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THE MICROSTRUCTURAL ORIGINS OF YIELD STRENGTH CHANGES I N  AISI 316 

. . DURING FISSION OR FUSION IRRADIATION 

P. A. Garner,  M. L. Hamilton,  N. F. Panayotou'and G.  D .  Johnson 

Hanford Engineer ing Development Labora tory  
Richland,  Washington 

The changes i n  y i e l d  s t r e n g t h  o f  AISI 316 i r r a d i a t e d  i n  b reede r  r e a c t o r s  have been 
s u c c e s s f u l l y  modeled i n  te rms of concurrent  changes i n  m i c r o s t r u c t u r a l  components. 
Two new i n s i g h t s  i nvo lv ing  t h e  s t r e n g t h  c o n t r i b u t i o n s  of vo ids  and Frank loops  have * 
been inco rpo ra t ed  i n t o  t h e  hardening models. Both t h e  radia t ion- induced mic ros t ruc tu re  
and t h e  y i e l d  s t r e n g t h  e x h i b i t  t r a n s i e n t s  which a r e  t hen  fo l lowed by s a t u r a t i o n  a t  a  
l e v e l  dependent on t h e  i r r a d i a t i o n  tempera ture .  E x t r a p o l a t i o n  t o  a n t i c i p a t e d  fus ion  
behavior  based on m i c r o s t r u c t u r a l  comparisons l eads  t o  t h e  conc lus ion  t h a t  t h e  primary 
i n f l u e n c e  of t r a n s m u t a t i o n a l  d i f f e r e n c e s  is on ly  t o  a l t e r  che t r a n s i e n t  behavior and 
n o t  t h e  s a t u r a t i o t l  l e v e l  of y i e l d  s t r e n g t h .  

1. INTRODUCTION 

AISI 316 s t a i n l e s s  s t e e l  i s  t h e  major s t r u c t u r a l  
a l l o y  employed i n  t h e  f a s t  r e a c t o r  programs of 
t h e  United S t a t e s .  B r i t a i n  and France.  It may 
a l s o  be chosen f o r  s e r v i c e  i n  f i r s t  gene ra t ion  
fus ion  dev ices .  I n  t h e  absence  of d a t a  devel -  
oped i n  f u s i o n  neut ron s p e c t r a ,  t h e  des ign  of 
such d e v i c e s  r e q u i r e s  t h a t  t h e  d a t a  developed i n  
f i s s i o n  r e a c t o r s  be  e x t r a p o l a t e d  t o  t h e  s p e c t r a l  
and o p e r a t i o n a l  environment p r o j e c t e d  t o  be 
c h a r a c t e r i s t i c  of fu s ion  dev ices .  

I f  t h e  consequences o f  d i f f e r e n c e s  i n  environ- 
menta l  v a r i a b l e s  such a s  neut ron f l u x  and s t r e s s  
s t a t e  a r e  d i scoun ted  t h e r e  a r e  s t i l l  s u b s t a n t i a l  
d i f f e r e n c e s  i n  t h e  d i s p l a c i v e  and t r ansmuta t iona l  
c h a r a c t e r i s t i c s  of t h e  neu t ron  s p e c t r a  of f u s i o n  
dev ices  and t h o s e  of v a r i o u s  f i s s i o n  r e a c t o r s .  
Tn a f i r s t  approximat ion i t  appears  t h a t  t h e  
d i f f e r e n c e s  i n  atomic d isplacement  c h a r a c t e r i s -  
t i c s  of neu t rons  can be  adequate ly  f a c t o r e d  i n t o  
a  f i s s i o n - f u s i o n  c o r r e l a t i o n  by expres s ing  t h e  
exposure dose  i n  damage energy u n i t s  (evlatom). 
Th i s  was r e c e n t l y  demonstrated f o r  AISI 316 i r-  
r a d i a t e d  a t  room tempera ture  w i t h  T (d ,n ) ,  Be 
(d ,n )  and f i s s i o n  ( the rma l  r e a c t o r )  neu t rons .  (1) 
The changes i n  y i e l d  s t r e n g t h  and t o t a l  elonga- 
t i o n ,  R E  v 1 0 1 l  30 i n  t h c  d e n s i t y  of r+diaLiuu=. 
induced d e f e c t  c l u s t e r s  t h a t  cause t h e s e  changes,  
were a l l  found t o  c o r r e l a t e  w i th  damage energy. 

I n  r e a c t o r  environments o p e r a t i n g  a t  r e a l i s t i c  
power-generating tempera tures ,  however, t h e  m i -  
c r o s t r u c t u r a l  a l t e r a t i o n s  a r e  q u i t e  d i f f e r e n t  
and much more e x t e n s i v e  than  t h a t  observed a t  
room tempera ture .  There i s  a l s o  a  s u b s t a n t i a l  
radia t ion- induced and t empera tu re - sens i t i ve  
e l emen ta l  r e d i s t r i b u t i o n  t h a t  occu r s .  There i s  
concern t h a t  i n  t he  two neu t ron  s p e c t r a  t h e  d i f -  
f e r ences  i n  bo th  t h e  i d e n t i t y  and gene ra t ion  
r a t e s  of gaseous (2) and s o l i d  (3) t r ansmutan t s  
w i l l  l e ad  t o  d i f f e r e n c e s  i n  t h e  mic ros t ruc tu r -  
a 1  ( 4 )  and microchemical (5) evo lu t ion .  This  
p o s s i b i l i t y  can  be p a r t i a l l y  addressed by com- 
pa r ing  t h e  microscopic  response  of t h e  s t e e l  t o  
i r r a d i a t i o n  i n  two f i s s i o n  r e a c t o r s  w i t h  d i f f e r -  
e n t  t r a n s m u t a t i o n a l  c h a r a c t e r i s t i c s .  A r ecen t  

e f f o r t  of t h i s  t ype  concerned t h e  m i c r o s t r u c t u r a l  
and microchemical e v o l u t i o n  of t h i s  s t e e l  i n  EBR- 
I1 (Experimental  Breeder  Reactor 11) and HFIR 
(High Flux I so tope  Reac to r ) .  (6) . 

I n  t h i s  paper  t h e  m i c r o s t r u c t u r a l  o r i g i n s  of y i e l d  
s t r e n g t h  changes a r e  examined and p r o j e c t i o n s  of 
a n t i c i p a t e d  behavior  i n  fu s ion  s p e c t r a  a r e  made 
on t h e  b a s i s  of conc lus ions  drawn from d u a l  i o n  
i r r a d i a t i o n s  and EBR-IIIHFIR comparisons. 

2 .  MODELING OF YIELD STRENGTH CWVGES 

The modeling e f f o r t  r e q u i r e s  knowledge of t h e  
r e l e v a n t  m i c r o s t r u c t u r a l  components, t h e i r  den- 
s i t i e s  and s i z e s ,  and t h e i r  i n d i v i d u a l  a c t i o n  
w i t h  r e s p e c t  t o  d e t e r m i n a t i o n  of t he  y i e l d  
s t r e n g t h .  Previous  a t t e m p t s  on a u s c e n i t i c  a l l o y s  
have been made t o  determine  t h e  c o n t r i b u t i o n  of 
each m i c r o s t r u c t u r a l  component t o  t h e  hardening 
o r  s o f t e n i n g  observed f o r  a  given s e t  of i r r a d i a -  
t i o n  condi t ions . . (7-10)  These e f f o r t s  Gere ham- 
pered by incomplete  m i c r o s t r u c t u r a l  d e s c r i p t i o n s  
and some ambigui ty  concerning t h e  n a t u r e  of t h e  
hardness  model f o r  each  component. 

Recent developments now a l low a  p o t e n t i a l l y  more 
s u c c e s s f u l  m i c r o s t r u c t u r a l  d e s c r i p t i o n  of y i e l d  
streageh. Breeder r e a c t o r  programs have y i e lded  
not  on ly  d e t a i l e d  s t r e n g t h  d a t a  a s  a  f u n c t i o n  of 
neut ron exposure ,  tempera ture  and s t a r t i n g  con- 
d i t i o n , ( l l - 1 6 )  but  have a l s o  provided i n s i g h t  on 
t h e  n a t u r e  of t h e  microstructural/mlcrochemical 
e v o l u t i o n  of t h i s  a l l o y .  The c e n t r a l  i n s i g h t  i s  
t h a t  a l l  m i c r o s t r u c t u r a l  components evolve  toward 
s a t u r a t i o n  d e n s i t i e s  which a r e  only  func t ions  of 
tempera ture  and displacement  r a t e .  I t  has been 
shown t h a t  t h e  y i e l d  s t r e n g t h  a l s o  s a t u r a t e s  a t  
a  l e v e l  which is dependent on i r r a d i a t i o n  tem- 
p e r a t u r e  (Figure  1 )  but  no t  cold-work l e v e l  (Fig- 

' y e  2) .  Although t h e r e , i s  some v a r i a t i o n  i n  t h e  
s t r e n g t h  of v a r i o u s  h e a t s  of u n i r r a d i a t e d  AISI 
316, Blackburn and coworkers (17) have shown t h a t  
t h e  radia t ion- induced s t r e n g t h  changes r epo r t ed  
f o r  b r e e d e r - i r r a d i a t e d  h e a t s  of annealed AISI 
316 a r e  independent of h e a t  i d e n t i t y  and depend 
on ly  on tempera ture .  
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FIGURE 2 .  Yield S t r e n g t h  o f  I r r a d i a t e d  AISI 316 
a t  Temperatures of 427, 538 and 650°C. 

I t  is  t r a d i t i o n a l  t o  d e s c r i b e  i r r a d i a t i o n  hard- 
en ing  wi th  models t h a t  invoke t h e  i n t e r a c t i o n  of 
v a r i o u s  d e f e c t s  w i th  moving d i s l o c a t i o n s .  (18) 
B a r r i e r s  which r e s i s t  t h e  motion of d i s l o c a t i o n s  
have been c l a s s i f i e d  a s  e i t h e r  long range (LR) 
o r  s h o r t  r ange  (SR). Long range f o r c e s  a r e  due 
t o  t h e  i n t e r a c t i o n  of moving d i s l o c a t i o n s  w i th  
t h e  d i s l o c a t i o n  network of t h e  m a t e r i a l .  Obsta- 
c l e s  l y i n g  i u  the  s l i u  p l ane  of t h e  movine clis- 
l o c a t i o n  produce s h o r t  range  f o r c e s  when t h e  
d i s l o c a t i o n  is  i n  c l o s e  proximity t o  t h e  obs ta-  
c l e s .  The i n c r e a s e  i n  t h e  shea r  s t r e s s .  A T ,  i s  
given by: 

The long  range term is .given a s  

ArLR = a ~ b f l .  

where pd is t h e  d i s l o c a t i o n  d e n s i t y ,  G t he  s h e a r  
modulus, b  t h e  Burgers v e c t o r  and a ranges  from 
0.15 t o  0.30.(19) The s h o r t  range  c o n t r i b u t i o n  
o f  an o b s t a c l e  is  

ATi .=  
Gb &T (3) 

B i 

2 '5 
and  AT^^ = [ Z A T ~  1 9 

where N i  is t h e  number of d e f e c t s  of a  given type  
and diameter  d i  pe r  u n i t  volume and S i  i s  a  con- 
s t a n t  f o r  each type  of d e f e c t .  The B values  f o r  
loops  range from 2  t o  4, (18-20) wh i l e  those  f o r  
vo ids  (21) and p r e c i p i t a t e s  (22) a r e  about 1 .0 .  

F i n a l l y ,  i n  c a l c u l a t i n g  t h e  f low o r  y i e l d  s t r e s s ,  
i t  is  necessary  t o  conve r t  from s h e a r  s t r e s s  t o  
u n i a x i a l  s t r e s s ,  namely Aay = 3  CT based on t h e  
Von. Mises c r i t e r i o n .  Thus, t h e  s t r e n g t h  of t h e  
i r r a d i a t e d  s t e e l ,  U i  is 

a  = a  + Ao, + Loi.  
i o  

where a, + Ao, is  t h e  i n t r i n s i c  s t r e n g t h  p l u s  
work-hardening of t h e  u n i r r a d i a t e d  s t e e l .  oo 
is  assumed not t o  change d u r i n g  i r r a d i a t i o n .  

The m i c r o s t r u c t u r a l  d a t a  r equ i r ed  t o  gene ra t e  
y i e l d  s t r e s s  p r e d i c t i o n s  u s i n g  equa t ions  1-5 
have been presented  e a r l i e r . ( l l )  With only minor 
mod i f i ca t ions ,  t h e s e  same d a t a  were employed 
us ing  t h e  va lues  Bm = 3, Bv = 1 and Bp = 1. The 
v a l u e  of a = 0.2  was determined from t h e  room 
tempera ture  s t r e n g t h  d a t a  (F igu re  3) and t h e  
knowledge t h a t  t h e  d i s l o c a t i o n  d e n s i t y  of t h i s  
h e a t  of s t e e l  i n  t h e  20% cold-worked cond i t i on  
i s  approximate ly  3  x  1011 cm/cm3. ( 4 )  Since t h e r e  
a r e  no d i s c e r n i b l e  p r e c i p i t a t e s  i n  t h i s  s t e e l  a t  
room tempera ture  and none t h a t  develop on t h e  
s h o r t  t ime frame of t e n s i l e  t e s t s  a t  e l eva t ed  
teruprra tures ,  i t  i s  r easonab le  t o  assume t h a t  t h e  
s o f t e n i n g  t h a t  occurs  is  due t o  t h e  tempera ture  
dependence of t h e  s h e a r  modulus and t h e  re laxa-  
t i o n  of d i s l o c a t i o n  d e n s i t i e s ,  Therefore .  t h e  
d a t a  of Figure  3  were a l s o  used t o  gene ra t e  t h e  
i n i t i a l  d i s l o c a t i o n  d e n s i t y  p:W of t h e  cold- . 
worked s t e e l  a f t e r  r e l a x a t i o n  a t  tempera ture  and 
p r i o r  t o  s i g n i f i c a n t  i r r a d i a t i o n .  

The p r e i r r a d i a t i o n  d i s l o c a t i o n  d e n s i t y  of t he  
solu t ion-annealed  ( sa )  s t e e l  was assumed t o  be  
10' cm/cm3 a t  a l l  tempera tures .  

3. RESULTS OF CALCULATIONS 

I n  a  previous  r e p o r t ,  i t  was shown t h a t  t h e  major 
f e a t u r e s  of the  e v o l u t i o n  i n  s t r e n s t h  of XIS1 316 
could  be desc r ibed  us ing  t h e  above mode l s . ( l l )  
However, t h e  mic ros t ruc tu ra l ly -based  c o r r e l a t i o n  
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FIGURE 3. Yie ld  S t r e n g t h  o f  Un i r r ad i a t ed  AISI 
316. 

tended t o  unde rp red ic t  t h e  observed behavior  a t  
most temperatures.  I n  reviewing t h e  assumptions 
employed i n  t h e  t r ea tmen t  of F l e i s c h e r  (20) f o r  
Frank loops  i t  was determined t h a t  a t  300-600°C. 

. Frank loops  cannot be considered  a s  s h o r t  range 
o b s t a c l e s .  The o r i g i n a l  model was normalized t o  
d a t a  de r ived  from low tempera ture  i r r a d i a t i o n ,  
l e a d i n g  t o  low d i s l o c a t i o n  d e n s i t i e s  and ve ry  
h igh  d e n s i t i e s  of ve ry  s m a l l  loops.  A t  tempera- 
t u r e s  r e l e v a n t  t o  f a s t  r e a c t o r s ,  Frank loops  a r e  
two-dimensional i n  n a t u r e  and ve ry  l a r g e ,  w i t h  
d iameters  on the  o r d e r  o f  t h e  d i s l o c a t i o n  spac- 
i ng ;  t hey  a l s o  c o n t a i n  a  l a r g e  f r a c t i o n  of t h e  
t o t a l  d i s l o c a t i o n  l i n e  l eng th .  

Assuming f o r  t h e  moment t h a t  equa t ion  3  is s t i l l  
v a l i d  and B F ~  = 3.0,  t h e  Frank loop c o n t r i b u t i o n  
t o  hardening was t r e a t e d  a s  a  long range c o n t r i -  
bu t ion ;  t h e  loop c o n t r i b u t i o n  was inc luded i n  
equa t ion  2 and no t  4. -4s shown i n  F igu re  4,  t h e  
micros t ructura l ly-based p r e d i c t i o n s  e x h i b i t  re-  
markable agreement w i t h  t h e  d a t a .  

4. DISCUSSION 

It  can be seen i n  F igu re  4  t h a t  t h e  r e l a x a t i o n  
of d i s l o c a t i o n  d e n s i t y  of cold-worked s t e e l s  
du r ing  i r r a d i a t i o n  l e a d s  t o  a  s o f t e n i n g  c o n t r i -  
bu t ion  t o  y i e l d  s t r e n g t h ,  p a r t i c u l a r l y  evidenc  
a t  tempera tures  above %55O0C. The presence  of 
voids , ,  Frank loops  and r a d i a t i o n - s t a b l e  p r e c i p i -  
t a t e s  l e a d s  t o  a  hardening c o n t r i b u t i o n ,  p a r t i c -  
u l a r l y  a t  lower t empera tu re s  where t h e . d e n s i t i e s  
of t hese  d e f e c t s  a r e  l a r g e s t .  S ince  t h e s c  com- 
ponents  a r e  s e n s i t i v e  t o  d isplacement  r a t e ,  i t  
is  expected t h a t  t h e  s a t u r a t i o n  s t r e n g t h  w i l l  
vary w i t h  neut ron f l u x  and s p e c t r a .  (11) . 

I f  Frank loops  a r e  no t  s h o r t  range o b s t a c l e s ,  - 
why was t h e  s h o r t  range fo rmula t ion  of equa t ion  3  
employed f o r  loops  i n  t h i s  s t u d y ?  Ac tua l ly .  
t h e  apparent  succes s  o f  t h e  "wrong" model was 
f o r t u i t o u s  s i n c e  t h e  t o t a l  l i n e  l eng th  of Frank 
loops  is PFL = NFL ( n d n ) .  The re fo re ,  

and t h e  s h o r t  and long  range fo rmula t ions  a r e  
i d e n t i c a l ;  t h e  v a l u e  of 0.19 ag rees  w i t h  t h e  .. 
v a l u e  of a = 0.2 determined e a r l i e r .  S ince  t h e  
p r e d i c t i o n s  ag ree  w i t h  t h e  d a t a  a t  h igh tempera- 
t u r e s  where d i s l o c a t i o n s  provide  t h e  major hard- 
ening c o n t r i b u t i o n ,  i t  appears  t h a t  t h e  assumption. 
i s  v a l i d  t h a t  t h e  i n t r i n s i c  y i e l d  s t r e s s  Go i s  
l a r g e l y  una f f ec t ed  by radia t ion- induced segrega-  
t i o n .  The major e f f e c t  o f  t h e  microchemical 
e v o l u t i o n  on y i e l d  s t r e n g t h  thus  l i e s  i n  t h e  f o r -  
mation of r a d i a t i o n - s t a b l e  p r e c i p i t a t e s .  

The d a t a  of F igu re  1 a r e  from s t e e l  thatohad n o t  
developed l a r g e  void  s w e l l i n g  a t  t h e  f l uences  
a t t a i n e d .  Although t h e  s t r e n g t h  s a t u r a t e s  a t  a l l  
t empera tu re s ,  i t  is  expected  t h a t  a  l a t e - t e r n  
s o f t e n i n g  w i l l  occur  a s  t h e  vo ids  change t h e  
s h e a r  modulus of t h e  s t e e l ,  p a r t i c u l a r l y  a t  low 
tempera tures .  S e v e r a l  r e s e a r c h e r s  (23-24) have 
shown t h a t  t h e  modulus of i r r a d i a t e d  s t a i n l e s s  
s t e e l s  is  dec reased  acco rd ing  t o  t h e  r e l a t i o n -  
s h i p  G '  = G(1-2 AVIV,). Decreases i n  modulus of 
20% have been observed f o r  10% swel l ing .  (24) 

5. PROJECTION TO FUSION ENVIRONXENTS 

I n  p r i n c i p l e ,  i t  should  be  p o s s i b l e  t o  p r e d i c t  
s t r e n g t h  changes i n  f u s i o n  environments by 
s t u d y i n g  t h e  response  of f i ss ion- induced micro- 
s t r u c t u r e  t o  a n t i c i p a t e d  changes i n  t r ansmutan t s .  
The a v a i l a b l e  neu t ron  d a t a  f a l l  i n t o  two c l a s s e s :  
d i r e c t  comparisons o f  i r r a d i a t i o n  response  i n  two 
r e a c t o r s  w i t h  d i f f e r e n t  s p e c t r a  and s t u d i e s  i n  one 
r e a c t o r  i nvo lv ing  e l emen ta l  v a r i a t i o n s  of expected  
t ransmutants .  I n  a  r e c e n t  comparative s tudy  of 
AISI 316 it was shown t h a t  t h e  microchemical and 
m i c r o s t r u c t u r a l  e v o l u t i o n  a t  500-620°C was re-  
markably i n s e n s i t i v e , a t  40-70 dpa t o  more than  
two o r d e r s  of magnitude d i f f e r e n c e  i n  helium gen- 
e r a t i o n  r a t e s  found i n  EBR-11 and HFIR r e a c t o r s . ( 6 )  
Th i s  s t u d y  was compl ica ted  by t h e  burn-out o f  
manganese and t h e  format ion of ~ 0 . 8 %  vanadium a t  
r e l a t i v e l y  moderate doses  i n  HFIR.(3) Ne i the r  
of t h e s e  elements s u f f e r  measurable changes a t  
comparable doses  i n  EBR-11. Breeder r e a c t o r  
s t u d i e s  have a l s o  shown a  s e n s i t i v i t y  of vo id  
s w e l l i n g  t o  manganese con ten t  (3) and a l s o  t o  
carbide-forming e lements  s i m i l a r  t o  vanadium.(5) 
Both of t h e s e  e lements  a r e  p ro j ec t ed  t o  i n c r e a s e  
s lowly i n  f u s i o n  i r r a d i a t i o n  of AISI 316, w i t h  
p o s s i b l e  la te- term consequences i n  phase s t a b i l i t y  
and y i e l d  s t r e n g t h .  

I n  ano the r  s tudy  i t  has  been shown t h a t  l a r g e  
helium gene ra t ion  r a t e s  i n  AISI 316 i r r a d i a t e d  
i n  HFIR l e a d  t o  e a r l i e r  vo id  n u c l e a t i o n  a t  a l l  
tempera tures  i n  t h e  range 300-700°C, but  not  t o  
void  d e n s i t i e s  which a r e  s u b s t a n t i a l l y  d i f f e r e n t  
a t  s a t u r a t i o n  than  those  t h a t  develop i n  b reede r  
r e a c t o r s . ( 2 5 )  The re fo re ,  t h e  e f f e c t  of helium 
i s  concen t r a t ed  i n  t h e  t r a n s i e n t  regime. 

Dual i o n  i r r a d i a t i o n  exper iments  t o  d a t e  have . 
concen t r a t ed  on ly  on t h e  gaseous t r ansmutan t s .  
The development of Frank loops  and t h e i r  subse- 
quent convers ion t o  d i s l o c a t i o n s  have been shown 
t o  be s e n s i t i v e  t o  t h e  helium leve1.(26-29) A t  
h igh  f l u e n c e s ,  however, t h e  d i s l o c a t i o n  d e n s i t y  
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has  been found t o  be remarkably i n s e n s i t i v e  t o  
helium concen t ra t ion  o r  t h e  mode of  implanta- 
t ion.(28-29) It a l s o  appears .  t h a t  l a r g e  l e v e l s  
of helium can a l t e r  t h e  e a r l y  phase evo lu t ion .  
p a r t i c u l a r l y  i n  a c c e l e r a t e d  s imula t ion  exver i -  
ments.(26-27) T h e r e a r e  no.suppor t inn neutron d a t a .  

Since  t h e  s t eady- s t a t e  swe l l ing  r a t e  is insens i -  
t i v e  t o  helium con ten t  (6) and t h e  s a t u r a t i q n  
d i s l o c a t i o n  d e n s i t y  i s  a l s o  una f fec t ed  it  appears  
t h a t  t h e  primary e f f e c t  of  helium is i n  t h e  t r an -  
s i e n t  regime, p a r t i c u l a r l y  t h e  c o n t r i b u t i o n s  of 
voids  and Frank loops.  Unless s o l i d  transmu- 
t a n t s  change t h e  p r e c i p i t a t i o n  behavior  o r  
ma t r ix  s t r e n g t h ,  no e f f e c t  a n t i c i p a t e d  i n  t h e  
s a t u r a t i o n  regime. This conclus ion may not be 
v a l i d  f o r  pulsed r e a c t o r  systems due t o  t h e  f l u x  
s e n s i t i v i t y  of vo ids .  Frank loops  and r a d i a t i o n -  
s t a b l e  p r e c i p i t a t e s . ( S )  

6. CONCLUSIONS 

Yield s t r e n g t h  changes i n  AISI 316 dur ing  breeder.  
r e a c t o r  i r r ' a d i a t i o n  can be  desc r ibed  i n  terms of 
mic ros t ruc tu ra l ly -based  models. Microchemical,  
changes a r e  of importance only  i n  t h a t  they l e a d  
t o  e x t e n s i v e  p r e c i p i t a t i o n .  The s a t u r a t i o n  ob- 
served i n  y i e l d  s t r e n g t h  is a r e f l e c t i o n  of t h e  
s a t u r a t i o n  of m i c r o s t r u c t u r a l  d e n s i t i e s ,  bu t  i t  
i s  expected t h a t  a second-order s o f t e n i n g  w i l l  
e v e n t u a l l y  occur a s  accumulated voidage dec reases  
the  shea r  modulus. While voids  and p r e c i p i t a t e s  
can be considered a s  s h o r t  range o b s t a c l e s ,  l a r g e  
Frank loops  cannot and t h e r e f o r e  should  be 
t r e a t e d  a s  a d d i t i o n a l  d i s l o c a t i o n  l i n e  length .  

. . 
The p r o j e c t i o n  of t h e s e  i n s i g h t s  t o  t h e  a n t i c i -  
pated response  of AISI 316 i n  f u s i o n  devices  
y i e l d s  t h e  conc lus ion  t h a t  under s t eady- s t a t e  
i r r a d i a t i o n ,  t h e  s t r e n g t h  behavior a t  s givcn d i s -  
placement r a t e  w i l l  d i f f e r  p r imar i ly  i n  t h e t r a n s -  
i e n t  and n o t  t h e  s a t u r a t i o n  regime. 
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