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FOREWORD

High-temperature gas-cooled reactor (HTGR) safety studies at Oak

Ridge National Laboratory (ORNL) are sponsored by the Division of Reactor

Safety Research, which is part of the Office of Nuclear Regulatory

Research of the Nuclear Regulatory Commission (NRC)

This report covers work performed
Previous quarterly reports and topical
listed on p. v. Copies of the reports

Information Center, U.S. Department of

from July 1 to September 30, 1979.
reports published to date are
are available from the Technical

Energy, Oak Ridge, TN 37830.
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ABSTRACT

Further development work was done on the ORTAP and
BLAST codes. A new and improved model of the Fort St. Vrain
(FSV) reactor turbine-generator plant (ORTURB) was developed
for use both as a stand-alone code and as a part of the ORTAP
system code. Additional work was done on FSV licensing
questions. The intermediate heat transfer experiment for
investigating FSV upper-plenum reverse-flow plumes was
assembled and checked, and an on-line computer was set up
to acquire and analyze the data.

HTGR SYSTEMS AND SAFETY ANALYSIS

S. J. Ball

Work for the Division of Reactor Safety Research (RSR) under the
High-Temperature Gas-Cooled Reactor (HTGR) Systems and Safety Analysis
Program began in July 1974, and progress is reported quarterly. TWork
during the present quarter included assistance to the Nuclear Regulatory
Commission (NRC) on Fort St. Vrain (FSV) reactor licensing questions

and further work on code development.

Development of the FSV Nuclear Steam Supply System
Simulation Code ORTAP-FSV

J. C. Conklin

A new computer simulation of the high-pressure turbine (HPT) has
been written which improves the accuracy of the predicted performance
and uses less computer time than the earlier HPT model. This new model
combines two empirical relationships derived for noncondensing turbines.
The HPT first-stage pressure is assumed to be a function of the desired

turbine load only and not a function of the conditions in the main steam



line. An empirical plotl is used to determine the first-stage shell

pressure, given the desired turbine load. A modified Stodola equation?

is then used to determine the HPT flow rate. With the Stodola relation-
ship, the turbine exit pressure influences the turbine flow rate. Also,
the performance of the HPT is calculated directly, with no iterative
solution techniques.

Steady-state turbine plant data at two different operating levels
are necessary to set parameters such as thermal efficiencies and other
constants in the Stodola equation. Straight-line interpolations are
used when necessary.

The regenerative Rankine cycle of the intermediate- and low-pressure
turbine (ILPT) at FSV utilizes five feedwater heaters (FWHs) and a deaer-
ator. The FWH model used in the earlier version of ORTAP} is also used
in the new simulation. This model uses nine differential equations per
FWH, and the equations are solved using the matrix exponential method.!

The pressure and flow distribution in the new ILPT simulation model
is solved iteratively because of the coupling between the turbine extrac-
tion points and the FWHs. In the analytical model for the ILPT, the
assumption is made that, for condensing turbines at a given temperature,
the pressure preceeding any section of a turbine is directly proportional
to the flow through that section of the turbine.l The pressure ratio
across each stage 1is assumed constant, subject to temperature corrections.
This relationship between the pressure, flow, and temperature is used to
determine stage pressure. The ILPT is divided into seven segments, and
each segment ends with an extraction point, with the last segment termi-
nating in the condenser. The flows from the turbine extraction points to
the FWHs are assumed proportional to the square roots of the pressure
differences.

Inputs to the ILPT model are inlet pressure and condenser outlet
enthalpy. The flow and pressure distribution of the ILPT then are found
by iteration, using the constant pressure ratio and extraction flow
relationships. Empirical constants are also derived from manufacturer's
data at 100% power conditions.

This model of the steam turbine has yielded reasonable results when

compared with published heat balances) and uses "15 s of central



processing unit (CPU) time for a 200-s turbine transient. It presently
is being incorporated into ORTAP. A report on the new steam turbine
model subroutine (ORTURB) 1is being drafted.

The version of ORTAP in use during the past few years [and as sent
to Rheinisch-Westfalischer Technischer Uberwashungs-Verein e.V. (RWTUV),
West Germany, and Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI),
Japan] executed properly on the Oak Ridge National Laboratory (ORNL)
computer system. However, when this version was run at the 0Oak Ridge
Gaseous Diffusion Plant (ORGDP) computer site, errors occurred. The
execution errors at ORGDP were traced to the subroutine SUPORT, which
calculates the average reactor core outlet gas temperature. SUPORT was
modified to eliminate the errors, which were related to underflows
(masked at ORNL but not at ORGDP) and the differences in the way variables
are initialized. A few minor corrections to the subroutine logic were
also implemented to account properly for coolant flow through the control
rod guide tubes. All corrections to SUPORT were marked by appropriate
comment cards.

The corrected code now executes properly at both ORNL and ORGDP
computer sites without the necessity of masking underflows. Card decks
of the revised subroutine SUPORT have been transmitted to RWTUV and IHI.

ORTAP 1is also undergoing a general renovation, with the dual objec-
tives of decreasing computation costs while maintaining an appropriate

level of accuracy.

ORECA Code Calculations of Postulated FSV Reactor* S.
LOFC/FWCD Accidents for Core Thermal
Stress Evaluations

S. J. Ball

Professor Theophanous of Purdue University [who was working on
related FSV thermal analysis problems for NRC Division of Project
Management (DPM)]| noted that, during the firewater cooldown (FWCD) phase
of a postulated 90-min loss-of-forced-convection (LOFC) accident, the
predicted differences between certain adjacent core regions' lower

reflector and support block temperatures were very large, some being as



great as 7~8400C (1500°F). There was some concern that these gradients
may cause large thermal stresses in the support block regions. These
large temperature differences at the bottom of the core result from the
uneven region temperature profiles that are generated during the LOFC.
The regions with higher region peaking factors (RPFs) experience reverse
(upward) flows, which transport the core heat up toward the core top.
After the FWCD begins, the forward flow drives the heat downward,
temporarily raising the temperature at the base of the core to a much
greater degree than those low RPF regions that had downflow during the
LOFC phase of the accident.

Calculations of the predicted thermal performance were made using

the ORECA6 code and forwarded to NRC and to Dr. Charles A. Anderson

[Los Alamos Scientific Laboratory (LASL)], who is to perform the stress
analyses. A modified version of the "standard" ORECA core nodal approx-
imation was used for the calculations. Usually, the lower reflector and

core support block for each radial region are represented by one node.
In the present case, the lower 0.38 m (15 in.) of each core support
block is represented by a separate node (axial node 9), while the rest
of the support block plus the reflector are lumped as one node (axial
node 8). This model change had been made previously in a version of
the ORECA code used in comparisons of FSV scram data with predictions.?
The lower portion of the support block, which has considerably less
heat transfer area than the average region element, was found to cool
down much more slowly after a scram. The resulting higher values of T
radiation to the region outlet thermocouple assemblies yielded much
better agreement with the scram test data.

Sensitivity studies have also been done to see if variations of the
presumed "worst-case" accident assumptions would lead to instances of
larger thermal gradients. For example, the pessimistically low assumed
value of FWCD helium circulation flow was increased, but the low flow
was found to give the largest gradients.

Figure 1 shows the temperature difference between the typically
hottest node in axial region 8 (reflector and upper support block) and
its coolest neighbor, radial regions 19 and 35, respectively. The

difference peaks at 77200 s (120 min) after the start of cooling.
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Fig. 1. Temperature difference between regions No. 19 (hot) and
No. 35 (cool) after FWCD at axial region 8 elevation (lower reflector
plus top of support).

Consultations with LASL are continuing as to their needs in eval-

uating the stresses.

Development of the Steam Generator Code BLAST

J. C. Cleveland

Informal discussions were held with H. Schuldt of RWTUV concerning

both RWTUV's plans to use the BLASTS code in Thorium High-Temperature
Reactor (THTR) simulations and ORNL's currently planned HTGR safety

activities. The RWTUV's plans involve the use of BLAST to analyze



transients, as required by the West German licensing process, during
1980. RWTUV completed the BLAST model for the THTR reheater and steam
generator. This model will be incorporated into a plant simulation of
the THTR by the Institut fur Reaktorentwicklung at Kernforschungsanlage
(KFA). The RWTUV also completed a model of the Arbeitgemeinshaft Versuch
Reaktor (AVR) steam generator with BLAST in preparation for BLAST verifi-
cation activities, which would compare BLAST with measured data from

AVR transients.

A suggested change in the BLAST technique for calculating main and
reheat steam outlet enthalpy from conditions in the last main steam and
reheater nodes was discussed with H. Schuldt of RWTUV. This potential
change will be tested by RWTUV with their THTR steam generator model.
Results of RWTUV's test will be provided to ORNL for examination.

Implementation of modified versions of BLAST made available to ORNL
by RWTUV continued. These versions include several improvements such as
a modification allowing a restart after the initial steady-state calcu-
lation or during the transient, a modification in the subroutine for
computing two-phase flow multipliers to extend the pressure range, a
more rapid matrix inversion technique, and a separate version of BLAST
with input and output in SI units. Current plans are to use these
versions in comparing BLAST predictions with measured data obtained from
FSV for selected transients. These modifications provide very significant
improvements in the BLAST capability and represent considerable effort

by RWTUV.

FSV Upper-Plenum Reverse-Flow Plume Experiments

S. J. Ball D. J. Fraysier

The final design of the intermediate reverse-flow plume experiment
was completed, all the components were acquired, and assembly and instal-
lation were completed. The purpose of the experiment is to determine the
validity of using Reynolds (Re) and Grashof (Gr) similarity relationships
to extrapolate from low-temperature, low-pressure air plume models to the

HTGR case, that is, high-temperature high-pressure helium.



The main features of the intermediate plume experiment are shown in
Fig. 2. A rotameter measures air flow through a heater assembly and into
a nozzle (with adjustable diameters), which directs the heated air to a
thin flat plate mounted above representing an FSV upper-plenum cover
plate. Mounted in the plate is a thin metal can insulated on the top

and sides and partially filled with water which serves as a calorimeter
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Fig. 2. Intermediate heated-plume experiment assembly.



to measure the rate at which heat from the plume is transferred to the
plate area. The height of the plume, as well as its (nozzle) temperature
and flow, are all adjustable. Material considerations 1limit the nozzle
temperature to V}15°C (600°F). A 360° curtain is used to shield the
plume from extraneous drafts.

An on-line computer is used to monitor temperatures of the plume,
calorimeter water, and ambient air and to calculate the heat transfer
rate, heat transfer coefficients (Nusselt numbers), Reynolds number at
the nozzle, the Grashof number, and other data that indicate the
statistical accuracy (confidence level for a prescribed accuracy or
error tolerance). The program written to acquire and analyze the data
is set up to control the duration of the run based on the run statistics.

Initial results have been obtained; however, problems with repeat-
ability and Nusselt number accuracy prevented drawing any conclusions
from the data obtained during the quarter. (The repeatability problems

were subsequently overcome.)

Implementation of the JAERI Code SCOTCH

S. J. Ball

As a result of discussions with M. Ezaki of the Japan Atomic Energy
Research Institute (JAERI) in Tokai, we received a copy of the SCOTCH
code, which was developed for simulations of the Japanese VHTR core.
Because the code may be useful in investigations of FSV postulated acci-
dents, we plan to try and implement it on the local IBM computers. The

abstract of the report accompanying the code (JAERI-M 8292) is as follows

SCOTCH: A Program for Solution of the One-Dimensional,
Two-Group, Space-Time Neutron Diffusion Equations with
Temperature Feedback of Multi-Channel Fluid Dynamics
for HTGR Cores

Masahiro Ezaki, Tamotsu Ozawa,* and Susumu Mitake
Division of Power Reactor Projects, JAERI

* Visiting scientist from Kawasaki Heavy Industries, Ltd.



The SCOTCH program solves the one-dimensional (R or Z),
two-group reactor kinetics equations with multi-channel
temperature transients and fluid dynamics. Subprogram SCOTCH-
RX simulates the space-time neutron diffusion in the radial
direction, and subprogram SCOTCH-AX simulates the same in
the axial direction.

The program has about 8,000 steps of FORTRAN statements
and requires about 102 K words of computer memory.
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