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ABSTRACT

The Direct Containment Heating (DCH) calculations require that the transient rate at

which the melt is ejected from the reactor cavity during hypothetical pressurized melt ejection

accident scenarios be calculated. However, at present no models, that are able to predict the

available melt dispersal data from small scale reactor cavity models, are available. In this

report, a simple idealized model of the melt dispersal process within a reactor cavity during a

pressurized melt ejection accident scenario is presented. The predictions from the model agree

reasonably well with the integral data obtained from the melt dispersal experiments using a small

scale model of the Surry reactor cavity.
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NOMENCLATURE

A Area of cross-section of the "equivalent" one dimensional (ID) duct, = P5.
Ae Cavity exit area for the actual three dimensional (3D) cavity (see Figure 2).

Minimum of A or Ae .
Total surface area of all the walls, excluding the roof, for the actual 3D cavity.

C A constant, dependent upon the cavity geometry, in the correlation for E.

Cj) Discharge coefficient for sonic flow through a circular orifice.
dQ Diameter of the hole in the pressure vessel through which the melt and the gas are

discharged into the reactor cavity.

D Hydraulic diameter of the equivalent ID duct, = 45.

D c Hydraulic diameter of the actual 3D cavity near the cavity exit (Region 1 in Figure 2).

D* Dimensionless value for D as given by Equation (14)

E Fraction of liquid flux flowing as droplets, = jfe/jf.

E ^ Equilibrium value of E

f, f(t) Fraction of initial melt volume remaining within the cavity at any time t.

fen£j Value of f at the end of the gas blowdown.

g Acceleration due to gravity.

j f Superficial velocity of total liquid (melt) in the equivalent ID duct.

j f e Superficial velocity of entrained droplets in the equivalent ID duct,

jff Superficial velocity of liquid film in the equivalent ID duct.

L Superficial velocity of gas in the equivalent ID duct.

Kug See Equation (15).

Kuf See Equation (16).

Lgq Length of the equivalent ID duct,

m Average melt film thickness at any time t.

mg(t) Mass flow rate of gas through the pressure vessel at any time t.

nig Mass flow rate of gas through the pressure vessel at t = 0.

M Q Initial mass of gas in the pressure vessel.

0.5

PfC r
P Perimeter of the cavity walls assumed to be wetted by the liquid film near the cavity exit.
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For the Surry cavity model shown in Figure 2, it equals (w + 2h). It is also the

perimeter of the equivalent ID cavity.
PQ Initial pressure in the pressure vessel, = Pv(0).
Pv(t) Pressure in the pressure vessel at any time t.
R "Particular" gas constant for the gas in the pressure vessel,
t Time in seconds.

TQ Initial temperature of the gas in the pressure vessel.
TQ Assumed temperature of steam within the cavity for the full scale case.
u2 Velocity of the gas phase in the equivalent ID duct.
ufe Velocity of the entrained droplets in the equivalent ID duct.
VQ Volume of the pressure vessel

Ve Total volume of entrained droplets within the equivalent ID duct at any time t.
Veq Volume of equivalent ID cavity, = ALeq.
Vm(t) Total volume of melt within the cavity at any time t.

Greek Letters

Volume fraction of liquid droplets.

7 Ratio of specific heat at constant pressure to specific heat at constant volume for the gas.

5 Assumed width of the gas flow region in the actual 3D cavity as given by Equation (17).

77 See Equation (10).

[if Absolute viscosity of the liquid phase,

p Density of the gas phase.

Pf Density of the liquid phase.

Ap = (pf - pg)

a Surface tension of the liquid-gas pair.

IX



1. INTRODUCTION

1.1 Background

Consider a potential core melt accident sequence during which the nuclear reactor
pressure vessel fails while the primary system is still pressurized. Prior to vessel failure,the
molten core material is assumed to exist as a molten pool at the vessel bottom. Since the
pressure within the primary system in this scenario is assumed to be much larger than the
pressure in the containment, upon vessel failure the melt would be driven from the reactor
pressure vessel into the region directly beneath the vessel. The region directly underneath the
pressure vessel is termed as the "reactor cavity". Depending upon the melt volume, the hole
size in the vessel bottom, and the initial pressure in the primary system at the time of vessel
failure, at some instant, steam would "punch a hole" through the pool of core melt at the vessel
bottom, and flow into the reactor cavity region [1,2] along with the melt. Following the
completion of the two-phase melt-steam discharge, steam from the primary system would
continue to blow down from the primary system into the reactor cavity until the pressures in the
primary system and the reactor cavity are equilibrated. Steam, which is calculated to move at
a high velocity through the reactor cavity, is postulated to fragment the molten core material
(oxides and unreacted Zirconium and stainless steel) into droplets, interact thermally and
chemically (thus producing hydrogen) with the melt, and carry some fraction of melt mass into
the containment subcompartments just above the cavity. The core debris exiting the reactor
cavity is again available to interact thermally and chemically with the atmosphere (steam and air)
of the containment building. Hydrogen produced in the reactor cavity and the containment
subcompartments will be transported to the containment dome where combustion with oxygen
would occur if conditions permit. This phenomenon of direct energy exchange between the core
melt and the containment atmosphere (via melt-atmosphere heat transfer, melt-steam chemical
reaction, melt-oxygen chemical reaction, and hydrogen combustion), which leads to rapid heating
of the containment atmosphere, and hence rapid pressurization, is termed direct containment
heating (DCH). For a detailed discussion of the DCH phenomena, the reader is referred to
References [2] and [3].

The DCH accident scenario which is outlined above, and which is a consequence of the
"pressurized melt ejection accident scenario", involves interactions in three regions of the
containment building: (i) the reactor cavity, (ii) the containment subcompartments between the
reactor cavity and the containment dome, and (iii) the containment dome. Since the extent of
direct energy exchange between the melt and the containment atmosphere is proportional to the
interfacial area between the two phases (melt and gas) and the efficiency of mixing between the
two phases, it follows that to a first order only the fraction of core melt that is entrained as
droplets by the gas phase would contribute to the DCH pressure loading. The amount of core
melt that is ejected from the reactor cavity indicates that at least that much melt was entrained
within the cavity1 and had an opportunity to intend thermally and chemically with the steam
flowing through the cavity. In addition, the amount of melt leaving the reactor cavity is free

1 For some special cavity shapes, like Zion for example, some melt can exit the cavity under
its own momentum as a film even without entrainment.



to interact with the containment atmosphere downstream of the reactor cavity region until it is
trapped by the containment structures downstream of the cavity. Therefore, the mass flow of
core debris exiting the reactor cavity has a strong influence on the DCH loading. A model that
would predict the transient melt dispersal rate from a reactor cavity during a pressurized melt
ejection accident scenario is therefore needed, and is the subject of this paper. At present, the
NRC CONTAIN code [4, 5] is being used to predict the loading due to DCH. However,
CONTAIN is not a detailed multiphase fluid dynamics cede and cannot predict the extent of melt
entrainment (or dispersal) from the reactor cavity. In fact, the user must supply this information
as an input to the code. Thus the transient melt dispersal model, which is the subject of this
paper, could be directly used for CONTAIN DCH calculations.

1.2 An Overview of Small Scale Reactor Cavity Melt Dispersal Experiments

To study the melt dispersal characteristics of reactor cavities, Tutu et al [3, 6, 7] have
performed simulant melt dispersal experiments with the 1742nd scale models of the Zion, the
Surry, and the Watts Bar reactor cavities. In these experiments, water and molten Wood's metal
were used as the melt simulants. Each experiment yielded the data for fend, the fraction of melt
simulant that remained within the cavity model at the end of the gas blowdown from the pressure
vessel. Thus these were integral tests, and no transient measurements of the melt flow rate
exiting the reactor cavity model were made. Numerous experiments for various initial
conditions, namely: PQ, the initial pressure in the pressure vessel and dg, the diameter of the
hole through which the melt simulant and the gas are discharged into the cavity, were
performed. In addition, the experimental parameters included: melt simulant (water or molten
Wood's metal) and the driver gas (nitrogen or helium). Tutu et al [6] also performed a scaling
analysis of the melt dispersal process and obtained a list of dimensionless groups relevant to the
melt dispersal phenomena. Tutu et al [3, 7] have used these scaling groups to successfully
obtain a dimensionless correlation for fend for each of the three cavities they studied.

Melt dispersal experiments using small scale models of reactor cavities have also been
performed by Spencer et al [8, 9], Tarbell et al [10, 11], Macbeth and Trenberth [12], and Hall
and Dawson [13]. An important experimental result obtained by Macbeth and Trenberth [12],
who made gas velocity measurements within the cavity model, was that the gas velocity is highly
nonuniform in the cavity. Their measurements showed that the gas velocity near the floor and
vertical side walls of the cavity could be five to eight times the average gas velocity. Tutu et
al [6], who shot high speed motion pictures of selected experiments to study the cavity dispersal
phenomena, also report highly nonurnform and turbulent flow field within the cavity. Figure
1 shows a schematic of the observed gas flow field within the Surry cavity model. In this figure
B is the orifice through which the melt simulant is discharged into the cavity model and C,D are
the cavity exits. During the melt discharge phase of the transient, when only the melt simulant
is being ejected from the orifice B, the melt is observed to spread along the floor of the cavity
and climb the vertical walls of the cavity. During this process some splashing and consequent
droplet production is also observed. But by and large, by the end of the melt discharge phase
the cavity floor and most of the vertical walls of the cavity are observed to be covered with the
melt simulant. Following the discharge of melt simulant, the driver gas discharges from the
pressure vessel through B into the cavity. The gas jet upon impinging the floor of the cavity
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Figure 1. Schematic of the observed gas flow field within the l/42nd scale Surry cavity
model. All dimensions are in mm. A ^ = 0.1198 m2.



travels radially outward. While part of the gas flow continues to travel downstream, the
remaining flow is observed to recirculate within the cylindrical portion (F) of the cavity. The
flow was observed to be highly turbulent and nonuniform. Small regions of flow reversal were
observed intermittently near the roof of the "key way" in the cavity. The flowing gas is
observed to quickly entrain melt from films along the walls, and carry these entrained droplet:;
out of the cavity model through exits C and D.

1.3 Outline of the Report

The debris dispersal process is a highly transient and complicated hydrodynamic
phenomenon involving simultaneous droplet entrainment and droplet deposition on the walls of
the cavity. In the real full scale case the composition and the temperature of the gas phase
within the cavity are further influenced by the melt-steam heat transfer and the melt-steam
chemical reaction. However, the melt dispersal process is essentially hydrodynamic in nature.
In this report therefore, for the purpose of developing a basic melt dispersal model, we shall
restrict ourselves to an isothermal case with no chemical interaction between the gas phase and
the melt. In the next section we shall present a highly idealized transient model for melt
dispersal. The objective of the model is to provide us with a method that would enable us to
calculate approximately the mass flow rate of melt leaving the cavity as a function of time during
the transient. Then, in Section 3, in order to judge the adequacy of the model, we shall compare
the predictions from this model for fen{j to the experimental data for fen£j obtained with the
l/42nd scale Surry cavity model. Finally, in Section 4 we shall present some concluding
remarks.



2. AN IDEALIZED QUASI-STEADY MELT DISPERSAL MODEL

2.1 Introduction

As discussed above, the melt dispersal process in a reactor cavity is an highly complex
three dimensional transient phenomenon. A rigorous treatment of it would involve the
development of a 3D transient multiphase code in which the liquid field is further subdivided
into a droplet field and a film field. This task is further complicated by the necessity to provide
constitutive relationships for entrainment, deposition, droplet collisions, and turbulence modeling
in regimes for which no basic experimental data are available. Such a task is clearly beyond the
scope of the present work. However, as discussed in Section 1.1, in order to perform
CONTAIN-DCH calculations one must simply "guess" the transient mass flow rate of melt
entrained within the cavity and provide it as an input to the code. This is clearly unsatisfactory.
As a first step towards resolution of this problem, therefore, the objective of the present paper
is to develop a simple model that provides a first approximation to the melt dispersal rate, and
yet captures the essential mechanics of the melt dispersal process.

2.2 The Physical Model

Since the hydrodynamic processes in the actual 3D cavity are too complex to be solved
directly, we use the following approach. Based upon the experimental evidence [6,12], we
hypothesize some essential features of the melt dispersal process and then "transform" the actual
3D cavity into an "equivalent" ID cavity (or duct). We further assume the flow of droplets,
film, and the gas to be in a state of "quasi-equilibrium" near the exit of this equivalent ID duct.
This simplified problem is then solved more easily.

As discussed in Section 1.2 and observed by Tutu et al. [6], just before the onset of gas
blow down from the pressure vessel, the melt is observed to be spread along the floor and
vertical walls of the cavity. Therefore, as shown in Figure 2, we shall assume the melt to be
distributed along all the walls of the cavity except the roof. Let this surface area of the cavity
walls except the roof be denoted by A^^. Furthermore, since the experimental measurements
of Macbeth and Trenberth [12] show that the gas velocities near the floor and the vertical walls
of the cavity are five to eight times the average gas velocity within the cavity, we further assume
that the gas flow is restricted to a region 5 along the floor and vertical walls of the cavity. This
is indicated in Figure 2. The modeling of 5 would be discussed in Section 2.4. This figure also
shows that we divide the cavity into two regions. In Region 1, which is directly adjacent to the
cavity exits, the bulk gas flow is predominantly in the direction of cavity exits. On the other
hand, in Region 2, which is the cylindrical portion of the cavity directly underneath the reactor
pressure vessel, the bulk flow has a large recirculating zone.

Let P be the perimeter of the cavity walls wetted by the melt film in Region 1 of the
cavity. For the Surry cavity model shown in Figure 2, it equals (vv + 2h) since we assume that
no melt film exists on the roof of the cavity. Note that if b is assumed to be much smaller than
the cavity width and height, the cavity cross-sectional area in Region 1, through which the bulk
gas flow is assumed to occur, is equal to P5. As shown in Figure 3, we now define an



PLAN VIEW

Ae, CAVITY
EXIT AREA

SECTION A-A

Figure 2. A Schematic of the idealized melt and gas flow within the Surry cavity.
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Figure 3. Definition Sketch of the "equivalent" one dimensional duct.



"equivalent" one dimensional duct that would serve as an analogue for the actual 3D cavity for
calculational purposes. The cross-sectional shape of this duct is such that it also has a perimeter
of P, and a cross-sectional area of P5. Therefore, the hydraulic diameter D of this duct is equal
to 45. Furthermore, the length Leq of this ID duct is chosen such that it would have a total wall
surface area that is the same as the wall surface area assumed to be occupied by the melt film
in the actual 3D cavity. Let A be the cross-sectional area, j f e the superficial velocity of the
droplets, j t - the total superficial velocity of the melt, j ^ the superficial velocity of the melt film,
and E the fraction of melt flux flowing as droplets in the equivalent one dimensional duct, then:

A = P5 (1)

eq =

E = jfe/jf (3)

j f = jff + jfe = jff + E j f (4)

We shall now find approximate relationships for the fraction of volume occupied by the
liquid (melt) droplets, «fe and the superficial velocity of the melt film. j f f . Since the void
fraction of the gas phase for this problem is reasonably close to unity, we shall therefore, for
the purposes of modeling a fe and j f f , assume that the gas velocity ug is approximately equal to
the superficial velocity of the gas phase, j g . Furthermore, we shall assume that the droplet slip
is equal to 1/2, that is, the droplet velocity Ufe is equal to half the gas velocity). Therefore,

jfe = afe ufe = «fe u g / 2 * <*fe Jg / 2

Substituting Equation (3) in the above relation, we get:

«fe = 2 E VJg (5)

To calculate the melt film superficial velocity, we shall assume that the melt film-gas interface
is moving with the gas velocity, and that the velocity profile in the melt film is linear. Thus,
the volume flow raic of melt film is given by:

Pmjg/2 = A j f f = P 5 j f f

Therefore,

j f f = m j g / ( 2 5 ) (6)

Let V£ be the total volume of entrained melt droplets in the ID duct at any time t, then:

Ve = a f c A Leq = 2E (jf / jg) A Leq (7)

If Vm is the total volume of melt at any time t within the ID duct, then, the instantaneous melt
film thickness m is given by:



m = (Vm - Ve)/Aww

The volume of the equivalent cavity (ID duct), Veq is given by:

Veq = A L e q = P 5 A w w / P = 5

Using the above relation and equations (4), (6), (7), and (8), we get

j f = ( l / 2 ) j g ( V m / V e q )

(8)

(9)

In order to calculate the droplet flow rate exiting the reactor cavity as a function of time,
we must compute jfe, the droplet superficial velocity. Since jfe = Ejf, we must next develop
a model for E. Here again, in spite of the fact that the flow is transient and decaying with time,
we shall make the highly simplifying assumption that the flow of droplets, film, and the gas is
in a state of "equilibrium" at every instant of time during the transient blowdown process.
Therefore, we shall assume that a model developed for E M , the equilibrium value of E, can be
used in our case. The modeling of E is discussed in the next section.

2.3 Modeling of the Equilibrium Entrained Fraction of Liquid Flux, E ^

For a fully developed one dimensional steady annular pipe flow, Ishii and Mishima [14]
developed the following empirical correlation for E ^ , the fraction of liquid flux flowing as
droplets in the equilibrium region:

= tanh(7.25xlO"7 ij) = tanh(7.25xlO'7 W e 1 2 5 Re^ 2 5 ) (10)

where,

_ V]
a

Ap

opfD

If

1/3
(11)

(12)

This correlation was obtained by assuming E w to depend upon a product of certain powers of
the following three dimensionless parameters: the total liquid Reynolds number, the
dimensionless gas flux, and the dimensionless pipe diameter. Several points need to be noted
regarding the direct applicability of this correlation for the present problem. First, the
correlation was tested for experimental data obtained with water only. Therefore, in the
experimental data base the liquid phase density, p f and the surface tension, a were essentially
constants. Thus the applicability of Equation (10) to fluids like molten corium and molten
Wood's metal, both of which have much higher density and surface tension than water, is yet
to be verified. By substituting Equations (11) and (12) in Equation (10), we note that the



argument of tanh, -q is given by:

Therefore, the Ishii and Mishima [14] correlation indicates that if all the experimental variables
except the fluid density are held fixed, a heavier fluid will have a higher entrainment fraction.
That this should always be the case does not seem plausible. Although the gravitational force
on the liquid film may tend to increase the instability on the liquid film on the wall, and hence
increase entrainment due to increased interfacial shear, the liquid inertia, and hence the liquid
density, could also play a stabilizing role. In any case, the dependence of E on the liquid
density implicit in the Ishii and Mishima correlation, as indicated above, is directly in
contradiction to the integral experimental data obtained from melt dispersal experiments [3,6,7],
which show that in order to entrain the same volume fraction of a heavier fluid (molten Wood's
metal) much higher gas fluxes are required. Consequently, it is clear that if we were to use the
Ishii and Mishima [14] correlation to predict the melt dispersal, the model would fail.
Therefore, we shall next modify the Ishii and Mishima correlation and compare the predictions
from this modified correlation and the original Ishii and Mishima correlation to the experimental
data of Cousins and Hewitt [15].

Based upon the trends suggested by the experimental data [7,15], we assume the
following correlation:

= tanh
- „ 2 „ 0.33
C Ku Kuf

1.4

-exp(-D,/8))
(13)

where,

D* = D {g Ap/a} 0 5
(14)

Kug =

. 0.5
(15)

0.5
(16)

and C is a constant to be determined. The dimensionless pipe diameter D* is the ratio of the
pipe diameter to the Taylor wavelength (a/(g Ap))05 . In Equation (13), Kup is the Kutateladze

10



number and Ku^ is the dimensionless liquid flux. While Ishii and Mishima used the liquid
Reynolds number as the dimensionless parameter involving the liquid superficial velocity j f , we
hypothesize that for the current problem of interest (D* > 10, and N < 0.1) the entrapment
characteristics are independent of the liquid phase viscosity. The viscosity number N is defined
in the Nomenclature.

Cousins and Hewitt [15] have made measurements of the flow rate of entrained droplets
during annular flow of air and water in long vertical tubes. Before using the proposed
correlation for E ^ , as given in Equation (13), for the prediction of melt dispersal from reactor
cavities, let us now test this correlation and the original Ishii and Mishima correlation, as given
in Equation (10), against the basic experimental data of Cousins and Hewitt. Figure 4 shows
a plot of E ^ as predicted by the present model (with C = 8.64) against the experimental data
for Eg,,. The triangular symbols in this figure represent the 102 data points ( selected at random
from the first 340 data points from Table 1 of Cousins and Hewitt [15]) for experiments with
a 3/8 inch diameter tube. The square symbols correspond to the 24 data points for experiments
with the 1-1/4 inch pipe. The straight line in this figure indicates perfect correlation. As can
be seen, the agreement between the data and predictions is not unreasonable, especially for D*
= 11.61. A similar comparison of predictions from the Ishii and Mishima model (Equation
(10)) and the experimental data is shown in Figure 5. This figure shows that the Ishii and
Mishima model simply does an excellent job of predicting the data for D* = 3.49. However,
by comparison, the agreement with the data for D* = 11.61 is poor. This figure strongly
suggests that there are perhaps two distinct regimes of entrainment: one for the case when D*
is of the order of unity (say D* < 5) and the other for which D* is much larger than unity (say
D* > 10). It, therefore, appears that the Ishii and Mishima correlation may be best suited for
cases when D* < 5. A comparison of Figures 4 and 5 shows that the present correlation does
a slightly better job of predicting the data for D* = 11.61 than the Ishii and Mishima
correlation. Since the value of D* for the BNL debn* dispersal experiments [7] and the full
scale Surry is calculated to be larger than 10, the choice of the present correlation for E ^ seems
reasonable. In ai\y case, as discussed earlier, the Ishii and Mishima correlation does not appear
to have the proper dependence of p f upon E^,.

2.4 Procedure for Predicting the Transient Melt Dispersal Rate

As discussed in Section 2.2, for calculational purposes we must first transform the actual
3D cavity into an "equivalent" ID duct. Let Dc be the actual hydraulic diameter of the cavity
in Region 1. For example, for the Surry cavity model shown in Figure 2, Dc = (4wh/(2w +
2h)). Again, based upon the experimental data [3,7], which suggests that the width of the gas
flow region is related to the diameter of the orifice in the pressure vessel through which the gas
is discharged (do), we hypothesize the following model for the gas flow width 5:

11
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Figure 4. Predictions for the equilibrium entrainment fraction (EM) from Equation (13) with
C = 8.64, plotted against the experimental data of Cousins and Hewitt [15].
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Mishima model, Equation (10), plotted against the experimental data of Cousins
and Hewitt [15].
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Dc
5 = —

0.5
(17)

The remaining geometrical parameters for this ID equivalent duct are then calculated as
indicated in Section 2.2. The initial volume of melt in the cavity, Vm(0) is known. Let Vm(t)
be the volume of melt within the cavity at any time t. Then, it follows that:

Vm(r) = Vm(0) -
min

Ejf dt (18)

where A , ^ is the minimum of the two areas: Ae, the actual cavity exit area, and P5, the cross-
sectional area of the equivalent ID duct. This definition of the flow area through which the
molten droplets are ejected out of the cavity is necessary for consistency with the physical model
described in Section 2.2. Since the equivalent cavity has an area of cross-section equal to P5,
this is the maximum area through which melt can flow out of the cavity. Furthermore, Equation
(18) assumes that before the melt can be ejected out of the cavity, it must be first entrained as
droplets. While this is certainly true for the Surry cavity model shown in Figure 2, it may not
be true for all the cavities. For example, for the Zion cavity where the cavity exit comes down
all the way to the floor of the cavity, and makes only an acute angle with the flow direction,
melt film would be ejected from the cavity directly.

In order to calculate Vm from Equation (18), the unknowns E and j f must be calculated
as a function of time. To calculate j f we use Equation (9), and to calculate E we use Equation
(13) with C = 4.6, that is:

E = tanh 4.6 Ku
0.33

_
Ap

1.4

- exp(-D,/8))
(19)

The above value of C was chosen so as to yield good agreement between the experimental data
for the fraction of melt dispersed from the reactor cavity model and the predictions from the
transient model. This is further discussed in Section 4. Next, the remaining unknown j g , which
appears in Equations (9) and (19), must be calculated. To do so, we must consider the transient
blowdown of the gas from the pressure vessel.

Let VQ be the volume of the pressure vessel and dg be the diameter of the orifice in the
pressure vessel bottom through which the gas is discharged into the reactor cavity (or cavity
model). Since, for most cases of practical interest the initial pressure^ in the pressure vessel,
PQ is more than twice the pressure in the cavity, we shall assume that flow through the orifice

to t = 0.
pressure in the vessel at the instant the gas blowdown starts. This instant corresponds

14



is choked. Furthermore, we also assume that the flow through the orifice, and the expansion
of gas in the pressure vessel, is isentropic. Then, it can be easily shown that m (t), the mass
flow rate of gas at any time t through the orifice in the pressure vessel is given oy:

0
mg (f) = mg

(7 " 1)
1 -y (20)

where y is the specific heat ratio for the gas, and

,2
0 r

mg =CD

ird,0
4

rr 2 ( 7 -
po (21)

MQ = (22)

TQ is the initial temperature of the gas in the pressure vessel, R is the particular gas constant for
the gas, and CD is the discharge coefficient for sonic flow through an orifice. Based upon the
experimental data presented in Reference [16], we have used a value of 0.74 for Crj>. Since the
mass flow rate of gas through the orifice can now be calculated using Equations (20), (21), and
(22), the gas superficial velocity, j g , in the ID equivalent duct is easily calculated as:

J8U) -
ma(t) (23)
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3. MELT DISPERSAL PREDICTIONS FOR THE SURRY CAVITY

3.1 Comparison of Predictions and Experimental Data from 1/42 scale Experiments

As discussed in Section 1.2, Tutu et al [3,6,7] have performed a large number of melt
dispersal experiments using small scale models of reactor cavities. These experiments yielded
the data for fend, the fraction of melt simulant that is retained in the cavity model at the end of
the gas blowdown from the pressure vessel. If t ^ is the time to the end of the gas blowdown
and f(t) is the fraction of melt retained within the cavity at any time t, then:

fit) -
J Vm(0)

fend =f({end)

Since Vm(t) can be calculated using the model described in Section 2, fend can be calculated and
compared with the experimental data. In this section we shall compare the predictions for fend

with the experimental data for the Surry cavity model[7].

Figure 6 shows fend plotted against the initial vessel pressure PQ, for a series of
experiments performed with water as the melt simulant and nitrogen as the blowdown gas. The
diameter of the orifice in the pressure vessel bottom for these experiments was equal to 9.525
mm. The small squares with interconnected lines represent the experimental data and the large
squares represent the model predictions. Since the error in the measured values of fend was less
than ± 3 %, the apparently rather large scatter in the experimental data is evidence of the
chaotic nature of the melt dispersal process from the Surry cavity. As can be seen, excluding
the rather long tail for large values of PQ, for which most of the melt is dispersed from the
cavity in any case, the agreement between the data and predictions is quite good.

Figure 7 shows the data and predictions for another series of experiments for which the
orifice size was smaller. As can be seen, the agreement is reasonable. Finally, the results for
experiments which used helium as the blowdown gas are presented in Figure 8, and the results
for experiments which used molten Wood's metal as the blowdown gas are shown in Figure 9.
It should be noted that the same model with the same value of C = 4.6, has been used to make
all these predictions. Considering the rather complex nature of the melt dispersal process, and
the fact that the aspect ratio3 of the cavity is not very large, it is remarkable that the highiy
idealized quasi-equilibrium model is rble to predict, approximately, the experimental data for
a large number of cases, reasonably .veil.

Although, no measurements of the fraction of melt dispersed from the cavity model as
a function of time during the blowdown process have been performed to date, in Figure 10 we

'Length to hydraulic diameter ratio
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Figure 6. Predictions from the present model, and the experimental daia of Tutu et al [7], for the fraction of melt retained within
the Surry cavity model at the end of the gas blowdown (ft.m)). Vm(0) = 1.903x10 4 m'
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Figure 7. Predictions from the present model, and the experimental data of Tutu et al [7], for the fraction of melt retained within
the Surry cavity model at the end of the gas blowdown (feml). Vm(0) = 1.903x10 4 m3
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Figure 8. Predictions from the present model, and the experimental data of Tutu et a! [7], for the fraction of melt retained within
the Surry cavity model at the end of the gas blowdown (fend). Vm(0) = 1.903x10 4 m3
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Figure 9. Predictions from the present model, and the experimental data of Tutu et al [7], for the fraction of melt retained within
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Figure 10. Predictions of the vessel pressure Pv(t), and the fraction of melt dispersed from the 1 /42nd scale Surry cavity model
in the time interval zero to t, as a function of time. Po = Pv(0) = 4.4 MPa.



show transient predictions for one hypothetical experiment. The initial pressure in the vessel,
Po, for this case was 4.4 MPa. The curve with the small squares represents the pressure in the
pressure vessel, Pv(t), as a function of time, and the curve with the large open squares shows
the fraction of melt dispersed during the time interval zero to t. Note that f(t) is the fraction of
initial melt volume that is within the cavity at any time t. This figure indicates that although
melt continues to be ejected from the cavity model during the blowdown process, the major
fraction of the melt that is eventually ejected, is dispersed from the cavity in a duration that is
much shorter than the vessel blowdown time.

3.2 Predictions for the Full Scale Surry Cavity

In this section, for purposes of demonstration, we shall present melt dispersal predictions
for some hypothetical cases for the full scale Surry cavity. The model, as presented in Section
2, is purely hydrodynamic in nature, and does not include melt-steam heat transfer. However,
in the full scale accident scenario, since the molten core melt is much hotter than the steam
flowing through the cavity, the steam temperature is likely to rise. Since the density of the gas
flowing through the cavity is dependent upon its temperature, we shall here treat T o , the gas
temperature in the cavity, as a parameter. As discussed in Section 1.2, Tutu et al [3,6,7] have
performed a scaling analysis of the melt dispersal process and developed dimensionless
correlations for fend for each of the cavities studied. As shown in Reference [3], these
correlations can be used to make predictions for fend for the full scale cavity. The details of this
correlational analysis are beyond the scope of this paper, and the reader is referred to References
[3,6,7] for the details. Here, we shall merely display a comparison of the predictions for fend

obtained from the present idealized model with those that were obtained from the direct use of
the empirically based dimensionless correlation for fend.

Figure 11 shows the predictions for the case when the diameter of the hole in the
pressure vessel bottom is assumed to be 0.2 m, and when the steam temperature within the
cavity is assumed to be equal to 1500 K. A similar comparison for the case when the hole
diameter is assumed to be 0.5 m, is shown in Figure 12. As can be seen, the agreement
between the two predictions is reasonable.

As discussed in Section 1.1, in order to calculate the containment pressure loading due
to DCH, one must specify the rate at which the melt is ejected from the cavity. Therefore, for
illustrative purposes, we shall next present some transient results for a few hypothetical full scale
cases. In Figures 13 and 14 we present the results for two cases for which the hole diameter
in the pressure vessel bottom is assumed to be 0.2 m, and for which we have assumed the steam
temperature within the cavity to be 1500 K. These figures show calculated values for the vessel
pressure as a function of time, and the fraction of melt ejected from the Surry cavity during the
time interval zero to t as a function of time. In Figure 13 we show the results for the case when
PQ = 7.5 MPa, and in Figure 14 we show the results for the case when Po = 4 MPa. Finally
in Figure 15 we show similar predictions for one case which assumes the vessel hole diameter
to be 0.5 m. In all of these cases, it appears that the melt dispersal time, that is, the time during
which most of the melt is dispersed from the cavity, is much shorter than the gas blowdown time
from the pressure vessel. This is encouraging from the point of view of potential DCH loading,
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RESULTS FOR FULL SCALE SURRY CAVITY
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Figure 11. Comparison of predictions for frn(1 obtained from the present model, and those obtained from the empirical
dimensionless correlation developed by Tutu et al [7], for the full scale Surry cavity. Vin(0) = 14.0 m\
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Figure 13. Predictions of the vessel pressure Pv(t), and the fraction of melt dispersed from the full scale Surry cavity in the time
interval zero to t, as a function of time. P() = Pv(0) = 7.5 MPa.
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because this implies that the extent of steam-melt chemical reaction, and hence hydrogen
production within the cavity may be limited by the availability of steam [17]. It is emphasized
that these full scale predictions are provided for illustrative purposes only, and since these
obviously depend upon the initial conditions assumed, in order to use such predictions for DCH
loading calculations, these calculations should be re-performed with the appropriate initial
conditions. Furthermore, the value of the constant C in Equation (13), which for the Surry
cavity was found to be equal to 4.6, is likely to be different for a cavity whose shape is very
different from the Surry cavity.
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4. CONCLUDING REMARKS

An idealized and simple model to predict the transient melt dispersal rate from reactor
cavities during pressurized melt ejection accident scenarios has been developed. The model
assumes the flow of melt film, molten droplets, and the gas to be in a state of quasi-equilibrium
during the blowdown process. Furthermore, the model uses a correlation for E M , the
equilibrium value for the fraction of liquid flux flowing as droplets in an annular one
dimensional gas liquid flow. This correlation for E w was developed by modifying the Ishii and
Mishima [14] correlation. The value of the constant C appearing in this correlation (Equation
(13) ) that was found to give the best agreement with the experimental data of Cousins and
Hewitt [15] for annular flow of air and water in very long vertical tubes was equal to 8.64. The
results presented here show that using C = 4.6, which is less than a factor of two different from
the value of 8.6 quoted above, results in reasonably good agreement with the melt dispersal data
obtained from a large number of experiments with the small scale Surry cavity model. This
experimental data base included the melt simulant (molten Wood's metal or water) and the
blowdown gas (nitrogen or water) as parameters. Let x be the axial distance along a pipe of
diameter D, then, as demonstrated by Ishii & Mishima [14] and Cousins & Hewittt [15], very
large values of x/D are required before E(x) reaches its equilibrium value of E ^ . As shown
by Ishii and Mishima [14], the value of E in the entrance region of a pipe can easily be lower
than an order of magnitude from the equilibrium value E ^ . In view of this, and the facts that
the aspect ratio (effective x/D) of the Surry cavity is rather small, and that the value of the
constant C needed to give good agreement with the experimental data for the Surry cavity model
differs by less than a factor of two from the value needed for steady annular flow in very long
pipes, the results obtained using this model are very encouraging.

The simple model described here, provides a methodology to calculate a first
approximation to the transient melt dispersal rate from reactor cavities during pressurized melt
ejection accident scenarios. The results of these calculations can then be used to perform more
realistic CONTAIN-DCH calculations.
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