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In the study complex reactions, the simple space-time interpretation of pion
interferometry often breaks down due to strong coirelations between spatial
and momentum coordinates. In those cases, pion interferometry is stili useful
as a complementary test of specific dynamic models, but a refined formalism
must be used, as discussed in the introduction. With this formalism, we show
that recent NA35 data on O + Au — 7~ 77 + X at 200 AGeV are consistent
with both hadronic resonanc: and quark-gluon plasma models for this reaction.
The sensitivity of the outward and sideward transverse projected correlation
function for pions is investigated. Finally, we compare pion and kaon interfer-
ometry predictions of these two models.

1 Introduction

Pion interferometry has been used f:r a long time[1}-[19] to probe the space-time
geometry of high energy hadronic reactions (for a comprehensive review, see [20]).
It is based on exploiting the constructive interference between identical bosons when
their relative momenta are small compared to the inverse of the typical spatial di-
mensions of the reaction volume. Experimentally, the interference pattern is deduced
by measuring like pion correlation functions,

Calkny -+ kn) = NaPa(kn, - kn)/ T Prlks) (1)

i=1

where P, denotes the n (identical) pion inclusive distributions, and A, is the inverse
of the normalized n** factorial moment of the multiplicity distribution.
Unfortunately, the simple geometrical interpretation of the interference pattern
is only valid in the semi-classical limit and in the absence of correlations between
the spatial and momentum coordinates[6, 7]. In such idealized cases, the two pion
correlation function Ca(k;, ka) is directly related to the space-time density, p(z), of

pion emission points through

Ca(ki, k2) = Po(ki, k2)/ Pr(k)Pi(k2) = 1+ Alp(ky — K2)f? (2)
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with p(g) = [ d*ze'""p(z) and with the incoherence or chaoticity parameter A = 1.
In many interesting cases, dynamical effects can lead, however, to strong correla-
tions between x and k which can distort the interference pattern and obscure the
space-time interpretation of C(k;, k). In such cases the analysis of correlation func-
tions necessarily becomes model dependent! Nevertheless, the study of small relative
momentum pion correlations is still useful as a unique and complementary test of
specific dynamical models since identical pion correlations are sensitive to the phase
space correlations predicted by transport models, which are otherwise not tested in
other inclusive measurements. However, as shown in Ref[21] it is essential in that case
to use a more refined formalism to connect transport calculations with interferometry
data.

A characteristic symptom of the breakdown of the ideal picture is that Cz(k), kz)
is found to depend on the mean pion momentum, K = (k; + k2)/2, as well as on the
relative momentum, q = k; — kz even in the case K - q = 0 (see e.g. 7, 8, 10, 14]).
(A dependence on the component of K parallel to q always occurs if there is time
dependence of p(x,t).) A second symptom of the breakdown of the ideal picture is
a fitted value of A < 1, also found often experimentally. While in principle partially
coherent fields could be produced[5], the most likely cause of an apparent A < 1 is
an overly simplified analysis of the complex six-dimensional dependerce of Cz(ky, k)
involving iutegrations over four or five of the momentum variables and /or neglecting
additional important dynamical degrees of freedom such as resonances. These points
have been emphasized for example in refs.[14, 19].

Present interest in this problem stems from new data on pion interferometry
of nuclear collisions at CERN[15] and the development of Monte Carlo transport
models[18, 22] for high energy reactions. At high energies, Lorentz boost invariance
along the beam direction leads to a strong (so called Inside-Outside[23]) correlation
between the production points, z#, and final momenta, p*. The modifications of C;
due to such phase space correlations have been studied in Refs.[11, 12, 14, 17] us-
ing a variety of simplifying assumptions and techniques. There has also been recent
progress toward more realistic calculations, taking into account additional dynami-
cal complications predicted by detailed transport models in refs.[18, 19]. However,
the theoretical basis for those calculations has not been adequately discussed in the
literature.

The formula derived in Ref.[21] turns out to be a natural generalization of the
one proposed by Pratt[7] and is derived in a more comprehensive way using trans-
port theory and the Wigner density formalism developed by Remler[24, 25]. Finite
wavepackets are used to expose the sensitivity of the interference effects to the pro-
duction mechanism.

The Wigner formalism connects the rate of change of the n particle phase space
distribution, fn(X1,P1,:-*,Xn,Pn,t) to asymptotic observables. As emphasized in
[24, 25], transport theories, such as hydrodynamics or cascade models, can only ap-
preximate the rate of change of f, during the limited time interval when relatively
high momentum transfer processes are occuring. At asymptotic times such models
break down or predict free streaming. Low momentum transfer final state interactions
leading to weakly bound states{25] and subtle Bose interference effects can only be
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rigorously extracted from transport models using the Wigner formalism. The formal-
ism also allows us to derive a new equation incorporating effects of intermediate time
cascading of pions and to study the conditions under which only the final freeze-out
coordinates dominate the interference pattern.

The main result of Ref.[21] is summarized by the following fermula for the Bose-
Einstein symmetrized n pion invariant distribution:

Palky,- - ka) <Z I e““"“':""aa(k,.k,,.p,)> , (3)

e j=1
with the smoothed delta function given by
ba(k, k',p) = (2rAp") " exp(3{p — j(k + K'))* /AP + §(k - K)’A%) . (4)

The brackets (---) denote an average over the 8n pion freeze-out space coordinaies
{z1, 1,y Tn,Pn}, as obtained from the output of a specific transport model such
as a cascade{l8] or LUND model[19). In this form, Eq.(4) is ideally suited for Monte
Carlo computation of pion interference effects. The smoothed delta function results
from the use of Gaussian wavepackets with widths Az and Ap that depend on details
of the pion production mechanism. The sum is over n! permutations, 7 = (a1, - -, on),
of the indices ( z, k,p, - - denote four vectors and all momeata are on-shell).
There are several important points to note in connection with (3}:

1. The freeze-out coordinates do not correspond in general to the set of coordinates
{xi(ts), pi(ts)} at any particular “freeze-out” time since the decoupling times,
z?, are usually widely distributed[24, 25]. In a cascade model, the freeze-out
time for particle i is the time, t5;, when the last binary collision was suffered by
that particle and (z¥, p¥) = (z%(¢s:), p*(tsi + €)). These 8n coordinates can be
arbitrarily correlated.

2. The wavepacket widths enters because the uncertainty principle permits us to
interpret the (z¥,p!) only as the mean values of the pion wavepackets. In
Monte Carlo calculations involving a finite sample of freeze-out coordinates, the
interference terms are nonvanishing only if Ap > 0 since no two p; are ever the
same. However, in the semi-classical limit ({(x; —x;)?) » Az?, {(p; —p;)?) >
Ap?), the dependence on the widths drops out.

3. Eq.(3) reduces ta the expression derived via a covariant current ensemble formal-
isms(19)] for minimal wavepackets (AzAp = }). In that case Ap? = mT in terms
of the pion mass and the pseudo-temperature parameter characterizing current
elements. Our derivation thus clarifies the interpretation of the current elements

in the later formalism.

4. The Pratt{7] formula for interferometry correspond to the nonrelativistic and the
Az = Ap = 0 limits of (3). The hybrid Yano-Koonin formula[4] follows from
(3) only if correlations between z; and p; can be neglected. In addition the
wavepackets provide a physical basis for the numerical smoothing proceedure
adopted in [18].



5. In general, correction terms to (3) appear due to cascading prior to the freeze-
out time but can be neglected in the limit that the mean free path of pions is
small compared to the source size (the hydrodynamic limit) or if the momentum
transfers are small compared to the pion momenta (the Eikonal limit).

6. In cases where P, is found to be sensitive to the wavepacket size, pion interfer-
ometry cannot separate production dynamics from the transport dynamics, and
Az and Ap must be treated as addition physical parameters. A similar sen-
sitivity to the form of the current elements in the current ensemble method is
possible. As we emphasize in Ref[21], this is the case for the ideal Inside-Outside
cascade dynamics{11]-[19], where the rapidity correlation scale, éy ~ (rAp)~!,
depends not only on the mean pion freez-out proper time but also on Ap.

7. Eq.(3) could be further generalized by allowing every packet to vary indepen-
dently, e.g., via a different Az;, Ap;. Choosing, the coherence length Az; to
be very large for a fraction of the pions due to some exotic production mecha-
nism, the interference pattern would be similar to that due to partially coherent

fields(5].

8. Relative Coulomb and other final state interactions are not considered here but
can be included via methods dicussed by Bowler[16].

2 Pion Interferometry of O 4+ Au

The NA35 collaboration{15] measured ~x~ correlations in O+Au at 200 AGeV and
reported that the freeze-out distribution for pions in this reaction is characterized
by a surprisingly large freeze-out proper time and transverse radius, 7y ~ Ryy ~ 7
fm. In addition, they reported an unusually high degree of coherence for pions away
from the central rapidity region. These results are of interest because they may imply
a breakdown of popular hadronic transport models like LUND[22, 26] and possibly
provide evidence for novel dynamical effects associated with the formation of quark-
gluon plasma in nuclear collisions(11, 18].

In Ref.[19] we showed, however, that the above results are not conclusive and
that the present data are in fact consistent with a wide range of pion source param-
eters when additional non-ideal dynamical and geometrical degrees of freedom are
incorporated into the analysis. In particular, both hadronic transport models[22] and
quark-gluon plasma hydrodynamic models[18] are found to be consistent with the
present correlation data. We also study the sensitivity of “outward™ and “sideward”
transverse momentum interferometry[11, 18] and show that, in contrast to first ex-
pectations, much higher precision data will be required to differentiate between such
competing dynamical models.

In its simplest form, pion interferometry involves fitting the xx correlation function
with the ansatz given by eq.(2). As discussed in the Introduction, this simple relation
is, however, only valid if the freeze-out space-time and momentum coordinates of the
pions are uncorrelated. In high energy hadronic processes there are many potential



sources of such correlations which can significantly modify[11, 12, 14, 17} the form of
C(k, k2), and thus, the geometrical parameters obtained with (2) could be mislead-
ing. In phase-space, strong correlations[23] between the space-time and momentum
rapidity variables, defined by 5 = % log((t+z)/(t—z2))and y = % log((E+p:)/(E-p:)),
resulting from approximate longitudinal boost invariance, have to be taken into ac-
count. In addition, a large fraction of the observed »~ could arise from the decay of
long lived resonances such as w, K*,7,--- [28]. It has been known for a long time[29)
that those resonances can produce effects that could be misinterpreted as due to
upnusually long lived sources and partially coherent fields. For nuclear collisions at
moderate energies ~200 AGeV, additional complications due to non-uniformity of the
rapidity density[15] and the large spread of pion freeze-out proper times must also
be considered. Other correlations, e.g., between the transverse coordinate (x,) and
the transverse momentum component (p; ), may have to be considered if collective
hydrodynamic flow occurs(11].

To incorporate these many effects into the pion interferometric analysis of nuclear
collisions, we must use equations (3) and (4). While those equations were derived
using the Wigner formalism, we now review the simpler current ensemble method
that leads to the same equation for the case of minimal packets. In that formalism
the source of pions is represented by a large ensemble of current elements, {j,(z) =
Jo(u¥(z — z4),)}, where z# and u* denote the space-time origin and four-velocity of
current element a, and jo(z) specifies each current element in its rest frame. The
amplitude for the production of a pion with momentum k is given by the Fourier
transform of the total source current,

i(k) =3 jo(ugk)e™ e (5
a
where the factors e'* are random phases in the case of completely chaotic sources.
The m-pion inclusive distribution function is then given by

Pu(ky,- oo km) = {Li(k0) [P - | 5(km) PP} (6)

where {---} denotes the ensemble average over the space-time coordinates r,, four-
velocities u,, and random phases ¢,. In the absence of dynamical multi-pion correla-
tions, that ensemble average can be expressed in terms of a “freeze-out” phase-space
distribution

D(z,p) = {6%(z — z)6p — p.)) . (M)

where p? = mu?. The m pion inclusive distribution functions is then given by[5, 12]

Pm(kh"‘vkm)=Z{ﬁG(k"vkﬁ)} ’ (8)

e \i=l
where ¢ = (01,-+-,0m) runs over the m! permutations of indices. The complex
amplitude G(k;, k;) is given by the convolution of the freeze-out distribution and two
current elements that characterize the production dynamics,

G(ki, k;) = / d*pD(ki—k;, p)ig(pki/m)jo(pk; [m) = {"* "5 (p.k: fm)jo(pak;/m)) .
(9)



The objective of pion interferometry from this point of view is to constrain the
form of the freeze-out source distribution. The model dependence enters, however,
not only through the parameterization of D(z, p) but also through the model adopted
for jo(k). In this formalism the current elements play the same role as wavepackets
do in the Wigner density formalism[11, 21]. From (9) it is clear that (2) can apply
only in the very special case that D(q,p) = p(q)f(p), and that f(p) is sharply peaked
compared to jo(k). In other words, the space-time and velocity coordinates of the
source elements must be uncorrelated and the Doppler shift of the pion spectra from
each source element must be negligible. Neither of these conditions is satisfied in high
energy hadronic processes.

In our calculations, we adopt for simplicity a covariant pseudo-thermal model for
the current elements[5, 12],

jo(pk/m) = exp(—pk/(2mT)) . (10)

where the effective “temperature”, T, characterizes the spread of the source elements
in momentum space and controls the transverse momentum distribution of pions in
our case. With this model the amplitude assumes the particularly simple form

G(ky, kz) = (exp{igzs — Kpa/(mT)}) , (11)

depending not only on ¢* = k{'—&3 but also on the mean pair momentum K* = 3(k{'+
k%). Note that this dependence is, however, quite different frorn the K dependence
arising in the non-covariant Wigner formalism(l1, 21].

The effects of long lived resonances can be easily included in the semiclassical
approximation. Note that the pion freeze-out coordinates, z, are related to its
parent resonance production coordinates, z¥, through

¥ = z¥ + u¥r (12)

where u* is the resonance four velocity and 7 is the proper time of its decay. Inserting
(12) into (11), samming over resonances r of widths I, and averaging over their decay
proper times, we obtain the final expression

G(k1, k2) = (3 f- (1 — iqu,/T, )™ exp(igz, — Ku./T})) , (13)

where f, is the fraction of the observed x~’s arising from the decay of a resonance
of type r, and T, characterizes the decay distribution of that resonance. The factor
(1 —iqu,/T,)! insures that pions arising from decay of long lived resonances do not
interfere effectively at moderate g. While (13) is only valid in the semiclass, al limit
and involves an idealized model {10} of the decay dynamics, it is manifestly Lorentz
covariant and is of sufficient generality to allow the study a variety of nontrivial
dynamical models of high energy nuclear collisions.

We consider here a class of dynamical models that can be characterized by a set
of resonance fractions {f,}, and a freeze-out phase space distribution of the form

D(z,p) x e~ T} e~ (=) 12807 ~(v=y" ) 2Y? o~} R} \ (14)
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where 7; specifies the width and mean value of the freeze-out proper time, r =
{t? - 2%)!/3, distribution, Ay specifies the rms fluctuations of g = 1 log((t +2)/(t - z))
around y = 1log((E + p.)/(E — p:)), Y- is the width of the rapidity distribution
centered at y°, and R, is the rms transverse radius at freeze-out. In this work, we
estimate the parameters of the freeze-out distribution and resonance fractions using
the ATTILA version of the LUND Fritiof multi-string model[22] and a string tension.
k = 1 GeV/fm, to map momentum space into coordinate space. For O+Au at 200
AGeV, we find that Y. = 1.4, y* = 2.5, Ap = 0.7, 7y =~ 3 fm/c and B; =~ 3 fm. The
7=~ pedigree is determined to be f. = 0.19, f, = 0.40, f_, = 0.16, and fx. = 0.09, in
rough agreement with data on hadron-hadron reactions[28]. The contribution from
longer lived resonances is set to zero.

In Ref.[18] a similar form for D was employed to parametrize the results of a
quark-gluon plasma hydrodynamic calculation. In that case, the parameters were
found to be 7y = 9.0 fm/c,R; = 3.3 fm,Ap = 0.76, assuming that Y. = oc and
neglecting resonances. The characteristic long lifetime found in such hydrodynamic
models results from the slowness of the badronization transition[30, 14, 17] when the
latent heat of transition is large.

For comparison, the idealized inside-outside cascade model[23] considered in 5, 12]
and used in [15] to fit the data corresponds to

D(z,p) o §(r — 74)é(n — y) exp(~r1/RY) , (15)

with resonances neglected.

Given the freeze-out distribution, we calculate the amplitude, G(k,, kz), by Monte
Carlo sampling with typically 400-800 freeze-out phase-space coordinates selected
according to (14) for each (ky, k2) pair. The freeze-out distributions for all resonance
species is taken to be identical, and all T, are set to 0.15 GeV to reduce the number
of free parameters. To compare with data on the transverse projected correlation

function(15], {C(qL)), we must compute

_ [ ki dlki0(qs; b, k) |GLky, o)1
(Clad = 14+ A Fa8(an: k. )G, ka)Clkr ) (16)

where the experimental constraints are built into ©. For the present data © is non-
vanishing only if k1 — k31| is within § MeV/c of ¢, %, Jk1, — k2| £ 0.1 GeV/c, and
if both y; and y; are in a certain interval [ymin, Ymez]- The six dimensional integrals
are computed by importance sampling using a model single inclusive distribution to
generate typically ~ 200 pairs and repeating 2000-4000 times to insure convergence.

A good test of the numerical method is provided by reproducing the fitted curves in
Ref.[15], which follow assuming the ideal inside-outside cascade distribution (15). In
Fig 1a and 1d, we show that our calculations employing the reported parameters[15],
r¢ = 6.4 fm/c, R, = 7.3 fm and A = 0.84 for =~ in the rapidity interval 2 < y < 3
and 77 = 2.5 fm/c, R; = 4.0 fm, and A = 0.30 in the interval 1 < y < 2, do in fact
provide a good fit to the data (note that the data have been corrected for Coulomb
final state interactions).

Next, we show in Figs 1b,le, the calculated curves for the case of non-ideal hadron
resonance dynamics. For these calculations we chose An = 0.8 and considered 7; =

8



R, = 2,4,6 fm. We have performed an additional Monte Carlo hadronic cascade
calculation taking as input the output of the LUND fragmentation model[22] and
found that with a & = 20 mb, the true freeze-out distribution is roughly characterized
by 74 ~ R, ~ 4 fm for this reaction. In both Fig. 1b and le, the chaoticity parameter
is fixed to A = 1 as appropriate for completely chaotic sources. It is clear that the
present data are consistent with the freeze-out distribution expected on the basis of
a resonance gas model for the nuclear dynamics.

Next, in Figs. 1c,1f we show the remarkable result that the quark-gluoa plasma
freeze-out distribution is also consistent with the data. The reason is that the long
lifetime of the plasma source leads to the same effect in this case as the inclusion of
long lived hadronic resonances in Figs. 1b,le. Note that our results for the plasma
model differ substantially from those reported in Ref.[18]. We attribute this dis-
crepancy to an improved nurnerical treatment and a more accurate definition of the
experimental projected correlation function in the present work.

While it would be difficult to justify ruling out any of the three models from the
present data, the “exotic” parameters obtained with the ideal inside-outside cascade
model[12] are the least compelling, since it would be truly remarkable if the degree
of coherence in such violent nuclear collisions were not negligible. Note that in Fig
1d, ideal dynamics with A = 1 in fact fails to reproduce the data.

It has been suggested[11, 18] that the projected correlation function in terms of
“outward” and “sideward” transverse momenta,

Gout = Q1 "KL |/KL |, Qoiga = QL — Qou| » ' (17)

could differentiate between hadronic and plasma models and provide an “unambigu-
ous” signature of quark-gluon plasma formation. In Fig. 2a and 2b, we compare
resonance gas and plasma model predictions for these projected correlation functions
for the case 1, = y; = y* = 2.5. Indeed, quantitative differences can be seen. How-
ever, when integrated over a broad rapidity interval, 2 < y» < 3, as in the present
data, most of those differences are washed out as can be seen in Figs. 2c,d. This
shows that much higher statistics data will be required{31] to differentiate between
present models[26] for nuclear collisions. Of course, additional experimental informa-
tion will be essential to constrain further the dynamical degrees of freedom in both
types of models. Especially important will be an independent direct measurement of
resonance abundances|28], since in our hadronic scenario w production is the main
cause of the apparent long lifetime and radius.

3 Kaon Interferometry

To test whether kaon interferometry could be a more sensitive tool than pion interfer-
ometry, we apply the formalism discussed in the previous section to identical kaons,
we obtain the result shown in Fig. 3. There, the arrows indicate the “pure” corre-
lation function, i.e., those for which Coulombian corrections in the final state were
not taken into account (see Ref.[5] for a discussion or Gamow correction factors). In
Fig. 3.2 and 3.c we show our results, employing the reported parameters of Ref(19],
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respectively for the case of pions as well as for kaons. We see that, due to the absence
of the w's contribution to kaons, a substantial difference between the two dynamical
scenarios arises. On Fig. 3.b and 3.d, we show the calculated curves corresponding
to the plasrza model [18] parameters. In this case, since resonances are not taken
into account, practically no difference is observed for pions’ and for kaon’s correlation
functions, when the Gamow factor is taken as unity. Therefore, kaon interferometry
can clearly distinguish between our resonance gas scenario from the plasma one.

We should note, however, that when Coulombic final state interactions are taken
into account, a dramatic suppression of the correlation function for small values of ¢,
can be seen. This effect is even more significative for kaons, due to the increase in the
mass factor. So, it seems that the Gamow factor practically kills the visibility of the
effects becanse it affects the part of C(k,, k2) where the Bose-Einstein enhancement is
most significant. However, as already demonstrated by the NA35 Collaboration[15],
it is possible (and desirable) to “ungamow” the interferometric results to exhibit
more clearly this bosonic enhancement. If this is properly taken into account, we
conclude that kaon-kaon interferometry is an useful toal for deciding whether the
space-time geometry is determined mostly by long lived resonances or the slowness
of the hadronization transition from a plasma state.
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Figure 1:

Analysis of the transverse projected #~x~ correlation data of NA33{15). The his-
tograms in parts (a,d) are calculated assumning an ideal inside-outside cascade (IOC)
source with parameters (7 = 77, Rr = Ry ) taken from [15]. In parts (b,e) a non-ideal
Tesonance gas source is considered with parameters, T ~ Rr ~ 4 fm, as suggested by
the ATTILA version of the LUND Fritiof model[22]. Parts (c,f) correspond to the
quark-gluon plasma model of [18]. Parts (a-c) refer to the central rapidity region,
2 < yr < 3, and parts (d-f) refer to the region 1 < y»r < 2.
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mp.wK® Gas 3-¢g Plasma

2.00 T T T T
=40 Ry=4.0 T=90 Ry=33
1.75 —+ |
Qr & <
£l
"
0o
&)
A
e
S 1
v 7=4.0 R;=4.0 1 =90 R:=33
1.75 -+ 4.
™)
1.50 "~
<
3
1.25 o
1.00
]
0 0.05 0.1 0 0.05 01
Q (GeV/c) Q (GeV/c)
Figure 2:

Comparison of transverse projected “outward” and “sideward” interferometry calcu-
lated with a resonance gas mode] (a,c) and a quark-gluon plasma model (b,d). In
(a,b) the two pion rapidities are restricted to y. = y* = 2.5, while in (c,d) a finite
range, 2 < y» < 3, is considered. Q7 refers to the average transverse projected cor-
relation function as in Fig. 1. The solid histograms labeled Qouz correspond to the
projection of q, parallel to K, and the dashed histograms @srp to the projection of
q. perpendicular to K.
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Figure 3:

Numerical results comparing pion and kaon correlation functions versus ¢, , for |Ay| <
1, each particle being in the central rapidity region. The histograms not pointed by
arrows correspond to the Gamow corrected results. We should emphasize that in all
cases the chaoticity parameter is fixed to be unity.
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