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CHARACTERIZATION OF FRACTURE SURFACES
IN DOLOMITE ROCK, CULEBRA DOLOMITE
MEMBER, RUSTLER FORMATION*

Terry Sewards

Department of Geology and Institute of Meteoritics
University of New Mexico, Albuquerque, NM 87131

ABSTRACT

The Culebra Dolomite Member, Rustler Formation,' southeastern New Mexico, is
characterized by a high fracture porosity. Bedding plane fractures are
predominant, but vertical and high-angle fractures are also common. The
information presented in this report for horizontal fractures shows that:
(1) horizontal water-bearing fractures in dolomite and calcite rock tend to
occur 1in zones where clay and quartz are concentrated, particularly along
clay seams, and (2) secondary minerals, primarily gypsum and some calcite,
are precipitated from solution onto the fracture surfaces. No surfaces of
vertical or high-angle fractures that were clearly identifiable as water-
bearing were discovered in the cores examined.

Dolomite compositions on the fracture surfaces are no different than those
in the bulk rock, indicating that aqueous alteration of dolomite did not
occur to any significant extent. Where present, calcite in these samples,
both in the bulk rock and fracture surfaces, is a product of
recrystallization from dolomite caused by aqueous alteration, usually near
surface.

It is probable that the vertical fracture surfaces are not as clay- rich as
the horizontal ones, since accumulations of clay occur along horizontal
planes due to sedimentation.

Our data argue that since the cation exchange capacity of clay minerals 1is
so much higher than that of dolomite, calcite, or gypsum, and the clay
minerals are a major component of the fracture surface mineralogy, the
sorption of radionuclides due to the clay will far outweigh that of the
other minerals. This fact should be taken into account in any study of the
transport of radionuclides through the Culebra Dolomite.

* The work described in this report was performed for Sandia National
Laboratories under Contract No. 01-6328.
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. INTRODUCTION

The Culebra Dolomite Member of the Rustler Formation in southeastern New
Mexico 1s characterized by a high fracture porosity. Bedding plane fractures
are predominant, but vertical and high-angle fractures are also common. In
the WIPP-19 drill core (Chapter III), the bedding plane fracture density
varies from 3 to 8 per vertical foot below 764 feet depth, and 1 to 3 per
vertical foot above 764 feet. Irregularly-curved vertical fractures occur
with a frequency of 1 to 4 per vertical foot, and high angle fractures (60 to
70°) are spaced at about 1 to 5 per vertical foot (Ferrall and Gibbons, 1979).
Water-bearing (open) fracture surfaces are easily recognized because they are

darker than the bulk dolomite due to aqueous alteration.

The objective of this report is to describe the water-bearing fracture
surfaces in detail, in terms of texture and mineralogy and to compare and
contrast the composition and mineralogy of the surfaces with that of the bulk
rocks. Analytical methods used in this study include x-ray diffraction (XRD)
analysis, x-ray fluorescence (XRF) spectroscopic analysis, atomic absorption
(AA) spectroscopy, electron microscope elemental analysis, and optical

microscopy.



Il. SITE GEOLOGY

The Upper Permian (Ochoan) Rustler Formation is a sequence of evaporite and
clastic rock units deposited in the Delaware, Midland, Palo Duro, and Dalhart
Basins in southeastern New Mexico and western Texas. In the Delaware Basin
(Figure II-1), which is ringed by the Capitan Reef Complex, the Rustler
Formation overlies the Salado Formation, which is composed mainly of thick
halite beds and is in turn overlain by the Dewey Lake Red Bed Formation, which

is composed almost entirely of mud/siltstone

The Rustler Formation is divided into four recognizable units (Figure II-2) .
In ascending order, they are the lower (unnamed) member (argillaceous halite,
mud/siltstone, and anhydrite), the Culebra Dolomite Member, the Tamarisk
Member (halite, mudstone, anhydrite, and gypsum), the Magenta Dolomite Member,
and the Forty-niner Member (anhydrite, gypsum, and mudstone).

In the boreholes from which samples were taken for this study, the Culebra
Dolomite Member varies in thickness from about 20 feet to 30 feet. It is
primarily composed of massive, laminated dolomite with some clay, quartz, and
gypsum, although some cores show extensive brecciation and/or large vugs and
voids. Clay laminae of varying thicknesses (2 mm to several centimeters) are
common, and the entire unit is underlain by a 0.5 to 3 feet thick black shale
(Sewards, Glenn, and Keil, 1991). In the ventilation and access shafts of the
WIPP repository, the uppermost 6 to 12" of the black shale are deformed and
tilted. This deformation is evidently due to collapse of the dolomite unit.
There are no obvious depositional features in the lower 2.5 feet of the black
shale. The black shale grades into a reddish/brown shale that is clearly a
solution residue: there are no depositional features (laminae, etc.), and the
texture 1is chaotic. This reddish/brown shale overlies the uppermost anhydrite
unit in the lower member; the contact is very uneven, but fairly well defined.
The anhydrite unit itself is relatively unfractured. It is clear that the
dissolution of an argillaceous halite bed above the anhydrite unit and of
several other halite units in the lower member and uppermost Salado Formation
caused the collapse of the Culebra and overlying units. This collapse
resulted in extensive fracturing in the dolomite units (Culebra and Magenta)
particularly in the Culebra. The reason that the anhydrite and shale units
are not as fractured as the dolomite units is that anhydrite and shale are

able to deform in a more plastic manner than the harder dolomite.
In the areas where the dolomite unit lies near the surface, calcite is often

present instead of dolomite. This calcite is the result of dedolomitization

of dolomite.
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Figure 11-2. Lithologic Log of WIPP-19 Core, Rustler Formation (modified from Ferrall and Gibbons, 1979).
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1. PROJECT SAMPLES

Eighteen samples were selected from various drill cores located in the
vicinity of the Waste Isolation Pilot Plant (WIPP) site (Figure III-1).

Selection Criteria

Samples for this study were selected primarily on the basis of a well-defined,
water-bearing fracture surface. Five samples were selected from the WIPP-29
and WIPP-32 cores located in the vicinity of Nash Draw (Figure III-1). In
these cores, the Culebra Dolomite 1is very shallow, and the extra samples were
chosen to better characterize the fractures where near surface alteration has

occurred.

Core Locations, Sample Depths, and Descriptions
Table III-1 lists the well number, sample depths, and descriptions for the 18

samples selected for this study. Figure III-1 shows the locations of the

various wells.
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Sample ID

CS1
CS2
CS3
Cs4
CSS
CS6
Cs7
CSS
CS9
CS10
CS11
CS12
CS13
CS14
CSI5
CS16
Cs17

CS18

Well

WIPP-12

WIPP-13

WIPP-13

WIPP-13

WIPP-26

WIPP-27

WIPP-28

WIPP-29

WIPP-30

WIPP-30

WIPP-30

WIPP-32

WIPP-32

WIPP-32

WIPP-32

WIPP-32

WIPP-33

WIPP-34

Chapter Ill: Project Samples

Table 111-1. Sample Locations and Descriptions

Depth
(feet)
838.5-838.7
712.1-712.4
705.3
714.0
187.0
305.0
447.5
27.0
633.5
639.0
635.0
57.0
911
55.0
56.0
62.0
57.0

836.0

Description

Massive dolomite (vuggy, dark grey)
Brecciated dolomite (fractured, dark grey)
Massive dolomite (laminated, brown)
Massive dolomite (light brown)

Brecciated dolomite

Brecciated dolomite (friable, light grey)
Massive clay/dolomite (laminated, dark grey)
Massive dolomite (light grey)

Massive dolomite (contorted laminae, tan)
Massive dolomite (vuggy, tan)

Massive dolomite (brecciated, tan)
Massive dolomite (vuggy)

Claystone (grey)

Massive limestone (brown)

Massive limestone (red)

Massive dolomite (light grey)

Massive gypsum (brown)

Massive dolomite (grey)
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IV. FRACTURE SURFACE PETROGRAPHY

Hand Specimen Description

Water-bearing fracture surfaces are easily identified in hand specimen: they
are much darker (dark grey/brown to black) than freshly broken surfaces
(Figures IV-1 to IV-4). The horizontal fractures almost always occur along
clay-rich seams, either layers of nearly pure clay or dolomite (and calcite)
layers that are especially rich in clay minerals (Figures IV-1 and IV-4). The
darkening can be attributed to two factors: (1) the presence of clay minerals
(clay separates from Culebra Dolomite rocks are usually dark grey to black),
and (2) oxidation of surface minerals due to contact with oxygen-rich waters.
The zone of penetration of the darkened (altered) surface area is usually not
deep, typically a few tens of microns, but in some samples where the rock near
the fracture surface is friable, the darkened zone can penetrate a few
millimeters. When the fracture occurs along a layer of pure clay, a dense
system of horizontal fractures may develop, rather than a single fracture.
Clay layers may be stripped away to reveal successive darkened (altered)
surfaces, which are only a few tens or hundreds of microns apart. Thus, a
clay seam can become a multilayer channel and present a very large surface
area to the fluid moving in the fractures. Fractures that occur in rock that
is primarily dolomite or calcite are single layered, and the altered zone is
shallow.

Figure IV-3 shows a very pitted fracture surface. This surface is similar to
the interior of large vugs that are frequently seen in Culebra Dolomite.
Although the majority of the vugs are not interconnected and do not form a
part of the transport network, some undoubtedly do, and this surface may be
part of a large void in which water- did flow.

Optical Microscopy

Polished thin sections perpendicular to the fracture surfaces were prepared
from samples in which the surface was not too friable. Of the eight sections
prepared, only four fracture surface rims were preserved: CS1, CS4, CSl4, and
Cs1l8 (Figures IV-6 to IV-9).

Figure IV-5 shows a clay-rich area along the fracture surface rim. The clay
area dominates the rim, and very little dolomite is directly on the surface.
Areas 1like this one are not unusual, but the zone near the fracture rim shown
in Figure IV-6 1is a far more common feature. This area 1is quite clay-rich,

but the rim itself appears to be composed of about 50% clay and 50% dolomite.

Iv-1
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Figure IV-1.

Fracture Surface of Sample CSI, Top View.



Chapter IV: Fracture Surface Petrography

Figure IV-2. Fracture Surface of Sample CS1, Side View.
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IV-4

Figure IV-3. Fracture Surface of Sample CSI2, Top View.



Chapter IV: Fracture Surface Petrography

Figure IV-4. Fracture Surface of Sample CS18, Top View.
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Figure IV-5. Thin-Section Photomicrograph of Fracture Surface Rim of Sample CS4. Plane polarized light,
M =1000X. Note dense clay-rich area on surface rim.
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Chapter IV: Fracture Surface Petrography

Figure IV-6. Thin-Section Photomicrograph of Fracture Surface Rim of Sample CS4. Crossed polars,
M =1000X. Note clay-rich area near surface rim.
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Figure IV-7. Thin-Section Photomicrograph of Fracture Surface Rim of Sample CS4. Crossed polars,
M =1000X. Note gypsum lining on fracture rim.
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Chapter IV: Fracture Surface Petrography

Figure 1V-8. Thin-Section Photomicrograph of Fracture Surface Rim of Sample CS18. Crossed polars,
M= 1000X. Note fine-grained dolomite on fracture rim.
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Figure IV-9. Thin-Section of Photomicrograph of Fracture Surface Rim of Sample CS15. Crossed polars,
M = 1000X.
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Chapter IV: Fracture Surface Petrography

Figure IV-7 shows a gypsum and clay-rich area near the fracture surface.
Along the rim, a lining of gypsum shields the clay from the fracture surface,
so there was probably little contact between the water moving in the fracture

and the clay minerals near the surface.

In Figure IV-8 there is an area of extremely fine-grained dolomite near the
fracture surface. This area appears to be free of clay. The average grain
size 1in the normal dolomite away from the rim is about 7/xm, compared to about
0.6pm in the fine-grained area. This feature was not observed in the other
thin sections or elsewhere in the thin section of sample CS4 and is probably
fairly rare. It may be interpreted in one of two ways: (1) the fine-grained
area is a zone of alteration in which the dolomite has recrystallized into
"micromicritic" dolomite, or (2) the area 1is a primary feature, and the
fracture traversed the fine-grained area because the rock was weaker there.
Neither explanation is particularly satisfactory since, 1in the first case,
dolomite that recrystallizes from calcite, for example, 1is invariably coarse-
grained; in the second case, it would be a great coincidence for such an

unusual feature to be directly in the path of the fracture.

Figure IV-9 shows coarse-grained calcite (about 25pm in diameter) near the
fracture rim of sample CS15, a limestone. Although the area is clay-rich,
calcite grains dominate the fracture rim itself. The texture and grain size
of the calcite are typical for the limestones, both near the fracture surfaces
and away from them, although larger grain sizes were observed, and twinned
crystals are common. This coarse-grained subhedral calcite is quite different
from that found at the top of the Culebra in the WIPP-19 core (754' depth,
Sewards, Glenn, and Keil, 1991). In that case, the calcite was micritic
(grain size about 4-5pm), with anhedral grains, and very clay-rich. The
difference in texture might be explained by assuming that the calcite in the
WIPP-19 core is the result of primary deposition, and the coarse-grained
calcite observed in these samples is the result of dedolomitization

(calcitization) of dolomite due to near surface aqueous alteration.
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V. WHOLE ROCK AND FRACTURE SURFACE COMPOSITIONS

The compositional data for the bulk rock and fracture surfaces, measured in
component oxides, are listed in Tables V-1 and V-2. These tables are derived
from Tables C-1 and C-2 in Appendix C by subtracting the halite component and
renormalizing. The data for the bulk rock were obtained by x-ray fluorescence
spectroscopic analysis (XRF), with the exception of the values for SO3, which
were measured gravimetrically, For the fracture surface analyses, atomic
absorption spectroscopy (RA) was used, with the exception of the sulfate
measurements. Based on the totals, it is estimated that the XRF data for the
bulk rock are accurate to about 10% of the amounts present. The fracture
surface analyses were obtained from scrapings from the surfaces, and very
little material was obtained (typically 50 mg). The AA data for such a small

sample are probably not accurate to more than about 50% of the amount present.

Figures V-1 to V-8 show the composite bulk rock and fracture surface
abundances of Si02, AI203, Mg0, and Ca0O in bar-diagram form. In the bar-
diagrams, it can be easily seen that Sio2 1is greatly concentrated on the
fracture surfaces (Figures V-1 and V-2). In all samples, except CS7 and CS13,
the fracture surface concentration is greater than the bulk rock concentration
(in samples CS1 and CS3 the fracture surface concentrations were not measured
due to insufficient sample). Similarly, AI203 is higher in concentration on
the fracture surfaces in all samples (Figures V-3 and V-4), with the same two
exceptions mentioned above, CS7 and CS13. The increase in Si02 and AI203 can
be explained by the fact that fracture surfaces tend to occur along clay- and

quartz-rich seams in the rock.

The fracture surface MgO concentrations are lower than those in the bulk rock
in all samples except CSe, CS12, CS14, CS15, and CS17 (Figures V-5 and V-6).
since MgO occurs in both clay and dolomite, its behavior is not quite as
easily explained as that of Sio2 and AI203, which occur only in the clastic
components. An increase in clay and quartz on the fracture surfaces 1is
accompanied by a decrease in dolomite, so 1if the sample contains primarily
dolomite (as in samples CS1 to CS11l) , one would expect a slight decrease in
MgO if both Si02 and AI203 increase. The increase in MgO on the fracture
surfaces of samples CS14, CS15, and CS17 is due to the fact that CS14 and CS15
are limestones and contain primarily calcite, and CS17 is gypsum: since the
fractures occur along clay-rich seams, and there is essentially no MgO in the

major mineral components, MgO 1is consequently enriched on the surfaces.

The behavior of CaO is also somewhat complicated, since it 1is a component of
dolomite, calcite, and gypsum. In dolomite rocks (CS1 through CS12, CS16 and
CS18), one would expect CaO to be higher in the bulk rock than in the fracture



Table V-1. Bulk Rock Compositions

Sample ID Well Depth Si0- TiO- Alz0:  FG203 MnO MgO CaO Na20 K20 P205 S0- Total
CS1B WIPP-12  838.60 1.27 0.02 0.24 0.34 0.03 20.22 29.50 0.07 0.07 0.04 0.16 51.94
CS2B WIPP-13  712.30 4.87 0.08 1.15 0.60 0.02 19.50 27.40 0.04 0.37 0.04 0.07 54.13
CS3B WIPP-13  705.30 4.14 0.06 0.98 0.47 0.03 19.27 27.80 0.06 0.31 0.04 0.07 53.23
CS4B WIPP-13  714.00 5.56 0.05 1.14 0.56 0.02 19.30 27.60 0.05 0.37 0.04 0.04 54.72
CS5B WIPP-26 187.50 2.82 0.04 0.65 0.37 0.04 19.65 27.80 0.07 0.29 0.04 0.05 51.81
CScB WIPP-27  305.00 1.95 0.03 0.41 0.29 0.02 20.05 27.90 0.25 0.24 0.05 0.09 51.28
CS7B WIPP-28  447.50 24.02 0.29 5.51 0.78 0.03 19.02 18.89 1.29 1.19 0.03 0.10 71.15
CSsB WIPP-29 27.00 3.73 0.06 0.84 0.44 0.02 19.80 27.50 0.22 0.34 0.05 0.06 53.05
cs9B WIPP-30  633.50 14.27 0.17 2.81 0.09 0.01 19.15 26.14 1.75 1.12 0.13 0.19 65.83
CS10B WIPP-30  639.00 2.70 0.04 0.55 0.34 0.02 20.40 29.90 0.05 0.18 0.10 0.05 54.32
CS11B WIPP-30  635.00 1.35 0.02 0.33 0.30 0.02 20.05 29.80 0.30 0.13 0.10 0.07 52.46
Cs12B WIPP-32 57.00 0.35 0.01 0.10 0.08 0.01 11.40 43.60 0.05 0.02 0.18 0.12 55.92
Cs13B WIPP-32 91.10 53.36 0.74 12.96 4.32 0.01 16.15 0.95 0.05 2.32 0.21 0.03 91.10
CS14B WIPP-32 55.00 2.20 0.02 0.38 0.15 0.02 0.84 54.40 0.04 0.13 0.25 0.13 58.56
Cs15B WIPP-32 56.00 295 0.03 0.50 0.22 0.02 0.84 52.60 0.04 0.17 0.25 0.12 57.73
cs16B WIPP-32 62.00 1.55 0.02 0.32 0.14 0.01 17.40 32.50 0.05 0.12 0.12 0.07 52.30
Cs17B WIPP-33  570.00 1.77 0.02 0.24 0.10 0.00 0.35 32.20 0.10 0.04 N.A. 45.97 80.79

cs18B WIPP-34  836.00 2.45 0.04 0.50 0.34 0.02 20.20 27.80 0.06 0.18 0.10 0.09 51.77



Sample ID

CS1S
CS2S
CS3S
CS4S
CSSS
CS6S
CS7S
CSSS
CS9S
CSI0S
CS11S
CS128
CS13S
CS14S
CS158
CS16S
CS17S
CS18S

Chapter V: Whole Rock and Fracture Surface Compositions

Table V-2. Fracture Surface Compositions (NaCl Data Subtracted)

Depth

838.60
712.30
705.30
714.00
187.50
305.00
447.50
27.00
633.50
639.00
635.00
57.00
91.10
55.00
56.00
62.00
57.00
836.00

* = Insufficient Sample

Sioz

16.42

17.28
10.50
3.74
20.07
11.16
24.82
39.37
7.27
0.98
45.79
28.92
25.74
4.56
28.69
9.91

Al203

7.80
4.54
2.69
4.61
1.43
0.65
4.95
1.82
6.13
8.12
211
0.14
11.13
6.88
5.98
0.71
5.82
2.55

Fezos

1.11

1.32
0.72
1.66
0.48
0.28
1.36
1.48
1.66
2.06
0.58
0.12
3.14
2.10
1.97
0.33
2.15
4.21

MgO

15.61
17.64
17.97
18.28
19.03
2041
18.54
10.19
16.27
11.83
17.46
13.26
11.37
9.82
8.01
16.91
4.70
16.37

CaO

35.67
21.27
24.07
20.38
26.31

28.51

19.75
24.53
16.40
10.55
26.88
40.57
11.23
24.04
28.78
34.03
17.64
28.69

K20

0.89
1.23
1.05
0.13
0.62
0.32
0.93
1.25
1.95
2.16
0.61

0.06
1.57
1.83
1.34
0.24
1.31

0.66

S0s

1.48

0.03

3.37
D4

0.29
0.01
0.01
0.61
21.09

Total

61.09
62.43
46.49
63.83
58.38
53.09
65.62
50.43
67.24
74.10
58.28
55.13
84.53
73.60
71.82
57.40
81.40
62.40
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Surface
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Figure V-3. AI203 Concentrations of CS1 through CS9.
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Figure V-4. Al203 Concentrations of CS10 through CS18.
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Chapter V: Whole Rock and Fracture Surface Compositions

surface, and this 1is generally the case, with a few exceptions, in which the
bulk and surface concentrations are similar (Figures V-7 and V-8). In the two
limestones, CS14 and CS15, the surface Ca0O is much lower in concentration than
that in the bulk rock, and in the claystone (CS13), the surface mode 1is

greater.

Fe203 1is concentrated on the fracture surfaces in all samples except CSe,

where they are nearly equal, and CS13, where the bulk rock concentration is
higher. This trend closely follows that of the clay mineral modes (Figures
V-9 and V-10), so it may be assumed that the concentration of Fezo03 on the

surface is due to the Fez203 content of the clay minerals.

K20 is also concentrated on the fracture surfaces (Tables V-1 and V-2). This
is also due to the higher clay mode on the surfaces, since illite 1is one of
the components of the clay mineral assemblage (Sewards, Williams, and Keil,

1991), and illite typically contains about 7-8% K20.

Since the variation in composition is intimately associated with the variation
in mineralogy, the above discussion may be more easily understood when the

individual mineral modes are discussed in the following section.



SAND90-7019

Concentration (%)

Concentration (%)

trsl  Surface

CS1 CS2 CS3 CS4 CSS CS6 CS7 CSsS Css
Sample ID

TRI-6342-459-0

Figure V-7. CaO Concentrations of CSI through CS9.

§SS3  Surface

CS10 CS11 CS12 CS13 CS14 CS15 CS16 CS17 CS18

Sample ID

TR1-6342-460-0
Figure V-8. CaO Concentrations of CSl 0 through CS18.



Concentration (%)

Concentration (%)

Chapter V: Whole Rock and Fracture Surface Compositions
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Figure V-9. Fe2C>3 Concentrations of CS1 through CS9.
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Figure V-10. Fe203 Concentrations of CSI0 through CSIS.



VI. WHOLE ROCK AND FRACTURE SURFACE MINERALOGY

Table VI-1 lists the minerals that were identified in the bulk rock and
fracture surfaces by XRD. These include dolomite, calcite, gypsum, halite,
quartz, and clay. Halite in these samples is an artifact of the drilling
process: a mixture of brine and mud was used to drill the wells; when the

fluid evaporated, halite precipitated on the core surfaces.

The results of the whole rock and fracture surface mineral mode calculations,
which are based on the compositional data included in the previous section,

are listed in Tables VI-2 and VI-3. These tables are derived from Tables C-3
and C-4, listed in Appendix C, by subtracting the halite modes and normalizing
to 100%. The mineral mode calculation method is discussed in Appendix B.

Clay

The clay modes for the bulk rock and fracture surface scrapings are displayed
in bar diagram form in Figures VI-1 and VI-2. With the exception of two
samples, CS7, a clay-rich dolomite, and CS13, a claystone, fracture surface
clay contents are considerably higher than those of the bulk rock. The
average bulk rock clay mode for these samples is 4.6% (excluding CS7 and
CS13), whereas the average mode in the fracture surface scrapings is 185%,
nearly four times the bulk rock average.

The reason the clay modes in the fracture surface scrapings are so much higher
than the bulk rock modes 1is that the fractures occur primarily along clay-rich
seams, since these are the weakest layers in the rock. In sample CS13, a
claystone, the surface mode is less than that of the bulk mode. This is due
to the fact that secondary calcite has been deposited on the fracture surface
(Figure VI-T7). Similarly, in sample CS7, the bulk clay mode 1is greater than
the mode in the fracture surface scrapings because the fracture occurred along
a quartz-rich layer (Figure VI-3).

Quartz

The quartz modes follow approximately the same trend as the clay modes: quartz
modes in the fracture surface scrapings are substantially greater than those
of the bulk rock (Figures VI-3 and VI-4). The zero values for the modes in
the fracture surface scrapings in samples CS1 and CS3 in Figure VI-3 are due
to the fact that there was insufficient sample to determine SiC>2 in these
samples (Table VI-2).

V1-1
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Sample ID

Csl
CSs2
CS3
CS4
CSS
CS6
Cs7
CSS
CS9
CS10
CS11
CSlI2
CSI3
CSl4
CSlI5
CS16
Cs17
CsSI8

Well

WIPP-12
WIPP-13
WIPP-13
WIPP-13
WIPP-26
WIPP-27
WIPP-28
WIPP-29
WIPP-30
WIPP-30
WIPP-30
WIPP-32
WIPP-32
WIPP-32
WIPP-32
WIPP-32
WIPP-33
WIPP-34

Abundant

Depth

838.6
712.3
705.3
714.0
187.5
305.0
447.5
27.0
633.5
639.0
635.0
57.0
91.1
55.0
56.0
62.0
570.0
836.0

Very abundant

Table VI-1. Semi-Quantitative Mineral Modes Determined by XRD
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Chapter VI: Whole Rock and Fracture Surface Mineralogy

Table VI-2. Bulk Rock Mineral Modes (Normalized to 100%)

Sample ID Dolomite Calcite Gypsum Halite Clay Quartz Total
CS1B 97.85 1.61 0.54 100.00
CS2B 90.91 7.73 1.35 100.00
CS3B 92.26 ’ 6.59 1.14 100.00
CS4B 90.38 7.57 2.05 100.00
CS5B 94.66 4.49 0.86 100.00
CS6B 96.40 2.87 0.73 100.00
CS7B 58.62 34.66 6.72 100.00
CS8B 93.05 5.76 1.19 100.00
CS9B 77.26 0.83 16.83 5.08 100.00
CS10B 95.46 3.56 0.98 100.00
CS11B 97.48 219 0.34 100.00
CS12B 59.47 39.56 0.26 0.67 0.04 100.00
CS13B 3.03 83.77 13.20 100.00
CS14B 0.00 96.46 2.52 1.03 100.00
CS15B 0.00 95.19 3.38 1.44 100.00
CS16B 89.90 7.40 213 0.57 100.00
CS17B 0.00 97.40 1.58 1.02 100.00
CS18B 95.56 3.48 0.96 100.00

VI-3
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Sample ID

CS1S
CS2S8
CS3S
CS4S
CS5S
CS6S
CS7S
CSSS
CS9S
CSI0S
CS11S
CS128
CS13S
CS14S
CS158
CS16S
CS17S

CS18S

VI-4

Dolomite

25.01

60.18

81.78

59.45

82.73

93.06

58.48

43.72

45.69

27.89

71.81

65.19

78.41

78.56

Calcite

3.68

33.04

14.86

37.46

44.99

13.32

Gypsum

43.31

0.86

0.00

2.64

0.00

33.95

0.47

0.00

6.44

4117

0.00

Clay

31.68
26.45
18.22
25.39
8.48
3.86
26.97
12.08
35.01
43.49
12.47
0.90
54.99
40.06
34.89
4.37
35.22

14.17

Quartz

0.00

12.51

0.00

12.53

8.79

3.08

14.55

10.25

18.83

28.62

5.60

0.87

30.14

22.48

20.12

3.90

23.62

7.27

Table VI-3. Fracture Surface Mineral Modes (Normalized to 100%)

Total

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00



Chapter VI: Whole Rock and Fracture Surface Mineralogy

Dolomite

In the samples containing dolomite, the fracture surfaces have less dolomite
than the bulk rock, except for sample CS12, where the fracture surface has
slightly more (Figures VI-5 and VI-e). In sample CSl, the mode in the
fractures surface scrapings is only about 1/3 of the bulk mode; this is due to
two factors: the mode in the fracture surface scrapings in this sample is
considerably greater than the bulk mode (about 25% vs. 1.6%), and there is
about 40% gypsum on the fracture surface. This gypsum is obviously of
secondary origin, since the bulk gypsum mode 1is =zero. Sample CSs 1is very
similar: the dolomite mode in the fracture surface scrapings is about 1/2 of

the bulk mode, while there is 12% clay and 34% gypsum on the fracture surface.

Calcite
Calcite only appears in samples CS11 through CS16 (Figure VI-7). With the
exception of CS11 (depth 635"), all these samples are from shallow cores (55'
to 92' depth). In samples CS11 and CS13, in which the bulk calcite mode 1is

zero, calcite in the fracture surface scrapings is a secondary precipitate.

In sample CS16, the mode in the surface scrapings is greater than the bulk
mode, which would also indicate secondary precipitation. In the remaining
three samples, calcite in the bulk rock appears to have recrystallized from
dolomite (see Chapter IV), and the fracture surfaces contain less calcite than
the bulk rock. As in the dolomite samples, this is due to the fact that the
fractures occurred along clay- and quartz-rich seams.

Gypsum

With the exception of sample CS17, which is massive gypsum, gypsum only

appears 1in the fracture surface modes (samples CSl1, (€S2, (CS4, CSS, CS9, and

CS11l) (Figures VI-s and VI-9). Clearly, the gypsum precipitated from solution
on the fracture surfaces in these samples. In sample CS17, the surface mode
is much lower than the bulk mode. Again, it appears that the fracture surface

occurred along a clay-rich vein, since the surface clay mode is 35%.
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Figure VI-3. Quartz Modes of CS1 through CS9.
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Figure VI-4. Quartz Modes of CSI0 through CSI8.
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Figure VI-7. Calcite Modes of CS10 through CS18.
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Figure VI-8. Gypsum Modes of CS1 through CS9.
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Vil. DOLOMITE COMPOSITIONS

Compositions of dolomite grains on a fracture surface were obtained on the
electron microprobe for only one sample, CS4. Other thin sections, in which
the fracture surface rim was not destroyed by the polishing process, did not
yield good totals (51.1% for an ideal dolomite) because the dolomite grains
were either too small or were intermixed with clay. Table VII-1 shows the
results for sample CS4. The difference between the compositions of the
dolomite grains on the fracture surface and those in the bulk rock is
insignificant. They are also very similar to those of other Culebra Dolomite
samples (Sewards, Williams, and Keil, 1991). Clearly, the compositions of the

dolomite grains in this sample were not affected by fluid moving in the
fractures

VII-1
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#*

S0 ~NoahwN

*

N2 oW NO R WN

VII-2

CaO

25.80
30.89
28.40
20.78
30.34
28.92
28.85
30.99
29.17
28.38
29.44
29.99

CaO

29.81

27.41

28.70
27.36
28.80
29.75
27.63
27.54
28.25
29.49
28.03
30.20

Table VII-1. Dolomite Compositions, Sample CS4

Oxides
FeO MgO
0.20 18.44
0.10 20.75
0.20 19.69
0.15 21.53
0.05 20.70
0.00 20.14
0.38 19.28
0.00 20.49
0.00 20.47
0.19 20.62
0.10 19.43
0.00 18.99
lOxides
FeO MgO
0.00 19.87
0.00 18.87
0.00 20.03
0.00 17.52
0.00 20.06
0.00 20.81
0.00 19.84
0.43 19.53
0.52 19.76
0.34 19.68
0.10 17.83
0.15 20.89

Total

44 .44
51.74
48.29
51.46
51.09
49.06
48.51

51.48
49.64
49.19
48.97
48.98

Total

49.68
46.28
48.73
44.88
48.86
50.56
47.47
47.50
48.53
49.51

45.96
51.24

Bulk

Surface

Ca

1.000
1.032
1.015
0.995
1.025
1.016
1.031

1.042
1.012
0.992
1.041

1.063

1.022

Ca

1.038
1.021

1.015
1.058
1.016
1.013
1.000
1.000
1.006
1.032
1.059
1.017

1.023

Fe

0.006
0.003
0.006
0.004
0.001

0.000
0.011

0.000
0.000
0.005
0.003
0.000

0.003

Fe

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.012
0.014
0.009
0.003
0.004

0.004

Cations

Mg

0.994
0.965
0.979
1.001

0.973
0.984
0.959
0.958
0.988
1.003
0.956
0.937

0.975

Cations

Mg

0.962
0.979
0.985
0.942
0.984
0.987
1.000
0.987
0.979
0.959
0.938
0.979

0.973

Total

2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000

2.000

Total

2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000

2.000



VIIl. DISCUSSION

Two main conclusions can be drawn from the information presented above: (1)
horizontal water-bearing fractures in dolomite and calcite rock tend to occur
in zones where clay and quartz are concentrated, particularly along clay
seams, and (2) secondary minerals, primarily gypsum and some calcite, are
precipitated from solution onto the fracture surfaces. The clay modes in
fracture surface scrapings in dolomite rock range from about 1% to 43%, with
an average of 18%, whereas clay modes in the bulk rock in these samples range
from less than 1% to 7%, with an average of 4.6%. Similarly, for the two
limestone samples, the clay mode is much greater on the fracture surface than
in the bulk rock (37% vs. 2%). Secondary gypsum is an important constituent
of the fracture surface mineralogy in these samples. Secondary calcite 1is

present in only one sample from a deep core and all five shallow cores.

Dolomite compositions on the fracture surfaces are no different from those 1in
the bulk rock, indicating that aqueous alteration of dolomite did not occur to
any significant extent (with the possible exception of some dissolution and

recrystallization.

Where present, calcite in these samples, both in the bulk rock and fracture
surfaces, 1s a product of recrystallization from dolomite caused by aqueous

alteration, wusually near surface.

It should be mentioned that the surfaces examined in this study are all due to
horizontal fractures; no surfaces of vertical or high-angle fractures that
were clearly identifiable as water-bearing were discovered in the cores
examined. It is probable that the vertical and near-vertical fracture
surfaces are not as clay-rich as the horizontal ones, since accumulations of

clay occur along horizontal planes due to sedimentation.

The implications of these results for the WIPP repository are obvious: since
the cation exchange capacity of clay minerals is so much higher than that of
dolomite, calcite, or gypsum, and the clay minerals are a major component of
the fracture surface mineralogy, the sorption of radionuclides due to the clay
will far outweigh that of the other minerals. This fact should be taken into
account in any study of the transport of radionuclides through the Culebra
Dolomite,
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APPENDIX A:
ANALYTICAL PROCEDURES

X-Ray Diffraction Analysis

Small portions of the ground and sieved whole rock and fracture surface
powders were placed in Plexiglas containers (2.5 x 2.5 x 0.4 cm), which have a
1 mm deep hollowed-out compartment. The surface of the powder was then
scraped off level with the top surface of the Plexiglas container. The
container was placed in the sample holder of a Scintag PAD-V automated
diffractometer and analyzed from 2° 2-9 to 60° 2-9 at a scanning rate of 3°
per minute using a 0.03° chopper increment.

X-Ray Fluorescence Analysis

Whole rock samples were ground with a mortar and pestle and then passed
through a 100 mesh sieve. Fused glass disks were prepared according to
standard procedures (Norrish and Chappell, 1967) and analyzed on a Rigaku
3064M x-ray fluorescence spectrometer for 10 elements: $Si02, AI203, Ti02,
Fezo03, MnO, MgO, Ca0O, Nazo, K20, and P20s. Four standards were used: (1) NBS-
g8sb (National Bureau of Standards - Dolomitic Limestone); (2) BCS-CRM-393
(British Chemical Standard - Chemical Reference Material); (3) Dol-1
(Echantillon-type de Calcite), and (4) AM-PAD44 (Amostra Pedrao 44).

Atomic Absorption Spectroscopy

Fracture surface samples were ground and sieved, dissolved in hydrofluoric and
perchloric acid mixture, and analyzed on a Perkin-Elmer 303 atomic absorption
spectrophotometer for seven elements: Si02, AI203, Fez203, MgO, Ca0, Nazo, and
K20 (McLaughlin, 1967).

Electron Microprobe Elemental Analysis

Polished thin sections of the samples were prepared using no water and
maintaining a temperature below 60°C. The sections were coated with carbon in
a vacuum evaporator. Mineral grains were analyzed with a JEOL 733 electron
microprobe using an acceleration potential of 15KV, a beam current of 2
nanoamperes, a beam diameter of 1.5 microns, for a period of 80 seconds per
analysis. Analyses were corrected according to standard Bence-Albee
procedures
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APPENDIX B:
MODAL MINERALOGICAL CALCULATIONS

Modes for the minerals identified by x-ray diffraction (XRD) were determined
from the compositional data obtained by x-ray fluorescence (XRF) and atomic
absorption (AA). Based on the compositions of the individual minerals, a
particular element, when present in only one mineral, was used to determine
the mode of that mineral. For example, the only phase containing aluminum in
these samples 1is clay, and electron microprobe analyses of clay samples from
the Culebra Dolomite (Sewards, Williams, and Keil, 1991) show that the clay
aggregates contain an average of 15% AI203; thus, the weight percent of clay

is calculated according to the formula:

Clay (wt%) = AI203 / 0.15

Quartz, since it contains only Sio2, is determined by:

Quartz (wt%) = Sioz - Clay(wt%) x 0.46

since the average Si02 content of the clay fraction is 46%. The remaining

mineral modes are determined using the following formulae:

(Mgo - Clay x 0.15) / 0.19
(Ca0 - Gypsum x 0.336) / 0.304

Dolomite (wt%)

or: Dolomite (wt%)

SO3 / 0.465
(Ca0 - Dolomite (wt%) x 0.304) / 0.326

Gypsum (wt%)

or: Gypsum(wt%)
Calcite(wt%) = (Ca0 - Dolomite x 0.304) / 0.56
Appendix B Reference
Sewards, T., M. Williams, and K. Keil. 1991. Mineralogy of the Culebra
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APPENDIX C:
DATA TABLES

Tables C-1 and C-2 are the raw data from the bulk rock and fracture surface
compositional analyses. Tables V-1 and V-2 are derived from these by
converting the Naz2o data to NaCl, subtracting this, and normalizing.

Similarly, Tables C-3 and C-4 are the results of the mineral mode calculations
from Tables C-1 and C-2. Tables VI-2 and VI-3 are derived from these by

removing the halite modes and normalizing to 100%.



Table C-1. Bulk Rock Compositions

Sample ID Well Depth Si0- Tio- Al-Os  Fezos MnO MgO CaO NazO K20 P205 S0s Total
CS1B WIPP-12  838.60 1.27 0.02 0.24 0.34 0.03 20.22 29.50 0.07 0.07 0.04 0.16 51.94
CS2B WIPP-13 71230  4.87 0.08 1.15 0.60 0.02 19.50 27.40 0.04 0.37 0.04 0.07 54.13
CS3B WIPP-13 70530 4.14 0.06 0.98 0.47 0.03 19.27 27.80 0.06 0.31 0.04 0.07 53.23
CS4B WIPP-13 714.00 5.56 0.05 1.14 0.56 0.02 19.30 27.60 0.05 0.37 0.04 0.04 54.72
CS5B WIPP-26 187.50 2.82 0.04 0.65 0.37 0.04 19.65 27.80 0.07 0.29 0.04 0.05 51.81
CSéB WIPP-27  305.00 1.95 0.03 0.41 0.29 0.02 20.05 27.90 0.25 0.24 0.05 0.09 51.28
CS7B WIPP-28 44750 24.02 0.29 5.51 0.78 0.03 19.02 18.89 1.29 1.19 0.03 0.10 71.15
CSs8B WIPP-29 27.00 3.73 0.06 0.84 0.44 0.02 19.80 27.50 0.22 0.34 0.05 0.06 53.05
CS9B WIPP-30 633.50 14.27 0.17 2.81 0.09 0.01 19.15 26.14 1.75 1.12 0.13 0.19 65.83
CS10B WIPP-30  639.00 2.70 0.04 0.55 0.34 0.02 20.40 29.90 0.05 0.18 0.10 0.05 54.32
CS11B WIPP-30  635.00 1.35 0.02 0.33 0.30 0.02 20.05 29.80 0.30 0.13 0.10 0.07 52.46
CS12B WIPP-32 57.00 0.35 0.01 0.10 0.08 0.01 11.40 43.60 0.05 0.02 0.18 0.12 55.92
CS13B WIPP-32 91.10 53.36 0.74 12.96 4.32 0.01 16.15 0.95 0.05 2.32 0.21 0.03 91.10
CS14B WIPP-32 55.00  2.20 0.02 0.38 0.15 0.02 0.84 54 .40 0.04 0.13 0.25 0.13 58.56
CS15B WIPP-32 56.00 295 0.03 0.50 0.22 0.02 0.84 52.60 0.04 0.17 0.25 0.12 57.73
CS16B WIPP-32 62.00 1.55 0.02 0.32 0.14 0.01 17.40 32.50 0.05 0.12 0.12 0.07 52.30
CS17B WIPP-33  570.00 1.77 0.02 0.24 0.10 0.00 0.35 32.20 0.10 0.04 N.A. 45.97 80.79
CS18B WIPP-34 836.00 245 0.04 0.50 0.34 0.02 20.20 27.80 0.06 0.18 0.10 0.09 51.77



Sample ID

CS1S
CS2s
CS3S
CSs4s
CSss
CS6S
CS7S
CSss
CS9s
CS10S
CS11s
Cs12s
CS13s
CS14s
CS158
CS16S
CsS17s
CS18S

Well

WIPP-12
WIPP-13
WIPP-13
WIPP-13
WIPP-26
WIPP-27
WIPP-28
WIPP-29
WIPP-30
WIPP-30
WIPP-30
WIPP-32
WIPP-32
WIPP-32
WIPP-32
WIPP-32
WIPP-33
WIPP-34

* = Insufficient Sample

Depth

838.60
712.30
705.30
714.00
187.50
305.00
447.50
27.00
633.50
639.00
635.00
57.00
91.10
55.00
56.00
62.00
570.00
836.00

Si0-

15.90

15.60
9.58
3.46

18.90
7.10

23.30

38.20
4.49
0.96

45.50

28.40

25.40
4.48

28.30
2.64

Table C-2. Fracture Surface Compositions

Alz0-

2.80
4.40
2.10
4.16
1.30
0.60
4.66
1.16
5.76
7.88
1.30
0.14
11.06
6.76
5.90
0.70
5.74
0.68

Fe=0-

0.40
1.28
0.56
1.50
0.44
0.26
1.28
0.94
1.56
2.00
0.36
0.12
3.12
2.06
1.94
0.32
2.12
1.12

MgO

5.60
17.08
14.04
16.50
17.36
18.90
17.46

6.48
15.28
11.48
10.78
12.94
11.30

9.64

7.90
16.60

4.64

4.36

Ca0o

12.80
20.60
18.80
18.40
24.00
26.40
18.60
15.60
15.40
10.24
16.60
39.60
11.16
23.60
28.40
33.40
17.40

7.64

Na20

34.00
1.68
11.60
5.16
4.66
3.92
3.08
19.30
3.24
1.58
20.28
1.26
0.34
0.96
0.70
0.98
0.72
38.90

K20

0.32
1.19
0.82
0.12
0.57
0.29
0.87
0.79
1.83
2.09
0.38
0.06
1.56
1.80
1.33
0.24
1.29
0.18

S0-

2.08
0.02
0.29
0.01
0.01
0.60
20.80

Total

55.52
60.85
47.36
61.28
57.47
53.57
63.60
50.43
64.81

71.47
55.91

54.98
81.21

71.17
69.64
57.00
78.89
54.40
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Table C-3. Bulk Rock Mineral Modes (Unnormalized)

Sample ID Dolomite Calicite Gypsum Halite Clay Quartz Total
Cs1B 97.04 1.60 0.53 99.17
Cs2B 90.13 7.67 1.34 99.14
CS3B 91.45 6.53 1.13 99.12
Ccs4B 90.79 7.60 2.06 100.45
CS5B 91.45 4.33 0.83 96.61
cseéB 91.78 2.73 0.69 95.20
Ccs7B 62.14 36.73 7.12 105.99
CssB 90.46 5.60 1.15 97.21
CS9B 85.99 0.93 18.73 5.65 111.30
CS10B 98.36 3.67 1.01 103.04
Cs11B 98.03 2.20 0.34 100.56
Ccs12B 59.47 39.56 0.26 0.67 0.04 100.00
Cs13B 3.13 86.40 13.62 103.14
Cs14B 97.14 2.53 1.03 100.71
CS15B 93.93 3.33 1.42 98.68
Cs16B 89.89 7.40 2.13 0.57 100.00
CS17B 98.86 1.60 1.03 101.49
CS18B 91.45 3.33 0.92 95.70



Appendix C: Data Tables

Table C-4. Fracture Surface Mineral Modes (Unnormalized)

Sample ID Dolomite Calcite Gypsum Halite Clay Quartz Total
cs1s 14.74 25.52 64.09 18.67 0.00 123.01
cs2s 66.74 0.96 3.17 29.33 13.88 114.07
Cs3s 62.84 0.00 21.87 14.00 0.00 98.71
cs4s 64.95 2.88 9.73 27.73 13.69 118.98
Csss 84.53 0.00 8.78 8.67 8.98 110.96
CS6S 96.32 7.39 4.00 3.18 110.89
CS7S 67.37 5.81 31.07 16.76 121.00
Csss 28.00 21.74 36.38 7.73 6.57 100.42
CSs9s 50.11 0.52 6.11 38.40 20.65 115.78
Cs10S 33.68 0.00 2.98 52.53 34.58 123.77
Ccs11s 49.89 2.56 4.47 38.23 8.67 3.89 107.71
cs12s 67.37 34.14 2.38 0.93 0.90 105.72
Cs13s 19.93 0.64 73.73 40.41 134.72
Ccs14s 42.14 1.81 45.07 25.29 114.31
CS15S 50.71 1.32 39.33 22.69 114.05
CS16S 83.68 14.21 1.85 4.67 4.16 108.57
Cs17s 44.73 1.36 38.27 25.66 110.02
Cs18S 25.13 0.00 73.33 4.53 2.33 105.32
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Centre D’Etudes Nucleaires
De La Vallee Rhone

CEN/VALRHO
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