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Abstract. The pseudo—scalar flavor-singlet meson mixes with two gluons. A
dimensional argument by Kogut and Susskind shows that this can screen the
Goldstone pole of the chiral limit in this channel, if the gluon correlations are
infrared enhanced. Using a gluon propagator as singular as o/k* for k% — 0
we relate the screening mass to the string tension o. In the Witten—Veneziano
action to describe the 71’ mixing this relation yields masses of about 810MeV
for the 7/, 430MeV for the 7 and a mixing angle of about —30° from the phe-
nomenological value o & 0.18GeV?. The very weak temperature dependence of
the string tension should make this mechanism experimentally distinguishable
from exponentially temperature dependent instanton model predictions.

More than twenty years ago Kogut and Susskind pointed out that for dimen-
sional reasons a non-—vanishing contribution to the mass of the pseudo-scalar
flavor-singlet meson in the chiral imit can result from its mixing with two
non—perturbatively infrared enhanced gluons corresponding to a momentum
space propagator D(k) ~ o/k* for k2 — 0 [1]. Such infrared enhanced gluon
correlations are known to lead to an area law in analogy to the Schwinger
model in two dimensions. The identification of the string tension o shows
that effects due to infrared enhanced gluons can be expected to be comple-
mentary to instanton models.

In particular, a description of the -5’ mixing in terms of contributions to
the topological susceptibility from infrared enhanced gluon correlations, thus
driven by the string tension, provides an interesting alternative to the standard
solution of the U 4(1) problem by instantons.

Therefore we will not only test whether an anomalous mass of the right
order of magnitude is generated but we will also try to shed some light on the
question whether this mechanism leads to physically acceptable consequences,

e.g. whether the experimental bounds for the ' decay constant will not be ﬁ%
spoiled.
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FIGURE 1. The diamond diagram.

We will calculate the anomalous mass contribution in two different ways.
First, by evaluating the diamond diagram in fig. (1) directly. This is described
in some detail in ref. [2], and the reader is refered hereto for the details of the
calculation.

A second method consists of the use of the anomalous Ward identity for the
axial current,
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where m$ are the current quark masses, j} = §svsqs, and
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is the anomalous gauge dependent current. The matrix element of the flavor
singlet component of the axial current is defined as usual,

(018,55 (0)lno(p)) = /Ny fom?. (2)

To extract the anomalous mass contribution it is sufficient to consider the
chiral limit. Using the reduction formula we obtain
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The integral on the left hand side can be rewritten as
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where keeping only the disconnected two gluon propagtor terms leads to

82 (27)4
with kx = k = P/2. Collecting all factors and setting ¢2D3(k?) =
626,58 [k* we thus obtain in the limit p* — 0
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Using o = 0.18GeV? and fy ~ f, = 93MeV we obtain mZ ~ 0.346GeV?2. This
is plugged into the 7g — 7o mass matrix
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whose diagonalization yields the masses of the physical eigenstates, my =
810MeV and m, ~ 430MeV as well as their mixing angle § ~ —30°.

As these values are not too far from the experimental ones we conclude that
the U4(1)-anomaly might be encoded in the infrared behavior of QCD Green’s
functions. Furthermore, we found no evidence that the Kogut—Susskind mech-
anism leads to unacceptable results for other variables, for more details see
ref. [2].

Finally, the question arises whether the Kogut-Susskind mechanism or the
instanton based solution of the U,4(1) problem is realized in nature. If instan-
tons are the cause of the n’ mass the  — 7’ mixing angle is strongly varying
function of temperature leading to a significant change of 5 and 7’ production
rates in relativistic heavy ion collisions [3]. On the other hand, lattice cal-
culations indicate that the string tension is almost temperature independent
up to the confinement transition. Thus we conclude that studying » and 7’
production in heavy ion collisions is a suitable experiment to decide the issue
of the underlying physics of the Ug(1) anomaly.
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