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Typical profiles measured in H-mode (“high confinement”} discharges from
tokamaks such as JET [Proceedings of the 15th European Conference on Conirolied Fusion
and Plasma Heating (European Physical Scciety, Budapest, 1988}, Vol. 12B, Part 1, p.
2239]) and DHI-D [Phys. Fluids 31, 3738 (1988)] suggest that the ion temperature
gradient instability threshald parameter n; {=dInT/dinn;) could be negative in many
cases. Previous linear iheoretical calculations [Phys. Fluids B 1, 1185 (1989)] have
established the onset conditions for these negative T -modes and the fact that their growth
rate is much smaller than their rea! frequency over a wide range of negative 7 values. This
has motivated the present nonlinear weak turbulence analysis to assess the relevance of such
instabilities for confinement in H-mode plasmas. The nonlinear eigenmode equation indicates

that the 3-wava coupling to shorter wavelength modes is the dominant nonlinear saturation
mechanism. It is found that both the saturation level for these fluctuations and the magnitude
of the associated ion thermal diffusivity are considerably smaller than the strong turbulence

mixing length type estimates for the more conventional positive-n j-instabilities.
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1. Introduction

The possible role of ion temperature gradient instabilities in
influencing the enhanced confinement properties in H-mode plasmas!-3 has
been an active topic in tokamak transport studies.?-8 - Motivated by the
observations of profiles in JET1.2 and DIII-D3 H-mode discharges which
suggest that the parameter n; could be negative in many cases, recent
theoretical work has established the onset conditions and general linear
properties of these negative mj-modes.” The fact that the growth rate was
found to be much smaller than the real frequency over a wide range of
negative mnj values? has encouraged the present development of a weak
turbulence nonlinear theory to determine the confinement consequences of
these instabilities.

In this paper, a nonlinear eigenmode equation is derived in the weak
turbulence regime from the nonlinear gyrokinetic equation,® including both
three-wave decay type mode coupling and ion Compton scattering
(wave-wave-particle interaction) processes. Unlike recent weak turbulence
studies of positive n; modes near thresheld,'9 the present work deals with
the nonlocal nature of the radial eigenmode structure using a nonlinear
eigenmode equation in a multi-rational surface sheared slab geometry. The
dominant nonlinear term in the equation which leads to the saturation of the
fluctuations (s found to be the coherent mode coupling to weakly stable
shorter poloidal wavelength modes. Qur results indicate that both the
saturation level for these fluctuations and the magnitude of the associated

ion thermal diffusivity are considerably smaller than the strong turbulence



mixing length type estimates for the more conventional positive-
T i-instabilities.

The organization of the paper is as follows. in Sec. Il the
appropriate linear theory governing the threshold conditions and eigenmcde
structure for 1 instabilities is presented. Beginning with the formatl
analysis of Ref. 7, we proceed here to derive the detailed properties of
negative-ni-modes near threshold. The weak turbulence nonlinear theory
determining the nonlinear evolution of these instabilities is developed in
Sec. I11. Saturation ilevels for the fluctuations and the associated ion
thermal transport are calculated in Sec. IV. Here it is demonstrated that
the present results indicate significantly lower levels of transport than the
usual strong-turbulence mixing length type estimates. The implications of

these conclusions for H-mode plasma confinement are discussed in Sec. V.

I1. Linear Theory

In this section, we present the linear analysis of ion temperature
gradient drift modes with attention focused on these properties which help
justify the application of weak turbulence theory. Included are the
derivations of the threshold condition for negative-7 {-modes, the real
frequency and growth rate of these instabilities near threshold, and their
characteristic radial mode structure. The theoretical model studied here
consists of the Boltzmann electron response and collisionless gyrokinetic ion
response in a sheared slab geometry where the magnetic fieid is given by B

= Bolzsyx/Lg). For the negative m; cases of interest, previous work? has



demonstrated that the fluid approximation, w >> kjv¢i can be effectively
utilized to calculate the ion density response. Imposing the quasi-neutrality
condition, we can write the following eigenmode equation,!!

{2zl « 1 - (1-0uj/0)Tg + (Wej/@IN{b(T1-Tg) } 9

s (vikp/@)2 [(wej/0)Ni{Tgeb(Ty-Tgll-(1-w=i/@)Tpl ¢ = 0, m
where wei = (cTiky/eBp)dinnp/dx, nj = dinTi/dinng. vi2= Ti/Mj, = = Te/Ty,
kx2=-32/3x2, b = pi2( ky2 ¢ ky2) = by » by, 'y = e~PIy(b), ¥ is the perturbed
electrostatic potentiai, and I, is a modified Bessel function.

In carrying out the analysis., we consider long to moderate
perpendicular wavelength modes with b<1. This is motivated by reasons of
simplicity as well as the fact that toroidal curvature modifications to the
sheared slab results are relatively minor in this range.!'2 After expanding Tg
and I'y to first order in by and then in by for each term, we obtain the
following second order differential equation,

{(1s(1emil/z) - (3+(1+20;)/07)3by/2} 829/3X2

« 1 1/7Q - 1 - 2by (1«(1emiyQ) } ¢

+ {(0s(1em)/Qz) - (1e(1e2n/Q7) byHLn/Ls)2(X/Q)2 9 = O, (2)
where @ = Wmg/®, Wwg = -TWej, Ln~1= - dinng/dx, and X has been
normalized to ps = z1/2pj, i.e.. X = x/ps.

Note here that we retain the finite Larmor radius corrections to the
ion acoustic term and to the polarization drift (terms wsuaily ignored in
previous studies!3). Although they are small in magnitude, these terms
nevertheless strongly affect the wavelength-dependence of the threshold
condition. This wavelength-dependence of threshold (s crucial for nonlinear

considerations because it will indicate the range of the spectrum most



easily excited.
since Eq.(2) is the familiar Weber equation, the following dispersion
relation ivs easily obtained for the Ilowest radial harmonic.
Qi(1+bg)Q-Tsby(1+m i)}t = illp/Llgd{QelTen)/z-byl(R+(1+2n)/2)}172
((1+(1+n{)/Qz)-(1+(1+20{}/Q)3by/2}H1 /20172, (3)
where bg = zbg. This dispersion relation is more complicated than the
commonly adopted form!3 because of the aforementioned by corrections to
the right side of Eq.(3). Since Q should be real at marginal stability, both
sides of EQq.(3) vanish. Hence, from the left side of this equation, we abtain
Qr = (1-by(1+n )}/ (Tbg). (4)
The other root at Q = 0 violates the fiuid approximation and does not lead to
the correct threshold value. From the right side of Eq.(3) together with
£q.(4), we obtain the threshold values,
el = - (1ez)(1eby), (sa).
and Nc2 = - (1+2)(1+3by/2). (Sb)
More accurate anatysis including higher order terms is needed to obtain a
unique threshold value. Since both formulas have the same trend (increasing
in magnitude as by is increased) and do not differ significantly in magnitude,
we will not pursue this refinement.
We next proceed to derive the growth rate near threshold by treating
the right side of Eq.(3) perturbatively; i.e.,
Im(Q)=lz(1+b g} 1-byl1+nMig/La)"?
(I-Sbg/2)(ni-nc1)”2(1‘“-1'1(;2)”2- (6)
Note that the last two factors of Eq.(6) indicate instabitity for

[n.|>[ne2l and marginally stable (neutral) modes for mc1>M>ncp. In



this sense, M¢2 is the more relevant threshold. Comparing with Eq.(4), one
clearly sees that the first factor in Eq.(6) ensures that the trend ](or|>> )
is satisfied even away from marginal stability for finite bg. This trend is
consistent with numerical results from previous work.? It should be
remembered that a more stringent condition .or the applicability of the
weak turbulence expansion is |[Sw|> ¥. where 8@ = w - wmg. This is due to
the fact that when &w = 0. one can find a poloidally rotating frame with
vg = psCs/Lp, where the mode can be considered as a purely growing
instability. To address this issue we return to Eg.(4) to obtain sw = -
bg(l1+z+nj)wee/(1+bg)T. Using Eq.(6). we find

13/78@| = [La/Lgl(1-5by72) [bgll1-by(1em "]

ni-neni-ne2i’/2/1nezemyh (72)

Therefore, [§w|> ¥ is satis{ied near the threshold. To demonstrate that this
is also true away from threshold, consider |ni-ncz|> 1. The expression in
the last bracket { | of Eq. (7a) can then be approximated by unity, thereby
leading to the result,

[T48w[ = |Lp/Lgl(1-Sby/2) [bgl1-by(1en)H-T. (7b)
This indicates that (8w|> ¥ is always satisfied for bg > [Ln/Lgl. For the
nearly flat density profile cases where |Lhl—+ Lg, the condition becomes less
stringent since the hg"\i term in the denominator of Eq. (7b) is significant.
Therefore, we expect the weak turbulence expansion scheme to be valid for a
wide range of negative nj values. The values for ¥ and Sw as well as their
ratio from Eq.(7a) are plotted in Fig.1.

The radial mode structure can also be easily obtained from Eq.(2):



P o exp(-X2/2A2)
where A = |LgQ/Ln|1/2 is the radial mode width. Here we ignore higher
radial eigenmodes for simplicity. Although these modes can have larger
growth rates in specific parameter regimes away fram the threshoid,!'4.1S
they are also generally more susceptible to stabilizing kinetic

modifications.16

11[. Weak Turbulence Nonlinear Theory

The procedure for calculating the nonlinear saturation of fluctuations
associated with negative 7 instabilities is developed here using the weak
turbulence expansion scheme.}7 Although the more conventional approach has
been to employ the wave kinetic equation to obtain the saturation tevel of
these instabilities, 17.18 we find it more efficient to solve the nonlinear
eigenmode equation, which allows us to retain the nonlocal radial structure
of the fluctuations, The dominant nonlinear saturation mechanism has been
found to be the coherent mode coupling to weakly stable shorter wavelength
modes. This is because the ion Compton scattering is negligible for the
moderately long (|Ln/lLgl < bs << 1) wavelength modes which are most easily
excited. As will be shown later, the frequency matching condition, " = @ +
w' is approximately satisfied.

Since the formal expansion scheme is standard, we briefly present the
equation at each order starting from the nonlinear ion gyrokinetic equation.
The electron nonlinearity is taken to be small since the characteristic phase

velocity of these fluctuations is slow relative to the electron thermal



velocity. The nonlinear gurokinetic equation is

(34+vyb-V)g + ilwzrwngile(u2-3)ni/20PJpFy = VPJgxb-Vg,  (8)
where g is the nonadiabatic part of the perturbed distribution function; i.e.,
g = f1+ FmeP/Ti, Fm= ng(Mis21T;)3/2exp(-u2/2), u2 = Mjv2/T. b = B/|BI.
and Jg(k pj) is a Bessel function.

we begin our analysis of Eq.(8) by noting that the right side
represents the ExB convective nonlinearity. This term is assumed to bde
smaller than the linear terms in weak turbulence theory. To the dominant
order, the test mode at k obeys the linear relation.

Lo Tg(1) = -ilwzrwugll«(u2-3)0i/2HPxJgF m. (9)
where Ly = i(w-kyv;+i0*)-1 is the linear test particle propagator. To the
qext order, the mode at shorter wavelength k° is driven by the nonlinear
interaction of the test mode at k and the background modes at k'; i.e.,

L=~ Tgi(2) - 99y dgxb-Vgy (1) - VPg-Jg'xb-Vgf1? = 0, (10
where k™ = k +k’. The “induced potential” (pk-(Z) is obtained by imposing the
quasineutrality condition at the second order.

£ k)Pk=(2) = -i(kxk'D)PpP {(Wne/wy) - (Wrg /@)

Jd3uldgdg Jg l1+(u2-3)n /2 /(0 -k "v +i0*)Fm,  (11)
where Jg'=Jplxy'pi). Jg"=Jglk 1 "pi). and (M k)=1+ ky™2ps? - (Wug™/wi?)
x{l-bg’{hm)} is the local expression for the linear dielectric function. To
the third order, the back reaction of the driven modes on the test mode
gives the nontinear correction to the distribution function at k; i.e.,

b Tak(3)=- T (0 xk - {Pp (g ()il [0z v wei) «(u2-3) 7 i/ 2HPy~) I g

- P(20g (1 ygeh (12)

Hereafter, the first term on the right side af Eq.(17) will be referred to as



the “bare” contribution, because this distribution function response is
directly driven through the nonlinear interaction of ¢ with @y as
described in Eq.(10). The remaining two terms will be referred to as the
“shielding” contribution since these are due to the ¢y -{2) fluctuation
self-consistently induced by gy-{2). Pnysically, the ~bare” contribution
represents the ion Compton scattering: i.e.. the transit interaction of the
ion with the beat wave at the phase velocity, (wew’)/(k,+k;"). The
“shielded” contribution includes both the coherent 3-mode coupling and the
"induced scattering” effects. The coherent mode coupling is associated with
the distribution function response which is proportional to ¢y. Other
*incoherent® mode coupling terms. (which are not proportional to ¢y} are
ignored. This is justified here because such terms would require finite
amplitudes for both @' and @Py-. Given the fact that the threshold for
negative T modes is higher for the higher k modes, this contribution is
negligible since the amplitude of Py~ is very small. The "induced scattering”
is similar to the ion Compton scattering in the sense that both processes
are nonlinear wave-particle interactions. The difference is that the induced
scattering involves the interaction with a nonlinearly produced ‘virtual
mode’ instead of an eigenmode. The Feynman diagrams for the aforementioned
nontinear processes as well as for the linear wave-particle interaction
(Landau damping) are plotted in Fig.2. Finally, by requiring quasineutrality up
to third order, we abtain the formal nonlinear eigermode equation.
ez NPy - [a3v(-iLk 1N gllwTewuall1+(u2-3)0/2HF [Pk

= Ja3vdgak(3). (13)

Here, the first two terms on the left side are from the adiabatic responses



of electrons and ions. respectively. The third term is the nonadiabatic ien
linear response, and the right side represents the nonlinear response.

Up to this point in this section, we have not adopted any linear
frequency orderings with respect to the ion transit frequency. This has
allowed us to retain the general characteristics of the various nonlinear
processes in the analysis. Having identified the relevant ronlinear processes
in £q.(12) and Fig.2. we can now prcceed to simplify the analysis based on
our knowledge of the linear mode structure and eigenfrequency. As shown in
Ref.7, the real frequency of the mode is typically much greater than the ion
transit frequency for most of the relevant regime where the fluctuation
amplitude is finite: i.e., the mode is well-localized within the ion Landau
resonance point (xj = Lg | @ |/kyvti). After adopting the frequency ordering of
@ >> kyvij. Eq.(13) simplifies to

HG+(1sm)/Q2)-(1+(1+20)/Q2)3by/208x 240 (X)1Pg

2 -Tp (") N kxk'b)2{(wne/wi)-(@rg /oy K Jg2Jg ' 2{1+(u2-3)n /21
(1@ k) MH(wee /0y ) -(Wug /Wy }{Jgdg dg {1 +(u2-3)1/2})2
-{JpJo o 1eu2-3In 721 2/{1-(1-Tob* N1 en ) | O |20k . (14)

where Q(X) ={1/Q-1-zby(1+(TeniQ} » {(1+(1+mj)/Qz)-(1(1+27{)/QZ)by}
(Ln/Lg)2(X/Q)2, and {--> is the average over the velocity space. In Eq.(14),
we have rearranged the last two terms on the right side in order to
facilitate the froilowing discussions about the dominant nonlinear saturation
mechanism. The first and second terms represent, respectively, the
approximated ion Compton scattering and coherent 3-mode coup.ing effects.
The last term on the right side is the induced scattering which comes from

the low frequency virtual mode contribution to &{1). we note that for the

10



parameter regime considered, the 3-mode coupling term is dominant due to
the following reasons:
(i) Although there exists a finite dispersion (en/akg z D), this is due to a
small finite Larmor radius correction (e b). Hence, since.the frequency
riismateh is small, e(1)(w* k") is appros.. .nately resonant and the 3-mode
coupling term would be large. .
(ii) There are large cancellations between the ion Compton scattering and
the induced scattering terms in the moderately long wavelength regime of
interest in the present work., The magnitude of the remaining term would be
of order b2 which is smaller than the 3-mode coupling term by order b. The
details of this calculation are presented in the Appendix.

By keeping only the dominant 3-mode coupling contribution to the
nonlinear eigenmode equation, we obtain
fiir«(1+em;l/az)-0 +(1'2T[i)lQ'c)3b9/2|'3x2 + QuIX) » QnLIXNPg =0, (15)
where Q) (X) is defined following Eq.(14) and
ONLIX) = Thlowe ) N kxk b)2{(wug/wy)-(wug 7wy )}
<el1Nw" k") H{weg /0y )-(Wng 7 wy=)Jgdg o 11+ (u2-3)0 72152 | P4 | 2.

we note that the imaginary part of the nonlinear potential acts
effectively as a nonlinear damping on the test mode via energy transfer to
shorter wav>elength modes. In a sheared slab geometry with multi-rational
surfaces, the Qyn (X) can be approximated by Qp(0), since significant energy
transfer to ions can occur through background modes k' at X=0 due to the
finiteness of X'. By solving Eq.(15) for Q and treating ImQy(0) as a given
quantity, we obtain

Ty = I - ImuelimQNL(G). (16)

11



This describes a competition between the linear growth and the nonlinear
transfer which acts as an effective damping on the test mode. Nonlinear

saturation of instability occurs when these two processes balance.

1V. Saturated Fluctuations and Associated Thermal Transport

In this section., we derive the saturation levels of variocus
fluctuations and the associated ion thermal diffusivity. The analysis that
follows demonstrates that these quantities vanish at the threshold. As noted
before, *~ na;ive extrapolation of the mixing length formula to the regime
near threshold does not show this apparent behavior.8

In EqQ.(18), the right side depends on the spectral summation of
various modes. One way of evaluating such a discrete sum is to approximate
it with an integral. However, such a procedure!? still produces a
complicated integral equation which cannot be solved without making many
further crude approximations. A simpler method which is equally reliable, is
to estimate the spectral sum in terms of the basic characteristic scalings
and various spectrum-averaged rms (root-mean-squared) values. This
approximation is weli-justified here because only the moderately long wave
length modes are linearly excited. Recall from Sec.ll that the shorter
wavelength modes are damped due to their higher thresholds. Also, the
extremely long wavelength modes are subdominant when properly considereq
in the context of the fluid description with strong ion-ion collisions.!9

Therefore, the range of the spectrum which is strongly excited is rather

12



narrow.
Noting the fact that the 3-wave decay type resonance condition is
approximately satisfied due to finite dispersion., we make the following
approximation in ImQy (0):i.e.,
Imlel e x")-1] = |3el1)/307 ] -16w/{5w2 + (0 -w'-w)2). (17)
Then, by using Egs. {16) and (17) for ImQy_(0) and the radial mode-width,
A = |Lg@sLp|1/2, for k-1, we obtain

[09/Tilrms = (A/ILa(¥/5w)1/2 = J(n.bylpi/iLnl. (18)
and similarly, ‘

8T/ Tilrms = (A/L7)(7780)1/2 = J(ni.bypi/Ly. (19)
where

J = (1-50y/2)V/20by{1-by(1+qPN-1/2
mi-nemi-ne2) | 727 1ezeni [1142, for n; < nca.
Finally, tnhe ion thermal diffusivity can be obtained from the
quasilinear conduction contribution to the ion thermal flux, Qi i.e.,
Qj = Im Fyleky'98Ti/Bgl (20a)
and
Xi = -OiLT/Ti = [¥/w2)c2ky? |9 [2/Bg2lms = [5242/5w]
= i(ny.by) |cTizeBg | pi/Ls. (20b)
where 1 & 1-1 (1-5by/2)2((1+bg){1-by(1+n)H-!
Hi-nenti-ne2) | 7| 1ezeni]h for mi < nez. (20c)
1t is wmportant to point out that the saturation levels for the fluctuations
and their associated thermal diffusivities derived here are considerabiy
smaller than strong turbulence estimates for these quantities. Note that

they vanish at the threshold mnc2. and near marginal stability, X; o

13



[ni-ne2|. while e9/Ti, 8Ti/Tj «|nj-Ne2)1/4. Therefore, the onset of ion-
temperature-gradient-driven turbulence associated with negative mni-modes
is predicted to be more abrupt near the threshold than the positive 1 mode
cases.!0 On the other hand, away from the threshoid (asILnI is increased),
the turbulence level and thermal diffusivity remain small. This fact is
summarized in Fig.3 where Xi, §T{/T and e§/T; are plotted as functions of
]Lnl with other parameters fixed. Here, we should not expect to observe a
dramatic confinement degradation in experiments where the density profile
becomes flatter (provided their instability threshold has already been

exceeded).
V. Discussion

In this paper, a weak turbulence theory of m; modes is presented
which is applicable to the inverted density profile cases characteristics of
numerous H-mode discharges in JET'.2 and DIii-D.5 Our resuits indicate that
both the saturation level for the negative-nj-mode fluctuations and the
magnitude of the asscciated ion thermal diffusivity are considerably smaller
than the familiar strong turbulence mixing-tength type estimates for the
conventional positive-m-instabilities.

The dominant nonlinear saturation mechanism is the coherent mode
coupling to shorter wavelength modes. This is because the longer wavelength
modes are more easily excited due to their lower instability thresholds, and
the combined effects of the ion Compton scattering and the induced

scattering are negligible in the long wavelength regime. This has made our

14



radially nonlocal analysis possible in the context of the usual differential
approximation. However, in the case of positive-nj-modes considered in
Ref.10, the shorter wavelength instabilities are more easily excited due to
their lower thresholds, and the ion Compton scattering is the dominant
nonlinear process. In this short wavelength regime. the radially nonlocal
analysis is extremely difficult to implement since the differential
approximation breaks down,

As a final note. we discuss the possibility of applying the weak
turbulence type theory develcped here to the case of flat density profile
plasmas, which are also observed in the H-mode discharges of various
tokamaks. In this case., the stability threshold is approximately given by
Ls/LTi{ = 3.B for the slab m; mode,7 and by R/LTj; = 3.0 for the
interchange-like toroidal m; mode.6.8 Although such thresholds appear to be
exceeded for. typical H-mode profiles, they could be significantly affected by
more comglicated realistic effects not considered in these theoretical
studies. If such modifications (e.g., impurities, finite beta, etc.) led to the
conclusion that the longer wavelength modes are more easily excited, we
would expect that the 3-wave-decay type nonlinear process would be the
dominant nonlinear saturation mechanism, as indicated by the results of the
present work. This would accordingly suggest that many features in the
present paper could be applied to the weak turbulence theory of the flat

density ion temperature gradient modes.
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Appendix: Cancellation between ion Compton scattering

and induced scattering terms

Here, we evaluate the various nonlinear coupling integrals in the long
wavelength limit to demonstrate the near-cancellation between the ion
Compton scattering and the induced scattering terms. From Eq.(14), the ion
Compton scattering term is governed by the integral,

le =<J02Jg 2{1+(u2-3)m /21>

= fo™duud2(b1/2u)0p2(b’ 1 /Zu){1+(u2-2)7 i/ 2}exp(-u2/2), (A1)
where the trivial v, integration has already been performed. Expanding the
Bessel functions in the small argument limit and defining x = u2/2, we
obtain

lg =fo®dxe~*(1-bx)(1-b'x}(1-nj+nix) + O(b2)

=1 - (1+mj)bed) + O(b2), (A2)
where b'~b has been assumed. The induced scattering contribution in Eq.(14)
is governed by the infegral.
li = <JpJdo'Jpi1+(u2-3)q/2D
=fo® duudg(b?/2u)Jg(b 1/ 2u)Jg(b*1/2u){1+(u2-2)n/2}exp(-u2/2). (A3)
Again, expanding the Bessel functions, we obtain
Ij =fo®dxe~X(1-bx/2)(1-b"%/2)(1-b"x/2)(1 -1 {+7 {x) +O(b2)
= 1 - (TemMbeb'eb™)/2 + 0O(b2), (A4)
where b'~b~b" has been assumed again. Finally, using the results from Egs.
(A2) and {A4) with Eq.(14), we show that the combined effect of the ion

Compton scattering processes and the induced scattering processes is

17



proportional to;
I - 1j2/{1-(1-Tg(b"))(1+n;)}
{1-01+m)(beb")} - {1-(1+mi)(beb*sb*)/2b2/{1-(1-T(b")}(1+n )}
+ 0(b2) = 0(b2). (AS)

Equation {AS) illustrates the fact that the combined effect of ion Compten
scattering and the induced scattering processes cancel up to order b. The
remainder is order b2, and smaller than the 3-wave coupling term (retained

in the nontinear analysis of Sec.iIl) by order b.
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Figures
FIG. 1. Plot of ¥, sw, and Ia’/ScoI as functions of nj

for bg = 0.16, Ly/Lg = 0.04, T = 1.
a. Plot of & from Eq. (6).

b. Plot of 5.

c. Plot of |3/8w| from Eq. (7a).

F1G. 2. Feynman diagrams for various physical processes. Wavy
tine and solid line represent the wave and particle.
respectively. Dotted line corresponds to a virtual mode.

FIG. 3. Plot of predicted ion thermal diffusivity and fluctuation
levels as functions of 7y for bg = 0.16, Ly/Ls = 0.04, T = 1.

a. Plot of Xi from theoretical expression, Eq. (20c).

b. Plot of §Ti/T; from theoretical expression, Eq. (19).

c. Plot of e@/T; from theoretical expression, Eq. (18).
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