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ABSTRACT

This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a
basis for the calculation of reservoir engineering parameters for the development of
fractured reservoirs. It describes the development of quantitative techniques for defining
the geometry and volume of siructurally controlled compartments. These techniques are
based on a combination of stochastic geometry, computational geometry, and graph
theory. The parameters addressed are compartment size, matrix block size and tributary

drainage volume. The concept of DFN models is explained and methodologies to

compute these parameters are demonstrated.




1. INTRODUCTION

In fractured reservoirs, the low permeability rock matrix holds the storage for the hydro-

carbons while the high permeability fracture system provides the pathways to produce

them. The amount of hydrocarbon that can be produced therefore is a function of the

fracture network connectivity and geometry.

For fractured reservoirs the quantity and rate of fluid movement between the rock mass
and a well often significantly departs from what a porous continuum mode! of the system
might indicate (La Pointe and Dershowitz 1994). High initial production (IP) rates may
drop dramatically over the first months of production. Estimates of recoverable
hydrocarbons based upon dynamic and mass balance calculations may differ
substantially. A key parameter in this context is reservoir compartmentalization. i.e. the
division of the reservoir in not or only poorly connected regions. A petroleum reservoir
that is compartmentalized either increases the cost of production or reduces the quantity
of oil that is ultimately recovered. This economic cost has spawned renewed interest in
understanding reservoir compartmentalization and methods to engineer compart-

mentalized reservoirs (e.g. Ortoleva. 1994).

Compartmentalization may arise due to a variety of structural and depositional geological
processes (Ortoleva, 1994). One process which has not been well-studied but occurs
widely is compartmentalization due to the finite extent of poorly connected {fracture
networks. One reason that this compartmentalization process has not been studied more

thoroughly is that tools have only recently become available.

Recently, a new method to study flow and transport in fractured rock has evolved to the
point that it provides a useful way to study fractured reservoir compartmentalization.
This method is based upon Discrete Fracture Network (DFN) models. DFN models are
three-dimensional stochastic or combined stochastic/deterministic realizations of the
fractures in a rock mass. Fracture properties such as orientation, size, intensity, location
and transmissivity can be conditioned to match either observed fracture statistics or

structural models related to folding. faulting or in-situ stress.
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The DOE/NIPER research project “Fractured Reservoir Discrete Fracture Nenwork
Technologies”, undertaken by Golder Associates, Marathon Oil Co. and The
Massachusetts Institute of Technology, will develop and demonstrate technologies for
improving recovery from fractured oil reservoirs. The project focuses on applying DFN-
technology to tertiary recovery processes. The research is designed to use information
gathered during a field trial of Thermally-Assisted-Gravity-Segregation (TAGS) at the

Yates field in West Texas.

This paper presents some preliminary results of this research showing how DFN models

might be used for the analysis of reservoir compartmentalization.

2. DFN MODELS

DFN models. like all models, idealize the fracturing in a reservoir. While conventional
dual-continuum models simplify fracture geometry in order to better model transient
multiphase flow behavior, DFN models focus on realistic fracture geometries while

simplifying the flow physics (Figure 1).

Each type of modeling strategy has its strengths and weaknesses. and there is some uselul
overlap in these modeling approaches. However, when fracture networks dominate rock
mass permeability, DFN models will significantly out-perform conventional models
based on effective continuum properties (La Pointe et al., 1996b). This is because net-
work geometry and the connectivity structures that result control the scale at which wells
can communicate with each other, how much matrix can be accessed by a well, and the
rate of advective flow, mass transport and heat conduction. The effects of multiphase
flow or other physical processes, though also important, are second-order effects for these

applications.

DFN models are stochastic or a combination of deterministic and stochastic fractures.
Large-scale faults are easily identified from seismic profiles. geological mapping.

&

lineament analyses and well logs/core. These large-scale faults are either significant tlow

conduits or act as barriers due to stratigraphic offset or mineralization. Since large-scale
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taults are known and because they are important, they are treated as deterministic
features. This means that the DFN model will have each large- scale fault represented in
the location that it occurs, and with the geometry and fluid flow characteristics that have
been measured or inferred. Every stochastic realization of the entire DFN model will
have these deterministic features whose properties will remain unchanged throughout all

of the realizations.

However. there are many medium- and small-scale faults and joints that are not detected
by seismic or remote sensing imagery, or encountered in wells. Yet these faults and large
joints form important flow conduits through the rock mass. It is possible to derive statis-
tical distributions necessary for the construction of DFN models for these smaller faults
and joints, as detailed for example in Dershowitz et al. (1996). These fractures constitute
the stochastic portion of the DFN model. since their locations. orientations, etc. are

assigned as a random sample from the statistical distributions for each realization.

The statistical distributions of fracture properties may vary in different regions.
Structural models abound that relate fracture intensity, orientation. permeability and
location according to the structural geology of folds, faults or in-situ stress fields thought
to have produced the fractures (e.g. Stearns 1971, Stearns and Friedman 1972. Suppe
1983, Mitra 1993). Advanced DFN modeling software (Dershowitz et al., 1996)

incorporates this type of conditioning.

Because the resulting DFN models contain a stochastic component. it is possible to
generate multiple statistical realizations of the faults and joints. These realizations can
then be used to calculate the statistics for any parameter, such as compartment size and
shape, and also to carry out sensitivity studies to determine what factors control compart-
ment size. This makes the DFN approach particularly useful for economic decision

analysis.




Page 35

3. METHODOLOGIES FOR CALCULATING RESERVOIR
ENGINEERING PARAMETERS FROM DISCRETE FRACTURE
NETWORKS

Once a DFN realization has been created, the calculation of practical reservoir
engineering parameters is a straightforward, although numerically sophisticated, process.
First. it is necessary to determine which fractures intersect to form networks. and to
determine whether these networks intersect a well. Elementary graph theory algorithms
can be used to identify completely isolated fracture networks or networks that are weakly
connected to other networks. This intersection information can be stored as either an

adjacency matrix or an adjacency list (Sedgewick, 1990).

Based on the intersection information various parameters can be computed. In the current

stage of the project there are three parameters calculated from the DFN model:

Compartment size is defined only by the fracture network geometry. It gives the oil in
place which is associated with a connected fracture system. In combination with a
recovery factor it can serve as a rough quantitative measure of how much oil or gas can

be produced by a well.

Matrix block shape and size also is a purely geometrical parameter. It gives a measure
of the typical undisturbed volume of rock matrix in a fractured reservoir. Fluid flow

within such a block will be purely dependent upon the matrix properties.

Drainage volume is a more precise quantity and important for the ultimate recovery of
hydrocarbon from a producing well and for the rate of movement and shape of the heat
front during steam injection. It describes the estimated volume of matrix that a fracture

system intersected by a well can access. The drainage volume therefore is related to both

compartmentalization and matrix block size.




4. COMPARTMENT SIZE

4.1 EFFECT OF COMPARTMENTALIZATION ON FIELD DEVELOPMENT
PLANNING

The “size” of a compartment formed by a fracture network may be defined in ditterent
ways, depending upon the reservoir engineering application. For example. the horizontal
cross-section of each compartment relates to how efficient a particular well pattern will
be in accessing potentially recoverable oil. The number of wells, representing an eco-
nomic cost. needs to be balanced against the estimated ultimate recovery (EUR) that can
be produced from those wells. If many compartments are missed by a proposed well
pattern. then potentially recoverable hydrocarbons are being left in the ground. Alter-
natively, a well pattern that already produces from most of the reservoir compartments

will not benefit from an infill drilling program.

Compartmentalization as it relates to economically efficient well patterns can be assessed

by computing the horizontal dimensions and area of all of the fracture compartments in a
series of DFN realizations. From these Monte Carlo realizations of a model, it is possible
to compute a cumulative probability graph for compartment cross-sectional area. Such a
graph provides an estimate of the mean acreage of the reservoir which a well could
access. This acreage provides an indication whether a particular well pattern spacing will
probably miss intersecting a number of compartments, whether each compartment is
typically intersected by numerous wells (and thus may be economically inefficient), or

whether the number of wells balances compartment access with drilling costs.

While it is usually possible to identify large-scale fault-bounded reservoir compartments
from seismic or production histories, it is far more difficult to assess the compart-
mentalization due to joint network geometry and connectivity, for which seismic infor-
mation is of little use. Joint network compartmentalization is often suspected when static
and dynamic calculations of recoverable oil or gas do not agree, and there is no evidence

for fault-offset or other types of fault-related compartmentalization.
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Figures 2 and 3 illustrate the effect compartmentalization has on the connectivity within a
reservoir. Figure 2 shows the DFN of a compartmentalized and intensively fractured rock
mass. By looking at the figure one would expect all areas of the reservoir to be well
connected. Figure 3, however, displays the same fracture network but only shows that

portion of the network which is connected directly or indirectly to one of the 5 wells.

4.2 COMPARTMENTALIZATION ANALYSIS

The computation of the volume and horizontal extent of joint network compartments is a

three-step process:
Step 1. Identity individual fracture networks within the DFN model
Step 2. Compute the bounding surface for each identified network

Step 3. Calculate the volume within the bounding surface and the horizontal

extent of the network

While it would be possible to compute the “bounding box™ for a network, and use this
box volume and horizontal cross-section as surrogates for compartment volume and
horizontal extent, this would lead to an overestimation in most cases of both volume and
cross-section. This in turn would produce overestimates of the ultimate recovery from
wells, and suggest greater well spacings and recovery efficiencies than would actually be
the case. To reduce the potential for overestimates, it is necessary to calculate a bounding
surface that better approximates the outer limits of the network. A convex hull meets

these requirements.

A convex hull is essentially a bounding surface with certain advantageous mathematical
properties. For points with three-dimensional spatial coordinates, the convex hull is a
convex polyhedron, which has the minimum volume of all possible convex polyhedra
that bound the point set. Figure 4 shows such a three-dimensional convex hull calculated
using the QuickHull algorithm and the Qhull software package (Barber et al.. 1995) for

the central well shown in Figure 3. In Figure 5, the horizontal projection of the hull is
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shown. The resulting data can easily be used to compute the volume and cross-sectional

area of each hull.

5. MATRIX BLOCK SIZE

The fracture surface area of matrix blocks within a simulation grid cell influences the rate
and quantity of fluids that can move between the matrix and the fracture system. The Z-
dimension of matrix blocks influences gravity drainage mechanisms. The shape of the
matrix blocks influences the choice of sugar cube, matchstick or slab idealization. A
realistic description of block size and shape in a way that can be implemented in existing
dual porosity simulators will benefit not only the thermal simulation TAGS processes.

but also non-thermal simulations of injection or production in fractured reservoirs.

5.1 BLOCK SIZE ANALYSIS

Two DFN algorithms have been developed to compute matrix block shape and size that

are :
1. Based on geologically realistic three-dimensional fracture systems. and
2. Provide output in the form required by conventional dual-porosity simulators.

The first algorithm is a fast computational method to compute blocks based upon fracture
spacing distributions in several directions. Its main advantage is that the calculation is
computationally fast. Its disadvantage is that it assumes that block x. y and z dimensions
are uncorrelated. This algorithm is referred to as the multidirectional spuacing distribution

algorithm (Figure 6).

For each realization of the discrete fracture model, a series of randomly-located lines in
selected directions are generated. . The location of fractures intersected by each line is
recorded. This leads to a spacing frequency distribution in several directions. Typically.
the directions include the vertical direction, in order to calculate the vertical dimension of

blocks for gravity drainage considerations. and in two or three orthogonal directions that

relate to simulator grid layering geometry and the fracture system.
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The spacing probability distributions are multiplied together using Monte Carlo sampling
techniques to produce a frequency distribution of block volumes and surface areas. This
is carried out by selecting X, Y and Z spacing values at random with selection probability
proportional to their frequency, and multiplying them together to create a prismatic block

volume.

The second algorithm is based upon graph theory and, again, uses convex hulls. This
algorithm is therefore referred to as the convex hull algorithm. 1t is based upon compu-
ting the convex hull of points lying on fractures bounding or partially bounding a matrix

block.

The convex hull algorithm is more computationally intensive, but measures the actual
dimensions of the blocks, rather than reconstructing blocks stochastically from spacing
frequencies. Thus, any correlation among block dimensions or non-prismatic block
shapes are considered appropriately. The algorithm’s accuracy is governed by two
factors: whether in fact the matrix blocks are convex; and how many points are required
to accurately characterize the convex block. The algorithm as implemented allows the

user to specify the number of points for characterizing the convex block.

Test cases (La Pointe et al., 1996b) suggest that both the multi directional spacing (MDS)
and convex hull (CH) algorithms provide reliable and consistent estimates of fracture
surface area, at least for simple fracture geometries. The CH algorithm appears to
provide better estimates of the mean volume of matrix blocks when block dimensions are
partially correlated. Since jointing in many sedimentary rocks is characterized by
pseudo-periodic spacings (e.g., La Pointe and Hudson, 1985), it may be preferable to use
the CH algorithm to estimate block volumes. On the other hand, the geometric construc-
tion of a convex hull from a sparse data set creates hulls with slightly greater average Z-
dimensions than the MDS algorithm. In both test cases 1 and 2, the MDS algorithm
provided more accurate estimates of the Z-dimension. Thus, both algorithms have proven
useful and necessary to provide estimates of matrix block parameters. and neither alone is

completely satisfactory.




6. DRAINAGE VOLUME

The tributary drainage volume for a well is that volume of the matrix that can be drained
by the fracture network connected to a well or heated up by steam injection. The
drainage volume takes into account both the geometry of the fracture network and the
physical processes of advective flow, transport, diffusion and heat conduction. Tributary

drainage volume is related to both block size and compartmentalization.

6.1 DRAINAGE VOLUME ANALYSIS

The algorithm developed to compute the tributary drainage volume is divided into two

steps:

Step 1. Identify the fracture networks connected to the well or perforated zone of

interest
Step 2. Estimate the volume of matrix within the network that could be produced

While the procedure for step 1 is the same as for the compartmentalization analysis. step
2 can become extremely complex. The task is to predict which portion of the matrix
volume is close enough to a fracture, given the pressure drawdown within the matrix

block, to be able to contribute to production.

Different ways could be used to accomplish step 2. If the fracture network is very dense.
then the volume of the matrix accessed by the fracture network will be closely approxi-
mated by the volume of the convex hull enclosing the network. [n essence. this means
that the tributary drainage volume is equal to the compartment volume. The same
conclusion applies if the matrix permeability is sufficiently large to allow production 1o

take place from all of the matrix volume.

In less dense fracture networks where the typical matrix block size is large, some or
maybe most of the volume inside the convex hull will be too far from any of the fractures
to be easily produced. For these cases, the user can specify an average drainage percen-

tage. [t is possible to compute this percentage with the help of the blocksize information
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derived earlier. The average drainage percentage is then used to reduce the convex hull

volume.

Another approach to exclude matrix that might not be efficiently produced through
pressure depletion drainage is to surround each fracture in the network with a polygon
that is calculated from the area of the fracture and the distance away from the fracture
over which drainage might be effective (Figure 7). This leads to a prism that encloses the
fracture. For pressure depletion mechanisms. the fracture forms the midplane of the
prism. An obvious problem with this algorithm is to avoid double-counting the volume
where there is overlap between the prisms. Calculations based upon solid geometry to
compute the volume while accounting for the overlap are highly time-consuming for the
number of fractures that might commonly be encountered in a fracture network. A
simpler method has been devised which is much more etficient. though not as

numerically exact (La Pointe et al. 1996b).

Computing the drainage volume is a critical reservoir engineering parameter. For compu-
ting the ultimate recovery, it is necessary to combine the static parameters like compart-
ment volume and block size with the dynamics involved in the tlow of fluids from the
matrix into the fracture system. Because of the time dependent pressure distribution
within a matrix block the drainage volume will also be time dependent. This corresponds
to the step from volumetric oil in place estimation to dynamic ultimate recovery

calculation using reservoir simulation.

Nonetheless, the measures described above will provide an estimate ‘of the recoverable
reserves from a reservoir. They offer an advantage, however, that a large number of
realizations can be run, and so the uncertainty relating to simplification can be quantified
in a clear and straightforward manner. The alternative of carrying out hundreds of

numerical fluid flow simulations requires substantially greater, and perhaps prohibitive.

computing times.
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7. SUMMARY AND OUTLOOK

The ongoing DOE/NIPER research project “Fractured Reservoir Discrete Fracture
Network Technologies” is developing technologies for improving recovery from fractured
oil reservoirs. This paper illustrates some preliminary results of this effort. The work
thus far has concentrated on the development of methodologies and algorithms which can
be used to extract valuable parameters from fracture network information for the use in
reservoir engineering tasks. It has been shown how Discrete Fracture Network models
can be used to calculate parameters like compartment size. matrix block size and tributary

drainage volume.

At the time of the submission of this paper, the methods described are undergoing an
intense verification process (La Pointe et al. 1996b). In the next step. the methods will be

used on field data from the Yates field.
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