
LkTtversityotCaMomia

[[[• LawrBfx:e Livermore
kLi National Laboratory

+
UCID-20643

lliii-o

User Systems Guidelines
for Software Projects

Coordinated by
Jeanne Martin

With Contributions from

Karl Dusenbury Keith Grant
Barbara Herron Peter Keller
Jeanne Martin Kelly O'Hair

Edited by
Lila Abrahamson

1 April 1986

UCID~20643

DE86 010490

LivermorQ
Computing
Systems
Document

MASe

fllSTfilBUTIOi OF THIS DOCUMENT IS m^Wm

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

User Systems Guidelines for Software Projects
UClD-20643
Page i i i

Contents

CONTENTS

Page

I n t r o d u c t ion 1

P r o j e c t D e f i n i t i o n 5
Overview 5
Project-Def ini t ion Guidelines 6

Purpose 8
Justification 8
Description 9
Goals 9
Constraints 10
Previous Relevant Work 10
Mi lestones 10
Resources 11
Accountabi1i ty 11
Some Questions and Other Information 11

Project-Def ini t ion Examples 13
Example PDl. ASCII to EBCDIC File Converter 13
Example PD2. Module Template Tool 15
Example PD3. Parallel Processor Project—Languages and
Compilers, Basic Compiler Optimization Project 22

Project-Def inition Tools 29
Ava i1ab1e Too Is 29

Document Preparation 29
Drawing Preparation 31

Ideal Tools 32
A Project-Definition Template 32
Tools for the Requirements Definition 33
Integrated Document-Preparation Tools on a PC 33
An Environment with Data-Base Management Facilities ... 33

Project-Definition Bibliography 34
User Interface 35

Overview 35
General Guidelines for Building a User Interface 35

Essential Phases 36

Write the Project Definition 36
Design the User-Interface Module 37

Wr i te the He Ip Package 37
Wr i te a User Manual 38
Conduct a Design Review 38

Other Considerations 38
Assess Requirements 38
Maintain Simplicity and Consistency 39

DISTR18UTI0II SF THIS POCUMENT IS UMyiRTa p .

User Systems Guidelines" for Software Projects
UCID-20643
Page iv

Contents

Organize for Quick Comprehension 40
Provide Working Environments 40
Establish Execute Lines 40
Present Models or Analogies 41
Provide Error Tolerance 41
Provide Error Messages 41
Establ ish Cues 42
Prepare a Pleasing Layout 42

Guidelines for Specific User Interfaces 42
Guidelines for Interactive Products 42
Guidelines for Menu-Driven Products 43
Guidelines for Batch Interfaces 43
Guidelines for Graphic Interfaces 44

User Interface Example—Building a User Interface 45
Example UIl. ASCII to EBCDIC File Converter 45

The Audience 45
Review of User-Interface Requirements 45

User-Interface Design 46
Design Analysis 47
Usage Scenarios 48
Error Detection 49

Ava i1ab1e Too Is 50
User-Interface Bibliography 51

Design 53
Overview 53

De s i gn Gu i de1i ne s 53
Data-Flow Diagrams 55
Data Dictionary 55

Structured English 56
Data-Structure Diagram 56
Structure Charts 56

Types of Coupl ing 57

Types of Cohesion 58
Pseudocode 58
Design Walkthrough and Review 59

Sample Check 1ist 59
Example Dl. ASCII to EBCDIC File Converter 61

The Data-Flow Diagram 61
Data Dictionary 62
Structured-English Definitions 62
Data-Structure Diagrams 63
Structure Charts 63
Pseudocode 65
Walkthrough 66

Design Tools 67
Ava i1ab1e Too Is 67

User Systems Guidelines for Software Projects
UCID-20643
Page V

Contents

Ideal Tools 68
Des ign Bibliography 69

Coding 71
Overview 71
Coding Guide 1ines 72

Naming Conventions 72
Comments 72

Prologue 72
Comments Among Code Lines 73

Variable Declarations 73
The Code Body 74

Indent and Nest 74
Loop and Go-To Statements 74
Macros and CI iches 74
Module Length 75
A Transportable Code 75

Coding Reviews 75
Maintenance and Modi f icat ion 76

Modu1e Mod i f i c a t i on 76
Coding Examples 77

Example CI. ASCII to EBCDIC File Converter 77
Example C2. Subroutine pop 84
Example C3. Subroutine ttyread 87
Example C4. Subroutine symenter 90

Example C5. Subroutine buf1ine 93
Coding Tools 95

Ava i1ab1e Too Is 95
Templates 95
Editors 96

Other Coding Tools 97
Ideal Tools 103

Coding Bibliography 104
Testing 105

Overview 105
Testing Gu i de1i ne s 106

Functional Testing 108
Structural Testing 108
Test History 109

Test ing Examples 110

Example Tl. ASCII to EBCDIC File Converter 110
Test Plan 110
Test History Ill

Example T2. Quadratic-Equation Test Plan 113
Test A. Normal Case 113

Test B. Normal Case with One Zero Root 113
Test C. Square Root of Zero 113

User Systems Guidelines for Software Projects
UCID-20643
Page vi

Contents

Test D. Linear Equation 113
Test E . Complex Roots 113
Test F. Inval id Equation 113
Test G. Degenerate Equation 114

Testing Bibliography 115
User Documentat ion 117

Overview 117
General Document-Preparation Guidelines 118
Guidelines for Preparing User-Documentation Categories 119

The Reference Document 119
Description 119
Audience 119

The By-Example Document 120
Description 120
Audience 120

The Tutorial Document 120
Description 120
Audience 120

Start-Up Examples 121
Description 121
Audience 121

Documentation Aids 121
Formal Publications 121

LCC Routine Summaries 121
Tentacle 122
Octogram 122
Glossary 122
Introductory Cards (Introcards) 122

Informal Publications 122
Educational Services 123

Courses 123
Computer Documentation Library 123

Consulting Services 123
Meetings ^ 124

User-Documentation Templates 125
Template UDl. Reference Document 125

Identification 125
General Description 125
Def ini t ion of Terms 125
Opt ions 125
Summary of Usage Forms 126
Usage Examples 126
Detailed Information 126
Help Facilities 127
Restrictions 127
Error Messages 127

User Systems Guidelines for Software Projects
UCID-20643
Page vi i

Contents

Controller Message-Formats 127
Revision Histories 127
Comment Sheet 128

Template UD2. By-Example Guide 129
Preface and Contents 129
General Information 129
Example(s) 129
References 130
Revision Histories 130

Template UD3. Tutorial 131
Preface and Contents 131
Introduction 131
General Information 131
How to Execute the Job 132
Revision Histories 132

Template UD4. Summary Sheets 133
Examples 134

Example UDl. EBCDIC Summary Sheet 134
User-Documentation Tools 135

Aval I able Tools 135
User-Documentation Bibliography 136

Glossary 137
References 141
Revision History 145
Availability 147

DISCLAIMER

ence herem to any specific commercial nrS.w '^""«" ^"^^tely owned rights Refer

User Systems Guidelines for Software Projects
UCID-20643
Page vi i i

User Systems Guidelines for Software Projects
UCID-20643
Page 1

Introduction

INTRODUCTION

A committee within the User Systems Division (USD) of the Computation
Department at Lawrence Livermore National Laboratory (LLNL) developed
these guidelines for generating software between 1981 and 1984. Members of the
committee were

Barbara Atkinson
Karl Dusenbury
Keith Grant
Terry Heidelberg
Barbara Herron
Pete Keller
Jeanne Martin, Chair
Kelly O'Hair
Roger Skowlund

Karl Dusenbury, Keith Grant, Barbara Herron, Pete Keller, Jeanne Martin, and
Kelly O'Hair contributed chapters to the committee's final report and, thus,
to this document.

The USD guidelines for software standards were developed so that
software project-development teams and management involved in approving the
software could have a generalized view of all phases in the software
production procedure and the steps involved in completing each phase.

A typical development cycle is illustrated in Figure 1. A project that
follows this cycle will have certain milestones indicated by the triangles
and by the box representing the code. Although many of the indicated phases
proceed simultaneously, the milestones would normally be reached in the
following order.

• Project definition
— Project plan
— Specifications

• User-interface design

• Design specifications
— Data-flow diagrams
— Data dictionary
— Structure charts
— Pseudocode

• Test plan

User Systems Guidelines for Software Projects
UCID-20643
Page 2

Introduction

• Design walkthrough (not shown in Figure 1)

• Code

• User documentation

— Reference manual
— Summary sheets
— By-example guide
— Tutorial

• Test history

In addition, the project manager should maintain a history of the
project. The history should contain, or reference, all the documents
mentioned above and should be kept current throughout the maintenance phase
of the software life-cycle. Major enhancements to the software should be
developed in a way similar to that of the initial development cycle.

This report is divided into six chapters, each addressing the criteria
developed for a specific phase. Examples are given when appropriate, and
available and nice-to-have support tools that could be used to maintain the
criteria are listed.

User Systems Guidelines for Software Projects

Introduction

UCID-20643
Page 3

Project
Management

Managing

Project
Init iation

• —

Project Design
Definition Specifications

-SX^ •^JA
Planning Y Designing | Coding

User
Interface

Planning Designing

Testing

Planning

Test Plan

Code

Product
Release

Testing

Test History

User
Documentation

Project
Documentation

Time

Writing

Recording

User Manual

Summary
Sheets

Project
History

Figure 1. Software development cyc l e . Milestones are indicated by the
tr iangles and by the the box representing the code. Many of the outl ined
phases proceed simultaneously.

User Systems Guidelines for Software Projects
UCID-20643
Page 4

User Systems Guidelines for Software Projects
UCID-20643
Page 5

Project Definition/Overview

PROJECT DEFINITION

Overview

USD software serves project, user, and managerial communities.
Therefore, the preparation of a well-conceived project definition (PD),
written without the technical jargon of a particular discipline and
addressing the needs of the three groups, is an essential step in developing
new software or revising an existing software product. The PD is usually
generated during the initial project-development phase and functions as a
pombined planning, requirements, and specifications document. At that time,
for example,

• It announces to the community at large that serious work is planned

in a specific area

• It can be used to help management decide to proceed with the work

• Prospective users can provide feedback and help refine the project

and define the potential audience

• It can serve as the project team's development base by defining
goals, deliverables, milestones, and detailed requirements and
spec i f icat ions

The PD may undergo several revisions as the project evolves. A
revision history, or audit trail, should be kept so that if the product
needs to be modified, the modifications can be evaluated in light of the
original and subsequent definitions. Knowing that an alternative was
considered and rejected, and why, can be very valuable when changes are
cons idered.

To generate the initial PD and any subsequent revisions, the project
must be described. Each software project can be described basically in
terms of its purpose, justification, goals (including milestones),
resources, and maintainability.

In this chapter, we will first present guidelines for generating a PD;
second, we will give examples of how to implement them; and third, we will
outline some tools to support generation of the PD.

User Systems Guidelines for Software Projects
UCID-20643
Page 6

Project Definition/Guidelines

Project-Definition Guidelines

When you prepare a PD, there are some sections that are considered
essential contributions and others considered less important, but helpful,
contributions. In Table 1 is a summary of PD guidelines in outline form
containing the different sections, a brief description of the contents of
each section, and an indication whether the information is essential or
helpful. Following the table is additional material about each section of
the PD and the rationale for including each section. A list of questions
that may be important in your PD is appended.

Table 1. Summary of project-definition guidelines for software projects at
Lawrence Livermore National Laboratory.

Contr ibution,
essential (E) or

Section helpful (H) Content of section

Purpose(s) E Brief purpose(s) of the project

Description of the product to be

delivered

Justification H Why the project is required

Users of the product

How the product will benefit users

Description E What the product does, as opposed to how

it does it

The specific input and output

A diagram showing the interrelationships

among the different phases of the

project

An overview of the user interface

User Systems Guidelines for Software Projects

Project Definition/Guidelines

UCID-20643

Page 7

Table 1. Summary of project-definition guidelines for software projects at
Lawrence Livermore National Laboratory. Continued.

Sect ion

Contr ibut ion,
essential (E) or
helpful (H) Content of section

Goals H The end result(s) of a successful
implementation of the project. For
example,

Conditions that make the product
efficient, interactive, user friendly,
and compatible with other USD products

Adherence to broad-based internal and
external standards

Minimum size for maximum end products

Flexibi1ity

Previous
Relevant Work

H Summary of previous and current research
and dates

Milestones A list of the intermediate deliverables

The expected life span of the present
iteration of the project, if pertinent

Resources Rough estimates of person hours, hardware,
software, and time needed to complete the
project

User Systems Guidelines for Software Projects
UCID-20643
Page 8

Project Def ini t ion/Guide I ines/l\irpose

Table 1. Summary of project-definition guidelines for software projects at
Lawrence Livermore National Laboratory. Continued.

Contr ibut ion,
essential (E) or

Section helpful (H) Content of section

Constraints H Dependencies on hardware or other products

Limitations regarding speed or size,

etc.

Accountability E A list of PD authors

An account of each substantive change
that includes the date of the change,
the responsible author or contact, and
the problems encountered in implementing
the change

Purpose

The information in the purpose statement is considered essential.

Therefore, the purpose is placed first in the PD. The order of the rest of

the material is based on the author's priorities.

Most software development projects are concerned with product
development, and you should mention this and the proposed product in the
first sentence. If product development is not the reason for undertaking
the project, more explanatory material may be required when you state the
purpose. In general, one or two sentences should adequately describe the
purpose.

Justification

If the product is in great demand by nearly all users, this section can
be omitted. If one of the objects of the PD is to gain management approval
for a project or to locate potential users for a proposed product, this
section should be more extensive.

Assess your audience(s), and write the justification in terms of how
the group(s) you are addressing will use both the end product and the PD.

User Systems Guidelines for Software Projects
UCID-20643
Page 9

Project Definition/Guidelines/t)escription

For example, users would appreciate knowing what is being made available and
of what value it is to them. Management needs to know what the project does
for the users and why it should be added to the system. Project personnel
should have justifiable references to use at critical points in the design
phases.

Description

The description is the heart of the PD and is essential. For a large
or complex project, two or more documents will be needed to describe what is
to be done. The first document of a multiple-document PD should be a
project plan (PP) that includes all the information suggested for a PD,
except the description section would be less detailed. The PP should
contain only enough detail for understanding and credibility. The detailed
requirements and specifications should be contained in supporting documents.
The supporting documents would be used as input to the design phase and are
intended for use by project personnel only. These documents might not be of
particular interest to prospective users or management, but they are
essential to further development of the project.

For a small or less complex project, the description section in the
single PD document could serve as the specifications document. In either
case, graphic representations such as data-flow diagrams (see Glossary,
page 137) are more effective in communicating the function of the project
than words. As long as a diagram doesn't require specialized knowledge to
understand, it will enhance the effectiveness of the PD. An important
diagram to include in the description is a picture of how the product will
interface with the product users. If the project can be broken into parts
or distinct operations, the input to each part and the output from each part
should be shown.

The picture could be hand drawn; it doesn't have to to be automatically
produced from some machine-readable description, although a machine-readable
description is easier to update and maintain than is a hand-drawn picture.
Some tools are available to help produce pictures (see page 29).

Goals

Goals are the reasonable expectations for the product(s), or other
results, produced on completion of the project. They are derived from user
surveys, perceived functional requirements, and hardware and system
capabilities. The goals may include such considerations as efficiency,
size, interactivity, adherence to a standard, friendly user-interfaces,
early completion of the product, compatibility with other USD products and

User Systems Guidelines for Software Projects
UCID-20643
Page 10

Project Def ini t ion/Guide I ines/t)escript ion

with previous versions of the same product, adaptability to changing
conditions, ability to run on different machines, and extensibility.

It is almost inevitable that some goals will be incompatible with
others, and an attempt should be made in the project-definition phase to
assess the goals in terms of priorities. If you set priorities for the
goals and for possible constraints, you will better determine the
requirements for the project.

Constraints

If there are overwhelming constraints that drive the project, state
them in a separate section. Such constraints may be performance criteria or
the need for compatibility with specific hardware, environments, other
products, or industry-wide standards.

Previous Relevant Work

If research was done before the PD was prepared, the results and the

relevancy of these results should be reported in this section. Pertinent

questions and answers that could be included are,

• Do similar facilities exist here or elsewhere that could be used?

• Is there a body of experience with similar products that could be

drawn upon for guidance?

Milestones

Some thought should be given during the definition phase to the
expected life cycle of the product. What types of changes will likely
occur? What functions will likely be replaced or removed? For any software
product, some changes are easier than others. Guidance in the PD will help
the designer assure that the easier changes correspond to the most likely
changes.

Early in the project life-cycle, it's important to establish
intermediate products as well as the end products. The intermediate
products are called deliverables or milestones. The first deliverable is
the PD. For typical projects, the deliverables are the items represented by
the rectangle and triangles in Figue 1 (page 3).

User Systems Guidelines for Software Projects
UCID-20643
Page 11

Project Def inition/Guide Iines/Constraints

If the development of the product associated with the project differs
from the typical development cycle, the differences should be noted, and the
list of deliverables revised. The differences and any changes should be
reflected in the milestone charts for the project. If the product
development is atypical (such as that in Example 3, page 22), it should be
carefully described; otherwise, a typical development cycle with typical
deliverables will be assumed.

Resources

Milestone Charts will be required by management once the project is
initiated, so it's reasonable that they be required in the PD as well.
However, the charts furnish a limited amount of information, so additional
comments may be needed.

Accountability

The author's name must appear somewhere in the PD. A revision history
will provide an account of each substantive change and includes the date of
the change, the responsible author(s) and designer(s), and the problems
encountered in making the change.

Some Questions and Other Information

There may be problems, topics, and questions peculiar to the project
that would interest users or management. These deserve consideration if
relevant. For example, if there are unforeseen problems, delays, or
resource cut-backs and the list of goal priorities changes, alter the PD to
reflect these. The updated PD will alert management and users to the
changes and the reasons for them.

An example of a topic that would be of interest to users or management
is possible enhancements.

Following are some questions to consider as part of the PD.

• Can an old procedure be adapted to meet these needs or must a new one
be developed?

• Must the product run on more than one machine?

• Should the use of a high-level language be restricted to a portable
subset so the code can be more easily transported?

User Systems Guidelines for Software Projects
UCID-20643
Page 12

Project Definition/Guidelines/Questions

•Will it be necessary to organize the code into memory overlays?

•Will dynamic memory—management be necessary?

• Should table sizes be allowed to vary drastically?

• Should the program be able to terminate gracefully on an outside
signal? Should it be able to restart?

• Is any run-time support required?

• Are there acceptance criteria below which the product will not be
used—for example, response time, memory capacity, running time, etc.

• Should provision be made for future extension and modification? What

is the growth potential?

• Are there special input/output needs?

•Will other supporting software be needed? Does other supporting

software exist, or should another project be started?

Under optimum conditions, the output of each developmental phase of a
project would be tested and validated before the project enters its next
phase. Currently, no tools exist that perform this service. However,
before it's released for review, the PD can be looked over by its author(s)
with the following in mind:

• Is it complete? Are all the necessary parts described?

• Is it consistent? Is there any redundancy?

• Is the project feasible?

Is all the information provided correct?

User Systems Guidelines for Software Projects
UCID-20643
Page 13

Project Definition/ElxampIes/ASCII to EBCDIC File Converter

Project-Definition Examples

Three sample project-definitions follow. The first example (PDl)
describes a specific, but very simple, file converter. This file converter
will be used in subsequent chapters to illustrate other phases of software
development. The second example (PD2) is for a fairly typical project, the
object of which is to produce a product—a very small one—person project.
The third example (PD3) is a PD for a research project that has as its
principal objective not a software product but a report describing the
methods and strategies to be used in later projects.

Example PDl. ASCII to EBCDIC File Converter

Project:

Descr ipt ion:

ASCII to EBCDIC File Converter

This program should accept LLNL ASCII files
and convert them to EBCDIC files. There should be
no limit to the size of the file except that
imposed by the system. There will be a limit of
200 characters per line.

/ \
ASCII Files >>—> | Convert | >>—> EBCDIC Files

\ /

There are no options.
The first filename should be the name of
the ASCII file to convert. The second filename will
be the name of the EBCDIC file to create. If the
second filename exists it will be destroyed before
the new EBCDIC file is created.
A line is defined as FORTLIB's RDLINE routine
defines a line. All undefined control characters
will be thrown away, unless they map to an EBCDIC
character without loss of meaning.

UCID-20643
Page 14

User Systems Guidelines for Software Projects

Project Definition/ElxampIes/ASCII to EBCDIC File Converter

User Interface:

There are no options to this program. The user will
provide two filenames on the input line as follows:

PROGRAM-NAME Input-File Output-File
Error messages should be minimized but when needed
will be one line and look like the following:

**• Text describing the error.
Old copies of Output—File are destroyed before
conversion takes place. The input line must contain
two filenames and the first file must exist, anything
else is an error.
Errors on the input line should trigger the help
package to be printed out at the terminal. The help
package should contain the same information as the
Summary Sheets.

Mi lestones:

Expected life: 10 years or more
Deliverables: —Design Document in one week

—Finished Code in one month
—User Manual in one month
—Summary Sheets in one month

Resources;

• 1 FTE for one month, access to LCC network for
one month, and 5 minutes of CRAY CPU time per day
for one month.

• Milestone Chart

PROGRAM: | design—> coding—> test—> release |

DOCUMENTATION: | rough draft—> edit > publish |

DAYS:
I

10
I

20
I

30

Accountabi1i ty:

Author: Kelly O'Hair USD

Status: Unchanged as of 4/9/84

Changes: J. Martin, 9/85

1 User interface changed to allow omission
of EBCDIC file name, making the interface
more user friendly.
Limit of characters per line changed to
132. This number seems adequate, and
larger lines are detected by RDLINE.

User Systems Guidelines for Software Projects
UCID-20643

Page 15

Project Def in i t ion/Bxanples /^dule Template Tool

Example PD2. Module Template Tool

Project Definition

Module Template Tool

Purpose

To provide a tool to support the USD standard for the information content of
source modules. A tool will provide ease of conformance to the standard and
assure uniformity throughout the division.

Justification

Software products usually consist of a collection of modules, where a module
is any separable part (subroutine, procedure, macro, etc.). If the division
is to build easily maintainable products, then certain information must be
available with each module in every product. It has been determined that
the source module itself is the best place to maintain this information
because it is the most accessible and the most likely place to be updated
when changes occur.

If all products provide the same information in the same format, it will be
considerably easier for programmers to move from one project to another.
They will know what information they can expect to be provided and where to
find it. A tool that supports this standard will contribute greatly to the
achievement of the goal of producing self-documenting code.

Description

This product will produce a machine-readable source module. To do this it
draws upon a template (or skeleton) which it then fills out to create the
required module. (In the past the term module prolog has also been used,
but this implies limiting the template to the first part of a module.)

UCID-20643
Page 16

User Systems Guidelines for Software Projects

Project Def inition/Exanples/KfoduIe Tenplate Tool

The product will operate in an interactive mode. The template contains
default information that the user may easily modify to define the attributes
of a particular module.

As the template is being built, it will be displayed on the user's TMDS.
Figure 1. illustrates the environment in which the tool operates.

questions

user at

terminal
answers

TMDS

Model proc
GAL

COMPASS

LRLTRAN f
LRLTRAN sut

LRLTRAN

main

un

module

Figure 1. The Environment of the Template Tool

A user at a terminal initiates the template tool and gives it the module
name and type. The tool will prompt for this information if it is not
supplied on the execute line. Based on this information, the tool selects a
template (or skeleton) from a closet of skeletons which it displays on the
user's TMDS and copies into a private file with the supplied module name.

User Systems Guidelines for Software Projects

Project Def ini t ion/ExanpIes/^duIe Tenplate Tool

UCID-20643
Page 17

As the user fleshes out the module skeleton, the new information is
displayed on the TMDS and reflected in the text file. At the conclusion of
the session the file containing the module will reside in the user's file
space.

The final machine readable form of the template will contain the following
module attributes in the order indicated:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Module Name
Cal1ing Form
Expanded Module Name
Description: What is done
Author Name and Date
Category
Input Arguments
Input Cliche Variables
Output Arguments

Output Cliche Variables
Procedure: How it's done
Local Variable Definition
Local Parameter Definition
Module Body
Module Exit: Normal
Module Exit: Error

The physical representation must be highly consistent between modules. This
will aid in visual apprehension and also, in the extraction of module
attributes into a data base. This data base can later be used to analyze,
print reports and reconstruct the module from its attributes.

The following scenario will typify the use of this product.

1) A programmer designs a module. A design typically yields: data-flow
diagrams, a data dictionary, structure charts and structured English.

2) The template tool is invoked. The design documents (structure chart and
structured English) are used as aids in supplying the information.

3) The module body (code and comments) are then inserted, using a standard
editor, directly into the module.

User Systems Guidelines for Software Projects
UCID-20643
Page 18

Project Def inition/Exanples/4fodule Tenplate Tool

Goals

Project:

The goal of the project is to provide support for the USD standard for the
information content of code modules, regardless of the type of the module or
the language in which it is written. When the tool is fully implemented,
every newly written module for a division-supported product should conform
to the standard. When already existent modules undergo major modification,
they should also be made standard conforming.

Product:

1) The first prototype of the product should be available for division-wide use
in four months. Because of this time constraint, not all module types for
all languages need be provided for the first version of the tool. The first
version will provide templates for the following LRLTRAN modules: main,
subroutine, function. Eventually it will provide templates for additional
LRLTRAN modules: block data and cliche, for CAL modules, COMPASS modules,
and Model modules: procedure.

2) The tool should be coded with portability in mind. The initial version
should function on the 7600 and CRAY machines, but subsequent versions may be
required for smaller machines, including intelligent terminals.

3) The tool should be easy to use.

1) The tool should supply, without asking, all information that is accessible
to it, such as the date, the programmer's name, TMDS number, etc.

2) It should require the minimum amount of input from the programmer, by
providing whenever possible a menu of choices for selection by typing a
single key, etc.

4) The tool should encourage the user to supply information.

1) The default information may be in a form that would encourage the

programmer to supply his/her own.

2) When the user signals the end of a session, the tool may remind the user

of any information not supplied and give the user a second chance to

supply it.

5) The tool should be designed so that it does not depend on a rigid format for

User Systems Guidelines for Software Projects
UCID-20643
Page 19

Project Def inition/Exanples/^dule Tenplate Tool

the template skeletons. Then the skeletons can be extended or modified
slightly to tailor them for particular projects or groups within USD.

6) The tool should be easily modifiable and capable of extension.

Possible Enhancements

Initially the tool will be used in conjunction with a text editor for making
corrections and modifications. In the future this division of labor may not
be as pronounced.

Future possibilities are:

1) use of color to set apart different kinds of information

2) sophisticated aids for building the module body

1) templates for language constructs (such as IF-THEN-ELSE)

2) syntax checking of code as it is entered

Previous Work

1) USD/SIG - Documentation Standards for URLIB Routines, Karl Dusenbury

2) USD/SIG - Programmer's Template, Karl Dusenbury, 3/5/81

3) USD/DMG - FRAMIS Coding Style Sheet, Steve Jones, Aug 8 1979

4) USD/LG - OPTIM : POOLMEET, WethereU, 3/20/78

5) USD/CGG - GRAFLIB Programming Standard, Kelly O'Hair

6) CRAY RESEARCH - Software Development Standards Manual, SM-0053

7) NASSI : Steve Wong

8) ATA prolog : Allyn Saroyan

9) NSSD - PSG Tools : Routine Prolog, John Henry, Jan 9 1981

User Systems Guidelines for Software Projects
UCID-20643
Page 20

Project Definition/Exanples/^fodule Tenplate Tool

10) NSSD - APD II Software Engineering Guidelines, 5 June 1981

Project Phases

This template tool will be a supported product, so it follows the typical
life cycle. The only deviation is that there will be an extended period for
user testing as a result of which the product may be modified.

This is a small project. The major milestones are 1) the completion of the
Project Definition, 2) the development of the initial version of the
product. The use of the product should be self-explanatory, so that very
little user documentation is required. The product will be enhanced as
experience is gained with its use, and extended as needs become evident.

Resources

There will be a brief period for the USD to review and revise the Project

Definition. During this period, it is hoped that project personnel will be

assigned.

The project will require one FTE full time for four months to develop the

initial version and quarter time for an indefinite future period for

extensions and maintenance.

Once the design is developed, a design walk through will be held with the

project personnel and SPSC.

After the prototype is tested, division members will have a chance to use

and evaluate the product before any enhancements are added.

Project milestones are shown in Figure 2.

User Systems Guidelines for Software Projects

Project Def inition/Exanples/\fodule Tenplate Tool

MODULE

LEGEND

ACTUAL ^ ^
COMPLETED •»•

TEMPLATES

PROJECT
D I V I S I O N
REPORTED BY

MILESTONES

PROJECT DEF IN IT ION

D I V I S I O N REVIEW

USER INTERFACE DESIGN

PRODUCT DESIGN

TEST PLAN DESIGN

USER DOCUMENTATION

CODING

TESTING

USER ACCEPTANCE

ENHANCEMENT & MAINTENANCE

APR

i

— —

TEMPLATE TOOL
USD
J MARTIN

MAY

i

a

JIIN

i

c=

cz

1̂

JUL

i

='

i

=•

c

l̂ s
DATE 0 1 / 2 6 / 8 4

TIME 09 32 22

AUG

i

^

SEP

i

=•
c:

OCT

i
NOV

i
t o

Figure 2. Milestone Chart

Revision History

Version
Vers ion
Version
Version
Version

1
2
3
4
5

I n i t i a l cut
Desc r ip t ion added
Prepared for review of SPSC
Revised based on SPSC comments
Revised based on PD gu ide l i ne

Apr.
Apr.
May
May
Jan.

Authors

Roger Skowlund and Jeanne Martin

The unformatted source for the Project Definition may be found at
.569800:PSC:TEMPLATEDF

The input for the Milestone Chart may be found at .569800:PSC:TOOLPDMC

UCID-20643
Page 21

7, 1982
29, 1982
2, 1982
6, 1982

22, 1983

User Systems Guidelines for Software Projects
UCID-20643
Page 22

Project Definition/Elxanples/^arallel Processor Project

Example PD3. Parallel Processor Project—Languages and
Compilers, Basic Compiler Optimization Project

Project Definition

Parallel Processor Project
Languages and Compilers

Basic Compiler Optimizations Project

purpose:

There is a need to identify language-independent and
machine-independent techniques to optimize the use of parallel and
vector computers. As a tool to investigate possible implementation
techniques, we propose an experimental compiler for a small subset of
the Ada language.

just i f icat ion:

The lab has always been interested in using the most powerful
scientific computers available. Currently the most powerful machines
are vector processors such as the CRAY-1 and the CDC Cyber 205. The
vector machines are however reaching the limits of their capabilities.
To get the kind of performance increase that we are interested in we
will probably have to acquire some kind of parallel processor. One
does not, however, see the performance increase when the hardware is
installed. The software has to be modified to take advantage of the
increased capabilities of the hardware. Our past experience with the
STARs illustrates this. To do the job correctly, software should be
completely rewritten with parallel algorithms in mind. The software
should be rewritten in a language in which the parallelism inherent in
the algorithm is easily expressible. This is a long and involved
process. During this transition period it should be possible for
existing software to exploit the new architecture as much as possible.
One way to do this is to provide optimizations within the compilers for
the new machine that attempt to utilize the vector and parallel
hardware in as efficient a manner as possible. Thus, existing software

D R A F T

User Systems Guidelines for Software Projects
UCID-20643
Page 23

Project Def inition/Exanples/f'arallel Processor Project

could in general enjoy marginal speedup by incurring no more cost than
that of recompilation.

descript ion:

the language:
For the purpose of this investigation, a small but typical set of
sequential language features are required. These features should
include standard structured control constructs such as
if-then-else and for-do, simple data types such as integer, real,
and boolean, and multi-dimensional arrays. It is possible to
isolate a small subset of Ada to fill this requirement.

the compiler:
The compiler will consist of three sections. Figure 1. is a
high-level data-flow diagram showing the input to and output from
each section. The first section makes use of well-known
technology to generate a language specific intermediate
representation of the program being compiled. For the second
section, a method of internal representation that is both
language-independent and machine-independent must be devised.
Such a method does not currently exist, and will be of use for
future projects other than this one. The first two sections are
required to produce the input to the third section which is the
portion of the compiler that is of most interest in this
investigation. This is where parallelism may be detected and
operations that can be vectored may be discovered. The output
from this section will be a language-independent,
machine-independent, representation of the program in which the
parallelism and vector operations are made explicit.

goals:

goals for the project:

1. To discover techniques that can be used to transform programs
written in standard sequential languages into code that is
optimized for parallel and vector machines. (Much can be learned
from reading papers and reports on this subject, but there is a
great deal of knowledge that can only come from an attempt to
implement the techniques. Actual implementation will clarify and
reinforce information culled from papers and reports.)

D R A F T

UCID-20643
Page 24

User Systems Guidelines for Software Projects

Project Definition/Exanples/f'arallel Processor Project

I source code
I simple block structured language

I I
I parsing and type resolution |

I I

I machine-independent - language-dependent

I internal representation of source program

I
V

machine-independent - language-dependent to
machine-independent - language-independent

internal representation transformer

I
I machine-independent - language-independent
I internal representation of source program

I
V

I I
I parallel and vector optimizations |

I
I transformed program graph
V

optimization statistics

optimization diagnostics

FIGURE 1

D R A F T

User Systems Guidelines for Software Projects
UCID-20643
Page 25

Project Definition/Exanples/t'arallel Processor Project

2. To discover how difficult it is to implement these techniques in
a language-independent and machine-independent manner. (At this
point we do not know what kind of parallel processor we will be
likely to acquire. It would be nice to develop techniques now
that can be useful on whatever kind of machine we will acquire
and that will not have to be reproduced each time another new
machine is acquired.)

3. To identify the characteristics of these techniques that are
language-independent or machine-independent. (This should help
us identify those characteristics in machines and languages that
detract from our optimization efforts. It may also help us to
decide what kind of problems are best solved using certain
language constructs on certain kinds of machines.)

4. To investigate intermediate representations. (A compiler built
of modules most of which are language-independent, machine
independent, or both, would be of great future benefit. Can we
find intermediate representations that are sufficiently powerful
to allow us to do this and still produce compilers that generate
highly optimized code?)

goals for the experimental compiler:

1. Since the compiler is primarily a research vehicle, it is
essential that it be highly modular and easy to modify, so that
different strategies may be investigated.

2. Since it is an experimental compiler that does not even produce
code, normal goals for compilers (such as reliability,
efficiency, well-engineered, user-oriented diagnostics, etc.)
can be siighted.

relation to previous work:

Dr. David Kuck and others at the University of Illinois have done a
lot of work in the area of optimization techniques for vector and
parallel computers. They have mainly looked at the problem of
vectorizing FORTRAN do loops by creating and then analyzing data
dependency graphs built from a representation of the subject program.
They have also looked at methods to detect when do loops can execute in
parallel rather than in a sequential iterative mode. This project will

D R A F T

User Systems Guidelines for Software Projects
UCID-20643
Page 26

Project Def inition/Elxanples/t*arallel Processor Project

basically be a vehicle to gain an understanding of their techniques and
to try to identify any machine or language dependencies in the
techniques. The attempt to implement them in a machine-independent and
language-independent way should indicate the basic set of information
that is required in the intermediate representation of a program in a
compiler in order to perform these optimizations.

project phases:

The life cycle of this project is atypical since the compiler to be
developed will not be a supported product. User interface and
documentation can be ignored. However, testing and project
documentation are highly significant. The major task with regard to
project management is to keep good records of the decisions made and
the optimizations that were effective.

There are three major milestones: 1) completion of the project
definition and description, 2) determining the machine-independent,
language-independent internal representation of the code, and 3)
arriving at a basic set of optimizations. There may be several
iterations of the latter two milestones. Only two are shown in the
milestone chart below.

manpower estimates:

A very rough estimate of of the time required is 0.5 man-years. A
large portion of the project is the initial definition of the machine
independent language-independent internal representation. It is hoped,
however, that the effort to develop the definition can be shared with
the modular compiler project. That may cause a delay in the project
but then the optimizations developed should be usable in the modular
compiler, making any delay worth the wait. A milestone chart is
included. See Figure 2. General milestones are given along with rough
time estimates. These time estimates are based on one person working
on the project half-time with the exception of the initial
machine-independent language specification. That estimate is based on
four people working half-time.

D R A F T

User Systems Guidelines for Software Projects

Project Definition/Examples/Parallel Processor Project

VECTOR / PARALLEL

LEGEND

O P T I M I Z A T I O N S IL s
fLANNLU ' ' KKOJtCI fKK / LANG COMt" U A I t 0 1 / . ! 6 / B 4
ACTUAL ^ ^ D I V I S I O N USD/LG TIME 14 15 24
COMPLETED -w REPORTED BY A W SHANNON REPORT NO 1

MILESTONES

PROJECT DEF IN IT ION

PROJECT DESCRIPTION

I N I T I A L MIL DEFN

I N I T I A L OPTIMIZATIONS

MIL REFINEMENTS

BASIC OPTIMIZATION SET

XEB

i
MAR

i
=•

•=

APR

i
MAY

i
J UN

i

{=.

t o

JUL

i "O

AUG

i »o
SFP

i
•o
IS

FIGURE 2. Milestone Chart

revision history:

02 Feb 1982 - document origination
16 Feb 1982 - draft released to T. Axelrod for use in meeting with

Woodruff
26 Feb 1982 - draft released to D. Seberger for review and release in

USD 5-year planning
- draft released to J. Martin for Project Standards
Committee review as a sample project definition

05 Mar 1982 - final draft
23 Mar 1982 - revised by J. Martin to be used as an example in the

description of Project Definitions in the guidelines
document

D R A F T

UCID-20643
Page 27

User Systems Guidelines for Software Projects
UCID-20643
Page 28

Project Definition/Exanples/Parallel Processor Project

22 Jan 1983 - 2nd revision as example of a Project Definition based on
revision of the Project Definition Guideline

author: Al Shannon

unformatted text for PD is at
.569800:PSC:SHANNONS:PPPWBYJM

input for the milestone chart is at

. 569800:PSC:SHANNONS:PPPMCHRT

D R A F T

User Systems Guidelines for Software Projects
UCID-20643
Page 29

Project Definition/Tools/Available Tools

Project-Definition Tools

Available Tools

There are no tools included in this section that directly support
writing a PD. Instead, there are tools for general document preparation and
picture drawing.

Problem-definition languages (SADT, PDL, PSA/PSL, etc.) and processors
for these languages are specialized—targeted for very complex problems.
These languages and processors are not generally available at LLNL. They
are intended for use with detailed requirements and specifications, and
their output would be part of the supporting documentation for a
multiple-document project definition.

The Minimal Ada Programming Support Environment (MAPSE) is presently
too unstable to support this phase of software development [Ref. l]. If
these tools become available, they will be recommended for inclusion in USD
long-range plans.

The available tools are listed below and are described in two
groups—documentation preparation and drawing. Each tool is referenced by a
document and reference number, or by a directory pointer, or both a document
and pointer. In addition to the tools listed here, see User-Documentation
Tools on page 135.

UNLESS NOTED OTHERWISE, THESE TOOLS ARE AVAILABLE ONLY ON A CDC 7600

Document Preparation

The RED Dialect of TRIX

Document: H. Moll, The Trix Report Editor, LCSD-818 (1984) [Ref. 2].

To get a printed copy, log onto a CDC 7600 and enter

trix aclprintlnip trixred ann. id

Use: The RED dialect of TRIX generates, updates, and formats reports in
an interactive mode from a terminal. Because the RED dialect is an
extension of the AC dialect, all editing features of AC are available.
Source text can be formatted and viewed on the Television Monitor

UCID-20643
Page 30

User Systems Guidelines for Software Projects

Project Definition/Tools/Available Tools

Display System (TMDS). The RED dialect is loaded by issuing the AC
command RED (enter: red). To send and receive the 7-bit ASCII
character-set, issue the command RED7 (enter: red?).

REDPP (Post processor for RED dialect of TRIX)

Documents: J. C. Beatty, REDPP — A Postprocessor for the TRIX/RED
Report Editor, UCID-30125 Rev. 1 (1977) [Ref. 3].

K. O'Hair, Computer Graphics by Example, Part 3 — REDPP: A
Post Processor for TRIX/RED, UCID-30166 (1978) [Ref. 4].

Copies of the above documents are available at the Computer

Documentation Library, T2106, Room 1001. Ext. 2-0592.

Use: REDPP accepts as input reports formatted by TRIX RED. The output
produced is for different devices, one at a time. The devices include
TMDS, Remote Job Entry Terminal (RJET), a printer (NIP), etc. Text can
be printed in different fonts, and pictures may be intermixed with
text.

SPELLING

Document: SPLREPORT. This document can be retrieved through XPORT from

.502500:reports:splreport [Ref. 5].

To get a printed copy, log onto a CDC 7600 and enter

trix aclprintlnip splreport box ann ide

Use: The SPELLING program is a spelling checker. It checks all
alphabetic words in your input file against a database of alphabetic
words. If you wish, you may supply a database of your own. Your
database will be accessed and checked in addition to the one supplied
in the program. A file called ERRORS will be generated. ERRORS will
contain all the words in the checked file that did not match a word in
the supplied databases. After you run the spelling checker, print a
copy of ERRORS if you need to refer to it.

User Systems Guidelines for Software Projects
UCID-20643
Page 31

Project Definition/Tools/Available Tools

To execute SPELLING, type

gap spelling filename _your database^

For a brief explanation, type

gap heIp spel1ing

Drawing Preparation

PICTURE

Documents: J. C. Beatty, PICTURE — A Picture-Drawing Language for the
TRIX Report Editor, UCID-30156 Rev. 1 (1979) [Ref. 6].

K. O'Hair, Computer Graphics by Example, Part 4 —PICTURE:
A Picture-Drawing Language for TRIX Report Editor, (1978)
[Ref. 7].

Copies of the above two documents are available in the
Computer Documentation Library, T2106, Room 1001,
Ext. 2-0592.

Use: PICTURE is a set of commands for drawing diagrams that are to be
plotted by REDPP. PICTURE commands may be included in TRIX RED source
files or may be separately compiled and displayed by REDPP.

SCI (Used to draw structure charts and available only on Cray computers)

Document: C. Streeter, SCI (Structure Chart Interface) Users Manual
(1982) [Ref. 8],

You can obtain a copy of the document from the author or from

AI Liebee.

The control lee can be retrieved by entering

xportlread .522575:tools:sci

Use: This drawing tool is targeted more toward the design phase of
software development. SCI allows a user to construct a structure chart
on the TMDS. Once the chart is constructed, it can be extended,
modified, and plotted on different media.

file:///_your

UCID-20643
Page 32

User Systems Guidelines for Software Projects

Project Definition/Tools/Available Tools

MCHARTSC (A program that can be used to modify milestone charts)

Document: J. S. Chin, MCHARTSC: A Program that Creates and Modifies
Milestone Charts (1978) [Ref. 9].

To obtain a copy of this document, log onto a CDC 7600 and

enter

trix aclprintlnip ucid30165 box ann id

To use the program, type

gg mchartsc options

Use: To include a milestone chart using MCHARTSC in a document, type nk
before you output the chart (this keeps the UX80 file). Then, ask for
the large size by typing 1 (ell). The UX80 file can then be included
in your text file. This was described in the March 1982 Tentacle,
page 16 [Ref. 10]. To see the results of using MCHARTSC, see the two
project definition examples in this section.

FTE (A resource-allocation program for managers)

Document: P. Keller, FTE: A Resource-Allocation Program for Managers

(1977) [Ref. 11].

Use: This tool is targeted more toward the later phases of project

management.

Ideal Tools

There are at least four types of tools that would aid in writing a PD.

These are a project-definition template, tools for the requirements

definition, integrated document-preparation tools for a PC, and an

environment with data-base management facilities.

A Project-Definition Tenplate

Until a project-definition template is available, the unformatted text
of the two examples in this section my be used as a guide. To obtain the
source, refer to the Author Information section in each example. If a
widely used template tool is developed, a project-definition template tool
based on the same model could be very useful.

User Systems Guidelines for Software Projects

UCID-20643

Page 33

Project Definition/Tools/ldeal Tools

Tools for the Requiranents Definition

More sophisticated tools for the requirements definition are needed.
The tools would be used to validate the definition and assure that the
design, coding, and documentation fulfill the requirements. An integrated
tool set would justify expending effort to learn, use, and maintain a new
language, and its processors, devoted solely to project development.

Integrated Dociment-Preparation Tools on a PC

An integrated set of tools available on a personal computer (PC) could
provide offline and online support for all documentation, including the PD.
The tool set would include processors that check spelling and suggest
improvements in writing style, picture processors that have power comparable
to PICTURE, and project-management aids similar to MCHARTSC and FTE.

An Envirorment with Data-^ase Management Facilities

An environment, such as proposed in the Programming Environment Project
Definition [Ref. 12] and with access to data-base management facilities, is
needed. It could provide a project-definition base for maintaining all
project documents, including the PD.

User Systems Guidelines for Software Projects
UCID-20643
Page 34

Project Definition/Bibliography

Project-Definition Bibliography

Anonymous (Stoneman), Requirements for Ada Programming Support Environments,
Department of Defense, Washington, DC (1980).

R. L. Glass, "A Minimum Standard Software Toolset," ACM-SIGSOFT Engineering
Notes, 7(4) (1982).

K. L. Heninger, "Specifying Software Requirements for Complex Systems," IEEE
Transactions on Software Engineering, SE-6(1), 2-13 (1980).

R. C. Houghton, "Software Development Tools: A Profile," Computer, 16(5),
63-70 (1983).

W. E.Howden. "Life-Cycle Software Validation," Computer, 15(2), 77-78
(1982).

Jet Propulsion Laboratory, Standard Practices for the Implementation of
Computer Softvjare, California Institute of Technology, Pasadena, CA, JPL
78-53 (1977).

B. L. Meek and B. A. Heath, Guide to Good Programming Practice John Wiley

and Sons, New York, 1980).

M. Page-Jones, The Practical Guide to Structured System Design (Yourdon

Press, New York, 1980).

L. J. Osterweil, A Software Life-Cycle Methodology and Tool Support, NTIS,

Atlanta, GA. AD-A076 335 (1979).

D. T. Ross, "Reflections of Requirements (Software Engineering), IEEE
Transactions on Software Engineering, SE-3(1), 2-5 (1977).

D. T. Ross and K. E. Schoman Jr., "Structured Analysis for Requirements
Definition," IEEE Transactions on Software Engineering, SE-3(1), 6-15
(1977).

User Systems Guidelines for Software Projects
UCID-20643
Page 35

User Interface/Overview

USER INTERFACE

Overview

An interface is defined as a common boundary between systems, devices,
or programs. A user interface (UI) is that portion of a software package
specifying how the person running a program and the program software
communicate. To the user, the UI is the most visible part of a software
package; and if the interface is well programmed, it is possible to use the
software without knowing about its internal workings. A product is often
judged on how well the UI software handles error situations and how helpful
it is in accomplishing the user's task.

In this chapter, we will first present guidelines for building a UI and
provide steps to take that will help you prepare a well-designed UI; second,
we will give a you an example of how to build a UI; third, we will suggest
material to include in specific UIs; and fourth, we will list and describe
some tools you might use to implement interface generation. A bibliography
for this chapter is also provided on page 51. You may find the glossary on
page 137 useful.

Some aspects of a UI are not controlled by the USD interface-designers
and standards for these are not covered in this chapter. The material not
included here are the operating systems (LTSS, UNIX, NLTSS, etc.), specific
hardware devices, characteristics of the devices (baud rate, resolution,
focus, flicker, color, etc.), and the physical environment.

General Guidelines for Building a User Interface

When you build a UI, there are some phases or areas that are considered
essential and others that are considered less important but helpful to
cover. In Table 2 (page 36) is a summary of the essential phases in writing
a UI and a brief description of each in outline form. Each item listed is
then expanded. A section describing voluntary design considerations
foilows.

For both the essential and less important areas of the UI, there are
commonly-used terms for commands, keywords, specifiers, etc. We suggest
that if you use any of these, you allow for them to be typed in upper- and
lowercase combinations and, possibly, misspelled. Refer to the Glossary on
page 137 for how to use the terms END, HELP, TV, TTY, BOX, etc. and the
control functions in menus and documents.

UCID-20643
Page 36

User Systems Guidelines for Software Projects

User Interface/General Guidelines for Building
a User Interface^^ssential Phases

Essential Phases

Table 2. Summary of the essential phases in writing a user interface for
software generated at Lawrence Livermore National Laboratory.

Phase Descr ipt ion

Write the project definition
for the user interface

The project definition is written before
designing the user interface. It should
include the essential contents—that is,
purpose, description, resources, and
accountability (refer to Table 1, page 6)

Design the user-interface
module

The user interface should be designed
before other parts of the software
package. If the interface is designed as
a stand-alone package or as a module, it
could easily be changed or updated to
reflect the needs of the users.

Write the help package A detailed help package should be included
in the interface module.

Prepare a user manual

Conduct a design review

Write the portion of the user manual that
descibes the interface before conducting
the design review.

The user interface should pass a design
review before building the product. The
design review could be conducted either by
building an interface prototype for
prospective-user experimentation or by
asking prospective users to review the
interface documentation.

Write the Project Definition

Before designing a UI, write a project definition (PD). Use the
guidelines in the chapter on PDs (page 5), with particular emphasis on
profiles and needs of the intended users—that is, the audience.

User Systems Guidelines for Software Projects
UCID-20643
Page 37

User Interface/CJeneral Guidelines for Building
a User Interface/Essential Phases

You may want to interview potential users and find out directly how
they use computers or what they would like the interface to do.

Once you identify the potential users, you can group them and note the
requirements for each group. For example, most experts prefer terse
commands, while novices prefer the question and answer, menu, or
form-filling formats. Novices are generally tolerant of extra typing, but
managers are not. If the users will be both novices and experts, or you
expect the novices will quickly become expert, you may wish to provide two
or more modes of interfacing with the main product. The users could choose
the most comfortable mode if you write a description of how each mode works.
This description may also help you and potential users identify awkward
designs.

Design the User-Interface Nfodule

The user interface should be designed both before other parts of the
software product and as a separate unit or module. The user interface and
the functional portion of the software project will influence each other.
However, if you postpone the design of the interface, other concerns may
inadvertently take priority, and the success of the entire project may be
reduced.

If the user interface is designed as a module, it easily can be
replaced or updated. For example, if your project plan includes the use of
a prototype interface, you could substitute the prototype without reworking
the entire software package. Also, new features requested by users could be
incorporated in an interface module without disturbing the rest of the
project.

Write the Help Package

The UI should contain a help package. Whenever the user needs to make
a decision or choose among several options, he should be able to request
additional information that explains the options with words or diagrams.

The help package could be integrated into the UI design. For example,
an error could be treated as an implicit command for help, and successive
errors could be treated as implicit commands for more detailed explanations.
Another example is an interface that only allows legal displayed
choices—other choices become illegal. That is, all keys except those
listed in the displayed (legal) list are disabled.

User Systems Guidelines for Software Projects
UCID-20643
Page 38

User Interface/General Guidelines for Building
a User Interface/Other Considerations

It is theoretically possible to provide a generalized help package for
a class of software products. This could be used as a stand-alone tool, or
it could be accessed from individual products. In the latter case, the
individual products would not have to include a help package. However, the
project team would have to supply information on the help requirements of
its product to the person maintaining the help tool.

Write a User Meoiual

The UI user manual should be written before the design review. This
would help to consolidate ideas and to identify problems and resolve them
before the code is written. If problems are discovered early, rewriting the
code could be avoided.

A well-conceived user manual should have a description or an
illustration of what the user can expect at each point in the interaction.
All information needed to perform the task(s) should be provided in standard
terms and in a form both the novice and expert users can access. This may
mean that, as with the interface itself and the help package, there be two
or more ways to access information.

Conduct a Design Review

The user interface should pass a design review before building the
product. The review could be done either by the prospective users
experimenting with a UI prototype or reviewing UI documentation. If the
prospective users misinterpret the instructions, you could then modify the
interface to reduce the error probability.

Other Considerations

There are additional items to consider in building a UI. Although
these might not apply to every situation, you might find the items below of
value and wish to evaluate your UI in the context of each.

Assess Requirements

Each package will have unique requirements, but there are some
important requirements you should think about as you prepare the interface.
A comprehensive, but necessarily incomplete, list follows.

User Systems Guidelines for Software Projects

User Interface/(]leneral Ckiidelines for Building
a User Interface/Other Considerations

UCID-20643

Page 39

List necessary performance criteria. For example, list response
time, error handling, and the possible user learning—curve.

Do not make the interface the same for all terminals. This would
penalize the users of advanced terminals if you prepared the
interface for less advanced ones. However, use the advanced features
when you can.

Assume that everyone has a screen for output and a keyboard for
input. Allow the input to appear immediately at the work station.
If you're expecting the users to work with pointing devices, allow
for easily adding pointing and selecting input. Consider voice
input.

Identify tasks the product must perform. Pay special attention to
high-frequency tasks. Can the high—frequency tasks be automated so
that no keystrokes are needed. Can the number of keystrokes or
movements be minimized? Tasks can be broken into subtasks for easier
analys is.

Consider how user performance can be enhanced. Will default values
reduce needed input? Will short commands reduce keystrokes? Is a
common task merely a sequential invocation of commands? If so, then
create a new command to invoke the sequence.

Identify the methods a user will perform to accomplish tasks. List

the functions that should be available. Describe typical scenarios

for different user tasks.

Maintain Sinplicity and Consistency

Keep the interface simple. Consider removing options that only a few
people would use, and resolve all design and implementation trade-offs in
favor of simplicity and consistency within your interface and among others.
For example, use the one word ERASE to remove characters, lines, sentences,
and paragraphs rather than a different word to remove each. At every
decision point or menu listing, keep the number of menus small (seven or
fewer) and the number of choices within a menu even smaller (three or
fewer). See page 43 for more information on menu-driven interfaces.

To maintain consistency, you could model your interface after a
successful one and employ commonly-used commands. However, if you plan to
deviate from common usage, justify it in the initial document. Then, be
consistent within your program, use common conventions, and choose true

User Systems Guidelines for Software Projects
UCID-20643
Page 40

User Interface/General Guidelines for Building
a User Interface/Other Considerations

opposites for opposite operations. An example of a common convention is to
use a left to right or top to bottom format. STOP and GO are opposite
choices rather than STOP and CONTINUE.

Organize for Quick Conprehension

If your program is simple and consistent, it should be usable with
little or no documentation. To assure this, avoid jargon, use vocabulary
and structure consistent with your audience, and include access to help
faci1i t ies.

Determine the way you wish to control the interface—that is, what

dialogue you use. Choose one from the following list.

Question and answer

Form filling
Menu selection

Function keys
Command language

Natural language
Interactive graphics—for example, light pen, mouse, etc.

For whatever dialogue type you select, let the user be in control by
allowing him a way to restart, reset, abort, skip, etc. Separate the
programming language from the task language by letting programming commands
be executed through the control-key commands.

Provide Working Enviroiments

For editorial tasks, provide the same text editor for each task. Don't

change text editors within the project. However, do allow different windows

for different tasks.

Establish Execute Lines

Execute lines should be similar to those of other programs. In
addition, they should be terse and use file input rather than long lines.
Input should be allowed in any order and omitted items provided for by
defaults. If there are no defaults for omitted items, provide prompts—for
example, prompt the user for a TV monitor number.

User Systems Guidelines for Software Projects
UCID-20643

Page 41

User Interface/General Guidelines for Building
a User Interface/Other Considerations

Present Models or Analogies

Present the user with a model or analogy of the interface to help
define what the interface will accomplish. For example, if your application
is building pictures interactively with the program, you might choose the
analogy or model of an artist at an easel or a draftsman at a drawing board.
If your program doesn't lend itself to a direct analogy, present the user
with a familiar model that will work with the interface. For example,
compare your program with a calculator or microwave oven with its buttons.
You can then relate function buttons and menu items in the software to the
model(s).

Provide Error Tolerance

The interface should allow for user error at several levels. For
example, the program should

• Check and correct user input

• Provide a restart feature

• Provide a command to escape or undo user error

• Allow the user to edit input discovered to be in error

Provide Error Messages

Error messages should be meaningful and not criticize the user. For
example, systax error responses should identify what was expected and where
it was expected. Indicate what the product was trying to do and suggest

alternate paths for the user. Cryptic output, such as ERROR 1 1 10
may force the user to read a manual or call a consultant unnecessarily.

User Systems Guidelines for Software Projects
UCID-20643
Page 42

User Interface/Guidelines for Specific
User Interfaces/Interactive Products

Establish Cues

Color, blink, and sound (a bell) provide powerful cues and can be used
for highlighting and calling attention to aspects of the interface. Be
careful to use these cues only for particular purposes. If the cues are
used indiscriminately, a user may disregard them or be confused.

Prepare a Pleasing Layout

Design the interface layout with eye appeal in mind. Jan White
[Ref. 12] suggested that you use the following graphics art rules.

• Let the form or layout be eye appealing

• Highlight important output

• Avoid clutter

• Avoid extraneous output

Guidelines for Specific User Interfaces

If your interface falls within the interactive, batch, or graphics
category, there are other guidelines you may wish to include. These are
out 1ined below.

Guidelines for Interactive Products

• Error messages should be only one line.

• Use multilevel help messages. For example—if the user asks for
help, provide a terse help message first; but allow the user to ask
for more help in the form of more detailed information.

• Allow the user to edit previous input. The user can then correct any

errors and not have to re-input material.

User Systems Guidelines for Software Projects
UCID-20643
Page 43

User Interface/Guidelines for Specific User Interfaces/Batch Interfaces

• Remember to remain interactive as you prepare the program.
— Keep the product small
— Consider using overlays
— Consider using controller/controllee capabilities
— Consider using interactive machines or interactive modules

Guidelines for Menu-Driven Products

• Keep the number of menus in the entire interface small—seven, plus
or minus two is the preferred number.

• Keep the number of choices per menu small—three or fewer.

• Display only legal choices with minimum information

• Use meaningful icons (see Glossary, page 137) for the choices. For
example, use a red-octagon icon for STOP.

• Include instructions for selecting items on the menu.

• Use terminal pointing-hardware, if available, to select menu items.

• Use multilevel menus where needed for additional information. For
example, multilevel menus in a help package allow for different
levels of information detail.

• Display something on the screen rather than leave it blank. You can
display status (where I am), history (where I was), or options (where
I can go next).

• Select graphics formats following graphics arts guidelines.
[Ref. 13].

Guidelines for Batch Interfaces

• Allow five or more lines for error messages if needed.

User Systems Ckiidelines for Software Projects
UCID-20643
Page 44

User Interface/Guidelines for Specific User Interfaces/Batch Interfaces

Guidelines for Graphic Interfaces

• Choose symbols that can be seen easily. For example, use filled
circles rather than dots or unfilled circles.

• Choose symbols that are easy to differentiate. For example, use
circles and triangles rather than circles and octagons.

• Choose appropriate colors. For example, use green for go, safe,

continue, etc. and red for stop, danger, etc.

Select highly legible fonts. Roman serif is considered the most

legible.

User Systems Guidelines for Software Projects
UCID-20643
Page 45

User Interface/fccarrple/ASCII to EBCDIC File Converter

User Interface Example—Building a User Interface

The UI example described in this section covers building an interface
for an ASCII to EBCDIC file-converter. The material here could be used also
in writing the overall project definition and the overall design-guidelines
for the file-converter.

Example UIl. ASCII to EBCDIC File Converter

The Audience

This product will be used occasionally by system programmers. They
will tolerate cryptic I/O messages but prefer that the messages be
documented. A photocopy of work notes will be enough documentation for
them. However, if the programmers need the documentation to execute the
software, they probably won't use the program. That is, the programmers
don't want an interface that insulates them from what is actually occurring
in the system. On the other hand, they don't want their hands held or too
cute icons—for example, an icon that looks like a garbage can for "delete
files, but don't destroy them" is cute, but it might not mean the same thing
to the systems programmer as to the builder.

Pteview of User-Interface Requirements

After reviewing the requirements, the intended users agreed that the

following features are needed to use the interface.

• Executes with fewer than two dozen keystrokes

• No external-documentation requirement

• Learning time of less than two minutes

•utility is fail-safe and will not destroy the input file

Error messages are explicit

User Systems Guidelines for Software Projects
UCID-20643
Page 46

User Interface/Fxanple/ASCII to EBCDIC File Converter

User-Interface Design

Data-Flow Diagram

Error messages, / \ / \
Help message / Translate \ / Translate \
< / between user\ File names/ ASCII file \

\ and computer/ >\ to EBCDIC /
Commands \ / \ file /

\ / \ / ->

A
/ \

ASCII A / W EBCDIC
file / \ file

The user interface part ("Translate between user and computer")
may be further broken down into:

/ \
Help message / Compose \
< / help \

\ message /

\ /
\ /

/
help A /

request /
/

/ \
Commands / \ File names

>/ Decode \
\ user input /

Error messages \ /
< \ /

User Systems Guidelines for Software Projects
UCID-20643
Page 47

User Interface/Exanple/ASCII to EBCDIC File Converter

Data Dictionary

Error messages Brief explanations of what is wrong
Help message A short tutorial, usually on a very specific topic
Help request A command or flag used to select a tutorial
Commands Some prompt that instructs the computer to do something
File names Names of the ASCII and EBCDIC files

Design Analysis

We analyzed the design by thinking about alternative user-interface
design, writing down the designs, and selecting the design that best fits
the project requirements. For the alternative interfaces below, we assumed
that the user is already logged in. All user interfaces described work with
the same process—translate ASCII file to EBCDIC file.

The different interfaces represent different dialogue techniques. For
example, alternatives 1 and 3 are command language; alternative 2 is a menu;
and alternative 4 is a quest ion/answer format. Each alternative is a
separate module, and other modular user-interfaces could be considered.

NOTE: User response can be typed in as seen or in any variation of
lower- and uppercase letters.

Alternative 1

User types: CONVERT AFILE BFILE

Program responds: ALL DONE

On completion, BFILE contains an EBCDIC conversion of the contents of
AFILE. If BFILE already exists, it will be destroyed and recreated. If
only AFILE appears on the execute line, a file with a name constructed by
prefixing the current suffix to $EBCDIC will contain the EBCDIC conversion
of AFILE. If no file names appear on the execute line, the user gets a help
message.

Alternative 2

Assume that the user normally uses IMP (U, or some other environment).

User types: C 1 (convert file 1)
IMP displays: ALL DONE

On completion, the contents of the selected files are changed to
EBCDIC. The user gets a help message if the file selection is omitted.

User Systems Guidelines for Software Projects
UCID-20643
Page 48

User Interface/Exanple/ASCII to EBCDIC File Converter

Alternative 3

User types: CONVERT FROM. AFILE TO. BFILE
Program responds: ALL DONE

On completion, BFILE is the EBCDIC version of AFILE. The user gets a
help message if he makes a mistake (this is a form of error handling).

Alternative 4

User types: CONVERT
Program responds: TYPE ASCII FILE NAME
User types: AFILE
Program responds: TYPE EBCDIC FILE NAME

User types: BFILE
Program responds: MORE? TYPE: YES or NO
User types: NO

Program responds: ALL DONE

On completion, BFILE is the EBCDIC version of AFILE. The user will get

a help message if he types HELP.

Design Selection

We selected Alternative 1 as the best fit for user requirements.

Usage Scenarios

There are three possible scenarios that the user could employ. Each is

out 1ined below.

Scenario 1

User types: CONVERT AFILE BFILE
Program responds: ALL DONE

Scenario 2

User types: CONVERT

Program responds:
This program will convert a LLNL ASCII file to a IBM
360-compatible EBCDIC file. To run this program, type;

convert namel name2

User Systems Guidelines for Software Projects
UCID-20643
Page 49

User Interface/Exanple/ASCII to EBCDIC File Converter

where namel is the name of your Ascii file and name2 is the
name of the EBCDIC file you want created to contain the
converted text. If name2 is omitted, a file will be created
with the name ?$EBCDIC, where ? is the current suffix.

f i1ename(s)?

User types: AFILE
Program responds: ALL DONE

Scenario 3

User types: CONVERT ANONE
Program responds: CANNOT OPEN ANONE

This program will convert a LLNL ASCII file to a IBM
360-compatible EBCDIC file. To run this program, type:

convert namel name2

where namel is the name of your Ascii file and name2 is the
name of the EBCDIC file you want created to contain the
converted text. If name2 is omitted, a file will be created
with the name ?$EBCDIC, where ? is the current suffix.

f iIename(s)?

User types: END

Program responds: ALL DONE

Error Detection

The following errors should be detected: input file does not exist;
output file can't be created; more than two symbols on the input line.

User Systems Guidelines for Software Projects
UCID-20643
Page 50

User Interface/Available Tools

Available Tools

The implementation tools listed below are available but are not
necessarily recommended for your specific application. Refer to the
sections on tools in each chapter for other, possibly relevant, programs.

URLIB

Document: J. Minton, et al., URLIB-Part2, M-046 (1979) [Ref. 14].

To get a printed copy, log onto a CDC 7600 and enter

trix aclprintlnip urlib ann id

Use: URLIB is a utility-routine library containing many subroutines.

The subroutines in this library can be used to receive input that is

consistent with other utility routines.

LR
Document: K. O'Hair, LR System User Manual, LCSD-313, Draft (1985)

[Ref. 15].

To get a printed copy, log onto a CDC 7600 and enter

trix aclprintlnip Icsd313 ann id

The LR system is a collection of processes and skeleton parser
source-files that generate complete parsers for a grammar known as a
Backus-Naur form (BNF). A parser is a code that accepts and decodes
input languages or sets of commands.

Use: The LR system accepts a user interface defined in BNF and produces
a source code that will decode the input of the user interface. The
generated source-code is complete and can be used to test your
interface or be included with some action routines, making it the
permanent user-interface coding.

User Systems Guidelines for Software Projects
UCID-20643
Page 51

User Interface/Bibliogrephy

User-Interface Bibliography

R. W. Bailey, Human Error in Computer Systems (Prentice-Hall, Englewood
Cliffs, NJ, 1983).

L. Borman and B. Curtis, Eds., CHI'85 Conference Proceedings—Human Factors
in Computing Systems, Association for Computing Machinery Special Interest
Group on Computer and Human Interaction (The Association for Computing
Machinery, Inc., New York, 1965).

S. K. Card, T. P..Moran, and A. Newell, The Psychology of Human-Computer
Interaction (Lawrence Eribaum Associates, Hillsdale, NJ, 1983).

J. D. Foley, "The Design and Implementation of User-Computer Interfaces,"
SIGGRAPH Tutorial (Association for Computing Machinery, Inc., NY 1982).

J. D. Foley, "Managing the Design of User-Compiler Interfaces," Computer
Graphics World,

T. Gilb, Humanized Input (Winthrop Publishers, Cambridge, MA, 1977).

J. D. Grimes and H. R. Ramsey, "Psychology of User-Computer Interfaces,"
SIGGRAPH Tutorial (Association for Computing Machinery, Inc., NY, 1983).

B. Huckle, Man—Machine Interface (Savant Research Studies, Carnforth,
Lancashire, England, 1983).

C. Wetherell and A. Shannon, LR Automatic Parser Generator and LR{1) Parser,
Lawrence Livermore National Laboratory, Livermore, CA, UCRL-82926 (1979).

C. Wetherell and A. Shannon, "LR-Automatic Parser Generator and LR(1)
Parser," IEEE Transactions on Software Engineering SE-7(3), 274 (1981).

User Systems Guidelines for Software Projects
UCID-20643
Page 52

User Systems Guidelines for Software Projects
UCID-20643
Page 53

Design/Design Guidelines

DESIGN

Overview

The design phase of software development involves transforming the
project definition (PD) into a design packet (DP). The PD can be thought of
as what is needed and the DP as a plan for achieving how the software will
accomplish the defined task. The design phase can also be thought of as the
solution phase, i.e., someone states the problem (PD) and a solution is
described (DP). The design is, thus, a description of how the software will
be implemented—it does not include the coding. For information on coding,
see page 71 in this document.

In this chapter, we will describe guidelines for developing a design
based on the principles of structured design supported by the Yourdon group,
specifically by Page-Jones [Ref. 16]. There are other acceptable ways to
specify a design. Refer to the Design Bibliography on page 69 for material
on other approaches.

First, we will present guidelines for preparing a DP and for its
preview and review. The preview and review, referred to by Page-Jones and
here as the design walkthrough or walkthrough, are considered necessary for
every design. Second, we will give a simple example of a DP and its
walkthrough. Third, we will outline some tools to support generation of the
DP.

Design Guidelines

Input to the design phase is the PD, and the results are an approved
DP. The package may contain such details as data-flow diagrams, a data
dictionary, structure charts, and a pseudocode in natural language or
narrative prose (refer to the glossary on page 137). The exact contents of
the DP are usually specified and deemed necessary by the walkthrough group
at the preview. Major changes in the package or in design, such as new
specifications or correction of errors discovered after the design phase
review, require that the walkthrough group reevaluate the entire DP.

The design walkthrough-group may consist of one person (not an author)
or as many as seven people, depending on the importance and size of the
project. The group leader or functional manager should designate the group
size.

UCID-20643
Page 54

User Systems Guidelines for Software Projects

Design/Design Guidelines

I Project Definition Phase

W
H
A
T

\
\
\

/
/
/

Data I
Dictionary |

\ /

v
DESIGN PACKET

Data Flow
Diagrams

I Structured |
I English I

I Data Structure | | Structure
I Diagrams | | Charts

Pseudocode

+ Design Walkthrough Approval

H
0
W

\
\
\

/
/
/

\ /
V

Coding Phase

Figure 2. Design-phase flow diagram. The design phase could also be called
the solution phase, i.e., someone states the problem (Project Definition)
and a solution is rendered (Design Packet).

User Systems Guidelines for Software Projects
UCID-20643
Page 55

Design/Design Guidelines/Structured English

Data-Flow Diagrams

A data-flow diagram (DFD) is a network representation of the problem
and solution, showing the active components and their interfaces. DFDs are
used to partition the system into manageable pieces. A DFD is also known as
a bubble chart, because the processes are represented as circles (bubbles)
where data flows into a process, is transformed, and flows out of the
process. A DFD should represent the data flow of the original problem as
much as possible.

The movement of data between processes is represented with arrows going
from one process to another (see the diagram in the example on page 61).
The movements are one-way paths. The bubbles of the DFD are the processes
that accept data flowing in and send data out to other processes or sinks.
The originator of the data is the source, and the receiver of the data is
the sink.

There is also a data store or storage place where no transformation of
the data is performed. In the example on page 61, the data store isn't

shown; however, it's usually drawn as a rectangle with no lateral sides,
only horizontal lines.

DFDs must be kept simple and uncluttered; for this reason, you should
always level your diagrams so that each diagram has between five and nine
processes. Leveling a DFD means that each process or bubble in a chart is
really a DFD in itself. By limiting the number of processes in each
individual DFD, you keep the overall picture simple, and details are kept in
the lower-level DFDs. You will always have one master DFD that describes
the entire system, possibly one DFD for each process in the master DFD, and
possibly even more DFDs for the processes in the second-level DFDs.

All data flow must have an origin—that is, a process, source, or data
store—or be considered input to the DFD. All data flow must also have a
destination—that is, a process, sink, or data store—or be considered
output from the DFD.

Data Dictionary

The design data-dictionary lists the different data-element types that
flow through your system and are seen in flow diagrams. Therefore, the
data-flow diagrams need a data dictionary, and these two go hand-in—hand.
The data-structure diagrams are used to describe complex data elements in
the data dictionary.

User Systems Guidelines for Software Projects
UCID-20643
Page 56

Design/Design Guidelines/Structured Eiiglish

For a more general definition of a data dictionary, refer to the
glossary on page 137.

Structured English

Structured English is simple English with short sentences and
we 11-understood verbs. English is a very complicated language and by
limiting yourself to simple sentences, eliminating adjectives and adverbs
whenever possible, and using elements from the data dictionary to describe

the processes in the data-flow diagram, you are using structured English.

Use structured English to describe the purpose of each process in your

data-flow diagram. In the data dictionary, use it to describe how the

different data elements are used.

Data-Structure Diagram

The data-structure diagram graphically details the contents of complex
data items in the data dictionary. The diagrams describe the various fields
and components of data elements in terms of understood
standard-data-coraponents, i.e., integers, reals, words, bytes, strings,
characters, etc.

Structure Charts

structure charts illustrate how a system is partitioned into
independent modules or black boxes and the relationships among all modules
in the system. Thus, structure charts show the overall structure of a
program plus the hierarchy of the program in terms of modules with
well-defined tasks and interfaces.

The three basic elements of a structure chart are: the module, the
communication, and the connections. The module of a structure chart is an
independent piece with a well-defined function and interface. The
connections in a structure chart represent the calling of one module from
another—the communication—and define the system hierarchy.

Communication between modules can be accomplished with couples. In the
example on page 64, there are two types of couples: control and data. Data
couples represent communication of a data entity, i.e., module A passes
module B the data I. Control couples represent control communication, i.e.,
module A calls module B, and B returns an error flag.

User Systems Guidelines for Software Projects

Design/Design Guidelines/Structure Charts

UCID-20643

Page 57

Types of Coi:5)ling

There are other types of coupling modules, and each determines how

independent the modules are. There are some control coupling modules, but

most are data coupling. Several types are listed below and are ranged from

bottom to top as bad to good. Note that ordinary I/O routines to open,

create, read, write, and close files may imply common or content coupling.

Good
t

t

t

Type of Coupling

Data

Meaning

Steunp

Control

Common

Content

t

T

t

Bad

Communicating through parameters
only. Modules must be at least
data coupled or they are not
communicating. This is the way true
black boxes communicate, they are
passed only the necessary information
to do their job and return only what
they are supposed to return, nothing
more.

Communicating with larger data
elements than necessary. Information
overkill, i.e., passing an entire
record when only one field is needed.

Communicating information that
determines the action to be performed
by a particular module; for example,
passing the parameters lOPT, A, and B
to a routine. When lOPT equals 1, it
does one thing, A=A+B. When IOPT
equals 2, it does another, A=A*B.

Communicating through global data area.
Any use of FORTRAN COMMON is a good
example of this.

Communicating through the state of the
module; for example, how many times a
module has been called. In most
FORTRANs the values of local variables
are retained from call to call. If a
FORTRAN routine relied on this informa­
tion, it would be content coupled. This
is sometimes called state memory.

UCID-20643
Page 58

User Systems Guidelines for Software Projects

Design/Design Guidelines/Structiare Charts

Types of Cohesion

How a module is put together and how its internal tasks relate is
defined as cohesion. In the chart below, the types of cohesion are
described and are ranged from from bottom to top as worst to best.

Best
t

t

t

t

r
Worst

Type of Cohesion

Functional

Sequent ial

Communicat ional

Procedural

Temporal

Logical

Coincidental

Meaning

Modules relate functionally.
There is true black-box interaction.

Modules relate in a sequential
manner. A definite order is required
in the calling of modules. For
example. Initialize, Terminate, ...

Modules relate through some common
input or database. For example.
Clear record. Fill record, ...

Modules relate only in that they help
to perform a procedure; each performs
partial actions of the procedure.

Modules relate only because they

operate in the same time frame.

Modules perform many different
actions in a similar manner, but with
a different result for each action.

Modules that perform many different
actions in different ways, and these
actions do not relate at all.

Pseudocode

Pseudocode is an informal program-like notation containing
natural-language text. It is used to describe and clarify the functioning
of a procedure or program. Pseudocode is used as a design aid, and some
people believe it to be better than a flow diagram, because it allows for
easier top-down (basic to more complex) design. When compared with
structured English, pseudocode is more detailed and more code-like.

User Systems Guidelines for Software Projects
UCID-20643
Page 59

Design/Design Guidelines/Design Walkthrough and Review

Design Walkthrough and Review

The design walkthrough is a review of a design by a small group of
people. In the walkthrough, the reviewers try to locate any problems before
the actual coding begins. Errors discovered during the design phase are
much easier to correct than those discovered in later phases.

There are some basic rules for design walkthroughs.

• Keep i t short

• Find errors, not corrections for errors

• Review the product, not the authors

• Use between one and seven reviewers

• Do not invite managers—however, they should be should be kept
informed

• Look for a willing outside reviewer to get a new point of view

• Keep it as informal as possible

• Don't get hung up on details; let the authors iron out the details

For each project, you should have a checklist of common items to go
over in the walkthrough. Refer to The Practical Guide to Structured Systems
Design [Ref. 16], page 297, for a sample checklist. Below, are a few items
for a possible checklist; however, each design will probably need a
different one depending on what the goals of the system are. For example,
if you are concerned about portability more than anything else, your list
should include portability checks first.

Sanple Checklist

• Is each interface between modules implemented cleanly?

• Can each module actually be implemented, with its given interfaces?

In other words, are all the necessary calling parameters present?

• How is error reporting handled?

Does any module have unnecessary state memory?

User Systems Guidelines for Software Projects
UCID-20643
Page 60

Design/Design Guide 1 ines/t)esign Walkthrough and Review

• Are any modules over-general?

• Lastly, WILL IT WORK?

If a major flaw is discovered in the design, the author would be
required to have another walkthrough. The members of the walkthrough group
would determine what constitutes a major flaw.

User Systems Guidelines for Software Projects
UCID-20643
Page 61

Design/Design ExanpIe/ASCII to EBCDIC File Converter

Example Dl. ASCII to EBCDIC File Converter

The Data-̂ i'low Diagram

An Overa11 View

Terminal Input / \ / Print \
> I Interpret Input | _ - - - _ _ > | Help |

\ / \ Package /

\
\ Input File Name, Output File Name
\
\ v

I Source | ASCII Source Lines / \ EBCDIC Source Lines |Sink |
I (Input I > I Convert File | > | (Output)
I File) I \ / IFile) |

Convert File

The convert file may be further broken down into;

ASCII Source Line / \
> I Break Lines |

\ /

ASCII Character |

I / \
> I Convert Character |

\ /

EBCDIC Character |
I / \ EBCDIC Source Line

> I Merge |

\ /

User Systems Guidelines for Software Projects
UCID-20643
Page 62

Design/Design Exanple/ASCII to EBCDIC File Converter

Data Dictionary

Terminal input

File name

ASCII source line

EBCDIC source line

ASCII character

Characters received from user's terminal.

System-dependent format for name of a file,

String of characters in ASCII code that
represent a text line from a file.

String of characters in EBCDIC code that

represent a text line from a file.

One ASCII character.

EBCDIC character One EBCDIC character.

Structured-English Definitions

Interpret input

Print help package

Interprets the terminal input line.

Prints the help package at the user's

terminal.

Convert file Translates ASCII source lines
into EBCDIC source lines.

Break 1ines Breaks up ASCII source lines into
ASCII characters.

Convert character Converts an ASCII character into a

EBCDIC character.

Merge Merges EBCDIC characters into

EBCDIC source lines.

User Systems Guidelines for Software Projects
UCID-20643
Page 63

Design/Design Exanple/ASCII to EBCDIC File Converter

Data-Structure Diagrams

ASCII Source Line (stream of bytes)

I byte I byte | byte | byte | byte | byte | byte | byte |

ASCII Character (one byte):

> I byte I

EBCDIC Source Line (stream of bytes)

I byte I byte | byte | byte | byte | byte | byte | byte |

I EBCDIC Character (one byte):

> I byte I

Structiore Charts

The communication between modules is done with couples of two
types: control and data. Data couples represent communication of a data
entity, i.e., module A passes module B the data I. Control couples
represent control communication, i.e., module A calls module B who returns
an error flag.

In this system, most of the modules show functional cohesion; however,
the Read Line and Write Line modules more likely show communicational
cohesion (refer to page 58).

What coupling the module has will determine how independent the module
is. Here, there is some control coupling, but there is mostly data
coupling. Note that the use of standard I/O routines to open, create, read,
write, and close files may imply common or content coupling.

User Systems Guidelines for Software Projects
UCID-20643
Page 64

Design/Design Exanple/ASCII to EBCDIC File Converter

I \/ Terminal Input
I
V

Interpret Input |

\
\

I Print I
I Help I
I Package |

\ \/ Input File Name

\
\ V Output File Name

\
\
V

I Convert File |

/
ASC11 / ASC11
Line /\ / Line \/

/
Error Flag A /
(control) /

V

\
EBCDIC \ EBCDIC

/ \ Line \ \/ Line

\
\ A Error Flag
\ (control)
V

I Read Line | | Translate Line | | Write Line |

/
ASCII /
LineV /

/
ASCII /

CharactersA / ASCII
/ Character\/
V

\
\ EBCDIC
\ \/ Characters
\
\ EBCDIC

EBCDIC \ A Line
/\ Character \

V

I Break Lines | | Convert Character | | Merge |

A = data being sent up

\/ = data being sent down

User Systems Guidelines for Software Projects
UCID-20643
Page 65

Design/Design Exanple/ASCII to EBCDIC File Converter

Pseudocode

Procedure Interpret Input (terminal—input)
Break terminal-input into symbols
If (more than 2 symbols) Then
Generate error: Too many symbols on input line
Print Help Package

Else
filein = first symbol
If (filein doesn't exist) Then
Generate error: Input file doesn't exist.
Print Help Package

Else
fileout = second symbol

If (fileout isn't present) Then
Create name for fileout
Destroy fileout if it exists
Convert File (filein , fileout)

End If
End If

Procedure Convert File (filein , fileout)
Do till End Of File (filein)

Read ASCII Line from filein (Error Flag)
If (Error Flag is positive) Then

Generate error: Cannot Read Input File
Return

End If

Translate Line (ASCII Line , EBCDIC Line)
Write EBCDIC Line to fileout (Error Flag)
If (Error Flag is positive) Then

Generate error: Cannot Write Output File
Return

End If
EndDo

Procedure Translate (ASCII Line , EBCDIC Line)
Break Line (ASCII Line , ASCII Characters)
Do For Each Character in ASCII Characters

Convert (ASCII Characters[i] , EBCDIC Characters[i])
EndDo
Merge (EBCDIC Characters , EBCDIC Line)

User Systems Guidelines for Software Projects
UCID-20643
Page 66

Design/Design Exanple/ASCII to EBCDIC File Converter

Procedure Break Lines (ASCII Line , ASCII Characters)
Do For Length of ASCII Line

Store Character into ASCII Characters array
EndDo

Procedure Convert Character (ASCII Character , EBCDIC Character)
Define Table to be array mapping ASCII to EBCDIC.
EBCDIC Character = Table (ASCII Character)

Procedure Merge (EBCDIC Characters , EBCDIC Line)
Do For Each Character in EBCDIC Characters

Store EBCDIC Character into EBCDIC Line
EndDo

Walkthrough

All the above design information and the testing information (see
page 110) were gathered together into a design packet (DP) and delivered to
each member of the prechosen design-walkthrough-group one week in advance of
the walkthrough date. At the walkthrough it was pointed out that

• The Input file was not opened and the Output File was not Created.

These files also need to be Closed.

• Read Line and Write Line will probably need more input, possibly a unit

specifier or a file name.

• An additional functional test would be to submit the file to a utility

routine that expects EBCDIC input.

These changes were considered minor and would be made by the author.

The walkthrough group approved of the design unanimously.

User Systems Guidelines for Software Projects
UCID-20643
Page 67

Design/TooIs/Available Tools

Design Tools

Available Tools

There are not many tools available for the DP. Unfortunately, what few

tools there are don't work very well together.

The biggest help for the DP are the many usable, or reusable, routines
available through libraries such as BASELIB, URLIB, FORTLIB, MATHLIB,
STACKLIB, GRAFLIB, GRAFCORE, etc. A little research into what is available
in these libraries may eliminate the need for you to design many modules,
since the modules you need may already exist in the public libraries. These
libraries aren't really helping you design as much as making your designing
job simpler by eliminating some of the module design you have to do. Take
advantage of this reusable software.

The available tools listed in the Project Definition chapter (page 29)
are also useful for generating modules in the DP. Refer specifically to the
structure-chart program SCI [Ref. 8] on page 31 of this document.

In addition to the tools listed previously, is the VW command in
TRIX AC.

TRIX AC, VW Command (A screen editor for a general text editor)

Document: A. Cecil, H. Moll, and J. Rinde, TRIX AC—A Set of
General-Purpose Text-Editing Commands, LCSD-808, Draft (1985)
[Ref. 17].

To obtain a copy of this document, log onto a CDC 7600 and
enter

trix aclprintlnip Icsd808 box ann id

Use: The VW command in TRIX AC is a screen editor. TRIX AC is
available on all LCC machines at LLNL, and the VW command can be called
up on HP terminals or on HP terminal-emulators. All the diagrams in
this chapter were generated using the VW command.

User Systems Guidelines for Software Projects
UClD-20643
Page 68

Design/Too Is/Ideal Tools

Ideal Tools

The ideal tool for the DP is one that accepts output, in
machine-readable form, from the PD and automatically generates data-flow
diagrams, a data dictionary, data structures, and structure charts, also in
machine-readable form. However, more realistic tools might be ones that

• Accept DFDs from the PD phase and allow you to modify, create, and
store machine-readable DFDs.

• Allow the user to create a data dictionary that integrates into the
DFD tool and the structure-chart tool. This tool could also keep
data structure information.

• Generate structure charts from DFDs automatically and also allow the
user to modify these charts, create new ones from scratch, and store
all these charts in machine-readable form.

• Generate skeleton pseudocode from structure charts and allow for

modifying and storing this pseudocode. A similar tool could also

generate skeleton code for the coding phase.

• Use a general database program that keeps all your design information

together, verifies interfaces, notes inconsistencies, and keeps

records. This tool could replace much of the work done by the

members of the walkthrough group.

These tools are, of course, all interactive, fast, of high quality,
etc .

User Systems Guidelines for Software Projects
UCID-20643
Page 69

Design/Bib1iogrephy

Design Bibliography

T. DeMarco, Concise Notes on Software Engineering (Yourdon Press, New York,
1979).

G. J. Meyers, Software Reliability—Principles and Practices
(Wiley-lnterscience Pub., New York, 1976).

E. Yourdon, Structured Walkthroughs (Yourdon Press, New York, 1978).

E. Yourdon and L. L. Constantine, Structured Design (Yourdon Press, New
York, 1978).

User Systems Guidelines for Software Projects
UCID-20643
Page 70

User Systems Guidelines for Software Projects
UCID-20643
Page 71

Cod ing/Overv i ew

CODING

Overview

A software programmer's goal is to prepare software that can be read
and understood by people as well as by machines. If a code is to continue
to perform its function correctly and efficiently, the people maintaining
the code must be able to understand it and change it readily. Software
should be clear, readable, and consistent. If it is, the software itself
will be one of the programmer's best means of documentation. There are
several ways to prepare software and several things to include in the
documentation to achieve these goals.

The structured-programming method enables programmers to prepare a code
easily. If the structured code is then reviewed and the suggested changes
incorporated where possible, there should be fewer than usual logic errors
discovered during the testing phase.

A well-structured self-documented modular code can be easily understood
and revised. When changes are necessary, and if the modules were
constructed using the structured-programming method, the software can be
kept in its original healthy and robust state.

Some documentation should be a part of the comment information in with
the program. These comments should include where to obtain the source file
and what compile and load procedures to use. Also, if any special tools are
required, include information on where to get the tools and where to get
information about using them. In addition, standards and assumptions
detailed in the project definition should be included if relevant, because
they are considered part of the project documentation.

In this chapter, we will first present coding guidelines that include
information on naming conventions, commenting, and variable declarations
followed by material on the code body, coding reviews, and maintenance;
second, we give examples of codes that adhere to these guidelines; and
third, we will outline available and ideal tools for writing and maintaining
sof tware.

User Systems Guidelines for Software Projects
UCID-20643
Page 72

Cod1ng/Gu1de1ines

Coding Guidelines

It has been written that quality software is not only reliable and
correct but also easy to use and maintain [Ref. 18]. The key to achieiving
this IS to provide tools and techniques that can be used to improve the
process of software production. A side effect of quality
software-production is the reduction of support costs.

Naming Conventions

A routine name or a variable name should be as descriptive as possible
so the users can easily recall its purpose. Once the purpose has been
defined, use the routine or variable only for that unique purpose.

The first or last few characters of a variable name could be special
symbols and form a naming structure. Use consistent, well-documented naming
structures to denote such things as whether the variable is defined locally,
IS an input or output argument, or is from a common block. Naming
structures can also denote type—for example, integer, real, logical,
character, scalar, array, or vector, etc. For an example of naming
structures, see Example C3 on page 87.

A comment explaining each name is sometimes necessary, and always
helpful. Descriptive names in a code help make the code self-documenting in
an easy way.

Comments

Comments are used to help anyone reading the code understand the
details of the implementation. The author of the code may forget the
details over time and may need to be reminded of them when rereading the
code, while others will probably be reading it for the first time. To aid
the user, you should write consistent and meaningful comments. A way to
provide consistency between modules is to have a prologue for each module.

Prologue

The prologue should consist of comments giving the module name, calling
form, and expanded module name. In addition, the purpose should be stated
as well as the author and date. There should be a description of input and
output and information on modifications—i.e., the author, date, and reason
for the modification. It would be helpful if the code reviewer(s) was named
and there was information about the algorithm, limitations, restrictions.

User Systems Guidelines for Software Projects
UCID-20643
Page 73

Coding/Guide 1 ines/Comnents

and assumptions. A description of anything unusual in the module would also
be useful.

Many individuals have written their own tools to assist in producing a
prologue, and we hope to have a similar division-wide tool soon. See
Example C2 (page 84) for a prologue produced from the TEMPLATE tool. See
Examples C3 and C4 (pages 87 and 90, respectively) for two manually
generated prologues.

Conments Among Code Lines

When writing variable declarations, include a comment for each variable
stating its expanded variable name and purpose. If the variable purpose is
known, the reader will better understand where the variable occurs and how
it is used. Preceding each logical block of code, include a block of
comments describing the purpose of that block and its expected input values
and resulting output values. This aids reading the information by
physically separating each logical block.

In general, remember to avoid comments that restate the lines of code.
Aim for clarity, not redundancy—a comment should logically state what is
being done, not how it is done. It is unnecessary to comment on every line
of code, and doing so usually has the effect of making the code less
readable. However, you should use comments to explain anything not obvious
from reading the code.

Variable Declarations

Every variable should be declared with an explicit variable-type
statement. In LRLTRAN [Ref. 19], you are encouraged to use the implicit
none, because it points out those variables not explicitly declared.
Note: implicit none is not standard Fortran. However, do not use the
all integer statement in LRLTRAN. This statement allows you not to
declare variables and allows errors to creep in that are difficult to
detect. Explicit declarations help the user read the code, and they give
the programmer the perfect opportunity to comment on the meaning of each
variable name and its intended use.

You should order module arguments uniformly to specify input, output,
and input-output arguments by their positions within the argument list.
Precede all other type declarations with the type declarations for the
argument list, preferably in the order they appear as arguments. If global
and local variables are being used, you should make that apparent by the
order of their type declarations or descriptions. This will give more

User Systems Guidelines for Software Projects
UCID-20643
Page 74

Coding/Guidelines/Ibe Code Body

information at a glance to the code reader and make variable declarations
easier to locate.

The Code Body

The code body is that part of the code after the declarations. It
consists of executable statements and should be separated into distinct and
logical blocks. Each block should have a purpose and, usually, some input
and output values. The blocks should be separated with blank lines or blank
comments. The separated blocks of code will enhance readability and show
the sequential flow of the program. Each block of code should be no more
than one page in length.

Indent and Nest

To help improve readability, you should indent block constructs
(if-then-else, do, case, etc.) and any other logical block. If you indent
uniformly, you can visually represent the logic of the program.

You shouldn't nest block constructs too deeply; the deeper the nesting,
the more difficult the code is to follow. No more than three to four levels
of nesting should be considered, in the interest of writing a more easily
understood piece of code.

Loop and Go-To Statements

Every loop statement (do, repeat, etc.) should have its own
corresponding endloop statement (continue, until, etc.) for terminating the
loop. More specifically, in Fortran each do statement should refer to a
unique continue statement. If this is done, it will be easier to find the
beginning and the end of each loop, and the number and nesting level of the
loops will be obvious.

go to statements should be used sparingly and eliminated unless really
needed. This should keep the program flowing from top to bottom smoothly;
because it's easier to read from top to bottom, rather than back and forth.

Macros and Cliches

Macros and cliches are powerful tools for pieces of code that will be

expanded in several places within a program. They are very convenient for

User Systems Guidelines for Software Projects
UCID-20643
Page 75

Coding/Guidelines/The Code Body

segregating all machine dependent parameters or packaging declaration
statements to be uniformly used in many places within a program, for
example.

A macro or cliche should consist of a collection of related statements,
or perform a distinct action. Some thought should be given to whether that
action would be more appropriate in a subroutine or function. Misuse of
macros and cliches can result in code that is choppy and difficult to read,
debug, and maintain.

Module Length

A module should not be too long or too complex; about two pages of code
should be the maximum length. There should be only one entry to a module,
and when possible there should be only one exit. This will make testing,
debugging, and maintenance much easier because the program flow will be
easier to see.

A Transportable Code

Try to adhere to the standards in the programming language you will
use. This will help you achieve a fully transportable code. Put machine or
environmental dependencies in one place to make finding and changing these
things easier as the code is transported.

Coding Reviews

The coding should be reviewed, formally or informally, by at least one
person. Although you're familiar with the code and know what it does,
someone else should be able to read it and infer what it does. That is,
another person should read the coding, understand it, and be able to add to
it or modify it without difficulty; because in the life cycle of most codes,
several people will work on the code you're now writing.

A reviewer should verify the program and see that the standards
specified within the project have been followed. If you, as the coder,
decide that it makes good sense to do something other than what the
standards specify, the reviewer should confirm your judgment. Refer to
Structured Walkthroughs by E. Yourdon [Ref. 20] for information on holding a
code review or walkthrough.

Coding walkthroughs can benefit the reviewers as well as the coders.
For example, reviewers are exposed to different coding styles, and errors

User Systems Guidelines for Software Projects
UCID-20643
Page 76

Coding/Guidelines^Afeintenance and Madif ication

and standards that were inadvertently overlooked can be corrected before the
program is made public.

Maintenance and Modification

Maintenance provides an opportunity to better your code. Ideally,
before modifying any module, you should be certain you understand the module
and all its side effects. Realistically for an old code, this may not be
possible. Therefore, it is very important to document all changes and to
test them thoroughly. Modifications should always make the module
clearer—that is, more understandable—and should be consistent with the
rest of the code.

You should implement small modifications very carefully and one at a
time. For large modifications, consider the possibility and time
effectiveness of rewriting entire modules. Document anything you had
trouble understanding when you first worked with a module so that next time
someone works with it, this module will be easier to understand and modify.

Module Modification

When a module is modified, the comments and prologue information must
be checked to update any outdated or incorrect information. The
modification must be documented in the prologue with the name of the
modifier, the date, and a brief description of any changes.

User Systems Guidelines for Software Projects

Coding/Exanples/ASCII to EBCDIC File Converter

UCID-20643

Page 77

Coding Examples

Example CI. ASCII to EBCDIC File Converter

• • * • *

• * * * *
* * * * •

«

*

*

This program converts a Cray 8-bit packed ASCII file to a packed EBCDIC
file. The program consists of a main code and three subroutines (getfiles,
helppkg, and translte). The compile line is

CIVIC P=SCONVERT X=CONVERT

It was programmed by Jeanne Martin - 9/85.

To use the program, type one of the following:

CONVERT

CONVERT HELP
CONVERT input-f ile-name
CONVERT input-file-name output-file-name

If no output-file-name is supplied, the name of the output file will be
?$ebcdic, where ? is the current suffix.

The input file is assigned to unit 2.
The output file is assigned to unit 3.

implic i t none

Local Variables

$$$ all variables are declared

integer line(50) $$$ working buffer (holds one line)
integer nochar $$$ no. of chars in input line
integer noretc $$$ no, of chars in output line

UCID-20643
Page 78

User Systems Guidelines for Software Projects

Coding/Exatrples/ASCII to EBCDIC File Converter

• Executable Code

cal1 dropf ile(0)

• Obtain the input and output file names and associate them with units 2

• and 3 respectively.

cal1 getf i les

• Process each line

do
call rdline (2,1ine,nochar)
if (nochar.eq.-l) exit $$$ test for end of file
call translte (line, nochar,noretc)
call wrline (3,1ine.noretc)

repeat

• Terminate the program

call close(2)
call close(3)
call exi t
end

subroutine getfiles

****** ******* ******* ******* ***

* * * * *
* * * * *
* ******* * **** *
* * * * * «
* * * * * *
****** •*••*•* * « •**

******* ******
* *
* *
**** *****
* *
* *

****** ******* ******

Purpose:
This is the user interface. It interprets a command from the user, or
controller. If no command is waiting, it calls a help pachage routine,
which supplies information and prompts for a command. The command may
provide file names, ask for help (HELP) or terminate the program (END).
It opens the input file and associates it with unit 2. It creates the
output file and associates it with unit 3. Error messages are sent to
unit 1, the terminal (or controller).

User Systems Guidelines for Software Projects

Coding/Ebcanples/ASCII to EBCDIC File Converter

UCID-20643

Page 79

* Calling Form: CALL GETFILES

implicit none $$$ all variables are declared

* Local Variables:

$$$ flag for waiting message
$$$ user command buffer
$$$ no. of chars in user command
$$$ storage for symbols in user command
$$$ must be same size as files
$$$ no. of symbols in user command
$$$ current running suffix
$$$ placeholder for unused information
$$$ flag for opened file

integer msg
integer 1ine(50)
integer len
integer f i les(10)
integer type(lO)
integer nf iles
integer suffix
integer j
integer i
data (i=0)

• Executable Code

call msglink(l,l) $$$ establish unit 1 as controller
call msgflag(msg,2) $$$ is a command waiting?
if (msg.eq.O) call helppkg $$$ if not, call help package

getmsg call msgfrr (1ine,len,200) $$$ get command
call mprompt(0,0) $$$ turn off prompt

call getsymb(files,type,nf iles,1ine,len,200)
$$$ break command into symbols

if(nfiles.gt.2) then

write(1 ,"(""Too many symbols on input line"")")
go to errret

end i f

if(fi les(1).eq."help") go to errret
if(fi les(1) .eq."end") go to errx

call open (2,files(1).0 . i) $$$ open input file
if(i.lt.O) then

write (1,"(""Cannot open "",a)") files(l)
i=0
go to errret

end i f
if(nfiles.ne.2) then

call userinfo(j,j,j,suffix) $$$ create name for output file

files(2)=" $ebcdic".un.suffix
end i f
call create(3,files(2),2,-1.nocrea) $$$ (destroy and) create

$$$ output file
return

UCID-20643
Page 80

User Systems Guidelines for Software Projects

Coding/Exanples/ASCII to EBCDIC File Converter

nocrea write (1,"(""Cannot create "",a)") files(2)
errret call helppkg

go to getmsg

errx call exi t
end

*

subroutine helppkg

* * * * * * l

» * * * * * * * t

f • t

t *)

* * * * * 1

t * <

> * t

* * * * * * *

* * * * * *
* *
* *
* * * * *
*
*
*

* * * * * * t

* * i

* * i

* * * * * i

* *
* 4

• <

t * *

>**
1 *

1 *

**

*
*

*
*
*
*
*

* * * * * *

* * *
*
*

* * * * * *

Purpose:
To send help information to the controller and prompt for a command.

Calling Form: CALL HELPPKG

wr i te(1
wr i te(1
wr i te(1
wr i te(1
wr i te(1
wri te(1
wr i te(1
wr i te(1

/""This program will convert a LLNL ASCII file to an"")")
'"IBM 360 compatible EBCDIC file. To run it type: ""/)")

convert namel name2""/)")
'"where namel is the name of your ASCII file and name2 is"")")
•"the name of the EBCDIC file you want created to contain"")")
'"the converted text. If name2 is omitted, a file will be"")")
'"created with the name ?$ebcdic, where ? is the current "")")
'"suffix.""/)")

call mprompt ("filename(s)? ",13)

return

end

User Systems Guidelines for Software Projects

Coding/EbcanpIes/ASCII to EBCDIC File Converter

UCID-20643

Page 81

subroutine translte (1ine,noac,noec)

******* ****** •**
* * * * *
« * * * *
* ***** *******
* * • • *
* * • * •
* * * * *

******* ******
* *
* *
* * ***
* *
* *

****** * ******

Purpose:

To transform the characters in dummy argument line from ASCII characters
to EBCDIC characters. Characters that are not representable in EBCDIC
are dropped so the number of characters input (NOAC) may be greater than
the number of characters output (NOEC).

Calling Form: CALL TRANSLTE (LINE,NOAC.NOEC)

Input-Output Argument:

line - character buffer for a single line - contains ASCII line on
input and EBCDIC line on output
Note: There is a change of type across the subroutine boundary.

Input Argument:

noac - n o . of characters input (ASCII)

Output Argument:

noec - no. of characters output (EBCDIC)

implicit none $$$ all variables are declared

UCID-20643
Page 82

User Systems Guidelines for Software Projects

Coding/tlxanples/ASCII to EBCDIC File Converter

• Dummy Arguments

char 1ine
dimension line(132)
integer noac
integer noec

• Local Variables

char table
dimension table(0:255)
integer i
parameter (nil=#7f)

$$$ conversion table

$$$ loop index
$$$ indicator for non-representable character

* Executable Code

* RDLINE detects records longer than 132 characters, so there is no chance

* NOAC will be > 132.

noec=0

do (i=l,noac)
if (1ine(i).eq.ni1) cycle
noec=noec+l
1ine(noec)=table(1ine(i))

repeat
return

$$$ drop non-representable characters

User Systems Guidelines for Software Projects
UCID-20643
Page 83

Coding/Exanples/ASCII to EBCDIC File Converter

• Conversion Table

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

end

table

table

table

table

table

table

table

table

table

table

table

table

table

table

table

table

table

table

table

table!

table

table

table

table

tablej

table!

table!

table!

table!

table!

table!

table!

(#00

(#0e

(#10

(#le

(#20

(#2e

(#30

(#3e

(#40

(#4e

(#50

(#5e

(#60

[#6e

'#70

#7e
(#80

(#8e

#90
#9e
#a0
[#ae

[#bO

'#be

#cO
#ce
#dO
#de
#eO
#ee
#fO
#fe

)/#oo
)/#0e

)/#io

)/#le

)/#40

)/#4b

)/#fo
)/#6e

)/#Vc

)/#d5

)/#cl7

)/#41
)/#e0

)/#95

)/#97

)/#al

)/#20

)/#08

)/#35

)/#3e

)/#43

)/#55

.#01.#02

.#0f/

.#11.#12

.#lf/

.#5a.#7f

.#61/

.#fl.#f2

.#6f/

.#cl.#c2

.#d6/

.#d8.#d9

.#6d/

.#81.#82

.#96/

#98,#99

nil/

.#21.#22

#0a/

#lb.#2b

#ff/
#4f.#fa

.#56/

,#03

.#13

.#Vb

.#f3

,#c3

#e2

#83

#a2

#24

#3b

#44

.#37

,#3c

,#5b

.#f4

#c4

#e3

#84

#a3

#la

#23

#45

.#2d,#2e

.#3d.#32

.#6c

.#f5

.#c5

#e4

.#85

#a4

.#15

#28

#46

,#50

.#f6

,#c6

#e5

.#86

.#a5

.#09

#29

#4a

.#2f

.#26

.#16

.#18

.#05

.#19

.#25

.#3f

.#7d.#4d.#5d.#5c

.#fv

.#c7

#e6

.#87

.#a6

.#87

.#2c

#47

.#f8

#c8

#e7

.#88

#a7

.#88

#30

#48

.#f9

.#c9

#e8

.#89

.#a8

.#89

.#31

#49

.#7a

.#dl

.#e9

.#91

.#a9

.#04

,#0b

.#27

.#4e

.#5e

,#d2

,#0c

.#lc

.#6b

.#4c

#d3

.#ad,#79

.#92

,#8b

.#34

,#93

.#6a

.#36

.#0d/

.#ld/

.#60/

.#Ve/

.#d4/

#bd/

.#94/

#96/

.#06/

.#33.#38.#39.#3a/

.#51 .#52 #53 #54/

)/#57,#58.#59.#62.#63.#64.#65,#66.#67,#68,#69.#70.#80.#8a/

)/#c0

)/#8d

)/#ae

)/#b0

)/#5f

)/#be

)/#eb

)/#71
)/#fe

#bc/

#8e.#8f

#af/

#bl.#b2

#bc/

#bf.#ca

#ed/

#72,nil

#07/

#90

#b3

#cb

#73

#9a

#b4

#cd

#74

#dO

#b5

#cf

#75

#9c

#b6

#da

ni 1

#9d

#b7

#db

#77

#9e

#ec

#dc

#78

#9f

#ce

#dd

#ee

#aO

#b8

.#de

#ef

,#aa

,#b9

.#df

.#fb

#ab

#ba

#el

#fc

#ac/

#bb/

.#ea/

#fd/

User Systems Guidelines for Software Projects
UCID-20643
Page 84

Coding/Elxanples/Subroutine pop

Example C2. Subroutine pop (stkptr, item, rtn)

Note the use of template . For a description of the template tool look
in the section on Code Tools, page 95.

c
c Name — pop - pop from a stack
c
c Function — to pop an item out of a stack.
c
c Calling Form — call pop (stkptr, item, rtn)
c
c Author, Date — John Doe (03/17/83)
c
c Modified by — Jane Doe (04/09/83) Fixed bug - Updated stack pointer
c
c Input —
c Arguments -
c stkptr - Pointer into stack within scm array
c
c Common Blocks -
c common /parstk/ - Parser stack
c pdata - Offset from stack (stkptr) of first word of data.
c plen - Offset from stack (stkptr) of length of item.
c pnum - Offset from stack (stkptr) of number of items.
c stack - The scm dynamic workspace containing the stack.
c
c Output —
c Arguments -
c item - The item just popped out of the stack, if successful
c rtn - The return indicator.
c = 0 , ok
c = -1 , stack underflow
c
c Common Blocks -
c common /parstk/
c Same as common /parstk/ input (see above)
c
c A Igor i thm —
c 1. Check to see if the stack is in an underflow state.
c 2. Copy the top item off the stack into the given "item".
c 3. Decrease the number of items in the stack.
c
c Note : A stack is a one-dimensional arry and its header
c contains the information about its type, size, and

User Systems Guidelines for Software Projects
UCID-20643
Page 85

Coding/Exanples/Subroutine pop

c the current stack pointer
c
c Declarations
c
c
c Arguments —
c

Integer stack, item (1), rtn
c
c Local Variables —
c

integer length, numit, offset, i
c length - Length of each item.
c numit - Number of items.
c offset - Stack pointer for first piece of stack item.
c i — Loop index variable.
c
c Common —
c

integer pdata, plen, pnum, stack

common /parstk/ pdata. plen, pnum, stack(l)
c
c Start Execution
c

c Get number of entries in the stack.

c
numit = stack(stkptr + pnum)

c Check for underflow condition
if (numit .le. 0) then

rtn = -1
e I se

c
c Extract the last item and decrease
c the number of entries by one.
c

length = stack(stkptr + plen)
num i t = num i t - 1
offset = stkptr+pdata + numit*length

c
do 1600 i + 1,length

item(i) = stack(offset + i-1)
1600 continue

User Systems Guidelines for Software Projects
UCID-20643
Page 86

Coding/Elxanples/Subroutine pop

c Store new number of entries,
c

stack(stkptr + pnum) = numit
rtn = 0

endi f

return
end

User Systems Guidelines for Software Projects

Coding/Exanples/Subrout ine ttyread

UCID-20643

Page 87

Example C3. Subroutine ttyread
(iprompt, iplen, iline, ilen)

Note the use of naming structures and a pic prologue that is manually
generated.
Q *

c

Q * * * * * * * * * * * * * * • *

Q « * • • * * • * * *

c * • * * * * * * * *
c * * * ***** **** ******* *
c * * * * * * * * •

c * * * * * * * * *
Q * * * « • * * * * * * * * « * * * * * *

c
c
c> Author: Kelly O'Hair, LLNL Computer Graphics Group
c L-73, (415)-422-4296, BLDG 116, Room 2645.
c
c> Purpose:
c Read message from TTY. If message already there then
c do not prompt, just return message. If no message is
c there then use prompt supplied and return message.
c It is assumed that the array nline is long enough to

c hold the maximum length message from the tty.
c
c> Cal1ing Form:

c call ttyread (iprompt, iplen. iline. ilen)
c
c> Input Arguments:
c iprompt ASCII text of prompt
c iplen length in characters of text in iprompt
c

c> Input Common:
c g4mess:

c kames array containing current message from TTY
c klen length of kames (if 0 then no message)
c koffset offset into kames (0—origin) of next
c logical message
c
c> Output Arguments:
c iline ASCII text of message read from TTY
c ilen length in characters of text in iline
c
c> Output Common:
c g4mess:

UCID-20643
Page 88

User Systems Guidelines for Software Projects

Coding/Exanples/Subroutine ttyread

c kames array containing current message from TTY
c klen length of kames (if 0 then no message)
c koffset offset into kames (0-origin) of next
c logical message
c
c> Notes:

c Common g4mess is local to this routine.
c
~ ***

c**
c»*
c**
r > * *

get machine dependent parameters from global macro

pi ine
peol
pleol

peom
pleom
pnchw

macro mparams(spic)
use mparams

maximum word length of tty message
left-justified end of line (LF)
length in characters of pleol
left-justified end of message (EOT)
length in characters of pleom
number of characters per machine word

Q****** declare arguments

integer iprompt , iplen

dimension iprompt(pline)

i1ine .ilen

i1ine(piine)

**• declare locals (g4mess is a local common block.

**• only used by ttyread)
*** put outstanding messages into common g4mess

kmess is the array containing the outstanding messages
klen is the current character length of kames
koffset is the current 0-origin character position

of the next logical message out of kmess
dimension kmess(piine)
integer kmess.klen,koffset
common/g4mess/klen,koffset,kmess
integer jeol , jbytes

• **

* **

^****** declare baselib function integer

integer zskeybyt

c****** data load messages
data klen /O/
data koffset /O/

c****** initialize returned message
call zvxmits (iline , " " , piine)
ilen=0

User Systems Guidelines for Software Projects

Coding/ExanpIes/Subroutine ttyread

UCID-20643

Page 89

c****** see if we have any messages already in the buffer
Imes continue

if(klen.gt.0)then
jeol=zskeybyt(kmess,koffset,klen-kof fset,peol,pleol)
call zmovechr(i1ine,0,kmess,koffset,jeol)
ilen=jeol
kof fset=koffset+jeol+pleol
if(koffset.ge.klen)then
klen=0

endi f
go to rtn

endi f

c****** do we need to initialize the tty message buffer?
^****** (jjQ prompt message in buffer already)

^****** (remember a null message means return a null message)
koffset=0

if (izgetmr(kmess,piine*pnchw,1,jbytes).eq.O) then
klen=zskeybyt(kmess,0,pline*pnchw,peom,pleom)
if(klen.eq.O)go to rtn
go to Imes

endi f

c****** prompt for message and wait for message
^****** (remember a null message means return a null message)

i f(iplen.gt.0)then

call ttytext(iprompt,iplen)
endi f
if (izgetmr(kmess,piine*pnchw,0,jbytes).ne.0) then
call ttytext("*** cannot get message from tty ***",35)

cal1 izexi t(1)

endi f
klen=zskeybyt(kmess,0.pline*pnchw,peom,pleom)
if(klen.eq.O)go to rtn
go to Imes

^****** feturn label

rtn continue

return

end

UCID-20643
Page 90

User Systems Guidelines for Software Projects

Coding/Exanples/Subroutine symenter

Example C4. Subroutine symenter
(iname, itype, avalue, index)

****** *

* *
* *
*
*
*
*

* *
* *
*

*••**•*

*
*
** **

*

******* ******* ******

* * * *

* * * *

* •**• *****

* * * *

* * • *

* ******* * *

c •

c •
Q * * * * * *

c

c
c> Author:
c Kelly O'Hair, Computer Graphics Group LLNL
c
c> Cal1ing Form:
c call symenter (iname , itype . avalue . index)
c

c> Purpose:
c Enter new symbol into symbol table.
c

c> Arguments:
c Input:

c iname
c i type
c avalue
c Output:
c index
c
Q *

ascii name of symbol
type of symbol
initial value for symbol

returned position in symbol table

get symbol table common block
get machine parameters

machine flags
17600 =0 not 7600 coding. =1 7600 coding,
icray =0 not cray coding. =1 cray coding.

machine independent parameters global to everyone
ptime timing flag, =0 off, =1 on (timer/tally run)
pmaxline maximum length of a line in characters
pblanks a word worth of blanks
pspace a right adjusted blank in a word

User Systems Guidelines for Software Projects

Coding/Bxanples/Subroutine symenter

UCID-20643

Page 91

a right adjusted double quote in a word
a right adjusted apostrophe in a word
a right adjusted right square bracket in a word
a right adjusted left square bracket in a word
a right adjusted period in a word
a right adjusted lowercase e in a word
pattern that separates polygons for gppg2d
the length of the x and y arrays in g4store common

(at least 100)
maximum length of a text string in characters
type identifier for a number (always stored real)
type identifier for a string (stored as string id)
type identifier for a undefined variable

number of characters per word
number of bits per word
uppercase e
left-justified end of message
character length of peom
left-justified end of line (LF)
character length of peol
left-justified carriage return character
character length of per

adjustment to addresses for baselib's zgetarec
maximum word length of a line
maximum length of record for zgetarec
maximum length of a text string in words

3 common block

maximum allowable variables in table
type of symbol (number, string)
value of symbol

value of symbol (real number access)
name of symbol
global flag (global=l, local=0)
count of symbols currently in table

parameter (pmaxsyms = 56)

dimension ksymt(pmaxsyms), ksymv(pmaxsyms), ksymn(pmaxsyms)
dimension csymv(pmaxsyms), ksymg(pmaxsyms)
integer ksymt,ksymv,ksymn,ksymg,kcount
real csymv

common/g4symtab/kcount,ksymn,ksymt,ksymg,ksymv
equivalence (csymv,ksymv)

c*****
c*****
c*****
c*****
c*****
c*****
c*****

c***»*

c*****
c**»**

c*****

c*****
c*****

c*****

c**»**

c*****

c*****

c****»
c*****
c**»**
c*****
Q*****

c*****

c*****

c*****
c*****

c**»**
c*****
c*****
c*****

c*****

c*****
c*»***
c*****
c**»**

• pquote
* papost
* prbrac
• plbrac
* period
• plowere
* pindef
* polymax

* pmaxstr
* ptypenum

* ptypestr
• ptypeund

* machine dep
* pnchw
• plwdb
* puppere

• peom
* pleom
• peol
•* pleol
• per
• pier
* padjust

* piine
* pmaxlin

• pstring
"' symbol tabl<
• pmaxsyms
* ksymt
• ksymv

• csymv
• ksymn
* ksymg
* kcount

c****** declare arguments
integer iname, itype, index

User Systems Guidelines for Software Projects
UCID-20643
Page 92

Coding/Exanples/Subroutine symenter

real avalue

,**•••• ĝ jĵ symbol to table

if (kcount .ge. pmaxsyms) then
kcount = kcount - 1
call comerror ("symbol table overflow" , 21 , 0)

endi f
kcount = kcount + 1
ksymn (kcount) = iname
csymv (kcount) = avalue
ksymt (kcount) = itype
ksymg (kcount) = 0
index = kcount
return
end

User Systems Guidelines for Software Projects
UCID-20643
Page 93

Coding/Exannples/Subrout ine buf I ine

Example C5. Subrou t ine bufl ine
(xfrom, yfrom, xto, yto)

Note the use of the GRAFLIB prologue. The prologue is manually generated.

*

•w
*w Author:
*w Kelly O'Hair LLL Computer Graphics Group
*w X24296 1-73 bll6 rm2645
•w
*n Routine Name:
*n /buf1ine/
•n

*f Cal1ing Form:
*f call buf1ine(xfrom,yfrom,xto,yto)
•f

*p Purpose:
•p Buffer (save up) this line into the arrays in the common
*p block 1inebuf. A call to dump will empty the buffer.
•p This routine may call dump if the buffer is full.

•P

•r Arguments
•r Input:
*r xfrom,yfrom <x,y> position to start line
•r xto,yto <x,y> position to end line
•r Output:
*r None.
•r
*

c****** declare arguments

real xto,yto,xfrom,yfrom

c****** declare common area

common/1inebuf/n,x(64),y(64)
real x,y
integer n

c****** data load common

data n /O/

c****** store away line coordinates
x(n+l)=xfrom
y(n+l)=yfrom

User Systems Guidelines for Software Projects
UCID-20643
Page 94

Cod i ng/Exanp 1 e s/Subrout i ne buf 1 i ne

x(n+2)=xto
y(n+2)=yto
n=n+2

c****** dump buffer?
if (n.ge.64)calI dump

return
end

User Systems Guidelines for Software Projects
UCID-20643
Page 95

Cod ing/Too1s/Ava i1ab1e

Coding Tools

Available Tools

Tenplates

DEFITS

Availability: DEFITS is available on a CDC 7600 in the LIX file SEJLIB
within the public file NEWCP.

Use: DEFITS is a tool to generate a subroutine skeleton with a fairly
complete descriptive prologue.

To execute, log onto a CDC 7600 and enter

boon defits

DEFITS prompts for all input. Output is in a file with the name you
give for the subroutine. DEFITS is not being supported.

TEMPLATE

Availability: TEMPLATE is available on both the CDC 7600 and Cray

computers. The author of the subroutine is Denise Sumikawa.

The CDC 7600 version can be retrieved through XPORT as

foilows.

xport
.rd .871406:cdc:template

The Cray version can be retrieved in a similar way.

xport
.rd .871406:cray:template

User Systems Guidelines for Software Projects
UCID-20643
Page 96

Coding/Tools/Avai lable

Use: TEMPLATE is a subroutine prologue that documents programmer
information about the source code. To execute, log onto either a Cray
or CDC 7600 computer and enter either the Cray or CDC 7600 form of
TEMPLATE, respectively.

template

TEMPLATE prompts for its input and is designed to be used without
additional instructions or manuals. The end product of an interaction
with TEMPLATE is an ASCII file that may be incorporated into a source
1ist ing.

SWRITER

Availability: SWRITER is available on Cray computers. The author of

the subroutine is Tokihiko Suyehiro.

SWRITER can be retrieved through XPORT as follows.

xport

rd .000029:swriter

Use: SWRITER is a tool to assist in making modules with a prologue and
source code in the SLATEC format. It prompts for all information as
needed and provides instructions on how to enter input. The SLATEC
format requires a specific prologue form with uppercase and lowercase
characters. Refer to SLATEC Covmon Mathematical Library Source File
Format (UCRL-53331) [Ref. 21] for more information on SLATEC format.

Editors

TRIX AC and TRIXGL

Availability: TRIX AC and TRIXGL are public files on the LCC CDC 7600
and Cray computers. See the section on tools in the project-definition
chapter for information on TRIX AC (page 29). TRIXGL is no longer
supported, but is available for use. Documentation for both files is
available from the LCC online documentation system. A summary of
useful commands is also in Summary Sheets [Ref. 22].

To retrieve the documentation for TRIX AC, for example, enter

trix aclprintlnip trixac box ann ident

User Systems Guidelines for Software Projects
UCID-20643
Page 97

Cod ing/Too 1 s/Ava i 1 ab 1 e

Use: There are commands to simplify creating the source code for
different languages—for example, fed, ced, bed, ned. You can use ged
to simplify editing for other languages and the esc and cesc commands
to define abbreviations and redefine the escape characters as
appropr i ate.

The bf command is useful to make comments stand out, and the red
commands fill and jfill can be used to keep the prologue or other
blocks of comments together. The fi (Fortran index) command is helpful
in indexing subroutines and functions.

Other Coding Tools

CHATITS

Availability: CHATITS is available on the CDC 7600 computers in the LIX
library SEJLIB, within public file NEWMCP.

Use: This subroutine is a tool for use in maintaining source and binary
libraries for reasonably large codes. It controls compilation, updates
source and binary libraries, outputs listings, controls loading, saves
files and more.

To execute, enter

boon chatists

This produces CHATIT, which can then be executed. CHATIT is not
supported, however, documentation can be obtained from the USD
consulting office.

CIVIT

Availability: CIVIT is available on the Cray computers and can be

obtained from the storage directory.

Enter

xport
.rd .525050:bcon:civit

Use: CIVIT is essentially a Cray version of CHATIT, using the CIVIC
compiler rather than CHAT. CIVIT is not being supported.

User Systems Guidelines for Software Projects
UCID-20643
Page 98

Cod ing/Too 1 s/Ava i 1 ab 1 e

FOCAL

Availability: FOCAL is available in public files on the CDC 7600 and
Cray computers. Documentation is available from the LCC
online-documentation system as focal or lcsdl630 [Ref. 23]. A summary
of FOCAL commands is also in Summary Sheets [Ref. 22].

Use: FOCAL produces a list of Fortran source code plus a global
cross-reference containing all symbols used in the source file. The
cross reference is indexed by source line numbers where a symbol
appears.

KLEAN

Availability: KLEAN is available on the CDC 7600 computers. KLEAN is
documented in KLEAN: Clean Up Messy Fortran [Ref. 24] and through a
help package obtained by executing KLEAN without input arguments. Jeff
Rowe is the author of the subroutine, and it can be retrieved from his
storage directory.

Enter

xport
.rd .768350:klean

Use: KLEAN is a program designed to clean up messy Fortran programs.
It reduces multiple-statement lines to one statement per line, relabels
statement labels in an orderly manner, indents do-loops and
if-then-else statements, and more.

Be aware that statement relabeling uses simple pattern replacement,

which may occasionally catch more than just labels. KLEAN is minimally

supported.

KWIKLIST

Availability: KWIKLIST is a public file on the CDC 7600 and Cray
computers within the public file B00K2 (a LIX library file) as
KWICLIST. Documentation is available through the LCC
online-documentation system as kwiclist or as lcsdl647 [Ref. 25].

Use: KWIKLIST generates a global cross reference map with a complete
listing of the input source-code sequenced by overlay number,
subroutine name, and line number within the subroutine. KWIKLIST is
currently not being supported.

User Systems Guidelines for Software Projects
UCID-20643
Page 99

Cod ing/Too1s/Ava i1ab1e

LBL Software Tools

Availability: LBL Software Tools are available on the Cray.
Documentation can be retrieved from storage, but consulting help is
not. avallable.

Enter

xport

.rd .318388:stdoc[st.doc progman]

Use: The LBL tools include a command line interpreter, on editor, and a
text formatter plus several other tools.

MCE

Availability: MCE is available on CDC 7600 and Cray computers. There
is documentation [Ref. 26] that can be retrieved from the LCC online
documentation-system as either lcsd5241 or mce. A summary of MCE
commands is also in Summary Sheets [Ref. 22].

Use: MCE facilitates modifying a few or all the subroutines of a code
by controlling the execution of compilers, loaders, library
manipulation, file storage, and more.

NLTSS-Controller Family of Routines and Support Routines

Availability: The NLTSS-controller family of routines and their support
routines are a group of related processes. They are all available on
the Cray computers, but only part of this group of routines is
available on the CDC 7600 machines. Documentation is available from
the USD consulting office. The authors are J. Minton and J. Donnelley.

Use: The NLTSS group of routines is designed to help provide
synchronized access to libraries and processes. They also help remove
much of the tedium found in our day-to-day operations, such as writing
files to storage, outputting listings, running compilers and loaders,
counting lines of code, updating the data base, etc. The routines are
very specialized for NLTSS use, but could be of possible use to
individuals wanting to build their own specialized development tools.

User Systems Guidelines for Software Projects
UCID-20643
Page 100

Cod i ng/Too1s/Ava i1ab1e

NPUT

Availability: NPUT is available on the CRAY computers. The
documentation can be retrieved from storage.

Enter

xport
.rd . 177891:put:putdoc

You can get hardcopy using the TRIX AC print command.

Use: NPUT merges source files similar to the way BUILD merges

relocatable binary-files. NPUT is used to update modules or to add new

modules to the source-code file.

To use i t, enter

exe use nput x

NGET

Availability: NGET is available on the CDC 7600 computers in public

file ANEW (a LIX file), and on the Cray machines in public file LASLIB

(a LIB file). Documentation is available from storage.

Enter

xport
.rd .846950 :nget:ngetwup

You can get hardcopy using the TRIX AC print command.

Use: NGET will extract source routines from an input file and write
them to an output file. It will extract a single routine or all
routines bounded by two specified routines.

User Systems Guidelines for Software Projects
UCID-20643
Page 101

Coding/Tools/Avai lable

NOGOTOS

Availability: NOGOTOS is in public file LASLIB. It also can be
accessed from storage by entering

xport

rd. .489062:nogotos.

Documentation is in storage and can be retrieved by entering

xport

rd. .489062:nogotodoc

If you want hardcopy of the documentation, you can use the TRIX AC
print command. The author of NOGOTOS is Jim Kohn.

Use: NOGOTOS is a file containing a small set of macros that can be
used to write structured Fortran programs without GOTO commands.
NOGOTOS makes looping constructs and case selection constructs readily
available. The Fortran source must be processed by PRECOMP (a macro
processor) to turn it into code acceptable to CIVIC, CHAT, CFT, and
other Fortran compilers.

PASCAL Tools

Availability: PASCAL tools are available on the CDC 7600 computers

using SL0PE2. Documentation is in storage on the LCC Octopus system

and can be retrieved by entering

xport
.rd .381388:pascaldocs[pascalwu pasclibwu toolswu]

You can get a brief description of what is available in another
document you retrieve from storage. After entering xport,

.rd .381388:pascal:pascald

If you want hardcopy of the documentation, you can use the TRIX AC
print command. The consultant for the PASCAL tools is Terry
He ideIberg.

Use: The PASCAL tools consist of a consist of a disassembler, source
file formatter, and more.

User Systems Guidelines for Software Projects
UCID-20643
Page 102

Cod ing/Too1s/Ava i1ab1e

PRECOMP

Availability: PRECOMP is available in public files on the CDC 7600 and
Cray computers. Documentation is retrievable from the LCC
online-documentation system as either precomp or ur920 [Ref. 27]. A
summary of PRECOMP commands is also in Summary Sheets [Ref. 22]. The
PRECOMP consultant is Bob Hughes.

Use: PRECOMP is a macro processor and translator. It accepts
Fortran-like source code and produces output to be compiled by CHAT,
CIVIC, FENIX, and CFT compilers.

RELABEL

Availability: RELABEL is available on the CDC 7600 computers in library
file USE. Documentation is retrievable from the LCC
online-documentation system as either relabel or ur214 [Ref. 28] A
summary of RELABEL commands is also in Summary Sheets [Ref. 22].

Use: The subroutine relabels Fortran statements in a source file with

alphanumeric sequenced statement labels. Be aware that statement

relabeling uses simple pattern replacement, which may occasionally

catch more than just labels.

SML

Availability: SML is available on the CDC 7600 and Cray computers.
Documentation is retrievable from the LCC online documentation-system
as ucidl8887 or sml [Ref. 29].

Use: SML sorts and merges files from a LIB library. It makes a library
from one program and separates the library one file per module. SML
can also do partial copies.

VERIFY

Availability: VERIFY is available on the CDC 7600 computers only. The

tool is available from storage and can be retrieved by entering

xport
.rd .295701:verify

User Systems Guidelines for Software Projects
UCID-20643
Page 103

Coding/Tool s/Ideal

The code is imported and not supported. Documentation can be obtained
from Anne Greenbaum.

Use: VERIFY checks a Fortran program for adherence to a portable subset
of the 1966 ANSI Fortran- standard. It verifies not only individual
program units, but also interprogram-unit communication via COMMON and
argument lists. For individual program units, it produces error
diagnostics, symbol tables, and cross references. The
interprogram-unit information includes, for each program unit, a
listing of the arguments, the COMMON regions, the called program-units,
and the program units that call it. A list of global common
definitions is also produced. The source file to be verified must be
named INPUT, and the output will be in a file named HVERFO. The last
line of INPUT must contain a single period (.) in the first position.
To run the program, simply type verify

WORK

Availability: WORK is available in public file GG on CDC 7600 and Cray

computers. The author of WORK is Kelly O'Hair.

Use: WORK expands and manipulates module prologues and subroutines
written in the GRAFLIB standard format (see Example C5 on page 93).
The tool operates on modules such as subroutines, functions, cliches,
or blockdatas with commands to sort modules, extract modules, make a
catalog of modules, delete modules, replace modules, and more.

Ideal Tools

We don't know what is the best user interface for a template tool, but
we would like to try a menu-interface. The design for a user-interface tool
should be flexible so that the tool could be modified or changed easily.
The template tool itself should allow for some flexibility, especially in
what information is used and how the information is ordered. In addition,
the tool should interface to the available text editors and be portable to
current and future workstations.

User Systems Guidelines for Software Projects
UCID-20643
Page 104

Coding/5ibliography

Coding Bibliography

Anonymous, Nuclear Software Systems Division Softxuare Engineering
Guide lines, Lawrence Livermore National Laboratory, Livermore, CA,
UCID-19228 (1981).

J. A. Clapp, "Designing Software for Maintainability," Computer Design, 197
(1982) .

James L. Elshoff and M. Morcotty, "Improving Computer Program Readability to
Aid Modification," Computing Practices, 25(8), 512 (1982).

B. Herron, "Software Project Standards Preview: Coding Practices,"
Tentacle, 2(4) 21 (1982).

D. D. McCracken and G. M. Weinberg, "How to Write a Readable FORTRAN
Program," Datamation, 73 (1972).

J. Minton, D. SchnabeI, J. Huskamp, G. Whitten, and K. Dusenbury, URLIB -A
Subroutine Library for Writing Utility Routines, Lawrence Livermore National

Laboratory, Livermore, CA, M-048 (1979).

J. B. Munson, "Software Maintainability: A Practical Concern for Life-Cycle
Costs," Computer, 103 (1981).

G. J. Myers, Software Reliability Principles and Practices (John Wiley and
Sons, Inc., New York, 1976).

P. R. Newsted. W.-K. Leong, and J. Yeung, "The Impact Of Programming Styles
On Debugging Efficiency," Software Engineering Notes, 6(5), 14 (1981).

M. Page-Jones and E. Yourdon, The Practical Guide To Structured Systems
Design (Yourdon Press, New York, 1980).

k. O'Hair, GRAFLIB Programming Standards, Lawrence Livermore National
Laboratory, Livermore, CA, Unpublished (1983).

R. Skowlund and J. Martin, "Software Project Standards Preview, Common
Attributes of a Module," Tentacle, 1(5), 8 (1981).

A. I. Wassermam and S. Gutz, "The Future of Programming," Communications of
the ACM, 25(3), 196 (1982).

User Systems Guidelines for Software Projects
UCID-20643
Page 105

Testing/Overview

TESTING

Overview

Testing is the process of running a software program with sample
data-sets to find errors. Therefore, testing can only detect errors, not
show program correctness. Error detection is done by using sets of test
data that cover all possible input (exhaustive testing) and yet are small
enough for practical use. The test-data sets should come from an analysis
of the product at each stage of its development life-cycle: definition,
design, and coding. Only in this manner can it be assured that the
specifications for the program are even testable, let alone correct.

Historically, software-products testing has been done informally, and
testing for changes in critical software products was often improvised as
the changes were made. Test cases were created, run from a terminal, and
discarded when successfully completed. Despite a software developer's best
intentions, errors would be introduced during enhancement and remain
undetected until the entire program was used in a project.

Although software developers generally agree that testing is important,
rigorous testing is difficult and complicated by the tendency to test for
success rather than failure. It helps to have a somewhat disinterested
person work with the developer to set up conditions under which errors will
be produced. Peer review and formal walkthroughs are also useful in
detecting errors early in the development life-cycle when easiest and
cheapest to correct. Even a shift of viewpoint from trying to prove a
program correct to trying to find errors can greatly help a developer. To
restate Myers' testing principles [Ref. 30]:

Testing is the process of executing a program with the intent of
finding errors.

A good test case is one that has a high probability of detecting an
as-yet undiscovered error.

A successful test case is one that detects an as—yet undiscovered
error.

There are methods to assist development of test cases, but it's
recognized that producing a theory of testing leading to fully automated
systems is unlikely. While formal verification techniques have been
developed, they need substantial tool-support to implement. Testing is

User Systems Guidelines for Software Projects
UCID-20643
Page 106

Testing/Guidelines

still the most easily applied technique for verification, and the tester
must still use his ingenuity and problem—oriented knowledge for detecting a
variety of specific error—types. To quote Myers:

It is probably true that the creativity required in testing a large
program exceeds the creativity required in designing that program.

In this chapter, we will consider the guidelines for accomplishing the
testing and the test plans for the ASCII to EBCDIC converter and for a
module designed to solve a quadratic equation. Refer to the glossary on
page 137 for terms associated with testing with which you are not familiar.

Testing Guidelines

We recommend that testing be a part of the project development
life-cycle. That is, testing should be done for the project-definition
phase, project-design phase, and coding phase. In addition, a test history
should be kept.

Testing should not be confined to the final stage of development.
Careful test planning is as important as careful project definition and
design. It's necessary to choose test data, predict the expected results of
the tests, and decide how to compare the results with the desired behavior.
If you combine the structural and functional characteristics of a program,
you will get a basis for determining criteria for test-data sets.
Functionally, the test data should reflect properties of the program and its
range and cover extreme and transitional values for input, output, and
control. Structurally, the test data should use the program to meet a given
level of coverage—for example, all statements, all branches, and all
decision-to-decision paths.

However, a set of test data that is logically sufficient may not be
practical to use. Therefore, find a test-data set that covers the material
to be tested but is small enough for practical use. The following criteria
have proven helpful.

• Test data should reflect the special properties of the most extreme

values of the system

• Test data should reflect the special properties of the function the
program is supposed to implement—for example, the special property
of program values that lead to extreme function values

User Systems Guidelines for Software Projects

Testing/Ckiidel ines/Kmctional Testing

UCID-20643
Page 107

• Test data should employ the program is a specific way—for example,
the test data should cause all branches or all statements of the
program to be executed

A summary of the guidelines for the testing phases is seen in Table 3
with a brief description. Each item is expanded further in the sections
following the table.

Table 3. Summary of the phases for testing software programs generated at
Lawrence Livermore National Laboratory.

Phase Descript ion

Prepare a functional test-plan The functional test-plan treats the
for the project definition product as a black box, associating

specific product output-sets with specific

input data-sets.

Create a modular test-plan for The modular test-plan delineates sets of
the project-design phase test data for testing module interfaces

and functionality. It should specify
specific inputs to a module and expected
outputs from the module.

Construct a structural
test-plan for the
project-coding phase

The structural test-plan includes program
instrumentation and test-data sets
designed to cross and verify specific
decision paths within the program.

Keep a test history The test history includes a record of test
set-executions and results in enough
detail to allow for reproducing the tests
at a later time. The execution of ad hoc
tests, without sufficient records, are
considered part of code debugging rather
than as acceptance testing.

User Systems Guidelines for Software Projects
UCID-20643
Page 108

Testing/Guidelines/4<\jnctional Testing

Functional Testing

A software program can be viewed as a function and can be tested for
the degree of faithfulness with which implementing the program reproduces
the function specified in the project definition. Therefore, functional
testing involves applying test data derived from specified functional
requirements and can be accomplished without regard to the final program
structure. The act of creating functional tests helps to insure that the
requirements are specific and can be measured for testing.

Input functional elements are called valid; other input elements are
invalid. A program may be considered incorrect, given either a valid or
invalid input, because it does not do something it's supposed to do or it
does something it's not supposed to do.

A simple type of functional test can be derived from specifying that a
program module receive as input the three coefficients a, b, and c for the
quadratic equation ax^+bx+c=0 and return as output the roots. Refer to the
example on page 113 for other tests.

Structural Testing

structural testing is a method in which the test data are derived
solely from the program structure. The structure of the program is
determined during the design and coding phases of the development
life-cycle. The program is divided into a hierarchy (a graded series) of
modules connected by specified interfaces and data flows. Within each
module, decision points are chosen to implement alternative actions
specified in the requirements. Then functional tests for individual modules
and module interfaces can now be designed and then tested (see section on
functional testing, above), because the data sets will be composed of
specific inputs to modules and expected outputs.

It is also now possible to design data sets for structural testing by
selecting test data that put all branches into play, execute all statements,
or cover all decision-to-decision paths through a program. Structural
testing is helped by inserting additional code into the program to collect
information about program behaviour during program execution. Code
insertion is called instrumentation and is a way of learning about the
effect(s) individual tests have on a program. Instrumentation also provides
an empirical method of obtaining a measure of the test coverage when a
series of test cases is analyzed.

User Systems Guidelines for Software Projects
UCID-20643
Page 109

Testing/Ckiidelines/Structural Testing

Test History

Because of the time required to create, execute, and archive each test
case, it is very important that test data are recorded. Then, the tests can
be rerun when a product is next modified (regression testing). These
records are the test history.

This history is needed for the test-data sets run, the specifics of
execution, and the comparison of outputs. It is also needed for the entire
software environment on which the program depended when it was last
compiled, loaded, and executed. All this information can be used to trace
discrepancies in outputs of different executions, using the same test data,
back to their sources. Among the possible causes for such discrepancies,
look for new errors introduced while making corrections, compiler changes,
changes to binary libraries, and changes to other processes or control lees
executed by the program.

A comprehensive test-history, sufficient to allow a new
program-maintainer to rerun the previous tests, will greatly help
recertification of software programs following changes.

User Systems Guidelines for Software Projects
UCID-20643
Page 110

Testing/Exanples/ASCII to EBCDIC File Converter

Testing Examples

Example Tl. ASCII to EBCDIC File Converter

Three tests are run for the ASCII to EBCDIC file converter, i.e., a
user-interface test, a functional test, and an exhaustive test. These are
summarized below.

Test Plan

User Interface Test

Write the user interface first, using stubs (see Glossary on page 137)
for the working parts of the program. Create an input file inputa and try
the following execute lines.

convert

convert help

convert inputa

If you run convert inputa on suffix a, check to see if

there's an output file a$ebcdic in your disk space.

convert inputa outpute

convert inputa, outpute

convert inputa , outpute

convert inputa ,

convert inputa inputa

convert none

There is no input file called none .

convert inputa outpute none

Repeat the same commands after receiving prompts from the help package.

User Systems Guidelines for Software Projects

Testing/tlxanples/ASCII to EBCDIC File Converter

UCID-20643

Page 111

Functional Test

After the working part of the code is written, try the following
procedures.

• Send the output file outpute to a CDC 7600 computer via xport ,
and run the following utility.

format outpute bactoa ebcray

Then, send bactoa to a Cray computer and compare it with the original
file inputa .

• Create a file with lines longer than 132 characters, and use it as
input.

Exhaustive Test

Create a file containing each of the 256 ASCII characters. Then,
run convert under ddt with breakpoints set, so it's possible to check for
the correct translation of each character.

Test History

User-Interface Test

All input lines functioned as expected.

Functional Test

• The source for convert was used as an input file. When the output
file was reconverted by format on the CDC 7600, a casual inspection
showed that the conversion table contained an incorrect code for the
character . (period). This was fixed.

• When lines longer than 132 characters were used as

input, rdline detected them. An error message, included in the
code to detect the longer line, was removed.

• The test suggested by the walkthrough team, while reasonable, was not
performed, because an EBCDIC utility was not available.

User Systems Guidelines for Software Projects
UCID-20643
Page 112

Testing/Exanples/ASCII to EBCDIC File Converter

Exhaustive Test

This test was not performed, because it was tedious and boring, and the
use of convert was not critical enough to warrant the effort.

User Systems Guidelines for Software Projects

Testing/Exanples/Quadratic-Equation Test Plan

UCID-20643
Page 113

Example T2. Quadratic-Equation Test Plan

The following are test cases suggested by Gruenberger [Ref. 31] to test
a module designed to solve the quadratic equation aa;̂ +bx+c=0. These are not
the only test cases possible; others, for example, are designed to determine
the arithmetic limits and precision of the module.

Test A. Normal Case

a=6, b=l, c=-2

Test B. Normal Case with One Zero Root

a=3, b=7, c=0

Test C. Square Root of Zero

a=7, b=0, c=0

Test D. Linear Equation

a=0, b=5. c=17

This is a linear equation instead of a quadratic. How does the module
handle it? Does a=0 (or nearly zero) result in an overflow or indefinite?

Test E. Cotrplex Roots

a=3. b=2, c=3

Does the module handle the case where the roots are complex?

Test F. Invalid Equation

a=0, b=0, c=10

The invalid equation is 10=0. Is an appropriate error-return
generated?

User Systems Guidelines for Software Projects
UCID-20643
Page 114

Testing/Exanples/Quadratic-Equation Test Plan

Test G. Degenerate Equation

a=0. b=0. c=0

The equation degenerates to 0=0 and cannot be solved. What does the
module do?

User Systems Guidelines for Software Projects
UCID-20643
Page 115

Testing/Bibliography

Testing Bibliography

W. R. Adrion. M. A. Branstad. and J. C. Cherniavsky, Validation,
Verification, and Testing of Computer Software, NBS Institute for Computer
Science and Technology. U.S. Dept. of Commerce, Washington DC, Special
Publication 500-75 (1981).

M. A. Branstad, J. C. Cherniavsky, and W. R. Adrion, "Validation.
Verification, and Testing for the Individual Programmer," Computer 13(12),
24-30 (1980).

User Systems Guidelines for Software Projects
UCID-20643
Page 116

User Systems Guide l ines for Software P r o j e c t s
UCID-20643
Page 117

User Documentation/Overview

USER DOCUMENTATION

Overview

User documentation (UD) should enable anyone to access software easily
and to use the routines to their full potential. Therefore, the goal is
well-prepared and timely documentation that is accessible to every user at
every level of expertise.

However, not everyone has the same time available to learn to use a
program or wants to know the same amount or kinds of material before or
during a working session [Ref. 32]. Therefore, we propose preparing at
least three categories of general documentation to satisfy the needs of most
users. These are listed in the order of priority.

• A reference document

• A by-example document

• A tutorial document

A reference document is a complete description of the software product.
It explains all commands, options, alternatives, errors, methods, etc. A
by-example document takes one or more examples of typical usage and shows
the input with the corresponding output of each example. A tutorial
document presents the information as a teacher would in explaining the
software to a class of students.

The reference document must always be provided—it is essential.
However, the by-example document is likely to be the most heavily used, as
many software-product users are interested only in typical cases, especially
at first. Only later, when some special option is needed, will users refer
to complete specifications in the reference document. The tutorial should
be provided for novice or first-time users.

In preparing the documentation, you should include some of the same
information in each of the three document categories. A user should be able
to use a document without constantly referring to another. Documentation in
each category will change as the program or routine for which it was written
is updated or revised.

In this chapter, we will first present general guidelines for when and
how to prepare and update user documentation. Second, we will present

UCID-20643
Page 118

User Systems Guidelines for Software Projects

User Documentation/General Preparation Guidelines

guidelines for how to prepare documents in the three categories noted above.
Third, we will describe some additional mechanisms for communicating
documentary information. Fourth, we will provide templates for the
different types of documentation. Fifth, we will cite examples. Sixth, we
will outline some tools for both presenting and preparing user documentation
at al1 leveIs.

General Document-Preparation Guidelines

The time at which you prepare user documentation for USD software is as
important as how you prepare it. Some users believe the time of UD
preparation is more important, because the product will not be used
effectively without accompanying documentation. Therefore, both new or
revised software and the UD should be available and announced together.

Below is a list of general guidelines that includes information on
timeliness, announcements, and content of user documentation for USD
sof tware.

• Whenever USD software is created or modified, user documentation for
the software should be updated and given to the document coordinator
for placing into the LCC online system

• Whenever a document is created or updated, keywords pertaining to the

document should be assembled or amended, so users can find a selected

portion of the writeup for online viewing

• Whenever a document is created or updated, a revision history should
be appended or updated so that the user can locate changes by
description and page; also, changes should be indicated with change
bars in the text

• Whenever a document is created or updated, there should be an

announcement placed in the daily Octogram

• Whenever documentation for a software product is updated, pertinent
portions should be updated in the Svmnary Sheets entry [Ref. 22] and
given to the document coordinator for placing into the LCC online
system

• Whenever USD software is released before the completed documentation
is edited, the draft documentation should be given to the document
coordinator for placing into the LCC online system and be immediately
avallable

User Systems Guidelines for Software Projects
UCID-20643
Page 119

User Documentation/General Preparation Guidelines

• For each USD product, there should be a reference document of
commands, tools, and fundamental structures and concepts
— Start-up examples should be provided for immediate access to the

product

• For each USD product, a step-by-step demonstration document with

examples for every command should be provided
— In addition, start-up examples should be available for immediate

access to the product

• For each USD product released, a tutorial should be prepared
— Start-up examples should be provided for immediate access to the

product

Guidelines for Preparing User-Documentation Categories

The guidelines in this section are based on documentation preparation
at Los Alamos National Laboratory [Ref. 32]. We will discuss three
categories of general documentation—reference, by-example, and tutorial
documents—and the possible need for start-up examples in each category.

The Reference Document

Description

The reference document is terse, but accurate, and detailed. It should
cover what each tool is, what each command does, and what the fundamental
structures and concepts of the product are. It should cover all computing
features, such as syntax information, calling sequences, error correction,
and other supplementary information.

It should also include quick-reference and cookbook information and
detailed examples to provide everything a user may need to effectively use
the software in question. It may have to have some tutorial information.
For example, reference documentation for an obscure tape—utility might
include tutorial information on importing, converting, and exporting tapes.

Audience

The primary audience is the user who knows the program and can find the

needed reference material. The secondary audience is the user who wants to

User Systems Guidelines for Software Projects
UCID-20643
Page 120

User Documentation/Guidelines for Preparing User-Documentation
Categories/By-Exairple Documents

learn more about a program or who is familiar with the generic capability of
a program but wants a complete description of it.

The By-Example Document

Description

A by-example document contains general rules and examples to apply to
what the user is working on. The examples are considered generic rather
than specific. The necessary commands and functions of common tasks are
described step-by-step and then expanded. The user gets semi-instant
grat1fication.

Audience

The audience includes anyone who wants immediate information on how to

generally apply a specific program or the user who completed the tutorial.

The Tutorial Document

Description

A tutorial document contains information about how software or hardware
functions and is usually prepared for heavily-used computer capabilities
such as filing systems, file management, output generation, and text
editors.

Audience

The audience for a tutorial document is the user who is a novice or
just beginning to become familiar with the capability of the software and
has the time and inclination for learning. Therefore, the tutorial should
cover introductory topics, general-reference material, cookbook-type
directions using specific rather than generic examples, as well as detailed
material to reference as the user advances. Although a tutorial can get a
user started by introducing him to fundamental concepts and methods used to
run a program, it can also be a supplement to regular classes and should
provide learning choices.

User Systems Guidelines for Software Projects
UCID-20643
Page 121

User Documentation/Guidelines for Preparing User-^)ocumentation
Categories/Start-L|) Examples

Start-Up Examples

Description

Start-up examples are task-oriented how-to procedures and should be
designed to help a person use software quickly. Therefore, there should be
limited explanations of the examples and perhaps no supplemental
information. The material included in the examples must be tested and
assured before release, because users have no tolerance for examples that
won't work. User documentation for commonly used programs, such as TRIX AC
[Ref. 17], might have start-up examples for each UD category.

Audience

start-up examples are for users who have little time to learn a
program, who need a memory jog at the beginning of a document, or who would
be more comfortable having more examples before them.

Documentation Aids

There are services available through USD that help software-project
teams communicate with users and among themselves. These services may not
be the usual forms of user documentation, but they do function in a similar
way—that is, they inform users of what is new and what is happening. Among
the different services are formal (and usually regular) publications,
informal (and often irregular) publications, courses, meetings, and
consult ing.

Formal Publications

Among the formal USD publications are the LCC Routine Summaries
(Szimmary Sheets), the monthly Tentacle, a glossary, the daily Octogram, and
introductory cards (introcards).

LCC Routine Suimaries

The LCC Routine Summaries are notebook-sized pages condensed from
complete routine writeups. Most of the summaries are in Sxartmary Sheets
[Ref. 22], which provides an overview of heavily-used utility routines. The
types of routines found in Svmnary Sheets are programming-language

User Systems Guidelines for Software Projects
UCID-20643
Page 122

User Documentation/Documentation Aids

processors and loaders, batch processors and job controllers, and
text-editing software.

Tentax:le

Tentacle is the monthly news magazine for Computation Department users.
It contains information about new products, department and division
activities, and articles of general interest. Daily Octogram notices of new
or revised software and the longer Octopus Communique writeups are also
included.

Octogram

The Octogram is a single-sheet announcement that is published daily and
distributed widely within LLNL. It, therefore, reaches most computer users
at the laboratory.

Glossary

The Glossarium [Ref. 33] is an LCC-specific glossary and provides

definitions for many computer terms used at LLNL.

Introductory Cards (Introcards)

Introductory cards, also called introcards, are fan-fold brochures that
give general information about computing facilities. They are designed
primarily for users with little to moderate knowledge of LCC operations.

Informal Publications

Among the informal publications are memos about Computation Department
meetings and information letters from various divisions in the department.
These are distributed through lists generated by the Mail Room. There are
two lists that the Computation Department uses—the Cheshire-46 list for
general Computation distribution and the Cheshire-36 list for people
interested in information on graphics.

User Systems Guidelines for Software Projects
UCID-20643
Page 123

User Ebcumentation/Documentation Aids

Educational Services

Courses

You can take courses in several ways at LLNL.

• Attend a class with others and have an instructor in the room with
you. These so-called live classes can be structured or unstructured,
depending on the needs of the participants, and interaction with the
instructor is encouraged. These courses are often taped for future
use or review.

• Attend a previously taped course. While there can be no interaction
with the instructor, there is usually a proctor available to answer
questions and go over any homework.

• Take a self-paced individual course. This might be a previously
taped structured-class, an online tutorial, or a hardcopy tutorial.

Catalogues of available courses are sent regularly to employees at
LLNL. Taped classes, produced at LLNL or elsewhere, are available for
individual review or use by calling the television studio at Ext. 2-8990.

Computer Docimentation Library

The Computer Documentation Library is located Trailer 2106, Room 1001.
You can call Ext. 2-0592 for information or to have a document sent to you.
Most of the documents in this library are online; and if you're on the
Octopus system, you can retrieve them directly. However, some Computation
Department documents are available only as hardcopy and found only in this
library. Here, you will also find documentation from Cray Research,
Inc. and SL0PE2 documentation from Control Data, Inc.

Consulting Services

The USD consulting office is located in Trailer 2106, Room 1004. You
can reach a consultant at Ext. 2-3724. The consultants provide advice on
software and programs to users every working day. In addition, they collect
statistics on the types of questions asked, so general answers may be
published in Teniaele on a timely basis. A log of reported bugs has been
started, and the types of system or program anomalies can now be analysed
and solutions sought.

User Systems Guidelines for Software Projects
UCID-20643
Page 124

User Documentation/Documentation Aids

Meetings

If you read the daily Octogram and your mail, both electronic and hand
delivered, you'll be informed of all the meetings of interest to you. Among
these may be

• Computation Department Technical Seminar series

• Major-users group meetings,

• Specific computer-users group meetings

• Twice yearly Computation Department report to the members by the

staff

• Special-interest group (SIG) study sessions

• Problem-solving committees

User Systems Guidelines for Software Projects
UCID-20643
Page 125

User Documentation/renplates/4feference Document

User-Documentation Templates

The templates in this section are for a reference document, a
by—example guide, a tutorial document, and summary sheets. Refer to A Guide
for Software Documentation [Ref. 34] for more information.

Template UDl. Reference Document

Identification

• Purpose

• Available on machines

• Programmed by

• Documented by

• Memory requirements

• Revision history

• References

General Description

Definition of Terms

• List alphabetically all terms used in this report

• Define each term

Options

• Input

• Edit

User Systems Guidelines for Software Projects
UCID-20643
Page 126

User Ebcumentation/Templates/Reference Document

• Output

• File

• other

Suimary of Usage Forms

• List or simply describe basic instructions for using the routine

• Display the user-routine dialogue with necessary variable terms and
options to illustrate the mechanics of one or more usage forms—for
example, mention what continuation characters are used in the routine

Usage Exaiples

• Display examples of how the routine is used

Detailed Information

• List each command if the product is interactive

• Display each icon if the product is menu driven

• If the product is a compiler or translator,
— Provide syntax descriptions
— List all keywords or statements with their parameters

• List methods employed by the product if it would aid the user

• Provide enough information for the user to choose among alternate

methods provided by input options

• Explain how to run the product as the control lee of another or how to

use the product as a controller, if possible

• List the effects of combinations of options

User Systems Guidelines for Software Projects
UCID-20643
Page 127

User Documentation/Tenplates^^feference Document

Help Facilities

• Briefly state t^e help provisions the user can access while executing
the routine

• Mention when the user can type help

• If no help facilities are available, state it

Restrictions

• List restrictions such as maximum number of parameters, reserved

words, word format, etc.

Error Messages

• Divide error indications into fatal and nonfatal messages

• Sort alphabetically the error messages in each category

• Special characters used in error-message formats should be defined in
terms of

— Character
— ASCII code

Controller Message-̂ '̂ormats

• List alphabetically messages to the controller

• List all messages in their exact character-by-character description

Revision Histories

Provide revision histories for both the program and the documentation.
Changes in the documentation, of course, can provide information on changes
in the program.

User Systems Guidelines for Software Projects
UCID-20643
Page 128

User Documentation/Tenplates/lteference Document

Caiment Sheet

• Attach a comment sheet for user comments. Allow room for comments
and use a fill-in-the blank list that includes, for example,

— Typographical errors
— Omissions

— Unmentioned quirks or peculiarities of the product
— Bugs
— Nice-to-have options

• Encourage users to make comments and send the sheet to the author

User Systems Guidelines for Software Projects

UCID-20643

Page 129

User Documentation/Tenplates/^-^xample Guide

Template UD2. By-Example Guide

A by-example guide is relatively terse, and explanations, although
present, are minimal. The guide should include the following information.

Preface and Contents

• Table of contents

• Abstract containing a brief description of the software product

• Information on the effective use of the by-example guide

General Information

• Introduction

• Requirements for successful execution of the software product
— Hardware and software environments
— Other related products

Exaiif)le(s)

• Operating-system control statements

• User input data

• Product execution

• All dialogue between the user and the software product

• Error messages

Any interruptions

User Systems Guidelines for Software Projects
UCID-20643
Page 130

User Documentation/Ternplates/^-^bcample Guide

• Recovery

• Output

• Termination

— Normal

— Abnormal

References

• List numerically those documents referenced by number in the guide

• List aphabetically in a separate section those documents not

referenced in the guide

Revision Histories

Provide revision histories for both the program and the documentation.

Changes in the documentation, of course, can provide information on changes

in the program.

User Systems Guidelines for Software Projects
UCID-20643
Page 131

User Documentation/Terrplates/Tutorial

Template UD3. Tutor ia l

The user manual should be prepared in a conversational tone at every
level. There may be times when you'll need to use unadorned lists or
commands, but the conversational tone can be resumed after these.

Preface and Contents

• Prepare a conversational preface that includes information on
— Where and when to use the software or program
— How to use the manual effectively

• Prepare a table of contents

Introduction

You should include the following in the introduction.

• Purpose

• Functions performed

• Limitations

• Additional background

General Information

You should provide the user with the following information.

• Acceptable input—data units

• Available processing

• Restrictions

• Generated output-data

• The meaning of operating-system—control statements

• The meaning of installation- or program-control statements

User Systems Guidelines for Software Projects
UCID-20643
Page 132

User Documentation/Tenplates/Tutorial

• Organization of the input stream

How to Execute the Job

• Initiating operations

• Loading the program

• Starting the program

• Entering input data

• Error procedures

— The user program

— The operating system

• Changing the input data

• Interrupting the program

• Obtaining output data

• Ending the program

• Terminating operations

Revision Histories

Provide revision histories for the program and the documentation.

Document revisions, of course, reflect program revisions.

User Systems Guidelines for Software Projects

User Document at ion/Teiipl ate s/Sumnary Sheets

UCID-20643
Page 133

Template UD4. Summary Shee t s

The summary sheets provide a quick reference to pertinent material in
LCC utility routines. It is assumed that the user has some familiarity with
the routine. The summaries should provide the following material for the
user .

• Reference document

• Purpose

• Avallabi 1 i ty

• Execution lines

• Def ini t ions

• Options

— Input options
— Alteration options
— Output options

• Other material
— Defaults
— Commands
— Interrupts

User Systems Guidelines for Software Projects
UCID-20643
Page 134

User Documentation/Examples/ttocument Sumnary Sheet

Examples

There are many documents of the three types we discussed above, plus
the LCC Routine Summaries [22], in the Computer Documentation Library (see
page 123). DDT [Ref. 35] (LCSD-1620) is a reference document, the seven
parts of Computer Graphics by Example [Ref. 36-42] (UCID-30166 Part 1
through Part 7) is a by-example guide, and Introduction to FRAMIS [Ref. 43]
is a tutorial.

The example we will use here is the summary sheet for the EBCDIC
converter, used as an example in the other chapters of these guidelines.

Example UDl. EBCDIC Summary Sheet

LCSD-OOOO CONVERT

PURPOSE Convert a Cray 8-bit packed ASCII file to a packed EBCDIC

file.

AVAILABILITY Private files on Cray-1 computers.

EXECUTION LINE CONVERT infile out file / t v

Notes

1. If no out file is given, the name of the output file will be
?$EBCDIC. where ? is the current suffix.

2. The HELP package is available by typing

CONVERT HELP

DEFINITIONS

infile The name of the disk file to be converted.

outfile The name of the output file created. This file holds the
converted results.

User Systems Guidelines for Software Projects
UCID-20643
Page 135

User Documentat ion/Too1s/Avai1ab1e Too1s

User-Documentation Tools

Available Tools

The available tools listed in the Project Definition chapter (page 29)
and the Design chapter (page 67) are also available for preparing UD.

The LTERM terminal emulator and the typesetting system TgX are
available in addition to the tools listed in previous chapters.

LTERM (A terminal emulator)

Document: S. Sparks, N. Smith, and G. Ledbetter, LTERM Tutorial,
Version 2.0, LCSD-3, (1985) [Ref. 44].

To obtain a copy of this document, log onto a CDC 7600 and

enter

trix aclprintlnip lcsd3 box ann id

Use: The LTERM terminal emulator allows you to use an intelligent
terminal as if were a terminal on the LLNL Octopus System mainframe.
The LTERM Upload and Download functions enable you to copy files back
and forth between Octopus worker computers and your PC. Thus, you can
prepare a document offline, and then upload it to the mainframe and
make it available to other users through the USD online retrieval
system.

TgX (A typesetting system)

Document: D. E. Knuth, The T^book [Ref. 45]

Use: TgX allows you produce a typographic copy of your document. You
prepare the document using your favorite editor program, putting in the
coding for TgX output as you proceed.

Availability: TgX is available at LLNL on the LCC J Vax computer, the
Computer Research Group (CRG) Vax, and some PCs.

User Systems Guidelines for Software Projects
UCID-20643
Page 136

User Documentat i on/Bib1iography

User-Documentation Bibliography

Anonymous, Nuclear Software Systems Software Engineering Guide lines,
Lawrence Livermore National Laboratory, Livermore, CA, UCID-19228 (1981).

M. Gray and K. London, Documentation Standards (Brandon/Systems Press, New
York, 1969).

G. J. Meyers, Software Re liability (John Wiley and Sons, New York, 1976).

User Systems Guidelines for Software Projects
UCID-20643

Page 137

Glossary

GLOSSARY

black box testing see functional testing.

bubble chart see data-flow diagram.

by-example document A user document containing one or more examples of
typical usage of a software product. The input and corresponding output of
each example and the dialogue between the user and the software product are
shown.

cohesion The relationship between the internal tasks within a module.

command language Another name for job-control language.

conceptual model 1. The mind's eye view of the product. 2. The logical (as
opposed to the physical) concepts with which the system deals.

coupling A method of communication among the modules of a program.

data dictionary 1. A list of the types of data elements that appear as
labels on the directed lines in a data-flow diagram containing definitions.
2. A structured description of a database. The data dictionary contains
descriptions of the contents of the database, as distinct from the raw data
held in the database itself.

data-flow diagram A graphical network-representation of a program made up
of circles representing processes and directed lines representing data flow.
A data-flow diagram is also known as a bubble chart.

data-structure diagram A graphical representation of a complex data item in
a data dictionary.

decision-to-decision (DD) path A path of logical code-sequence that begins
at an entry or decision statement and ends at an exit or decision statement.

dialogue The interaction between the user and the product.

exhaustive testing Executing the program with all possible combinations of
values for program variables.

function key A specific keyboard key that, when pressed, causes a function
to be performed rather than a character to be sent.

User Systems Guidelines for Software Projects
UCID-20643
Page 138

Glossary

functional testing Applying those test data derived from specific
functional requirements without regard to the final program structure.

icon A graphical or pictorial shape that identifies a command or function.

instrumentation Inserting additional code into a program to collect
information about how the program behaves while it runs.

interactive graphics The use of a tv screen and a pointing device to
communicate (see dialogue, above).

invalid input Test data that lie outside the function domain that the

program represents.

job-control language A language used to write the sequence of commands that
will control the running (execution) of a set of programs (a job). The
computer input for a job often consists of verbs.

menu A displayed list of options from which a choice can be made.

metadialogue The set of instructions that describes how a dialogue works.
For example, the metadialogue for the command tty instructs the product to
interact using the terminal; and the metadialogue for the command tvl29
instructs the product to interact using the Television Monitor Display
System (TMDS) device number 129.

model A physical or abstract representation of an entity or a phenomenon.
A model helps a user understand how the product works, how to predict the
effects of varying one or more input parameters, and how to predict the
rules governing program structure (syntax form).

natural language 1. The user's conventional speaking or writing language
rather than a computer-programming language with formal or prescribed rules.

product A utility routine (such as those listed in Summary Sheets
[Ref. 22]), library, or operating system resulting from computer
programming.

project definition One or more documents containing the project plan and
project description for a software product. The project plan contains the
purpose, milestones, resources, etc. and the project description the
requirements, specifications, etc. The project definition, however, is a
description of what is wanted not how it is provided.

User Systems Guidelines for Software Projects
UCID-20643
Page 139

Glossary

prologue A sequence of comments at the beginning of each program module
specifying the module name, purpose, calling form, input, output, global and
local variables, author, and date.

pseudocode A program-like, but informal, notation containing
natural-language text used to describe how a procedure or program functions.
Usually, the control flow is expressed in programming terms, while the
actions are expressed as narrative prose. Pseudocode is mainly used as a
design aid.

reference document A complete description of the software product
explaining all commands, options, alternatives, errors, methods, etc.

regression testing Testing a previously verified program. This is required
following program modification for extension or correction.

structural English A simple every-day English used to describe processes in
a data-flow diagram.

structural testing Testing a program with data derived solely from the
program structure.

structure charts Charts used to show the overall structure or hierarchy of
a program in terms of the program modules and their interfaces.

stub A substitute component used temporarily in a program so that progress
can be made. If a program must be tested before a procedure has been fully
developed, the procedure could be replaced by a stub that is known to work.
A stub could be used under a variety of circumstances—for example, it could
be used to always return the same result, return values from a table, return
an approximate result, consult a file, etc.

summary sheets Notebook-sized condensations of reference documents for
software products.

template A generalized skeletal form that can be expanded to provide
information about a specific routine or software product. A template allows
a programmer to fi11 in information for building his own prologue or
documentat ion.

testing 1. The process of executing a program with the intent of finding
errors. 2. Examination of the behaviour of a program by executing the
program on sample data sets.

User Systems Guidelines for Software Projects
UCID-20643
Page 140

Glossary

tutorial document Information that a teacher would use in explaining
material to a group of students.

user interface That portion of a software product specifying how a person

running the software communicates with the software.

walkthrough A product review by a small group of people, not all of whom

were involved in the creation process.

User Systems Guidelines for Software Projects
UCID-20643
Page 141

References

REFERENCES

1. R. L. Glass, "A Minimum Standard Software Toolset," ACM-SIGSOFT Software
Engineering Notes 7(4) (1982).

2. H. Moll, The TRIX Report Editor, Lawrence Livermore National Laboratory,
Livermore, CA, LCSD-818 (1984).

3. J. C. Beatty, REDPP—A Postprocessor for the TRIX/RED Report Editor,
Lawrence Livermore National Laboratory, Livermore, CA, UCID-3012, Rev. 1
(1977).

4. K. O'Hair, Computer Graphics by Example, Part 3—REDPP: A Post Processor
for TRIX/RED, Lawrence Livermore National Laboratory, Livermore, CA,
UCID-30166 (1978).

5. D. Lai, SPELLING—A Program to Check Spelling of Words in a File,
Lawrence Livermore National Laboratory, Livermore, CA, Unpublished
(1983).

6. J. C. Beatty, PICTURE—A Picture-Drawing Language for the TRIX Report
Editor, Lawrence Livermore National Laboratory, Livermore, CA,
UCID-30156, Rev. 1 (1979).

7. K. O'Hair, Computer Graphics by Example, Part 4—PICTURE: A
Picture-Drawing Language for TRIX Report Editor, Lawrence Livermore
National Laboratory, Livermore, CA, UCID-30166 (1978).

8. C. Streeter, SCI {Structure Chart Interface) Users Manual, Lawrence

Livermore National Laboratory, Livermore, CA (1982).

9. J. S. Chin, MCHARTSC: A Program that Creates and Modifies Milestone
Charts, Lawrence Livermore National Laboratory, Livermore, CA,
UClD-30165 (1978).

10. K. O'Hair, "Help with REDPP," Tentacle, 2(3), 16 (1982).

11. P. Keller, FTE: A Re source-AI location Program for Managers, Lawrence
Livermore National Laboratory, Livermore, CA, UCRL-52244 (1977).

12. B. Kelly, Programming Environment Project Definition, Lawrence Livermore
National Laboratory, Livermore, CA, Unpublished (1983).

User Systems Guidelines for Software Projects
UCID-20643
Page 142

References

13. J. White, Editing by Design (Bowker, New York, 1982).

14. J. Minton. D. Schnabel, J. Huskamp, G. Whitten, and K. Dusenbury,
URLIB—A Subroutine Library for Writing Utility Routines, Lawrence
Livermore National Laboratory, Livermore, CA, M-048-Part 2 (1979).

15. K. O'Hair, LR System User Manual, Lawrence Livermore National
Laboratory, Livermore, CA, LCSD-313, Draft (1985).

16. M. Page-Jones, The Practical Guide to Structured Design (Yourdon Press,
New York, 1980).

17. A. Cecil, H. Moll, and J. Rinde, TRIX AC—A Set of General-Purpose
Text-Editing Commands, Lawrence Livermore National Laboratory,
Livermore, CA, LCSD-808, Draft (1985).

18. E. Yourdon and L. L. Constantine, Structured Design (Yourdon Press, New
York, 1978).

19. W. S. Derby, J. T. Engle, and J. T. Martin, LRLTRAN Language Used with
the CHAT and CIVIC Compilers, Lawrence Livermore National Laboratory,
Livermore, CA, LCSD-302 (1981).

20. E. Yourdon, Structured Walkthroughs (Yourdon Press, New York, 1978).

21. K. Fong, T. Jefferson, and T. Suyehiro, SLATEC Common Mathematical
Library Source File Format, Lawrence Livermore National Laboratory,
Livermore, CA, UCRL-53313 (1982).

22. K. Dusenbury, Summary Sheets, Lawrence Livermore National Laboratory,
Livermore CA, LCSD-50, Rev. 2 (1984).

23. R. E. Cooper, FOCAL, Lawrence Livermore National Laboratory, Livermore,
CA, LCSD-1630 (1982).

24. J. Rowe, KLEAN: Clean Up Messy Fortran, Lawrence Livermore National
Laboratory, Livermore. CA, OC-956 (1975).

25. R. Johnson, KWICLIST, Lawrence Livermore National Laboratory. Livermore,
CA, LCSD-1647 (1981).

26. L. Chase, MCE, Lawrence Livermore National Laboratory, Livermore, CA,
LCSD-5241, Rev. 2 (1962).

27. D. E. Johnson. PRECOMP, Lawrence Livermore National Laboratory,
Livermore, CA, UR-920 (1979).

User Systems Guidelines for Software Projects
UCID-20643
Page 143

References

28. D. W. Thompson, RELABEL, Lawrence Livermore Laboratory, Livermore, CA,
UR-214 (1979).

29. L. Chase, SML, Lawrence Livermore National Laboratory, Livermore, CA,
UCID-18887, Rev. 1 (1982).

30. G. J. Myers, The Art of Software Testing, (John Wiley & Sons, New York,
1979).

31. F. Gruenberger, "Program Testing and Validating," Datamation 14(7),
39-47 (1968).

32. Computer Documentation Group C-2, Computing Division Plan for User
Documentation, Los Alamos National Laboratory, Los Alamos, NM,
LA-9807-MS (1983).

33. K. Dusenbury, Glossarium, Lawrence Livermore National Laboratory,
Livermore, CA, UCIR-929 (1975).

34. D. Walsh, A Guide for Software Documentation, Advanced Computer
Corporation, New York (1969).

35. D. Seberger, DDT, Lawrence Livermore National Laboratory, Livermore, CA,
LCSD-1620 (1981).

36. K. O'Hair, Computer Graphics by Example, Part 1, FTE: Produce Resource
Allocation Charts, Lawrence Livermore National Laboratory, Livermore,
CA, UCID-30166 Part 1 (1978).

37. K. O'Hair, Computer Graphics by Example, Part 2, PLOTPK: Plot and
Analyze Data, Lawrence Livermore National Laboratory, Livermore, CA,
UCID-30166 Part 2 (1978).

38. K. O'Hair, Computer Graphics by Example, Part 3, REDPP: Post Processor
for TRIX RED, Lawrence Livermore National Laboratory, Livermore, CA,
UCID-30166 Part 3 (1978).

39. K. O'Hair, Computer Graphics by Example, Part 4, Picture, Lawrence

Livermore National Laboratory, Livermore, CA, UCID-30166 Part 4 (1978).

40. K. O'Hair, Computer Graphics by Example, Part 5, CHARTIT: Color Bar
Charts, Lawrence Livermore National Laboratory, Livermore, CA,
UCID-3G166 Part 5 (1978).

User Systems Guidelines for Software Projects
UClD-20643
Page 144

References

41. K. O'Hair, Computer Graphics by Example, Part 6, SHADIT: Shaded-Area
Graphs in Color, Lawrence Livermore National Laboratory, Livermore, CA,
UCID-30166 Part 6 (1978).

42. K. O'Hair, Computer Graphics by Example, Part 7, TV80LIB, Lawrence

Livermore National Laboratory, Livermore, CA, UCID-30166 Part 7 (1979).

43. A. Dittli, Introduction to FRAMIS, Lawrence Livermore National
Laboratory, Livermore, CA, LCSD-555 (1981).

44. S. Sparks, N. Smith, and G. Ledbetter, LTERM Tutorial, Version 2.0,
Lawrence Livermore National Laboratory, Livermore, CA, LSCD-3 (1985).

45. D. E. Knuth, The T^book (Add i son-Wesley, Reading, MA. 1984).

LA

User Systems* Guidelines for Software Projects
UCID-20643

Ptevision History

Page 145

REVISION HISTORY

Rev. Date Description of Changes

lApr86 New document

User Systems Guidelines for Software Projects
UCID-20643
Page 146

User Systems Guidelines for Software Projects
UCID-20643
Page 147

Availabi1ity

AVAILABILITY

Printed copies of this document are available in the Computer
Documentation Library, T2106, Room 1001, Ext. 2-0592.

This document is also available online at LCC. To get a hardcopy
sent to your output box, log onto a CDC 7600 and type

trix ac
print! nip guidelines boxann identification
end

where ! is the linefeed and ann identification is your box number and
ident i f icat ion.

This document cannot be viewed at a TMDS monitor, because it
contains graphics.

User Systems Guidelines for Software Projects
UCID-20643
Page 148

1

Comment Sheet

The Software Project Standards Committee welcomes comments from USD
members and others. If you find errors or omissions, please let us
know—especially if you are aware of useful tools that should be included in
the next version of this document.

From:
Name

Address

Telephone number_

My comments are:

Staple Here

Fold Here

Software Project Standards Committee,
Jeanne Martin, Chair

Lawrence Livermore National Laboratory

P. 0. Box 808 L-300

Livermore, CA 94550

U.S.A.

Fold Here First

