1~\ = *•——(genvarl,genva.TZ.) (2b)
agenvar2

— genvarl-If + c

where

oWigr[x] :=

Ip if x = Iq
Iq if x = Ip
bp if x = bq
by if x = bp

(i.e. tb.2 o ths r variable of the poll o; Hamil'-onian coordinates) , and

signpg[x] :=

- 1 if x = Ip
1 if x = Iq
1 if x = bp

- 1 if x - bq

Signpg reflects the necessary sign changes for the four possible gen­
erat ing functions.

3. Rearrange (2a,b) to express (other[geTuia.rl'\.oth.er[genvaT2]) in t e r m s
of (genva.rZ,genvar1):

other [genvarf] = sigTrpg[genvar1] (a + ge-n.va.T2 • M) (3a)

other[gen,va.r2\ - signpg[genva.T2]{a + genvarl • M) (3b)

http://ge-n.va.T2

- 18 -

4. Put (3a,ti) in another form:

ftPi = a linear function at,{qther[genvaTl\,genva.r2) (4a)

brji = a linear function of(other[genvar2],genva.Tl). (4b)

(This can always be done, since it is a system of 2 * dim. l inear equa­
tions with the 4 * dim. variables.)

5. Subst i tute the right hand sides of (4a,b) Eor bpi and 6<?i in Icdf. This
produces equations with only lp and Iq as independent variables.
Equate the right and left hand side coefficients of the (lp,lq) vari­
ables. This genera tes up to 2*diTn*len(lcdf) l inear equations involving
a, M, and c, completely free of any coordinate variables.

6. Differentiate (3a) and (3b) with respec t to t ime, generat ing the equa­
tions:

other^genvarl] = genvar2M (6a-)

oth.er[genva.r2] = genva.Tl-M (6b)

Solve these equations for (bp.bq).
7. Equate (6a,b) with (3a,b). For Iq, and Cp, subs t i tu te the expressions

for —— and —-— respectively. This resul ts in a sys tem of equations alp dig
whose independent variables are only those found in the expressions
for —— and ——. Equate the coefficients of each independent vari­
able taken from the r ight and left hand side of each equation, as well
as the constant t e rms of each equation.

8. Solve the system formed from combining the resul ts of (5) and (7)
for the coefficients M, a, and c. Assign "arbi t rary symbols" %Ri (i
varying) to those coefficients not determined by the given equat ions .

5. If DiSTFLAG is t rue , output equations:

(6p,ftg) in terms of (ip.lq), (9a)

(lp,lq) in terms of (bp.bq), (9b)

the generating function f (genvarl,genvar2) (9 C)
by substi tuting the resul t of (8) into the basic generat ing function
expressions given by (2a,b) and solving for the appropr ia te variables.
Also print the

the transformed Hasiiltonian K{bp,bq). (9d)

The value re tu rned by lept is a list consisting of: a list of labels for
(9a), a list of labels for (9b), the name cf the generat ing function
(9c), and the name of the Hamiltonian function (9e).

