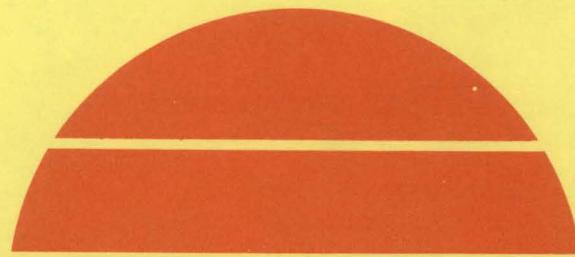


310
2/19/80

DR. 856

DOE/CS/4048-3

WEST CHESTER WORK CENTER SOLAR SPACE HEATING DEMONSTRATION
PROJECT


Interim Test and Evaluation Report

MASTER

July 1979

Work Performed Under Contract No. EY-76-C-02-4048

Bell Telephone Company of Pennsylvania
Philadelphia, Pennsylvania

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

U.S. Department of Energy

Solar Energy

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

This report has been printed directly from copy supplied by the originating organization. Although the copy supplied may not in part or whole meet the standards for acceptable reproducible copy, it has been used for reproduction to expedite distribution and availability of the information being reported.

Available from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

Price: Paper Copy \$4.50
Microfiche \$3.00

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

West Chester Work Center

Solar Space Heating Demonstration Project

Under Contract No. EY-76-C-02-4048

Interim Test and Evaluation Report

July 1979

Bell Telephone Company of Pennsylvania

One Parkway

Philadelphia, Pennsylvania 19102

Prepared for

U.S. Department of Energy

rb
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

TABLE OF CONTENTS**Abstract**

- 1.0 Introduction
- 2.0 System Description
 - 2.1 Design Scheme
 - 2.2 System Components
 - 2.3 System Controls
 - 2.4 Performance Monitoring
- 3.0 Operational History
- 4.0 System Modifications
 - 4.1 Heat-Tracing of Vent Valves
 - 4.2 Plumbing Modifications
 - 4.3 Drain Control Modification
 - 4.4 Cycling of Heat Utilization Pumps
 - 4.5 Valve Sequence Improvement
 - 4.6 Drain Malfunction Alarm
 - 4.7 Refill Pump Overtime Alarm
 - 4.8 Outside Air Damper Improvement
 - 4.9 General Check-out of Control System
 - 4.10 Modification Cost Summary
- 5.0 Collector Panel Repairs
- 6.0 System Performance
 - 6.1 Historical Narrative
 - 6.2 Performance Parameters
 - 6.3 Observations
- 7.0 Lessons Learned
- 8.0 Conclusion
- 9.0 References

Figure 1: Plot Plan
Figure 2: Floor Plan
Figure 3: Simplified Flow Diagram
Figure 4: Plumbing Modifications

Table 1: Performance Monitoring Instrumentation
Table 2: System Performance Summary

Appendix A: Design Drawings

ABSTRACT

This document reports on the test and evaluation stage of a solar space heating demonstration project. It describes an integrated system providing solar energy space heating for a 9982 sq. ft., newly built, one-story building. The building is located at 966 Matlack Street, West Goshen Township, Chester County, Pennsylvania. Functionally, the building consists of two sections: An Office and a Storeroom. The Office section is heated by solar-assisted water-to-air heat pump units. The Storeroom section is heated by an air-handling unit, containing a water-to-air coil. The system design was based on solar energy providing 62% of the heating load, with the balance to be supplied by a back-up electric boiler. The system includes 1900 active (2112 gross) square feet of flat-plate solar collectors, and a 6000 gallon above-ground indoor storage tank. Freeze protection is provided by a gravity drain-down scheme combined with nitrogen pressurization in a closed circuit.

System operation during the 1977-78 heating season disclosed some major deficiencies in both the design and installation of the system, which caused the system to freeze and required it to be shut down for prolonged periods. Several major modifications and repairs were undergone during 1978, as detailed in this report.

System operation during the 1978-79 heating season showed noticeable gradual improvement. Operation during February, 1979, which included a 15 day stretch of continuous subfreezing weather, was quite satisfactory. However, there is room for further improvements aimed at minimizing maintenance requirements and maximizing energy savings.

1.0 INTRODUCTION

In June, 1976, the generic design of the solar space heating system for the West Chester Work Center was completed by InterTechnology Corporation (ITC) as part of their "Solar Heating & Cooling of Buildings - Phase I" contract with the U.S. Energy Research and Development Administration (ERDA). The basic scheme for building heating and the sizing of the solar components was optimized by ITC and presented by ERDA to Bell of Pennsylvania in a package consisting of generic drawings and specifications. Those drawings were included as Appendix A of Reference 9.1.

The solar heated building is one of two buildings situated on a five acre lot (Figure 1). It is T-shaped (Figure 2) with one axis running south to north. It consists of an Office section at the top of the T and a Storeroom section at the stem of the T. The building is used as the home base for telephone installers, repairmen and construction workers.

To maximize collection efficiency, the solar energy collection scheme selected by ITC was an open, gravity drain-down system rather than one using a glycol antifreeze solution in conjunction with a heat exchanger. With ERDA's concurrence, Bell of Pennsylvania modified the generic design to render the system pressurized instead of open. The reasons for the modifications are detailed in Section 3.0 of Reference 9.1. The generic drawings and specifications were revised to reflect engineering changes and additional detailing necessary for guidance of the HVAC subcontractor in the proper installation of the system as designed. The drawings used for construction of this project are included in Appendix A.

The major modifications to the generic design involved the addition of a separate holding tank (300 gallon capacity), to contain the nitrogen used for pressurizing the solar collection loop. This tank also serves as the container for water which is drained out of the collector and associated piping. The addition of the holding tank necessitated additional controls to provide for refilling the collectors prior to resumption of normal solar energy collection and storage.

Following completion of the system installation, it was placed in operation for the first time in October, 1977. However, many difficulties were encountered, necessitating prolonged shutdowns during the 1977-78 heating season and the execution of major modifications over a period of several months. For this reason, it was necessary to postpone for one year the issuance of this report, which was initially intended to cover only the first six months of system operation. Thus, this report deals with the operational history over two heating seasons, from October 1977 through March, 1979. It provides details of what had to be done to improve the system operation and evaluates its performance.

2.0 SYSTEM DESCRIPTION

2.1. Design Scheme:

The design drawings for this system are included in Appendix A. The main features of the system design are:

2.1.1. The Office section of the building (approximately 145 ft. X 43 ft.) is heated in the winter and cooled in the summer by 20 unitary heat pumps.

2.1.2. The Storeroom section of the building (approximately 82 ft. X 43 ft.) is heated by a conventional fan-coil unit which uses solar heated water, backed up by an electrical boiler as needed.

- 2.1.3. The heat source for the heat pumps during the heating season is water heated by solar energy, backed up by an electrical boiler as needed.
- 2.1.4. The heat sink for the heat pumps during the cooling season is water cooled by passing through a closed-circuit cooling tower.
- 2.1.5. The solar array consists of eighty-eight flat plate collector panels, arranged in two equal rows. The gross area is 2112 sq. ft. and the effective collection area is 1900 sq. ft. The panels are installed facing true South, tilted at 55° from horizontal.
- 2.1.6. Thermal energy storage is provided by a 6000 gallon capacity tank, installed above ground in the mechanical room.
- 2.1.7. Auxiliary heat is provided by an 80 kilowatt electric boiler, incorporating five elements of 16 kilowatts each.
- 2.1.8. Heat rejection during the cooling season is provided by a closed circuit cooling tower located in the mechanical room, connected with outside air intake and discharge ducting.

2.2. System Components:

Figure (3) is a simplified flow diagram of the solar heating system. There are three main loops which are built around the 6000 gallon water storage tank:

- 2.2.1. The solar collection loop circulates storage water through the collector panels, using the "Solar water pump". The 300 gallon

"Holding tank" is used to store a mixture of nitrogen and water. In the solar collection mode of operation, most of the nitrogen will be in the holding tank. In the drain-down mode, water drained from the collectors and piping above the roof line will be in the holding tank. Prior to resumption of solar collection, this water is transferred to the collectors by the activation of the "Refill pump".

2.2.2. The Office heating loop circulates storage water through twenty water-to-air "Heat pump units", using the "HP units pump". During periods when the storage water temperature is below 70°F, the temperature of water fed to the heat pump units is regulated by a mixing valve which mixes water heated by the electric boiler with storage water to produce the 70°F minimum temperature required. The "Cooling tower" is activated during the cooling season to dissipate heat removed from the office space by the heat pumps.

2.2.3. The Storeroom heating loop circulates storage water through the "Fan-coil unit", using the "AHU pump". An auxiliary branch off this loop is used to supply hot water to four forced flow heaters "FFH" located in the corridors of the office section at each entrance to the building, using the "FFH pump". The "Electric boiler" which straddles this loop is activated only when the water temperature leaving the boiler is below 105°F.

2.3 System Controls:

Drawing M-5, Appendix A, describes the operation of the system controls, which consist of the following major elements:

- 2.3.1. **Differential Temperature Controller:** This is used to initiate the sequence for collection of solar energy whenever it senses a set temperature differential of 18°F between a typical absorber plate and water stored in the main tank. It will also act to shut down the solar water pump whenever the temperature differential drops below 3°F.
- 2.3.2. **Four float switches:** These are located just above the solar collectors and serve to shut down the refill pump and activate the solar water pump when they sense that all collectors have been refilled.
- 2.3.3. **Low limit temperature sensor:** Attached to a typical absorber plate, this sensor will act to initiate a drain cycle of the water to the holding tank whenever it senses a temperature below 40°F.
- 2.3.4. **High limit temperature sensor:** this sensor is located within the storage tank and acts to stop the collection of solar energy whenever it senses a temperature above 190°F.
- 2.3.5. **Heat pump loop temperature sensor:** This sensor acts to position an automatic valve that mixes heated water with return water, so that the temperature of the water supplied to the heat pump units is controlled at 70°F.
- 2.3.6. **Heat pump units controls:** Each of these units has its own integral thermostat to permit setting by the occupant of each office as desired.

2.3.7. Storeroom temperature controller: This is a wall-mounted thermostat used to position a three-way valve which supplies water to the coil in the air handling unit.

It is also used to position outside air and return air dampers according to the season of the year.

2.3.8. Forced-flow heaters controls: Each forced-flow heater, used to heat the corridors of the building, is controlled by a wall-mounted thermostat which positions a three-way valve to provide the required flow of hot water to the unit.

2.4. Performance Monitoring:

In consultation with IBM-Huntsville, the instrumentation required to monitor the performance of the system, in accordance with ERDA's document "SHC-1006: Instrumentation Installation Guidelines", was selected and incorporated into the design drawings. A list of the instrumentation appears in Table (1).

In addition to the ERDA instrumentation, Bell installed a parallel read-out for 30 temperature measurements using thermocouples connected to "Series 400A Trendicators" manufactured by Doric Scientific Division of Emerson Electric Company.

3.0 OPERATIONAL HISTORY

As stated in Reference 9.2, this solar system was put in operation in October, 1977. During the early part of the 1977-78 heating season, when outdoor temperatures seldom went below freezing, there were very few operational problems. As the weather got colder, we began to experience occasions when the system would not drain automatically at the end of the day.

As shown in Section "A-A" of drawing "A-10-1" and in drawing "M-5" (Appendix A), there are four "Fisher No. 30" automatic vent valves connecting the highest point of each of four solar array sections to the nitrogen lines. These valves were intended to prevent water from entering the nitrogen piping during system operation. At times when the outdoor ambient temperature was below freezing and the system did not drain, it was discovered that drainage could be accomplished by applying heat, using an acetylene torch, to the vent valves. Thus, there was evidence that a freeze-up of water vapor within the valve ports was causing the problem. In mid December, 1977, it was decided to heat-trace these valves by wrapping electrical heat tape around them. However, before this modification was implemented, we experienced our first freeze-up damage to the collector panels.

On December 27, 1977, the first workday following a 3-day weekend during which the outdoor temperature plunged unexpectedly to as low as 17°F, two leaky panels were discovered by noticing icicles hanging underneath. Recorded data, received later from IBM (Huntsville), convinced us that the system could not be refilled completely with water, when the refill pump started automatically in response to adequate insolation on December 26, 1977. The data showed that although the refill pump continued running for 7.5 hours, water never reached the level of all four float-switches, which would have caused automatic shutdown of the refill pump and activation of the main circulating pump. It became quite evident that at least one of the four vent valves must have been blocked by frozen moisture in its port, thus preventing the normal transfer of nitrogen from the panels to the holding tank. This event necessitated a shutdown of the system between December 27, 1977 and January 24, 1978, which was the time required to implement the heat-trace installation.

Within a few days following the reactivation of the system, several additional panels started to leak, indicating that the freeze problem had not been eliminated. On February 3, 1977, it was decided to shut-down the system and conduct an extensive investigation.

Upon dissambling several of the hose connections between the supply headers and individual panels, it was discovered that some residual water existed in these connections several days after the system had been drained. These connections had been installed with a minimal slope and they included a device called "Balvalve-indicator" manufactured by Gerand Engineering Company. This device provides the capability to measure and adjust the flow rate through each individual panel. It can also be used as a shut-off valve. Close examination of this device disclosed that (a) it contains a small (3/16 inch) sharp edged orifice, (b) parts of the device which protrude through the insulation, thus conducting heat to the ambient, are in the immediate vicinity of the orifice. There was a strong suspicion that the minimal slope of the connection and the existence of the Balvalve were causing blockage due to ice formation, thus preventing normal operation of the system and causing some panels to freeze and leak.

Following a period of several weeks, in which we studied the alternatives available to us to remedy the problem, it was decided to modify all 88 connections between the supply headers and each panel, as shown in Figure (4), to accomplish the following:

1. Replace the "Balvalve-indicator" by a simple shut-off valve, to be installed vertically.
2. Maximize the slope of the connection in the direction of the header.

An alternative, which had been considered, was to leave the plumbing as-is and apply electrical heat-trace to all connections. While this approach would have been less costly than the plumbing modification, it was rejected because of low reliability. It was feared that any power failure or accidental break in the electrical circuit would nullify the protection against freezing. Also, this alternative would have somewhat increased the usage of electrical power needed to operate the system.

To further safeguard against possible freeze-ups in the future, the drain-down control system was modified by adding an outside air temperature sensor, which acts to initiate drain-down whenever the solar collection pump is shut down automatically while the ambient temperature is below 45°F. Prior to this modification, drain-down occurred only when a typical absorber plate temperature dropped below 40°F.

The above modifications were completed by April 20, 1978, and the system resumed normal operation for the short time left in the 1977-78 heating season. However, several leaky collector panels were valved off individually until they could be repaired or replaced.

Another problem we confronted had to do with buckling in about one-half of the flat edges in the "Rollbond" absorber plates. Both Heliotherm, the collector manufacturer, and Olin Brass, the absorber plate manufacturer, attributed the buckling to the freeze-up of water within the flow passages. Bell of Pennsylvania was not convinced that the freeze-up was the exclusive cause of the buckling, because it occurred at random. Bell commissioned a study of this phenomenon by the Franklin Institute Research Laboratories (FIRL), which concluded that the buckling resulted from both the freeze-up and inadequate allowance for differential expansion in the collector assembly. FIRL recommended

that the screw holes which fasten each absorber plate to its frame be enlarged to permit some relative movement due to temperature variations.

During the 1978 summer season, the Department of Energy (DOE) Project Manager and his consultants participated in analyzing these problems and attended a site meeting on August 8, 1978, with representatives of Bell of Pennsylvania, Golz and Wick, Hummel Engineering Corporation, Heliotherm and Olin Brass. At this meeting, decisions were made to introduce further modifications to improve the system operation and reliability. Details of these modifications are discussed in Sections 4.4 through 4.9 of this report.

During the 1978-79 heating season, the system was operated in the manual mode through January 8, 1979, pending completion of a thorough check-out of its controls. Between January 9 and March 31, 1979, the operation of the system, in the automatic mode, was satisfactory, but there were minor problems associated with lack of stability of the volume of water contained in the holding tank. There was also some cycling between the refill pump and main circulating pump at the start of daily solar collection. Another problem encountered was occasional drain-down of the system at times when insolation was adequate for continuation of solar collection.

4.0 SYSTEM MODIFICATIONS

Operation of this system disclosed several deficiencies, which required certain remedies to improve its reliability and/or efficiency. A discussion of these items, in chronological order, follows:

4.1 Heat-tracing of the Vent Valves:

This improvement was the first one introduced because the need for it was quite evident from the fact that heat from an acetylene torch was occasionally

needed to force the system to drain on certain days, when the outdoor temperature was below freezing. What was done physically was to wrap electric resistance wire around each of four float switches and automatic vent valves. These assemblies were then enclosed within two insulated boxes to minimize any loss of heat to the cold outdoor air surrounding them. Thermostatic surface-contact elements were provided to energize the heaters as needed to maintain the vent valves at a minimum temperature of 45°F at all times. The cost of this improvement was \$4195.

4.2 Plumbing Modifications:

As discussed in Section 3.0, this modification was necessitated by the occurrence of freeze-ups even after the vent valves were heat-traced. Physically, it involved extensive rework of all the connections between the supply headers and each panel. As shown in Figure (4), the "Balvalve-indicators", which permitted the measurement and adjustment of the water flow rate to each individual panel, were eliminated. The loss of this capability was reluctantly accepted, sacrificing some efficiency for the sake of improving reliability. We shall never know whether it would have been enough to just reposition these devices in a vertical position, in lieu of eliminating them altogether. But, following a bad experience, the tendency is always to be ultra-conservative. In order to permit valving-off individual panels in case of trouble, butterfly valves were installed in a vertical position at each branch connecting the supply header to a panel. The re-worked plumbing was re-insulated, with the additional provision of a second layer of insulation around the area of the valve stems. The cost of this improvement was \$11621.

4.3 Drain Control Modification:

This modification was introduced as an additional measure to protect against freezing. The original controls called for the cessation of solar energy

collection when insolation is below the level required to maintain a 3°F differential between the absorber plate surface and the storage water.

This was accomplished by de-activation of the circulation pump, leaving the water in a stagnant condition within the collectors and outdoor piping until the absorber plate surface temperature drops below 40°F, thus initiating a drain-down. A risk inherent in this procedure is that some elements of the outdoor piping may freeze before the absorber plate temperature sensor has had a chance to drain the system. To minimize such risk, we proceeded to add an outdoor temperature sensor, which acts to drain the system whenever the solar collection pump is inactive while the outdoor temperature is below 45°F. The cost of this improvement was \$599.

4.4 Cycling of Heat Utilization Pumps:

Reference to the "Flow diagram" in sheet "M-4" of Appendix (A) shows two circulation pumps "P3" and "P4", which supply hot water to the forced-flow heaters and the air-handling unit, respectively. These two pumps were set initially for continuous operation, regardless of the need for heat by the equipment served. It was later determined that by confining the activation of these two pumps to periods when the equipment served by them need heat, we would not only save pump operational energy, but also minimize the undesirable addition of electrical heat to the storage tank. Accordingly, the pump controls were so modified. Additionally, to guard against any possible freeze-up of stagnant water in the coil of the air handling unit, which may be caused by cold air leaking through the outside air damper, a temperature sensor attached to the surface of the coil was provided to start pump "P4" if the coil temperature drops below 40°F. The modification to pump "P3" control was to activate it whenever the outdoor temperature falls below 55°F. The cost of this improvement was \$1531.

4.5 Valve Sequence Improvement:

The solar collection loop controls include two sets of pneumatic valves: One set, V_A and V_B , connect the collectors to the Holding Tank and the other set, V_C and V_D , connect the collectors to the Storage Tank. The initial system control was such that while one set of valves is closing, the other set starts to open. That procedure created a situation where the two tanks become interconnected for a few seconds, resulting in some migration of water in one direction or another depending on which tank had a momentarily higher pressure. This situation was especially bad in case the water quantity in the Holding Tank became inadequate to refill the collectors completely. Under those circumstances, the refill pump would never stop and normal solar collection cannot be initiated automatically. To remedy this situation, it became necessary to introduce an automatic time delay between the sequence of operation of the two different sets of valves. The cost of this improvement was \$632.

4.6 Drain Malfunction Alarm:

Due to the fact that this system is left unattended most of the time, it was deemed advisable to be able to transmit an automatic alarm, around the clock, in case the system does not drain when it should. To accomplish this, it was necessary to provide water level sensors in six out of eight risers connecting the collectors with the holding tank. These water level sensors were installed to sense whether the water level has dropped below the roof when insolation became inadequate for collection of solar energy while the outdoor temperature was below 45°F. In the event that this has not occurred within thirty minutes, an alarm is transmitted to a remote station where there is an attendant available 24 hours a day, seven days a week. The receipt of such an alarm would cause a serviceman to be dispatched

to the site, in order to do what is necessary to force the system to drain before it freezes. The cost of this improvement was \$2896.

4.7 Refill Pump Overtime Alarm:

When the system is operating normally, it takes about five to seven minutes of refill-pump operation to fill all of the collectors and the piping above the roof. Following this event, the refill pump shuts down automatically in preparation for the resumption of solar energy collection. There may be occasions when a system malfunction causes the refill pump to run overtime, either due to a blockage in the system or inadequate water quantity in the holding tank. Such a malfunction can be a prelude to a system freeze-up. It was deemed advisable to install a timer that would shut-down the refill pump automatically after fifteen minutes of operation, simultaneously transmitting a remote alarm similar to the one described in section 4.6 above. The cost of this improvement was \$690.

4.8 Outside Air Damper Improvement:

The air handling unit serving the Storeroom had conventional outside and return air dampers. Such dampers, even in the closed position, can have air leakage rates of 15 to 25%. In order to minimize heat loss from the heating coil to outside air, it was deemed advisable to replace the existing outside air damper with a tighter one, which is guaranteed to have no more than 2% leakage rate. The cost of this improvement was \$518.

4.9 General Checkout of Control System:

Following execution of all of the above modifications, and before the system was to be operated automatically, it was decided to conduct a complete check-out of the control system function at the start of the 1978-79 heating season. A technician from Honeywell was assigned to this task. Over a period of

eight weeks between November 11, 1978 and January 8, 1979, approximately 210 man-hours were spent on this task. The resulting improvements were as follows:

- 4.9.1. A check of the control wiring disclosed some loose connections, broken wires and incorrect wiring. All of these deficiencies were corrected.
- 4.9.2. Initially, the refilling of the collectors was done through both supply and return risers. This was causing some nitrogen to be trapped momentarily within at least some of the collectors, giving a false signal to the float switches "FS-1, 2, 3 and 4" that the collectors had been completely filled. This signal would then switch the operation prematurely from "P5" to "P1", causing the two pumps to cycle back and forth. To correct this problem, the control was modified so that following the first "Collectors Full" signal which the float switches receive, valve "V_B" closes to allow any additional water required to enter the collectors from the bottom only, thus driving any trapped nitrogen out through the automatic vent traps. A time-delay relay was also installed to keep the refill pump running for five minutes after the first "Collectors Full" signal is received. During that interval, pump "P1" would start, but any water it pumps out of the Storage Tank would be blocked by valve "V_C" being in a closed position.
- 4.9.3. It was discovered that valve "V_D" in the return line from the collectors to the Storage Tank opens a few seconds before valve "V_C", which connects the supply line from the storage

tank to the collectors. This situation was causing the water level at float switches "FS-1,2,3 and 4" to drop momentarily, shutting down pump "P1" and re-starting pump "P5". To correct this deficiency, pneumatic restrictors were modified to slow down the opening of valve "V_D".

Following the execution of the above improvements, the system was put into automatic operation on January 9, 1979. The cost of these improvements was \$8676.

4.10 Modifications Cost Summary:

To recap the items listed above, the total cost of all modifications was \$31,358., broken down as follows:

Heat-tracing of vent valves	\$4195.
Plumbing modifications	11621.
Drain control modifications	599.
Cycling of heat utilization pumps	1531.
Valve sequence improvement	632.
Drain malfunction alarm	2896.
Refill pump overtime alarm	690.
Outside air damper improvement	518.
General checkout of control system	<u>8676.</u>
	<u>\$31,358.</u>

In addition, the Integrating Contractors' fees, for consulting work they performed in connection with these modifications, amounted to \$7,024.

5.0 COLLECTOR PANEL REPAIRS

Early in 1978, it was discovered that approximately half the solar collector panels exhibited various degrees of warpage, some with slight ripples, others with out-of-plane warpage severe enough to have dislodged the plexiglas cover. In addition, seven panels developed leaks in the end waffle section. The collector manufacturer disclaimed any responsibility for the damage to the absorber plates, basing that on the occurrence of freeze-ups. An independent investigation, conducted later in September 1978 by the Franklin Institute Research Laboratory, attributed the warpage to both freezing and lack of adequate allowance for differential expansion. However, Bell of Pennsylvania did not press its case against Heliotherm on this matter.

Another defect discovered in the collector panels was relative shrinkage of the plexiglas covers, which resulted in gaps between them and their frames. The gaps were so wide as to allow rain water to accumulate inside the panels. In this case, Heliotherm agreed to provide a better seal between each cover and its frame.

In order to render all the panels operable for the 1978-79 heating season, consideration was given to either straightening out the badly-warped plates or replacing them with new ones. Economic and schedule considerations resulted in a decision to straighten out most of the warped panels, while replacing the ones which were beyond repair. The total cost for this work was \$25,173, as follows:

- 5.1. Purchase and installation of 12 new panels: \$14,969.
- 5.2. Removal, straightening and re-installation
of 27 warped panels: \$9,000.
- 5.3. Enlargement of the screw holes on 20 panels
to accommodate differential expansion: \$1,204.

6.0 SYSTEM PERFORMANCE

6.1 Historical Narrative:

Although data from 24 temperature sensors, 10 flow sensors and 12 power sensors were accumulated continuously since October, 1977, the first meaningful performance report to be issued by IBM-Huntsville was for November, 1978. The reasons for this delay were:

- 6.1.1. The system operation during the 1977-78 heating season was sporadic, punctuated by two lengthy shutdowns.
- 6.1.2. The accuracy of the data was not considered reliable by IBM during the first year of operation. The temperature probes were partially influenced by the ambient temperature, thus needing external insulation. Some of the flowmeter data, where the flow rates change abruptly, reflected inaccuracies caused by instantaneous sampling every five minutes. Correction of this deficiency had to be accomplished by adding totalizing devices for two flowmeters.
- 6.1.3. Temperature differential sensors originally installed were found to be not as accurate as absolute temperature sensors. Therefore, all temperature data had to be converted to absolute readings.

IBM completed the required modifications to the site data acquisition system (SDAS) on November 2, 1978. While no meaningful performance reports were generated until then, the SDAS was very useful in providing information for trouble shooting at times when the system was malfunctioning. Typical of such useful information was knowing the timing of activation of various pumps and the simultaneous insulation rates.

6.2 Performance Parameters:

Because of the unavailability of meaningful monthly performance reports prior to November, 1978, the discussion of system performance will be confined to only five months of the 1978-79 heating season. Table (2) represents a summary of significant performance parameters for each month. Most of the terms used in this Table are self explanatory and their values were taken directly from References (9.3) through (9.7). However, the values of the following parameters, appearing in the Table, differ from those listed in the IBM Monthly Performance Reports as discussed below:

6.2.1. Solar energy used: For the purpose of this report, this parameter has been computed as the collected solar energy during the month modified by any addition or removal of energy from storage, as the case may be. Because all of the system components are located within the confines of this building, any energy losses from storage are considered to have been utilized towards satisfying the space heating load. This procedure would not be accurate in a project where the storage tank is located underground or outside the main building, in which case losses from storage are real.

6.2.2. Space heating load: For the purpose of this report, this parameter has been computed as the sum of the solar energy used, auxiliary thermal energy and system operating energy. This computation differs from the values listed in Reference (9.3) through (9.7), which were computed from direct measurements of flow rates and temperature drops of the water circulating through the various heating devices. The logic behind the procedure followed in this report is that any heat lost from

the uninsulated piping system is dissipated within the building space and therefore contributes towards satisfying the space heating load. Also, it is assumed that even the energy used to run the pumps and fans is converted into heat which gets dissipated within the building space.

6.2.3. Solar fraction: This parameter is simply the ratio of solar energy used to the space heating load. Due to the fact that values for these two parameters used in this report differ from those listed in References (9.3) through (9.7), it follows that the monthly solar fraction will also differ.

6.3 Observations:

A discussion of significant observations follows:

6.3.1. Solar collection and electrical savings: A glance at the numbers listed in Table (2) shows progressive improvement in the system performance. Especially noticeable are the month-by-month increases in solar collection efficiency and electrical energy savings. These improvements can be attributed to progress in the automatic operation of the system, which permitted taking better advantage of available solar energy. There is room for further improvement in this regard because the ratio of operational incident solar energy to total incident solar energy is still too low. This ratio is a direct measure of the fraction of the time when the collection pump is active while solar energy is available for collection. In February, when this ratio was the highest achieved, it was still only 0.71. This is an indication that solar collection

time could be further improved. One way to increase this ratio is to re-adjust the differential temperature controller settings (between the absorber plate and storage water) so that there will be less frequent drain-and-refill cycles on partly-cloudy days and longer periods of solar collection on sunny days.

6.3.2. Space heating load: Monthly space heating loads are expected to be proportional to the difference between average building temperature and average ambient temperature for the month.

Table (2) shows that the space heating loads for November and December were much higher than would be expected on the basis of the weather. This was caused mainly by a fault in the controls of the air handling unit, used to heat the Storeroom, which made the fan run all night, drawing outside air through a leaky damper and across the heating coil. This fault was later discovered and corrected by making the fan shut down at night and by replacing the conventional outside air damper with one having less than 2% leakage.

6.3.3. Daily solar collection: The IBM Monthly Performance Reports (Reference 9.3 through 9.7) include collector performance parameters on a daily basis. Examination of these parameters indicates vividly that on clear sunny days, when the system operation is not interrupted by drain-and-refill cycles caused by intermittent reductions in insolation, it is possible to collect up to 2.2 million BTU's per day, at an average daily collection efficiency as high as 47%. This is an indication that the system has a very good potential performance, which can be enhanced by taking the necessary measures to reduce unnecessary drain-and-refill cycling on partly-cloudy days.

7.0 LESSONS LEARNED

Among the lessons learned on this project were the following:

- 7.1. Although "Drain-down" solar systems are inherently more efficient than those using antifreeze combined with a heat-exchanger, they require more complex controls which render them less reliable and more troublesome.
- 7.2. "Pressurized drain-down" solar systems require even more complex controls than "Open drain-down" systems.
- 7.3. When the installation of a solar system is contracted on a "Time and materials" basis, it is difficult to get the installer to make any necessary corrections at his own expense or at least without profit.
- 7.4. Selection of a solar collector panel should take into consideration not only thermal efficiency, but also structural integrity.
- 7.5. It would be highly desirable to purchase an entire solar system from a single source, if possible. Warranties on individual components purchased from several different sources have little value.
- 7.6. Advertised claims by control manufacturers should not be taken at face value.
- 7.7. Solar experience of both the consulting engineer and the installation subcontractor is vitally important.

8.0 CONCLUSION

In spite of the difficulties encountered, Bell of Pennsylvania is pleased to have cooperated with ERDA (now part of the U.S. Department of Energy) in executing

this solar demonstration project. It has provided us, our consultants, suppliers and contractors with a unique opportunity to gain valuable experience in the design, construction and operation of a fairly complex solar space heating system. It is hoped that this report will be of benefit to future users of solar energy.

9.0 REFERENCES

- 9.1. "System Design Report", COO-4048-78-1, March, 1978.
- 9.2. "Construction Report", DOE/CS/4048-2, May, 1979.
- 9.3. "Monthly Performance Report", SOLAR/2012-78/11, November, 1978.
- 9.4. "Monthly Performance Report", SOLAR/2012-78/12, December, 1978.
- 9.5. "Monthly Performance Report", SOLAR/2012-79/01, January, 1979.
- 9.6. "Monthly Performance Report", SOLAR/2012-79/02, February, 1979.
- 9.7. "Monthly Performance Report", SOLAR/2012-79/03, March, 1979.

FIGURE 1
PLOT PLAN

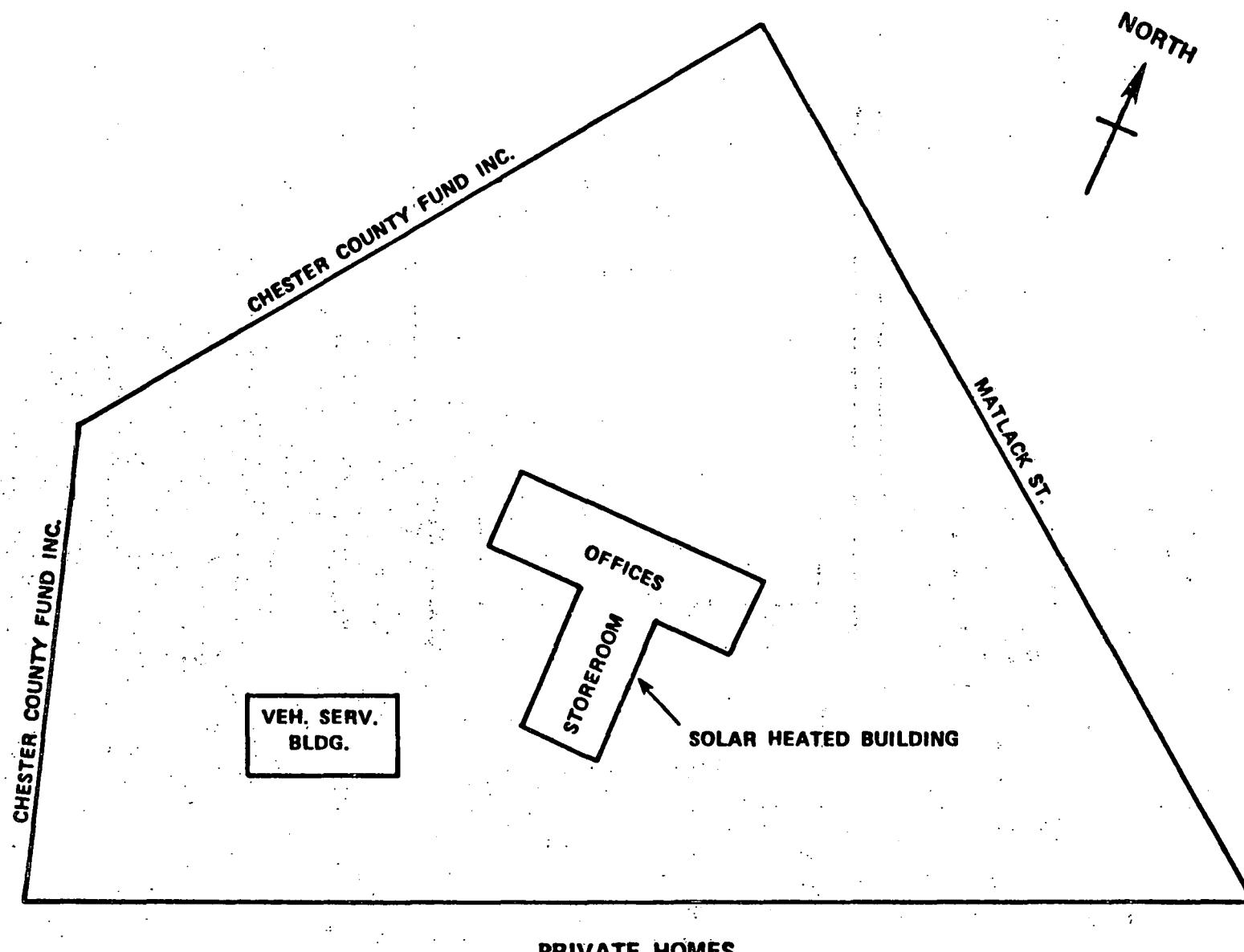


FIGURE (1)

FIGURE 2
FLOOR PLAN

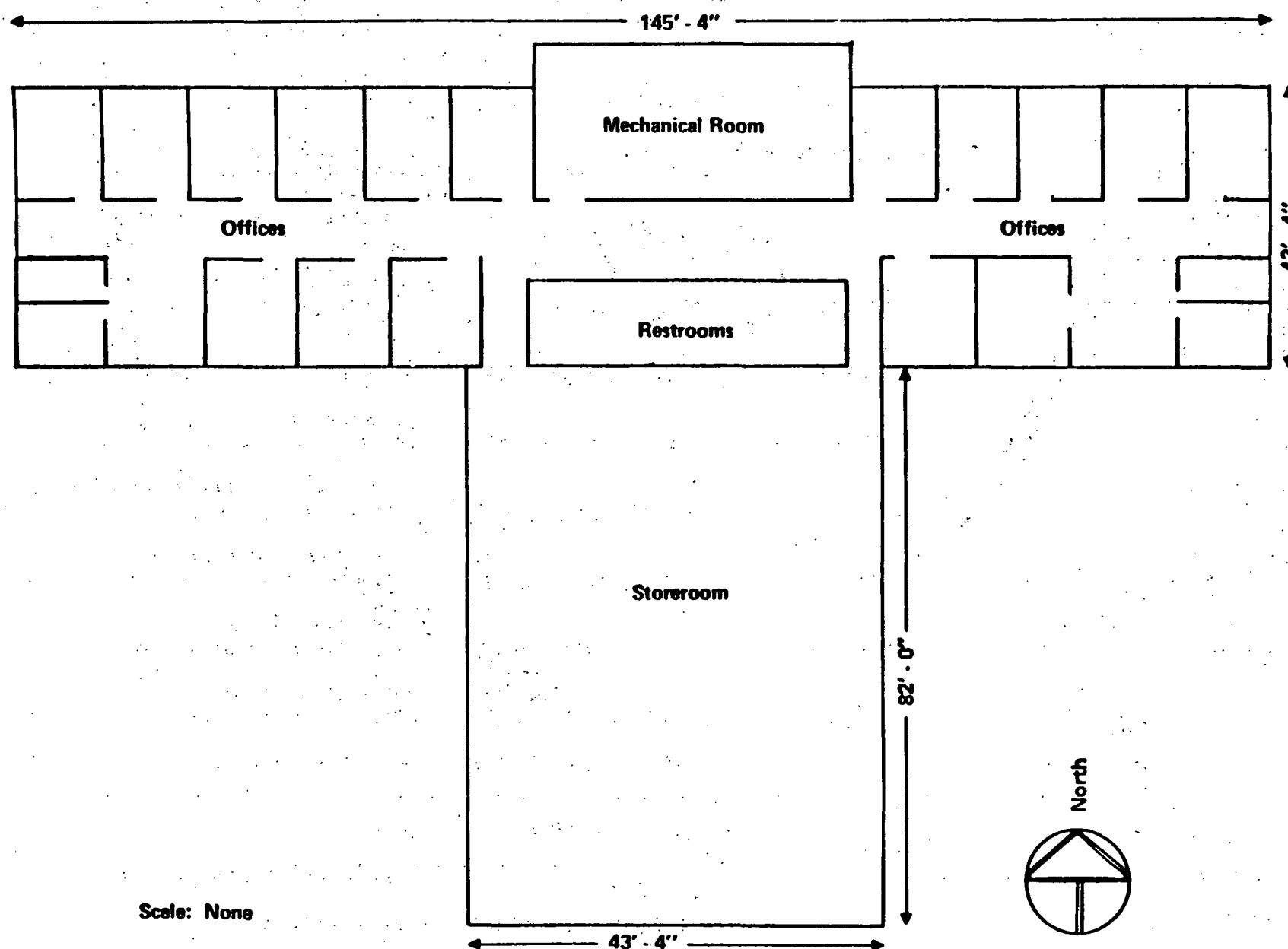


FIGURE (2)

FIGURE 3
SIMPLIFIED FLOW DIAGRAM

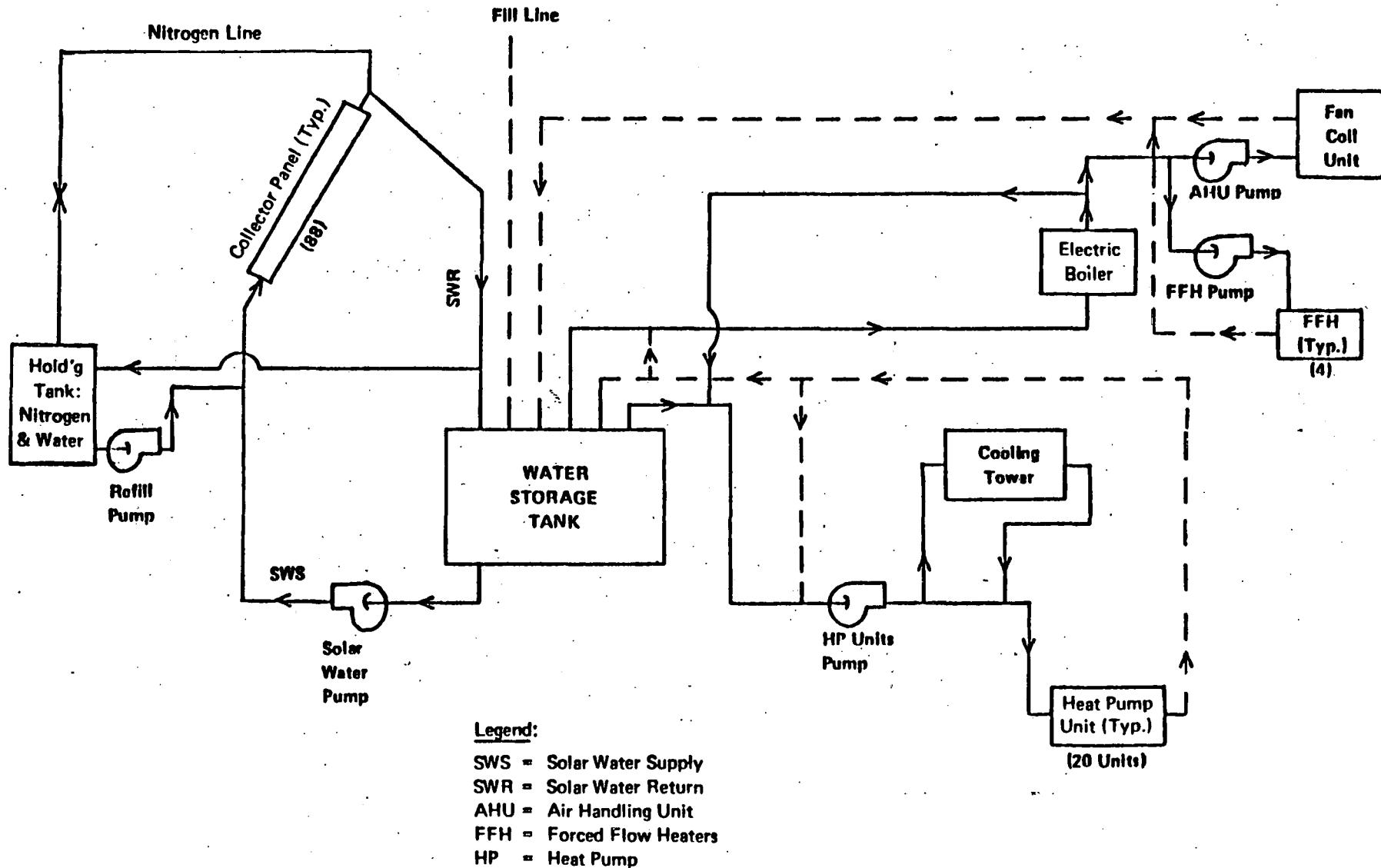


FIGURE 4
PLUMBING MODIFICATIONS

Table 1
PERFORMANCE MONITORING INSTRUMENTATION

(a) Temperature Measurements			Range (oF)		Thermowell	Probe
No.	Designation	Name	Min.	Max.	Part No.	Part No.
1	T029 (T-29)	Outside Ambient Air	-10	100	IS4	S53-P85Z36
2	T102 (T-1) (T-2)	Collector Array Inlet Water Temperature	40	180	F203U18	S57-P50Z36
3	TD102 (T-2A)	Collector Array Differential Water Temperature	0	75	F203U18	S53-P50Z36
4	T109 (T-9) (T-8)	Collector Array to Storage Tank Inlet Temperature	40	200	F203U18	S57-P50Z36
5	TD109 (T-9A)	Collector Array to Storage Tank Differential Temperature	0	75	F203U18	S53-P50Z36
6	T205 (T-5)	Storage Tank Top Water Temperature	40	200	F203U300	S53-P330
7	T206 (T-6)	Storage Tank Center Water Temperature	40	200	F203U300	S53-P330
8	T207 (T-7)	Storage Tank Bottom Water Temperature	40	200	F203U780	S53-P810
9	T421 (T-20) (T-21)	Storage Tank To FFH and AHU Loop Inlet Water Temperature	40	200	F203U18	S57-P50Z36
10	TD421 (T-21A)	Storage Tank to FFH and AHU Loop Differential Temperature	0	50	F203U18	S53-P50Z36
11	T423 (T-22) (T-23)	Storage Tank to HPU Loop Differential Temperature	40	200	F203U18	S57-P50Z36
12	TD423 (T23-A)	Storage Tank to HPU Loop Differential Temperature	0	15	F203U18	S53-P50Z36
13	TD411LO (T-11)	Lo Side Supplementary Heat (Boiler) Differential Temperature			F203U18	S53-P50Z36

No.	Designation	Name	Range (oF) Min. Max.	Thermowell Part No.	Probe Part No.
14	TD411H1 (T-11A)	Hi Side Supplementary Heat (Boiler) Differential Temperature	- -	F203U18	S53-P50Z36
15	TD427H1 (T-27)	Hi Side FFH Circ. Differential Water Temperature		F203U7	S53-P40Z36
16	TD427L0 (T-27A)	Lo Side FFH Circ. Differential Water Temperature	- -	F203U7	S43-P40Z36
17	T425 (T-24) (T-25)	AHU Inlet Water Temperature	100 250	F203U18	S57-P50Z36
18	TD425 (T-25A)	AHU Differential Water Temperature	0 50	F20U18	S53-P50Z36
19	T413 (T-12) (T-13)	Heat Pump Loop Inlet Temperature (Heating) (Hi side)		F203U18	S57-P50Z36
20	TD413 (T-13A)	Heat Pump Loop Differential Temperature (Heating) (Lo side)		F203U18	S53-P50Z36
21	TD513*	Heat Pump Loop Differential (Cooling) (opposite of TD413)		*	*
22	TD519L0 (T-19)	Cooling Tower Differential Temperature (Lo side)		F203U18	S53-P50Z36
23	TD519H1 (T-19A)	Cooling Tower Differential Temperature (Hi side)		F203U18	S53-P50Z36
24	T628 (T-28)	Ambient Temperature Typical Office	50 85	-	S53-P85Z36

*NOTE: Measurement TD513 is the opposite sign of measurement TD413. No additional sensors are required. However, a separate channel is required in the SDAS for TD513.

(b) Flow Rate Measurements

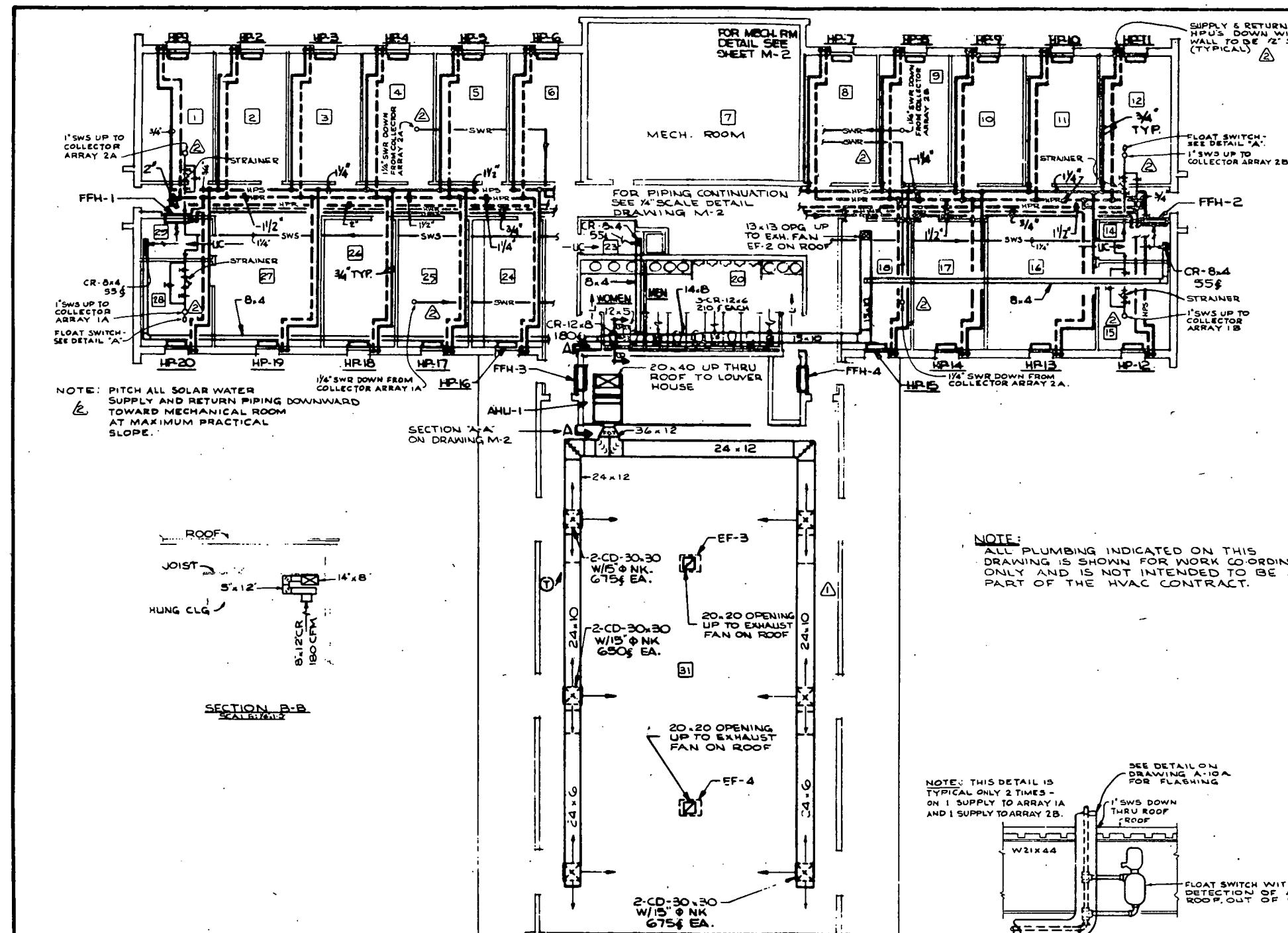
No.	Designation	Name	Range (GPM)			Model No.
			Min.	Design.	Max.	
25	W101 (F-1)	Collector Array Flow Rate	0	52	60	MKV-2 1/2-J01
26	W403 (F-3)	Supplementary Heat (Boiler) Flow Rate	0	97 or 45	100	MKV-2-J01
27	W410 (F-10)	Storage Tank from FFH and AHU Loop Flow Rate	25	45	55	MKV-2-J01
28	W411 (F-11)	Storage Tank from HPU Loop Flow Rate	0	52	60	MKV-2 1/2-J01
29	W412 (F-12)	Storage Tank to FFH and AHU Loop Flow Rate	0	97 or 45	100	MKV-2-J01
30	W413 (F-13)	Storage Tank to HPU Loop Flow Rate	0	52	60	MKV-2 1/2-J01
31	W408 (F-8)	Air Handling Unit Flow Rate	0	35 or Less	40	MKV-2-J01
32	W404 (F-4)	FFH Flow Rate	0	10	10	MKV-1-J01
33	W406 (F-6)	Heat Pump Loop Flow Rate	0	52	60	MKV-2 1/2-J01
34	W409 (F-9)	Cooling Tower Flow Rate	0	52	60	MKV-2 1/2-J01

(c) Power Measurements

No.	Designation	Name	Model No.
35	EP101 (KW-1)	Solar Collector Pump P-1 Power	PC5-14
36	EP105 (KW-5)	Solar Panel Refill Pump P-5 Power	PC5-14
37	EP403 (KW-3)	Forced Flow Heaters Circ. Pump P-3 Power	PC5-19
38	EP404 (KW-4)	Air Handling Unit Circ. Pump P-4 Power	PC5-5
39	EP408 (KW-8)	Air Handling Unit (AHU-1) Power	PC5-23
40	EP412	Forced Flow Heaters Total Fan Power (4 Units)	PC5-1
41	EP409 (KW-9)	Supplementary Heat Electric Boiler Power	PC5-80
42	EP402 (KW-2)	Heat Pump Units Circ. Pump P-2 Power	PC5-14
43	EP407 (KW-7)	Total Power to Heat Pump Units	PC5-62
44	EP510 (KW-10)	Cooling Tower Power Fan	PC5-53
45	EP511	Cooling Tower Pump Power	PC5-19
46	I001	Insolation	PSP

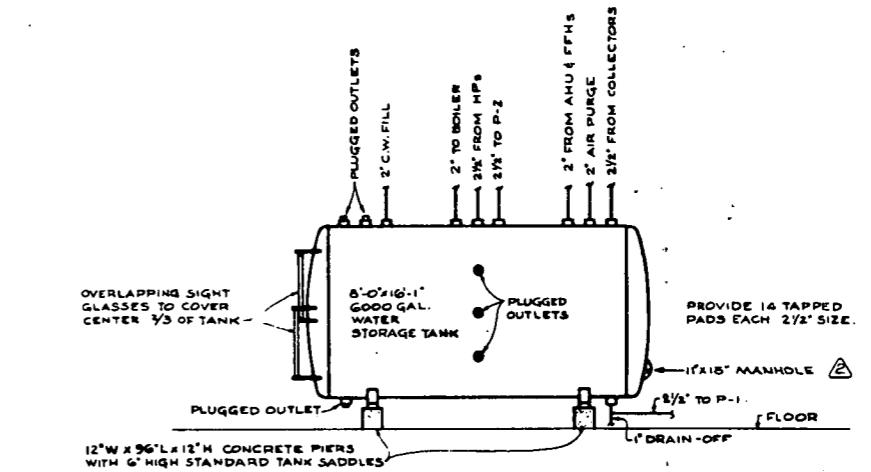
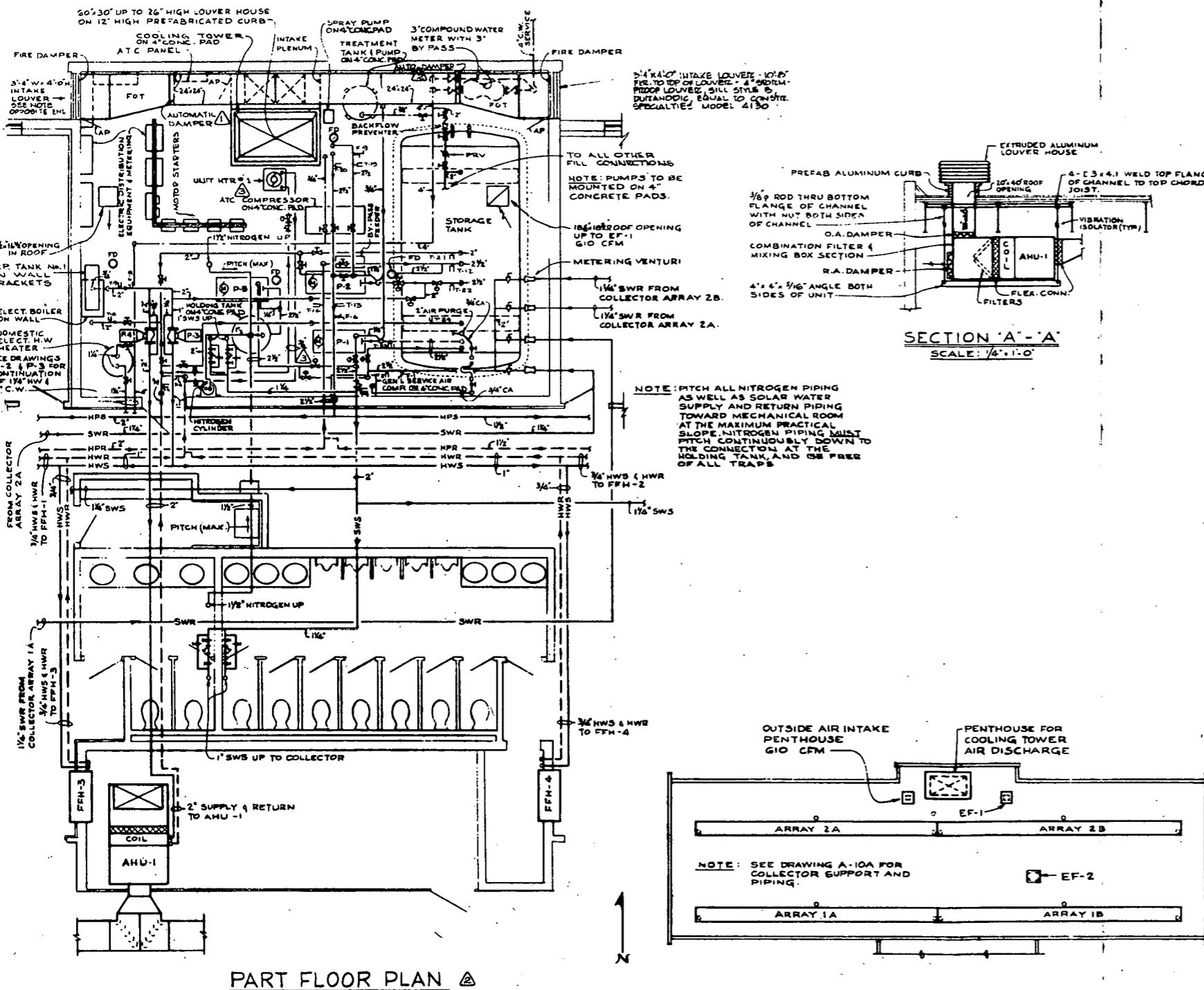
TABLE (2)
SYSTEM PERFORMANCE SUMMARY

	<u>November 1978</u>	<u>December 1978</u>	<u>January 1979</u>	<u>February 1979</u>	<u>March 1979</u>
Total Incident Solar Energy (Million Btu)	54.02	64.28	43.53	66.27	92.47
Operational Incident Solar Energy (Million Btu)	17.65	28.22	25.04	47.20	55.72
Collected Solar Energy (Million Btu)	8.93	13.03	11.66	21.53	21.90
Collection Efficiency (%)	16.5	20.3	26.8	32.5	23.7
Operational Collection Efficiency (%)	50.6	46.2	46.6	45.6	39.3
Energy Added to Storage (Million Btu)	0.43	0.39	-0.41	1.72	0.28
Auxiliary Thermal Energy (Million Btu)	21.11	28.10	29.57	27.15	5.32
System Operating Energy (Million Btu)	10.19	7.39	5.28	6.88	3.27
Solar Energy Used (Million Btu)	8.50	12.73	12.07	19.81	21.62
Space Heating Load (Million Btu)	39.80	48.22	46.92	53.84	30.21
Solar Fraction (%)	21.4	26.4	25.7	36.8	71.6
Collection Operational Energy (KWH)	62	89	82	133	167
Electrical Energy Savings (KWH)	113	938	1470	2898	2119
Average Ambient Temperature (°F)	52	43	38	31	51
Average Building Temperature (°F)	70	67	65	67	68


APPENDIX A

Design Drawings

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK



SYMBOL LIST

Page 37

FLOOR PLAN

STORAGE TANK DETAIL

SCALE: 1/4" = 1'-0"

NOTE 1. EXTEND TANK FITTINGS TO CLEAR TANK INSULATION.

2. TANK SHALL BE WATER TIGHT, ALL STEEL CONSTRUCTION IN ACCORDANCE WITH APPLICABLE LOCAL CODE AND SHALL BE BUILT FOR 50 PSI WORKING PRESSURE AND SHALL BEAR ASME LABEL.

NOTES

NOTE: ALL PLUMBING INDICATED ON THIS DRAWING IS SHOWN FOR CO-ORDINATION ONLY AND IS NOT INTENDED TO BE A PART OF THE HVAC CONTRACT.

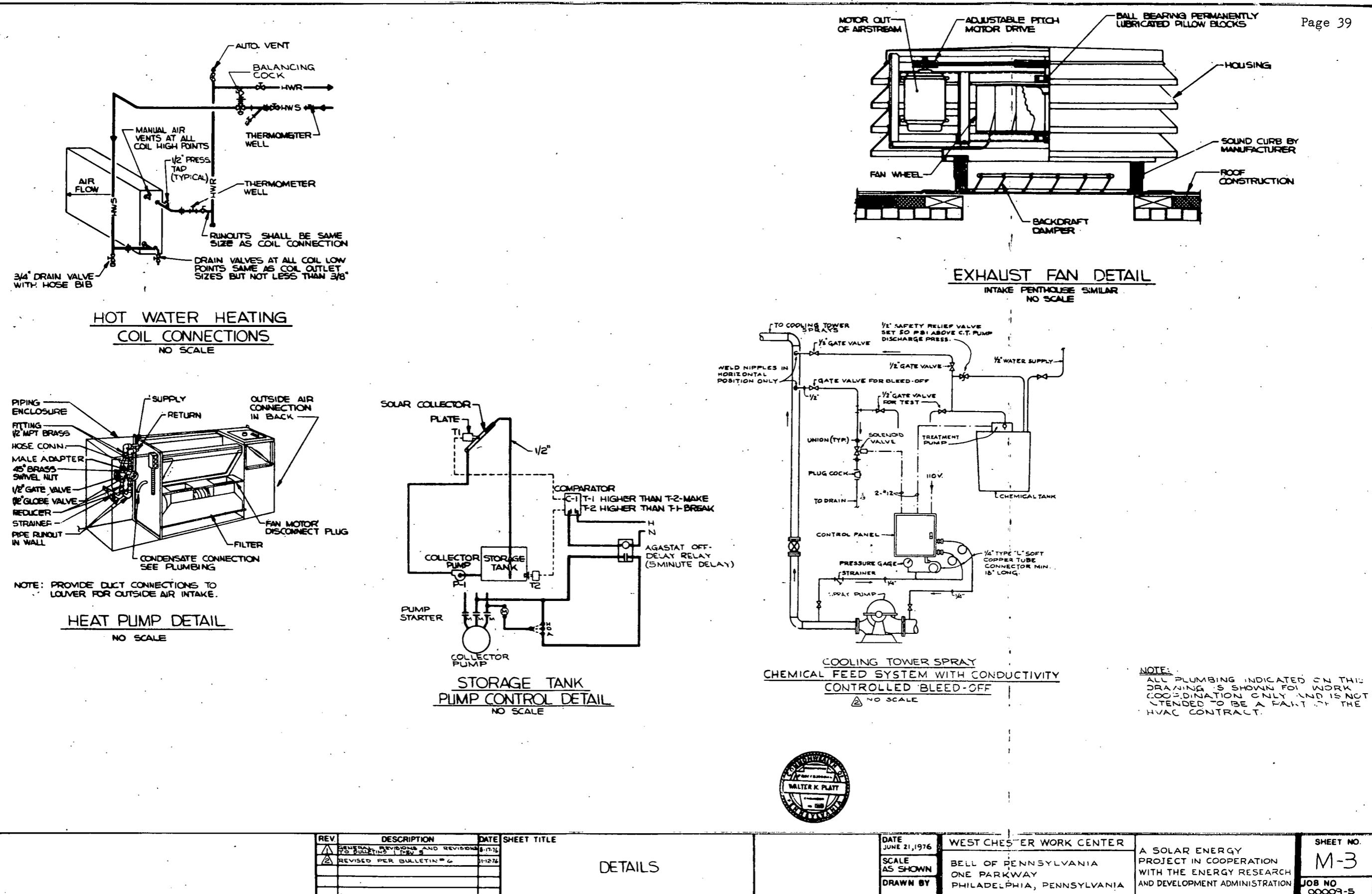
PART FLOOR PLAN 2

SCALE: $\frac{1}{4}'' = 1'$

ROOF PLAN

SCALING: 1/4" = 1'-0"

REV	DESCRIPTION	DATE
1	GENERAL REVISIONS PLUS REVISIONS TO BULLETIN 1 THRU 5	8/1/68
2	REVISED PER BULLETIN 6	11/1/68
3	ADDED UNIT HEATER #1	12/1/68


MECHANICAL ROOM PLAN AND SECTIONS

DATE
JUNE 21, 1976
SCALE
AS SHOWN
DRAWN BY

WEST CHESTER WORK CENTER
BELL OF PENNSYLVANIA
ONE PARKWAY
PHILADELPHIA, PENNSYLVANIA

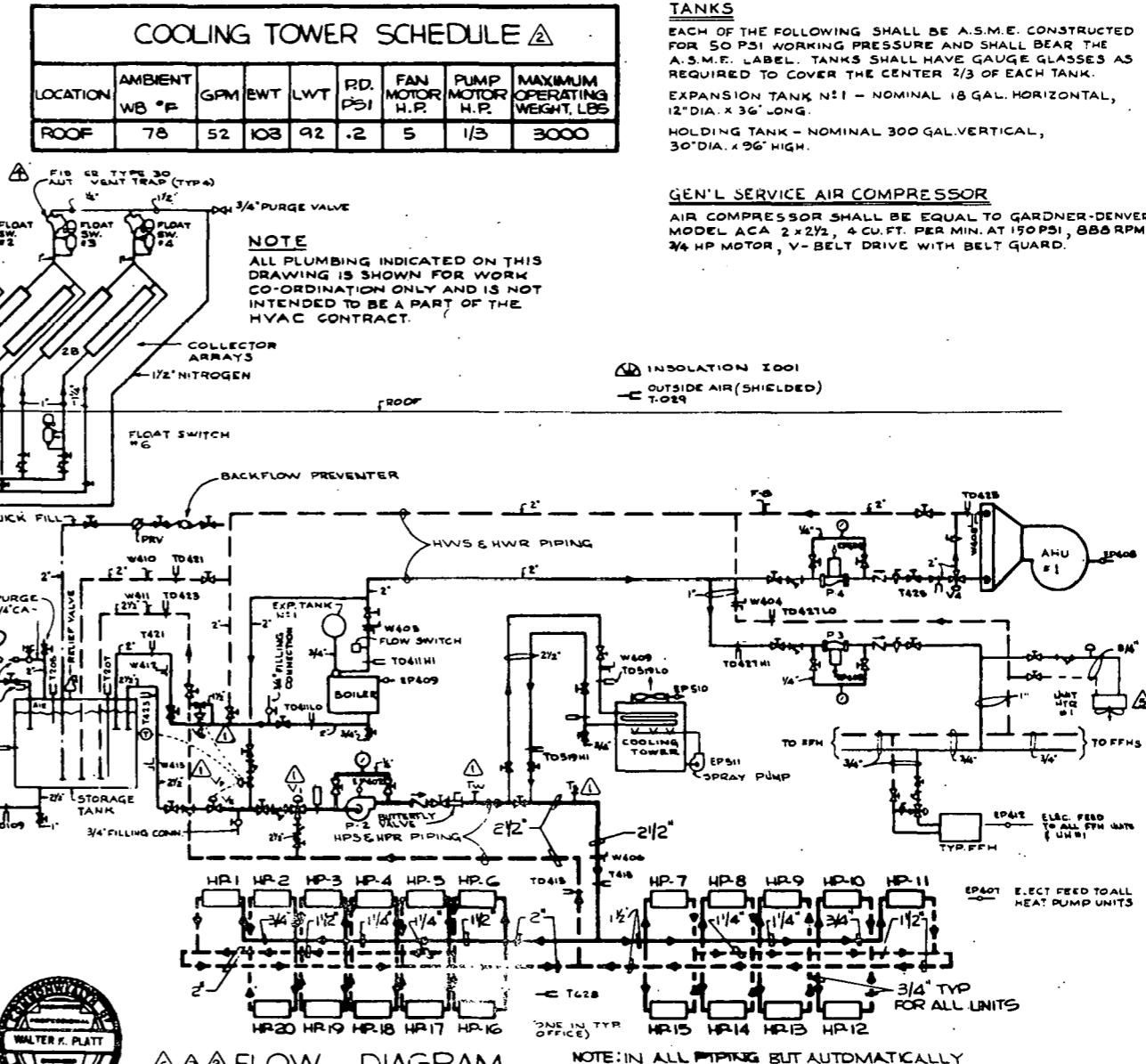
A SOLAR ENERGY
PROJECT IN COOPERATION
WITH THE ENERGY RESEARCH
AND DEVELOPMENT ADMINISTRATION

SHEET NO.
M-2

FACTORY FABRICATED AIR HANDLING UNIT SCHEDULE

UNIT NO.	FAN DATA				MOT. DATA		HEATING COIL DATA				FILTERS			
	CFM	S.P.	MAX. O.V. FPM	MAX. BHP FAN HORSES	MHP	S.P.	EDB	DB GPM	WATER GPM	MAX. FAN VELOCITY	REMARKS	TYPE		
AHU-1	4000	2 1/2	1455	2.74	1	3		1/2	50	35	31	1 1/0 533	—	2" THROW AWAY

NOTE: STATIC DEFLECTION TO BE 1".


HEAT PUMP SCHEDULE

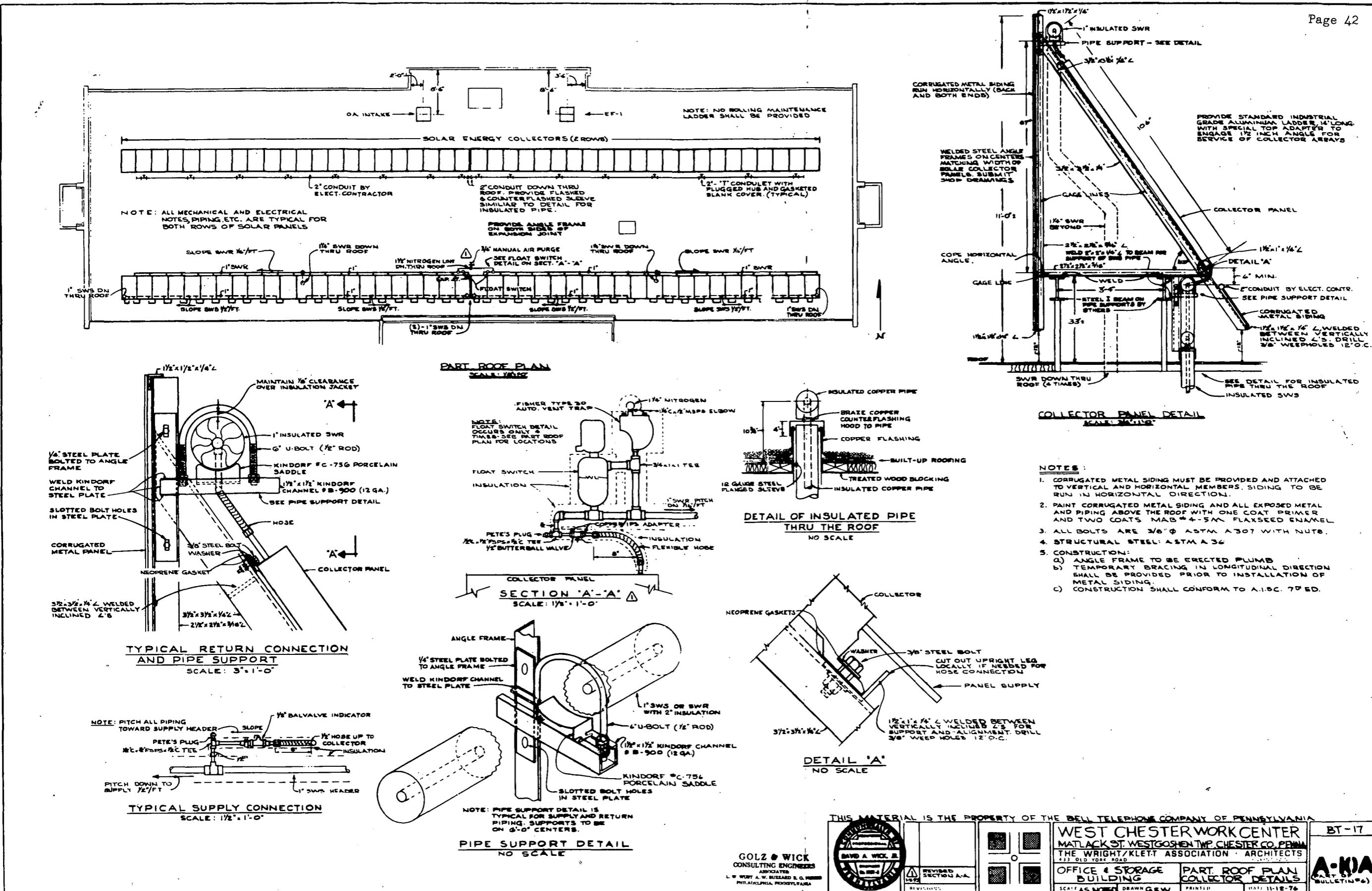
PUMP NO.	SERVICE	NOM. GPM	OUT-SIDE AIR CFM	PD FT. H ₂ O	SUMMER OPERATION				WINTER OPERATION											
					EWT °F	ENT. AIR TEMP °F	COOLING COMP. KW	FAN KW	HEAT OF REJECTION °F	LWT °F	EWT °F	EAT °F	HEATING COMP. KW							
HR3,19	CLERICAL AREAS	420	70	3.5	5.6	92	82.5	69.1	14,231	1.77	.13	20,188	103	70	70	19,000	1.66	.13	12,930	62.6
HP2-10,12	ALL OTHER ROOMS	230	40	1.9	6.0	92	82.5	69.1	7,210	1.11	.09	11,088	103	70	70	19,800	1.10	.09	6740	62.9
HR1,11	2 EXT. ROOMS NORTH SIDE	270	40	2.3	6.2	92	82.5	69.1	9,769	1.24	.09	14,055	103	70	70	13,000	1.24	.09	8500	62.6

FAN SCHEDULE

FAN NO.	SERIAL	PERFORMANCE DATA				CONSTRUCTION DATA		MOT. DATA	REMARKS	NOTES
		CFM	SP WG	TS FPM	RPM	BHP	TYPE FAN			
EF-1	MECH. ROOM	610	.25	2850	750	—	CENTRIFUGAL ROOF EXHAUSTER	1/6	V-BELT DRIVE	
EF-2	TOILETS & JC	975	.315	3705	975	—	CENTRIFUGAL ROOF EXHAUSTER	1/4	V-BELT DRIVE	
EF-3	STORAGE	2155	.25	3165	605	—	CENTRIFUGAL ROOF EXHAUSTER	1/4	V-BELT DRIVE	
EF-4	STORAGE	2155	.25	3165	605	—	CENTRIFUGAL ROOF EXHAUSTER	1/4	V-BELT DRIVE	

COOLING TOWER SCHEDULE Δ							
LOCATION	AMBIENT WB °F	GPM	EWT	LWT	PD. PSI	FAN MOTOR H.P.	PUMP MOTOR H.P.
ROOF	78	52	103	92	.2	5	1/3

FLOW DIAGRAM


NO SCALE

NOTE: IN ALL PIPING BUT AUTOMATICALLY DRAINED SOLAR COLLECTOR PIPING, PROVIDE AUTO. AIR VENTS ON ALL HIGH POINTS AND WHERE INDICATED ON DRAWINGS. PROVIDE DRAIN-OFFS AT ALL LOW POINTS.

REV.	DESCRIPTION	DATE	SHEET TITLE	DATE	WEST CHESTER WORK CENTER	DATE	A SOLAR ENERGY	SHEET NO.
1	GENERAL REVISIONS AND REVISIONS TO DRAWING 1 thru 3	6-17-76		JUNE 21, 1976			PROJECT IN COOPERATION	
2	REVISED PER BULLETIN #6	11-12-76			BELL OF PENNSYLVANIA		WITH THE ENERGY RESEARCH	
3	REVISED INSTRUMENTATION LAYOUT	12-6-76			ONE PARKWAY		AND DEVELOPMENT ADMINISTRATION	
4	ADDED VENT TRAPS, GEN. REVISIONS	1-5-77			PHILADELPHIA, PENNSYLVANIA		JOB NO.	M-4
5	REVISED INSTRUMENTATION REVISIONS ADDED UNIT HEATERS	1-8-77					0000A-5	

EQUIPMENT SCHEDULES & FLOW DIAGRAM

