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& metbod for  crk:uJating th. apt- ap- 
eashg t q m r a w s e  of the cul lctol /a tor .oe eub- 
a y s t a  ia a solar a r i s t d  h u t  pnp sys tm la pra- 
aentd. A t r deo f f  alats betvaen ti.* laeat pnp 
coaffici8ns of parfOm8ace u30 f a -  co i lac t s t  
o f f i e b y  a. fhi. trpa:awe i 8  incr.Ua* result- * in m wtZ1D. t-rng. whose 40. -auu 
with ilPcruring eff ict.aoy of tb. aaxWary mars y 
soprsa. Bkcrtdc r-18tauee ir sbmm to be a poor 
backup to mlp aystms. A numbax of optlono for  
themally cixplfoe the s y s t a  t o  the ground are 
anilya.8 and c a p r r d .  

Solar a s s i s cd  h u t  pump (W) -st- bnrr b.cn 
studied -vely. Most of these sclsdiu [ 1 4 ]  
have s inulotd,  on ur hour-byhour besS., s e v d  
plausible ayst .~r  configuratbas involving row 
collactors .rd hut pumps. All of the referancd 
studfea asmmud tbt electric ruistmce was the 
auxahry h..f mure.. U t m h  wch bas b.0 
lurtnd from thtr. sendies, it h u  b r a  d u f i c o l t  
to  evduace tb r  uzuit&vley af tbk r d t r  to 
a l l  of the asmaptionr tht vrnt Lrto thei. The 
need was a..n for ma apororch which voold be a h -  
ple enough #, tht all of the -tiem could 
be stated conclaely. Urn, the question h s  bem 
asked 15.61: Wbat Is tbr  opt- tcnpueture a t  
which solar energy should be co l l oc td  .Id stored 
in SBfIP systems? Such .D optimum m y  be producd 
by tha tradeoff bmnea  fncrur iag  bart pump CO- 
efficient of performuace (COP) uid d r r e u i n p  col- 
lactor efficteacy vi th  inc tus ing  t rpe ra tu r i .  
This paper d.rccribea a mat- fo r  answr%nu the 
above- q k t i o n  by b~MI*ai of clonmd-fu~~~ ~lg;brafr 
solutiow. Fundneatal to  the present approach fa  
the asnmptioo that, within acceptable limlts of 
accuracy, the storage t m p a t n r e  of the solar sys- 
t 5  Is a cousunt throughout each of the the  per- 
lodo (month. in tbi. paper) into which the 8kUt.f 
tfoo i. divldd. Of course, thi. vfll n e v a  be 
s t r le t ly  true bOY.Pm. h computu s h u h t i o O l  of 
SBLHP systeaa, the s t o r y e  t a p a a t u r e  during tb. 
period Dec.nba through February, when rort of tb. 
heating load occurs, rau- mest of the t h e  with- 
in 10% of the r u  rintPlir valru. In any event, 
the outcome of tb analysis w i l l  br m optimum stor- 
-8 taopuatuxe for  each aoOr4 8ay u~ursioor f r m  
thir value v i l l  repruea t  arboptiaal operation. 

Collector puforauoce Is modeled via the uIIL.1 
Ilottrt-Wblll1.r sur lgM-l lae  graph of aff ici.Ilcy 
VS. (T-T.)/I. collectos i n l e t  t r p a r t u t e  ir 
h.t@ 8 . d  t o  8qld. tb S t O r . g 8  T. 
Co l l c to r  efficiency Is ghran by 

where T, Is the d i e n t  temperature. I thr insola- 
tion rate ,  ud so md xo th8 v u t i c a l  and horiton- 
t a l  iOfercept8 of the eff lc iatcy cum&. 

The intauolty of the insolatlor& striklmg the col- 
lectar  dw* dsylight hfirts ZI taken t o  be r ran- 
dom v u l a b l e  v t t h  a c o ~ f u r t  ptobabillty damsfty 
for  lasolation values bet- 0 uid 1 Tb.t 
pomton of r c e i v d  insolation fa~~&%Gttr. intm- 
a i ty  putu thaa (T-Te)/x0 coo be par t ia l ly  col- 
l e c t d  with efficleucy incruriag with InCreesing 
I. The laurt-intcruity M r z l a o  1. aosc c a p l e t -  
ely. It un be shown t h e  u d w  thur u.urpt&eaa 
the to- angt tbrt can be coLl.cted a t  t -pm- 
aue T i a  givau by 

wbara S is the received i ruolr t ion on a uni t  a r u  
of collector, A Is the coLlector uar, and I;, fa 
the maxima stagrution temperature Ta + I- x0 . 
The d q l e  formula given in Eq. 2 I s  not io taded  
to b. a t ,  but in 0rd.r f o i  it to  be u ~ r t u l  It 
should proold. results which a r e  reawnably close 
t o  those given by more preci.8 methods, I h v e  
therefore used Eq. 2 t o  c d c u h t e  the solar frac- 
tionr for tho c a m  given in the original f C h r t  
paper (71, asruniag a w l f r t o r  o p ~ a t b g  tapera-  
tnre of bOoC, .Id I - 3410 W/m -hr. This eon- 
parison l a  shoull in%l- 1-3 and 5-111 of Table 1. 
On a monthly basla Eq. 2 tad. to  give lover solar 
f r e t l o x u  tb.n f-rt a t  lov collector a r m s  and 
hfghu estimates a t  high collector ar-. Thka 
trend I s  also seen in the yearly totals,  w%th 
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howfar c l a w  -#cat b m  t& ho a t  .l1 
co l l c to?  a r u m .  Wcr#. af it. st rgt ic i ty ,  Eq. 2 
l a d o  i c w f t  umU to oU fa 19 d.oW d.1 d 
a oot. capUc*trt mr. 

Tho dffcirot  of porfomaaco CO% of tho solar 
rorrzee &.t pap J. laQlSd ..a e8mB-t fuct*aY 
at  W t  [blr 

Th. h u t  prp rraice t r g r 1 t n r o  I8 8.mB.d .purL 
a0 rbr 8CO#pO h-a-0 T. % ~ ~ ~ 0 .  "a 
cum* of haat prp COP *.. raorr. taparatur. un 
bo f l t t d  to thfa aquatian, v i th  y rPb Tc aorv3ag 
ar paru&rrs for tb f i t .  Tbi. 8pgmcl.h f .  t.Lrr 
We, v i t h  y = 0.SM &a& To - 345 9: (band orr data 
fTmUi?. 5). B-Bf t b f m o f  tbP.Wtion. 
all t-1-u auat k expramad Ln abmluta 
uait. i~ tho ~ t l r  rtuS f o l l ~ W .  

In caltrut ta -e capat-  .hu&tfaw of SIUPC 
qtu to at., th m x l l l y  or b u h p  .aclza 
murca fi l ~ ~ t  rrrad a t  tha gtlt~t to  ba electric 
res i r ta~co ,  wSth r COP of 1. folrtmi, th COP of 
tho ( C q )  L. l&t 88 l W1I.t.r. II. 
ummo f s  aov ttmt t b . . u r i l i u y C i l ?  I r a  con- 
rurrt Mqadat of * rrtoat to trbfch ir 1. &. 
t-, wbar g r d  couptag ir coa . t dua ,  tht. 
a*.olrgtion *tll lmm to b. W d f t l d .  

It ir new pouibla to c ~ u  the f l m  of orbor87 
thsough th w a r .  ?he gurgf to d.51-d to 
tta bmi the ml.r rourco hat pmp IS .qcul to 
t& ara of ttn c o u r t d  -kt gUtW pfU. tho par- 

c h s d  * w g ~  noodd to o p r r t o  the hut prp, 
which i. uldd to tho hut d. l lvrrd t o  tb. 

It is . s u r d  h u o  t h t  the .nam 8, d o l i v u d  by 
tho solar maurea h u t  p m ~  do- not u c o d  the 
IordEt. I a t h i . ~ t l m a u x % U a r y - g y r o -  
qulrrrot I 8  gSvon by 

Tha purebud onergy roquird to opuato tho a u -  
u* fa givcm by 



The t o t a l  purchased energy E 
minimized as a func t ion  of tRe * so eEs a r  + system EPx is opera- be 
t ing  temperature by s e t t i n g  d /dT equal  t o  zero 
and solving f o r  T. When t h i s  'n s done, t h e  optimrm! 
operat ing temperature Top is obtained: 

where Tr = ( ~ - Y / C O P ~ ) T ~  . 
One should remember t h a t  t h i s  r e s u l t  depends upon 
the  assumption t h a t  t h e  energy ES del ivered by t h e  
s o l a r  source heat  pump does not exceed t h e  load 
Et . This  requirement def ines  a domain of reqson- 
a b l e  s to rage  temperatures, t h e  lower l i m i t  of which 
is t h e  temperature To, f o r  which enough s o l a r  en- 
ergy is co l lec ted  that no a u x i l i a r y  is needed. Be- 
low t h i s  eemperature, t h e  theory presented above 
no longer corresponds t o  r e a l i t y ,  s i n c e  it m u l d  
requi re  a negat ive con t r ibu t ion  from t h e  a u x i l i a r y .  
But t h e r e  can  be no point  in going below t h i s  tem- 
pera ture  in prac t ice ,  s i n c e  heat  pump performance 
becomes poorer and t h e r e  is no compensating reduc- 
t i o n  in a u x i l i a r y  usage. By s e t t i n g  Es equal t o  
EQ and solving f o r  T, t h e  no-auxiliary s to rage  tem- 
pera ture  Tox is obtained: 

I f  Top>To,, then t h e  assumptions used in der iv ing  
Top a r e  v a l i d  and Top is t h e  o p t i n g  s to rage  tm- 
peratrcre. If  'I;op<Tox, then Top is unphysical and 
To, is t h e  optimum. I n  any case ,  ' then, t h e  optimum 
s torage  temperature To is given by 

A number of conclusions can be drawn from t h i s  an- 
a l y s i s .  F i r s t ,  i f  e l e c t r i c  r e s i s t a n c e  a u x i l i a r y  is  
used (COPx a 1).  then Tr = Td .and 

The r i g h t  s i d e  of Eq. 11 is  p o s i t i v e  f o r  a l l  T<&; 
there fore  t h e  purchased energy required decreases 
monotonically with decreasing T and there  can be no 
optimum Top>Tox . I n  t h i s  c a s e  To, is always t h e  
optimum temperature, which means t h a t  t h e  system 
should be operated a t  a temperature low enough t o  
make r e s i s t a n c e  backup unnecessary. For low co l -  
l e c t o r  a reas  To, can be well  below ambient ,possibly 
r e s u l t i n g  in system performance poorer than tha t  of 
an air- to-air  heat  pump. But it does lead  t o  t h e  
conclusion t h a t  r e s i s t a n c e  heat  is a poor backup t o  
such a system, s i n c e  i f  it needs t o  be used it  im- 
p l i e s  suboptimal system operat ion.  

If a backup with a COP g r e a t e r  than one is used, 
then optimum opera t ing  temperatures can be obtained 
which r e q u i r e  t h e  use of some backup. Such an aux- 
i l i a r y  could b e  provided, f o r  example, by a sepa- 
r a t e ,  f reezab le  tank of water o r  o ther  phase-change 
mate r ia l  ( a  mini-ACES system), o r ,  on a primary en- 

ergy bas i s ,  by a foss i l - fue led  burner. I f  such a n  
a u x i l i a r y  i s  used, one can ob ta in  t h e  optimum s t o r -  
age temperature f o r  t h e  SAHP system f o r  each month, 
and t h e  amount of purchased energy required t o  op- 
e r a t e  t h e  system. One can also c a l c u l a t e  t h e  en- 
ergy required t o  meet t h e  e n t i r e  load with t h e  aux- 
i l i a r y  only,  without the SAEP. For some types of 
a u x i l i a r y  (e.g. t h e  ice-maker) this l a t t e r  s t r a t -  
egy would involve added c a p i t a l  and opera t ing  c o s t s ,  
whereas f o r  o t h e r s  (e.g. t h e  fue l - f i red  burner) 
t h e r e  would be no a d d i t i o n a l  c a p i t a l  c o s t s .  The 
d i f f e r e n c e  between t h e s e  two numbers is t h e  energy 
saved by t h e  SAtW system. These euergy savings 
a r e  presented i n  Fig. 1, f o r  t h e  weather and load 
d a t a  of Table 1, a s  func t ions  of c o l l e c t o r  a rea ,  
f o r  systems having a u x i l i a r i e s  with COP'S of 2, 2.4, 
and 3. Col lec tors  having v e r t i c a l  i n t e r c e p t s  of 
0.7 and hor izon ta l  Fneercepts of 0.02, 0.03, and 
0.04 ' ~ - m ~ - h r / k ~  a r e  used. A s  t h e  e f f i c i e n c y  of 
t h e  auxiliary increases,  the  energy which can be 
saved by t h e  SAkW system decreases r e l a t i v e  t o  use 
of t h e  a u x i l i a r y  only.  There a r e  two reasons f o r  
thls. F i r s t ,  with a more e f f i c i e n t  a u x i l i a r y  
t h e r e  is simply l e s s  room f o r  consemat ion  s ince  
t h e  a u x i l i a r y  is now by i t s e l f  r e l a t i v e l y  energy 
e f f i c i e n t .  Second, t h e  SAHP, in order  t o  compete 
with t h e  a u x i l i a r y ,  must opera te  a t  higher  source 
temperatures i n  o rder  t o  provide COP'S t h a t  a r e  
a t t r a c t i v e  r e l a t i v e  co t h e  a u x i l i a r y .  This  can be 
seen by examining in Fig. 1 t h e  January (lowest) 
optimum s torage  temperatures f o r  each case. Oper- 
a t i n g  a t  higher source and c o l l e c t i o n  temperatures, 
t h e  SAHP system w i l l  now c o l l e c t  a d  use  l e s s  s o l a r  
energy than before. I n  evaluat ing these  r e s u l t s ,  
it is  necessary t o  keep in mind t h e  assumption t h a t  
was made, t h a t  t h e  a u x i l i a r y  COP was independent of 
t h e  ex ten t  t o  which i t  is used. A more e f f i c i e n t  
a u x i l i a r y  which uses e l e c t r i c i t y  a s  the  source of 
purchased energy must use a hea t  pump i n  connection 
v i t h  an a l t e r n a t e  source of low-grade hea t ,  a s  from 

COP OF 
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Fig. 1. Purchased Energy Saved by S U P  Relat ive 
t o  Use of Auxiliary Only, v i thout  SAHP 



t h e  l a t e n t  hea t  of fus ion  of i c e  o r  from t h e  ground. 
Such a u x i l i a r i e s  w i l l  in genera l  no t  s a t i s f y  t h e  
above assumption of cons tan t  COP a s  a func t ion  of 
u t i l i z a t i o n ,  but w i l l  perform b e t t e r  when used l e s s  
or ,  a l t e r n a t i v e l y ,  wFU r e q u i r e  g r e a t e r  I n i t i a l  
c a p i t a l  c o s t  t o  p r w i d e  t h e  same performance a t  
higher l e v d s  of u t i l i z a t i o n .  One poss ib le  alter- 
n a t e  heat  source, t h e  ground, is now examined in 
g r e a t e r  d e t a i l ,  

GROUND COUPLING 

The use  of t h e  ground a s  a source of low-grade heat  
as input  t o  a heat  pump f o r  space and water heat ing 
is under in tens ive  inves t iga t ion  iill a number of 
count r ies  18-10]. A number of op t ions  f o r  combining 
t h e  use  of ground-source and solar-source energy 
have been i d e n t i f i e d .  These are: 

1. Use of t h e  ground a s  a long-term s o l a r  s to rage  
medium, t o  allow.excess s o l a r .  heat  co l lec ted  In 
the sumer and f a l l  t o  be p a r t i a l l y  recovered in 
the w i n t e r  months. 

2-4. Storage of s o l a r  h e a t  in a separa te  tank, 
v i t h  ground hea t  processed t o  t h e  load v i a  t h e  heac 
pump when s o l a r  heat  is unavilable. A t  l e a s t  t h r e e  
subs t ra teg ies  e x i s t :  

2. Solar  heat  de l ivered  t o  t h e  load d i r e c t l y  
when t h e  tank  tenpera ture  is a b w e  a s e t  minimum 
(here taken t o  be 40°C), and processed through t h e  
heat  pump when t h e  tank temperature is l e s s  than 
t h i s .  

3. Solar  hea t  de l ivered  t o  t h e  load d i r e c t l y  
only. Ground-coupled a u x i l i a r y  is used when t h e  
tank tenpera ture  drops t o  40°C. 

4 .  Solar heat  used t o  preheat  t h e  , re tu rn  a i r  
from t h e  load, w i t h , u s e  of t h e  ground-source heat  
pump t o  r a i s e  t h e  a i r  t enpera ture  t o  the  va lue  re-  
quired f o r  comfort [3] .  I n  t h i s  s t r a t e g y  t h e  tank 
tnnpernture can drop bdow 40°C, but  must raaa in  
above that of t h e  heated space (20°C). 

5. Use of passive s o l a r  design concepts, with t h e  
ground-coupled heat  pump providing hot  v a t e r  and 
a u x i l i a r y  space heating. 

Although t h e  presen t  study concentrates  on heating. 
i t  should be ranembered t h a t  in each of these  con- 
c e p t s  t h e  hea t  pump can a l s o  provide s e n s i b l e  cool- 
ing and/or dehumidif icat ion,  where required.  The 
following a n a l y s i s  begins with op t ion  2, and is ex- 
tended t o  opt ions 3 and 4. Treatment of opt ions 1 
and 5 remains f o r  f u t u r e  work. Other means of com- 
bining s o l a r  with ground energy a r e  possible ,  such 
a s  t h e  burning of wood backed up by t h e  grouad- 
source heat  pump o r  t h e  use  of photovoltaics  t o  
d r i v e  t h e  ground-source heat  pump. These a r e  not 
considered here. 

System Optimization f o r  Option 2 

is assumed that t h e  a b i l i t y  of t h e  ground t o  de l iv -  
e r  hea t  is proport ional  t o  t h e  d i f f e r e n c e  between 
t h e  tenpera ture  Tx a t  which hea t  is ex t rac ted  and 
t h e  temperature Tf of undisturbed ground a t  t h e  
same depth a t  t h e  same time of t h e  year ,  o r  f a r -  
f i e l d  temperature: 

The cons tan t  b is a product of t h e  faherent  hea t  
t r a n s f e r  c a p a b i l i t y  of t h e  ground coupling device, 
in kJ/k-OC-m f o r  l i n e a r  p ipes  o r  ~ / h r - ~ ~ - m ~  f o r  
tanks o r  planar  devices; t h e  size of t h e  device in 
linear o r  square meters; and the number of hours 
In t h e  time period. e.g. 720 hr/month. The COP of 
elre b l e a t  pump u s h g  ~ ~ o u n d - a ~ ~ r c ~  energy 1s awsum- 
ed t o  fol low tho same funct ion of source teapera- 
t u r e  a s  when using solar-source energy: 

Two energy balance equations can be w r i t t e n ,  the  
one on t h e  ground-source heat  pump given by 

and t h e  one on t h e  load given by Eq. 6 a s  before. 

Solving these  equat ions f o r  E (el iminat ing Ex, 
E and Tx) one ob ta ins  PX 
g.' 

where ES is given a s  a func t ion  of T by Eq. 4.  Epx 
is then added t o  Eps t o  o b t a i n  t h e  func t ion  t o  
be minimized. The func t iona l  r k t ionsh ip  between 
Ep and T is now complicated enough t h a t  a t tempting 
to f i n d  t h e  minimum i n  t h e  usua l  way r e s u l t s  in an 
i n t r a c t a b l e  fourth-degree equation. Instead,  t h e  
m i n i m u m  was found f o r  each c a s e  by means of a com- 
puter.  The COP vs.  T r e l a t i o n s h i p  used ( including 
p a r a s i t i c  power requirements) is shown in Fig. 2 ,  
which assumes processing of s o l a r  lieat tlxuugh tha  
heat  pump below 40°C (51  and d i r e c t  heating above 
[ l l ] .  For t h e  l a t c e r  region of temperature, t h e  
above equat ions were modified t o  t ake  i n t o  account 
t h e  l i n e a r  r e l a t i o n s h i p  of direct-heat ing COP t o  
temperature T. 

The r e l a t i o n s h i p  of s o l a r  c o l l e c t o r  a r e a  t o  ground- 
coupled f i e l d  hea t - t rans fe r  capaci ty.  f o r  systems 
optimized a s  t o  s to rage  temperature on a monthly 
bas i s ,  is shown by the  s o l i d  curves in Figs.  3-5 
f o r  c o l l e c t o r s  having hor izon ta l  i n t e r c e p t s  x0 
equal t o  0.02, 0.03, and 0.04 'c-m2-hr/kJ, respec- 
t i v e l y .  The weather and load d a t a  of Table 1 were 
used. Representative far-f i e l d  temperatures were 
ca lcu la ted  a t  1.5m depth a t  t h e  Madison loca t ion  
[12] .  Each curve is p lo t ted  f o r  a constant  f r a c -  
t i o n  F of nonpurchased ( s o l a r  and/or ground) energy. 
The numbers along the  curve a r e  t h e  optimum operat-  
lug temperatures f o r  s o l a r  s torage,  in January, a t  
t h a t  point  on t h e  curve. 

I n  order  t o  t r e a t  the  c a s e  where ground-source heat  
is used a s  a backup to a solar-source heat  pump, it 
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Fig.  2. System COP vs. Water Source Temperature: 
T<40°C, H e a t  Pump; T>40°C, D i r e c t  Beat ing.  

GROUNO-COUPLED FlELO HEAT TRANSFER RATE 
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Fig.  3. S o l a r  C o l l e c t o r  Areas and Ground-Coupled 
F i e l d  S i z e s  Needed t o  Provide a F r a c t i o n  F of Non- 
Purchased Energy. Hor izon ta l  I n t e r c e p t  .Y, of Col- 
l e c t o r  Ef f i c i ency  Curve = 0 . 0 2 ~ ~ - m 2 - h r / k ~ .  Numbers 
on Lines Are Optimum Source Temperatures in January. 

GROUNO-COUPLED FlELO MEAT TRANSFER RATE 

( GJ/'C -MONTH) 

Fig.  4. S o l a r  C o l l e c t o r  Areas and Ground-Coupled 
F i e l d  S f i a s  Needed t o  Provide a F r a c t i o n  F of Non- 
purchased Ehergy, Xo 0 . 0 3 ~ ~ - m ~ - h r / k . J .  

GROUND-COUPLED FIELD HEAT TRANSFER RATE 

(GJI'C -MONTH) 

Fig.  5 .  S o l a r  C o l l e c t o r  Areas and Ground-Coupled 
F i e l d  S i z e s  Needed t o  Provide a F r a c t i o n  F of Xon- 
Purchased Znergy, X, = 0 .04~~-m*-hr /kJ .  



Economic Opt'iinum CONCLUSIONS 

The t radeof f  between s o l a r  c o l l e c t o r  a r e a  and 
ground coupling can be represented by curves of 
cons tan t  c o s t ,  which a r e  s t r a i g h t  lines whose neg- 
a t i v e  s lope  is equa l  t o  t h e  r a t i o  of u n i t  c o s t  of 
ground coupling t o  t h a t  of c o l l e c t o r  area.  From 
a family of such l i n e s  of equal  s lope ,  s e l e c t  t h e  
one which is tangent  t o  t h e  curve of cons tan t  ays- 
tem performance. The econamic optbum, f o r  a pre- 
se lec ted  f r a c t i o n  of nonpurchased energy, f o r  sys- 
tems having both s o l a r  c o l l e c t o r s  and ground coup- 
l i ng ,  is  t h e  point  of tan8ency. Bose [gal has 
quoted a n  i n s t a l l e d  c o s t  of $2 t o  $ 3 / f t  ($6.50 t o  . 
$lO/m) f o r  a buried-pipe system which provides 
s u s t a i n a b l e  heat  r a t e s  in excess of 2 Btulhr-OF-ft 
pipe (12.5 U l h r - O C *  i pe )  . I f  c o l l e c t o r s  a r e  1 assumed t o  c o s t  $100/m o r  more i n s t a l l e d ,  optimum 
ground-coupled f i e l d  c a p a c i t i e s  of approximately 
1.0 GJ/OC-month o r  more a r e  obtained. This  is  im- 
p o r t a n t ' t o  t h e  discussion which follows. 

Options 3 and 4. 

The a n a l y s i s  was extended t o  include op t ion  3 by 
r e s t r i c t i n g  t h e  computer search of s o l a r  source 
temperatures t o  a domain above 40°C. Curves of 
cons tan t  system performance f o r  systems optimized 
under these  condi t ions  a r e  shown by t h e  dashed 
lines Fn Figs. 3-5. Since t h e  set of poss ib le  op- 
e r a t i n g  condi t ions  under op t ion  3 is a proper sub- 
s e t  of those  a v a i l a b l e  to  opt ion 2, t h e  opt ion 3 
curves w i l l  always l i e  a t  o r  above those of opt ion 
2. For opt ion 3 t h e  January optimum operat ing 
temperature was always 40°C, t h e  minimum ava i lab le .  

A n  approximate treatment of op t ion  4 was made by 
allowing t h e  search f o r  t h e  optimum temperature 
under t h e  d i r e c t  heating mode t o  extend below 40°C, 
with a COP a s  a func t ion  of t anpera ture  which f o l -  
lows t h e  same s t r a i g h t  l i n e  a s  above 40°C, inter- 
cept ing t h e  hor izon ta l  a x i s  a t  20°C (s lope  O.II°C). 
The r e s u l t s  of this opt imizat ion procedure a r e  
shown by t h e  dash-dot l i n e s  of Figs. 3-5. 

Resu l t s  f o r  Ground Coupling 

I f  we focus our a t t e n t i o n  towards t h e  r i g h t  s i d e s  
of Figs. 3-5, where in each case  t h e  economic op- 
timum probably l i e s ,  the  following r e s u l t s  can be 
noted. For t h e  two b e t t e r  c o l l e c t o r s  (Figs. 4 and 
5). op t ions  2 and 3 gave r e s u l t s  which were not 
very d i f f e r e n t .  Since opt ion 3 is  opera t iona l ly  
simpler than op t ion  2, it is t o  be preferred i n  
these cases .  Option 4 gives  somewhat b e t t e r  r e s u l t s  
than t h e  o thers ,  but the d i f fe rence  is not g r e a t  ex- 
cept  f o r  F-0.08, x0 = 0.03 (Fig. 4 ) .  For t h e  co l -  
l e c t o r  having t h e  lowest hor izon ta l  i n t e r c e p t  (Fig. 
3 ) .  option 2 r e q u i r e s  s ign i f ican t ly  l e s s  c o l l e c t o r  
a rea  than opt ion 3. In  t h i s  case,  opt ion 4 is  a- 
bout equivalent  in performance t o  opt ion 2. Option 
4 ,  while more complex from a c o n t r o l s  s tandpoint  
than op t ion  3 ,  is about a s  simple a s  opt ion 3 a s  
f a r  a s  hardware is concerned, and is there fore  
probably t o  be preferred over opt ion 2 in t h i s  
case. 

The following conclusions a r e  drawn: 1 )  E l e c t r i c  
r e s i s t a n c e  is a poor backup t o  a SAHP system. 2) 
A s  t h e  COP of t h e  a u x i l i a r y  increases,  t h e  optimum 
s torage  temperature of t h e  SAHP system increases,  
assuming t h a t  t h e  a u x i l i a r y  COP is independent of 
t h e  ex ten t  t o  which it is used. 3) When ground 
coupling is  used a s  a backup t o  a SAHP system, and 
s o l a r  energy is c o l l e c t e d  in a separa te  tank, it 
does no t  appear advantageous t o  process solar-de- 
r ived  hea t  through t h e  heat  pump. This conclusion 
does not  apply t o  t h e  case  where s o l a r  energy is  
s to red  in t h e  ground. 
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