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S ARY

A high cusrent beam of subrelativistic ions accelerated in
an induction linac is predicted (in some circumstances) to
exhibit unsiable growth of curmrent fluctuations at high
frequencies (v ~ 100 MHz). The instability is driven by the
interaction between the beam and accelerator modules at
frequencies close to a cavity resonance. The extent of unstable
growth depends on features of the coup]mg 1mpedance, bea.m
parameters, and total pulse and accel
and asymptotic analysis is presented.

Induction Linac Model
We treat a cluster of beams drifting 2t velocity v, with

line charge density A and current I=2Av. Itis assumed here
that all the beamlets (N ~ 16) ef ‘ectively act in concert so that
A and I are the total valucs and v is the common velocity.
The continuity equation, using laboratory frame variables (z,1)
is:

dh , ol

L+ 2=0.
ot oz &
The beam cluster is treated as a cold, 1-d, non-relativistic
fluid. An extermnally imposed field E®* and a smoothed
Iongitudinal ficld E, induced by interaction of I with the
acceleration modules, actson v:

E) )
a—‘["+vzv-=9m£(E+Eex) . (v}

Neglecied in this model are velocity spread and a iirect space-
charge force proportional to 9A/dz. These ar significant
svabllmng features at the high frequencles treated here, so the
calculation may be considered ic. The purpose of the
present work is to delineate the, phenomena of the longitudinal
instability occuring in heavy ion induction linacs, and to guide
futnre study. The analysis is similar to that given by V. K.
Neil() for relativistic electron beams.

The equilibrium beam drifts at constant velocity v, so
the total equilibrium field (Eo + ES*) vanishes. Equilibrium
current Io and line charge density Ao are, in general,
functions of the retarded time t =1 - z/vg, However, they are
taken to be constant for the duration of the pulse (0< 17 < 1Tp).
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Let E®X have a small additional comporent which acts at
z= 0 2nd therefore perturbs the beam: E€X = E§* + V()5(2) .
From eqns. (1) and (2) the resulting perturbed beam variables
satisfy

a  ah
Wl ®
avy
o —+ v —_L(E;+V8(z)) @)
=Xovi+Vohi.
Module Response

‘The beam-generated field Ej is induced by by the passage

of the retamn current (—ll) through the module impedance Z.

If we assume the driven form I, ~ exp (-iwt), with induced
field Ej(w), then impedance is

2)=-E/, . ®

Specifically, we treat an isolated module resonance charac-
terized by a parallel L-R-C equivalent circuit:

C&+Laﬂ+ﬂ.=.aﬁ. ©
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The circnit parameters arc related to measured resonance
features; let R be the real impedance peak (units of Q/m in
the smoothed field model), occuring at angular frequency ©g.
and resonance width is Aw= ©g/Q at 71% of maximum (ZI.
Then we have

C=QuR (F-m), LC= o @
The impedance formula for general (complex) © is
z=fLioc- Lf'=— R . @
R iwl.
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Typical resonance parameiers of interest for the Heavy Ion
Fusion application are vgo= Wo/2n = 30-300 MHz, Q =
10-100, and R = 100-1000 Q/m.

It convenient to use the retarded time variable 1=t - z/vg

and z instead of the laboratory frames variables t and 2.
Then egns. (3) and (4) become
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We eliminate vy to obtain
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where K2=. %o (12)
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Equation (6) becomes
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‘The natural scale frequencies for z and T are K and
. Generally the scale magnitude @qT~ 300 is much larger
than Kz ~ 10. Eqns.(11) and (13) describe strongly coupled
oscillations in both T and 2z, which exhibit growth in both
variables. We expect Jarge growth in T will be produced by
an external perturbation V(t) which contains any appreciable
content near the resonant frequency @g. In egns. (11)-(13), K
may be a function of 7, however a numerical treatment woulkd
then be required. Henceforth K is taken o be constant.

The perturbation V() is assumed to turn on within the
beam pulse at some T = Tg > 0. The structure of the coupled
equations ensures that perturbed quanatities may be consis-
tently assumed to vanish outside the zones T2 19,22 0.

General Solution by Laplace Transformation

Taking Ej and I, to vanish for (t<1g ,2 <0), we
find from eqn. (11) the 1nitial conditions at z=o+:

I (o+) =0, %(N)=$A‘-#?l- (14)

mv 3t

Performing the Laplace transformation

(ﬁ.ﬁ)=[ dvee (I ,E) as

we get .
~ -~ 1
a-a-zz!‘-= -K%Cigk = (olk)'T e

with = (0@ - ? - i0oQ) 2 .

The solution ﬁ salisfying the initial conditions (14) is

£= () (i) st an
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The invers transformation is 1= |  dee™ n. 18)
2n

with all singularities below the real © axis.

mptoti with Fi 1
‘The general character of resonant growth can be determined
by the saddle point method. The form of I;, given by eqn

(18)is
h -I doo f() exp(®) 19)
with
g=-iott 0l'Kz. 0
Intrinisic singularities are located at the complex resonance
values (poles of I'™),

0=1%-iny2Q, @y
where
0= Y1-1/2Q° .
Saddle points are located at the six roots of the equation
0=§(—§=-i1:il(zr[l+r‘2n(miam)]. @

The integration contour in eqn (19) can be deformed (o pass
through the saddle points, and the dominant contribusions to
I, are produced at these locatons for sufficiently large z and

1. To simplify the saddie calculaton let
u=0/@+ie, €=0.20Q 23)

assumed small compared with unity. Then eqns. (20) and (21)
become (at the saddles)
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For mode growth associated with the module resonance we
expect u= 1, which requires wt >> Kz, Eqn. (25) gives

=1+ r(%)m(llsu)m ©6)



where, r is any cute root of unity. The small quantity € =~
(2Q)'1 is a fixed constant. However we shall find that at peak
growth for fixed z, (Kz/an) is of order £3/2- To solve eqn
(26) by an expansion in the small parameters we formally

_ (Kz/ @
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and regard §8 as of order unity. The resulting expressions for
u and g are, assuming u=+1,
2o .
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For unstable growth the relevant cube root of unity is
r=(¥3 i-1)/2. We get, kecping only terms through order &:

= 3V3 ()P (k)2 . BT
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Al specified z the maximum value of g is readily
found from eqn (30):

o=%=a[i}(%)’”-e]. 32

At this point f=4//3, which is of order unity, as assumed.
The maximum growth factor is

(e ={3)" (% " .
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(33)
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The maximum growth is calculated here at a medium
energy position in a fusion driver, with jon parameters (T =
1000 MeV, m = 200 amu, q = 1), and the typical pulse
parameters (Ig = 103 A, t = 500 ns)) For the module
response we ake @=wn=2nx10°s!, Q = 30, R =
300 £2/m, Then we have

vo=.10M¢c, Ao=322nC/m,
C=10"/2r F-m, K =.0100 m! .
At the pulse end @r,=314 and the maximum growth point
is i
K

z

(‘1—326)”=2.%6-1236m N

(erkmax = (372 Q% Kz = at/Q=105.

This calculated total growth [exp(10.5) = 36300] is large
enough to be of concem, even though the initial disturbance
V(z) may be very small in the unstable band. A small rms
velocity spread {Av/va = Vo(e)mue/BoZmax =.oo22) would be
sufficient to eliminate growth, but would constrain the focal
spot radius achievable in a fusion reactor.

Dispersion Relation

A Laplace transformation in both 1 and z on cqns
(11)-(13) yield

o] a0
where the dispersion relation is
Diaf) =-K26? + 00 /CZ(w) 35

=(u)’-m§+iumJQ)(nz-K2)-K7(u§-ium,Q). (36)

The latter form of D clearly indicates that a pair of strongly
coupled resonances are present, and appear symmetrically when
Q =0. A growth formula, valid for near resonance Q“= KZ.
may therefore be obtained from egn. (30) by interchanging
o with Kz. For Kz >> T we have

= (3V31) (@ (k)P , <)
gi = -Kz + (3/4) (s (K2)' 2. (38)

The roots of the dispersion equation D(w,£2) =0 can be
used to find the growth in z for given real «; we find for the
imaginary part of Q

oS o]
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39
with

The maximum growth formula egn. (33) may be recovered
from eqn. (39) for large Q by maximizing ﬂi with respect
1o driving frequency .
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