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Mia -So l i ' s Abstract 
Typical profiles measured in H-mode ("high confinement") discharges from 

tokamaks such as JET [Proceedings of the 15th European Conference on Controlled Fusion 

and Plasma Heating (European Physical Society. Budapest, 1988). Vol. 12B. Part 1, p. 

2239] and Dlll-D [Phys. Fluids 3 1 . 3738 (1988)] suggest that the ion temperature 

gradient instability threshold parameter T\J (adlnTj/dlnnj) could be negative in many 

cases. Previous linear theoretical calculations [Phys. Fluids B 1 , 1185 (1989)] have 

established the onset conditions for these negative n t-modes and the fact that their growth 

rate is much smaller than their real frequency over a wide range of negative T\ \ values. This 

has motivated the present nonlinear weak turbulence analysis to assess the relevance of such 

instabilities for confinement in H-mode plasmas. The nonlinear eigenmode equation indicates 

that the 3-wavs coupling to shorter wavelength modes is the dominant nonlinear saturation 

mechanism. It is found that both the saturation level for these fluctuations and the magnitude 

of the associated ion thermal diffusivity are considerably smaller than the strong turbulence 

mixing length type estimates for the more conventional positive-T\ j-instabilities. 
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1. Introduction 

The possible role of ion temperature gradient instaDil i t ies in 

influencing the enhanced confinement properties in H-mode plasmas1 ~ 3 has 

been an active topic in tokamak transport s tud ies . 4 " 8 Motivated by the 

observations of profiles in JET 1 - 2 and DIII-D 3 H-mode discharges which 

suggest that the parameter n,t could be negative in many cases, recent 

theoretical work has established the onset conditions and general linear 

properties of these negative Hj-modes. 7 The fact that the growth rate was 

found to be much smaller than the real frequency over a wide range of 

negative i\[ values 7 has encouraged the present development of a weak 

turbulence nonlinear theory to determine the confinement consequences of 

these instabi l i t ies. 

In this paper, a nonlinear eigenmode equation is derived in the weak 

turbulence regime from the nonlinear gyrokinetic equation, 9 including both 

three-wave decay type mode coupling and ion Compton scattering 

(wave-wave-particle interaction) processes. Unlike recent weak turbulence 

studies of positive T\J modes near threshold, 1 0 the present work deals with 

the nonlocal nature of the radial eigenmode structure using a nonlinear 

eigenmode equation in a multi-rational surface sheared slab geometry. The 

dominant nonlinear term in the equation which leads to the saturation of the 

fluctuations is found to be the coherent mode coupling to weakly stable 

shorter poloidal wavelength modes. Our results indicate that both the 

saturation level for these fluctuations and the magnitude of the associated 

ion thermal diffusivity are considerably smaller than the strong turbulence 
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mixing length type estimates for the more conventional posi t ive­

ly i - ins tab i l i t ies . 

The organization of the paper is as fol lows. In Sec. I I . the 

appropriate linear theory governing the threshold conditions and eigenmode 

structure for T\J instabi l i t ies is presented. Beginning wi th the formal 

analysis of Ref. 7, we proceed here to derive the detailed properties of 

negative-Tij-modes near threshold. The weak turbulence nonlinear theory 

determining the nonlinear evolution of these instabil i t ies is developed in 

Sec. 111. Saturation levels for the fluctuations and the associated ion 

thermal transport are calculated in Sec. IV. Here it is demonstrated that 

the present results indicate significantly lower levels of transport than the 

usual strong-turbulence mixing length type estimates. The implications of 

these conclusions for H-mode plasma confinement are discussed in Sec. V. 

I I . Linear Theory 

In this section, we present the linear analysis of ion temperature 

gradient dr i f t modes with attention focused on those properties which help 

just i fy the application of weak turbulence theory. Included are the 

derivations of the threshold condition for negative-T[j-modes, the real 

frequency and growth rate of these instabilit ies near threshold, and their 

characteristic radial mode structure. The theoretical model studied here 

consists of the Boltzmann electron response and collisionless gyrokinetic ion 

response in a sheared slab geometry where the magnetic field is given by B 

= Bg(z*yx/L s ) . For the negative T[[ cases of interest, previous work 7 has 

3 



demonstrated that the fluid approximation. 6i » k N v t t can be effectively 

util ized to calculate the ion density response. Imposing the quasi-neutrality 

condition, we can wr i te the following eigenmode equation.11 

( r-i • i - (i-<o«,/<o)ro • (<i)»,/6))nib(ri-ro) \ 9 
- (vtik|,/Gj)2 [(6>.i/co)Tiitro»b(r1-ro)h(i-u»i/'(i>)ro] <? - o, ti) 
where co»i = (cTjky/eBn)dlnnn/dx. T\[ = dlnTi/dlnnn. v t i 2 = Tj /M,, r = T e / T j , 

k x 2=-d2/a x 2_ b = pj2( K X 2 • K y2) = b x • by. r n s e - b I n (b ) . <P is the perturbed 

electrostatic potential, and I n is a modified Bessel function. 

In carrying out the analysis, we consider long to moderate 

perpendicular wavelength modes with b<1. This is motivated by reasons of 

simplicity as wel l as the fact that toroidal curvature modifications to the 

sheared slab results are relatively minor in this range. 1 2 After expanding TQ 

and T] to f i rs t order in b x and then in b„ for each term, we obtain the 

following second order differential equation. 

{ (1»0*T\ i> /Q*) " {1* (1*2 i \ i ) /Or>3b y /2 } d 2 $ / d x 2 

• { 1/Q - 1 - r b y (1 *(1 * i \ i ) /Q) } tp 

• { (1* ( l *n i> /Q*) " n*( l*2TU>/Q*) b y K L n / L s ) 2 ( X / Q ) 2 p z 0. (2) 

Where O = u>»e/u>. 6>» e = -zu>»[, ln'^= •• dlnng/dx, and X has been 

normalized to p s = z^2p[, i.e.. X = x / p s . 

Note here that we retain the f inite Larmor radius corrections to the 

ion acoustic term and to the polarization dr i f t (terms usually ignored in 

previous s tud ies 1 3 ) . Although they are small in magnitude, these terms 

nevertheless strongly affect the wavelength-dependence of the threshold 

condition. This wavelength-dependence of threshold is crucial for nonlinear 

considerations because i t w i l l indicate the range of the spectrum most 
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easily excited. 

Since Eq.(2) is the familiar Weber equation, the following dispersion 

re la t ion is easily obtained for the lowest radial harmonic. 

£ H ( i * b s ) Q - i + b y ( i * n i M = i ( L n / L s H a » U • T u ) / t - b y ( Q * ( i *2T\[)/X)\U2 

{ ( i * ( i * n i ) / Q * ) - n * n * - 2 T u ) / Q > 3 t V 2 t l / 2 Q l / 2 - t 3 ) 

where b s = rby. This dispersion relation is more complicated than the 

commonly adopted f o r m 1 3 because of the aforementioned by corrections to 

the right side of Eq.[3). Since Q should be real at marginal stabil i ty, both 

sides of Eq.(3) vanish. Hence, from the left side of this equation, we obtain 

O r = (1 -by CI * n i)}/C 1 * b s ) . (4) 

The other root at Q = 0 violates the fluid approximation and does not lead to 

the correct threshold value. From the right side of Eq.(3) together wi th 

Eq.(4), we obtain the threshold values, 

t l c l = - n » * ) n * b u ) . C5a>. 

and i\c2 = " (1 *«)(1 *3by/2). (5b) 

More accurate analysis including higher order terms is needed to obtain a 

unique threshold value. Since both formulas have the same trend (increasing 

in magnitude as by is increased) and do not cHffer significantly in magnitude, 

we wi l l not pursue this refinement. 

We next proceed to derive the growth rate near threshold by treating 

the right side of Eq.(3) perturbatively; i.e., 

lm(Q)=[ r ( l *b s )H-b u (UTi i )H-s^ l -n ] " 1 

d - 5 b y / 2 ) ( T i i - n c i ) 1 / 2 < n , - n c 2 ) , / 2 - <6> 

Note that the last two factors of Eq.(6) indicate instabil ity for 

I 7\.\ l > l T l c 2 l a n d marginally stable (neutral) modes for n_cl > T l i > T l c 2 ' I n 
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this sense. t\C2 l s t n e m o r e relevant threshold. Comparing with Eq.(4). one 

clearly sees that the f irst factor in Eq.(6) ensures that the trend ] c o r | » % 

is satisfied even away from marginal stability for f ini te b s . This trend is 

consistent w i th numerical results from previous work. 7 It should be 

remembered that a more stringent condition .or the applicability of the 

weak turbulence expansion is |s<i>|> a*, where SQ - co - co»e. This is due to 

the fact that when So = 0. one can find a poloidally rotating frame with 

v e = p s C s / L n , where the mode can be considered as a purely growing 

instabi l i ty. To address this issue we return to Eq.(4) to obtain Sw = -

b s(1 * r * T i i ) o ) » e / n * b s ) r . Using Eq.(6). we find 

|?/Sa)| = [L n / L s | ( l - 5b y / 2 ) Ib s{1 -b y ( l •TLi)r)"1 

I K n i - T l c l H n i - T l c 2 5 l 1 / 2 / M * ^ * n i l K (7a) 

Therefore, |8c>| > Z is satisfied near the threshold. To demonstrate that this 

is also true away from threshold, consider | T i ; - T i C 2 l > 1- The expression in 

the last bracket { } of Eq. (7a) can then be approximated by unity, thereby 

leading to the result, 

|2T/8u|= | L n / L $ | ( 1 -Sb y / 2 ) (b s{1 - b y ( l *T\ , ) } ] - ' . (7b) 

This indicates that |S<i)| > V is always satisfied for b s > | L n / L s | . For the 

nearly flat density profile cases where | l n | -» L S , the condition becomes less 

stringent since the byt\[ term in the denominator or Eq. (7b) is significant. 

Therefore, we expect the weak turbulence expansion scheme to be valid for a 

wide range of negative T\J values. The values for IS and So as well as their 

ratio from Eq.(7a) are plotted in Fig. 1. 

The radial mode structure can also be easily obtained from Eq.(2); 

i.e.. 
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(P oc e x p ( - X 2 / 2 A 2 ) 

where A = | L S Q / L n | ' / 2 is the radial mode width. Here we ignore higher 

radial eigenmodes for simplicity. Although these modes can have larger 

growth rates in specific parameter regimes away from the t h r e s h o l d . 1 4 ' 1 5 

they are also generally more susceptible to s tab i l iz ing kinet ic 

modi f icat ions. 1 6 

111. Weak Turbulence Nonlinear Theory 

The procedure for calculating the nonlinear saturation of fluctuations 

associated with negative J\[ instabilities is developed here using the weak 

turbulence expansion scheme. 1 7 Although the more conventional approach has 

been to employ the wave kinetic equation to obtain the saturation level of 

these i n s t a b i l i t i e s , 1 7 ' 1 B we find i t more efficient to solve the nonlinear 

eigenmode equation, which allows us to retain the nonlocal radial structure 

of the fluctuations, The dominant nonlinear saturation mechanism has been 

found to be the coherent mode coupling to weakly stable shorter wavelength 

modes. This is because the ion Compton scattering is negligible for the 

moderately long ( |L n /L s | < b s « 1) wavelength modes which are most easily 

excited. As w i l l be shown later, the frequency matching condition. a>" = co • 

0)' is approximately satisfied. 

Since the formal expansion scheme is standard, we briefly present the 

equation at each order starting from the nonlinear ion gyrokinetic equation.9 

The electron nonlinearity is taken to be small since the characteristic phase 

velocity of these fluctuations is slow relative to the electron thermal 
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velocity. The nonlinear gyrokinetic equation is 

(d t + Vnb-V)g • i[t i>r*Ci>. e i l .(u2-3)T\i/2}]!pJciFm = V ( p J n * b - V g . (6) 

where g is the nonadiabatic part of the perturbed distribution function: i.e.. 

g = f ] . F m e $ / T j , F m = n 0(M i /2TTTj) 3 ' '2exp(-u2/2), u2 = M ^ / T j . b = B/|B|. 

and J n t k i P i ' is a Bessel function. 

We begin our analysis of Eq.(8) by noting that the right side 

represents the ExB convective nonlinearity. This term is assumed to be 

smaller than the linear terms in weak turbulence theory. To the dominant 

order, the test mode at k obeys the linear relation. 

L k - l g k O ) = - i [ « r * « » e ( l * ( u 2 - 3 ) n i / 2 H t P k J o F m , (9) 

where L k = Ua-kjjVu » i 0 * ) " 1 is the linear test particle propagator. To the 

next order, the mode at shorter wavelength k" is driven by the nonlinear 

interaction of the test mode at k and the background modes at k' ; i.e.. 

l-k""1 9 k " t 2 ) " V ( p k J n * i > - V g k ' m - V ^ - J o ' x b - V g j , * 1 ) = 0. (10) 

wherek" = k + k'. The "induced potential" "Pit-'2' is obtained by imposing the 

quasineutrality condition at the second order. 

it]Ha',k")<?\i'l2) - -Kkxk'-bJfp^h-fCciJ-e/uij) - {<i>»evcok-)J 

; d 3 u [ J 0 J 0 ' J 0 " { l « ( u 2 - 3 ) T i t / 2 } / ( 6 J - - k | I - V | | * i O * ) ] F m , (11) 

where Jo'=JntKi*Pi). Jo"= J 0^ j . "P i ' - a n d e'1'(£•>".k")=l* k y "2p s 2 _ ( a > » e v » k ' ) 

*0 -by* {1 *Ti[)J is the local expression Tor the linear dielectric function. To 

the third order, the back reaction of the driven modes on the test mode 

gives the nonlinear correction to the distribution function at k ; i.e., 

L k " 1 g k ( 3 ) = - E k ' ( k ' x k " - b ^ < P k , ( 9 k ' C 2 ) - i L k - t w z t U * e i , ^ L j 2 - 3 ) n i / 2 n ! p k - 5 J 0 ' 

- <JV C 2 ) gk ' " ( 1 ) -Ju"J- H2) 

Hereafter, the f irst term on the right side of Eq.(l l) w i l l be referred to as 

8 



the "bare" contribution, because this distr ibution function response is 

• direct ly driven through the nonlinear interaction of <p|, wi th <p^- as 

described in Eq.(IO). The remaining two terms w i l l be referred to as the 

"shielding" contribution since these are due to the <pk-(2) fluctuation 

seif-conslstently induced by gR" ' 2 ^ Physically, the "bare" contribution 

represents the ion Compton scattering; i.e.. the transit interaction of the 

ion wi th the beat wave at the phase velocity. Ceo*oi*)/'CKn *k „ ' ) . The 

"shielded" contribution includes both the coherent 3-mode coupling and the 

"induced scattering" effects. The coherent mode coupling is associated with 

the distr ibut ion function response which is proportional to *p k. other 

"incoherent" mode coupling terms (which are not proportional to <P|,) are 

* ignored. This is just i f ied here because such terms would require f in i te 

amplitudes for both 9w' a n c< ^k"- Given the fact that the threshold for 

negative T\{ modes is higher for the higher k modes, this contribution is 

negligible since the amplitude of pjj- is very small. The "induced scattering" 

is similar to the ion Compton scattering in the sense that both processes 

are nonlinear wave-particle interactions. The difference is that the induced 

scattering involves the interaction with a nonlinearly produced 'virtual 

mode' instead of an eigenmode. The Feynman diagrams for the aforementioned 

nonlinear processes as well as for the linear wave-particle interaction 

(Landau damping) are plotted in Fig.2. Finally, by requiring quasineutrality up 

to third order, we obtain the formal nonlinear eiger,rr»ode equation. 

( l T - 1 ) 0 k - / d 3 v ( - i L k - ' ) J o 2 [ c o T * 6 ) « e { 1 . ( u 2 - 3 ) n i / 2 } ] F m i p k 

= / d 3 v J 0 g k < 3 ) . ( 1 3 ) 

< Here, the f irst two terms on the left side are from the adiabatic responses 

9 



of electrons and ions, respectively. The third term is the nonadiabatic ion 

linear response, and the right side represents the nonlinear response. 

Up to this point in this section, we have not adopted any linear 

frequency orderings wi th respect to the ion transit frequency. This has 

allowed us to retain the general characteristics of the various nonlinear 

processes in the analysis. Having identified the relevant nonlinear processes 

in Eq.(12) and Fig.2. we can now proceed to simplify the analysis based on 

our knowledge of the linear mode structure and eigenfrequency. As shown in 

Ref.7. the real frequency of the mode is typically much greater than the ion 

transit frequency for most of the relevant regime where the fluctuation 

amplitude is f in i te: i.e.. the mode is well-localized within the ion Landau 

resonance point (XJ = L s | co | /kyVt j ) . After adopting the frequency ordering of 

G> » k||Vti. Eq.Cl3} simplifies to 

£ { ( W 1 * n i V Q * ) - ( l * ( l * 2 T i i ) / Q r ) 3 b y / 2 } e x 2 * Q L ( X ) ] ( P k 

= - I l l ( 0 ) U " ) - 1 ( k x k , - b ) 2 { ( a > « e / o k ) - ( ( 1 ) » e V < i ) k ) f [ < J 0 2 j 0 ' 2 { l 4 ( u 2 - 3 ) n i / 2 } > 

- E d ) ( t l ) - . k " ) - 1 l ( o . e

, / o > k O - f . < i ) « e V u k - ) K J o J o , J o " f 1 * ( u 2 - 3 ) n i / 2 f > 2 

- < J 0 J 0 J 0 - { l * ( u 2 _ 3 ) n i / 2 } > 2 / { i - ( 1 - r 0 f b - ) ) ( 1 *Tii)M | < P k | 2 ( P k - ^^ 

where QL(X) ={1/Q-1-rby( l *(1*Ti i) /Q)| • {(1 *(1 • n j ) / Q * ) - ( l »(1 +2Tu) /n r )b y } 

( L n / L s ) 2 ( X / Q ) 2 , and <—> is the average over the velocity space. In Eq.(14), 

we have rearranged the last two terms on the right side in order to 

faci l i tate the following discussions about the dominant nonlinear saturation 

mechanism. The f i r s t and second terms represent, respectively, the 

approximated ion Compton scattering and coherent 3-mode coupling effects. 

The last term on the right side is the induced scattering which comes from 

the low frequency virtual mode contribution to e* 1 ' . We note that for the 
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parameter regime considered, the 3-mode coupling term is dominant due to 

the following reasons: 

(i) Although there exists a f in i te dispersion (<3Q/dky * 0), this is due to a 

small f in i te Larmor radius correction (<x b). Hence, since.the frequency 

mismatch is small, e("(<i>",k*) is appro;....lately resonant and the 3-mode 

coupling term would be large. 

( i i) There are large cancellations between the ion Compton scattering and 

the induced scattering terms in the moderately long wavelength regime of 

interest in the present work. The magnitude of the remaining term would be 

of order b 2 which is smaller than the 3-mode coupling term by order b. The 

details of this calculation are presented in the Appendix. 

By keeping only the dominant 3-mode coupling contribution to the 

nonlinear eigenmode equation, we obtain 

[ ( (1»(1*n iVQ'=) - (1* ( l *2T t i ) /QT)3by /2 |dx 2 • 0LCH) + Q N L ^ W k = °- ( 1 5 > 

where Q(_(X) is defined following Eq.Cl4) and 

0 N L ( X ) = E k ' f ^ ^ ' J " 1 ( l ( * k ' * b ) 2 i ( < i > " e / U k l - l u * e 7 l l ) k ' ' l 

*E (1 )(6>\k-)-1 U f t f . e V o v M u - e V U k - J K J o J o ' J o ' f J • ( u 2 - 3 ) n i / 2 l > 2 | <Pk' I 2 -

We note that the imaginary part of the nonlinear potential acts 

effectively as a nonlinear damping on the test mode via energy transfer to 

shorter wavelength modes. In a sheared slab geometry with multi-rational 

surfaces, the QNI_(X) can be approximated by QNI_(0), since significant energy 

transfer to ions can occur through background modes k' at X=0 due to the 

finiteness of X'. By solving Eq.(15) Tor Q and treating lmQmi_(0) as a given 

quantity, we obtain 
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This describes a competition between the linear growth and the nonlinear 

transfer which acts as an effective damping on the test mode. Nonlinear • 

saturation of instability occurs when these two processes balance. 

IV. Saturated Fluctuations and Associated Thermal Transport 

In this section, we derive the saturation levels of various 

fluctuations and the associated ion thermal di f fusivi ty. The analysis that 

follows demonstrates that these quantities vanish at the threshold. As noted 

before, - naive extrapolation of the mixing length formula to the regime 

near threshold does not show this apparent behavior.6 

In Eq.CI 6), the right side depends on the spectral summation of 

various modes. One way of evaluating such a discrete sum is to approximate 

i t wi th an integral . However, such a procedure 1 0 s t i l l produces a 

complicated integral equation which cannot be solved without making many 

further crude approximations. A simpler method which is equally reliable, is 

to estimate the spectral sum in terms of the basic characteristic scalings 

and various spectrum-averaged rms (root-mean-squared) values. This 

approximation is w e l l - c i t i f i e d here because only the moderately long wave 

length modes are linearly excited. Recall from Sec.II that the shorter 

wavelength modes are damped due to their higher thresholds. Also, the 

extremely long wavelength modes are subdominant when properly considered 

in the context of the fluid description with strong ion-ion co l l i s ions . 1 9 

Therefore, the range of the spectrum which is strongly excited is rather i 
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narrow. 

Noting the fact that the 3-wave decay type resonance condition is 

approximately satisfied due to f in i te dispersion, we make the following 

approximation in ImQNL(0)ii.e., 

ImtEHJc^- .k - ) - 1 ] = |dEn)/d6>-j-1So/{SG>2 • (&} - -6V-G>)2} . (17) 

Then, by using Eqs. (16) and (17) 'or ImOfg|_(0) and the radial mode-width, 

A = | L S Q/L n j " 2 , for le r -1 . we obtain 

[ e4> /T L ] r m s > (A/|L n|)(y/S<D)1'2 = J ( n i , b y ) p i / | L n | . (18) 

and similarly, 

[ * V T i J r m s = ( A / L T ) ( e r / 6 « ) 1 / 2 = J (H i . by )p j / L T . (19) 

where 

J « ( 1 - S b y / 2 ) ^ 2 [ b u { 1 . b u ( 1 » n i ) n - 1 / 2 

l i ( n i * T \ c i ) U i - n c 2 5 ] 1 / 2 / h * ^ + n i | i 1 / 2 . for ni < nc2> 
Finally, the ion thermal d i f fus iv i ty can be obtained from the 

quasilinear conduction contribution to the ion thermal flux, Qj;< i.e.. 

0[ = Im Ek ' fcky '^STyBn] . (20a) 

and 

Xi = -QiL-r/Ti = K2r/o^)c2k y2 | tp 1 2 / B 0 2 ] r m s = [tf&Z/ial 

= [ ( • n . i . b g ) | c T i / e B o | P i / L s . (20b) 

where I * T H (1 - 5 b y / 2 ) 2 [ ( l + b s ) { 1 - b y ( l •n i ) J ] -1 

i | (n i -nc i ) fn i -nc2)kh***ni | ( . ^ ni < nC2- {20c) 
It is important to point out that the saturation levels for the fluctuations 

and their associated thermal di f fusiv i t ies derived here are considerably 

smaller than strong turbulence estimates for these quantities. Note that 

they vanish at the threshold T I C 2 . and near marginal stabi l i ty , Xi °< 
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I-n.i-TiC2 |, while e<p/Tj. STj/Tj <*| TU-ilc2 1 1 / 4 - Therefore, the onset of ion-

temperature-gradient-driven turbulence associated with negative T^-modes 

is predicted to be more abrupt near the threshold than the positive -n,, mode 

cases . 1 0 On the other hand, away from the threshold (as | L n | is increased), 

the turbulence level and thermal dif fusivi ty remain small. This fact is 

summarized in Fig,3 where Xi- 6 T i / T i a n d «fP/Ti are plotted as functions of 

| L n | with other parameters fixed. Here, we should not expect to observe a 

dramatic confinement degradation in experiments where the density profile 

becomes f la t ter (provided their instabi l i ty threshold has already been 

exceeded). 

V. Discussion 

In this paper, a weak turbulence theory of -n,; modes is presented 

which is applicable to the inverted density profile cases characteristics of 

numerous H-mode discharges in JET 1 - 2 and DIEI-D.3 Our results indicate that 

both the saturation level for the negative-Tij-mode fluctuations and the 

magnitude of the asscciated ion thermal diffusivity are considerably smaller 

than the famil iar strong turbulence mixing-length type estimates for the 

conventional positive-T[ [ - instabi l i t ies. 

The dominant nonlinear saturation mechanism is the coherent mode 

coupling to shorter wavelength modes. This is because the longer wavelength 

modes are more easily excited due to their lower instability thresholds, and 

the combined effects of the ion Compton scattering and the induced 

scattering are negligible in the long wavelength regime. This has made our 
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radially nonlocal analysis possible in the context of the usual differential 

approximation. However, in the case of positive-T\j-modes considered in 

Ref.10, the shorter wavelength instabilit ies are more easily excited due to 

their lower thresholds, and the ion Compton scattering is the dominant 

nonlinear process. In this short wavelength regime, the radially nonlocal 

analysis is extremely d i f f i cu l t to implement since the di f ferent ia l 

approximation breaks down. 

As a final note, we discuss the possibility of applying the weak 

turbulence type theory developed here to the case of f lat density profile 

plasmas, which are also observed in the H-mode discharges of various 

tokamaks. in this case, the stabil i ty threshold is approximately given by 

L s / L x i = 3.B for the slab T\[ mode. 7 and by R /L j j = 3.0 for the 

interchange-like toroidal n , mode. 6- 3 Although such thresholds appear to be 

exceeded for. typical H-mode profiles, they could be significantly affected by 

more complicated real ist ic effects not considered in these theoretical 

studies. If such modifications (e.g.. impurities, f ini te beta, etc.) led to the 

conclusion that the longer wavelength modes are more easily excited, we 

would expect that the 3-wave-decay type nonlinear process would be the 

dominant nonlinear saturation mechanism, as indicated by the results of the 

present work. This would accordingly suggest that many features in the 

present paper could be applied to the weak turbulence theory of the flat 

density ion temperature gradient modes. 

15 



Acknowledgments 

The authors gratefully acknowledge useful discussions with L. Chen, 

P. H. Diamond, B. G. Hong, J. A. Krommes. and N. Mattor. 

This work is supported by U.S. Department of Energy Contract No. 

DE-AC02-7B-CHO3073. 

16 

F 



Appendix-. Cancellat ion between ion Compton scat ter ing 

and induced scattering terms 

Here, we evaluate the various nonlinear coupling integrals in the long 

wavelength l im i t to demonstrate the near-cancellation between the ion 

Compton scattering and the induced scattering terms. From Eq.( 14). the ion 

Compton scattering term is governed by the integral, 

I c = < J 0

2 J o " 2 l M u 2 - 3 ) n i / 2 | > 

=/ 0

0 0 duuJ 0

2 (b l /2u)Jo 2 ( t> ' l / ' -u) {UCu2-2)Ti i /2 lexp(-u2/2) . (Al) 

where the t r iv ia l Vn integration has already been performed. Expanding the 

Bessel functions in the small argument l imi t and defining x = u 2 / 2 . we 

obtain 

lc=/0»dxe->t(i-bx)(1-b')(Kl-ni*nix) • 0(b2) 
= 1 - (WTiiHb*b') • o (b 2 ) , (A2) 

where b'~b has been assumed. The induced scattering contribution in Eq.(14) 

is governed by the integral. 

l 4 = < J 0 J 0 - J o " n * ( u 2 - 3 ) n j / 2 } > 

= / 0

M d u u J o ( b 1 / 2 u ) J 0 ( b ' ' ' / 2 u ) J o ( b - l / 2 u ) | l t ( u 2 - 2 ) T i i / 2 ) e x p ( - u 2 / 2 ) . (A3) 

Again, expanding the Bessel functions, we obtain 

h ^ / o o o d x e ~ x n - b x / 2 ) ( l - b ' x / 2 ) ( l - b " x / 2 X l - n r n i > 0 *0(b 2 ) 

= 1 - C1*Tii)(b*b'*b-)/2 * 0(b2), (A4) 

where b'~b~b" has been assumed again. Finally, using the results from Eqs. 

(A2) and (A4) with Eq.(14). we show that the combined effect of the ion 

Compton scattering processes and the induced scattering processes is 

17 



proportional to, 

t c - I j 2 / { l - ( l - r 0 ( b " ) K 1 * n i ) } 

= {1-0 'T i iXb.b 1 ) } - { 1 - (Un i ) (b *b ' *b ' ) / 2 f2 / {1 - (1 - r 0 ( b - ) ) ( l >n i ) t 

* OCb2) = 0(b2). (A5) 

Equation (A5) illustrates the fact that the combined effect of ion Compton 

scattering and the induced scattering processes cancel up to order b. The 

remainder is order b 2 , and smaller than the 3-wave coupling term (retained 

in the nonlinear analysis of Sec.III) by order b. 

18 
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Figures 

FIG. 1. Plot of Z, So), and J2f/Su| as functions of m 

for b s = 0.16. L T / L S = 0.04, z = 1. 

a. Plot of Z from Eq. (6). 

b. Plot of SG>. 

c. Plot of |jr/£&)| from Eq. (7a). 

FIG. 2. Feynman diagrams for various physical processes. Wavy 

line and solid line represent the wave and particle, 

respectively. Dotted line corresponds to a virtual mode. 

FIG. 3. Plot of predicted ion thermal diffusivity and fluctuation 

levels as functions of m for b s = 0.16. L j / L s = 0.04. z - 1. 

a. Plot of f.[ from theoretical expression, Eq. (20c). 

b. Plot of STj/Tj from theoretical expression. Eq. (19). 

c. Plot of e$/Tj from theoretical expression, Eq. (18). 
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