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CHARACTERIZATION OF FRACTURE SURFACES 
IN DOLOMITE ROCK, CULEBRA DOLOMITE 

MEMBER, RUSTLER FORMATION*

Terry Sewards

Department of Geology and Institute of Meteoritics 
University of New Mexico, Albuquerque, NM 87131

ABSTRACT

The Culebra Dolomite Member, Rustler Formation,' southeastern New Mexico, is 
characterized by a high fracture porosity. Bedding plane fractures are 
predominant, but vertical and high-angle fractures are also common. The 
information presented in this report for horizontal fractures shows that: 
(1) horizontal water-bearing fractures in dolomite and calcite rock tend to 
occur in zones where clay and quartz are concentrated, particularly along 
clay seams, and (2) secondary minerals, primarily gypsum and some calcite, 
are precipitated from solution onto the fracture surfaces. No surfaces of 
vertical or high-angle fractures that were clearly identifiable as water­
bearing were discovered in the cores examined.

Dolomite compositions on the fracture surfaces are no different than those 
in the bulk rock, indicating that aqueous alteration of dolomite did not 
occur to any significant extent. Where present, calcite in these samples, 
both in the bulk rock and fracture surfaces, is a product of 
recrystallization from dolomite caused by aqueous alteration, usually near 
surface.

It is probable that the vertical fracture surfaces are not as clay- rich as 
the horizontal ones, since accumulations of clay occur along horizontal 
planes due to sedimentation.

Our data argue that since the cation exchange capacity of clay minerals is 
so much higher than that of dolomite, calcite, or gypsum, and the clay 
minerals are a major component of the fracture surface mineralogy, the 
sorption of radionuclides due to the clay will far outweigh that of the 
other minerals. This fact should be taken into account in any study of the 
transport of radionuclides through the Culebra Dolomite.

* The work described in this report was performed for Sandia National 
Laboratories under Contract No. 01-6328.
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I. INTRODUCTION

The Culebra Dolomite Member of the Rustler Formation in southeastern New 
Mexico is characterized by a high fracture porosity. Bedding plane fractures 
are predominant, but vertical and high-angle fractures are also common. In 
the WIPP-19 drill core (Chapter III), the bedding plane fracture density 
varies from 3 to 8 per vertical foot below 764 feet depth, and 1 to 3 per 
vertical foot above 764 feet. Irregularly-curved vertical fractures occur 
with a frequency of 1 to 4 per vertical foot, and high angle fractures (60 to 
70°) are spaced at about 1 to 5 per vertical foot (Ferrall and Gibbons, 1979). 
Water-bearing (open) fracture surfaces are easily recognized because they are 
darker than the bulk dolomite due to aqueous alteration.

The objective of this report is to describe the water-bearing fracture 
surfaces in detail, in terms of texture and mineralogy and to compare and 
contrast the composition and mineralogy of the surfaces with that of the bulk 
rocks. Analytical methods used in this study include x-ray diffraction (XRD) 
analysis, x-ray fluorescence (XRF) spectroscopic analysis, atomic absorption 
(AA) spectroscopy, electron microscope elemental analysis, and optical 
microscopy.
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II. SITE GEOLOGY

The Upper Permian (Ochoan) Rustler Formation is a sequence of evaporite and 
clastic rock units deposited in the Delaware, Midland, Palo Duro, and Dalhart 
Basins in southeastern New Mexico and western Texas. In the Delaware Basin 
(Figure II-l), which is ringed by the Capitan Reef Complex, the Rustler 
Formation overlies the Salado Formation, which is composed mainly of thick 
halite beds and is in turn overlain by the Dewey Lake Red Bed Formation, which 
is composed almost entirely of mud/siltstone.

The Rustler Formation is divided into four recognizable units (Figure II-2) .
In ascending order, they are the lower (unnamed) member (argillaceous halite, 
mud/siltstone, and anhydrite), the Culebra Dolomite Member, the Tamarisk 
Member (halite, mudstone, anhydrite, and gypsum), the Magenta Dolomite Member, 
and the Forty-niner Member (anhydrite, gypsum, and mudstone).

In the boreholes from which samples were taken for this study, the Culebra 
Dolomite Member varies in thickness from about 20 feet to 30 feet. It is 
primarily composed of massive, laminated dolomite with some clay, quartz, and 
gypsum, although some cores show extensive brecciation and/or large vugs and 
voids. Clay laminae of varying thicknesses (2 mm to several centimeters) are 
common, and the entire unit is underlain by a 0.5 to 3 feet thick black shale 
(Sewards, Glenn, and Keil, 1991). In the ventilation and access shafts of the 
WIPP repository, the uppermost 6 to 12" of the black shale are deformed and 
tilted. This deformation is evidently due to collapse of the dolomite unit. 
There are no obvious depositional features in the lower 2.5 feet of the black 
shale. The black shale grades into a reddish/brown shale that is clearly a 
solution residue: there are no depositional features (laminae, etc.), and the 
texture is chaotic. This reddish/brown shale overlies the uppermost anhydrite 
unit in the lower member; the contact is very uneven, but fairly well defined. 
The anhydrite unit itself is relatively unfractured. It is clear that the 
dissolution of an argillaceous halite bed above the anhydrite unit and of 
several other halite units in the lower member and uppermost Salado Formation 
caused the collapse of the Culebra and overlying units. This collapse 
resulted in extensive fracturing in the dolomite units (Culebra and Magenta), 
particularly in the Culebra. The reason that the anhydrite and shale units 
are not as fractured as the dolomite units is that anhydrite and shale are 
able to deform in a more plastic manner than the harder dolomite.

In the areas where the dolomite unit lies near the surface, calcite is often 
present instead of dolomite. This calcite is the result of dedolomitization 
of dolomite.
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Chapter II: Site Geology

Depth Lithology 
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Figure 11-2. Lithologic Log of WIPP-19 Core, Rustler Formation (modified from Ferrall and Gibbons, 1979).
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III. PROJECT SAMPLES

Eighteen samples were selected from various drill cores located in the 
vicinity of the Waste Isolation Pilot Plant (WIPP) site (Figure III-l).

Selection Criteria

Samples for this study were selected primarily on the basis of a well-defined, 
water-bearing fracture surface. Five samples were selected from the WIPP-29 
and WIPP-32 cores located in the vicinity of Nash Draw (Figure III-l). In 
these cores, the Culebra Dolomite is very shallow, and the extra samples were 
chosen to better characterize the fractures where near surface alteration has 
occurred.

Core Locations, Sample Depths, and Descriptions

Table III-l lists the well number, sample depths, and descriptions for the 18 
samples selected for this study. Figure III-l shows the locations of the 
various wells.
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Chapter III: Project Samples

Table 111-1. Sample Locations and Descriptions

Sample ID Well Depth
(feet)

Description

CS1 WIPP-12 838.5-838.7 Massive dolomite (vuggy, dark grey)

CS2 WIPP-13 712.1-712.4 Brecciated dolomite (fractured, dark grey)

CS3 WIPP-13 705.3 Massive dolomite (laminated, brown)

CS4 WIPP-13 714.0 Massive dolomite (light brown)

CSS WIPP-26 187.0 Brecciated dolomite

CS6 WIPP-27 305.0 Brecciated dolomite (friable, light grey)

CS7 WIPP-28 447.5 Massive clay/dolomite (laminated, dark grey)

CSS WIPP-29 27.0 Massive dolomite (light grey)

CS9 WIPP-30 633.5 Massive dolomite (contorted laminae, tan)

CS10 WIPP-30 639.0 Massive dolomite (vuggy, tan)

CS11 WIPP-30 635.0 Massive dolomite (brecciated, tan)

CS12 ■ WIPP-32 57.0 Massive dolomite (vuggy)

CS13 WIPP-32 91.1 Claystone (grey)

CS14 WIPP-32 55.0 Massive limestone (brown)

CSl 5 WIPP-32 56.0 Massive limestone (red)

CS16 WIPP-32 62.0 Massive dolomite (light grey)

CS17 WIPP-33 57.0 Massive gypsum (brown)

CS18 WIPP-34 836.0 Massive dolomite (grey)
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IV. FRACTURE SURFACE PETROGRAPHY

Hand Specimen Description

Water-bearing fracture surfaces are easily identified in hand specimen: they 
are much darker (dark grey/brown to black) than freshly broken surfaces 
(Figures IV-1 to IV-4). The horizontal fractures almost always occur along 
clay-rich seams, either layers of nearly pure clay or dolomite (and calcite) 
layers that are especially rich in clay minerals (Figures IV-1 and IV-4). The 
darkening can be attributed to two factors: (1) the presence of clay minerals 
(clay separates from Culebra Dolomite rocks are usually dark grey to black), 
and (2) oxidation of surface minerals due to contact with oxygen-rich waters. 
The zone of penetration of the darkened (altered) surface area is usually not 
deep, typically a few tens of microns, but in some samples where the rock near 
the fracture surface is friable, the darkened zone can penetrate a few 
millimeters. When the fracture occurs along a layer of pure clay, a dense 
system of horizontal fractures may develop, rather than a single fracture.
Clay layers may be stripped away to reveal successive darkened (altered) 
surfaces, which are only a few tens or hundreds of microns apart. Thus, a 
clay seam can become a multilayer channel and present a very large surface 
area to the fluid moving in the fractures. Fractures that occur in rock that 
is primarily dolomite or calcite are single layered, and the altered zone is 
shallow.

Figure IV-3 shows a very pitted fracture surface. This surface is similar to 
the interior of large vugs that are frequently seen in Culebra Dolomite. 
Although the majority of the vugs are not interconnected and do not form a 
part of the transport network, some undoubtedly do, and this surface may be 
part of a large void in which water- did flow.

Optical Microscopy

Polished thin sections perpendicular to the fracture surfaces were prepared 
from samples in which the surface was not too friable. Of the eight sections 
prepared, only four fracture surface rims were preserved: CSl, CS4, CS14, and 
CS18 (Figures IV-6 to IV-9).

Figure IV-5 shows a clay-rich area along the fracture surface rim. The clay 
area dominates the rim, and very little dolomite is directly on the surface. 
Areas like this one are not unusual, but the zone near the fracture rim shown 
in Figure IV-6 is a far more common feature. This area is quite clay-rich, 
but the rim itself appears to be composed of about 50% clay and 50% dolomite.
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Thin-Section Photomicrograph of Fracture Surface Rim of Sample CS4. Plane polarized light, 
M = 10OOX. Note dense clay-rich area on surface rim.
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Chapter IV: Fracture Surface Petrography

Figure IV-6. Thin-Section Photomicrograph of Fracture Surface Rim of Sample CS4. Crossed polars,
M = 1000X. Note clay-rich area near surface rim.
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Figure IV-7. Thin-Section Photomicrograph of Fracture Surface Rim of Sample CS4. Crossed polars,
M = 1000X. Note gypsum lining on fracture rim.
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Chapter IV: Fracture Surface Petrography

Figure IV-8. Thin-Section Photomicrograph of Fracture Surface Rim of Sample CS18. Crossed polars,
M = 1000X. Note fine-grained dolomite on fracture rim.
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Figure IV-9. Thin-Section of Photomicrograph of Fracture Surface Rim of Sample CS15. Crossed polars,
M = 1000X.
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Chapter IV: Fracture Surface Petrography

Figure IV-7 shows a gypsum and clay-rich area near the fracture surface.
Along the rim, a lining of gypsum shields the clay from the fracture surface, 
so there was probably little contact between the water moving in the fracture 
and the clay minerals near the surface.

In Figure IV-8 there is an area of extremely fine-grained dolomite near the 
fracture surface. This area appears to be free of clay. The average grain 
size in the normal dolomite away from the rim is about 7/xm, compared to about 
0.6pm in the fine-grained area. This feature was not observed in the other 
thin sections or elsewhere in the thin section of sample CS4 and is probably 
fairly rare. It may be interpreted in one of two ways: (1) the fine-grained 
area is a zone of alteration in which the dolomite has recrystallized into 
"micromicritic" dolomite, or (2) the area is a primary feature, and the 
fracture traversed the fine-grained area because the rock was weaker there. 
Neither explanation is particularly satisfactory since, in the first case, 
dolomite that recrystallizes from calcite, for example, is invariably coarse­
grained; in the second case, it would be a great coincidence for such an 
unusual feature to be directly in the path of the fracture.

Figure IV-9 shows coarse-grained calcite (about 25pm in diameter) near the 
fracture rim of sample CS15, a limestone. Although the area is clay-rich, 
calcite grains dominate the fracture rim itself. The texture and grain size 
of the calcite are typical for the limestones, both near the fracture surfaces 
and away from them, although larger grain sizes were observed, and twinned 
crystals are common. This coarse-grained subhedral calcite is quite different 
from that found at the top of the Culebra in the WIPP-19 core (754' depth, 
Sewards, Glenn, and Keil, 1991). In that case, the calcite was micritic 
(grain size about 4-5pm), with anhedral grains, and very clay-rich. The 
difference in texture might be explained by assuming that the calcite in the 
WIPP-19 core is the result of primary deposition, and the coarse-grained 
calcite observed in these samples is the result of dedolomitization 
(calcitization) of dolomite due to near surface aqueous alteration.
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V. WHOLE ROCK AND FRACTURE SURFACE COMPOSITIONS

The compositional data for the bulk rock and fracture surfaces, measured in 
component oxides, are listed in Tables V-l and V-2. These tables are derived 
from Tables C-l and C-2 in Appendix C by subtracting the halite component and 
renormalizing. The data for the bulk rock were obtained by x-ray fluorescence 
spectroscopic analysis (XRF), with the exception of the values for SO3, which 
were measured gravimetrically. For the fracture surface analyses, atomic 
absorption spectroscopy (AA) was used, with the exception of the sulfate 
measurements. Based on the totals, it is estimated that the XRF data for the 
bulk rock are accurate to about 10% of the amounts present. The fracture 
surface analyses were obtained from scrapings from the surfaces, and very 
little material was obtained (typically 50 mg). The AA data for such a small 
sample are probably not accurate to more than about 50% of the amount present.

Figures V-l to V-8 show the composite bulk rock and fracture surface 
abundances of Si02, AI2O3, MgO, and CaO in bar-diagram form. In the bar- 
diagrams, it can be easily seen that Si02 is greatly concentrated on the 
fracture surfaces (Figures V-l and V-2). In all samples, except CS7 and CS13, 
the fracture surface concentration is greater than the bulk rock concentration 
(in samples CS1 and CS3 the fracture surface concentrations were not measured 
due to insufficient sample). Similarly, AI2O3 is higher in concentration on 
the fracture surfaces in all samples (Figures V-3 and V-4), with the same two 
exceptions mentioned above, CS7 and CS13. The increase in Si02 and AI2O3 can 
be explained by the fact that fracture surfaces tend to occur along clay- and 
quartz-rich seams in the rock.

The fracture surface MgO concentrations are lower than those in the bulk rock 
in all samples except CS6, CS12, CS14, CS15, and CS17 (Figures V-5 and V-6). 
since MgO occurs in both clay and dolomite, its behavior is not quite as 
easily explained as that of Si02 and AI2O3, which occur only in the clastic 
components. An increase in clay and quartz on the fracture surfaces is 
accompanied by a decrease in dolomite, so if the sample contains primarily 
dolomite (as in samples CS1 to CS11) , one would expect a slight decrease in 
MgO if both Si02 and AI2O3 increase. The increase in MgO on the fracture 
surfaces of samples CS14, CS15, and CS17 is due to the fact that CS14 and CS15 
are limestones and contain primarily calcite, and CS17 is gypsum: since the 
fractures occur along clay-rich seams, and there is essentially no MgO in the 
major mineral components, MgO is consequently enriched on the surfaces.

The behavior of CaO is also somewhat complicated, since it is a component of 
dolomite, calcite, and gypsum. In dolomite rocks (CSl through CS12, CS16 and 
CS18), one would expect CaO to be higher in the bulk rock than in the fracture
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Table V-1. Bulk Rock Compositions

Sample ID Well Depth Si02 Ti02 AI2O3 FG2O3 MnO MgO CaO Na20 k2o P2O5 S03 Total

CS1B WIPP-12 838.60 1.27 0.02 0.24 0.34 0.03 20.22 29.50 0.07 0.07 0.04 0.16 51.94
CS2B WIPP-13 712.30 4.87 0.08 1.15 0.60 0.02 19.50 27.40 0.04 0.37 0.04 0.07 54.13
CS3B WIPP-13 705.30 4.14 0.06 0.98 0.47 0.03 19.27 27.80 0.06 0.31 0.04 0.07 53.23
CS4B WIPP-13 714.00 5.56 0.05 1.14 0.56 0.02 19.30 27.60 0.05 0.37 0.04 0.04 54.72
CS5B WIPP-26 187.50 2.82 0.04 0.65 0.37 0.04 19.65 27.80 0.07 0.29 0.04 0.05 51.81
CS6B WIPP-27 305.00 1.95 0.03 0.41 0.29 0.02 20.05 27.90 0.25 0.24 0.05 0.09 51.28
CS7B WIPP-28 447.50 24.02 0.29 5.51 0.78 0.03 19.02 18.89 1.29 1.19 0.03 0.10 71.15
CS8B WIPP-29 27.00 3.73 0.06 0.84 0.44 0.02 19.80 27.50 0.22 0.34 0.05 0.06 53.05
CS9B WIPP-30 633.50 14.27 0.17 2.81 0.09 0.01 19.15 26.14 1.75 1.12 0.13 0.19 65.83
CS10B WIPP-30 639.00 2.70 0.04 0.55 0.34 0.02 20.40 29.90 0.05 0.18 0.10 0.05 54.32
CS11B WIPP-30 635.00 1.35 0.02 0.33 0.30 0.02 20.05 29.80 0.30 0.13 0.10 0.07 52.46
CS12B WIPP-32 57.00 0.35 0.01 0.10 0.08 0.01 11.40 43.60 0.05 0.02 0.18 0.12 55.92
CS13B WIPP-32 91.10 53.36 0.74 12.96 4.32 0.01 16.15 0.95 0.05 2.32 0.21 0.03 91.10
CS14B WIPP-32 55.00 2.20 0.02 0.38 0.15 0.02 0.84 54.40 0.04 0.13 0.25 0.13 58.56
CS15B WIPP-32 56.00 2.95 0.03 0.50 0.22 0.02 0.84 52.60 0.04 0.17 0.25 0.12 57.73
CS16B WIPP-32 62.00 1.55 0.02 0.32 0.14 0.01 17.40 32.50 0.05 0.12 0.12 0.07 52.30
CS17B WIPP-33 570.00 1.77 0.02 0.24 0.10 0.00 0.35 32.20 0.10 0.04 N.A. 45.97 80.79
CS18B WIPP-34 836.00 2.45 0.04 0.50 0.34 0.02 20.20 27.80 0.06 0.18 0.10 0.09 51.77



Chapter V: Whole Rock and Fracture Surface Compositions

Table V-2. Fracture Surface Compositions (NaCI Data Subtracted)

Sample ID Depth Si02 AI2O3 Fe203 MgO CaO K20 S03 Total

CS1S 838.60 ★ 7.80 1.11 15.61 35.67 0.89 * 61.09
CS2S 712.30 16.42 4.54 1.32 17.64 21.27 1.23 * 62.43
CS3S 705.30 ★ 2.69 0.72 17.97 24.07 1.05 ★ 46.49
CS4S 714.00 17.28 4.61 1.66 18.28 20.38 0.13 1.48 63.83
CSSS 187.50 10.50 1.43 0.48 19.03 26.31 0.62 ★ 58.38
CS6S 305.00 3.74 0.65 0.28 20.41 28.51 0.32 ★ 53.09
CS7S 447.50 20.07 4.95 1.36 18.54 19.75 0.93 0.03 65.62
CSSS 27.00 11.16 1.82 1.48 10.19 24.53 1.25 ★ 50.43
CS9S 633.50 24.82 6.13 1.66 16.27 16.40 1.95 * 67.24
CSl OS 639.00 39.37 8.12 2.06 11.83 10.55 2.16 ★ 74.10
CS11S 635.00 7.27 2.11 0.58 17.46 26.88 0.61 3.37 58.28
CS12S 57.00 0.98 0.14 0.12 13.26 40.57 0.06 •k 55.13
CS13S 91.10 45.79 11.13 3.14 11.37 11.23 1.57 0.29 84.53
CS14S 55.00 28.92 6.88 2.10 9.82 24.04 1.83 0.01 73.60
CS15S 56.00 25.74 5.98 1.97 8.01 28.78 1.34 0.01 71.82
CS16S 62.00 4.56 0.71 0.33 16.91 34.03 0.24 0.61 57.40
CS17S 57.00 28.69 5.82 2.15 4.70 17.64 1.31 21.09 81.40
CS18S 836.00 9.91 2.55 4.21 16.37 28.69 0.66 ★ 62.40

* = Insufficient Sample
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Figure V-3. AI2O3 Concentrations of CS1 through CS9.
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Figure V-4. AI2O3 Concentrations of CS10 through CS18.
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Chapter V: Whole Rock and Fracture Surface Compositions

surface, and this is generally the case, with a few exceptions, in which the 
bulk and surface concentrations are similar (Figures V-7 and V-8). In the two 
limestones, CS14 and CS15, the surface CaO is much lower in concentration than 
that in the bulk rock, and in the claystone (CS13), the surface mode is 
greater.

Fe203 is concentrated on the fracture surfaces in all samples except CS6, 
where they are nearly equal, and CS13, where the bulk rock concentration is 
higher. This trend closely follows that of the clay mineral modes (Figures 
V-9 and V-10), so it may be assumed that the concentration of Fe203 on the 
surface is due to the Fe203 content of the clay minerals.

K2O is also concentrated on the fracture surfaces (Tables V-l and V-2). This 
is also due to the higher clay mode on the surfaces, since illite is one of 
the components of the clay mineral assemblage (Sewards, Williams, and Keil, 
1991), and illite typically contains about 7-8% K2O.

Since the variation in composition is intimately associated with the variation 
in mineralogy, the above discussion may be more easily understood when the 
individual mineral modes are discussed in the following section.
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Figure V-9. Fe2C>3 Concentrations of CS1 through CS9.
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Figure V-10. Fe203 Concentrations of CSl0 through CSl8.
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VI. WHOLE ROCK AND FRACTURE SURFACE MINERALOGY

Table VI-1 lists the minerals that were identified in the bulk rock and 
fracture surfaces by XRD. These include dolomite, calcite, gypsum, halite, 
quartz, and clay. Halite in these samples is an artifact of the drilling 
process: a mixture of brine and mud was used to drill the wells; when the 
fluid evaporated, halite precipitated on the core surfaces.

The results of the whole rock and fracture surface mineral mode calculations, 
which are based on the compositional data included in the previous section, 
are listed in Tables VI-2 and VI-3. These tables are derived from Tables C-3 
and C-4, listed in Appendix C, by subtracting the halite modes and normalizing 
to 100%. The mineral mode calculation method is discussed in Appendix B.

Clay

The clay modes for the bulk rock and fracture surface scrapings are displayed 
in bar diagram form in Figures VI-1 and VI-2. With the exception of two 
samples, CS7, a clay-rich dolomite, and CS13, a claystone, fracture surface 
clay contents are considerably higher than those of the bulk rock. The 
average bulk rock clay mode for these samples is 4.6% (excluding CS7 and 
CS13), whereas the average mode in the fracture surface scrapings is 18%, 
nearly four times the bulk rock average.

The reason the clay modes in the fracture surface scrapings are so much higher 
than the bulk rock modes is that the fractures occur primarily along clay-rich 
seams, since these are the weakest layers in the rock. In sample CS13, a 
claystone, the surface mode is less than that of the bulk mode. This is due 
to the fact that secondary calcite has been deposited on the fracture surface 
(Figure VI-7). Similarly, in sample CS7, the bulk clay mode is greater than 
the mode in the fracture surface scrapings because the fracture occurred along 
a quartz-rich layer (Figure VI-3).

Quartz

The quartz modes follow approximately the same trend as the clay modes: quartz 
modes in the fracture surface scrapings are substantially greater than those 
of the bulk rock (Figures VI-3 and VI-4). The zero values for the modes in 
the fracture surface scrapings in samples CSl and CS3 in Figure VI-3 are due 
to the fact that there was insufficient sample to determine SiC>2 in these 
samples (Table VI-2).
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Table VI-1. Semi-Quantitative Mineral Modes Determined by XRD

<Miro

Sample ID Well Depth Bulk
Evaporite Minerals 

Dolomite Calcite Gypsum Halite
Clastic Minerals 
Quartz Clay

Surface
Evaporite Minerals

Dolomite Calcite Gypsum Halite
Clastic Minerals 
Quartz Clay

CSl WIPP-12 838.6 ★ ★★* ★ k ** kk kkkk ★ ★ kk

CS2 WIPP-13 712.3 ★ ★★★ * k kkkk kkk k kk kk

CS3 WIPP-13 705.3 ★ ★★★ ★ k kkkk k kkk kk ★ ★

CS4 WIPP-13 714.0 ★ ★★★ ★ k kkkk kk kkk kk kk

CSS WIPP-26 187.5 * k kkkk k kk kk kk

CS6 WIPP-27 305.0 **** ★ k kkkk kk k k

CS7 WIPP-28 447.5 ■kirkie kk kk kkkk kk kk kk

CSS WIPP-29 27.0 ***★ k k kkk kkkk kkkk k k

CS9 WIPP-30 633.5 k kk kk kkkk kk kk kkk kk

CS10 WIPP-30 639.0 k k kk kk k kkkk kkkk

CS11 WIPP-30 635.0 k k kkk k kk kkkk kk kk

CSl 2 WIPP-32 57.0 kk-k kk k k kkkk kkkk k k k

CSl 3 WIPP-32 91.1 kkkk kkkk kkk kkkk kkkk

CSl 4 WIPP-32 55.0 k k kkkk kk kk

CSl 5 WIPP-32 56.0 kkkk kk kk

CS16 WIPP-32 62.0 kkkk kk kkkk kkk kk kk

CS17 WIPP-33 570.0 kkkk k k kkkk kkk kk

CSl 8 WIPP-34 836.0 kkkk k k kk kk kkkk k k

= Very abundant kk _ Present
★ ★★ = Abundant k = Trace



Chapter VI: Whole Rock and Fracture Surface Mineralogy

Table VI-2. Bulk Rock Mineral Modes (Normalized to 100%)

Sample ID Dolomite Calcite Gypsum Halite Clay Quartz Total

CS1B 97.85 1.61 0.54 100.00

CS2B 90.91 7.73 1.35 100.00

CS3B 92.26
• 6.59 1.14 100.00

CS4B 90.38 7.57 2.05 100.00

CS5B 94.66 4.49 0.86 100.00

CS6B 96.40 2.87 0.73 100.00

CS7B 58.62 34.66 6.72 100.00

CS8B 93.05 5.76 1.19 100.00

CS9B 77.26 0.83 16.83 5.08 100.00

CS10B 95.46 3.56 0.98 100.00

CS11B 97.48 2.19 0.34 100.00

CS12B 59.47 39.56 0.26 0.67 0.04 100.00

CS13B 3.03 83.77 13.20 100.00

CS14B 0.00 96.46 2.52 1.03 100.00

CS15B 0.00 95.19 3.38 1.44 100.00

CS16B 89.90 7.40 2.13 0.57 100.00

CS17B 0.00 97.40 1.58 1.02 100.00

CS18B 95.56 3.48 0.96 100.00
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Table VI-3. Fracture Surface Mineral Modes (Normalized to 100%)

Sample ID Dolomite Calcite Gypsum Clay Quartz Total

CS1S 25.01 43.31 31.68 0.00 100.00

CS2S 60.18 0.86 26.45 12.51 100.00

CS3S 81.78 0.00 18.22 0.00 100.00

CS4S 59.45 2.64 25.39 12.53 100.00

CS5S 82.73 0.00 8.48 8.79 100.00

CS6S 93.06 3.86 3.08 100.00

CS7S 58.48 26.97 14.55 100.00

CSSS 43.72 33.95 12.08 10.25 100.00

CS9S 45.69 0.47 35.01 18.83 100.00

CSl OS 27.89 0.00 43.49 28.62 100.00

CS11S 71.81 3.68 6.44 12.47 5.60 100.00

CS12S 65.19 33.04 0.90 0.87 100.00

CS13S 14.86 54.99 30.14 100.00

CS14S 37.46 40.06 22.48 100.00

CS15S 44.99 34.89 20.12 100.00

CS16S 78.41 13.32 4.37 3.90 100.00

CS17S 41.17 35.22 23.62 100.00

CS18S 78.56 0.00 14.17 7.27 100.00

VI-4



Chapter VI: Whole Rock and Fracture Surface Mineralogy

Dolomite

In the samples containing dolomite, the fracture surfaces have less dolomite 
than the bulk rock, except for sample CS12, where the fracture surface has 
slightly more (Figures VI-5 and VI-6). In sample CSl, the mode in the 
fractures surface scrapings is only about 1/3 of the bulk mode; this is due to 
two factors: the mode in the fracture surface scrapings in this sample is 
considerably greater than the bulk mode (about 25% vs. 1.6%), and there is 
about 40% gypsum on the fracture surface. This gypsum is obviously of 
secondary origin, since the bulk gypsum mode is zero. Sample CS8 is very 
similar: the dolomite mode in the fracture surface scrapings is about 1/2 of 
the bulk mode, while there is 12% clay and 34% gypsum on the fracture surface.

Calcite

Calcite only appears in samples CS11 through CS16 (Figure VI-7). With the 
exception of CS11 (depth 635'), all these samples are from shallow cores (55' 
to 92' depth). In samples CS11 and CS13, in which the bulk calcite mode is 
zero, calcite in the fracture surface scrapings is a secondary precipitate.
In sample CS16, the mode in the surface scrapings is greater than the bulk 
mode, which would also indicate secondary precipitation. In the remaining 
three samples, calcite in the bulk rock appears to have recrystallized from 
dolomite (see Chapter IV), and the fracture surfaces contain less calcite than 
the bulk rock. As in the dolomite samples, this is due to the fact that the 
fractures occurred along clay- and quartz-rich seams.

Gypsum

With the exception of sample CS17, which is massive gypsum, gypsum only 
appears in the fracture surface modes (samples CSl, CS2, CS4, CSS, CS9, and 
CS11) (Figures VI-8 and VI-9). Clearly, the gypsum precipitated from solution 
on the fracture surfaces in these samples. In sample CS17, the surface mode 
is much lower than the bulk mode. Again, it appears that the fracture surface 
occurred along a clay-rich vein, since the surface clay mode is 35%.
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Figure VI-3. Quartz Modes of CS1 through CS9.
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Figure VI-4. Quartz Modes of CSl0 through CSl8.
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Figure Vl-7. Calcite Modes of CS10 through CS18.
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Figure VI-8. Gypsum Modes of CS1 through CS9.
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VII. DOLOMITE COMPOSITIONS

Compositions of dolomite grains on a fracture surface were obtained on the 
electron microprobe for only one sample, CS4. Other thin sections, in which 
the fracture surface rim was not destroyed by the polishing process, did not 
yield good totals (51.1% for an ideal dolomite) because the dolomite grains 
were either too small or were intermixed with clay. Table VII-1 shows the 
results for sample CS4. The difference between the compositions of the 
dolomite grains on the fracture surface and those in the bulk rock is 
insignificant. They are also very similar to those of other Culebra Dolomite 
samples (Sewards, Williams, and Keil, 1991). Clearly, the compositions of the 
dolomite grains in this sample were not affected by fluid moving in the 
fractures.
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Table VII-1. Dolomite Compositions, Sample CS4

# CaO

Oxides

FeO MgO

Bulk

Total Ca

Cations

Fe Mg Total

1 25.80 0.20 18.44 44.44 1.000 0.006 0.994 2.000
2 30.89 0.10 20.75 51.74 1.032 0.003 0.965 2.000
3 28.40 0.20 19.69 48.29 1.015 0.006 0.979 2.000
4 29.78 0.15 21.53 51.46 0.995 0.004 1.001 2.000
5 30.34 0.05 20.70 51.09 1.025 0.001 0.973 2.000
6 28.92 0.00 20.14 49.06 1.016 0.000 0.984 2.000
7 28.85 0.38 19.28 48.51 1.031 0.011 0.959 2.000
8 30.99 0.00 20.49 51.48 1.042 0.000 0.958 2.000
9 29.17 0.00 20.47 49.64 1.012 0.000 0.988 2.000
10 28.38 0.19 20.62 49.19 0.992 0.005 1.003 2.000
11 29.44 0.10 19.43 48.97 1.041 0.003 0.956 2.000
12 29.99 0.00 18.99 48.98 1.063 0.000 0.937 2.000

1.022 0.003 0.975 2.000

# CaO

l

FeO

Oxides

MgO

Surface

Total Ca Fe

Cations

Mg Total

1 29.81 0.00 19.87 49.68 1.038 0.000 0.962 2.000
2 27.41 0.00 18.87 46.28 1.021 0.000 0.979 2.000
3 28.70 0.00 20.03 48.73 1.015 0.000 0.985 2.000
4 27.36 0.00 17.52 44.88 1.058 0.000 0.942 2.000
5 28.80 0.00 20.06 48.86 1.016 0.000 0.984 2.000
6 29.75 0.00 20.81 50.56 1.013 0.000 0.987 2.000
7 27.63 0.00 19.84 47.47 1.000 0.000 1.000 2.000
8 27.54 0.43 19.53 47.50 1.000 0.012 0.987 2.000
9 28.25 0.52 19.76 48.53 1.006 0.014 0.979 2.000
10 29.49 0.34 19.68 49.51 1.032 0.009 0.959 2.000
11 28.03 0.10 17.83 45.96 1.059 0.003 0.938 2.000
12 30.20 0.15 20.89 51.24 1.017 0.004 0.979 2.000

1.023 0.004 0.973 2.000
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VIII. DISCUSSION

Two main conclusions can be drawn from the information presented above: (1) 
horizontal water-bearing fractures in dolomite and calcite rock tend to occur 
in zones where clay and quartz are concentrated, particularly along clay 
seams, and (2) secondary minerals, primarily gypsum and some calcite, are 
precipitated from solution onto the fracture surfaces. The clay modes in 
fracture surface scrapings in dolomite rock range from about 1% to 43%, with 
an average of 18%, whereas clay modes in the bulk rock in these samples range 
from less than 1% to 7%, with an average of 4.6%. Similarly, for the two 
limestone samples, the clay mode is much greater on the fracture surface than 
in the bulk rock (37% vs. 2%). Secondary gypsum is an important constituent 
of the fracture surface mineralogy in these samples. Secondary calcite is 
present in only one sample from a deep core and all five shallow cores.

Dolomite compositions on the fracture surfaces are no different from those in 
the bulk rock, indicating that aqueous alteration of dolomite did not occur to 
any significant extent (with the possible exception of some dissolution and 
recrystallization.

Where present, calcite in these samples, both in the bulk rock and fracture 
surfaces, is a product of recrystallization from dolomite caused by aqueous 
alteration, usually near surface.

It should be mentioned that the surfaces examined in this study are all due to 
horizontal fractures; no surfaces of vertical or high-angle fractures that 
were clearly identifiable as water-bearing were discovered in the cores 
examined. It is probable that the vertical and near-vertical fracture 
surfaces are not as clay-rich as the horizontal ones, since accumulations of 
clay occur along horizontal planes due to sedimentation.

The implications of these results for the WIPP repository are obvious: since 
the cation exchange capacity of clay minerals is so much higher than that of 
dolomite, calcite, or gypsum, and the clay minerals are a major component of 
the fracture surface mineralogy, the sorption of radionuclides due to the clay 
will far outweigh that of the other minerals. This fact should be taken into 
account in any study of the transport of radionuclides through the Culebra 
Dolomite.
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APPENDIX A:
ANALYTICAL PROCEDURES

X-Ray Diffraction Analysis

Small portions of the ground and sieved whole rock and fracture surface 
powders were placed in Plexiglas containers (2.5 x 2.5 x 0.4 cm), which have a 
1 mm deep hollowed-out compartment. The surface of the powder was then 
scraped off level with the top surface of the Plexiglas container. The 
container was placed in the sample holder of a Scintag PAD-V automated 
diffractometer and analyzed from 2° 2-9 to 60° 2-9 at a scanning rate of 3° 
per minute using a 0.03° chopper increment.

X-Ray Fluorescence Analysis

Whole rock samples were ground with a mortar and pestle and then passed 
through a 100 mesh sieve. Fused glass disks were prepared according to 
standard procedures (Norrish and Chappell, 1967) and analyzed on a Rigaku 
3064M x-ray fluorescence spectrometer for 10 elements: Si02, AI2O3, Ti02,
Fe203, MnO, MgO, CaO, Na20, K2O, and P2O5. Four standards were used: (1) NBS- 
88b (National Bureau of Standards - Dolomitic Limestone); (2) BCS-CRM-393 
(British Chemical Standard - Chemical Reference Material); (3) Dol-1 
(Echantillon-type de Calcite), and (4) AM-PAD44 (Amostra Pedrao 44).

Atomic Absorption Spectroscopy

Fracture surface samples were ground and sieved, dissolved in hydrofluoric and 
perchloric acid mixture, and analyzed on a Perkin-Elmer 303 atomic absorption 
spectrophotometer for seven elements: Si02, AI2O3, Fe203, MgO, CaO, Na20, and 
K2O (McLaughlin, 1967).

Electron Microprobe Elemental Analysis

Polished thin sections of the samples were prepared using no water and 
maintaining a temperature below 60°C. The sections were coated with carbon in 
a vacuum evaporator. Mineral grains were analyzed with a JEOL 733 electron 
microprobe using an acceleration potential of 15KV, a beam current of 2 
nanoamperes, a beam diameter of 1.5 microns, for a period of 80 seconds per 
analysis. Analyses were corrected according to standard Bence-Albee 
procedures.
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APPENDIX B:
MODAL MINERALOGICAL CALCULATIONS

Modes for the minerals identified by x-ray diffraction (XRD) were determined 
from the compositional data obtained by x-ray fluorescence (XRF) and atomic 
absorption (AA). Based on the compositions of the individual minerals, a 
particular element, when present in only one mineral, was used to determine 
the mode of that mineral. For example, the only phase containing aluminum in 
these samples is clay, and electron microprobe analyses of clay samples from 
the Culebra Dolomite (Sewards, Williams, and Keil, 1991) show that the clay 
aggregates contain an average of 15% AI2O3; thus, the weight percent of clay 
is calculated according to the formula:

Clay(wt%) = AI2O3 / 0.15

Quartz, since it contains only Si02, is determined by:

Quartz(wt%) = Si02 - Clay(wt%) x 0.46

since the average Si02 content of the clay fraction is 46%. The remaining 
mineral modes are determined using the following formulae:

Dolomite(wt%) = (MgO - Clay x 0.15) / 0.19 
or: Dolomite(wt%) = (CaO - Gypsum x 0.336) / 0.304

Gypsum(wt%) = SO3 / 0.465
or: Gypsum(wt%) = (CaO - Dolomite(wt%) x 0.304) / 0.326 

Calcite(wt%) = (CaO - Dolomite x 0.304) / 0.56
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APPENDIX C: 
DATA TABLES

Tables C-l and C-2 are the raw data from the bulk rock and fracture surface 
compositional analyses. Tables V-l and V-2 are derived from these by 
converting the Na20 data to NaCl, subtracting this, and normalizing.
Similarly, Tables C-3 and C-4 are the results of the mineral mode calculations 
from Tables C-l and C-2. Tables VI-2 and VI-3 are derived from these by 
removing the halite modes and normalizing to 100%.
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Table C-1. Bulk Rock Compositions

Sample ID Well Depth Si02 Ti02 AI2O3 Fe203 MnO MgO CaO NazO k2o P2O5 S03 Total

CS1B WIPP-12 838.60 1.27 0.02 0.24 0.34 0.03 20.22 29.50 0.07 0.07 0.04 0.16 51.94
CS2B WIPP-13 712.30 4.87 0.08 1.15 0.60 0.02 19.50 27.40 0.04 0.37 0.04 0.07 54.13
CS3B WIPP-13 705.30 4.14 0.06 0.98 0.47 0.03 19.27 27.80 0.06 0.31 0.04 0.07 53.23
CS4B WIPP-13 714.00 5.56 0.05 1.14 0.56 0.02 19.30 27.60 0.05 0.37 0.04 0.04 54.72
CS5B WIPP-26 187.50 2.82 0.04 0.65 0.37 0.04 19.65 27.80 0.07 0.29 0.04 0.05 51.81
CS6B WIPP-27 305.00 1.95 0.03 0.41 0.29 0.02 20.05 27.90 0.25 0.24 0.05 0.09 51.28
CS7B WIPP-28 447.50 24.02 0.29 5.51 0.78 0.03 19.02 18.89 1.29 1.19 0.03 0.10 71.15
CS8B WIPP-29 27.00 3.73 0.06 0.84 0.44 0.02 19.80 27.50 0.22 0.34 0.05 0.06 53.05
CS9B WIPP-30 633.50 14.27 0.17 2.81 0.09 0.01 19.15 26.14 1.75 1.12 0.13 0.19 65.83
CS10B WIPP-30 639.00 2.70 0.04 0.55 0.34 0.02 20.40 29.90 0.05 0.18 0.10 0.05 54.32
CS11B WIPP-30 635.00 1.35 0.02 0.33 0.30 0.02 20.05 29.80 0.30 0.13 0.10 0.07 52.46
CS12B WIPP-32 57.00 0.35 0.01 0.10 0.08 0.01 11.40 43.60 0.05 0.02 0.18 0.12 55.92
CS13B WIPP-32 91.10 53.36 0.74 12.96 4.32 0.01 16.15 0.95 0.05 2.32 0.21 0.03 91.10
CS14B WIPP-32 55.00 2.20 0.02 0.38 0.15 0.02 0.84 54.40 0.04 0.13 0.25 0.13 58.56
CS15B WIPP-32 56.00 2.95 0.03 0.50 0.22 0.02 0.84 52.60 0.04 0.17 0.25 0.12 57.73
CS16B WIPP-32 62.00 1.55 0.02 0.32 0.14 0.01 17.40 32.50 0.05 0.12 0.12 0.07 52.30
CS17B WIPP-33 570.00 1.77 0.02 0.24 0.10 0.00 0.35 32.20 0.10 0.04 N.A. 45.97 80.79
CS18B WIPP-34 836.00 2.45 0.04 0.50 0.34 0.02 20.20 27.80 0.06 0.18 0.10 0.09 51.77



Table C-2. Fracture Surface Compositions

Sample ID Well Depth Si02 AI2O3 Fe203 MgO CaO Na20 k2o S03 Total

CS1S WIPP-12 838.60 * 2.80 0.40 5.60 12.80 34.00 0.32 * 55.52

CS2S WIPP-13 712.30 15.90 4.40 1.28 17.08 20.60 1.68 1.19 * 60.85

CS3S WIPP-13 705.30 * 2.10 0.56 14.04 18.80 11.60 0.82 * 47.36

CS4S WIPP-13 714.00 15.60 4.16 ' 1.50 16.50 18.40 5.16 0.12 1.34 61.28

CSSS WIPP-26 187.50 9.58 1.30 0.44 17.36 24.00 4.66 0.57 * 57.47

CS6S WIPP-27 305.00 3.46 0.60 0.26 18.90 26.40 3.92 0.29 * 53.57

CS7S WIPP-28 447.50 18.90 4.66 1.28 17.46 18.60 3.08 0.87 0.03 63.60

CSSS WIPP-29 27.00 7.10 1.16 0.94 6.48 15.60 19.30 0.79 ★ 50.43

CS9S WIPP-30 633.50 23.30 5.76 1.56 15.28 15.40 3.24 1.83 ■k 64.81

CS10S WIPP-30 639.00 38.20 7.88 2.00 11.48 10.24 1.58 2.09 •k 71.47

CS11S WIPP-30 635.00 4.49 1.30 0.36 10.78 16.60 20.28 0.38 2.08 55.91

CS12S WIPP-32 57.00 0.96 0.14 0.12 12.94 39.60 1.26 0.06 0.02 54.98

CS13S WIPP-32 91.10 45.50 11.06 3.12 11.30 11.16 0.34 1.56 0.29 81.21

CS14S WIPP-32 55.00 28.40 6.76 2.06 9.64 23.60 0.96 1.80 0.01 71.17

CS15S WIPP-32 56.00 25.40 5.90 1.94 7.90 28.40 0.70 1.33 0.01 69.64

CS16S WIPP-32 62.00 4.48 0.70 0.32 16.60 33.40 0.98 0.24 0.60 57.00

CS17S WIPP-33 570.00 28.30 5.74 2.12 4.64 17.40 0.72 1.29 20.80 78.89

CS18S WIPP-34 836.00 2.64 0.68 1.12 4.36 7.64 38.90 0.18 * 54.40

* = Insufficient Sample
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Table C-3. Bulk Rock Mineral Modes (Unnormalized)

Sample ID Dolomite Calcite Gypsum Halite Clay Quartz Total

CS1B 97.04 1.60 0.53 99.17

CS2B 90.13 7.67 1.34 99.14

CS3B 91.45 6.53 1.13 99.12

CS4B 90.79 7.60 2.06 100.45

CS5B 91.45 4.33 0.83 96.61

CS6B 91.78 2.73 0.69 95.20

CS7B 62.14 36.73 7.12 105.99

CS8B 90.46 5.60 1.15 97.21

CS9B 85.99 0.93 18.73 5.65 111.30

CS10B 98.36 3.67 1.01 103.04

CS11B 98.03 2.20 0.34 100.56

CS12B 59.47 39.56 0.26 0.67 0.04 100.00

CS13B 3.13 86.40 13.62 103.14

CS14B 97.14 2.53 1.03 100.71

CS15B 93.93 3.33 1.42 98.68

CS16B 89.89 7.40 2.13 0.57 100.00

CS17B 98.86 1.60 1.03 101.49

CS18B 91.45 3.33 0.92 95.70
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Appendix C: Data Tables

Table C-4. Fracture Surface Mineral Modes (Unnormalized)

Sample ID Dolomite Calcite Gypsum Halite Clay Quartz Total

CS1S 14.74 25.52 64.09 18.67 0.00 123.01

CS2S 66.74 0.96 3.17 29.33 13.88 114.07

CS3S 62.84 0.00 21.87 14.00 0.00 98.71

CS4S 64.95 2.88 9.73 27.73 13.69 118.98

CSSS 84.53 0.00 8.78 8.67 8.98 110.96

CS6S 96.32 7.39 4.00 3.18 110.89

CS7S 67.37 5.81 31.07 16.76 121.00

CSSS 28.00 21.74 36.38 7.73 6.57 100.42

CS9S 50.11 0.52 6.11 38.40 20.65 115.78

CS10S 33.68 0.00 2.98 52.53 34.58 123.77

CS11S 49.89 2.56 4.47 38.23 8.67 3.89 107.71

CS12S 67.37 34.14 2.38 0.93 0.90 105.72

CS13S 19.93 0.64 73.73 40.41 134.72

CS14S 42.14 1.81 45.07 25.29 114.31

CS15S 50.71 1.32 39.33 22.69 114.05

CS16S 83.68 14.21 1.85 4.67 4.16 108.57

CS17S 44.73 1.36 38.27 25.66 110.02

CS18S 25.13 0.00 73.33 4.53 2.33 105.32
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