

BNL--36467

BNL 36467

DE85 012186

CONF 850556-12

NEUTRON MULTIPLICITIES FOR THE TRANSPLUTONIUM NUCLIDES

N. E. Holden and M. S. Zucker
 Brookhaven National Laboratory, Upton, New York

1. Introduction

This paper continues, with respect to the transplutonium nuclides, earlier efforts^{1,2,3} to collate and evaluate data from the scientific literature on the prompt neutron multiplicity distribution from fission and its first moment $\langle v \rangle = \int v P_v$.

The isotopes considered here for which P_v and/or $\langle v \rangle$ data (or both) were found in the literature are of americium (Am), curium (Cm), berkelium (Bk), californium (Cf), einsteinium (Es), fermium (Fm), and nobelium (No).

The motivation behind the work continues to be providing the safeguards field with the information increasingly required as calculation and assay methods are refined, particularly with regard to neutron correlation counting. Some of the transplutonium nuclides are obviously of greater immediate importance than the others. However, even parameters of the more exotic nuclides are of value since they contribute to an understanding of the systematics involved. This enables development of semi-empirical relations which in turn can be used to improve measured value or predict parameters when experimental results are not available.^{4,5} The methodology for evaluating $\langle v \rangle$ and P_v data is the same as in our earlier papers.³

2. Nuclides Considered

The result for $\langle v \rangle$ are presented in Table I. P_v data for $^{242,244,246,248}\text{Cm}$, $^{246,250,252,254}\text{Cf}$, ^{257}Fm , and ^{252}No have been evaluated and are presented in Tables II, III, IV, and V (Cm), Tables VI (Cf), and Table VII (No and Fm).

Data on Q_n , the probability that n neutrons are actually detected (in contrast to v being emitted; $n \leq v$) were available for $^{254,256,257}\text{Fm}$. The P_v are related to the Q_n by

$$P_v = \{Q_n | n! / v! (n-v)! | \} \epsilon^{-n} (1-\epsilon)^{v-n},$$

where ϵ is the detector efficiency. The value of ϵ cited by the experimenter has an uncertainty associated with it due to experimental inaccuracies and/or the experimenter having based the efficiency calibration on a value for $\langle v \rangle$ of a nuclide (^{252}Cf , ^{240}Pu , etc.) which was not the best available. Thus there is justification for varying ϵ about the quoted value. Application of the above formula in a straightforward way to Q_n sets for $^{254,256,257}\text{Fm}$ even allowing for variations in ϵ however did not yield physically meaningful results: some of the P_v would be negative, greater than unity, etc. The reason for this is still being investigated, but is believed probably due to the relatively poor statistical accuracy of

the available (Q_n) data for the Fm isotopes. The computer program for carrying out the above operation successfully treated cases from the literature where the experimenter had cited both the Q_n and P_v sets, so the computer program itself has been ruled out as a factor.

Thus the only Fm nuclide for which P_v data could be evaluated was that for ^{257}Fm , for which there was one set available.

The literature on ^{252}Cf is extensive and since our most recent evaluation leaves that in reference 3 unchanged save for correction of a minor error referred to there, only the consensus set of P_v is cited here.

The detailed list of literature citations can be obtained from the authors.

3. References

1. N. E. Holden and M. S. Zucker, Proc. ANS/INMM Topical Meeting on Safeguards and Technology, Hilton Head, S.C., Nov. 28-Dec. 2, 1983. Trans Amer. Nucl. Soc. 45, suppl. 1, 23 (1983).
2. N. E. Holden and M. S. Zucker, BNL-NCS-35513-R. IAEA Advisory Group Meeting on Neutron Standard Reference Data, 12-16 Nov. 1984, at Geel, Belgium.
3. M. S. Zucker and N. E. Holden, Proc. 6th ESARDA Symp. on Safeguards and Nucl. Material Management, Venice, Italy, May 14-18, 1984, p.341.
4. G. Edwards, D. J. S. Findlay, and E. W. Lees, Annals of Nuclear Energy, Vol. 8, p. 105-114, Pergamon Press Ltd., 1981.
5. "Apparatus Characterization as a Standard for Neutron Correlation Counting", M. S. Zucker, 4th ESARDA Symposium, p. A1, April 27-29, 1982, Petten, Netherlands.

Table I
 Recommended $\langle v \rangle$ Values for Am, Cm, Bk, Cf, Es, Fm, and No Nuclides

Nuclide	Value(Uncert.)	Nuclide	Value(Uncert.)
^{241}Am	3.22 (0.04)	^{250}Cf	1.51 (0.04)
^{242}Am	3.26 (0.03)	^{251}Cf	4.1 (0.5)
^{242}Cm	2.54 (0.02)	^{252}Cf	1.737 (0.010)
^{243}Cm	3.43 (0.14)	^{253}Cf	3.85 (0.06)
^{244}Cm	2.72 (0.02)	^{253}Es	4.7
^{245}Cm	3.75 (0.10)	^{254}Cf	4.2
^{246}Cm	2.93 (0.03)	^{246}Fm	4. (1.)
^{247}Cm	3.80 (0.15)	^{246}Fm	4. (1.)
^{248}Cm	3.13 (0.03)	^{256}Fm	4.0 (0.3)
^{250}Cm	3.30 (0.08)	^{257}Fm	4.0 (0.5)
^{249}Bk	3.40 (0.05)	^{256}Fm	3.61 (0.06)
^{246}Cf	3.1 (0.1)	^{257}Fm	3.87 (0.05)
^{249}Cf	4.1 (0.3)	^{252}No	4.20 (0.30)
^{249}Cf	3.4 (0.4)	Neutron fission	
		Spontaneous fission	

MASTER

**REPRODUCED FROM
BEST AVAILABLE COPY**

Table I P_0 for 24^{th} Cn					
	Elkma 73	Elperin 80	Yang 76	Chapman 80	Std. Dev.
P_0	.0196474	.0128731	.0132163	.0118350	.0040
P_1	.1873552	.1340479	.1358229	.1467407	.0123
P_2	.3371527	.3171182	.3170804	.2547531	.0118
P_3	.3387923	.3309347	.3187058	.3256277	.0121
P_4	.1203325	.1443570	.1379818	.1373070	.0102
P_5	.0614207	.0181274	.0041874	.0773843	.0100
P_6	.0053126	.0022094	.0033299	.0025913	.007
P_7	.0003177	.0000663	.0016121	.0007551	.007
P_8	.0000000	.0000000	.0000002	.0021803	.0003
C_{00}	1.3400000 ^a	1.3400000 ^a	1.3400000 ^a	1.3400000 ^a	.02
$C_{01}(-1)$	3.111	3.043	5.262	5.132	.01
$C_{01}(-1)(-2)$	0.038	7.359	8.674	6.036	.037
$C_{01}(-1)(-2)(-3)$.7923	.7817	.8123	.7933	.0138
$C_{01}(-1)(-2)(-3)^2$	1.200	1.132	1.330	1.221	.101
C_{02}^2	7.051	7.103	7.782	7.072	.101

^a means P_0 deviates by $> 2\sigma$
^b means P_0 deviates by $< -2\sigma$
^c data sets made to conform to this value

Table II P_0 for 24^{th} Cn					
	Baldwin 73	Elperin 80	Yang 76	Chapman 80	Std. Dev.
P_0	.0003061	.0071623	.0007532	.0001	
P_1	.0422306	.0378664	.0299645	.0027	
P_2	.3272634	.3136818	.2895516	.0093	
P_3	.3458167	.3559996	.3195630	.0078	
P_4	.5423394	.4832129	.2643747	.0133	
P_5	.0007391	.0079319	.0093355	.0020	
P_6	.0004991	.0127780	.0167306	.0074	
P_7	.0003375	.0000000	.0016806	.0076	
C_{00}	3.1300000 ^a	3.1300000 ^a	3.1300000 ^a	3.1300000 ^a	.03
$C_{01}(-1)$	8.030	7.849	7.939	8.000	
$C_{01}(-1)(-2)$	16.359	15.312	15.679	16.000	
$C_{01}(-1)(-2)(-3)$.8192	.8052	.8126	.8182	
$C_{01}(-1)(-2)(-3)^2$	1.363	1.322	1.372	1.300	
C_{02}^2	11.160	11.019	11.089	11.000	

^a data sets made to conform to this value

Table III P_0 for 24^{th} Cn					
	Elkma 73	Elperin 80	Dehrelli 76	Yang 76	Chapman 80
P_0	.0122012	.0053022	.0178773	.0133351	.0130330
P_1	.1285013	.1104120	.0917423	.1207193	.1101723
P_2	.3033558	.3121823	.3181042	.3091284	.2998127
P_3	.3170112	.3515374	.3332404	.3258124	.3331616
P_4	.2011934	.1704431	.1823423	.1773001	.1837748
P_5	.0259232	.0412210	.0520189	.0487494	.0421973
P_6	.0117374	.0054863	.0021872	.0021851	.0007918
P_7	.0000000	.0000000	.0000000	.0010777	.0002164
C_{00}	8.7100000 ^a	8.7100000 ^a	8.7100000 ^a	8.7100000 ^a	.03
$C_{01}(-1)$	5.989	5.016	5.207	6.023	.539
$C_{01}(-1)(-2)$	10.303	9.869	9.885	10.361	.510
$C_{01}(-1)(-2)(-3)$.6793	.7841	.8018	.5114	.5017
$C_{01}(-1)(-2)(-3)^2$	1.314	1.1274	1.269	1.323	.1260
C_{02}^2	8.709	8.5550	8.647	8.723	.6459

^a means P_0 deviates by $> 2\sigma$
^b means P_0 deviates by $< -2\sigma$
^c data sets made to conform to this value

Table IV P_0 for 24^{th} Cn					
	Elkma 73	Elperin 80	Dehrelli 76	Yang 76	Chapman 80
P_0	.0120923	.0173031	.0132182	.0118350	.0040
P_1	.0924850	.0709085	.0763789	.0688	
P_2	.2910210	.2742057	.2827039	.0192	
P_3	.3512953	.3176076	.3494723	.0103	
P_4	.2238718	.3102377	.3180653	.0110	
P_5	.0431029	.0831960	.0735885	.0139	
P_6	.0091644	.0092810	.0072237	.0027	
C_{00}	8.9300000 ^a	8.9300000 ^a	8.9300000 ^a	8.9300000 ^a	.03
$C_{01}(-1)$	9.971	6.960	6.940	.027	
$C_{01}(-1)(-2)$	12.193	12.817	12.703	.159	
$C_{01}(-1)(-2)(-3)$.8042	.8107	.8084	.0033	
$C_{01}(-1)(-2)(-3)^2$	1.168	1.303	1.255	.017	
C_{02}^2	9.031	9.893	9.870	.027	

^a data sets made to conform to this value

Table VII P_0 for 24^{th} Cn and 24^{th} Cn					
	Elkma 73	Elperin 80	Yang 76	Chapman 80	Std. Dev.
P_0	.0394168	.0205736			
P_1	.0977645	.0320335			
P_2	.0974873	.1172380			
P_3	.1433749	.1973003			
P_4	.1872632	.2627888			
P_5	.1871510	.2007776			
P_6	.1655905	.1081861			
P_7	.0962973	.0313032			
P_8	.0382068	.0073879			
P_9	.0023876	.0000000			
C_{00}	4.2070000 ^a	3.6700000 ^a			
$C_{01}(-1)$	17.656	13.400			
$C_{01}(-1)(-2)$	40.119	41.771			
$C_{01}(-1)(-2)(-3)$	1.0000	.9080			
$C_{01}(-1)(-2)(-3)^2$	6.216	2.493			
C_{02}^2	21.856	17.470			

^a data sets made to conform to this value

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.