

DOE/CE/90025-3

CAM/LIFTER FORCES AND FRICTION

DOE/CE/90025--3

David J. Gabbey, Graduate Student
Jongmin Lee, Graduate Student
Donald J. Patterson, Professor

DE92 011573

Final Report

for the Period September 15, 1988 - November 30, 1991

The project was supported by the:

U.S. Department of Energy

Heavy Duty Transportation Technology Program
John Fairbanks

Energy Conservation and Utilization Technology Program
David Mello

and was work performed by the:

Department of Mechanical Engineering and Applied Mechanics
W. E. Lay Automotive Laboratory
The University of Michigan
Ann Arbor, Michigan 48109

February, 1992

APR 13 1992

Prepared for

THE U. S. DEPARTMENT OF ENERGY
AGREEMENT NO. DE-FG02-88CE90025

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

ACKNOWLEDGEMENTS

The authors wish to thank the U.S. Department of Energy, and especially Mr. John Fairbanks and Mr. David Mello for their technical and financial support. Thanks also go to Mr. Greg Woodworth, Mr. Nick Skull, and Mr. Terry Shaw of the Cummins Engine Company for providing extensive technical assistance throughout the program. In addition, we thank Mr. Russell R. Mitchell, Mr. George Schwartz and Mr. Kevin Morrison for their contributions.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

TABLE OF CONTENTS

LIST OF FIGURES	iv
ABSTRACT	v
<u>EXPERIMENTAL WORK:</u>	
INTRODUCTION	1
HARDWARE OVERVIEW	2
THEORETICAL CONSIDERATIONS	5
EXPERIMENTAL CONSIDERATIONS	7
Pushrod Force and Velocity	7
Camshaft Speed	11
Roller Follower Pin Torque	11
Roller Speed	14
Data Acquisition System	15
Data Processing System	16
RESULTS	17
Pushrod Force	17
Injector Link Force	21
Roller Friction Torque	21
Roller Tractive Force	23
Roller Rotation Relative to Cam Angle	25
Pushrod Work	25
CONCLUSION	28
<u>ANALYTICAL WORK:</u>	
INTRODUCTION	29
MODELING	30
Kinematic Model	30
Dynamic Model	32
CONCLUSION	37
APPENDICES:	
1. VALVEIN3 PROGRAM	
2. FLIFTER5 PROGRAM	
3. TEST 9102102 DATA PLOTS	

LIST OF FIGURES

FIGURE

1. Project Overview	2
2. Upper Valve and Injector Trains	4
3. Injector Train Schematic	6
4. Upper Injector Train Detail	8
5. Pushrod Calibration Curve	9
6. Injector Link Calibration Curve	10
7. Torque Arm Assembly	12
8. Torque Arm Calibration Curve	13
9. Cross Section of Roller Speed System	14
10. Injector Pushrod Force	18
11. Injector Link Force	20
12. Injector Roller Pin Torque	22
13. Injector Tractive Force	24
14. Injector Roller Rotation	26
15. Injector Pushrod Work	27
16. Cam and Follower Schematic	30
17. Cam Profile	31
18. Injector Displacement	32
19. Schematic of Dynamic Model	33
20. Injector Tip Detail	35

ABSTRACT

This report details the procedures used to measure the cam/lifter forces and friction. The present effort employed a Cummins LTA-10, and focuses on measurements and dynamic modeling of the injector train. The program was sponsored by the U.S. Department of Energy in support of advanced diesel engine technology. The injector train was instrumented to record the instantaneous roller speed, roller pin friction torque, pushrod force, injector link force and cam speed. These measurements, together with lift profiles for pushrod and injector link displacement, enabled the friction work loss in the injector train to be determined. Other significant design criteria such as camshaft roller follower slippage and maximum loads on components were also determined. Future efforts will concentrate on the dynamic model, with tests run as required for correlation.

INTRODUCTION

As regulations limiting the quantities of exhaust emissions from diesel engines are made increasingly strict, advances in diesel engine technology must be made to keep pace. A significant factor for the reduction of particulates is known to be the fuel injection pressure; higher pressures result in better atomization of the fuel, resulting in faster, more complete combustion, higher efficiency and fewer particulates. In general, it is hoped that injection pressures double current practice can be used.

To increase the injection pressure without sacrificing reliability in a Cummins L-10 engine, the injector train must be strengthened from camshaft to injector. Thus, the incentive driving this research was the need to develop the technology to measure the magnitude, duration and cause of various forces in the injector train.

This project was initiated in September of 1988. It is jointly funded within the U.S. Department of Energy by the Heavy Duty Transportation Technology Program through Mr. John Fairbanks, and the Energy Conservation and Utilization Technology Program, Mr. David Mello. Originally the experimental efforts centered around instrumenting the exhaust valvetrain of the number one cylinder of the L-10 engine. The physical access to this area of the cylinder head was good, and the techniques were relatively easy to implement there. This effort was detailed in Reference 1. After successfully completing this, the apparatus was transferred to the injector train. Now efforts are being made to develop a dynamic model of the injector train in the L-10 engine.

Reference 1: Mitchell and Patterson, INJECTOR AND VALVE TRAIN FRICTION STUDIES, CUMMINS L-10 ENGINE; Progress Report, 01/10/91 to 31/12/91; The University of Michigan.

HARDWARE OVERVIEW

A "broken-in" Cummins L-10 engine, an inline six cylinder, four-stroke, direct injection diesel, was used for the project (Figure 1). Since firing the engine was not a necessity for examining the characteristics of the valve and injector trains, all pistons and connecting rods were removed. An electronically controlled fuel pump replaced the original, and the engine's oil capacity was reduced to decrease the warm-up period and minimize the volume required of any special test oils. The oil galleries were modified so that the valve and injector trains were lubricated independently of the rest of the engine by an external pump and heater. Reference 1 contains details of the set-up.

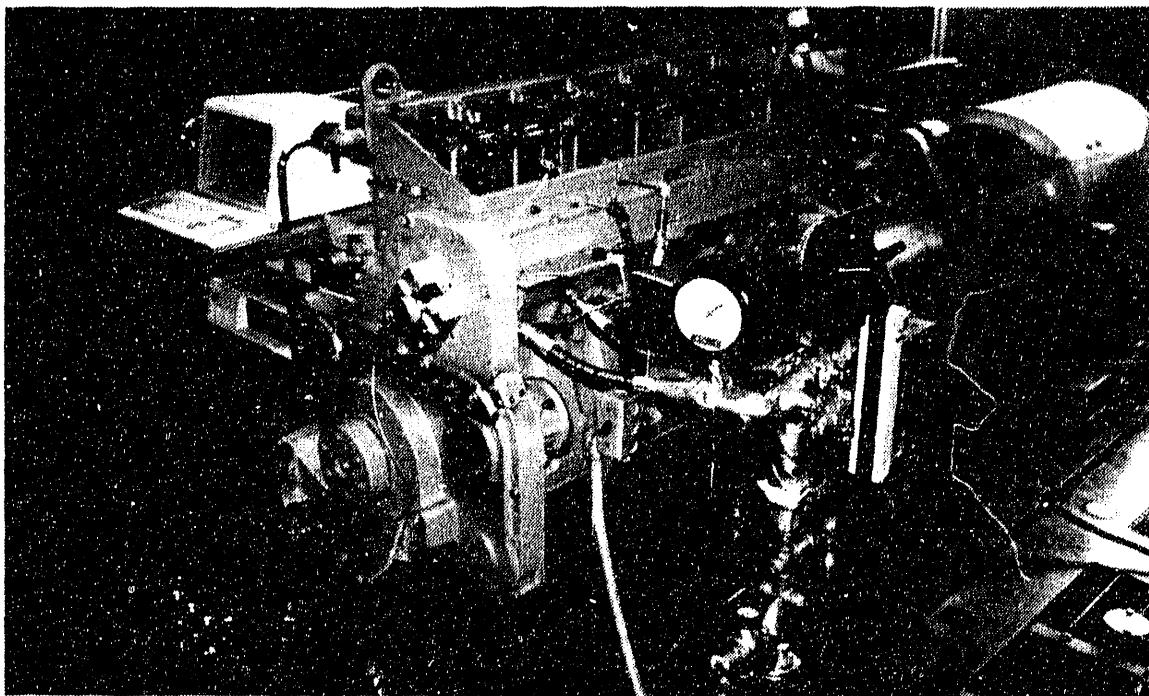


Figure 1: Overview: Cummins L-10 engine installed in Room 244 of the University of Michigan Automotive Laboratory

Because of space considerations, cylinder number two was instrumented for the injector train. Within its bore was a specially machined funnel to collect the injected fuel, which then drained to a reservoir outside of the block. The other five injectors were blocked off to prevent fuel dilution of the oil in the sump. Cylinder two had only the injector train installed due to limited space. The remaining cylinders had only the valve train installed, because the injectors would be damaged if operated without fuel (Figure 2). Having most of the valve train present served to reduce the camshaft speed variation. The injector was adjusted to Cummins' specifications, while the lash on the valves was reduced to zero because they did not warm up during a run. This also decreased the speed variation.

When motored by the dynamometer, the controllable variables included:

1. Engine/camshaft speed (100-2200 rpm at crank)
2. Oil temperature (ambient-200°F)
3. Oil pressure (0-65 psi)
4. Oil type
5. Fuel pressure to injector (0-185 psi)

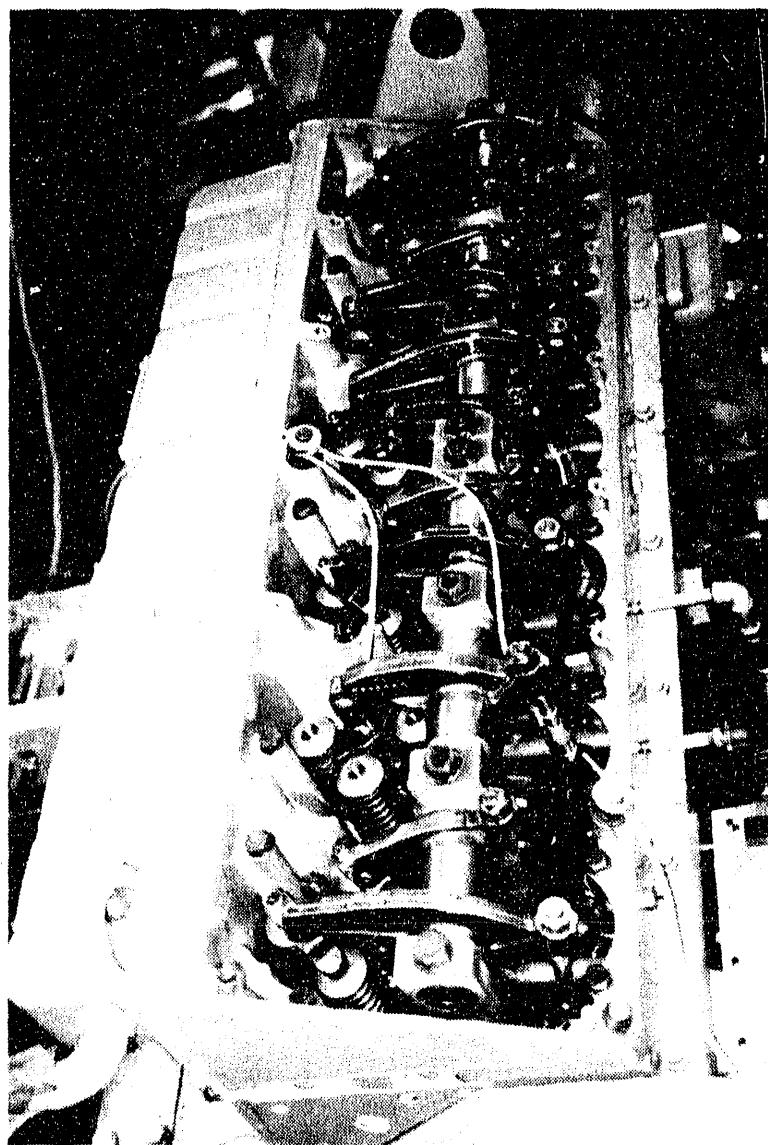


Figure 2: Upper Valve and Injector Trains

THEORETICAL CONSIDERATIONS

Upper injector train net work over 360° of cam rotation is the difference between the work flowing into the pushrod during injection and that recovered when refilling. This work includes friction plus fluid pumping. Figure 3 is a schematic of the injector train. The rate of work, or power, transferred by the pushrod is the product of the force and the velocity in the direction of the force. Thus, under steady state conditions the net work is:

$$\text{NET WORK} = \int (\text{FORCE} * \text{VELOCITY}) dt$$

where the integration is over one cycle.

The roller/cam instantaneous tractive force is determined from the net roller torque divided by the roller radius. The instantaneous roller torque arises from a combination of the instantaneous inertia torque and the roller pin friction torque. The inertia torque is determined from the product of the instantaneous angular acceleration, and the inertia of the roller. The instantaneous acceleration is determined from the speed variation of the roller with respect to its axis, and the motion of that axis as the rocker swings to move the pushrod. To summarize, the roller friction torque, angular acceleration, inertia and radius, and the follower arm angular acceleration are needed to determine the tractive force. The reader is referred to Reference 1 for more detail on the design and implementation of the measurements of pushrod force, roller angular acceleration and roller pin friction torque.

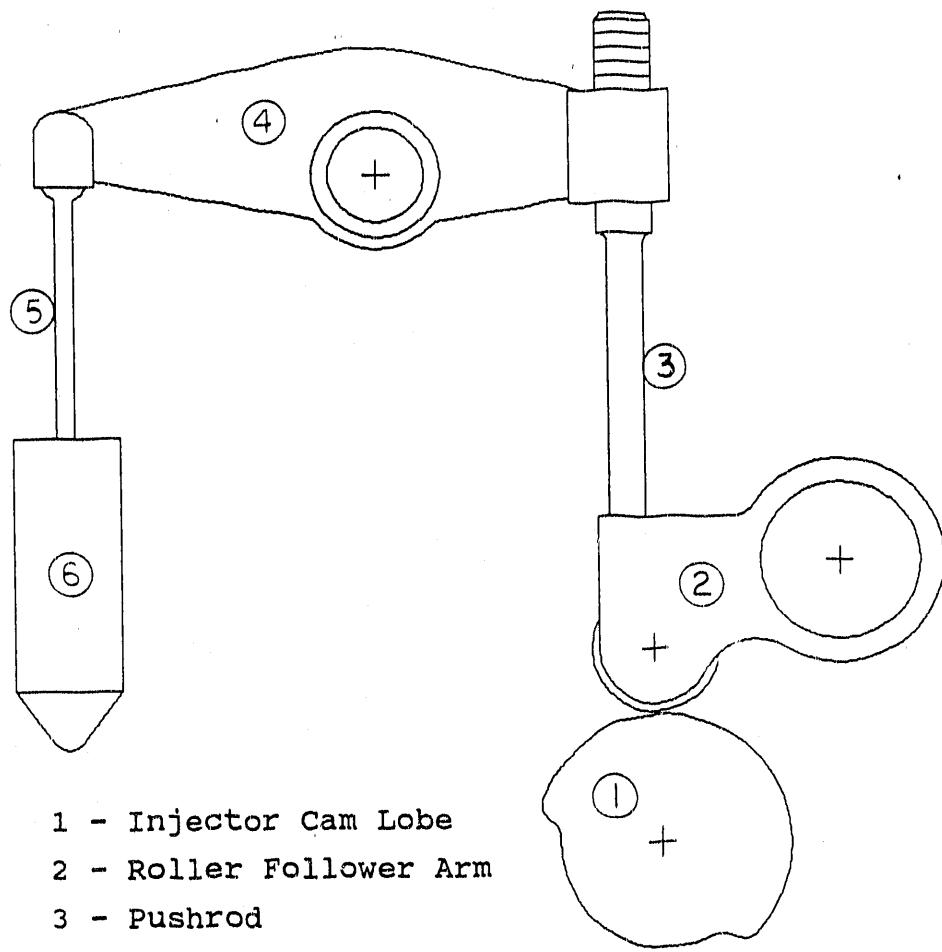


Figure 3: Injector Train Schematic

EXPERIMENTAL CONSIDERATIONS

The instantaneous measurements collected as a function of camshaft rotational angle were: pushrod and injector link forces; camshaft speed; roller follower pin torque; roller speed.

Pushrod Force and Velocity

Forces were measured by means of full bridge strain gage circuits, one on the pushrod and one on the injector link (Figure 4). These were carefully calibrated in a lever arm fixture using a series of known masses to produce calibration curves presented as Figures 5 and 6. Both curves are linear and show no hysteresis. The wires from the components were firmly anchored and carefully routed to prevent breakage due to fatigue.

The pushrod velocity is required to compute the work done by the pushrod through one cycle, and is derived from an LVDT measurement of its displacement parallel to the force. The displacement at each degree of camshaft rotation was stored in a file read by the data processing program FLIFTER5. The same method is used for the injector link.

The acceleration of the camshaft roller follower arm is required for the calculation of roller tractive force. It is based on the double differentiation of the pushrod displacement.

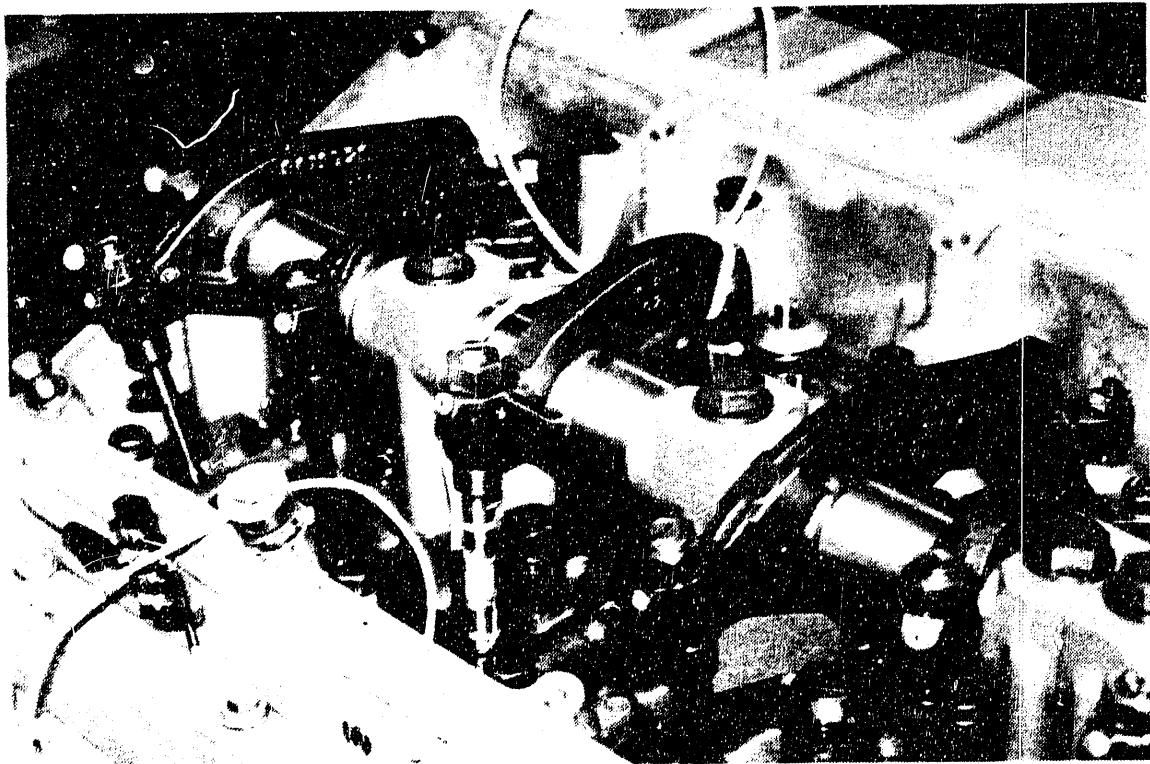


Figure 4: Upper Injector Train Detail. The two uppermost wires connect to the injector pushrod(left) and link (right) strain gage bridges.

Injector Pushrod Calibration-Unnotched
Gain=750
Vo= 10

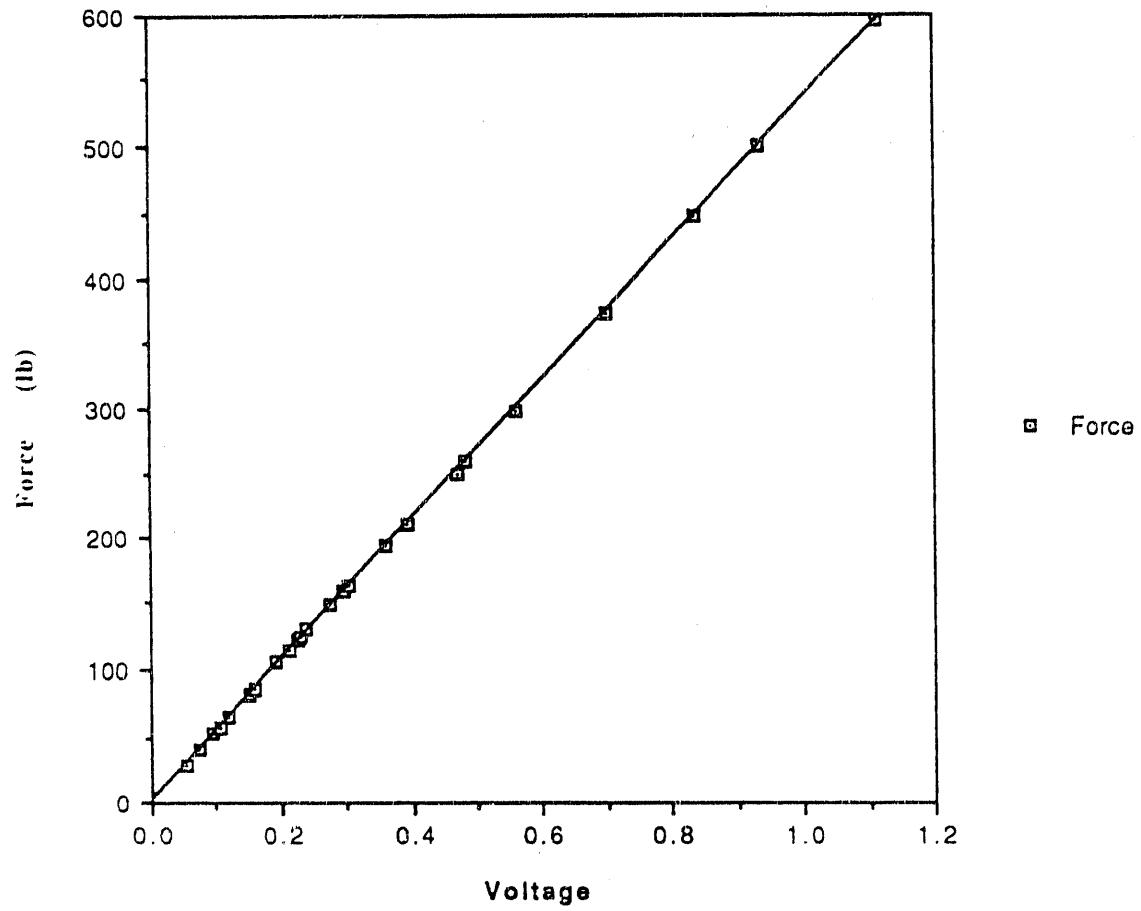


Figure 5



Figure 6

Camshaft Speed

The cam speed is monitored during each run by a Datametrics optical speed encoder generating 720 pulses per revolution, driven from the front of the camshaft. In addition to speed, it also sends out a pulse to trip the timers in the data acquisition system, signaling the start of a cycle.

Roller Follower Pin Torque

A standard injector cam lobe follower was extensively modified in order to measure both the roller speed and roller pin torque instantaneously. Space restrictions within the engine made this a challenge.

The primary change was to mount the roller's pin, originally fixed in the follower arm, within two rolling element bearings. This necessitated building up the follower arm with weld material and remachining it, since the bearings were larger in diameter than the pin. A retainer was made to prevent the bearings from shifting. (This had happened previously with disastrous results.) The torque arm, machined from steel, was screwed rigidly to the roller's pin at one end, and has a loop at the other end around a pin set in the follower arm body (Figure 7). This prevents the roller's pin from rotating, and the torque required to prevent this is measured by a half bridge of strain gages on the sides of the torque arm's body. In addition, the torque arm has an oil passage drilled through it to supply the roller pin/roller interface with oil, since the original path was blocked by the bearings. The pin also had to be redrilled for this modification.

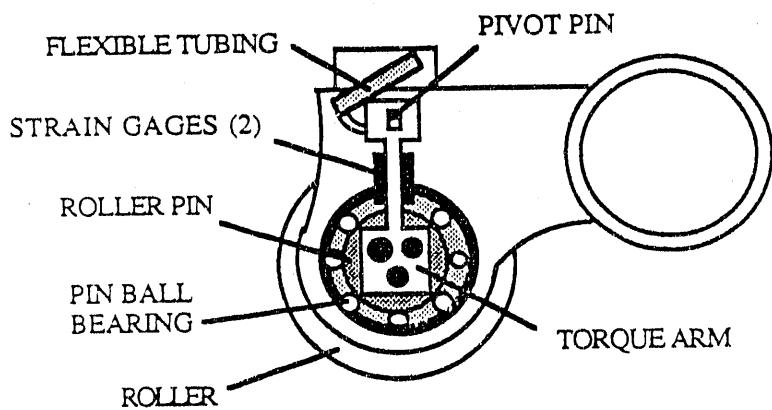
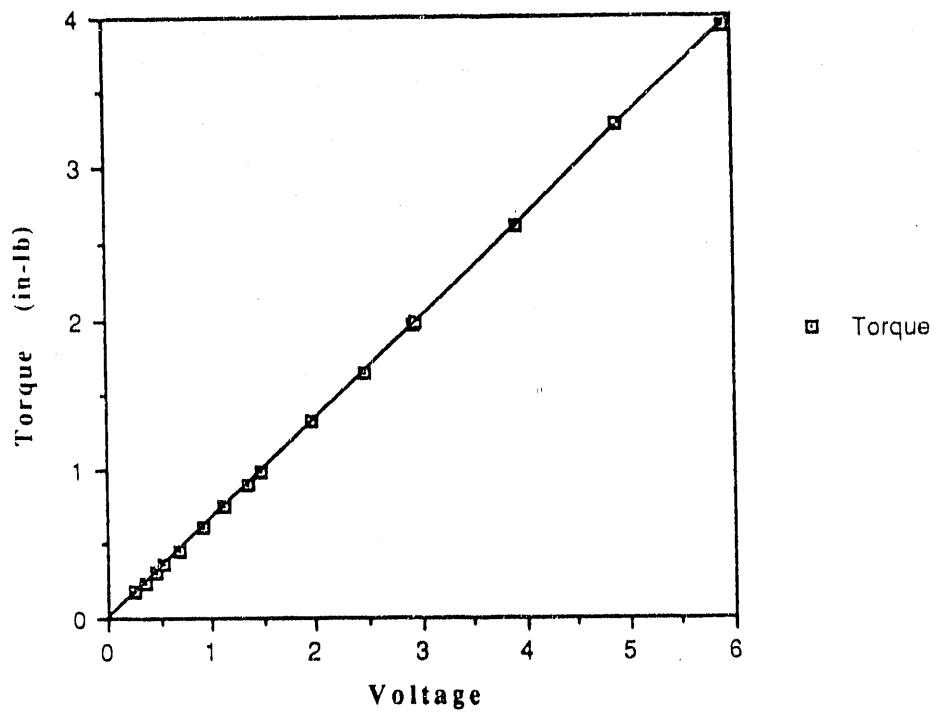



Figure 7: Torque Arm Assembly

As with the pushrod and injector link, the torque arm was calibrated in a special fixture using a series of known masses. Its curve was also linear and free of hysteresis (Figure 8).

TORQUE ARM CALIBRATION-INJECTOR
GAIN= 7500
Vo= 10 VOLTS

$$\text{Torque} = -9.6569e-4 + 0.66459 \text{ (Voltage)}$$

Figure 8

Roller Speed

In order to measure the roller speed, a custom encoder disc was designed, manufactured and affixed to the side of the roller opposite the torque arm (Figure 9). An optical pickup with its own light source was mounted just outside of the engine. It has a twelve inch fiber optic probe which was long enough to not only reach the encoder disc but also to bend in a coil around the follower's pivot for fatigue minimization during operation. See Reference 1 for details.

The final addition to the roller follower assembly was a capillary tube supplying compressed air to the encoder disc, just ahead of the optical pickup. This reduced the oil film thickness so that the pickup received reliable signals.

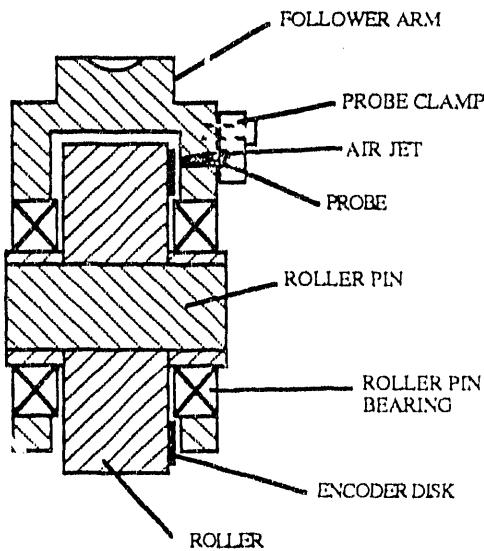


Figure 9: Cross Section of Roller Speed System

Data Acquisition System

The key to the success of the data acquisition system used in this project is its ability to simultaneously sample five channels, analog and digital: pushrod and injector link force; roller pin torque; roller speed; cam speed. To do this a series of sample and hold modules are used in parallel; each monitors its own channel and saves the signal when triggered. The signal is held until the computer has a chance to store it as data for the particular cam angle at which it was acquired at. A top dead center pulse from the cam speed encoder is used as a reference point for the system to define one cycle.

The computer used is an IBM PC, modified for data collection. The FORTRAN program VALVEIN3 (Appendix 1) was written to collect the test data; during a test it also continuously displayed five cycles of each of the five channels. To prevent inaccuracies from averaging too many cycles in a run, the program stops storing data after ten cycles, although the display is still updated. Each run's data is stored on a disk with the required constants for transferral to the data processing system.

Data Processing System

The data is processed by the FORTRAN program FLIFTER5 (Appendix 2) on a 386 IBM PC. The program takes the test data from the disk, giving the user the option of processing one cycle at a time or averaging all ten. It provides detailed plots, versus cam angle, of all measured data as well as the derivations based on it:

1. Pushrod velocity
2. Injector link velocity
3. Pushrod acceleration
4. Pushrod work
5. Averaged roller speed
6. Roller relative acceleration
7. Averaged roller relative acceleration
8. Follower arm acceleration
9. Inertia torque
10. Roller tractive force
11. Roller rotation relative to cam rotation

Note that some of the above graphs are labelled as averaged. This means that a five point sliding average was used to smooth the curves - in fact, except for number 6. above, all acceleration plots and those based on them used the five point sliding average, since differentiation tends to accentuate noise significantly. All results presented in this report are also based on the average of ten consecutive cycles.

RESULTS

To date there have been 22 successful tests run using the instrumented injector train, plus dozens of other informal tests performed while adjusting the equipment. Each test was composed of three to nine runs. Between runs within a test, only one variable, such as cam speed, would be changed. A complete set of data plots for Test #9102102 is included as Appendix 3. This test simulated the conditions under which the engine produces its maximum torque: 1350 crankshaft rpm; 140 psi fuel supply pressure; 45 psi oil pressure. All engine components were as supplied by Cummins Engine Co., except those modified as described in the Experimental Considerations section.

The following examination of test results refers to a comparison between Test #9102102, described above, and Test #9102201. The latter test was run at a steady 140 crankshaft rpm with all other variables the same. This minimized the dynamic forces. While examining these plots it may be useful to refer to Figure 18 of the injector displacement, noting that the injection of fuel occurred during the transition from base circle to maximum lift. Beyond this, the injector remains closed for a period (while on the outer base circle) to prevent the combustion gases from entering the injector.

Pushrod Force

The effect of engine speed is readily apparent in the plots of pushrod force, Figure 10. The higher speed curve rises sooner because of the compression of the fuel in the injector, which occurs before it can be sprayed out due to the restriction of the nozzle. The low speed run does not display this trait, since the fuel is injected at the same

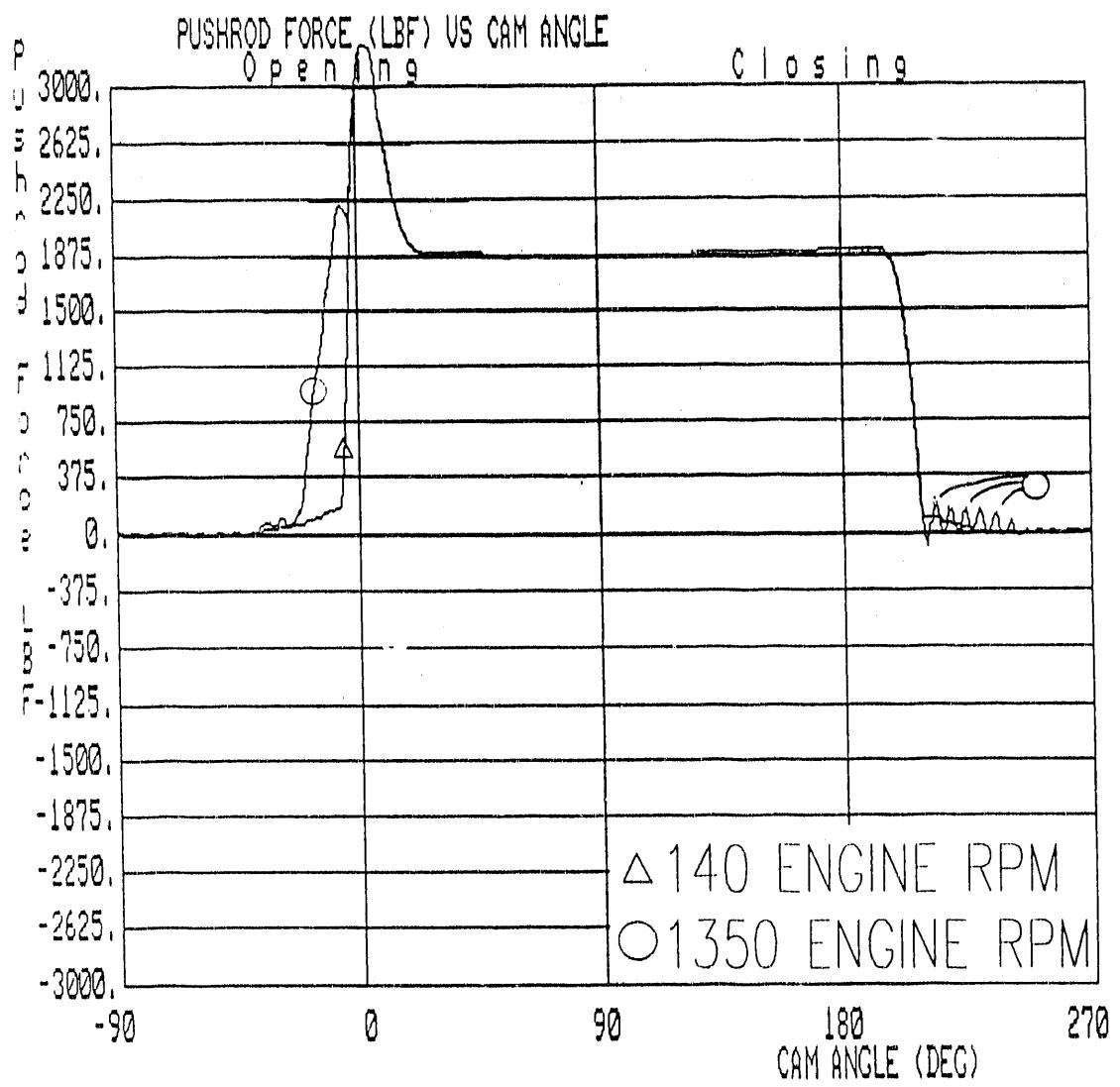


Figure 10: Injector Pushrod Force

rate at which it is compressed . The large peak was caused by the injector bottoming on its seat. As seen by the injector displacement curve, this pressure was relaxed after initial combustion, and the force settled to a steady state value at 1875 pounds. Afterwards, the force droped as the cam allowed the injector to refill.

Another characteristic at the higher engine speed is the bouncing of the pushrod/roller follower assembly upon its return to the base circle. This phenomenon is first detectable at about 800 rpm, and increases in magnitude with increasing speed. Although relatively small in terms of force, the bounces produce very sharp peaks which would tend to accelerate wear by delaying the formation of an elastohydrodynamic lubrication state.

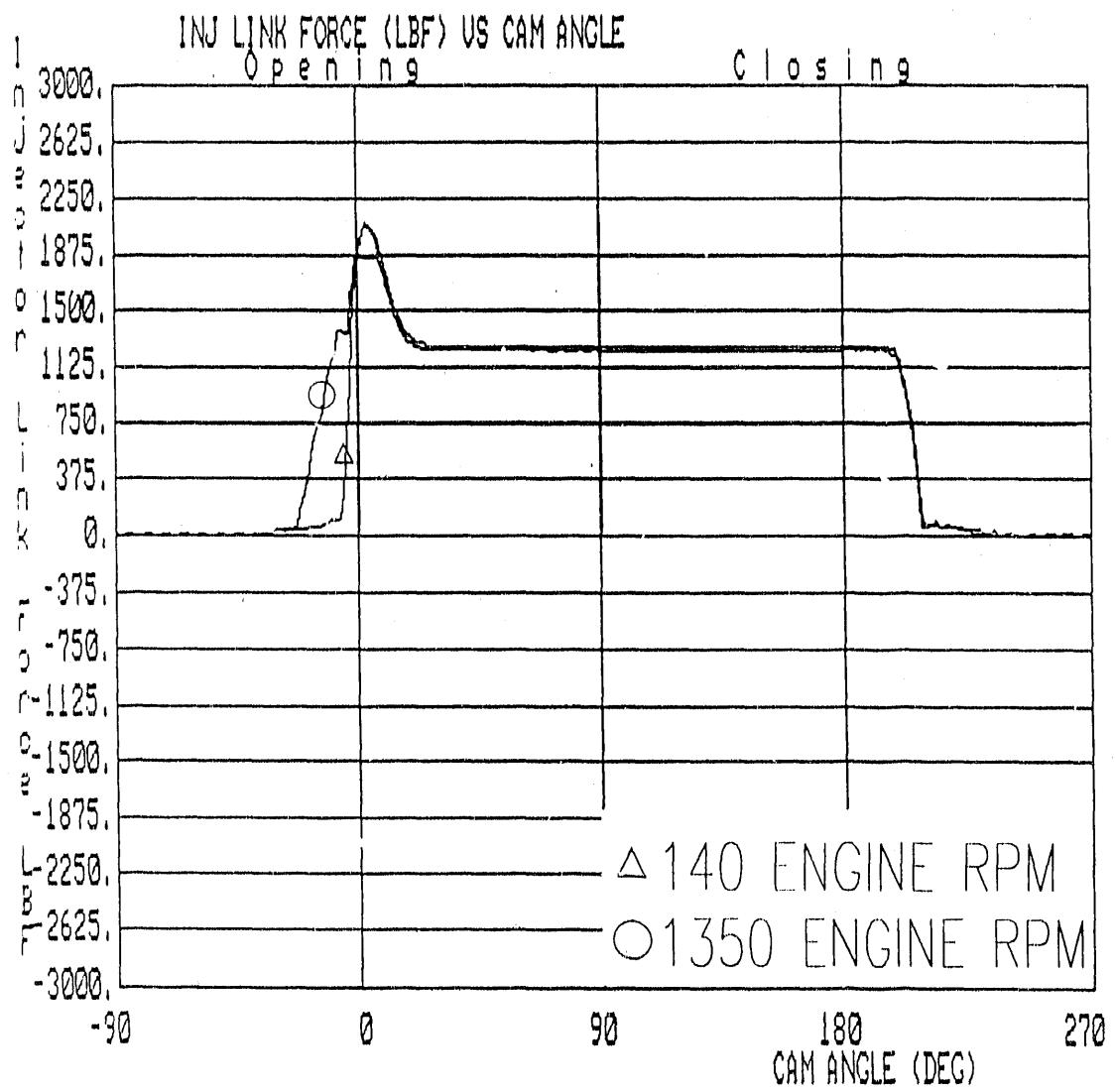


Figure 11: Injector Link Force

Injector Link Force

As was expected, the injector link force curves (Figure 11) were very similar to those at the pushrod. The magnitude of the force on the outer base circle is roughly 67% that of the pushrod's. This arises from the effective rocker arm ratio. However, at the peak, the ratio between the forces dropped to 61%, indicating that there was a significant combination of inertia and friction in the rocker arm area. Since the high and low speed peaks are virtually the same, it would appear that most of the difference is due to friction. If the injector link work were calculated (presently the processing program does not do this), subtracting it from the pushrod work would leave the amount of friction work lost in the upper injector train: rocker pivot plus injector and pushrod ends.

Note also how much the bouncing seen at the pushrod has been damped by the rocker arm - it is barely visible in the high speed injector link force plot.

Roller Friction Torque

As shown in Figure 12, roller friction torque is also very dependent on the engine speed. The low speed curve exhibits a sharp rise as the roller travels up the ramp of the cam. This is a result of the increasing force on the roller, plus the fact that the step in the cam initially exerts a force not acting on a line through the axis of the roller and the cam, increasing the torque on both. An even sharper rise is seen on the high speed curve as the roller contacts the beginning of the ramp. This arised from increased inertia. After the initial contact the torque drops slightly, then recovers as the roller experiences the longest "lever arm" of the cam.



Figure 12: Injector Roller Pin Torque

Beyond the first peaks, both curves drop as the outer base circle is reached. In fact, the high speed curve drops substantially because (it is believed) the roller floats off of the cam slightly. As it rides on the outer base circle the spinning roller gradually matches the surface speed of the cam, increasing the friction torque as it does so. The low speed curve is similar, after roughly 70° of cam angle. The gradual rise in friction torque along the outer base circle is attributed to the oil film decreasing in thickness between the cam and roller, and the roller and its pin. It appears that elastohydrodynamic lubrication does not fully develop.

Returning to the base circle, the torque on the low and high speed rollers drops with the load. The high speed curve again shows signs of the roller bouncing on the cam, based on the corresponding spikes in the friction torque.

Roller Tractive Force

The roller tractive force curves (Figure 13) are based on the differentiation of measured data, and as such the high speed curve displays many jumps. Since at low speeds the dynamic effects are minimized, the 140 rpm curve almost duplicates that of the roller friction torque.

The high speed curve shows the same general trends seen in the friction torque plot; it has the double rise from contacting the ramp, a tractive force of zero as it floats past it, a gradual rise as traction increases on the outer base circle, and a force of zero as it floats and bounces on its return to the base circle.

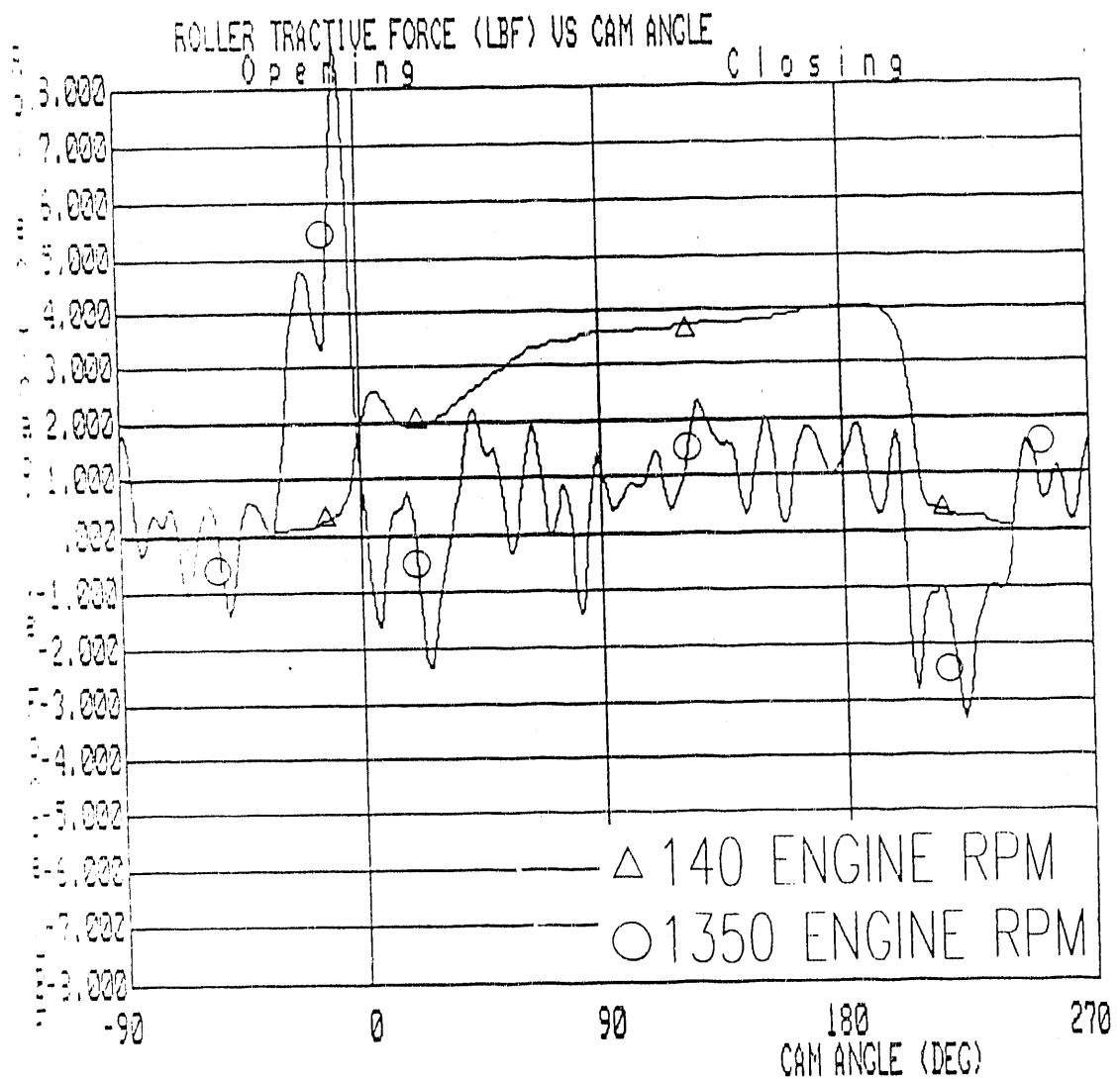


Figure 13: Injector Roller Tractive Force

Roller Rotation Relative to Cam Angle

Figure 14 compares the rotation of the roller relative to the rotation of the cam for both speeds. When the roller travels up the ramp, its higher rotational inertia at the higher engine speed causes it to lag behind the increasing rotation seen at the lower speed. At the peak the curves almost match, but afterwards the high speed roller floats and its rotation does not decrease as quickly as it does for the low speed case, with no slip. Eventually the curves coincide again, until the roller drops back to the base circle, where the high speed roller bounces, losing traction and lagging behind the low speed curve once more.

Pushrod Work

The pushrod work curves, Figure 15, very clearly show the extra work done at high speeds to compress the fuel. However, the work to compress the fuel is quite small compared to the work done on the injector train components as the injector bottoms against its cup. As the negative portion of the curve shows, some of this is returned to the system, with the remainder being lost as friction.

The bouncing mentioned previously also shows up as a series of positive and negative spikes at about 210° of cam angle, just after the large negative loop signifying the work done as the roller returns to the base circle. The low speed curve shows no bouncing, instead settling down immediately to the zero axis.

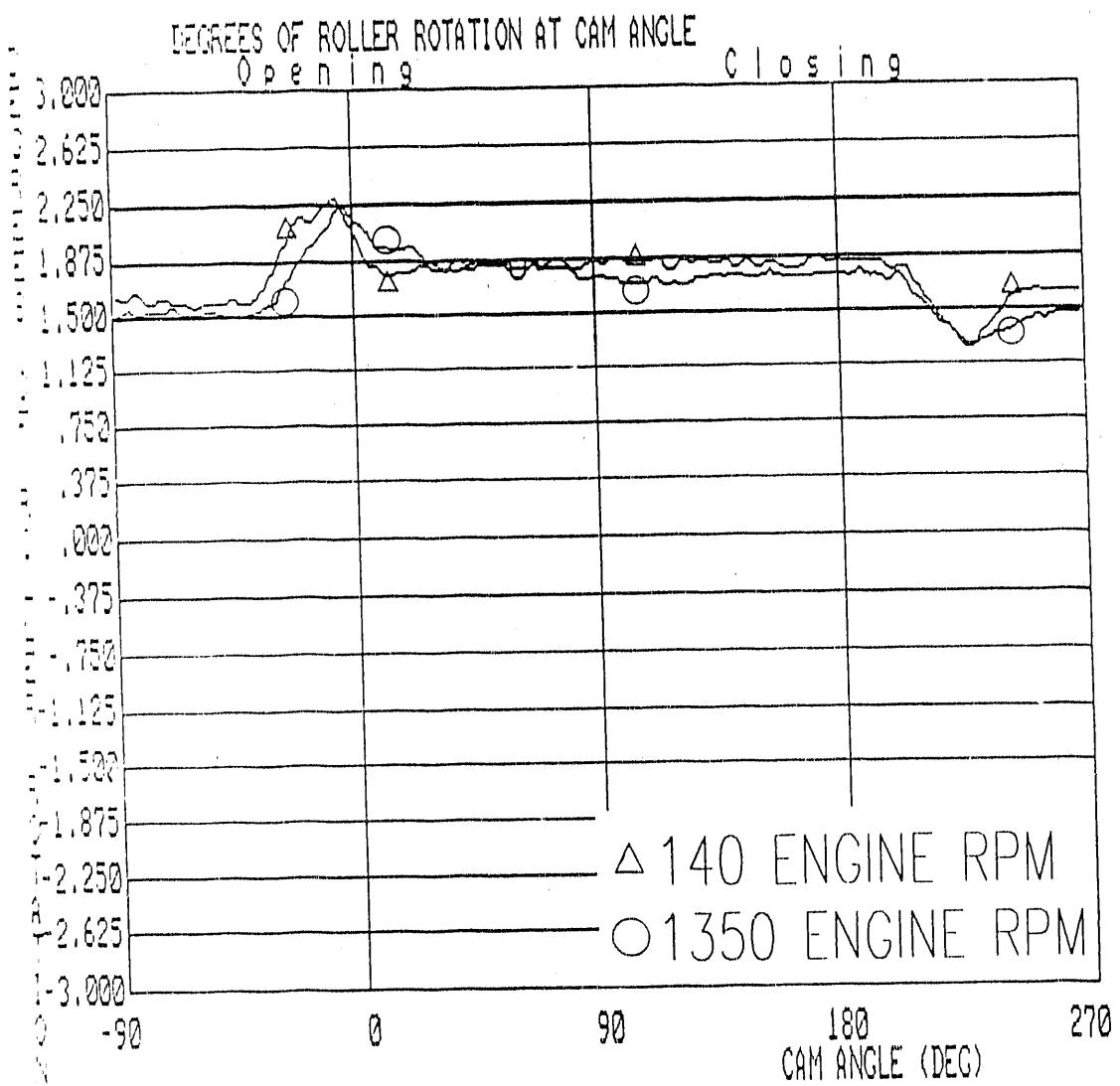


Figure 14: Roller Rotation Relative to Cam Rotation

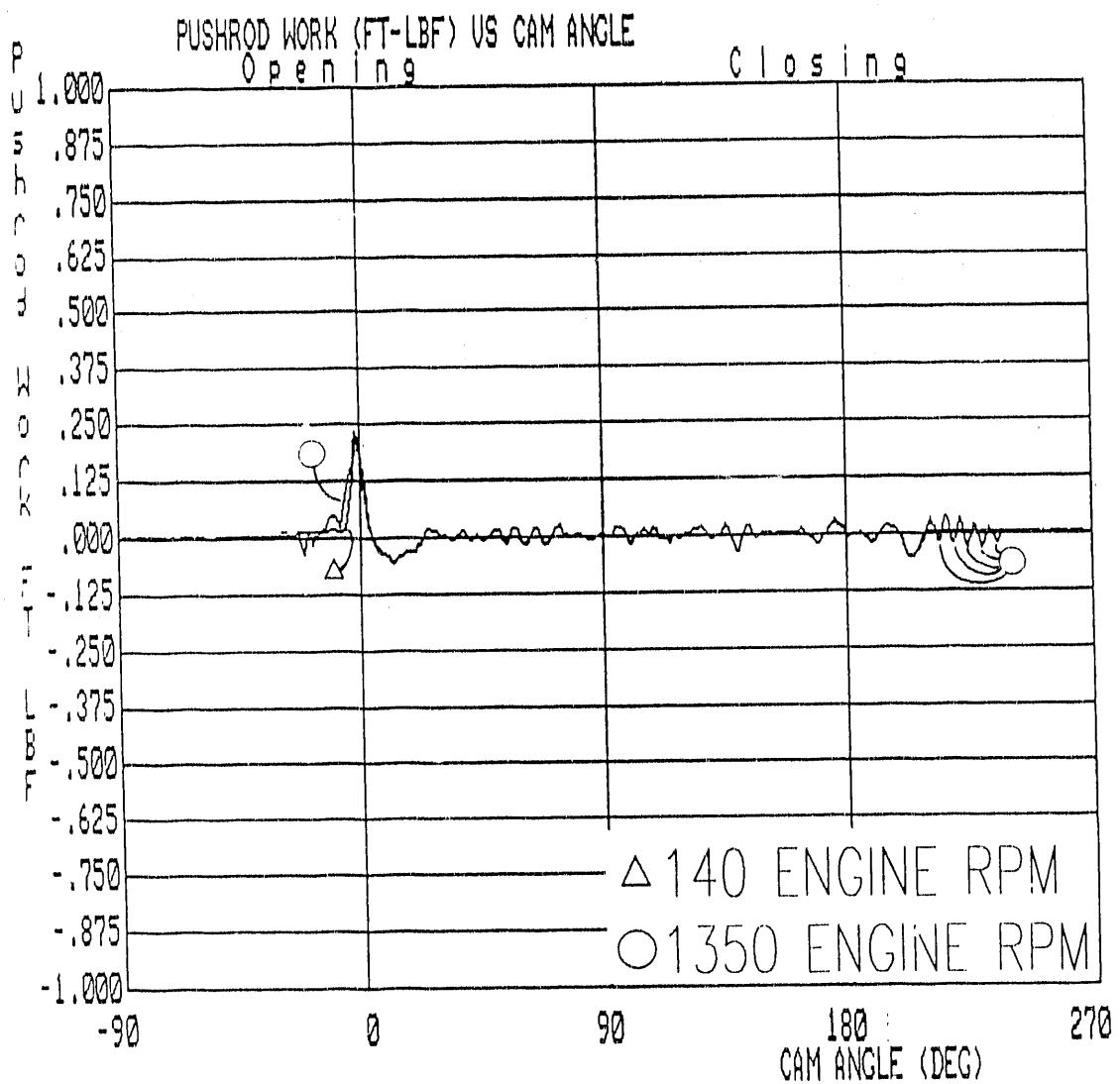


Figure 15: Injector Pushrod Work

CONCLUSION

The experimental techniques developed in the course of this project have proven to be very reliable. The wires from the pushrod, injector link and roller follower have never fatigued in over one hundred runs, nor have any of the modified components broken. Both the data acquisition and processing systems are very efficient, complete and user friendly.

The results are very repeatable and consistent. Thus far, the examination of the injector train has revealed potential wear problems in the floating of the roller on the outer base circle at high speeds, as well as its bouncing when returning to the base circle. It was found that the highest forces occurred during injection, with peak loads almost 80% greater than on the outer base circle. Therefore, any increases in injection pressure must be accompanied by redesigned components. The effect of more gradual ramps up and down the cam would reduce most of the shocks to the system. Adequate lubrication appears to exist at idle speed and above, limiting friction to reasonable levels.

Future efforts will include development of the computer-based dynamic model. Tests will be run with the existing equipment using ceramic components. It is expected that the dynamic model will help us better understand the experimental data.

INTRODUCTION TO ANALYTICAL REPORT

Increasing restrictions on exhaust emissions and competitive pressures for fuel economy are expected to require higher injection pressures and shorter injection duration. In turn this is expected to create problems of wear and friction in the injector train.

The computer simulation of the injection system provides the means to evaluate new designs and to predict the cause of problems. Our computer simulation will be verified by comparision with experimental data.

The kinematic and dynamic models of the Cummins L-10 injector train were developed to predict the forces and friction of each part, especially between the cam and roller follower. A general study of existing papers related to injector trains showed that a high speed dynamic model which did not include friction, was not sufficiently accurate to successfully predict the behavior of injector train. From our experimental data, it has been concluded that the lubrication is mainly mixed rather than elastohydrodynamic.

The following sections describe the mathematical model of kinematic and dynamic analysis accomplished to date.

MODELING

Kinematic model

The injector cam profile and the static displacement of the push rod were determined analytically based on Cummins' camshaft manufacturing data. This is needed to predict slippage between the roller follower and camshaft, and the effect of the cam profile on the frictional work. Equations describing the kinematics of the injector train have been developed by using the Finite Difference Method as follows.

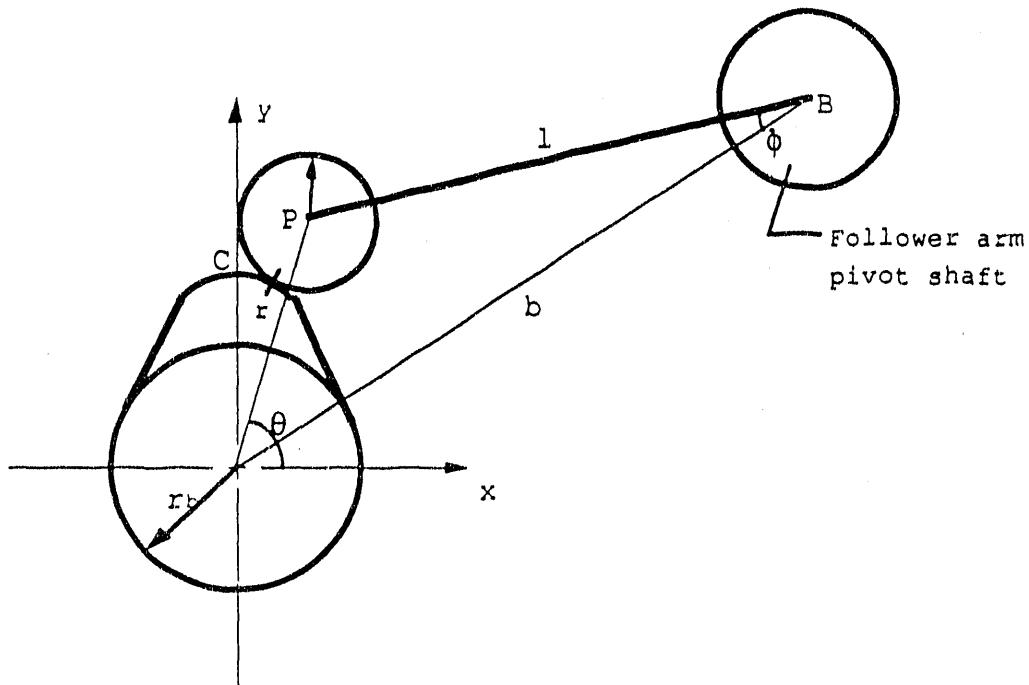


Fig.16 Cam And follower schematics

Instantaneous contact point $C(x, y)$ can be obtained by solving the equations below.

$$F(x, y, \theta) = (x - r \cos \theta)^2 + (y - r \sin \theta)^2 - r_f^2 = 0 \quad -(1)$$

$$\frac{\partial F}{\partial \theta} = 0 \quad -(2)$$

from (1) and (2),

$$x = r \cos \theta \pm \sqrt{\frac{r_f^2}{1 + \frac{A^2}{B^2}}}$$

$$Y = \frac{Ax + r \frac{ds}{d\theta}}{B}$$

$$\text{where, } A(\theta) = r \sin \theta - \frac{ds}{d\theta} \cos \theta$$

$$B(\theta) = r \cos \theta + \frac{ds}{d\theta} \sin \theta$$

$r(\theta)$: Camshaft manufacturing data (given)

$F(x, y, \theta)$: General equation representing the center of moving roller follower.

Instantaneous contact point $C(x, y)$ was calculated from the above by FDM and plotted in Fig.17.

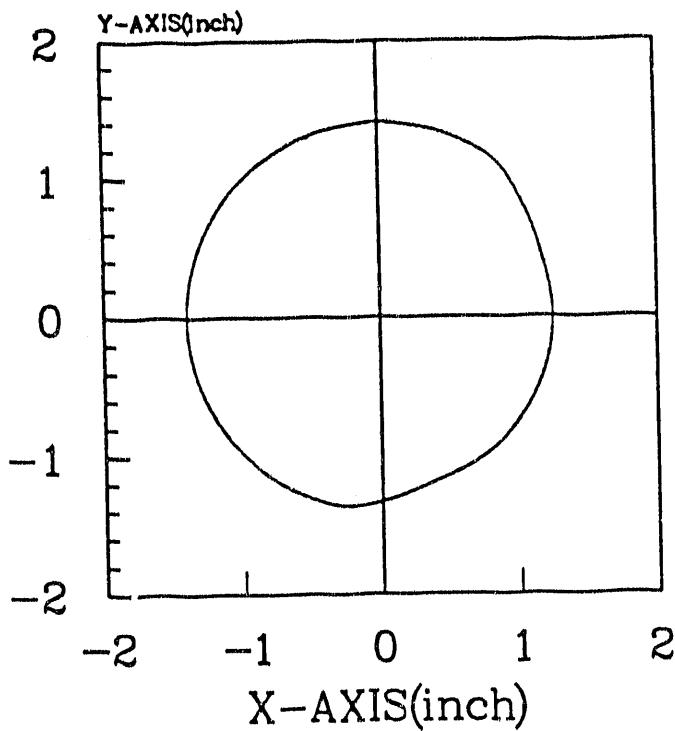


Fig.17 Cam profile

Follower arm rotation angle ϕ was computed as shown below.

$$r^2 = l^2 + b^2 - 2lb \cos \phi$$

$$\phi = \cos^{-1} \left(\frac{l^2 + b^2 - r^2}{2lb} \right)$$

Injector displacement was obtained with this value by assuming small motion, and is plotted in Fig.18.

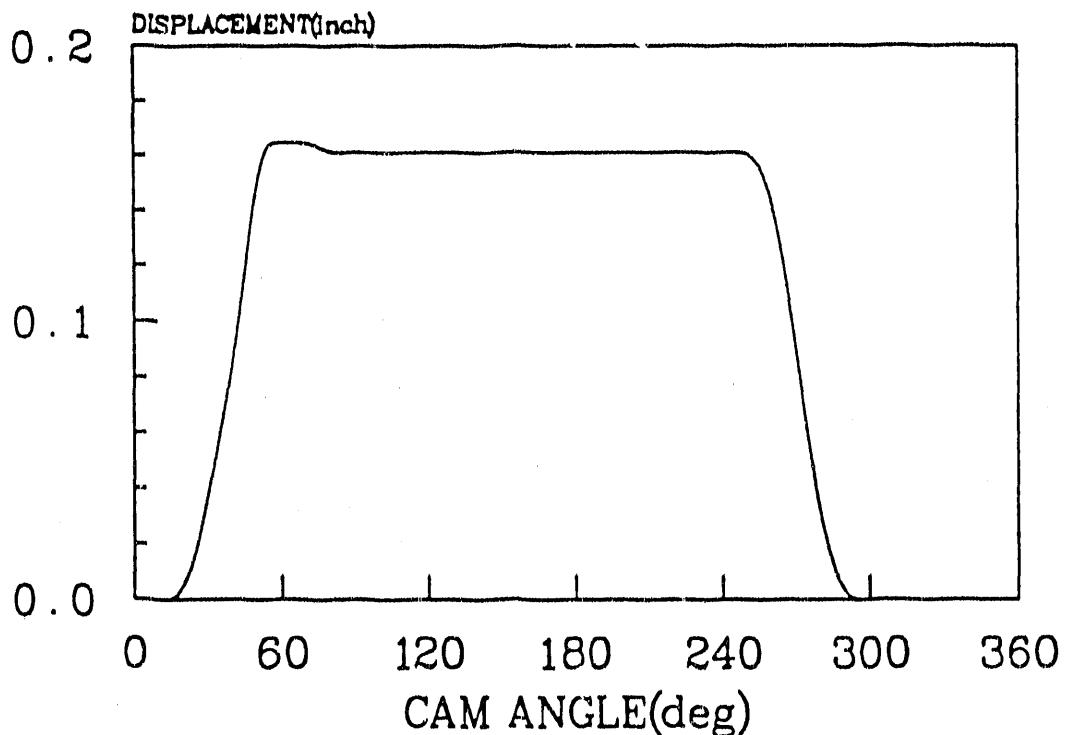
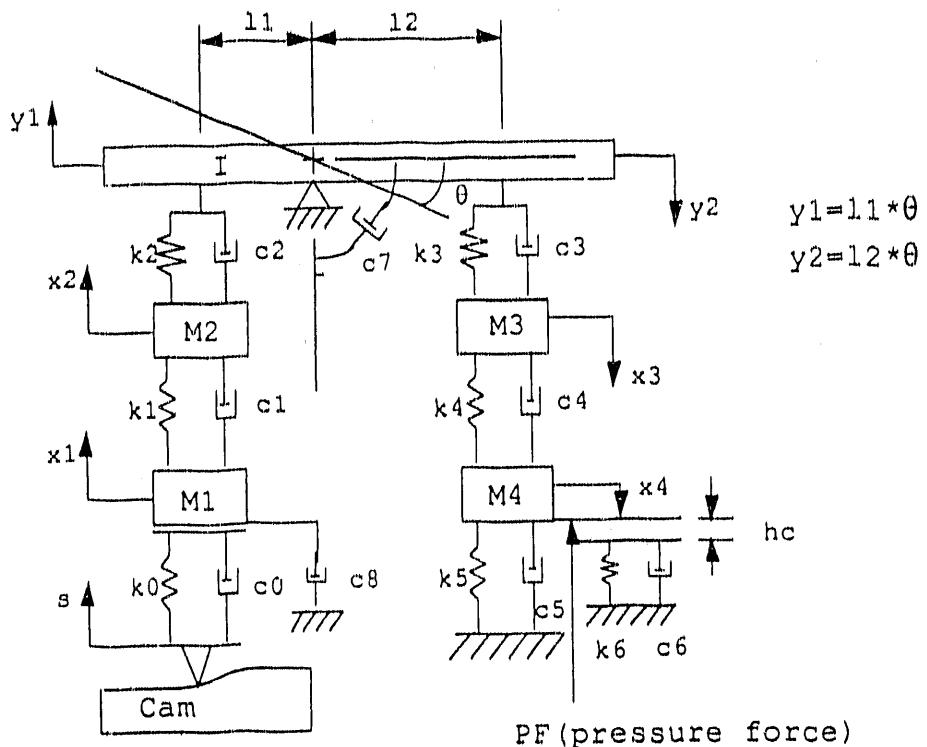



Fig.18. Injector displacement

Dynamic model

A schematic mathematical model of the L-10 unit injector system is outlined in Fig.19. This model consists of 5 main masses which represents 5 degrees of freedom. This dynamic linkage simulation has the capability of predicting the jump of each component. Input to the model (displacement determined by cam profile) was obtained by kinematical analysis with manufacturing data. Thus, the dynamic effects of the injector train's motion can be investigated by comparing kinematic motion and dynamic motion. The stiffness coefficient between each component will be determined theoretically on the basis of the Hertzian contact model.

M1	Equivalent mass of follower	
M2	Mass of pushrod	
M3	Mass of injector rod	
M4	Mass of plunger	
I	Mass moment inertia of rocker arm	

Spring Constant	Damping Coeff.	Position
k0	c0	Between cam and follower
k1	c1	Between follower and pushrod
k2	c2	Between pushrod and rocker arm
k3	c3	Between rocker arm and injector link
k4	c4	Between injector link and plunger
k5	c5	Plunger spring
k6	c6	Between Plunger and cup
	c7	Between rocker arm shaft and rocker arm (rotational)
	c8	External damping

Fig.19 Schematic of dynamic model

Equations describing the motion of the injector train are derived below.
for mass M1:

(a) if jump does not occur

$$M_1\ddot{x}_1 + (c_0 + c_1 + c_8)\dot{x}_1 + (k_0 + k_1)x_1 - c_1\dot{x}_2 - k_1x_2 = c_0\dot{s} + k_0s \quad -(1)$$

(b) if jump occurs

$$M_1\ddot{x}_1 + (c_1 + c_8)\dot{x}_1 + k_1x_1 - c_1\dot{x}_2 - k_1x_2 = 0 \quad -(1')$$

for mass M2:

$$M_2\ddot{x}_2 + (c_1 + c_2)\dot{x}_2 + (k_1 + k_2)x_2 + c_1\dot{x}_1 - k_1x_1 - c_2l_1\dot{\theta} - k_2l_1\theta = 0 \quad -(2)$$

for mass moment of inertia I:

$$I\ddot{\theta} + (c_2l_1^2 + c_3l_2^2)\dot{\theta} + (k_2l_1^2 + k_3l_2^2)\theta - c_2l_1\dot{x}_2 - k_2l_1x_2 - c_3l_2\dot{x}_3 - k_3l_2x_3 = 0 \quad -(3)$$

for mass of M3:

$$M_3\ddot{x}_3 + (c_3 + c_4)\dot{x}_3 + (k_3 + k_4)x_3 - c_3l_2\dot{\theta} - k_3l_2\theta - c_4\dot{x}_4 - k_4x_4 = 0 \quad -(4)$$

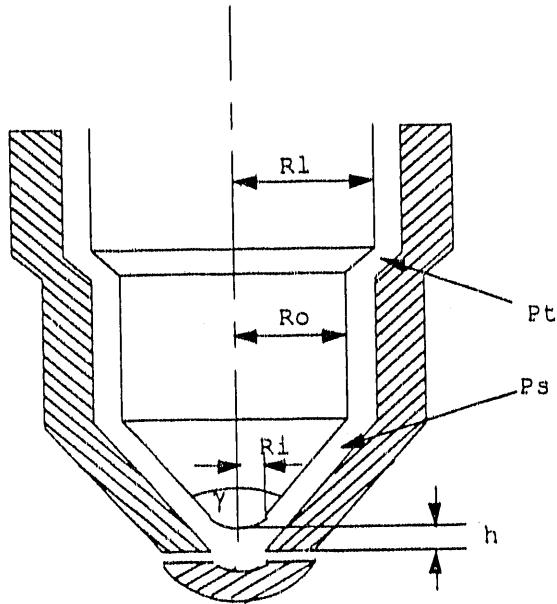
for mass of M4:

(a) if $x_4 < h_c$

$$M_4\ddot{x}_4 + (c_4 + c_5)\dot{x}_4 + (k_4 + k_5)x_4 - c_4\dot{x}_3 - k_4x_3 = -PF \quad -(5)$$

(b) if $x_4 \geq h_c$

$$M_4\ddot{x}_4 + (c_4 + c_5 + c_6)\dot{x}_4 + (k_4 + k_5 + k_6)x_4 - c_4\dot{x}_3 - k_4x_3 = -PF \quad -(5')$$


where h_c = solid fuel height

h_c = initial separation between plunger and cup
and

$$PF = 0 \quad \text{when } x_4 < h_c$$

$$PF = PF(x_4) \quad \text{when } x_4 \geq h_c$$

The model and equations of simulation to describe the throttling effects of the injector were made. This model approximates the throttling effects by representing the fuel flow from the injector to the cylinder as two orifices in series.

Pt: trapped pressure
 Ps: sac pressure
 P_c: cylinder pressure
 PF: pressure force
 in simulation
 At: $\pi(R_1^2 - R_0^2)$
 As: πR_0^2
 h: variable separation
 between plunger and
 cup
 A_c: flow area around cup
 A: total area of nozzle
 hole

Fig.20 Injector nozzle schematics

$$PF = Pt * At + Ps * As$$

Pt and Ps will be computed as follows.

$$Q = Cd A_c \sqrt{\frac{2}{\rho} (P_t - P_s)} = Cd A \sqrt{\frac{2}{\rho} (P_s - P_c)}$$

from this,

$$P_t = P_c + \frac{1}{1 + \left(\frac{CdA}{CdA_c}\right)^2} (P_s - P_c) \quad -(1)$$

Q: Flow out of the injector

from the continuity equation,

net fuel flow in = nozzle flow + compressible flow + leakage flow

$$\pi R_i^2 \frac{du}{dt} = CdA \sqrt{\frac{2}{\rho} (P_i - P_c) \frac{1}{1 + \left(\frac{CdA}{Cd_c A_c}\right)^2}} + \frac{V_i - \pi R_i^2 u}{B_T} \frac{dP_i}{dt} + K_L P_i \quad -(2)$$

V_i :Initial injector volume

u :Plunger displacement

B_T :Isothermal bulk modulus

K_L :Leakage flow coefficient

Cd :Flow discharge coefficient

Trapped pressure, P_t can be calculated by (2) and will be substituted into (1) to obtain P_s .

MODELING SUMMARY

The equations for the kinematical analysis of the injector train have been derived and confirmed by experimental measurements. It is expected that the injector motion prediction is feasible from computer simulation.

Regarding the mechanical vibration of the injector train at high injection pressures, a dynamic model with 5 degrees of freedom was made and a comparison with experimental data will be performed. The results of the simulation will be obtained after completing the following three steps.

1. Equations describing the throttling effects of the injector will be solved numerically to estimate the pressure force, PF.
2. Dynamic analysis of the injector train linkage will be performed with the force PF. Force and displacement of each part can be calculated at this time.
3. A detailed investigation of the frictional phenomena between the cam and follower will be made attainable by using the forces of each part obtained in steps 1. and 2.

APPENDIX 1
VALVEIN3 PROGRAM

```

$DEBUG
C ****
C PROGRAM VALVEIN3
C ****
C * This program is for getting test conditions, *
C * calling the data acquisition routine and *
C * storing the data on disk for the L10 valve *
C * train friction study. The program reads *
C * in and stores 4 channels of 3600 points. *
C *
C * MUST BE LINKED WITH FOR2GRPH.OBJ AND VALADC.OBJ *
C ****
CHARACTER*14 STR, IOSTR, BLANKS, FSTR
CHARACTER*1 ETYPE, ACTYPE, STRING(14)
CHARACTER*10 DATE, TIM, Y1, ABRAND, ANO, LUBRIC
CHARACTER*10 BUFSTR, FTYPE
INTEGER*4 ICLOCK
INTEGER*2 PRFORC(3600), ROTORQ(3600), CAMSPD(3600), ROLSPD(3600)
INTEGER*2 INJECT(3600), STAT, NUMCON, CTLWRD
EXTERNAL ICLOCK
EQUIVALENCE (STR, STRING)
COMMON/ADCBL/PRFORC, ROTORQ, CAMSPD, ROLSPD, INJECT, STAT, NUMCON, CTLWRD
COMMON/CONST/PRODZ, PRODS, ROTRQZ, ROTRQS, ROLLI, FINJTZ, FINJTS, ENCODES
& , ROLENS
C ----- set default values -----
BLANKS=' '
HOUR=0.0
ISTART=1
C WRITE(*,*) 'LIST OF ENGINE TYPES:'
C WRITE(*,*) 'A = ADIABATIC CUMMINS ENGINE RM 249'
C WRITE(*,*) 'F = CUMMINS ENGINE RM 245'
C WRITE(*,*) 'K = CADILLAC ENGINE IMEP TECHNIQUE'
C WRITE(*,*) 'L = CADILLAC ENGINE FIXED SLEEVE TECHNIQUE'
C WRITE(*,*) 'V = VALVE TRAIN ENGINE'
C ETYPE='C'
C --- ENGINE TYPE C CORRESPONDS TO CAM FRICTION TESTS ON CUMMINS L10
C WRITE(*,*) 'ENGINE TYPE=' , ETYPE
C WRITE(*,*) 'Enter engine type (A,F,K,L,OR V)'
C READ(*, '(A1)' ) ETYPE
C WRITE(FSTR, '(A7,A1)' ) 'DEFAULT', ETYPE
C OPEN(1, FILE=FSTR, STATUS='OLD', FORM='FORMATTED')
C READ(1, * ) IFIRE, IRPM, VAC, IOILP, NCYCLE, NDPC, NSET, EHOUR
C READ(1, 10) LUBRIC, ABRAND, ANO
10 FORMAT(4A10)
CLOSE(1)
C -----
C BELOW IS A LISTING OF WHAT THE DEFAULT VARIABLES STAND FOR
C -----
C IFIRE = 1 FOR FIRING, 0 FOR MOTORING
C IRPM = ENGINE RPM
C VAC = MANIFOLD VACUUM
C IOILP = OIL PRESSURE
C NCYCLE = NUMBER OF ENGINE CYCLES OF DATA
C NSET = NUMBER OF ENGINE SETS OF DATA
C NDPC = NUMBER OF DEGREES (SAMPLES) PER CYCLE

```

```

C      EHOUR    =   ENGINE HOURS
C      LUBRIC   =   LUBRICANT TYPE
C      ABRAND   =   STRAIN GAUGE AMPLIFIER BRAND NAME
C      ANO      =   STRAIN GAUGE AMPLIFIER NUMBER
C      BUFSTR   =   DATA 6000 BUFFER FILE NAMES
C
C      ----- READ CONSTANTS FILE -----
C      WRITE(FSTR, '(A5,A1)') 'CONST', ETYPE
C      OPEN(1, FILE=FSTR, STATUS='OLD', FORM='FORMATTED')
C      READ(1, '(A7)') FTYPE
C      IF(FTYPE.EQ.'CONSTC1') THEN
C          READ(1,*) PRODZ, PRODS, ROTRQZ, ROTRQS, ROLLI, FINJTZ, FINJTS, ENCODES
C          READ(1,*) ROLENS
C
C      ----- CHECK CONSTANTS FILE FOR THE MEANING OF THESE CONSTANTS -----
C      CLOSE(1)
C      ELSE
C          WRITE(*,*) 'CONSTANTS FILE IS INCOMPATIBLE'
C      ENDIF
C
C      ----- get the test conditions of the run -----
C      ACTYPE='T'
C      WRITE(*,*) 'ENGINE TYPE=', ETYPE, ', ACQUISITION DEVICE=', ACTYPE
C      WRITE(*,*) ' ENTER:                                     NOW SET AT'
C      CALL GETSTR('           DATE (eg. "1-24-83")           ', DATE)
C      CALL GETREL('           BAROMETRIC PRESS. (IN HG)        ', BARPRS)
C      CALL GETSTR('           AMP. BRAND                      ', ABRAND)
C      CALL GETSTR('           AMP. NUMBER                     ', ANO)
C      CALL GETSTR('           LUBRICANT SAE:                   ', LUBRIC)
C
C      ----- Branch to individual acquisition device -----
C      IF(ACTYPE.EQ.'T') CALL TECMAR (NDPC, NSET, NCYCLE, YSCL)
C
C      CALL GETINT('           TEST NO.                      ', NTEST)
C      CALL GETINT('           RUN NO.                      ', NRUN)
C
C      ITDRY=0
C      ITWET=0
C      IFIRE=1
C      CALL GETINT('           FIRING=2 MOTORING=1           ', I)
C      IFIRE=I-1
C      CALL GETINT('           ENGINE RPM                      ', IRPM)
C      CALL GETREL('           MANIFOLD VAC. (IN HG)        ', VAC)
C      CALL GETINT('           OIL PRESSURE (PSI)           ', IOILP)
C      CALL GETINT('           OIL FLOW (CFM?)            ', IOILF)
C      CALL GETREL('           DYN0 READING (LBF)          ', TORQUE)
C
C      ----- skip these questions if it is a motoring test -----
C      IF(IFIRE.EQ.1) THEN
C          CALL GETINT('           SPARK ADVANCE (DEG BTDC)      ', ISPKAD)
C          CALL GETREL('           FUEL WEIGHT (LBF)           ', FUELWT)
C          CALL GETREL('           ELAPSED TIME (MIN)          ', ELPTIM)
C          CALL GETINT('           EXHAUST TEMP F             ', ITEXH)
C      END IF
C
C      CALL GETINT('           WATER TEMP F                 ', ITWAT)
C      CALL GETINT('           OIL SUMP TEMP F             ', ITOILS)
C      CALL GETINT('           OIL GALLERY TEMP F          ', ITOILG)
C      CALL GETINT('           STRAIN GUAGE TEMP F          ', ITSG)
C      CALL GETINT('           INLET AIR TEMP F             ', ITAIR)
C
C      AINP=(BARPRS-VAC)/2.03603
C      CLOCK=ICLOCK(K)/65454.54
C      IF(ISTART.EQ.1) THEN

```

```

ISTART=0
OCLOCK=CLOCK
END IF
HOUR=HOUR+CLOCK-OCLOCK
IF(HOUR.GE.13.0) HOUR=HOUR-12.0
CALL GETTIME(' TIME (e.g. 10:34) ',HOUR,TIM)
EHOUR=EHOUR+CLOCK-OCLOCK
OCLOCK=CLOCK
CALL GETTIME(' ENGINE HOURS (e.g.145:05) ',EHOUR,Y1)
I=1
CALL GETINT('ENTER ( 1 = SAVE, 2 = RE-ENTER ) ',I)
IF(I.EQ.2) GOTO 30
--- save new default file
40 C
WRITE(FSTR,'(A7,A1)') 'DEFAULT',ETYPE
OPEN(1,FILE=FSTR,STATUS='NEW',FORM='FORMATTED')
WRITE(1,*) IFIRE,IRPM,VAC,IOILP,NCYCLE,NDPC,NSET,EHOUR
WRITE(1,10) LUBRIC,ABRAND,ANO
CLOSE(1)
WRITE(STR,'(I3,I2)') NTEST,NRUN
DO 40 I=13,1,-1
IF(STRING(I).EQ.' ' .AND.STRING(I+1).NE.' ') STRING(I)='0'
----- SAVE DATA ON DISK FOR FRICTION PROGRAM -----
WRITE(IOSTR,'(2A1,A5)') 'D',ETYPE,STR
WRITE(*,*) 'ENTER DATA FILE NAME:',IOSTR
READ(*,'(A14)') STR
IF(STR.NE.BLANKS) IOSTR=STR
WRITE(STR,'(A2,A12)') 'B:',IOSTR
OPEN(1,FILE=STR,STATUS='NEW',FORM='BINARY')
K=NCYCLE*NDPC*NSET
WRITE(*,*) 'STORING DATA ON THE DISK...'
WRITE(1) 'CVALVE-3'
WRITE(1) K
WRITE(1) (PRFORC(J),J=1,K)
WRITE(1) (ROTORQ(J),J=1,K)
WRITE(1) (INJECT(J),J=1,K)
WRITE(1) (CAMSPD(J),J=1,K)
WRITE(1) (ROLSPD(J),J=1,K)
WRITE(1) NTEST, NRUN, ITDRY, ETYPE, NDPC,
& ITWET, IRPM, IOILP, IOILF, ISPKAD, ITEXH,
& ITWAT, ITOILS, ITOILG, ITSG, ITAIR, AINP, IFIRE, EHOUR,
& BARPRS, VAC, TORQUE, FUELWT, ELPTIM, YSCL,
& DATE, TIM, LUBRIC, ABRAND, ANO
CLOSE(1)
IF(FTYPE.EQ.'CONSTC1') THEN
WRITE(FSTR,'(A1,A13)') 'C',IOSTR
WRITE(STR,'(A2,A12)') 'B:',FSTR
OPEN(1,FILE=STR,STATUS='NEW',FORM='FORMATTED')
WRITE(1,*) FTYPE
WRITE(1,*) PRODZ, PRODS, ROTRQZ, ROTRQS, ROLLI,
& FINJTZ, FINJTS, ENCODS, ROENCS
ELSE
WRITE(*,*) 'COPY CORRECT CONSTANTS FILE TO DATA DISK'
END IF
NRUN=NRUN+1
I=1

```

```

CALL GETINT('ENTER 2=EXIT 1=TAKE DATA           ',I)
IF(I.EQ.1) GOTO 20
STOP
END
C ****
C SUBROUTINE TECMAR(NDPC,NSET,NCYCLE,YSCL)
C ****
C - This subroutine is for taking data from the tecmar -
C - a/d boards by calling an assembly language routine. -
C -----
INTEGER*2 PRFORC(3600),ROTORQ(3600),CAMSPD(3600),ROLSPD(3600)
INTEGER*2 INJECT(3600),STAT,NUMCON,CTLWRD
COMMON/ADCBL/PRFORC,ROTORQ,CAMSPD,ROLSPD,INJECT,STAT,NUMCON,CTLWRD
EXTERNAL KEYIN
STAT=0
YSCL=2048.0/5.0
C ----- get data and display it -----
WRITE(*,*) 'HIT RETURN TO START AS WELL AS STOP TAKING DATA'
READ(*,'(I1)') I
CALL GMODE
CALL CLRSCR
10 CTLWRD=04
NUMCON=NCYCLE*NDPC
CALL VALADC
CALL PLT(NDPC,NSET,NCYCLE,YSCL)
IKEY=KEYIN(IDUMMY)
IF(IKEY.NE.13) GOTO 10
CALL TMODE
IF(STAT.GE.64) WRITE(*,*) '**** D A T A   O V E R R U N ****',STAT
RETURN
END
C ****
C SUBROUTINE GETTIME(STRING,HOUR,TI)
C ****
C - This subroutine gets hours and engine hours -
C -----
CHARACTER*35 STRING
CHARACTER*10 TIM,STR,TI
CHARACTER*1 TIME(10)
EQUIVALENCE (TIM,TIME)
IHOUR=INT(HOUR)
IMIN=60*(HOUR-IHOUR)
WRITE(TIM,'(I4,A1,I2)'),IHOUR,':',IMIN
IF(IMIN.LT.10) TIME(6)='0'
WRITE(*,*) STRING,TIM
READ(*,'(A10)') STR
IF(STR.NE. ' ') THEN
TIM=STR
DO 10 I=1,10
10 IF(TIME(I).EQ.':') WRITE(STR,'(A2,I1,A6)') '(I',I-1,',X,I2)'
READ(TIM,STR) IHOUR,IMIN
HOUR=IHOUR+IMIN/60.0
END IF
TI=TIM
RETURN

```

```

END
C ****
C SUBROUTINE GETSTR(QUESTION,ANSWER)
C ****
C --- This subroutine reads in a string from the keyboard ---
C
CHARACTER*40 QUESTION
CHARACTER*10 ANSWER,STR
10 WRITE(*,'(A1,A40,A10)') ' ',QUESTION,ANSWER
READ(*,'(A10)',ERR=20) STR
IF(STR.NE.' ') ANSWER=STR
RETURN
20 WRITE(*,*) '*** Input error. Please re-enter data ***'
GOTO 10
END
C ****
C SUBROUTINE GETREL(QUESTION,ANSWER)
C ****
C --- This subroutine reads a real number from keyboard ---
C
CHARACTER*40 QUESTION
CHARACTER*10 STR
CHARACTER*1 STRING(10)
EQUIVALENCE (STR,STRING)
10 WRITE(*,'(A1,A40,F16.8)') ' ',QUESTION,ANSWER
READ(*,'(A10)',ERR=40) STR
J=0
DO 20 I=1,10
IF(STRING(I).EQ.'.') GOTO 30
20 IF(STRING(I).NE.'.') J=I
IF(J.NE.0) STRING(J+1)='.'
30 IF(STR.NE.' ') READ(STR,'(BN,F10.4)',ERR=40) ANSWER
RETURN
40 WRITE(*,*) '*** Input error. Please re-enter data ***'
GOTO 10
END
C ****
C SUBROUTINE GETINT(QUESTION,IANSWER)
C ****
C --- This subroutine reads in an integer from the keyboard ---
C
CHARACTER*40 QUESTION
CHARACTER*9 STR
10 WRITE(*,*) QUESTION,IANSWER
READ(*,'(A9)',ERR=20) STR
IF(STR.NE.' ') READ(STR,'(BN,I9)',ERR=20) IANSWER
RETURN
20 WRITE(*,*) '*** Input error. Please re-enter data ***'
GOTO 10
END
C ****
C SUBROUTINE GETYN(QUESTION,IANSWER)
C ****
C --- THIS SUBROUTINE READS IN THE ANSWER TO A YES/NO QUESTION ---
C

```

```

CHARACTER*40 QUESTION
CHARACTER*1 YN
YN='Y'
10 IF(IANSWER.EQ.0) YN='N'
WRITE(*,*) QUESTION,YN
READ(*,'(A1)',ERR=20) YN
IF(YN.EQ.'Y'.OR.YN.EQ.'y') IANSWER=1
IF(YN.EQ.'N'.OR.YN.EQ.'n') IANSWER=0
IF(IANSWER.NE.2) RETURN
20 WRITE(*,*) '*** Input error. Please re-enter data ***'
GOTO 10
END
C ****
C SUBROUTINE PLT(NDPC,NSET,NCYCLE,YSCL)
C ****
C - This subroutine is for plotting data from the tecmar a/d boards -
C -----
INTEGER*2 PRFORC(3600),ROTORQ(3600),CAMSPD(3600),ROLSPD(3600)
INTEGER*2 INJECT(3600),STAT,NUMCON,CTLWRD
CHARACTER*8 TITLE(5)
COMMON/ADCBL/PRFORC,ROTORQ,CAMSPD,ROLSPD,INJECT,STAT,NUMCON,CTLWRD
COMMON/CONST/PRODZ,PRODS,ROTRQZ,ROTRQS,ROLLI,FINJTZ,FINJTS,ENCODES
& ,ROLENS
TITLE(1)='PR FORCE'
TITLE(2)='ROL TORQ'
TITLE(3)='INJ LNK '
TITLE(4)='CAM RPM '
TITLE(5)='ROL RPM '
CALL CLRSCR
CALL TEXTF(150,15,40,'CUMMINS L-10 VALVE TRAIN FRICTION STUDY ')
C OPEN(3,FILE='LPT1')
DO 1000 I=1,5
C ----- draw axies -----
CALL PUTPT( 96,55*I-25)
CALL DLINE(100,55*I-25)
CALL DLINE(100,55*I+25)
CALL DLINE(700,55*I+25)
CALL TEXTF(1,55*I+5,8,TITLE(I))
IF(I.EQ.1) THEN
CALL TEXTF(50,55*I-25,4,' 5 V')
ELSE IF(I.EQ.2) THEN
CALL TEXTF(50,55*I-25,4,' 5 V')
ELSE IF(I.EQ.3) THEN
CALL TEXTF(50,55*I-25,4,' 5 V')
ELSE
CALL TEXTF(50,55*I-25,4,'1500')
END IF
C ----- draw lines -----
DO 100 J=1,1800
IF(I.EQ.1) THEN
IY=-PRFORC(J)/YSCL/5.0*25.0+I*55
ELSE IF(I.EQ.2) THEN
IY=-ROTORQ(J)/YSCL/5.0*25.0+I*55
ELSE IF(I.EQ.3) THEN
IY=-INJECT(J)/YSCL/5.0*25.0+I*55

```

```
ELSE IF(I.EQ.4) THEN
K=CAMSPD(J)
IF(K.LE.0) K=K+65536
IY=-1000000.0/K*60.0/720.0/1500.0*70.0+I*55.0+25.0
ELSE
K=ROLSPD(J)
IF(K.LE.0) K=K+65536
C      WRITE(3,*) 'K=',K,ROLSPD(J)
IY=-1000000.0/K*60.0/120.0/1500.0*70.0+I*55.0+25.0
END IF
IX=100+J/1800.0*600.0
CALL PUTPT(IX,IY)
CALL DLINE(IX,IY)
100  CONTINUE
C      ----- end of plot -----
1000 CONTINUE
RETURN
END
```

APPENDIX 2
FLIFTER5 PROGRAM

```

$DEBUG
    PROGRAM FLIFTERS

C ****
C * This program is for taking data from the disk,      *
C * calculating valve train friction, and plotting.      *
C ****
C
CHARACTER*14 FILSTR, IOSTR, STR, CFILE
CHARACTER*1 ETYP
CHARACTER*10 ZTYPE
CHARACTER*8 FTYPE, FNAME
CHARACTER*60 COMMENT, TITLE, HEADING, HEAD
CHARACTER*70 STR70
CHARACTER*10 DATE, TIME, TBRAND, TNO, ABRAND, ANO, LUBRIC, STRING
INTEGER*2 PRFORC(3600), ROTORQ(3600), CAMSPD(3600), ROLLSP(3600)
INTEGER*2 CAMAGL(2000), ITDC(20), LVDT(3600), ITDCD(20), ERTDC
INTEGER*2 SHIFT, ANS, INJECT(3600), LVDTIJ(3600)
INTEGER*4 ROLSPD(3600), REDSPD(2000)
REAL*4 PRF(360), RTQ(360), CSP(360), RSP(360), TRQIN(360), ARMTH(360)
REAL*4 DGMRK(119), EDGMRK(2000), ROLRPM(3600), ROLA(360), TRFRC(360)
REAL*4 ARMVL(360), ARMAC(360), REV(360), IJF(360), IJL(360), IJV(360)

REAL*4 PRL(360), LZ, LS, ZMAX, RTQZ1
REAL*4 PRV(360), PRA(360), PRW(360)
COMMON ROLRPM, ROLA, TRFRC
COMMON REDSPD, CAMAGL, LVDT, DGMRK, EDGMRK
COMMON PRFORC, ROTORQ, CAMSPD, ROLLSP, ROLSPD
COMMON PRF, PRL, PRV, PRA, PRW
COMMON/PLOT/STRING
C DGMRK=ROLLER ENCODER DEGREES PER MARK
C ROLA=ROLLER ACCELERATION
C PRF=PUSH ROD FORCE

C PRL=PUSHROD LIFT
C PRV=PUSHROD VELOCITY
C PRA=PUSHROD ACCELERATION
C TRQIN=ROLLER INERTIA TORQUE
C TRFRC=ROLLER TRACTIVE FORCE
C PRW=PUSH ROD WORK
C
C ....This will read in the data file for calculations....
3  WRITE (*,5)
5  FORMAT( /,5X, ' enter file name (e.g. DC12345),*** to exit: '$ )
8  READ (*,8) IOSTR
FORMAT (A9)
IF (IOSTR.EQ. '***') STOP
STRING=IOSTR
WRITE (FILSTR, '(A1,A1,A9)') 'B', ':', IOSTR
WRITE (*,*) 'Reading data from disk'
10 OPEN(1,FILE=FILSTR,STATUS='OLD',FORM='BINARY')
READ (1) FTYPE
IF (FTYPE.NE.'CVALVE-1'.AND.FTYPE.NE.'CVALVE-3') THEN
  WRITE (*,*) 'INCORRECT DATA FILE'
  STOP

```

```

ENDIF
READ (1) NPTS
READ (1) (PRFORC(J) ,J=1,NPTS)
READ (1) (ROTORQ(J) ,J=1,NPTS)
IF(FTYPE.EQ.'CVALVE-3') READ(1) (INJECT(J),J=1,NPTS)
READ (1) (CAMSPD(J) ,J=1,NPTS)
READ (1) (ROLLSP(J) ,J=1,NPTS)
READ(1) NTEST,NRUN,ITDRY,ETYPE,NDPC,
1           ITWET,IRPM,IOILP,IOILF,ISPKAD,ITEXH,
1           ITWAT,ITOILS,ITOILG,ITSG,ITAIR,AINP,IFIRE,EHOUR,
1           BARPRS,VAC,TORQUE,FUELWT,ELPTIM,YSCL,
1           DATE,TIME,LUBRIC,ABRAND,ANO
CLOSE(1)
WRITE(*,*)'NPTS=',NPTS
C.....Read constants file.....
WRITE(*,*) 'Reading calibration constants'
WRITE(FILSTR,'(A1,A13)')'C',IOSTR
WRITE(STR,'(A2,A12)')'B:',FILSTR
WRITE(*,*) STR
OPEN(1,FILE=STR,STATUS='OLD',FORM='FORMATTED')
WRITE(*,*) 'OPEN'
READ (1,'(A7)') ZTYPE
WRITE(*,*) ZTYPE
IF (FTYPE.EQ.'CVALVE-3') THEN
  READ (1,*) PRZ,PRS,RTQZ,RTQS,RINER,LZ,LS,ENS,RENS,FINJTZ,FINJTS
  WRITE(*,*) PRZ,PRS,RTQZ,RTQS,RINER,LZ,LS,ENS,RENS,FINJTZ,FINJTS
ELSE
  READ (1,*) PRZ,PRS,RTQZ,RTQS,RINER,LZ,LS,ENS,RENS
  WRITE(*,*) PRZ,PRS,RTQZ,RTQS,RINER,LZ,LS,ENS,RENS,FINJTZ,FINJTS
ENDIF
C RTQZ=ROLLER TORQUE ZERO TORQUE (FT-Lb)
C RTQS=ROLLER TORQUE SLOPE (VOLTS/FT-LB)
C PRS=PUSHROD STRAIN GAUGE SLOPE (VOLTS/Lb)
C PRZ=PUSHROD ZERO FORCE VOLTAGE
C RINER=ROLLER INERTIA (SLUG-FT**2)
C LZ=LVDT ZERO (FT)
C LS=LVDT LIFT SLOPE (VOLTS/FT)
C FINJTS=INJ LINK FORCE SLOPE (VOLTS/LB)
C FINJTZ=INJ LINK ZERO FORCE VOLTAGE
C
C           Input lift file
C
      WRITE (*,15)
15    FORMAT( /,5X,' enter LVDT file name (e.g. LVDTRD): '$ )
      READ (*,18) IOSTR
18    FORMAT (A9)
      STRING=IOSTR
      WRITE (FILSTR,'(A1,A1,A9)') 'B',':',IOSTR
      WRITE (*,*) 'Reading data from disk'
20    OPEN(1,FILE=FILSTR,STATUS='OLD',FORM='BINARY')
      READ (1) FTYPE
      IF (FTYPE .NE. 'LIFTER-1') THEN
        WRITE (*,*) 'INCORRECT DATA FILE'

```

```

STOP
ENDIF
READ (1) (LVDT(J) ,J=1,NPTS)
CLOSE(1)

25  WRITE (*,25)
      FORMAT( /,5X,' enter LVDT file name (e.g. LVDTLK): '$ )
      READ (*,28) IOSTR
28  FORMAT (A9)
      STRING=IOSTR
      WRITE (FILSTR,'(A1,A1,A9)') 'B',':',IOSTR
      WRITE (*,*) 'Reading data from disk'
30  OPEN(1,FILE=FILSTR,STATUS='OLD',FORM='BINARY')
      READ (1) FTYPE
      IF (FTYPE .NE. 'LIFTER-1') THEN
          WRITE (*,*) 'INCORRECT DATA FILE'
          STOP
      ENDIF
      READ (1) (LVDTIJ(J) ,J=1,NPTS)
      CLOSE(1)

```

```

C.....READ ROLLER ERROR SPEED FILE.....
      WRITE (*,*) 'ENTER ROLLER ERROR FILE e.g. DEGMRK (RETURN=None)'
      READ (*,'(A14)') CFILE
      IF (CFILE .NE. ' ') THEN
          WRITE (FILSTR,'(2A1,A12)') 'B',':',CFILE
          OPEN (1,FILE=FILSTR,STATUS='OLD',FORM='FORMATTED')
          READ (1,*) ERTDC
          READ (1,'(4F7.5)') (DGMRK(K),K=1,119)
          CLOSE(1)
      ENDIF
      WRITE (*,*) 'ERTDC',ERTDC
      WRITE (*,*) 'DGMRK',DGMRK(3)

```

```

C
C          roller speed
      WRITE(*,*) 'NPTS=',NPTS

      DO 310 I=1,NPTS
          ROLSPD(I)=ROLLSP(I)
          IF (ROLSPD(I).LT.0) ROLSPD(I)=ROLSPD(I)+65536
310  CONTINUE
C      DO 311 I=1,60
C          WRITE(*,*) ROLSPD(I),ROLLSP(I)
C311  CONTINUE
      WRITE(*,*) 'DO YOU WANT SPEED CALIBRATION(Y=1,N=2)'
      READ(*,*) ANS
      IF (ANS.EQ.2) GOTO 393

```

```

C ****
C ****
C **** USED FOR ROLLER CALIBRATION
C ****
C ****

```

Reduce roller speed from 360 marks/rev to 119 marks/rev

```

1 IDEG=1
2 REDSPD(1)=ROLSPD(1)
3 CAMAGL(1)=1
4 DO 315 I=2,NPTS-1
5     IF(ROLSPD(I).NE.ROLSPD(I+1))THEN
6         IDEG=IDEGL+1
7         REDSPD(IDEGL)=ROLSPD(I+1)
8         CAMAGL(IDEGL)=I
9     ENDIF
10    CONTINUE
11    WRITE(*,*)'IDEGL=', IDEGL
12    OPEN (3,FILE='LPT1')
13    DO 317 I=1,20
14        WRITE(3,*) ROLSPD(I+104), ROLSPD(I+226)
15    CONTINUE
16

```

Correct for roller speed noise

```

IF(REDSPD(1).EQ.0)REDSPD(1)=REDSPD(IDEF)
IF(REDSPD(1).EQ.0)REDSPD(1)=REDSPD(IDEF-1)
IF(REDSPD(1).EQ.0)THEN
    WRITE(*,*)"TOO MANY ZEROS INPUT NEW FILE"
    GOTO 3
ENDIF
DO 318 I=2,IDEF
    IF(REDSPD(I).EQ.0)REDSPD(I)=REDSPD(I-1)+1
318  CONTINUE
DO 319 I=1,60
    WRITE(*,*)"REDSPD=",REDSPD(I)
319  CONTINUE

AVGSPD=0.0
R=REDSPD(IDEF)
R2=REDSPD(2)
R1=REDSPD(1)

AVGSPD=(R+R2)/2.0
WRITE(*,*)"AVGSPD1=",AVGSPD
IF(R1.LT.AVGSPD*.25.OR.R1.GT.2.25*AVGSPD)THEN
    REDSPD(1)=AVGSPD
    WRITE(*,*)"Roller speed noise found at 1",AVGSPD,REDSPD(1)

ENDIF
R=REDSPD(IDEF)
R2=REDSPD(1)
R1=REDSPD(IDEF-1)
AVGSPD=(R1+R2)/2.0
WRITE(*,*)"AVGSPD END=",AVGSPD

```

```

IF(R.LT.AVGSPD*.25.OR.R.GT.2.25*AVGSPD)THEN
    REDSPD(Ideg)=AVGSPD
    WRITE(*,*)'Roller speed noise found at 3600',AVGSPD,
+    REDSPD(Ideg)
ENDIF
DO 320 I=2,Ideg-1
    R=REDSPD(I)
    R1=REDSPD(I-1)
    R2=REDSPD(I+1)
    AVGSPD=(R1+R2)/2.0
    IF(R.LT.AVGSPD*.25.OR.R.GT.2.25*AVGSPD)THEN
        REDSPD(I)=AVGSPD
        WRITE(*,*)'Roller speed noise found at ',I,AVGSPD,
+        REDSPD(I)
    ENDIF
320  CONTINUE
C
C          find TDC
C
AVGSPD=0.0
ICOUNT=0
DO 330 I=2,Ideg-1
    AVGSPD=(REDSPD(I-1)+REDSPD(I+1))/2
    IF(REDSPD(I).LT.AVGSPD*2.25.AND.REDSPD(I).GT.AVGSPD*1.75)THEN
        ICOUNT=ICOUNT+1
        ITDC(ICOUNT)=I
    ENDIF
330  CONTINUE
IF(ITDC(1).EQ.120)THEN
    DO 340 I=1,ICOUNT
        ITDC(I)=ITDC(I)-119
340  CONTINUE
ENDIF

DO 345 I=1,ICOUNT-1
    ITDCD(I)=ITDC(I+1)-ITDC(I)
    WRITE(3,*)'ITDC=',ITDC(I)
    WRITE(3,*)'DIFF',ITDCD(I)
345  CONTINUE

C
C          shift error file
C
DO 350 I=1,119
    SHIFT=I+ERTDC-ITDC(1)
    IF(SHIFT.GT.119)SHIFT=SHIFT-119

```

```

        IF SHIFT.LT.1) SHIFT=119+SHIFT
        EDGMRK(I)=DGMRK SHIFT)
350    CONTINUE
C
C   Expand out the degrees per mark to calculate actual roller speed
C
        DO 360 I=1,119
        DO 360 J=1,16
360    EDGMRK(I+J*119)=EDGMRK(I)

C
C           convert to RPM and back to 360 marks/rev
C
        DO 365 I=1,3600
        ROLRPM(I)=0.0
365    CONTINUE
        DO 370 I=1,IDEG
        ROLRPM(CAMAGL(I))=(EDGMRK(I)/REDSPD(I))*1000000*60/360
370    CONTINUE
        CALL PLT(REDSPD,2000.,TITLE,1,HEADING,ACRPM)
        TITLE='REDSPD'
        CALL PLT(ROLRPM,2000.,TITLE,1,HEADING,ACRPM)
        TITLE='ROLRPM'

        DO 373 I=1,300
        WRITE(3,*) I,ROLLSP(I),ROLSPD(I),REDSPD(I),EDGMRK(I)
        WRITE(3,*) CAMAGL(I),ROLRPM(CAMAGL(I))
        WRITE(3,*) I
        WRITE(3,*) 'REDSPD=',REDSPD(I)
        WRITE(3,*) 'ROLRPM=',ROLRPM(CAMAGL(I))
        WRITE(3,*) 'EDGMRK=',EDGMRK(I)
C373    CONTINUE
        CLOSE (3)

C
C           fill in blank spots
C
        IF(ROLRPM(1).EQ.0) ROLRPM(1)=ROLRPM(CAMAGL(1))
        DO 390 I=2,3600
        IF(ROLRPM(I).EQ.0) ROLRPM(I)=ROLRPM(I-1)
390    CONTINUE
C ****
C ****
C **** END OF ROLLER CALIBRATION
C
C
        393    IF(ANS.EQ.1) GOTO 399
        IF(ROLSPD(1).EQ.0) ROLSPD(1)=ROLSPD(NPTS)
        IF(ROLSPD(1).EQ.0) ROLSPD(1)=ROLSPD(NPTS-1)

```

```

IF(ROLSPD(1).EQ.0)THEN
  WRITE(*,*)"TOO MANY ZEROS INPUT NEW FILE"
  GOTO 3
ENDIF
DO 394 I=2,NPTS

  IF(ROLSPD(I).EQ.0)ROLSPD(I)=ROLSPD(I-1)
394  CONTINUE
  DO 395 I=1,NPTS
    ROLRPM(I)=0.0
395  CONTINUE
  DO 396 I=1,NPTS
    ROLRPM(I)=(3.0/ROLSPD(I))*1000000.*60./360.
396  CONTINUE
  DO 397 I=2,NPTS
    IF(ROLRPM(I).LT.ROLRPM(I-1)*.75.OR.ROLRPM(I).GT.ROLRPM(I-1)*
+ 1.25)ROLRPM(I)=ROLRPM(I-1)
397  CONTINUE
C  DO 398 I=1,400
C    WRITE(*,*)"ROLRPM",ROLRPM(I)
C398  CONTINUE

```

C.....Average torque and rod force and convert to (FT-LB) AND (LBF) ..

```

399  WRITE (*,*)"Calculating"
  WRITE (*,*)"ENTER CYCLE NUMBER TO ANALIZE (11=AVERAGE)"
  READ (*,*) I
  ISTART=1
  IF (I .NE. 11) THEN
    ISTART=I
    NACYC=I
  ENDIF
  IF (I .EQ. 11) NACYC=NPTS/NDPC
C  NACYC=NUMBER OF CYCLES OF DATA TO USE
  ACRPM=0.0
  DO 400 I=1,NDPC
    PRF(I)=0.0
    IJF(I)=0.0
    RTQ(I)=0.0
    CSP(I)=0.0
    RSP(I)=0.0
    PRL(I)=0.0
    IJL(I)=0.0
    DO 405 L=ISTART,NACYC
      IDEG=(L-1)*NDPC+I
      PRF(I)=PRF(I)+PRFORC(IDEGL)/YSCL/(NACYC-ISTART+1)
      IJF(I)=IJF(I)+INJECT(IDEGL)/YSCL/(NACYC-ISTART+1)
      RTQ(I)=RTQ(I)+ROTORQ(IDEGL)/YSCL/(NACYC-ISTART+1)
      J=CAMSPD(IDEGL)
      IF (J .LE. 0) J=J+65536
      CSP(I)=CSP(I)+1000000/J*60/720/(NACYC-ISTART+1)
      RSP(I)=RSP(I)+ROLRPM(IDEGL)/(NACYC-ISTART+1)
      PRL(I)=PRL(I)+LVDT(IDEGL)/YSCL/(NACYC-ISTART+1)
      IJL(I)=IJL(I)+LVDTIJ(IDEGL)/YSCL/(NACYC-ISTART+1)
405  CONTINUE

```

```

        ACRPM=ACRPM+CSP(I)/NDPC
400    CONTINUE
C     PRF=PUSHROD FORCE IN VOLTS
C     IJF=INJ LINK FORCE IN VOLTS
C     RTQ=ROLLER TORQUE IN VOLTS
C     CSP=CAMSPEED IN RPM
C     RSP=ROLLER SPD IN RPM
C     PRL=PUSHROD LIFT IN VOLTS
C     IJL=INJ LINK LIFT IN VOLTS
        OPEN(3,FILE='LPT1')
C     WRITE(3,*)'PRF,PRL,CSP,RSP,RTQ'
C     DO 407 I=100,200
C     WRITE(3,*)PRF(I),PRL(I),CSP(I),RSP(I),RTQ(I)
C407    CONTINUE

```

```

RTQZ1=(RTQ(45)+RTQ(49)+RTQ(52)+RTQ(55))/4.
PRZ=(PRF(45)+PRF(49)+PRF(52)+PRF(55))/4.
FINJTZ=(IJF(45)+IJF(49)+IJF(52)+IJF(55))/4.
DO 410 I=1,NDPC
        PRF(I)=(PRF(I)-PRZ)*PRS
        IJF(I)=(IJF(I)-FINJTZ)*FINJTS
C410    RTQ(I)=(RTQ(I)-RTQZ1)*RTQS-RTQZ
410    RTQ(I)=(RTQ(I)-RTQZ1)*RTQS-RTQZ

Y=2400.
WRITE(*,*)'Input Ymax P Rod force (=2400)'
READ(*,*)Y
HEAD='PUSHROD FORCE (LBF) VS CAM ANGLE'
TITLE='Pushrod Force LBF'
CALL PLT(PRF,Y,TITLE,1,HEAD,ACRPM)
Y=2400.
WRITE(*,*)'Input Ymax Inj Link Force(=2400)'
READ(*,*)Y
HEAD='INJ LINK FORCE (LBF) VS CAM ANGLE'
TITLE='Injector Link Force LBF'
CALL PLT(IJF,Y,TITLE,1,HEAD,ACRPM)
Y=0.4
WRITE(*,*)'Input Ymax-Roller Torq(=0.40)'
READ(*,*)Y
TITLE='Roller Torque FT LBF'
HEAD='ROLLER FRICTION TORQUE (FT-LBF) VS CAM ANGLE'
CALL PLT(RTQ,Y,TITLE,1,HEAD,ACRPM)
Y=1000.
WRITE(*,*)'Input Ymax-Cam Speed (=1000)'
READ(*,*)Y
TITLE='Cam Speed RPM'
HEAD='CAM SPEED (RPM) VS CAM ANGLE'
CALL PLT(CSP,Y,TITLE,1,HEAD,ACRPM)

```

```

C.....Read ECCENTRICITY file.....
C440    OPEN (1,FILE='A:AVECC',STATUS='OLD',FORM='FORMATTED')
C     READ (1,430) N,N,N,N,STR,N,A,A,N,N
C     READ (1,435) (ECC(K),K=1,NDPC)
C     CLOSE (1)

```

```

C.....Convert pushrod lift to feet.....  

P=(PRL(45)+PRL(52)+PRL(55))/3.  

PINJ=(IJL(45)+IJL(52)+IJL(55))/3.  

DO 450 I=1,NDPC  

  PRL(I)=(PRL(I)-P)*LS/12.  

  IJL(I)=(IJL(I)-PINJ)*LS/12.  

C   NOTE: THE PRL AND IJL MUST BE /12 SINCE CAL CONST IS IN INCHES  

450  CONTINUE  

  CALL SLAVG(PRL,3)  

  CALL SLAVG(IJL,3)  

  ZMAX=PRL(1)  

  DO 455 I=1,NDPC  

    IF(ZMAX.LT.PRL(I))THEN  

      ZMAX=PRL(I)  

      PMAX=I  

    ENDIF  

455  CONTINUE  

  WRITE(*,*)'MAX POINT=',ZMAX,' AT ',PMAX  

  DO 460 I=1,10  

    WRITE(*,*)PRL(I),I  

460  CONTINUE

```

```

TITLE='Pushrod Lift FT'  

HEAD='PUSHROD LIFT (FT) VS CAM ANGLE'  

CALL PLT(PRL,.04,TITLE,1,HEAD,ACRPM)  

TITLE='Inj Rod Lift FT'  

HEAD='INJ ROD LIFT (FT) VS CAM ANGLE'  

CALL PLT(IJL,.04,TITLE,1,HEAD,ACRPM)

```

```

C.....Calculate pushrod velocity (FT/SECOND).....  

  IF (ACRPM .EQ. 0) THEN  

    WRITE (*,*) 'ENTER ACRPM'  

    READ (*,*) ACRPM  

  ENDIF  

  DPS=ACRPM*360/60  

C  DPS=DEGREES PER SECOND  

  DO 500 I=1,NDPC  

    IMINUS=I-1  

    IPLUS=I+1  

    IF (IMINUS .LT. 1) IMINUS=NDPC  

    IF (IPLUS .GT. NDPC) IPLUS=1  

    PRV(I)=DPS*(PRL(IPLUS)-PRL(IMINUS))/2.  

500  IJV(I)=DPS*(IJL(IPLUS)-IJL(IMINUS))/2.  

    CALL SLAVG(PRV,5)  

    CALL SLAVG(IJV,5)  

    Y=2.6  

    WRITE(*,*)'Input Ymax P-Rod Vel (=2.6)'  

    READ(*,*)Y  

    TITLE='Pushrod Velocity FT/SEC'  

    HEAD='PUSHROD VELOCITY (FT/SECOND) VS CAM ANGLE'  

    CALL PLT(PRV,Y,TITLE,1,HEAD,ACRPM)  

    Y=2.6  

    WRITE(*,*)'Input Ymax Ij-Rod Vel. (=2.6)'  


```

```
READ(*,*)Y
TITLE='Inj Rod Velocity FT/SEC'
HEAD='INJ ROD VELOCITY (FT/SECOND) VS CAM ANGLE'
CALL PLT(IJV,Y,TITLE,1,HEAD,ACRPM)
```

C.....Calculate pushrod acceleration (FT/SECOND**2)

```
DO 550 I=1,NDPC
IMINUS=I-1
IPLUS=I+1
IF (IMINUS .LT. 1) IMINUS=NDPC
IF (IPLUS .GT. NDPC) IPLUS=1
550 PRA(I)=DPS*(PRV(IPLUS)-PRV(IMINUS))/2
CALL SLAVG(PRA,5)
```

Y=400.

```
WRITE(*,*)"Input Ymax P-Rod Accel (=400)'
```

```
READ(*,*)Y
TITLE='Pushrod Accel FT/SEC**2'
HEAD='PUSHROD ACCELERATION (FT/SECOND**2) VS CAM ANGLE'
CALL PLT(PRA,Y,TITLE,1,HEAD,ACRPM)
```

C.....Convert ECCENTRICITY to feet.....

```
C615 DO 620 I=1,NDPC
C620 ECC(I)=ECC(I)/12.
C CALL SLAVG(ECC,3)
C CALL XSHIFT(ECC)
C TITLE='CAM LOBE ECCENTRICITY (FT)'
C CALL PLT(ECC,.04,TITLE,1,TITLE,ACRPM)
C.....Calculate push rod work.....
```

APRW=0.0

```
DO 625 I=1,NDPC
PRW(I)=PRF(I)*PRV(I)/DPS-IJF(I)*IJV(I)/DPS
APRW=APRW+PRW(I)/NDPC
```

625 CONTINUE

Y=1.

```
WRITE(*,*)"Input Ymax Work (=1)'
```

```
READ(*,*)Y
```

TITLE='Pushrod Work FT LBF'

HEAD='PUSHROD WORK (FT-LBF) VS CAM ANGLE'

```
CALL PLT(PRW,Y,TITLE,1,HEAD,ACRPM)
```

C

 roller acceleration

Y=1400.

```
WRITE(*,*)"Input Ymax Rol Spd (=1400)'
```

```
READ(*,*)Y
```

TITLE='Roller Speed RPM'

HEAD='ROLLER SPEED (RPM) VS CAM ANGLE'

```
CALL PLT(RSP,Y,TITLE,1,HEAD,ACRPM)
```

```
CALL SLAVG(RSP,5)
```

HEAD='AVERAGED ROLLER SPEED (RPM) VS CAM ANGLE'

```
CALL PLT(RSP,Y,TITLE,1,HEAD,ACRPM)
```

```

C
ROLA(1)=DPS*(RSP(2)-RSP(NDPC))/2.*2.0*3.14159/60
ROLA(NDPC)=DPS*(RSP(1)-RSP(NDPC-1))/2.*2.0*3.14159/60
DO 630 I=2,NDPC-1
    ROLA(I)=DPS*(RSP(I+1)-RSP(I-1))/2.*2.0*3.14159/60
630    CONTINUE
DO 632 I=1,NDPC
C      ARMTH(I)=ASIN(PRL(I)*5.8065) **FOR EXHAUST
C      ARMTH(I)=ASIN(PRL(I)*8.3624)
632    CONTINUE
ARMVL(1)=DPS*(ARMTH(2)-ARMTH(NDPC))/2.
ARMVL(NDPC)=DPS*(ARMTH(1)-ARMTH(NDPC-1))/2.
DO 635 I=2,NDPC-1
    ARMVL(I)=DPS*(ARMTH(I+1)-ARMTH(I-1))/2.
635    CONTINUE
ARMAC(1)=DPS*(ARMVL(2)-ARMVL(NDPC))/2.
ARMAC(NDPC)=DPS*(ARMVL(1)-ARMVL(NDPC-1))/2.
DO 637 I=2,NDPC-1
    ARMAC(I)=DPS*(ARMVL(I+1)-ARMVL(I-1))/2.

637    CONTINUE

CALL SLAVG(ARMAC,5)

C          roller inertia and tractive forces
C
Y=5000.
WRITE(*,*)'Input Ymax Rol Accel (=5000)'
READ(*,*)Y
TITLE='Rel. Accel. RAD/SEC**2'
HEAD='ROLLER RELATIVE ACCELERATION (RAD/SEC**2)'
CALL PLT(ROLA,Y,TITLE,1,HEAD,ACRPM)
CALL SLAVG(ROLA,5)

HEAD='ROLLER RELATIVE ACCELERATION (RAD/SEC**2)-AVG'
CALL PLT(ROLA,Y,TITLE,1,HEAD,ACRPM)
CALL SLAVG(ARMAC,5)
TITLE='Follower Accel. RAD/SEC**2'
HEAD='FOLLOWER ARM ACCELERATION (RAD/SEC**2)'
WRITE(*,*)'Input Ymax arm accel (=2000)'
READ(*,*)Y
CALL PLT(ARMAC,Y,TITLE,1,HEAD,ACRPM)
RAD=0.06771

DO 640 I=1,NDPC
    TRQIN(I)=RINER*(ROLA(I)-ARMAC(I))
640    CONTINUE
CALL SLAVG(TRQIN,5)
DO 650 I=1,NDPC

```

```

650      TRFRC(I)=(RTQ(I)+TRQIN(I))/RAD
CONTINUE
CALL SLAVG(TRFRC,5)
Y=0.4
WRITE(*,*)'Input Ymax Iner Torq (=0.4)'
READ(*,*)Y
TITLE='Inertia Torque FT LBF'
HEAD='INERTIA TORQUE (FT-LB) VS CAM ANGLE'
CALL PLT (TRQIN,Y,TITLE,1,HEAD,ACRPM)
Y=8.0
WRITE(*,*)'Input Ymax Tract Force (=8)'
READ(*,*)Y
TITLE='Roller Tractive Force LBF'
HEAD='ROLLER TRACTIVE FORCE (LBF) VS CAM ANGLE'
CALL PLT (TRFRC,Y,TITLE,1,HEAD,ACRPM)
CALL SLAVG(CSP,5)
C      REV(1)=(RSP(360)+RSP(1))/2.*2./(CSP(360)+CSP(1)))
REV(1)=(RSP(360)+RSP(1))/2./ACRPM
DO 700 I=2,360
REV(I)=(RSP(I-1)+RSP(I))/2./ACRPM
C      REV(I)=(RSP(I-1)+RSP(I))/2.*2./(CSP(I-1)+CSP(I)))
700      CONTINUE
WRITE(*,*)'Input roller rotation'
READ(*,*)Y
TITLE='DEGREES OF ROLLER ROTATION'
HEAD='DEGREES OF ROLLER ROTATION AT CAM ANGLE'
CALL PLT (REV,Y,TITLE,1,HEAD,ACRPM)

```

```

CLOSE(3)
C.....send test conditions to printer.....
1200  WRITE (*,*) 'ENTER RETURN TO PRINT TEST CONDITIONS'
      READ (*,'(A1)') IOSTR
1300  OPEN (3,FILE='LPT1')
      WRITE (3,'(/////////)')
      WRITE (3,1337)
1337  FORMAT(' ')
      WRITE (3,1340) DATE
1340  FORMAT (' ', DATE : ',A8)
      WRITE (3,1350) TIME : 'A8)
1350  FORMAT (' ', TIME : 'A8)
      WRITE (3,*) ' '
      WRITE (3,1352) ETYPE,NTEST
1352  FORMAT (' ', TEST NO. : ',A1,' -',I4)
      WRITE (3,1353) NRUN
1353  FORMAT (' ', RUN NO. : ',I2)
      WRITE (3,*) ' '
      WRITE (3,1354) BARPRS
1354  FORMAT (' ', BAR PRESS =',F6.2,'IN HG')

```

```

1356 WRITE (3,1356) ITDRY          =',I3,' F')
      FORMAT (',          TDRY
1358 WRITE (3,1358) ITWET          =',I3,' F')
      FORMAT (',          TWET
      WRITE (3,*) '
      WRITE (3,1364) TBRAND,TNO      : ',A4,A8)
      FORMAT (',          TRANS.
      WRITE (3,1366) ABRAND,ANO      : ',A4,A8)
      FORMAT (',          AMP.
      WRITE (3,1368) TS              PRESS TR. SLOPE : ',F8.4)
      FORMAT (',          '
      WRITE (3,*) '
      IF(IFIRE .EQ. 1) WRITE (3,*) '
      IF(IFIRE .EQ. 0) WRITE (3,*) '
      WRITE (3,*) '
      WRITE (3,1370) ACRPM          F I R I N G'
      FORMAT (',          CAMSHAFT RPM = ',F6.1)
      WRITE (3,1372) VAC             M O T O R I N G'
      FORMAT (',          MAN VACUUM IN HG = ',F6.2)
      WRITE (3,1374) AINP            INT ABS PRESS-PSI = ',F6.3)
      FORMAT (',          '
      IF(IFIRE .EQ. 0)GOTO 1390
      WRITE (3,1380) ISPKAD          '
      FORMAT (',          SPARK ADV-DEG BTDC= ',I3)
      WRITE (3,1382) FUELWT          FUEL WEIGHT-LBF = ',F8.6)
      FORMAT (',          '
      WRITE (3,1384) ELPTIM          ELAPSED TIME-MIN = ',F8.4)
      FORMAT (',          '
      WRITE (3,1386) ITEXH            EXHAUST TEMP-F = ',I5)
      FORMAT (',          '
      WRITE (3,*) '
      IF(IFIRE .EQ. 0) WRITE (3,*) '
      WRITE (3,1360) LUBRIC          '
      FORMAT (',          LUBRICANT : ',A8)
      WRITE (3,1376) IOILP            OIL PRESS-PSI = ',I3)
      FORMAT (',          '
      WRITE (3,1394) ITOILS           '
      FORMAT (',          SUMP OIL TEMP-F = ',I4)
      WRITE (3,1392) ITOILG           GALLERY OIL TEMP-F = ',I4)
      FORMAT (',          '
      WRITE (3,1396) ITSG              STRAIN GAGE TEMP-F= ',I4)
      FORMAT (',          '
      WRITE (3,*) '
      WRITE (3,1400) TORQUE          '
      FORMAT (',          ENG TORQUE (FT-LBF)= ',F6.2)
      WRITE (3,1402) TORQUE*1.2415
      FORMAT (',          ENGINE MEP (PSI) = ',F6.2)
C
      WRITE (3,1660) APRW
      FORMAT (',          PR FRICTION WORK (FT-LBF) = ',F6.5)
      WRITE (3,1665) FMEP,EXHINT,COMPWR
      FORMAT (',          PR FMEP (PSI) = ',F6.2,
1665

```

```

1690  +      '(IE=', F5.2, ', PC=', F5.2, ')')
1690      CONTINUE
1690      WRITE(3,*) ' '
1695      WRITE(3,1695) ZER
1695      FORMAT('          ZERO AXIS OF AVG (LBF)      =', F6.2)
1696      WRITE(3,1696) EHOUR
1696      FORMAT('          ENGINE HOURS      =', F6.2)
1696      WRITE(*,*) 'Enter first comment line.'
1696      READ(*,'(A60)') COMMENT
1696      WRITE(3,*) '          NOTE: ', COMMENT
1696      WRITE(*,*) 'Enter second comment line.'
1696      READ(*,'(A60)') COMMENT
1696      WRITE(3,*) '          ', COMMENT
1696      WRITE(3,*) ' '
1740      WRITE(3,1760)
1760      FORMAT('      ////')
1760      WRITE(3,'(//////////)')

        WRITE(3,'(A1)') '1'
        CLOSE(3)
CC..... save friction data on disk for MTS.....
C      READ(STRING,'(1X,A9)') FILSTR
C      WRITE(IOSTR,'(A1,A8)') 'F',FILSTR
C1800  WRITE(*,1810) IOSTR
C1810  FORMAT(//,5X,' Enter friction storage file name:',A14 $)
C      READ(*,'(A14)') FILSTR
C      IF (FILSTR .EQ. ' ') FILSTR=IOSTR
C      WRITE(IOSTR,'(A1,A1,A9)') 'A',':',FILSTR
C      OPEN(1,FILE=IOSTR,STATUS='NEW',FORM='FORMATTED')
C      WRITE(1,1825) (0.0,L=1,18)
C1825  FORMAT(F8.2)
C      WRITE(1,1825) 1.0
C      WRITE(1,1830) NACYC,IFIRE,NTEST,NRUN,LUBRIC,IRPM,AINP,FMEP
C      + ,ITWAT,ITOIL
C1830  FORMAT(4I4,A8,I4,2F6.2,2I4)
C1835  FORMAT(10F8.2)
C      WRITE(1,1835) (FR(K),K=1,NDPC)
C      CLOSE(1)
        GOTO 3
        STOP
        END

        SUBROUTINE SLAVG(PR,N)
C..... This subroutine does an N point sliding average.....
C      REAL*4 PR(360),AVG(360)
C
        DO 100 I=1,360
          AVG(I)=0.
          DO 100 J=-(N/2),N/2
            ITHETA=I+J
            IF (ITHETA .LT. 1) ITHETA=360+ITHETA
            IF (ITHETA .GT. 360) ITHETA=ITHETA-360
100      AVG(I)=AVG(I)+PR(ITHETA)/N
          DO 200 I=1,360
200      PR(I)=AVG(I)

```

```
RETURN  
END
```

```
SUBROUTINE XSHIFT(ECC)
```

```
C.....This subroutine shifts the eccentricity data to match  
C.....the maximum lift data in the X direction.....  
REAL*4 ECC(360),ECCTEMP(360)  
C PRTEMP AND TQTEMP ARE TEMPORARY BUFFERS FOR PRF AND TQ
```

```
C MAX LIFT OCCURS AT 184 DEGREES
```

```
ILIFT=184
```

```
DO 100 I=170,190  
    IF (ECC(I) .GT. 0.0) GOTO 150
```

```
100 CONTINUE
```

```
WRITE (*,*) 'ERROR IN FINDING ZERO ECCENTRICITY'
```

```
150 WRITE (*,*) 'RECOMMENDED SHIFT IS',ILIFT-I,' DEGREES RIGHT.'
```

```
WRITE (*,*) 'ENTER DESIRED SHIFT.'
```

```
READ (*,*) ISHIFT
```

```
DO 200 I=1,360
```

```
    J=I+ISHIFT
```

```
    IF (J .LT. 1) J=360-J
```

```
    IF (J .GT. 360) J=J-360
```

```
200 ECCTEMP(J)=ECC(I)
```

```
DO 300 I=1,360
```

```
300 ECC(I)=ECCTEMP(I)
```

```
RETURN
```

```
END
```

```
FUNCTION LEN(STRING)
```

```
C THIS FUNCTION RETURNS THE LENGTH OF THE GIVEN STRING  
CHARACTER*1 STRING(60)
```

```
L=1
```

```
DO 100 I=1,80
```

```
100 IF (STRING(I) .NE. ' ') L=I
```

```
LEN=L
```

```
RETURN
```

```
END
```

```
SUBROUTINE TEXTF(IX,IY,L,TITLE1)
```

```
C THIS SUBROUTINE CONVERTS TITLE DATA TO HALO FORMAT  
CHARACTER*1 TITLE1(80),TITLE2(80)
```

```
IF (L .EQ. -1) L=LEN(TITLE1)
```

```
DO 100 I=1,L
```

```
100 TITLE2(I+1)=TITLE1(I)
```

```
TITLE2(1)='~'
```

```
TITLE2(L+2)='~'
```

```
CALL MOVTCA(IX*1.,IY*1.)
```

```
CALL TEXT(TITLE2)
```

```
RETURN
```

```
END
```

```
SUBROUTINE PUTPT(IX,IY)
```

```
C THIS SUBROUTINE CONVERTS THE CALL TO A HALO CALL  
CALL MOVABS(IX*1.,IY*1.)
```

```
RETURN
```

END

SUBROUTINE DLINE(IX,IY)

C THIS SUBROUTINE CONVERTS THE CALL TO A HALO CALL
CALL LNABS(IX*1.,IY*1.)
RETURN
END

SUBROUTINE TMODE

C THIS SUBROUTINE SWITCHES THE SCREEN BACK TO TEXT MODE
CALL CLOSEG
RETURN
END

SUBROUTINE GMODE

C THIS SUBROUTINE INITIALIZES GRAPHICS MODE
INTEGER*2 MODE,MODE1,MODE2
CALL SETDEV(''\FORTRAN\HALO\HALOIBMP.DEV'')
MODE=12
CALL INITGR(MODE)
MODE=1
CALL SETIEE(MODE)
CALL INQCRA(MODE)
CALL SETWOR(0.,348.,719.,0.)
CALL SETFON(''\FORTRAN\HALO\HALO001.FNT'')
CALL SETSTC(MODE,MODE)
MODE=0
MODE1=1
MODE2=2
CALL SETTEX(MODE2,MODE1,MODE,MODE)
RETURN
END

SUBROUTINE CLRSCR

RETURN
END

SUBROUTINE PSCREEN

C THIS SUBROUTINE PRINTS THE GRAPHICS SCREEN ON THE LASER JET
INTEGER*2 PATTR(17)
C
CALL SETPRN(''\FORTRAN\HALO\HALOLJTP.PRN'')
DO 710 I=1,17
710 PATTR(I)=-1
C THERE IS A SHIFT OF ONE IN THE PATTR ARRAY COMPARED TO THE MANUAL
PATTR(1)=1700
PATTR(2)=1700
PATTR(6)=0
PATTR(8)=3
CALL SETPAT(PATTR)
CALL GPRINT
RETURN
END

SUBROUTINE PLT(DATA,YMAX,YTITLE,MEAN,HEADING,RPM)

```

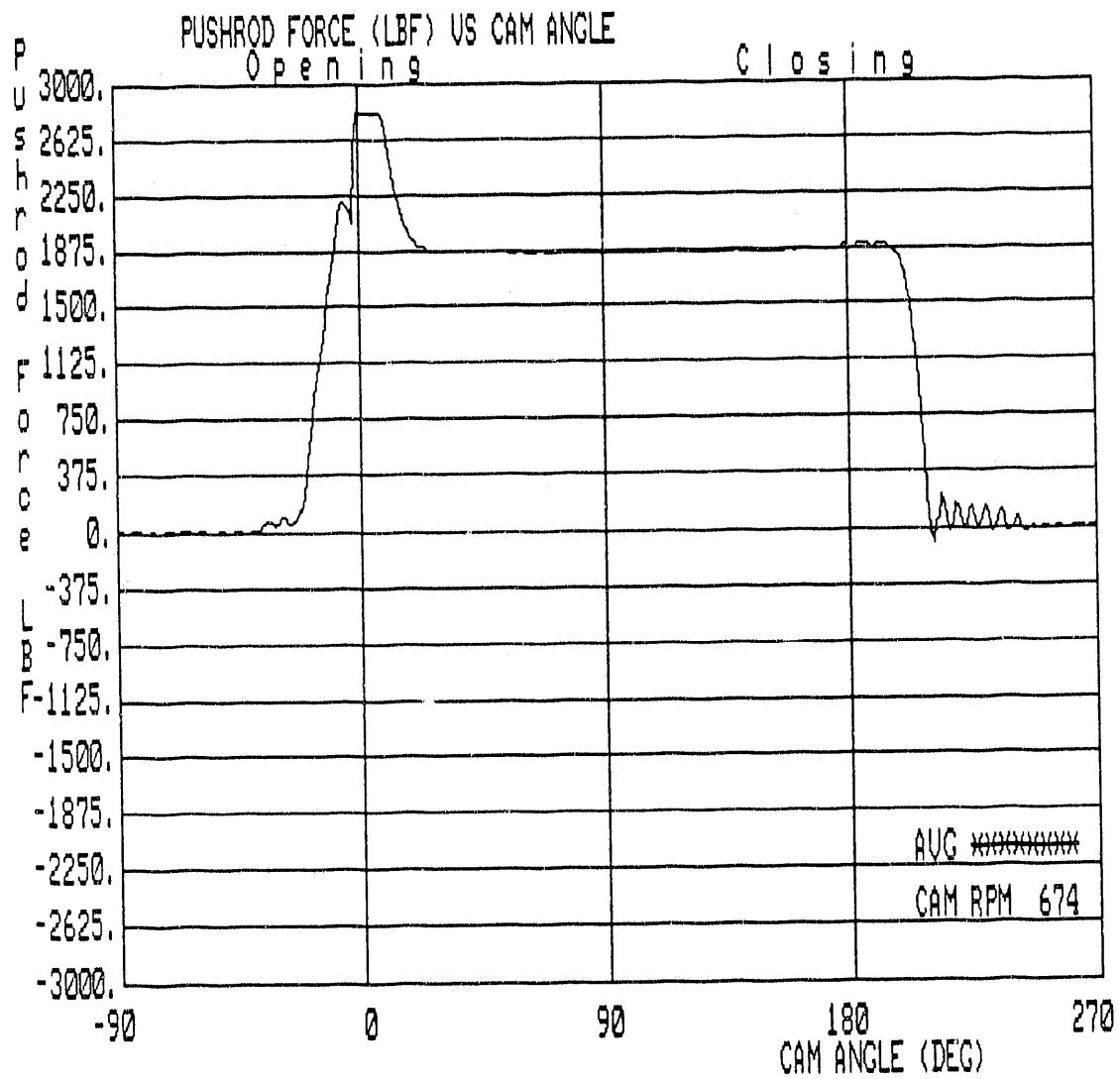
C ****
C * THIS ROUTINE PLOTS PR FRICTION ON THE SCREEN *
C ****
      REAL*4 DATA(360),SDATA(360)
      CHARACTER*15 MSG
      CHARACTER*60 TITL,YTITLE,HEADING
      CHARACTER*1 MG(15),TITLE(60),CH
      INTEGER*2 ILINE(32)
      EQUIVALENCE (TITL,TITLE), (MSG,MG)
C .....set up axes.....
      CALL GETYN('DO YOU WANT THE PLOT PRINTED ',PRNT)
      CALL GMODE
      CALL CLRSCR
      SCL=YMAX/80.
C DRAW X-AXIS AND LABEL
      DO 20 I=-180,180,90
      J=67+(I*2+359)*645./720.
      N=67+(I*2+345)*645./720.
      CALL PUTPT(J,24)
      CALL DLINE(J,314)
CCC
      WRITE (MSG,'(I4)') I+90
CCC
20      CALL TEXTF(N-15,333,4,MG)
      TITL='CAM ANGLE (DEG)'
      CALL TEXTF (500,345,20,TITLE)
C DRAW HEADING
      TITLE=HEADING
      CALL TEXTF(111,12,60,TITLE)
      TITLE='O p e n i n g'
      CALL TEXTF(155,23,13,TITLE)
      TITLE='C l o s i n g'
      CALL TEXTF(480,23,13,TITLE)
C DRAW Y-AXIS AND LABEL
      DO 100 I=-80,80,10
      Z=I
      J=169-I*145./80.
      CALL PUTPT (67,J)
      CALL DLINE(710,J)
      IF (SCL .GE. .125) WRITE (MSG,'(F6.0)') Z*SCL
      IF (SCL .LT. .125) WRITE (MSG,'(F6.3)') Z*SCL
      CALL TEXTF (10,J+5,6,MG)
100     CONTINUE
      TITL=YTITLE
      DO 150 I=1,40
      CH=TITLE(I)
      CALL TEXTF(2,6+I*13,1,CH)
150     CONTINUE
      IF (MEAN .EQ. 1) THEN
      AVG=0.0
      DO 180 I=1,360
      AVG=AVG+DATA(I)/360.
      WRITE (MSG,'(A4,F9.5)') 'AVG ',AVG
      CALL TEXTF(590,277,12,MG)
      WRITE (MSG,'(A8,F5.0)') 'CAM RPM ',RPM

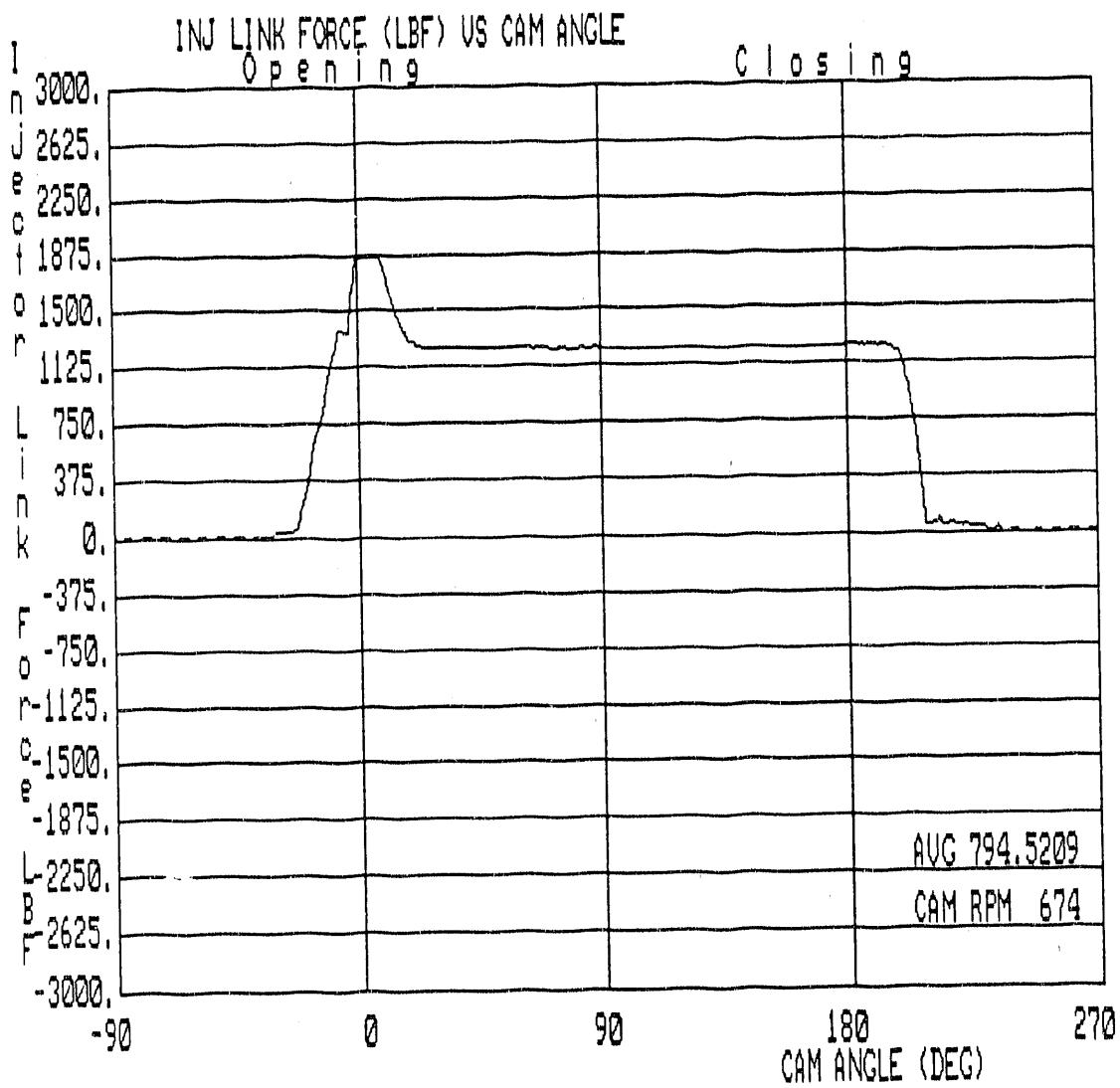
```

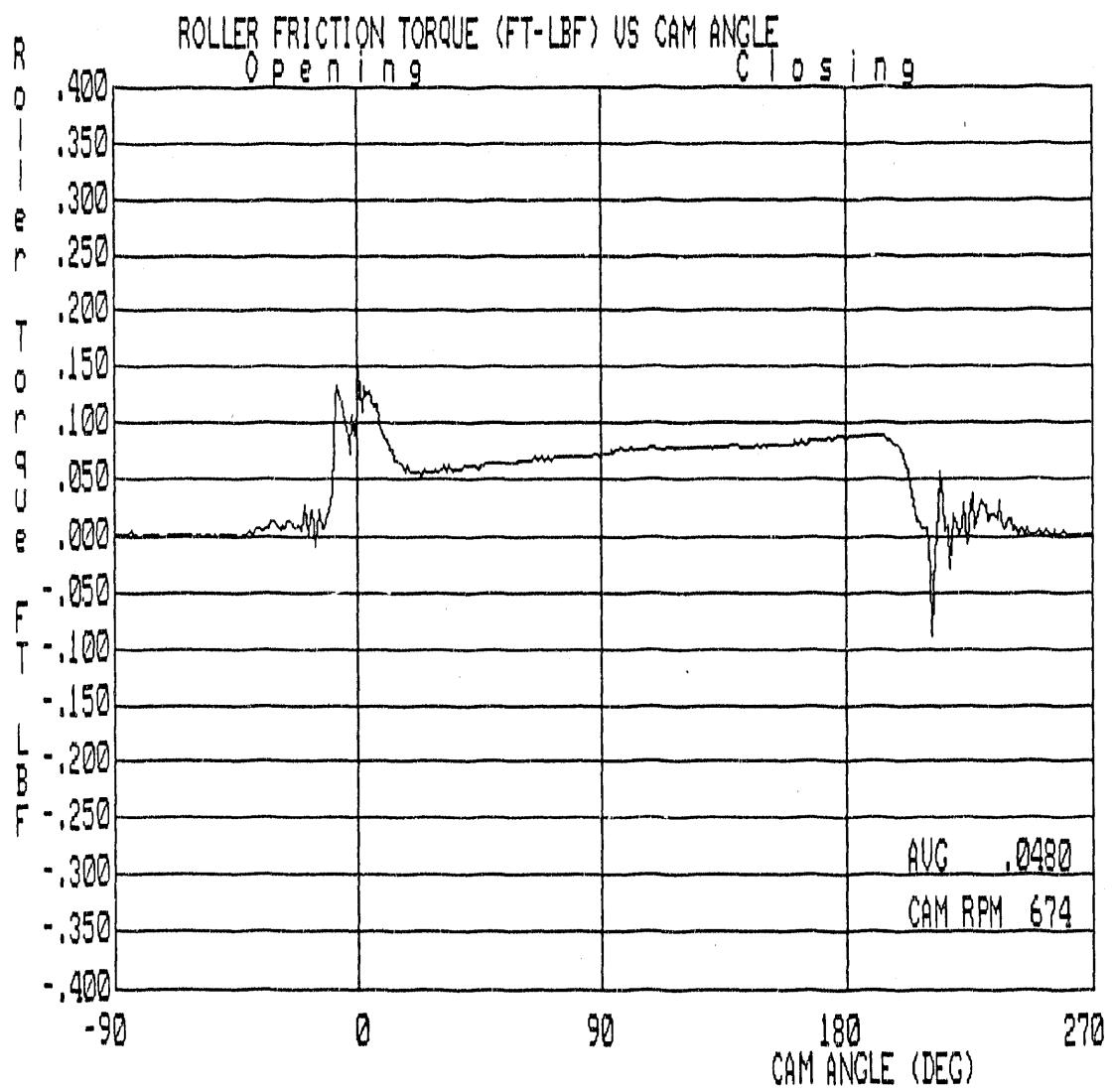
```

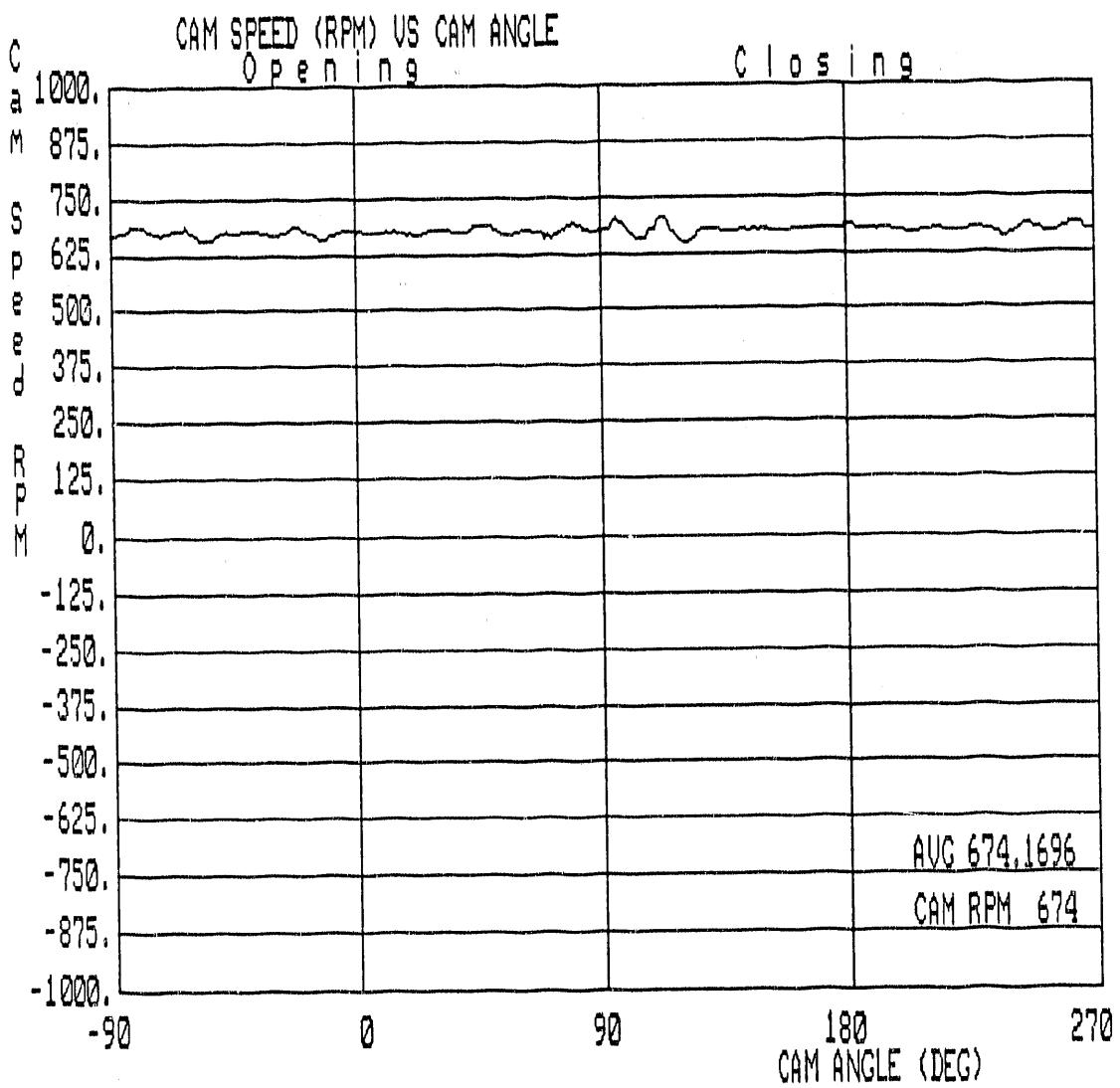
        CALL TEXTF(590,295,12, MG)
      ENDIF
C.....plot actual data.....
      PT=0.
      DO 198 J=1,360
        ISHIFT=J+327
        IF (ISHIFT.GT.360) ISHIFT=ISHIFT-360
        SDATA(ISHIFT)=DATA(J)
198   CONTINUE
      DO 200 I=1,360
        IPLOT=169-SDATA(I)*145./80./SCL
        IX=67+(I-1)*645./360.
        IF (IPLOT .GT. 314) IPLOT=314
        IF (IPLOT .LT. 10) IPLOT=10
        IF (PT .EQ. 0.) THEN
          CALL PUTPT(IX,IPLOT)
          PT=.1
        ELSE
          CALL DLINE(IX,IPLOT)
        ENDIF
200   CONTINUE
      IF (PRNT .EQ. 0) THEN
        READ (*,'(A1)') CH
      ELSE
        CALL PSCREEN
      ENDIF
      CALL TMODE
      RETURN
      END

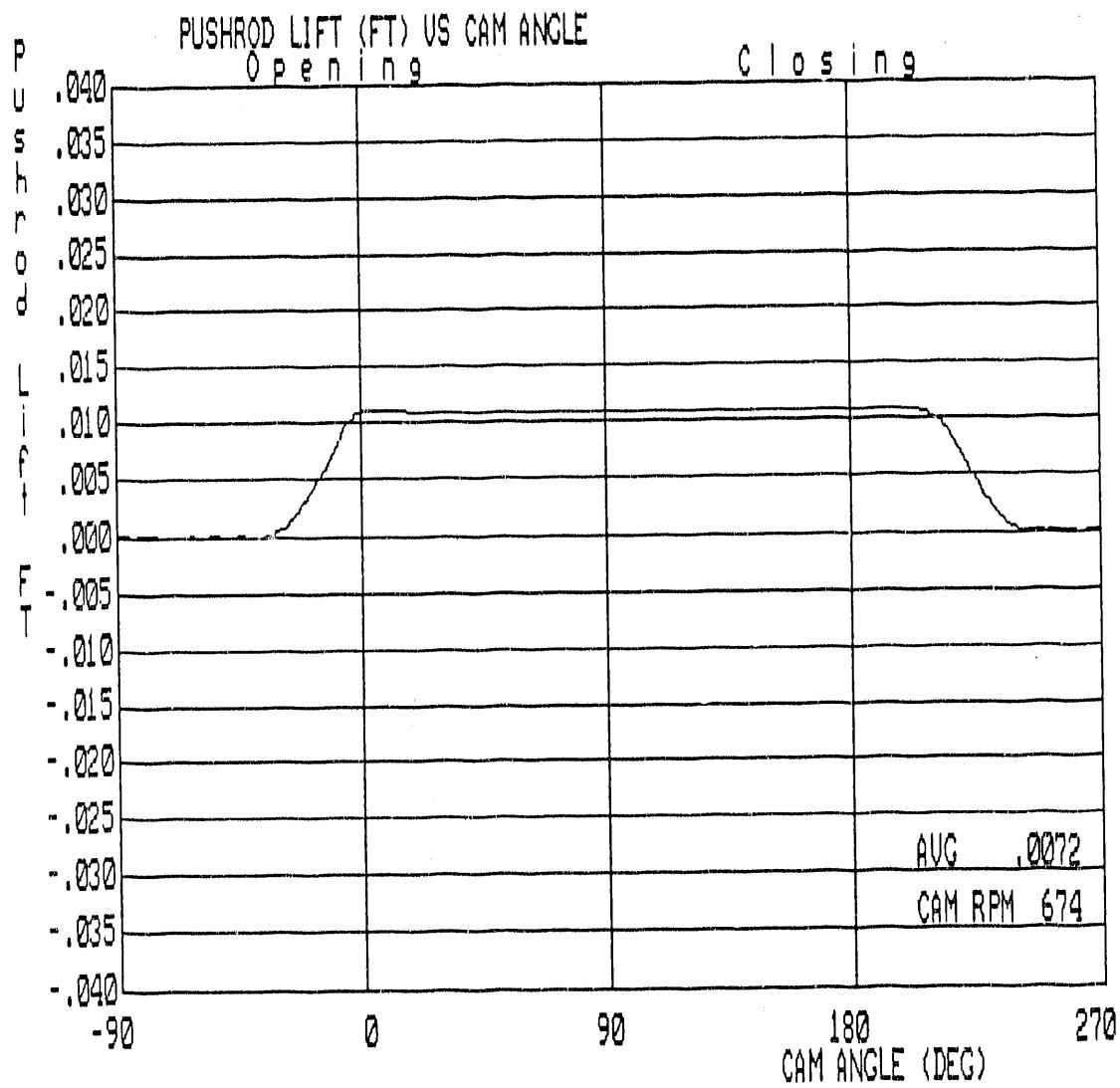
      SUBROUTINE GETREL(QUESTION,ANSWER)
C THIS SUBROUTINE READS IN A REAL NUMBER FROM THE KEYBOARD
      CHARACTER*40 QUESTION
      CHARACTER*10 STR
      CHARACTER*1 STRING(10)
      EQUIVALENCE (STR,STRING)
C
      50  WRITE (*,*) QUESTION,ANSWER
      READ (*,'(A10)',ERR=100) STR
      J=0
      DO 75 I=1,10
        IF (STRING(I) .EQ. '.') GOTO 80
75    IF (STRING(I) .NE. ' ') J=I
      IF (J .NE. 0) STRING(J+1)='.'
80    IF (STR .NE. '') READ (STR,'(BN,F10.4)',ERR=100) ANSWER
      RETURN
100   WRITE (*,*) '*** Input error. Please re-enter data ***'
      GOTO 50
      STOP
      END

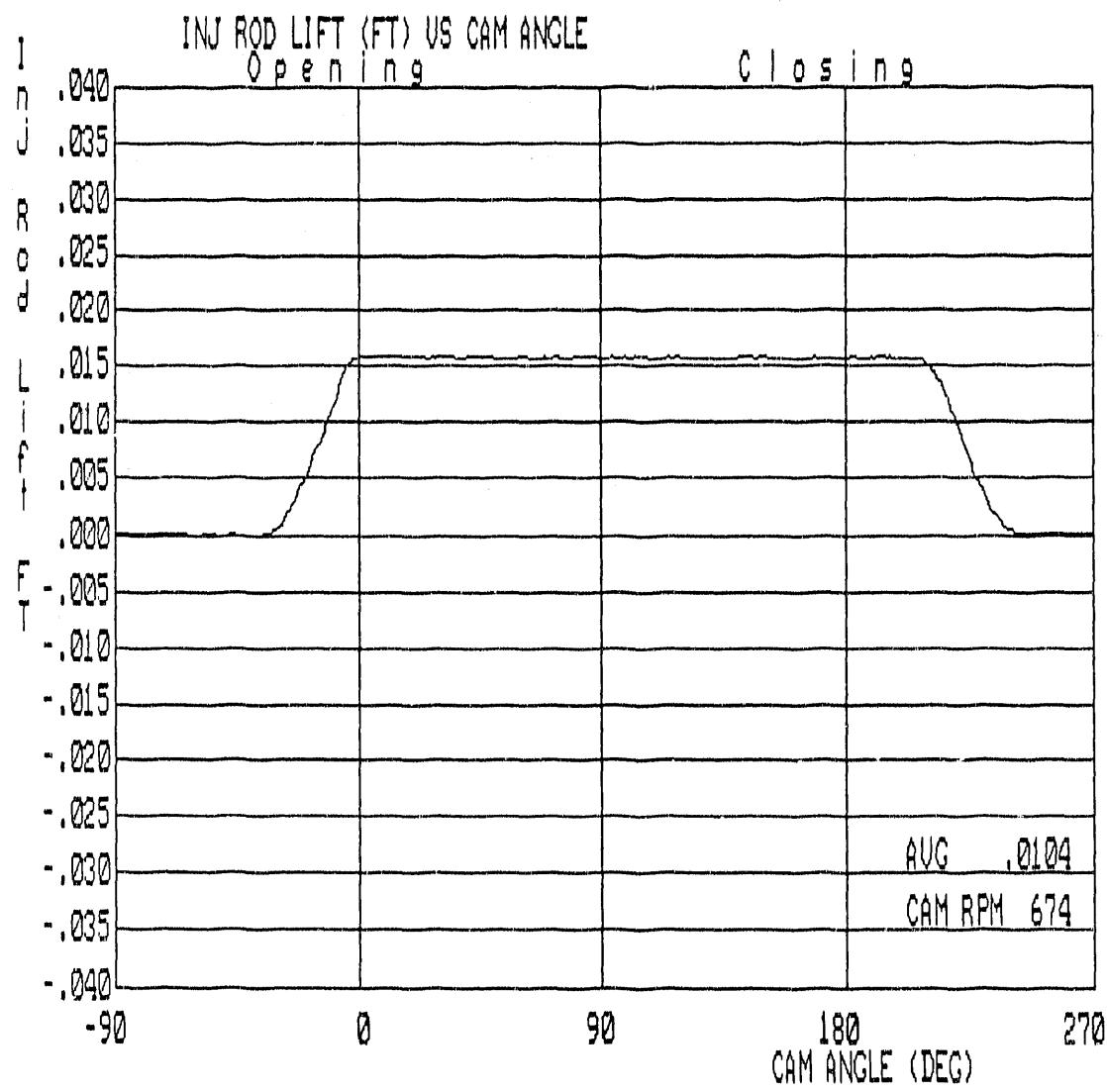

      SUBROUTINE GETINT(QUESTION,IANSWER)
C THIS SUBROUTINE READS IN AN INTEGER FROM THE KEYBOARD
      CHARACTER*40 QUESTION
      CHARACTER*9 STR

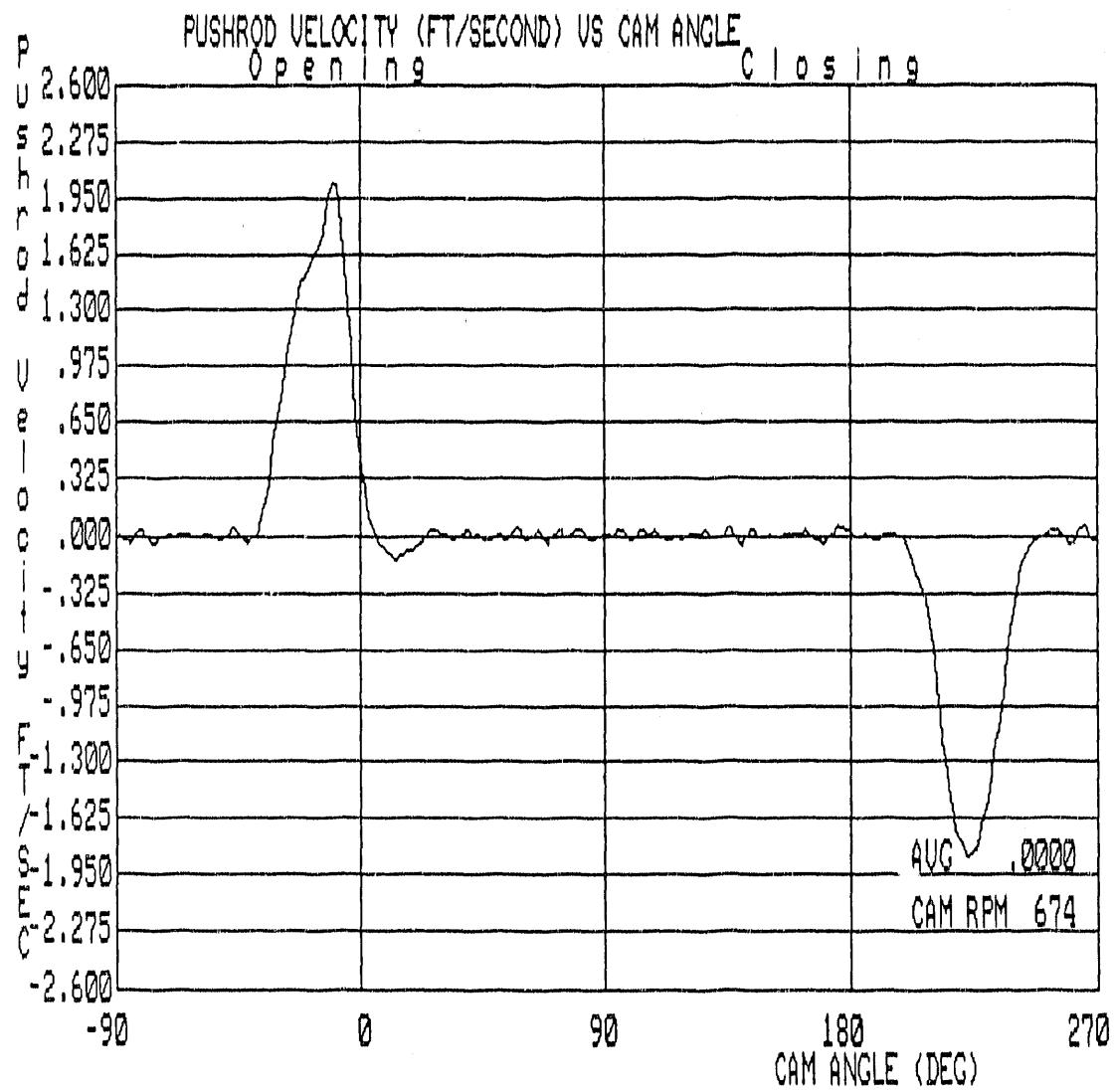

```

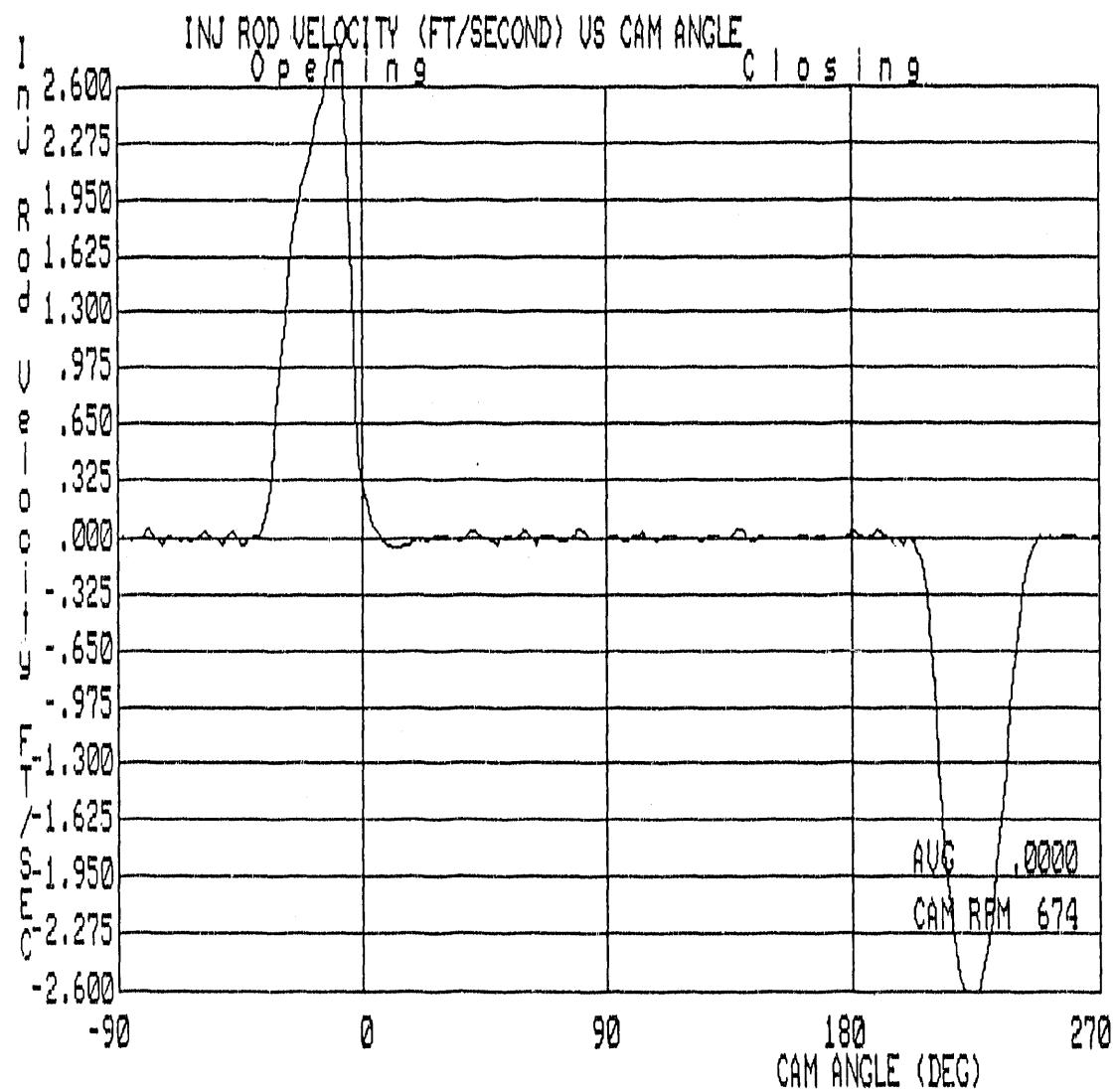

```
CHARACTER*4 FMT
C
50  WRITE (*,*) QUESTION,IANSWER
     READ (*,'(A9)',ERR=100) STR
     IF (STR .NE. ' ') READ (STR,'(BN,I9)',ERR=100) IANSWER
     RETURN
100  WRITE (*,*) '*** Input error. Please re-enter data ***'
     GOTO 50
     STOP
     END

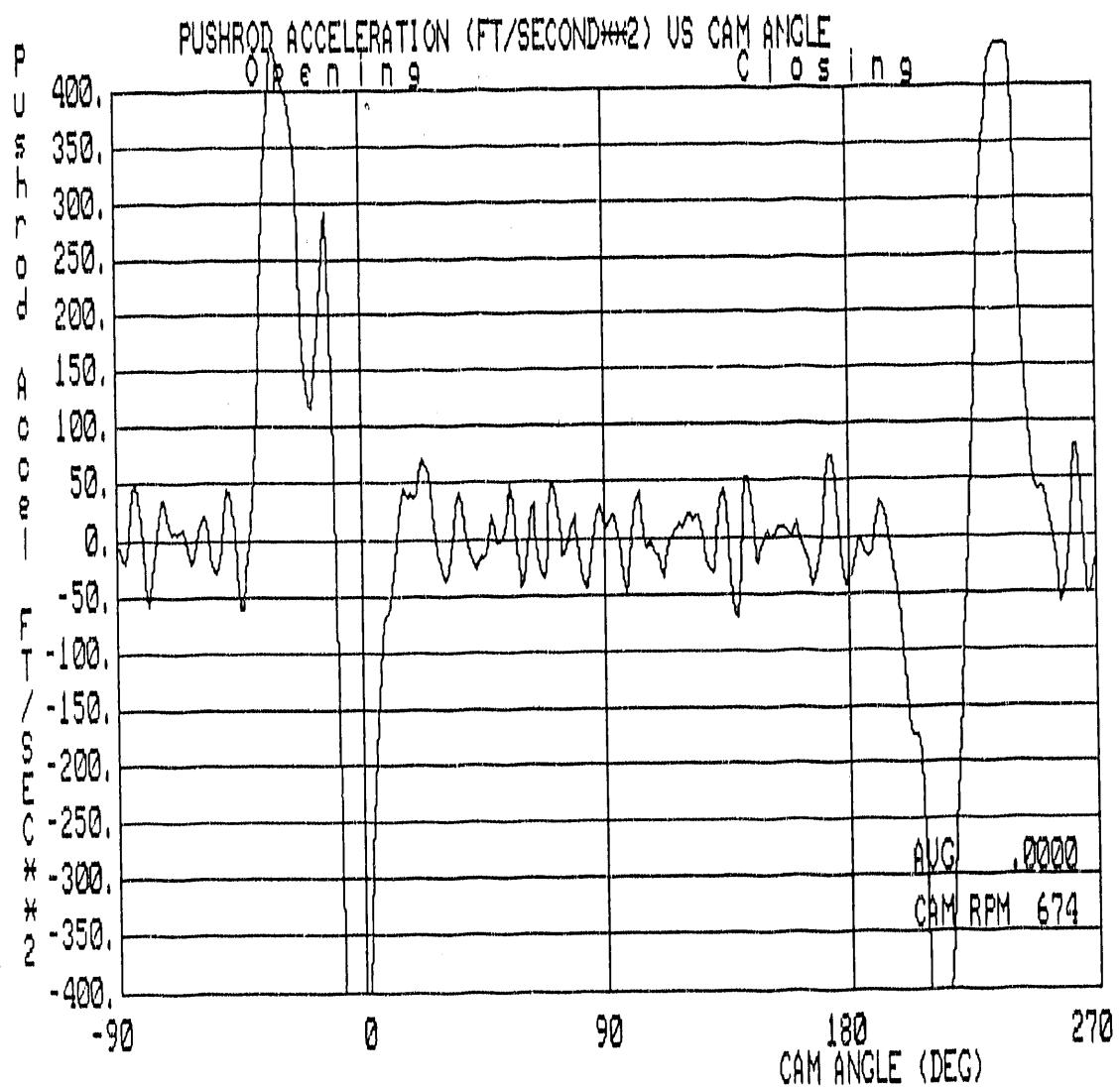

SUBROUTINE GETYN(QUESTION,ANSWER)
C  THIS SUBROUTINE READS IN THE ANSWER TO A YES/NO QUESTION
CHARACTER*40 QUESTION
CHARACTER*1 YN
C
50  WRITE (*,*) QUESTION,'(Y/N)'
     READ (*,'(A1)',ERR=100) YN
     IF (YN.EQ.'Y' .OR. YN.EQ.'y') THEN
         ANSWER=1
         RETURN
     ENDIF
     IF (YN.EQ.'N' .OR. YN.EQ.'n') THEN
         ANSWER=0
         RETURN
     ENDIF
100  WRITE (*,*) '*** Input error. Please re-enter data ***'
     GOTO 50
     STOP
     END
```

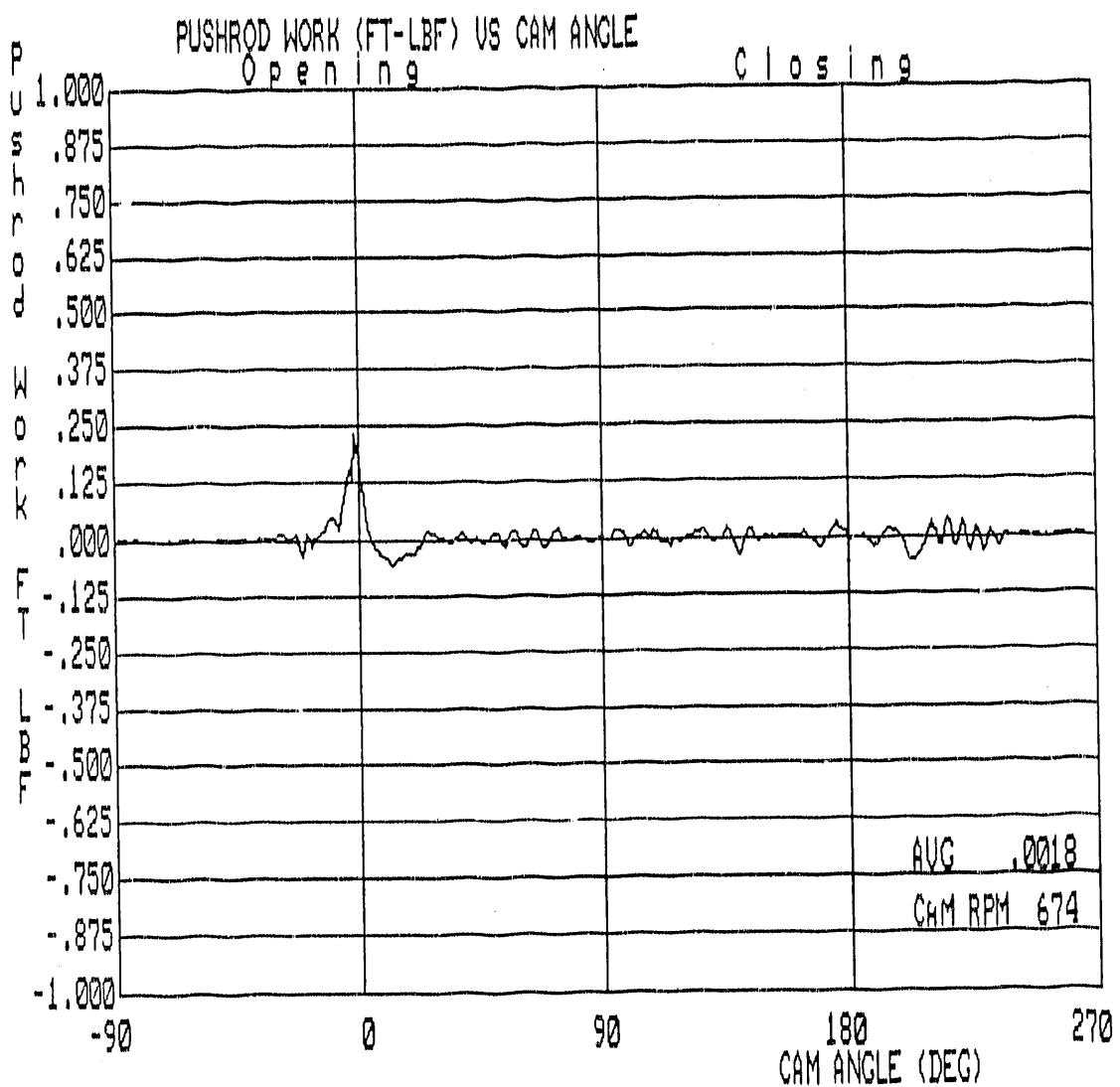

APPENDIX 3
TEST 9102102 DATA PLOTS
MAXIMUM TORQUE CONDITIONS

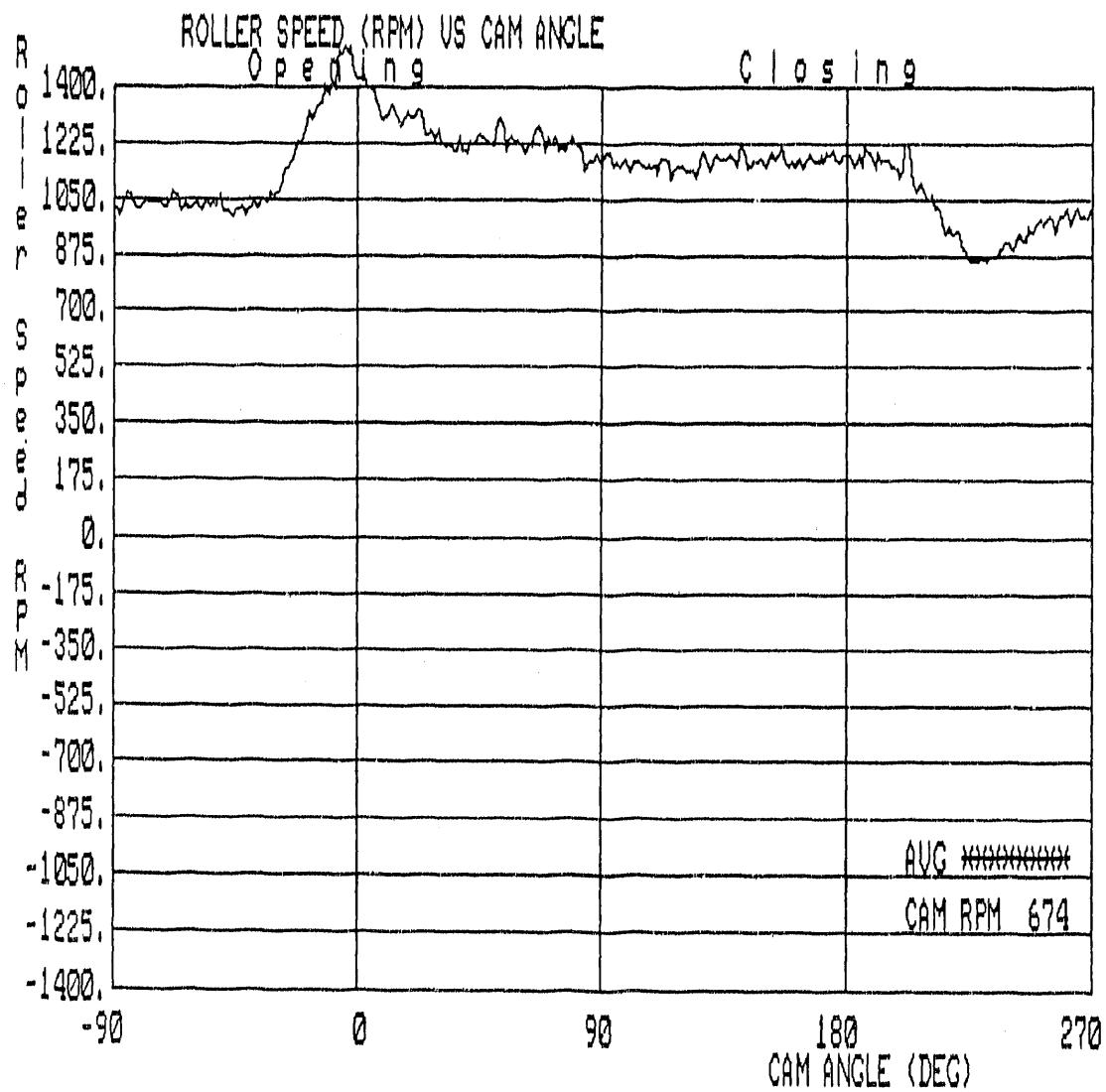


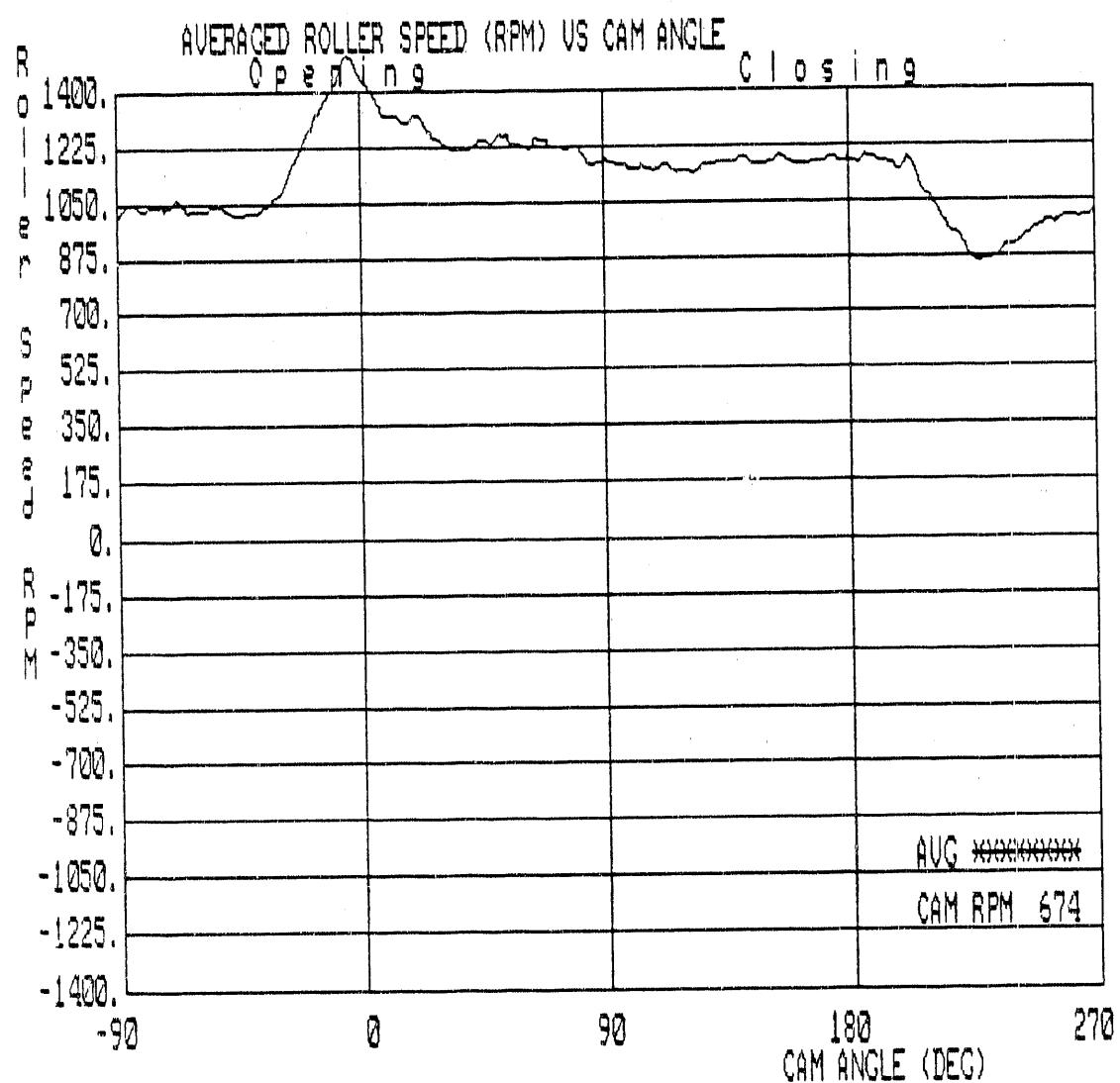


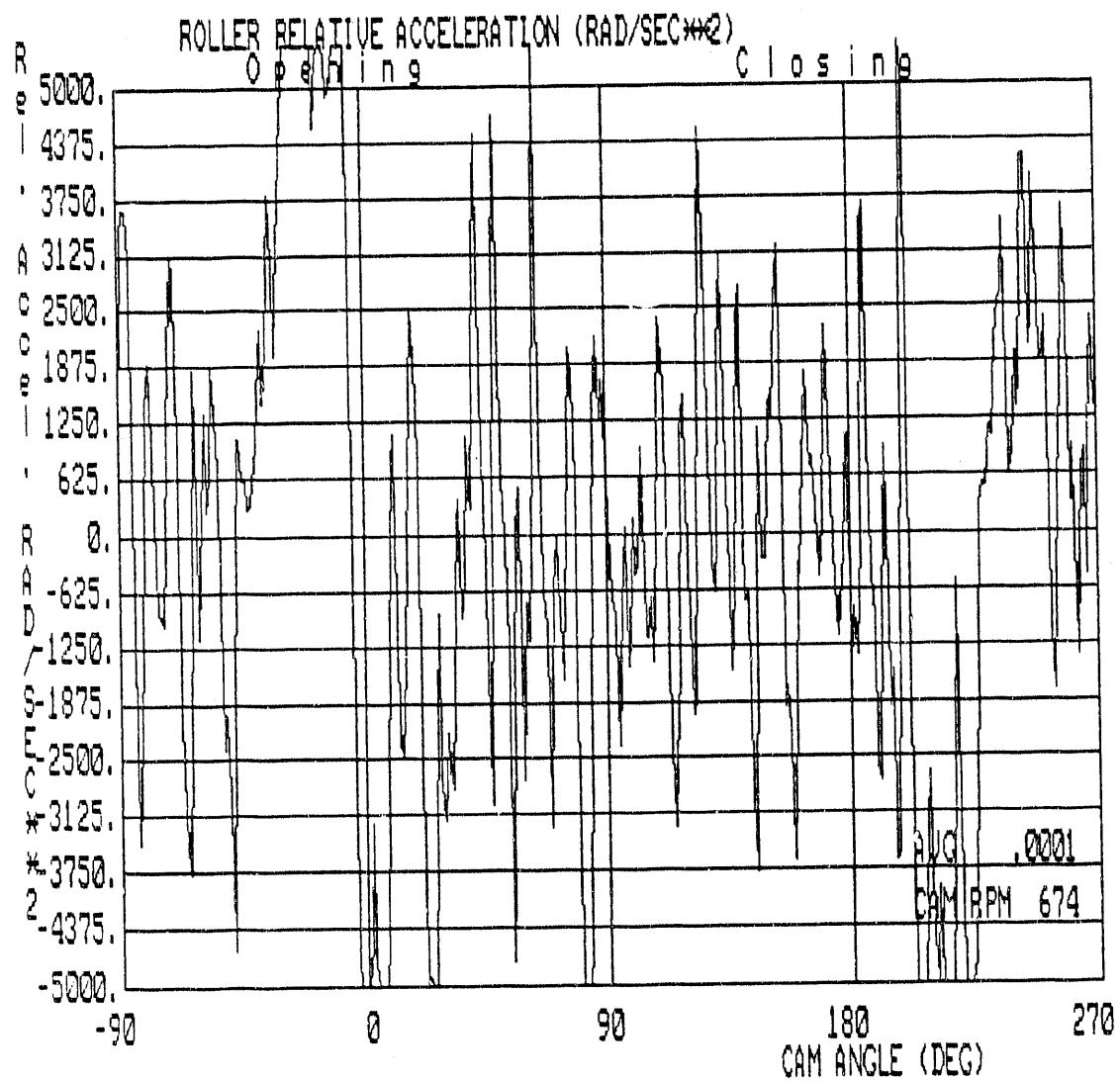


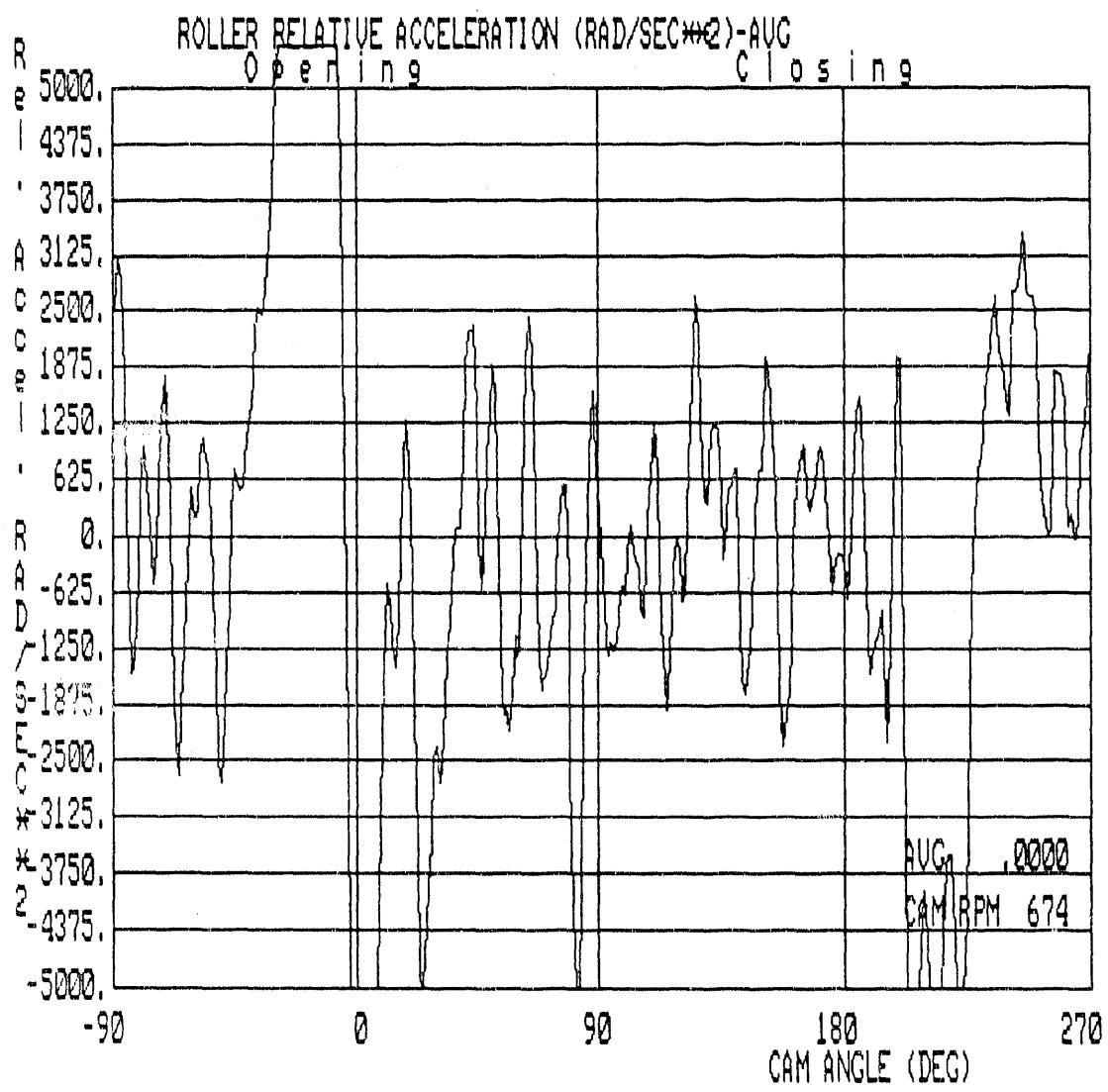


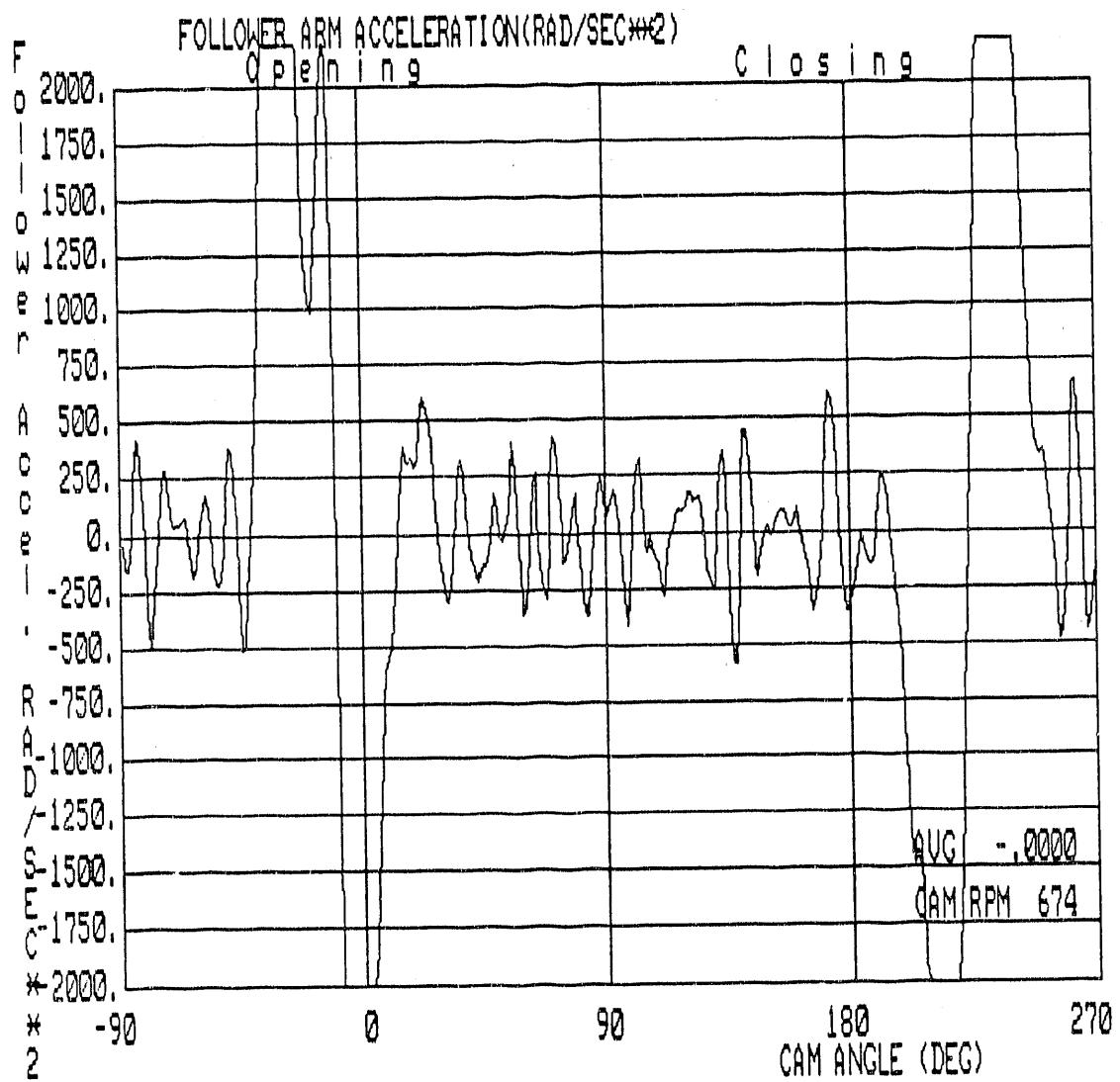


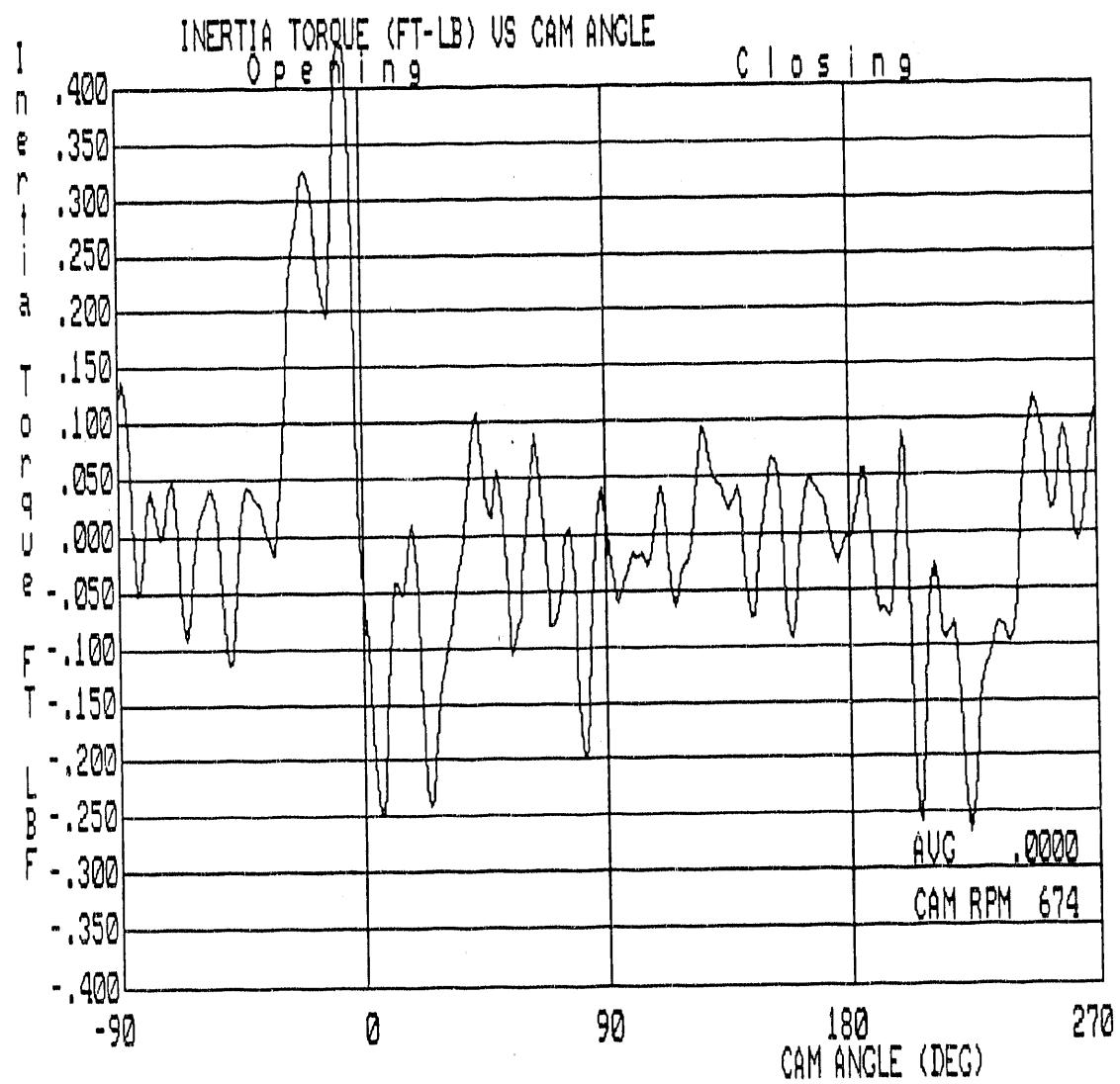


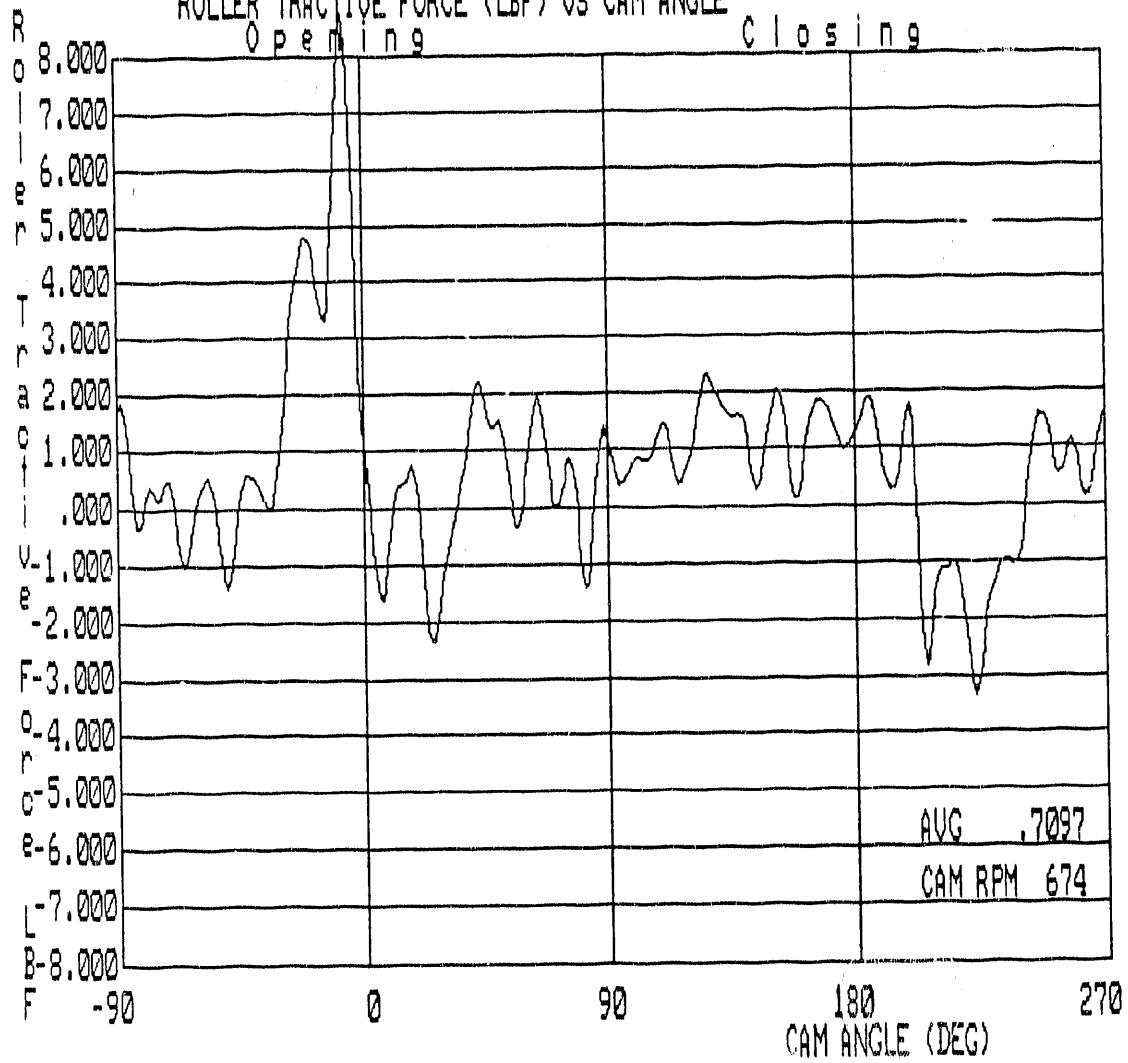


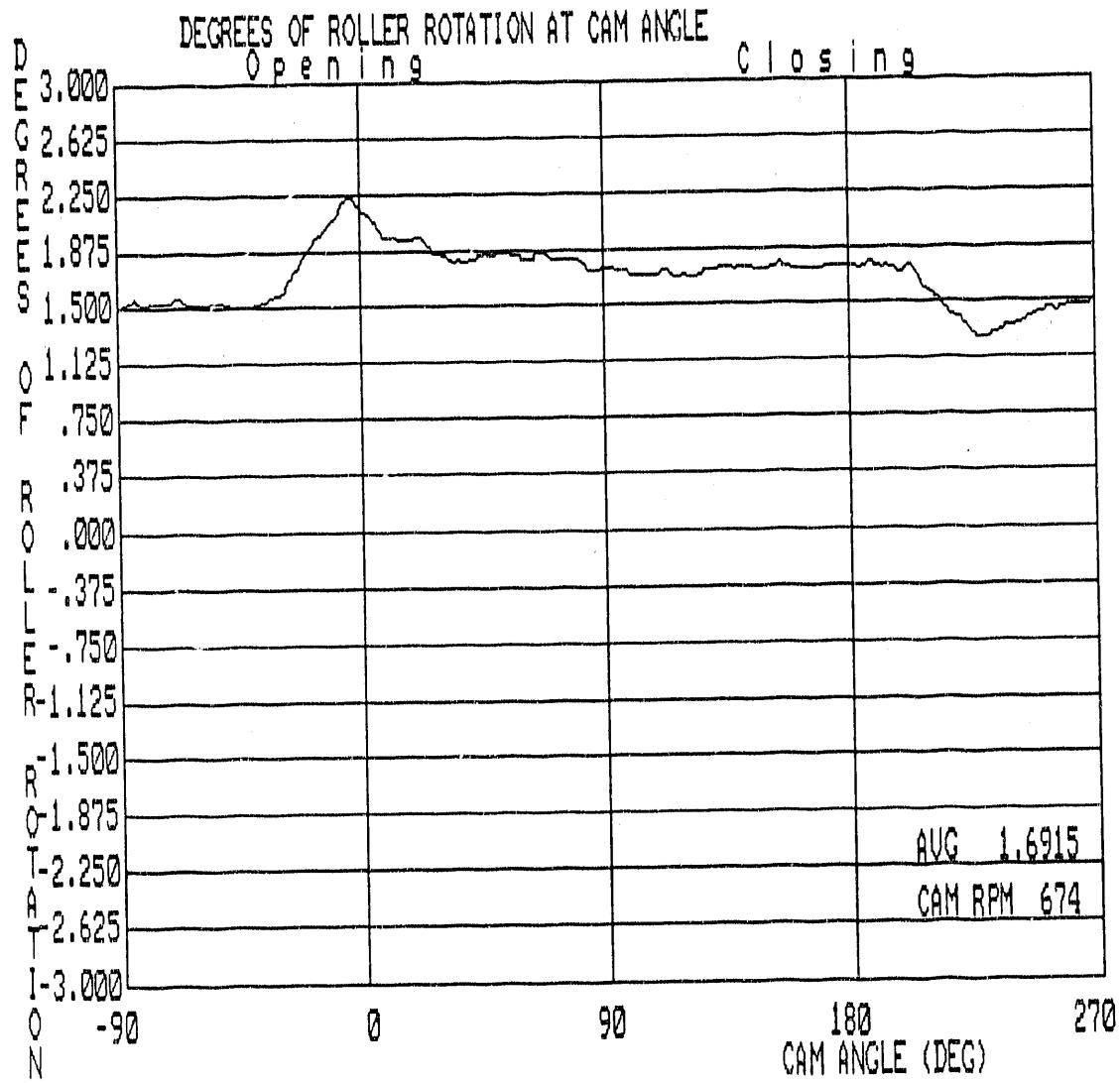












ROLLER TRACTIVE FORCE (LBF) VS CAM ANGLE

END

**DATE
FILMED**

5 / 13 / 92

