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SUMMARY 

A high cunent beam of subrelativislic ions accelerated in 
an induction linac is predicted (in some circumstances) to 
exhibit unstable growth of current fluctuations at high 
frequencies (v - 100 MHz). The instability is driven by the 
interaction between the beam and accelerator modules at 
frequencies close to a cavity resonance. The extent of unstable 
growth depends on features of the coupling impedance, beam 
parameters, and total pulse and accelerator lengths. Transient 
and asymptotic analysis is presented. 

Induction Linac Model 

We treat a cluster of beams drifting at velocity v, with 
line charge density X and current I = Xv. It is assumed here 
that all the beamlets (N - 16) ef ectively act in concert so that 
X and I arc the total values and v is the common velocity. 
The continuity equation, using laboratory frame variables (z,t) 

dt in. (1) 

The beam cluster is treated as a cold, 1-d, non-relativistic 
fluid. An externally imposed field E e x and a smoothed 
longitudinal field H, induced by interaction of I with the 
acceleration modules, acts on v: 

at 3z ™ (2) 

Neglected in this model are velocity spread and a ilirect space-
charge force proportional to SK/dz. These am significant 
stabilizing features at the high frequencies treated here, so the 
calculation may be considered pessimistic. The purpose of the 
present work is to delineate the phenomena of the longitudinal 
instability occuring in heavy ion induction linacs, and to guide 
future study. The analysis is similar to that given by V. K. 
NeilW for relativistic electron beams. 

The equilibrium beam drifts at constant velocity v 0 , so 
the total equilibrium field (Eo + £§*) vanishes. Equilibrium 
current I 0 and line charge density XQ are, in general, 
functions of the retarded time t =t-z/v 0 . However, they are 
taken to be constant for the duration of the pulse (0 < x < in). 

Let E e x have a small additional component which acts at 
z = o and therefore perturbs die beam: E e x = E§ x + V(t)8<i=) . 
From eqns. (1) and (2) the resulting perturbed beam variables 
satisfy 

3Xi . ait -=0 
3t 3z 

^ . + V o | u a i ( E H 
3t 3z m 

V8(z)) 

(3) 

(4) 

II = Xo Vl + Veil . 

Module Response 

The beam-generated field E[ is induced by by the passage 
of the return current (-1,) through the module impedance Z. 
If we assume the driven form Ij ~ exp (-ifflt), with induced 
field Ej((i>), then impedance is 

Z(a» = -E I((o)/l1. (5) 

Specifically, we treat an isolated module resonance charac­
terized by a parallel L-R-C equivalent circuit 

ft d El + | 5Ei i-, _ mi 

at2 * at 
.2L 
at 

(6> 
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The circuit parameters arc related to measured resonance 
features; let R be the real impedance peak (units of Q/m in 
the smoothed field model), occuring at angular frequency Mo-
and resonance width is A(u = a>o/Q at 71% of maximum El. 
Then we have 

C = Q/[UoR (F-m), LC=0)i 2 . O) 

Tin impedance formula for general (complex) co is 

Z = (X. i„)C._l_) 1 = B . (g) 
W ioL' i_jQ'.Bl-!a>\ 

1(0. (SSI 

Typical resonance parameters of interest for the Heavy Ion 
Fusion application are v 0 = 0)o/2jr = 30-300 MHz, Q = 
10-100, and R = 100-1000 ft/m. 

Beam Frame Equations 

It convenient to use the retarded time variable t = t - z/v0 

and z instead of the laboratory frames variables t and z. 
Then eqns. (3) and (4) become 
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d'i_d XoVl _ 
3z dr. V o 

^ ^ [ E . ^ V t x , ] . 

We eliminate vj to obtain 

i i u i - K 2 c [ E , + 8(z)V(T)] 
azJ dr 

where 

Equation (6) becomes 

K2__ qA> 
~mv?C 

^ i . + t 0 | ) E l = - i * . 

(9) 

(10) 

oy 

(12) 

(13) 

The solution Ii satisfying the initial conditions (14) is 

S«(a^)(.iu9)25!MM. ( 1 7 ) 

lmv2/ ' _ ' 
UinhCciTKz) 

(tone) 

The inverse transformation is Ii "if d(oe*"Ii. (18) 

with all singularities below the real to axis. 

Asymptotic Growth Formulas 

The general character of resonant growth can be determined 
by the saddle point method. The form of Ij, given by eqn 
(18) is 

- L d0)f(u))exp(g), 

The natural scale frequencies for z and z are K p.nd 
Q>O. Generally the scale magnitude co0T ~ 300 is much larger 
than Kz - 10. Eqns.(ll) and (13) describe strongly coupled 
oscillations in both x and z, which exhibit growth in both 
variables. We expect large growth in t will be produced by 
an external perturbation V(?) which contains any appreciable 
content near the resonant frequency too* Ineqns. (11)-(13), K 
may be a function of x, however a numerical treatment would 
then be required. Henceforth K is taken to be constant. 

The perturbation V(T) is assumed to turn on within the 
beam pulse at some x - x0 >o. The structure of the coupled 
equations ensures that perturbed quanatities may be. consis­
tently assumed to vanish outside the zones x £ To. z ^ o. 

General Solution bv Laplace Transformation 

Taking Ei and I, to vanish for (T < i 0 , z < o), we 
find from eqn. (11) the initial conditions at z = o+: 

with 
g = -icin±torKz. 

(19) 

(20) 

Intrinisic singularities are located at the complex resonance 
values (poles of O , 

(o=±5-i(oV2Q, (21) 
where 

u=UbVl- l / (2Q) 2 . 

Saddle points are located at the six roots of the equation 

0 = 5l.= - i t±Kzr[l + r2iii((i>fiaibCQ)]. (22) 
3a 

The integration contour in eqn (19) can be deformed to pass 
through the saddle points, and the dominant contributions to 
Ij are produced at these locatons for sufficiently large z and 
x. To simplify the saddle calculator! let 

Ii(o+) = * ( o + ) = 9 ^ ? V , 
3z mv? fo 

Performing the Laplace traitsformation 

(ii.Ei) = dte""(li ,Ei) 

we get 

with 

UH.= - K'CitoEi = (uncf I, 
3z* 

r = (i£-u?-KWJQfa. 

(14) 

(15) 

(16) 

u = <ii/o) + ie, e = ftW2oibQ (23) 

assumed small compared with unity. Then eqns. (20) and (21) 
become (at the saddles) 

g = - i w * ! ^ : 
(l-ieu) 

(ii»-l)5=(Ks.J'(l-ieu)J2. 

(24) 

(25) 

For mode growth associaled_with the module resonance we 
expect u - ± 1, which requires t o t » Kz, Eqn. (25) gives 

u ^ l + r t e f V i e u f 3 . 
•mc' (26) 

2 



where r is any cute toot of unity. The small quantity e » 
(2Q)"1 is a fixed constant^ However we shall find that at peak 
growth for fixed z, (KZ/COT) is of order E 3 / 2 - To solve eqn 
(26) by an expansion in the small parameters we formally 
define 

~ (Kz/^f3

 ( 2 7 ) 

€ 

and regard fi as of order unity. The resulting expressions for 
u and g are. assuming u •=* + 1, 

B = 1 + * . e » [ j ^ + i f c ) + „ . (28) 
2 18 3/ 

g = - ^ [ 1 + e ( f - i ) + ^ ( ^ - i P r ) + . . . ] . (29) 

For unstable growth the relevant cube root of unity is 
r=(V3~i-l)/2. We get, keeping only terms through order e: 

g r = 3 i l ( 5 c ) > o ( K z ) 2 f l _ f l M i (30) 

g^-m + Mlk)"1^)7". (31) 
4 

At specified z the maximum value of g is readily 
found from eqn (30): 

O - S f e - B f f i f t a r - e l . (32) 
3t L4 Vera' J 

At this point p = 4/vT, which is of order unity, as assumed. 
The maximum growth factor is 

<sMfrer-
Application to Heavy Ion Fusion 

The maximum growth is calculated here at a medium 
energy position in a fusion driver, with ion pd'ameters (T = 
1000 MeV, m - 200 amu, q = 1), and the typical pulse 
parameters ( I 0 = 10 3 A, T P = 500 ns.) For the module 
response we take 0) = (ufi = 2jrxl0 8 s I , Q = 30, R = 
300fi/m. Then we have 

v„ = .104c, *o = 32.2p.C/m, 

C = 10"'/2i F-m, K = .0100 n r l . 

At the pulse end (OTp = 314 and the maximum growth point 

, = l i / _ 2 _ f , « M 4 , 2 3 6 m . 
K \VIQ| K 

fer)max = [Gfif2 Q , B Kz = « W Q = 10.5. 

This calculated total growth [exp(10.5) = 36300] is large 
enough to be of concern, even though the initial disturbance 
V(-t) may be very small in the unstable band. A small rms 
velocity spread (Av/vo«Vo(g,)„„/{ftiZmn = .0022) would be 
sufficient to eliminate growth, but would constrain the focal 
spot radius achievable in a fusion reactor. 

Dispersion Relation 

A Laplace transformation in both T and z on eqns 
(11M13) yield 

Ii~ da> J dfi?M e i««.Dd_ ( 3 4 ) 

where the dispersion relation is 

r * o # ) = -KV+io>fi7cZ(<o) (35) 

= (or !-cai+i(«cwQ)(a !-K 2)-K 2((a1-ito(Ob«). (36) 

The latter form of D clearly indicates that a pair of strongly 
coupled resonances are present, and appear symmetrically when 
Q = oo. A growth formula, valid for near resonance fl = K , 
may therefore be obtained from eqn. (30) by interchanging 
0) T wiUi Kz. For Kz » co x we have o o 

g, = (3V3/4)(ccwf 3(Kz) 1 / 3, (37) 

gi = -Kz + {3/4)(cQ Jxf 5(Kz)" 3. (38) 

The roots of the dispersion equation D(co,Q) = 0 can be 
used to find the growth in z for given real to; wc find for the 
imaginary part of £2 

ft = [lS2Ctt()Z|-Zi jT\ (39) 
with 

RTl + iQK-=i)l 
l + Q 2 ( i i - ^ f 

\ISk C07 

The maximum growth formula eqn. (33) may be recovered 
from eqn. (39) for large Q by maximizing Q. with respect 
to driving frequency co. 
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