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Magnitude cf Bias in Monte Carlc Eigenvalue Calculatlons
D .

Prof. H. Bowsher*, F. M. Gelbard, P. Cemmel**, G, Pack®
Most Monte Carlo eigéhvalue calculations are based on power 1térﬂt16n
methods, like those used in analytical algorithms. But if’NH, the number of
histories in .each generation is fixed, then such Monte éarlu calcdlations wili

be biased.(lvz)'»VariOus arguments lead to the conclusion that eigenvalue and shape

biases are both proportional to 1/Ny, but little more is known about their

magnitudes. Numerical experiments on simple matrices suggest that the biases

are small, but information more relevant to real reactor calculations is very

sparse.
Tn fact to determine the hias in real rcactor caleulations is quite

expensive. It seems worthwhile, therefore, to try to understand the Monte

Carlo hiases in systems more realistie than arbitrary malrices, but simpler

than real reactors. For this reason we have computed biases in simple one-

group model problems by the following procedure.

a. Each problem éonfigutation is split into I subzones, and one calculates
the zone-to—-zone collision probabilitices p:j.

b. One then computes, deterministically, the probability, p?j, that

a neutron formed in subzone i will bte ahsorbed in subzone i.

ce From pzj, and the problem cross sections one gets the leading

D . .
eigenvalue A7, and the corresponding eipcavector, ¢D’ also

deterministically.

d. Define the source vector Spe with components s; = v£;¢;/2v£g¢3; (where
i

the superscripts are subzone numbers) and choose Ny neutron birth-

sites from this source.
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e. For each birth-site, j, choosce an absorption site from the p.d.f. p?i.
Accumulate v§i in the i'th fission-source bin. After all NH starters

have been processed the tctal fission rate, summed over all source
bins, is the first-generation eigenvalue, A(l), and the fission rate
per bin, divided by A(l), is the p.d.f. for source sites for the
second generation, etc.

In vection notation

Do Le = EC[ES + 1A vE]e-

flere Z L and vZ_ are diapgonal matrices whose elements are, respectively,

=t’ =s —f

i 1 i ¢, : - s1irs
zt’ ¥ and vic.. Further p- is the matrix of collision probabilities and ¢ the

flux vector. It is easy to show, from Eq. (1), that Ag = Eaf, where

a

2) B

c . -1
Ea(gt - pés) B,

. a < - 21343
f is the fission source, p the matrix of absorption probabilities and « the

ahsorption rate. We use Eq. (2) to get the p?i's from the collision

probabilities, pij.

Test problems have been run in various model problem configurations, with
NH = 6 and 12. Such low values of N" were used to make the biases more
easily detectable. For all test problems (a) in the core ZS = 0.9, Xa = 0.1,

vzf = 0.1, and (b) in the reflecctor ZS = 1.98, Zﬂ = 0,02, vzf =0, all in

inverse cm.

In test problems one through four, slab problems without control rods,

there are, respectively 10, 20, 30 .and 60 subzones in the core, all 1 cm wide.



All slab configurations have identical reflectors composed of six Byhznnus.
Of these the first subzone, nearest the corey, is 1 cm wide, while all others
are 3 cm wide.

Results for these configurations (and for other tests discussed below)
are shown in Table I. The listed biases do secem to be proportional to 1/N",
though statistical uncertainties stiil leave some room for doubt. 1If biases
are proportional to 1/NH, khen eigenvalue biases would be negligible even for
Np = 50. A higher Ny(x200) would be required to reduce the shape-bias

in the core to x5%, but Ny = 200 is still near the lower bound of normal batch

sizes.

Similar slab computations also have been run with absorbing subzones used
to simulate control rods. Biascs scem to be reduced by the presence of such
"rods” apparently because they increase dominance ratios.

Three X Y computations have been run in coﬁfigurations shown in Fig. 1.
These configurations differed only in the sizes of the core subzones which
were, respectively, one, two and three cm squares in problems 5, 6 and 7. One
sees, from, Table I, that the biases again seem to be propo;tionnl to I/N",
aﬁd would be acceptable for Ny % 100.

It seems, then, that it is permissable to use fairly small batch sizes in
Monte Carlo eigenvalue calculations. Whether this is advantageous or not may

depend on possible effects of Ny on the convergence ratc. Preliminary results

sugpest, however, that the convergence rate does not depend on Nj.
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TABLE 1.

Monte Carlo Calculations Based on 960,000 Histories

Percent Shape Bias

Percent Eigenvalue Bias

Core Center

; £
Deterministic Quter E£dge or Corner |
Calculation Histories/ Histories/ Histories/ Histories/ Histories/ Histories/
Problem Generation Generation Generation Generation Generation Generation
Number Ao Ay 6 12 - 6 12 6 12
1 0.95135  0.64940 ~0.276 -0.129 «4,2 =2.3 .- 3.8
+0.030 £0.030 £0.5 =0.4 21,3 0.~
2 0.98329 0.86236 =0.417 ~0.199 -12.2 =5.9 31.0 13.5
o *0,02% £0.029 2.3 zl.1 2.1 2.1
3 0.99163  0.92830 =0, 406 -0.212 -17.69 ~-9.2 65,2 26.5
+0.029 £0.028 1.6 x1.8 £20.- z4.2
4 0.99762  0.97897 -0.385 -0.218 ~25.1 -18.9 156.2 90.90
*0.029 $0.028 £3.8 =5.0 12,3 z14.3
5 0.90749  0.62580 ~0.540 =0.247 -8.1 =4.9 13.7 6.2
£0.049 =0.038 tl,- 1.4 2,0 2.4
6 0.96008  0.81312 ~0.662 =0.343 -16.7 =10.5 36.2 19.3
0,037 =0.037 tl.3 1.6 3.3 3.9
7 0.97447  0.87508 ~0.602 ~0.323 =21.° =14.4 57.2 35.2
_ 20,032 0,042 1.7 1.9 5.2 6.1

Eigenvalue and fissioa-source~shape biases

in simple one=group

test problems.
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Two-Dimensional Test Problem Configurations.



DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thercof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, complctencss, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by tradc name, trademark, manufac-
turer, of otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed hercin do not necessarily state or
reflect those of the United States Government or any agency thereof.



