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NEW TERM WEIGHTING FORMULAS FOR THE VECTOR SPACE
METHOD IN INFORMATION RETRIEVAL

Erica Chisholm and Tamara G. Kolda

Abstract

The goal in information retrieval is to enable users to automatically and accurately
find data relevant to their queries. One possible approach to this problem is to use the
vector space model, which models documents and queries as vectors in the term space. The
components of the vectors are determined by the term weighting scheme, a function of the
frequencies of the terms in the document or query as well as throughout the collection.
We discuss popular term weighting schemes and present several new schemes that offer
improved performance.

1. Introduction

Automatic information retrieval is needed because of the volume of information available today
— there is too much information to be indexed manually. Most people have used some type of
information retrieval system in the form of Internet search engines. Search engines are based
on information retrieval models such as the Boolean system, the probabilistic model, or the
vector space model [7].

We focus on the vector space model, described in Sect. 2, which models documents and
queries as vectors and computes similarityAscores using an inner product. The performance
of the vector space model depends on the term weighting scheme, that is, the functions that
determine the components of the vectors [9]. In Sect. 3, we outline the ideas underlying term
weighting and present several popular term weight schemes. In Sect. 4, we describe new term
weighting formulas. Sect. 5 gives experimental results comparing the old with the new, and

Sect. 6 concludes that the new methods are an improvement over existing schemes.

2. The Vector Space Model

In the vector space model, individual documents and queries are représented as vectors in term
space. The term list for a given document collection is compiled as follows. Words appearing
in only one document are removed. Numbers, punctuation, and stop words are also removed.
The remaining words form our set of terms. (See Kolda [7] for further details on preprocessing.)

To compare a doéument and query, we find their similarity score by computing their dot
product. For example, Table 1 shows two partial documents from MEDLINE, and Table 2
shows a query from the MEDLINE test collection.! (See the Appendix A for the complete

documents and query from this table.) Note that the vectors are sparse because only a few of

1We cannot show all terms in each document for lack of space, but all terms in common to the example
query are given.




] Document 1 | Document 2
| Term ID. | Word Weight || Term ID. |  Word Weight |
37 accompany | 0.09 63 acids 0.07
572 blood 0.36 1341 determined | 0.07
1034 content 0.18 1899 fatty 0.07
1925 fetal 0.09 1925 fetal 0.44
2051 free 0.09 1930 ffa 0.22
2559 infant 0.18 2051 free 0.07
2876 levels 0.09 2125 glucose 0.29
3718 placenta 0.09 2876 levels 0.29

.Ta,ble 1: Documents from the MEDLINE test collection.

Query
Term ID. | Word Weight |

59 acid 0.30

63 acids 0.30

494 barrier 0.30
1899 fatty 0.60
1926 fetus 0.30
2876 levels 0.30
3358 normal 0.30
3718 placenta | 0.30

Table 2: Query from the MEDLINE test collection.
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all possible words appear in any one document, so we show only the nonzero entries and their
indices. Here, the common terms between Document 1 and the query are “levels” (2876) and

“placenta” (3718), and the similarity score of Document 1 is
(0.09 x 0.30) + (0.09 x 0.30) = 0.05 .

The common terms between Document 2 and the query are “acids” (63), “fatty” (1899), and

“levels” (2876), and the similarity score of Document 2 is
(0.07 x 0.30) + (0-07 x 0.60) + (0.29 x 0.30) = 0.15 .

Because Document 2 has a higher similarity score than Document 1, Document 2 would be
retrieved before Document 1. The weights in the preceeding examples were computed by using
a normalized frequency vector. For example, the term “acids” appears once in Document 2 and
the norm of the vector of the frequencies is 21/47, so the weight for “acids” is 1/2v/47 = 0.07.
This is a relatively simple weighting scheme; we discuss several others in the next two sections.

It is useful to give a geometric interpretation to the vector space notion of “similarity.”

Consider the dot product equation

d-q
cosé = W ,
where d is a document vector, ¢ is a query vector, and @ is the angle between them. If d and ¢
are normalized so that their magnitudes are one (as in the previous example), the preceeding
equation then reduces to cos8 = d- g, so the similarity score is a measure of cosine of the angle
between the vectors. If we r@nk the documents according to their similarity score from highest
to lowest, the highest scoring document has the smallest angle between itself and the query. In

the previous example, the angle between the document and the query vectors is approximately
77°.

3. Term Weighting

Proper term weighting can greatly improve the performance of the vector space method. A
weighting scheme is composed of three different types of term weighting: local, global, and

normalization. The term weight is given by

where L;; is the local weight for term ¢ in document j, G; is the global weight for term 4, and
Nj is the normalization factor for document j. Local weights are functions of how many times
each term appears in a document, global weights are functions of how many times each term
appears in the entire collection, and the normalization factor compensates for discrepancies in

the lengths of the documents.




Formula Name Abbr.
1 iffi; >0 .
0 iffy;=0 Binary BNRY
Within-document
fi frequency FREQ

1+log fi; if fi; >0

0 > fij Z0 Log LOGA

It+log fi; ¢ o .

T+log a; ff Ji; >0 Normalized log LOGN
0 if fij =0

0.5+0.5 (gl) if f;; >0 | Augmented normalized

ATF1
0 if fi; =0 term frequency

Table 3: Established local weight formulas used.

The document vectors and query vectors are weighted using separate schemes. The local
weight is computed according to the terms in the given document or the query. The global
weight, however, is based on the document collection regardless of whether we are weighting
documents or queries. The normalization is done after the local and global weighting. Nor-
malizing the query vectors is not necessary because it does not affect the relative order of the
ranked document list.

We present well-known weighting schemes in this section and several new schemes in the
next section. In Sect. 5, we compare the methods.

Local weighting formulas perform well if they work on the principle that the terms with
higher within-document frequency are more pertinent to that document [9]. A list of the
established local weight formulas we used is given in Table 3.

The simplest local weights are binary (BNRY) [9] and within-document frequency (FREQ)
[9], given respectively by

1, if f;; >0

Lz'j { . fj y and
0, if f,’j =0

L = fiy,

where f;; is the frequency of term ¢ in document j. These weights are typically used for query
weighting, where terms appear only once or twice. For document weighting, these weights are

generally not best because BNRY does not differentiate between terms that appear frequently




and terms that appear only once and because FREQ gives too much weight to terms that
appear frequently. The logarithm offers a middle ground.

Logarithms are used to adjust within-document frequency because a term that appears ten
times in a document is not necessarily ten times as important as a term that appears once in
that document. Two of the local weighting formulas in Table 3 are similar because they each

use logarithm. They are log (LOGA) [5] and normalized log (LOGN) [1], given respectively by

1+log fi;, if f;; >0

L = { 8l .fj , and
0, lff,'j=0
1+log.fij .
T 8JY i f

L = 1+loga;’ £ >0 ;
0, if fi; =0

where a; is the average frequency of the terms that appear in document j.2 Because LOGN is
normalized by the (1 + loga;) term, the weight given by LOGN will always be lower than the
weight given by LOGA for the same term and document. When no global weight is used, it is
important to use a normalized local weight. LOGN and LOGA are the favored local document
and query weights, respectively, in recent TRECs {1, 2].
Another local weight that is a middle ground between binary and term frequency is aug-
mented normalized term frequency (ATF1) [9):
L.=d5+5 (Zi) if fi; >0
3 = Il?j 9
0, if fi; =0

where z; is the maximum frequency of any term in document j. ATF1 awards weight to a term
for appearing in ’the document and then awards additional weight for appearing frequently.
With this formula, L;; varies only between 0.5 and 1 for terms that appear in the document.

Global weighting tries to give a “discrimination value” to each term. Many schemes are
based-on the idea that the less frequently a term appears in the whole collection, the more
discriminating it is [9]. A commonly used global weight is the inverted document frequency .
measure, or IDF, derived by Sparck Jones [11}. We have used two variations, IDFB [9] and |
IDFP [4], given respectively by

G;

Il
—
(o}
[¢4:]
TN
Sz
~——”’
o
=
(=%

Gi

H
5}
09
TN
=
St
3
N’

where N is the number of documents in the collection and n; is the number of documents in
which term 7 appears. IDFB is the logarithm of the inverse of the probability that term ¢ appears
in a random document. IDFP is the logarithm of the inverse of the odds that term ¢ appears

in a random document. IDFB and IDFP are similar in that they both award high weight for

2All logs are base two.




Formula Name Abbr.
N
log (1—1_) Inverse document frequency IDFB
i
log (N; n,) Probabilistic inverse IDFP
i
1+i%ﬁlog%‘ Ent ENPY
e A ni ropy
e log N
% Global frequency IDF IGFF
i
1 No global weight NONE

Table 4: Established global weight formulas used.

terms appearing in few documents in the collection and low weight for terms appearing in many
documents in the collection; however, they differ because IDFP actually awards negative weight
for terms appearing in more than half of the documents in the collection, and the lowest weight
IDFB gives is one.

In addition, we used the Entropy weight (ENPY) (8] given by

where F; is the frequency of term 7 throughout the entire collection. If a term appears once
in every document, then that term is given a weight of zero. If a term appears once in one
document, then that term is given a weight of one. Any other combination of frequencies will
yield a weight somewhere between zero and one. Entropy is a useful weight because it gives
higher weight for terms that appear fewer times in a small number of documents.

We also used a global frequency IDF weight (IGFF) [5], given by

Gi= -75 )

Here, if a term appears once in every document or once in one document, it is given a weight of
one, the smallest possible weight. A term that is frequent relative to the number of documents
in which it appears gets a large weight. This weight often works best when combined with a
different global weight on the query vector.

For comparison, we also used no global weight (NONE); that is, the global weight assigned

to term i is one. A list of these established global weight formulas is given in Table 4.




L2

Formula Name » Abbr.
1 . A
= Cosine normalization COSN
VEr (G:iLi)
! Pivoted unique normalization PUQN
(1 — slope) + slope I;
1 None NONE

Table 5: Normalization factors used.

The third component of the weighting scheme is the normalization factor, which is used
to correct discrepancies in document lengths. It is useful to normalize the document vectors
so that documents are retrieved independent of their lengths. See Table 5 for a list of the
normalization factors we used.

Perhaps the most familiar form of normalization in the vector space model is cosine nor-

malization (COSN) [9]:
1.

) \/Z?;o (G:iLyj)*

which divides by the magnitude of the weighted document vector, thereby forcing the magnitude

N;

*

of the weighted document vectors to be one. This allows us to compare the angle between the
weighted vectors. '

With COSN, longe.r documents are given smaller individual term weights, so smaller docu-
ments are favored over longer ones in retrieval. Pivoted unique normalization (PUQN) [10], a
relatively new normalization method, tries to correct the problem of favoring short documents.

PUQN is given by
: 1

N; = ,
77 (1 - slope) pivot + slope ;

where {; is the number of distinct terms in document j. Per the suggestion of [10], slope is set to
0.2 and pivot is set to the average number of distinct terms per document in the entire collection.
The basic principle behind pivoted normalization methods is to correct for discrepancies based
on document length between the probability that a document is relevant and the probability
that the document will be retrieved. Using another normalization factor, such as 1/l;, a set of
documents is retrieved, and the retrieval and the relevance curves are plotted against document
length. The point at which these curves intersect is the pivot. The documents on the left side of
the pivot generally have a higher probability of being retrieved than they have of being relevant,
and the documents on the right side of the pivot generally have a higher probability of being
relevant than they have of being retrieved. The normalization factor can now be pivoted at the

pivot and tilted so that the normalization factor can be increased or decreased to better match
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the probabilities of relevance and retrieval [10].

We also used no normalization at all (NONE), where N; is set to one.

Document weight | Query weight Scheme name

LOGA ENPY COSN | LOGA ENPY Log-entropy [5]

LOGA IGFF COSN ATF1 ENPY IGFF-entropy

FREQ NONE NONE | FREQ NONE Raw term frequency [9]

FREQ NONE COSN FREQ NONE Raw cosine [9]

LOGA NONE COSN LOGA IDFB SMART “ltc” [1]

LOGA NONE COSN LOGA IDFP Variation of SMART “ltc”
FREQ IDFB COSN | ATF1 IDFB Best fully weighted [9]

ATF1 NONE NONE | BNRY IDFP Best probabilistic {9]

LOGN NONE PUQN | LOGA IDFB | Pivoted unique new norm weight [10]

Table 6: Popular weighting schemes.

A list of popular combinations of the weights we have discussed is given in Table 6.

4. New Term Weight Formulas

We have developed several new local and global weightings. The new local weights are listed
in Table 7. Two new local weighting formulas are changed-coefficient ATF1 (ATFC) and
augmented average term frequency (ATFA), given respectively by

ANy
Ly = {0.2+0.s(;’+), i fy >0
0, if fij =0
ANy
L; = {0.9+0.1(;’+), if iy >0
0, if fi; =0

ATFC was developed using a general version of ATF1 found in {3]:

b= {K+(1—K) (i;z) if fiy >0
0, if fi;=0
Changed-coefficient ATF1 works well because, like ATF1, it assigns weight to a term merely
for appearing in a document, then adds more weight if the term appears frequently in the
document. The difference is in the coefficients. With ATFC, even more weight is given if
a term appears frequently in a document but less weight is given just for appearing. ATFA
is similar to ATF1, but it is normalized differently. ATF1 is normalized by the maximum
within-document frequency of a particular document, and ATFA is normalized by the average
within-document frequency of a document. Also, the coefficients are different. ATFA gives
more weight to a term for just appearing and adds less weight if a term appears frequently.

Note that the maximum value for ATFC is one, whereas one is the average value for ATFA.




Formula Name Abbr.
fij e o
0.2+0.8 (?f) £ >0 Changed-coefficient ATF1 ATFC
0 if f;;=0
09+0.1 (i?-) if fi; >0 Augmented average
a; ATFA
0 if fi; =0 term frequency
0.2+ 0.8log (f,'j +1) if fij >0
0 if £, =0 Augmented log - LOGG
Vi —05+1 if fi; >0
0 if £, = 0 Square root SQRT

Table 7: New local weight formulas.

Another new local weight is augmented log (LOGG), a variation of ATFC, given by

0.2+ 0.8log (f,'j +1), if f;; >0
v 0, if f-ij =0 )

We simply changed ( iz;’—) to log (fi; + 1) because log seems to be a better local .wefght than
within-document frequency. Note that now L;; can be greater than one.

Our fourth new local weight is square root (SQRT), given by

Vfij ~ 0541, if f;; >0
Lij = . .

07 if f ij = 0
In the development of SQRT we tried to model a formula whose graph resembled that of LOGA,
a top performer among established local weight formulas. We looked at the graph of LOGA
and noted that the function /fi; would have a similar shape. We then translated the square.
root curve until it resembled the log curve more closely. As f;; gets large, SQRT has a larger
value than LOGA.

We have three new global weights, as shown in Table 8. The first is log-global frequency
IDF (IGFL), given by

G, =log (?-%—1).
i

IGFL is simply a combination of the IDFA and IGFI weights.> We noticed that the established
IDF weights were all logarithm functions. We also observed that the IGFI weight was working

well, so we combined the two formulas.

3IGFL was discovered by accident when another IDF weight was incorrectly implemented in the program.
Before the mistake was noticed, we found that this IDF weight worked better than any of the other IDF weights.
Unfortunately, when we fixed the mistake, that IDF weight was no longer superior. We then implemented the
“incorrect” formula in the program, calling it IGFL.
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Formula Name Abbr.
log (—EL + 1) Log-global frequency IDF - IGFL

£ 41 Incremented global frequency IDF IGFI

£ _ 0.9 | Square root global frequency IDF IGFS

Table 8: New global weight formulas.

The second new global weight is square root global frequency IDF (IGFS), given by

Gi= 5—09

1

Like IGFL, IGFS is a combination of formulas. In this case, we observed that square root was
an excellent local weight, so we adapted it to be a global weight. We found that subtracting
larger numbers from F;/n; improved performance. ‘We do not subtract one because that could
cause a global weight of zero for some terms.

The third new global weight is incremented global frequency IDF (IGFI), given by

F. -
- Gy = —+1.

When trying to develop new and improved local weights, it was found that adding one to a

formula significantly improved its performance, so we thought it might carry over to the global

weights. Since IGFF already performed best, we tried adding one to it, and the result was

IGFL

5. Results

To test these weighting formulas, we implemented the vector space model in C and tested our
weighting schemes on several test sets that include the “correct answers.” For a given weighting
scheme, we computed the similarity between the documents and each query in the test collection
and returned a list of docﬁments ranked in order of their similarity scores. We then computed

two scores: interpolated average precision (IAP) and Top Ten. In IAP, the ranked document list |
is checked to see where the relevant documents placed; the best IAP score, 100, would be given
if all the relevant documents were ranked first. (See Kolda [7] for further descriptioﬁ of IAP.)
Another rating of the performance of weighting schemes is the number of relevant documents

in the Top Ten returned documents. We report the average IAP and Top Ten scores over all

the queries in each collection.
We tested both the established and new weighting schemes on the MEDLINE, CRANFIELD,
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and CISI test collections; Tables 9, 10, and 11 show the results. The various weighting schemes
are listed from highest to lowest in terms of IAP. Also listed is the average number of relevant
documents in the first ten documents retrieved (Top Ten). The new weighting formulas are
denoted by an asterisk (*). Note that the performance (both absolute and relative) of the
various weighting schemes varies depending on the test collection.

As the results show, our new term weighting formulas offer improvement over the popular
weighting schemes. The new weights work well combined with both other new weights and with
established weights. The combination of local and global weights used does make a difference.
A particular local weight when combined with one global weight may perform well but when
combined with a different global weight may perform poorly. The combination of document
weighting and query weighting also makes a difference in performance.

Our results show that local weight SQRT works well in both documents and queries. For
all three test collections, SQRT is in the best document weighting scheme with respect to IAP.
Furthermore, SQRT appears in most of the top-performing weighting schemes. With respect
to the Top Ten measure, SQRT always appears in the top five weighting schemes. SQRT
works better than its predecessor, LOGA, possibly because SQRT gives more weight for terms
appearing only a few times in a given document.

LOGG is another new local weight that performs well. The results tables show that LOGG
consistently appears in the top five document weighting schemes for all three test collections
with respect to IAP. LOGG also works well as a query local weight. The results show that
LOGG appears in weighting schemes that always perform better than the popular ones with
respect to Top Ten.

Local weights ATFC and ATFA also perform well. Our results show that these weights are
in weighting schemes that perform better than the popular weighting schemes with respect to
TIAP. With respect to Top Ten, ATFC and ATFA appear in schemes that perform better than
the popular weighting schemes.

Our results show that the new global weight IGFS performs well when it is combined with
any of the new local weight formulas. IGFS consistently appears in the top weighting schemes
with respect to both IAP and Top Ten.

The new global weight IGFI also performs well in combination with any of the new lo-
cal weight formulas. The results tables show that IGFI consistently appears in the top five
weighting schemes with respect to both IAP and Top Ten.

The new global weight IGFL consistently performs better than the popular weighting
schemes with respect to IAP and tends to work best with the SQRT and ATFC local weights.
IGFL always appears in the top ten weighting schemes with respect to Top Ten.

For each test collection, the best new weighting schemes offered improvement over the best
popular weighting schemes in terms of IAP. This is a 3.3% improvement in MEDLINE, 2.8%
in CRANFIELD, and 7.0% in CISIL.

With respect to Top Ten, the best new weighting schemes also offered improvement over
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| Document weight | Query weight | IAP | Top 10 |
SQRT* IGFF COSN | BNRY IDFB 59.55 6.83
SQRT* IGFS*= COSN | BNRY IDFP 59.05 6.80
SQRT* IGFS* COSN | BNRY IDFB 59.01 6.83
LOGG* IGFS* COSN | ATFAx ENPY 58.98 6.77
SQRT* IGFIx COSN | BNRY IDFB 58.91 6.87
LOGG* IGFF COSN | SQRT* IDFB 58.70 6.73
ATFA* IGFS* COSN | BNRY IDFB 58.43 6.90
LOGG* IGFS* COSN | LOGG* IDFP 58.33 6.63
ATFC* IGFS* COSN | BNRY IDFP 58.33 6.87
LOGG* IGFIx COSN | SQRT* ENPY 58.31 6.77
ATFA* IGFS* COSN { SQRT* ENPY 58.17 6.70
ATFC* IGFI* COSN | BNRY IDFB 57.87 6.83
SQRT* IGFS* COSN | LOGA IDFP 57.87 6.47
SQRT* IGFI* COSN | ATFC* ENPY 57.82 6.63
ATFC* IGFL* COSN | BNRY IDFB 57.68 6.87
SQRT* IGFL* COSN | LOGG* IDFB 57.67 6.67
LOGA 1IGFF COSN | ATF1 ENPY 57.67 6.63
LOGA NONE COSN { LOGA 1IDFP 53.41 6.20
LOGA NONE COSN | LOGA IDFB 53.29 6.17
LOGA ENPY COSN | LOGA ENPY 52.92° 6.30
FREQ IDFB COSN | ATF1 1IDFB 52.47 6.17
LOGN NONE PUQN | LOGA 1IDFB 52.44 6.00
ATF1 NONE NONE | BNRY IDFP 51.85 6.27
FREQ NONE COSN | FREQ NONE 48.19 5.67
FREQ NONE NONE | FREQ NONE 42.81 5.20

Table 9: Results on the MEDLINE test collection using various weighting schemes. The results
are sorted from highest to lowest by IAP.
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[ Document weight | Query weight [ IAP | Top 10 |

SQRT* IGFL* COSN | LOGG* IDFB 43.06 3.02
SQRT* IGFI* COSN | BNRY IDFB 43.04 3.03
SQRT* IGFI* COSN | ATFCx ENPY 43.00 3.03
LOGG* IGFI* COSN | SQRT* ENPY 42.88 3.03
SQRT* IGFF COSN { BNRY IDFB 42.70 3.04
LOGG* IGFS* COSN | ATFA* ENPY 42.67 3.02
SQRT* IGFS* COSN | BNRY IDFB 42.64 3.00
LOGG* IGFF COSN | SQRT* IDFB 42.53 3.04
SQRT* IGFS* COSN | BNRY IDFP 42.50 3.01
LOGG* IGFS* COSN | LOGG* IDFP 42.36 3.02
SQRT* IGFS* COSN | LOGA IDFP 42.19 3.00
ATFC* IGFI* COSN | BNRY IDFB 42.14 2.92
] ATFC+ IGFL* COSN | BNRY IDFB 42.02 2.94
ATFA* IGFS* COSN | SQRT* ENPY 41.93 2.95
LOGA IGFF COSN | ATF1 ENPY | 41.90 2.92
ATFA* IGFS* COSN | BNRY 1IDFB 41.79 2.94
ATFC+ IGFS* COSN | BNRY IDBP 41.76 2.96
LOGA NONE COSN | LOGA 1IDFB 41.52 2.90
LOGN NONE PUQN | LOGA 1IDFB 41.20 2.93
LOGA NONE COSN | LOGA IDFP 41.13 2.88
LOGA ENPY COSN | LOGA ENPY 39.85 2.86
ATF1 NONE NONE | BNRY IDFP 38.92 2.81
FREQ IDFB COSN | ATF1 1IDFB 38.52 2.80
FREQ NONE COSN | FREQ NONE 35.71 2.60
FREQ NONE NONE | FREQ NONE 24.55 1.86

Table 10: Results on the CRANFIELD test collection using various weighting schemes. The
results are sorted from highest to lowest by IAP.
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| Document weight | Query weight | IAP [ Top 10 |
SQRT* IGFS* COSN | LOGA IDFP 19.40 2.91
LOGG* IGFS* COSN | LOGG* IDFP 19.21 291
SQRT* IGFIx COSN ; ATFC* ENPY 18.92 3.00
SQRT* IGFS* COSN | BNRY IDFP 18.90 2.74
SQRT* IGFL* COSN | LOGG* IDFB 18.78 3.00
LOGG* IGFF COSN | SQRT+ IDFB 18.65 3.14
ATFA=* IGFS* COSN | SQRT* ENPY 18.58 2.94
SQRT* IGFSx COSN | BNRY IDFB 18.56 3.06
SQRT* IGFF COSN | BNRY IDFB 18.50 2.97
ATFA* IGFS* COSN | BNRY IDFB 18.42 2.94
LOGG* IGFS* COSN | ATFA* ENPY 18.38 3.03
ATFC* IGFS* COSN | BNRY IDBP | 18.28 2.94
LOGG* IGFI* COSN | SQRT* ENPY 18.22 3.09 *
SQRT* IGFI* COSN | BNRY IDFB 18.19 2.89
LOGN NONE PUQN | LOGA IDFB 18.13 2.91
LOGA ENPY COSN | LOGA ENPY 18.07 2.89 .
LOGA NONE COSN | LOGA 1IDFB 18.03 2.86
LOGA NONE COSN | LOGA IDFP 18.03 2.74
ATFC* IGFLx COSN | BNRY IDFB 17.90 2.86
ATFC* IGFI* COSN | BNRY IDFB 17.89 2.86
FREQ IDFB COSN | ATF1 IDFB 17.67 2.86
LOGA IGFF COSN | ATF1 ENPY 17.64 3.00
ATF1 NONE NONE | BNRY IDFP 17.61 2.40
FREQ NONE COSN | FREQ NONE 15.22 2.00
FREQ NONE NONE | FREQ NONE 13.51 1.91

Table 11: Results on the CISI test collection using various weighting schemes. The results are
sorted from highest to lowest by IAP.
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the best popular weighting schemes. This improvement is an average of 0.27 more relevant
documents retrieved in MEDLINE, 0.11 in CRANFIELD, and 0.14 in CISL

6. Conclusions

The goal of information retrieval is to make it easy for the user to obtain data relevant to a
given query and to do so automatically. The success or failure of the vector space method
depends on the term weighting schemes. We have developed new term weighting formulas that
improve upon the existing ones.

We found that simpler weighting formulas work best for the query weighting. This is possibly
because each term in a query appears only once or twice. For the queries, we recommend local
weighting formulas like BNRY and the new LOGG and global weighting formulas such as ENPY
or any IDF weight. _

We found that more complex term weight formulas are necessary for the documents, possibly
‘because documents contain more terms, these terms occur with greater frequency, and length
discrepancies are more noticeable in the documents than in the queries. For the documents, we
recommend any of the new local weighting formulas, especially SQRT. The various IGF weights
are the best choices for document global weights.

The weighting'schemes with the two best average IAP scores are a document weight
of SQRT*-IGFF-COSN combined with a query weight of BNRY-IDFB or a document weight of
SQRT*-IGFS*-COSN combined with a query weight of BNRY-IDFP. We recommend these as the
best weighting schemes. A 7 _

In récent years, improvemehts. have been made on information retrieval systems by using
phrases, expansion, and clustering. We are confident that our new formulas will improve the

efficiency of these methods as well.
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A. Documents and Query from Tables 1 and 2

Document 1: ‘
Placental and cord blood lipids. Comparison in a set of double

ovum twins, a stillborn and a live-born.

1. Determinations of phospholipid, total and free cholesterol,
triglyceride and nefa have been made on placental tissue and cord
blood in a set of double ovum twins, one stillborn and one live-born.
2. Similarities occurred in all fractions studied except the cord
blood triglyceride and nefa levels.

3. The serum of the stillborn infant contained one-third as much
triglyceride and 21/2 times as much nefa as did the live-born infant.
4. The phospholipid content and the total lipid content of the
stillbirth placenta were the highest studied in this laboratory which
includes determinations on 26 live births.

5. The suggestion is made that increased lipoprotein lipase activity

in the cord blood may accompany intrauterine fetal death.
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Document 2:

Query:

Correlation between maternal and fetal plasma levels of glucose
and free fatty acids.

Correlation coefficients have been determined between the levels of
glucose and ffa in maternal and fetal plasma collected at delivery.
significant correlations were obtained between the maternal and
fetal glucose levels and the maternal and fetal fla levels. From the
size of the correlation coefficients and the slopes of regression lines
it appears that the fetal plasma glucose level at delivery is very
strongly dependent upon the maternal level whereas the fetal fla

level at delivery is only slightly dependent upon the maternal level.

The crossing of fatty acids through the placental barrier. Normal

fatty acid levels in placenta and fetus.
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