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Meeting Goals:

In view of the current level of activity worldwide associated with the design and construction of
new, next-generation neutron sources, it appears highly desirable to review the design tools and
techniques available to the neutron scattering community for the design of new instruments suites
for these sources. More precisely, this meeting aims at addressing the following questions:

1. Review the present situation regarding approaches to neutron scattering instrument
design and the tools available for this purpose.

2. Determine the present and future needs of the neutron scattering community
regarding techniques and design tools for neutron scattering instrument design.

3. Given that these tools can be used in a variety of ways for:

- Analysis of existing instruments,

- Design of new instruments,

- Optimization of existing or new instruments,
- Planning of experiments,

- Teaching,

how do we best address the needs of the community in these various categories? Where
do we focus future efforts? How do we share information and codes between different
institutions?

4. How can we validate our design tools? How do we implement proposal mechanisms
that would allow beam time to be devoted to instrument development and code
benchmarking? Should we create dedicated beamlines to test neutron optical elements,
measure their performance, and help develop better models?

5. How do we measure instrument performance? Should we define “standard” test to
measure instrument performance? What are meaningful figures of merit?

Meeting Organization
Organizing Committee:

I. Anderson (Institut Laue-Langevin)

J. Copley (National Institute of Standards and Technology)
K. Crawford (Argonne National Laboratory)

L.L. Daecmen (Los Alamos National Laboratory)

W. Hamilton (Oak Ridge National Laboratory)

R.P. Hjelm (Los Alamos National Laboratory)

M. Johnson (Rutherford- Appleton Laboratory)

G. Kearley (Institut Laue-Langevin)

Funded in part by the Los Alamos National Laboratory

Los Alamos National Laboratory is operated by the University of California under contract W-
7405-ENG-36 from the United Stated Department of Energy




Meeting Agenda

Welcome and meeting goals

9:00 - 9:10: Welcome and Meeting Goals- W. Qosterhuis (DOE)
9:10 - 9:30: Scope and goals of the workshop- R. P. Hjelm

Session 1: Design Tools for X-ray Scattering Instruments

Iopics - Overview of design tools currently available
- How are these tools being used and by whom ?
- What was the general approach/philosophy followed in the development of these tools 7
What was the history of the developments of these design tools ?
- How is the development of these tools supported ?
- What are future directions for the development of these tools ?

Chairman:: J.R.D. Copley

9:30 - 10:10: G.E. Ice (ORNL) - Modeling of x-ray beamlines and devices.
10:10 - 10:30: Break

10:30 - 11:10: J. Authur (SSRL) - Modern Synchrotron X-ray Optics.
11:10-11:50 M. Khan (U. Wisconsin) - SHADOW

11:50 - 12:30 Open discussion: Lessons learned from the x-ray scattering community.
12:30 - 14:00: Lunch: Posters and demonstrations

Session 2: Design Tools for Neutron Scattering Instruments
Topics - Overview of existing tools
- Approaches to neutron scattering instrument design

- Examples of successful designs
- Examples of mistakes and lessons learned

Chairman:: R.P. Hjelm
14:00-14:40: L. Passell (BNL) - Historical Overview of Neutron Instrument Design.

14:40 - 15:20: K. Crawford (ANL) - Approaches to instrument design at pulsed
spallation sources.

15:20 - 15:40: Break

15:40 - 16:20: T. Brun (LANL) - Matching instruments and sources.




16:20 - 17:00: Discussion: Lessons learned on neutron instrument design.

Session 3: Instrument Design - Analytical & Numerical Techniques

- Topics - Examples of successful instrument design

- Phase space transformation methods

- Ray tracing

- Optimization methods

- Examples of successful instrument design.

- Figures of merit for measuring performance and optimizing instruments.
- Benchmarking: comparison of calculated and measured performance.

- Monte Carlo and other numerical techniques.

- Treatment of background and noise.

Chairman:: W. Hamilton
9:00 - 9:30: M. Johnson (RAL) - Figures of merit.
9:30 - 10:00: D. Sivia (RAL) - Bayesian experimental design.

10:00 - 10:30: B. David (RAL) - Figures of merit: the view from the experimental
perspective.

10:30 - 11:00: Break

11:00 - 11:40: R. Robinson (LANL) - Matrix methods.

11:40 - 12:30: Discussion— The role of analytical techniques. Figures of merit.
Optimization

12:30 - 14:00: Lunch: Posters and demonstrations

Session 4: Instrument Design - Analytical & Numerical Techniques
Chairman:: K. Crawford

14:00-14:35: R. Gaehler (TU Muenchen) - Coherence properties of neutron beams for
scattering instrumentation

14:40 - 15:15: P. Seeger (LANL) - MCLIB, a general Monte Carlo library for simulation
of neutron scattering instruments.

15:15 - 15: 35: Break
15:35 - 16:00: F. Trouw (ANL) - Visualizing Simulation Results

16:00 - 17:00 Discussion: The codes: What can be done to improve code sharing and
collaboration? Other computational aspects.

19:00 Conference Diner: UC Faculty Club




Session 5: Modeling of Neutron Optical Components

Topics - Overview of existing models.
- Generation of scattering kernels for simulating samples.
- Identify model deficiencies and need for new/improved models.
- Validation of models.

Chairman: L. Dacmen

9:00 - 9:40: J.R.D. Copley (NIST) - The design of a reactor-based time-of-flight
spectrometer

9:40 - 10:00: C. Hayes (ILL) - Toroidal mirrors.
10:00 - 10:30: Break

10:30 - 10:50: M. Popovici (U. Missouri) - Modeling triple-axis spectrometers optics.

10:50 - 11:20: C. Zeyen (ILL) - Modeling of Spin Echo Three Axis Spectrometer
(classical TAS and magnetic optics.

11:20 - 11:40: N. Rosov (NIST) - Modeling components of an neutron spin echo
spectrometer.

11:40 - 12:30: Discussion— Benchmarking and testing models. Modeling imperfections in
optical elements. Models for sources and samples.

12:30 - 14:00: Lunch: Posters and demonstrations

Discussion: Present and Future Needs of the Community

Goals: - Open discussion
Chairman: M. Johnson
14:00 - 14:40 Presentations on the present and future needs for instrumentation design:

R. Pynn

K. Crawford

W. Wagner

F. Mezei

14:40 - 16:00 Discussion—Present and future needs of neutron scattering instrument design.




A Workshop on
Methods for Neutron Scattering Instrument Design
Introduction and Summary

Rex P. Hjelm
~ Manuel Lujan Jr. Neutron Scattering Center
Los Alamos Neutron Science Center
Los Alamos National Laboratory

The future of neutron and x-ray scattering instrament development and international cooperation
was the focus of the workshop on “Methods for Neutron Scattering Instrument Design”
September 23-25 at the E.O. Lawrence Berkeley National Laboratory. These proceedings are a
collection of a portion of the invited and contributed presentations.

The international gathering of about 50 participants representing 15 national facilities, universities
and corporations featured oral presentations, posters, discussions and demonstrations.
Participants looked at a number of issues concerning neutron scattering instruments and the tcols
used in instrument design. Objectives included: (1) determining the needs of the neutron scattering
community in instrument design computer code and information sharing to aid future instrument
development, (2) providing for a means of training scientists in neutron scattering and neutron
instrument techniques, and (3) facilitating the involvement of other scientists in determining the
characteristics of new instruments that meet future scientific objectives, and (4) fostering
international cooperation in meeting these needs. The scope of the meeting included: (1) a review
of x-ray scatteinrg intrument design tools, (2) the a look at the present staus of neutron scattering
instrument design tools and models of neutron optical elelments, and (3) discussions of the present
and future needs of the neutron scattering community.

Why are these objectives are important? As Larry Passell (BNL) pointed out in a review of the
history of neutron scattering through 1960, early neutron scientists had the luxury of
experimenting with the instruments to arrive at a design that worked. The importance of
prototyping was reiterated by Kent Crawford (IPNS) in his review of the concepts of instrument
design and optimization for pulsed sources. However, because of the complexity of modern
instruments, it is difficult to do this with built instruments. Analysis and simulation becomes a
must. :

The general theme of instrument design set by Crawford’s talk and reiterated many times in
subsequent presentation was a “stepwise” approach involving careful consideration of the
objectives for the instrument followed by back of the envelope calculations. To produce optimal
instrument configurations, analytical calculations give a first cut for the instrument geometry,
followed by detailed analysis and simulations using methods that are most appropriate for the
detailed problems at hand to incorporate more subtle features such as non-Gaussian pulse shapes.
An important advantage of analysis and simulation techniques is that they allow inexperienced
instrument designers to “prototype” cheaply and obtain a feeling for the importance of various
instrument parameters.

Several discussions covered general principles of analytical and computational tools for the
analysis of neutron scattering instruments. These included matrix methods (Rob Robinson,
MLNSC), coherence volume analysis (Roland Gaeller, TU Miinchen), and Monte Carlo methods
(Phil Seeger, MLNSC). Matrix methods provide a means for determining instrument resolution
and estimates of the total intensity from the resolution volume. There are codes based on these
methods for double and triple axis spectrometers, reviewed by Mihai Popovici (MURR).
Coherence volume analysis demonstrated that one can think about neutron scattering either in terms
of traditional resolution calculations (Frauenhoffer diffraction) or in terms of beam coherence
(Fresnel diffraction) and get the same answer. The detailed wave analysis brings to light some
interesting new possibilities for instrument design. Monte Carlo methods allow for detailed
predictions of instrument performance that are not available from other methods.




Presentations on the details of recent instrument designs and on moderator performance covered
these and other methods of neutron instrument design. John Copley led us through the
development of a cold neutron chopper spectrometer at NIST, which, like INS at the ILL, has four
disc choppers. Unlike INS, however, the NIST instrument uses three counter-rotating choppers to
improve resolution. The bandwidth-defining choppers have different size slots cut in the wheels.
John used acceptance diagrams, ray tracing, phase space arguments, Monte Carlo and ray tracing
methods to determine chopper configurations, chopper slot numbers and sizes and the effects of
guide geometry.

The combination of analytical calculations and simulation methods have lead to innovative designs
for neutron spin echo (NSE) instruments at the ILL and the NIST. Carmel Hayes (JLL) described
the implementation of a torroid mirror for the high intensity small-angle sgin echo instrument,
IN15. The copper mirrors provide signal to background in the 10™ to 10 range for wavelengths
between 17 and 25 A, and provide intensity gains of up to 30, allowing the instrument minimum Q
to be about 0.001 A™* with a short instrument. Ray tracing calculations by John Copley were used
in the development of the mirrors. Claude Zeyen (ILL) described work on magnetic field shaping
needed to realize a high resolution triple axis spectrometer NSE, IN20. In these designs, analysis
showed what was best to do, whereas simulations allowed optimization of a complex design.
Nick Rosov described work on polarization analysis using a two-dimensional detector for the
NIST NSE. The key to this technique is the use of small mirrors on the detector that have to be
positioned so that any scattered neutron must be reflected by a mirror surface before entering the
detector active volume.

Some interesting new instrument developments were presented in the discussions. Tom Rieker
(U. New Mexico) explored the possibilities of using Soller slits as collimators and analyzers for a
time-of-flight ultra small-angle neutron scattering instrument. Holgar Tieze-Jaensch (ISIS)
described the performance and new ideas of improvement of the rotating-analyzer spectrometer.
Experimental results showing a more efficient means of neutron beam polarization using a
polarizing beam splitier were presented by M. Takeda and his colleagues (Tohoku University).
Addressing a critical needed for the measurement of neutron scattering Bart Czirr (Photogenics,
Inc) discussed the performance of 1B solid state neutron detectors.

Torben Brun (MLNSC) illustrated the uses of MCNP in understanding the output of neutron
moderators. Water moderation simulations by MCNP are in excellent agreement with
measurement. The situation with liquid hydrogen is different, where there are discrepancies
between measurement and calculation at low energy, probably due to a lack of understanding the
para-orthohydrogen mix.

The interrelated questions of matching instrument configurations with the measurement, and how
we measure instrument performance was discussed in three presentations. Mike Johnson (ISIS)
considered how one defines a figure of merit that is consistent with Shannon information theory,
taking into account count rate, measurement time, Q and E resolution of the various data channels,
the number of data channels and the background. Devinder Sivia (ISIS), using Baysian analysis,
dealt with the general question of experimental design and the quality of information that can be
extracted from the data in the presence of noise and background and the Q and E resolution of each
data channels. Sivia pointed out that the quality of a measurement, hence the figure of merit is
inexorably coupled to what we want to learn. Bill David (ISIS), continued with this point,
showing through a model approach to least squares fitting of crystallographic data, that the data
quality really concerns how much we can learn from a measurement. These analyses highlighted
the need for flexibility in instrument configuration, as well as the need to devise methods for
planning measurements to match the capabilities of the instrument with the question being asked, in
order to maximize what is learned.

The development of a tool for neutron instrument design clearly is a difficult task requiring
cooperation within the neutron scattering community. Such an effort has been made before in
the area of modern x-ray synchrotron instruments, which are also complicated and expensive,



and where there was also a need for confidence that the instrument is optimized before
construction. Unlike what tends to be the case for neutron instrumentation, the design and
fabrication of synchrotron instruments is usually in the hands of groups external to the facility.
A generalized ray tracing program optimized for synchrotron x-ray optics, SHADOW, has
been developed to allow users to model instrument optics. This program was reviewed by
Mumit Khan of the University of Wisconsin and is used at 120 sites in 20 countries. It is
widely used for synchrotron radiation work, x-ray lithography and even astronomy. The
program allows the user to select from different x-ray sources and optical devices to construct
an optical system. Output gives information on image quality size and shape, resolution phase,
divergence and so-on. The code has been validated by experiment.

The availability of SHADOW has had a major impact on the design of x-ray instrument optics.
Gene Ice of Oak Ridge pointed out that SHADOW provides a simple way to experiment with
ideas and concepts, which can then be verified in the laboratory. The success of the predictions
leads to confidence in the code, fostering further applications and code development. The
results lead to rules of thumb that are used as a starting point for more sophisticated designs.

Clearly, a generalized modeling tool like SHADOW would benefit the neutron scattering
community. What should the features of such a tool be? In his summary of the needs of the
community, Crawford made the case that there should be improved Monte Carlo simulation codes,
which should include tools for easily defining instrument geometry, using three-dimensional
visualization of instruments including solid geometry visualization using CAD tools. The code
should be a library of modules, each corresponding to an instrument’s elements. There is a need
for faster, more efficient codes. Crawford pointed out that the implementation details could best be
serviced by seeking the services of professional software engineers. Finally, there is the need to
benchmark the codes—a necessity if the results from simulating complex instruments are to be
trusted.

Mike Lampton of Stellar Software stated that most of the effort in developing a commercial product
goes into the development of a user interface, owing to the importance of the interface for the
program to be an effective tool. The power of being able to visualize an instrument, see the rays
that are passed through the instrument, and visualize the results of the simulation were very well
illustrated in Mike’s demonstration of the optical ray tracing design and analysis package, “Beam
Four”. Franz Trowe supported the importance of visualization in simulations. Using Geomview,
a package of three dimensional display tools from the University of Wisconsin, Trowe showed
how the display of the complex geometry of an instrument facilitates its design. These sorts of
tools can be used as an aid in teaching the fundamentals of neutron scattering instrument design.

The Los Alamos instrument simulations package presented by Phil Seeger, has many of the desired
features in that it allows the assembly of optical elements, such as sources, collimators, choppers,
detectors and various scattering kernels for samples. A graphics based user interface is under
development that will allow the user to set up the instrument, define elements parameters, sources
and samples, visualize the resulting instrument set up, and run the program. A more complete tool
kit would mix methods for modeling the neutron optics, plus provide for neutron transport codes
for calculating backgrounds.

However, the neutron scattering community needs more than simulation tools. Summing up his
recommendations, Roger Pynn (LANSCE) stressed the need to share tested tools that can be
trusted, share information, pay attention to careful thinking about instrument designs, preserve and
increase our knowledge base. Crawford’s recommendations were for a complete bibliography of
neutron instrumentation papers, as well as for beamlines for testing optical components and for
instrument prototyping. Werner Wagner (PSI) pointed out that another challenge is to develop
detailed simulation techniques based on Monte Carlo and analytical methods, in order to test novel
ideas and produce good designs. As an example, Wagner and his co-authors, describe the design
of Fourier Chopper Time-of-Flight Diffractometer for strain measurements. Feri Mezei gave some
examples from HMI where thinking about and optimizing instruments paid off. HEAT and FLEX
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demonstrated substantial gains in efficiency over the ILL counterparts, the result of a number of
small gains. Other issues that need to be explored, in Feri’s view, are optimal and novel uses of
guides and optimization of sources. In the paper included the proceedings Mezei stressed the need
in the design for accelerator-based facilities for a departure from past practice. He point out the
need for total optimization of facilities from the accelerator through to the instrument suite. Doing
this clearly requires new design tools.

How can the neutron scattering community address some of these needs? Mike Johnson
suggested that a repository of neutron instrument designs and concepts be set up as a web site.
Ideas about instrument design, computer codes, design concepts results all should be included. We
also need to set up standards for the development of code that can be placed in a common package
and foster cooperation in the development of new codes.
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MODELING OF X-RAY BEAMLINES
AND DEVICES

Gene E. Ice
Oak Ridge National Laboratory

ABSTRACT

X-ray beamlines on synchrotron sources are similar in size and complexity to beamlines at state-of-
the-art neutron sources. The design principles, tools, and optimization strategies for synchrotron
beamlines are also similar to those of neutron beamlines. We describe existing design tools for
modeling synchrotron radiation beamlines and describe how these tools have evolved over the last
two decades. The development of increasingly powerful modeling tools has been driven by the
escalating cost and sophistication of state-of-the-art beamlines and by a world-wide race to exploit
advanced synchrotron radiation sources.

INTRODUCTION

X-ray beamlines on synchrotron sources are expensive and complicated instruments. First
generation (parasitic operations) and second generation (dedicated small emittance) beamlines are
~20 m long with ~1/4 inch of steel shielding and cost ~$1-2 M [1]. Third generation (undulator)
sources require beamlines ~60 m long with ~1” of lead shielding and cost ~$4-7M [2]. Typical
beamline layouts are illustrated in Fig. 1. As shown in Fig. 2, new beamlines often contain
expensive and complicated first-of-their-kind components. These new components demand careful
modeling before fabrication. In addition, as the cost of beamlines has risen, beamline developers
have increasingly relied on modeling to develop confidence that each beamline will be optimized
for its mission. :

1st/2nd Generation ~1/4” steel/ (20 m long)/ $1-2M

M
:
M
M
e

-1p-¢-p9

6-10-C- 0 4
&-10-C-kT |
6-10-C-Y1-)
6-19-C-D)
~10-C-DCH ]
%-10-C-D3Y
6-10-C-11-2 4
&-19-C-L2]
&-1D-C-DN

6-10-V)

Fig. 1 Typical beamlines on synchrotron sources.
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Fig. 2 Sagittal focusing double crystal monochromator on beamline X14 at the NSLS. The photograph shows some
of the 12 in-vacuum motors used to align the two crystals and dynamicaily bend the second crystai to a cone. This
device was the first of its kind.

In general, beamline modeling is an iterative process. As shown in Fig. 3, modeling begins by
defining a beamline mission. Beamline mission sets the beamline requirements: energy resolution,
momentum transfer resolution, flux, tunability, harmonic rejection, and sample volume. Other
factors also guide (restrict) synchrotron beamline design such as shielding requirements for
personnel protection, background considerations, vacuum for beam transport, and thermal
considerations. :

13



Modeling is an iterative process

Set beamline
mission
Sl

Concept based on
rules of thumb
S
-—ﬂ Specify design
Ne
Model:
-analytical
-phase space
-ray trace

e

Continue
designing?

s

Done

Fig. 3 Flow diagram for beamline design.

After defining the beamline mission and required characteristics, the next step in beamline
modeling is to conceptualize the beamline based on simple “rules of thumb.” For example, sagittal
focusing (Fig. 4) can collect more radiation than meridional focusing, but the aberrations are more
difficult to control. Similarly, the 20 times larger scattering angles of crystals relative to total-
external-reflection mirrors means that crystal optics can be about 20 times shorter than mirrors.

Since synchrotron optics are dominated by a small number of optical elements, it is possible to rule
out certain designs quickly and rapidly narrow-in on the most likely optical components. Figure 5
shows the designs of seven beamlines at the Advanced Photon Source as conceived in late 1994.

As can be seen in Fig. 5, the beamlines designs are dominated by a small number of components.




{A} SAGITTAL FOCUSING

{B) IN-PLANE FOCUSING
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Fig. 4 Sagittal (out-of-plane) and meridional (in-plane) focusing.
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Fig. 5. Conceptual beamline designs at the APS.




The next step in beamline modeling involves specifying beamline parameters for modeling. This is
followed by detailed modeling of component performance, and modeling of the overall beamline
with analytical, phase space or ray trace models. The estimated beamline performance is then
compared to alternative designs and the process is iterated until the designer is satisfied as
illustrated in Fig. 3.

FOUNDATIONS OF X-RAY OPTICS

Early modeling of x-ray instrumentation built on x-ray optical principles developed for
conventional x-ray sources and on x-ray astronomy. For example, the basic theory of x-ray
focusing with mirrors [3,4] and x-ray focusing with crystals, [5-7] has a long history of use with
conventional sources and Kirkpatrick and Baez [3] demonstrated the principles of an x-ray
microscope/microprobe with crossed meridional mirrors (Fig. 6) long before the discovery of
synchrotron radiation. The introduction of x-ray synchrotron sources in the 70s however, led to
synchrotron specific instrtumentation papers and to whole conferences devoted to synchrotron
radiation instrumentation [8,9]. These conferences and papers began addressing the new challenge
of utilizing tunable and extremely intense x-ray sources.

{§) ]

Fig. 6 Kirkpatrick-Baez mirror pair.

The First International Conference on Synchrotron Instrumentation and Developments was held in
Orsay France in 1977 [8]. This conference attracted over 170 participants and was extended to a
three day meeting with over 65 papers. In 1978 a Workshop on X-ray Instrumentation for
Synchrotron Radiation Research at the Stanford attracted over 150 participants and again more than
65 papers. These early conferences introduced scientists to many new concepts including mosaic
crystal focusing monochromators, synthetic multilayers, phase space optics, and x-ray induced
mirror damage. Conference proceedings and refereed journal articles were augmented with
synchrotron facility reports. For example, thermal analysis of components [10] (Be windows,
etc.), software and experimental design [11], source properties[12], and a host of other topics of
great interest to beamline designers were treated through facility reports. In addition synchrotron
radiation books began to be published which included detailed considerations on instrumentation
design [1].

ANALYTIC MODELING

For individual beamline components it is often possible to study their behavior through analytical
techniques. These techniques are fast and can be integrated into ray-tracing programs which
combine multiple components. Mirror reflectivity (Fig. 7) can be calculated from fairly simple
programs to estimate the dependence on surface coating, x-ray energy and glancing angle [13].
Surface roughness, its spectral density function and contamination can also be treated by analytical
models to estimate their effect on mirror performance [14-16]. Analytical models are also used to
estimate the aberrations associated with various focusing schemes [3,17]. With a Kirkpatrick-Baez
mirror system, a simple analytical formula estimates the divergence which can be collected before
aberrations dominate the demagnified image size. Analytical models have also been used to study
the Bragg angle matching between x-ray crystals with a flat-crystal sagittal-crystal pair. Sparks, et




al. [18] were able to show that a cylindrically curved crystal set for M~1/3 intercepts a fan of
radiation at a nearly constant Bragg angle. A nondispersive flat-crystal sagittal-crystal pair were
also found to match Bragg angles for a wide range of magmﬁcanons when the focusing crystal
was bent to a conical (Fig. 8) shape [19].
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Fig. 7 Mirror x-ray reflectivity through a pair of non-dispersive mirrors as a function of x-ray energy, coating, and
glancing angle.
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- PHASE SPACE OPTICS

Powerful phase space modeling techniques are also often used to study the behavior of
synchrotron beamlines and components. Phase space optical approaches originated with charged
particle optics of the accelerator based sources. Within the phase space description, it is possible to
follow the beam from the source through optics and then map the fraction of the source which is
transported to the experiment. The key advantage of phase space optics is the ability to predict
performance limits of various optical schemes. In addition, phase space optics can be used to




estimate the deleterious effects of apertures and surface roughness. With phase space optics, it is
fairly easy to estimate the surface roughness required to preserve x-ray brilliance (Fig. 9).
Although the general techniques are very powerful, they are difficult to use with complicated
optics. The best publication is somewhat difficult to find [20].
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Fig. 9 Surface roughness effect on x-ray brilliance.
RAY TRACING

Modeling of complicated x-ray components and beamlines is most often done using ray tracing
techniques. An early suite of ray tracing programs was introduced by Darsbury around 1982.
These were soon followed by the program SHADOW [21] around 1985. SHADOW has become
the x-ray standard because it accurately handles many different optical elements. In particular
SHADOW, unlike some other programs, handles asymmetric crystals and rough surfaces.

One problem with SHADOW is its cumbersome interface. Early versions of SHADOW also
suffered from a limited number of rays, and a limited number of computer platforms. These
problems have restricted routine use of SHADOW. Most often SHADOW is used to verify
beamline designs. Beamline designers tend to use faster and more use-friendly ray-trace programs
to develop beamline concepts.

Specialized ray-tracing programs are often fast and flexible but are not as well tested and hence not
as convincing as SHADOW. For example, a suite of programs have been coded at ORNL to help
in the design of x-ray microbeam and x-ray diffraction beamlines. These programs are very fast,
can handle 10° rays easily and can be configured for simple optimization of beamline design.
However these programs cannot easily handle diffraction limited conditions, are only accessible to
expert programmers, and are not stable (i.e. the code changes at the users whim). Nevertheless,
even simpler ray tracing programs have been used to discover these and new ray optical designs.

The discovery of the cylindrical crystal focusing geometry is a good example of an application of a
simple x-ray ray-tracing program. Sparks, et.al. [18] studied the Bragg angles of rays reflected
through a flat-crystal cylindrical-crystal nondispersive pair (Fig. 8). To their surprise, at a
magnification near 1/3, the Bragg angles matched for a large divergence out of the diffracting
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plane. This discovery led to the development of dynamical sagittal crystal focusing optics which
have been widely adapted for focusing synchrotron radiation. (Fig. 10).

Fig. '.10. Beamline optics for beamline X14 at the NSLS. The double crystal monochromator focuses the horizontal
beam divergence with a dynamically-bent sagittal-focusing Si crystal.

A simple ray-tracing program was also used to discover that sagittal crystal focusing could be
improved by going to a conically bent crystal [19]. This program was designed to search for an
optimum cone angle at various magnifications. The program found that near M=1 the aberrations

resulting from sagittal crystal focusing were minimized. This discovery led to the development of
beamline X 14 at the National Synchrotron Light Source (NSLS) which was the first beamline
designed to use a dynamically bent two-crystal monochromator [22].

A simple ray-tracing program also found that a so called “inclined crystal” could be used to focus
the out-of-plane synchrotron radiation divergence from an undulator. The inclined geometry[23] is
designed to distribute the thermal load from a small high-intensity x-ray beam. The crystal surface
is cut at an angle relative to the reflecting Bragg planes, but unlike an asymmetric geometry, the cut
is perpendicular to the diffracting plane (Fig. 11). A ray tracing program was used much like an
experiment to test the focusing properties of a sagittally focusing inclined crystal pair [24]. It came
as a complete surprise that for an inclined crystal, the radius of curvature increases inversely with
the cosine of the cut angle. This property greatly extends the tunable range of an inclined crystal of
a given thickness compared to a sagittal focusing symmetric crystal. The program also mapped out
the range over which aberrations were small (Fig. 12).




Fig. 11. Inclined crystal geometry showing the diffraction plane, Bragg planes and crystal surfaces. The second

crystal is cylindrically curved to focus the beam horizontal divergence.

AREA (mm?)

101

109

104

Fig. 12. Aberrations as a function of magnification for an undulator source and with a sagittal focusing inclined
monochromator.
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OTHER BEAMLINE MODELING RESOURCES

Source properties are critical to synchrotron beamline design. Analytical calculations and numerical
recipes have evolved to accurately predict the source properties of bend magnet, wiggler and
undulator synchrotron sources. Undulator source properties are particularly complicated and the
program URGENT has provided the community with a fast, well documented program to predict
the source properties of most undulator devices [23].

Shielding also presents a very important aspect of beamline design for high energy synchrotron
sources. Although analytical models exist for shielding design, these are complicated to apply.
Numerical codes based on the analytic models allow rapid verification that the analytic model
predicts adequate shielding under all possible conditions [26,27].

CONCLUSION

There are many design tools available for modeling the performance of synchrotron radiation
beamlines. These tools have evolved rapidly over the last two decades and allow beamline
designers to predict the performance of new beamline concepts. Because of a vigorous and
growing community interested in the design of synchrotron radiation instrumentation, design tools
are constantly being tested and improved. The availability of several standard tools has simplified
the task of verifying beamline designs.
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NEUTRON SPECTROSCOPY: HOW IT ALL BEGAN
Laurence Passell
Brookhaven National Laboratory, Upton, NY, USA
Abstract

Abstract:The early history of neutron specroscopy is briefly presented
1932-1945

Most of James Chadwick’s scientific contemporaries saw his discovery of the neutron in
1932 as the end of a long and exceedingly difficult search for the identity of the basic building
blocks of the atomic nucleus. But to Enrico Fermi and his collaborators at the University of Rome
- newly involved in a study of artificial radioactivity - it was both an end and a beginning: an end in
that the elusive neutral particle had at last been found and a beginning in that the neutron appeared
to offer expanded possibilities for the production of radioactive nuclei. Before the year was out the
University of Rome Group was deeply immersed in a systematic study of neutron-induced
radioactivity.

Some two years later, in 1934, while attempting - unsuccessfully - to reproduce an earlier-
reported neutron activation investigation, the Rome Group found, to their considerable
astonishment, that the level of induced activity seemed to depend on where in their laboratory the
measurement was made. Searching for the origin of this curious effect, they began interposing
various materials into the space between the target and the Ra-Be source that provided the
neutrons. One material they tried, paraffin wax, produced a dramatic increase in the level of
activation. Fermi, a theorist who had only recently turned his hand to experimental nuclear
physics, was initially puzzled by this unexpected result. But it led him to what he afterwards
referred to as “the most important discovery I ever made”. After pondering the matter he came to
the conclusion that the Ra-Be neutrons were losing energy by colliding with protons in the paraffin
and that this “moderating effect” was what had increased the capture probability.

The following year, at Columbia University, Dunning, Pegram, Fink, Mitchell and
Segre®, using the device shown in Figure 1, demonstrated that paraffin wax was indeed an
effective neutron moderator, exactly as Fermi had surmised. As the forerunner of a long line of
spectrometers operating on the time-of-flight principle, the device they built to put Fermi’s idea to
the test is worth looking at in detail. Basically, it consisted of a pair of identical aluminum disks
mounted 54 cm apart on a common shaft, each with alternating cadmium-covered and open
sectors. As the speed of rotation was increased, the downstream disk absorbed neutrons with
progressively greater velocities. Dunning et al found that the greatest drop in intensity occurred at
rotation speeds of 2900 to 3000 rpm from which they inferred that the most probable velocities in
the moderated part of the incident neutron spectrum were in the range of 2250 to 2700 m/sec.
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Fig. 1 Schematic of the mechanical velocity selector built by Dunning, Pegram, Fink, Mitchell
and Segre in 1935.

The discovery that neutrons could be slowed down to energies in the thermal range had
profound ramifications. One was that it inspired Leo Szilard to consider the possibility of a self-
sustaining, neutron-producing chain reaction. Another was that it led to speculation that thermal
neutrons might some day be useful spectroscopically since they were known to be not only charge-
neutral but also to have energies and de Broglie wavelengths comparable to the collective excitation
energies and interatomic spacings in condensed matter. Lacking at the time, of course, were
sources that could provide thermal beams of adequate intensity. Nonetheless, soon after Fermi’s
epic discovery attempts were made to establish that neutrons did, indeed, have a spectroscopic
potential, remote though it then appeared to be.

In 1936 Mitchell and Powers @, following up on the earlier neutron studies at Columbia,
built the device shown in Figure 2 to explore the possibility that thermal neutrons, like x-rays,
could be diffracted by ordered crystalline materials.. To compensate for the extremely low thermal
beam intensities produced by their paraffin-moderated Ra-Be source, Mitchell and Powers
mounted an array of MgO single crystals around a central, cylindrical shield designed to screen the
detector from direct, line-of-sight source neutrons. When the crystals were oriented to Bragg
reflect neutrons with wavelengths in the neighborhood of 1.6 A (2475 m/sec) - which had earlier
been observed to be the most probable wavelength in the thermal part of the spectrum - count rates
were found to be six to eight times higher. It thus became evident that coherent reflection could, at
least in principle, be employed both as a monochromating method and for atomic-scale structural
determinations.
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Fig. 2 Schematic of the apparatus built by Mitchell and
Powers in 1936 for their investigation of neutron diffraction.

By this time investigations of the
hyperfine splitting of spectral lines had
established that neutrons (like protons and
electrons) had an intrinsic spin and (like their
charged counterparts) must therefore possess
a magnetic moment. In 1939 Louis Alvarez
and Felix Bloch - vitilizing the more intense
accelerator-produced neutron beams then
available - were able to demonstrate that
neutron scattering in ferromagnets was a .
spin-dependent process and that partially
polarized beams could be produced by
simply passing them through blocks of
magnetized iron. Once a way had been found
to polarize neutrons, it was then possible to
employ the magnetic resonance methods

pioneered by Isidore Rabi and his
collaborators at Columbia University to measure the magnetic moment of the neutron. The
spectrometer built by Alvarez and Bloch ® in 1940 to make the original measurement is shown in
Figure 3. It was the first of many neutron instruments to utilize polarized neutrons and it was also
the first in which resonance techniques were employed.

While these initial evaluations of the properties and possible uses of thermal neurons were
being made in the United States, Fermi and his collaborators were pressing ahead with their
exploration of neutron-induced radioactivity. Progressing slowly through the periodic table, they
ultimately began to concentrate their attention on neutron capture in uranium, the heaviest known
element, in the belief it would lead them to even heavier elements (transuranics) not present in
nature. They were soon joined in the search for transuranics by Irene Curie and her collaborators
in Paris and by Otto Hahn, Lise Meitner and Fritz Strassmann in Berlin. Initially, the efforts of all
three groups were fruitless: no evidence of radioactive atoms with the expected chemical properties
could be found.. Finally, in 1939, Hahn and Strassmann made an exhaustive chemical analysis of
the products of thermal neutron capture by uranium and established that intermediate-mass
radioactive nuclei, not transuranics, were being produced. They were thus led to the startling
conclusion that neutron capture in uranium led to a totally new process, neutron-induced-fission.
Soon thereafter it was determined that both neutrons and intermediate-mass nuclei were produced
in the fission process. Hahn and Strassmann’s astonishing discovery had thus moved Szilard’s
idea of a self-sustaining neutron-generating chain reaction an important step closer to reality.
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Fig. 3 Schematic of the apparatus built by Alvarez and Bloch in 1940 for the original
measurement of the magnetic moment of the neutron.

These crucial experiments were carried out in a political atmosphere that ultimately became
so hostile that it forced many of Europe’s most prominent scientists, among them Fermi and
Szilard, to relocate in the United States. By September of 1939, when World War II engulfed
Europe, the European emigre scientists and their American counterparts had moved the United
States to the forefront in nuclear research. At some time between September, 1939 and December,
1941 (when the United States entered the War), Szilard, who had settled in New York City,
succeeded in his quest to persuade an initially skeptical Fermi (then a member of the Columbia
University faculty) that a neutron-generating chain reaction based on the fission process was a

practical possibility.

Late in 1942, a group under Fermi’s direction completed construction of what would come
to be known as the CP-1 reactor and demonstrated the first self-sustaining fission chain reaction..
In the excitement of the moment it is doubtful that anyone present thought to consider that the
fission process - apart from its potential to produce weapons of unparalleled destructive power -
could also produce thermal neutron beams of unprecedented intensity. Be that as it may, once the
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practicality of generating and controlling fission chain reactions had been demonstrated, the nuclear
weapons development program escalated rapidly. Reactor construction, as part of this program,
was given the highest possible priority. A little more than two years later reactors capable of
producing beams of thermal neutrons were in operation at both the Argonne and Clinton
Laboratories. Not surprisingly, the needs of the weapons program pre-empted the possible use of
reactors as neutron sources for basic science investigations.

1945-1960

It was only after World War Il came to an end in August 1945 that reactor-produced
thermal neutron beams finally became available to the scientific community. Once given the
opportunity, the select few at the Argonne and Clinton Laboratories who had access to these beams
immediately set to work to determine what role (if any) neutrons might be able to play in exploring
the atomic-scale properties of crystalline solids and other forms of condensed matter.
Characteristically, Fermi led the way in this new endeavor.

From the beginning it was recognized that improvements in reactor design as well as a
realistic evaluation of possible spectroscopic applications required, first and foremost, a more
complete understanding of the neutron scattering and absorptive properties of nuclei. Thus in the
immediate post-war years the primary focus was on two kinds of instruments: those intended to
measure scattering and absorption cross sections and those designed to determine - for
spectroscopic purposes - the signs and magnitudes of scattering amplitudes.

As would be expected, the first reactor-based neutron instruments employed the same
operating principles as their earlier, pre-war counterparts. They were of two basic types, those
utilizing diffraction from single crystals and those employing time-of-flight to define neutron
energies. In the “single crystal” category were instruments developed in early 1946 by Lyle Borst
and his coworkers “ at the Clinton Laboratory (now known as the Oak Ridge National
Laboratory) and by Walter Zinn © - probably in collaboration with Fermi - at the Argonne
Laboratory. A schematic of Zinn’s spectrometer is shown in Figure 4. Consisting of a pair of
cadmium-slits to define the incident polychromatic beam, a monochromating (calcite) single crystal
and a shielded, BF, neutron detector, it would be classified today as a “single-axis” spectrometer.
Energy scanning required a combined (1:2) rotation of the crystal and the arm supporting the
detector. Cross sections were determined by measuring the energy dependence of transmission
through a sample of the material of interest placed in the monochromatic beam between the crystal
and the detector.
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Fig. 4 Schematic of Zinn’s 1947 single-axis spectrometer.

During the war years the time-of-
flight approach had been extensively used
for accelerator-based neutron cross section
measurements. Aware of this, Fermi and
his collaborators © decided it would be
useful to adapt these well-established time-
of-flight techniques to reactor-based cross
section studies. Figure 5 shows the
original “Fermi chopper” built at the
Argonne Laboratory reactor and called
(somewhat misleadingly) by its creators “a
velocity selector”. Small by current
standards, it had a rotor only two inches in
diameter and was driven (at speeds as high
as 15000 rpm) by a belt attached to the
motor of a shop grinder. A stack of
aluminum plates separated by cadmium foil
spacers in the center of the rotor introduced

’ the requisite pulsed structure into the
Cress section of the shucter of the velocity selector,  transmitted polychromatic beam. Neutron
energies were determined by measuring
E‘h;% . Murglgl( agnd )L' Mcmha" their time-of-flight from the rotor to a bank
of four shielded BF, detectors 1.46 meters
. . . . away. The corresponding time dependence
g:flt ;ngzr;lauc of the rotor of the original Fermi chopper of the transmission through a sample placed

between the rotor and the bank of detectors
determined the energy dependence of the cross section.




Fermi and his coworkers were also the inventors of the polycrystalline neutron filter. The
original test of the concept @ was made at the Argonne reactor early in 1946 using a 23 cm long
block of crystalline graphite. Subsequently the group demonstrated that blocks of poycrystalline
beryllium and beryllium oxide were also excellent filter materials.

From the viewpoint of condensed matter studies, there was at least as much need to
measure scattering amplitudes as cross sections. This led to the next step forward in instrument
development. Both the Argonne and Oak Ridge Groups were aware that only in the case of mono-
isotopic (or nearly so), spin-zero nuclei, such as helium, carbon, oxygen, etc, was it possible to
derive scattering amplitudes directly from the measured scattering cross sections. Most scattering
amplitudes, it was recognized, would have to be determined either from studies of diffraction from
two-element crystalline materials or from measurements of critical angles for total reflection. The
construction of what we would now call two-axis diffractometers was thus undertaken as one part
of this two-pronged attack on the scattering amplitude problem.

Fermi’s Group at the Argonne reactor built the first two-axis instrument. Adapted from
Zinn’s original single-axis spectrometer, it had a CaF, monochromating crystal on the first axis
and, on the second axis, a goniometer designed to support and align a single crystal sample. An
arm carrying a shielded detector rotated around the second axis. Today we would describe the
upgraded Zinn spectrometer as a single crystal neutron diffractometer. With it Fermi and Leona
Marshall ® measured the intensities of low-index Bragg reflections from a number of two-element
single crystals. By selecting crystals of known structure containing one element whose scattering
amplitude had already been determined, they were able to derive from the observed diffracted
intensities both the relative sign and magnitude of the unknown scattering amplitude.

Ernest Wollan and Clifford .Shull ® chose to attack the scattering amplitude problem in a
slightly different way. The two-axis instrument shown in Figure 6 was built for them at Oak
Ridge not long after the Argonne diffractometer became operational. Of the same basic design as
the Argonne instrument, the Oak Ridge diffractometer had one important advantage: it was motor-
driven and had an automated data collection system and thus could operate unatiended in a
continuous-scanning mode. Where the Wollan and Shull approach differed from Fermi and
Marshall’s was that they chose to work with powder samples. Even though the diffracted
intensities were lower, using powders eliminated the need to make extinction corrections to the
diffracted intensities, a source of significant systematic error in the single crystalmeasurements.
With today’s perspective, we see the Wollan-Shull two-axis instrument as the first in a long line of
automated neutron powder diffractometers.




Diffraction measurements determined only the relative signs of the scattering amplitudes.

on i o Casting about for a way to put the determinations
of sign on an absolute basis, the Argonne Group
turned to reflection techniques: the existence
(absence) of finite-angle total reflection being
identified, with, repectively, positive (negative)
scattering amplitudes. Reflectometry also had
another attractive feature: in cases where finite-
angle total reflection was observed, the scattering
amplitude could be directly derived from the
measured critical angle. The first neutron
reﬂecﬁon measurements were made by Fermi and
Marshall ® using mirrors of selected metals
mounted on the sample axis of the Argonne
diffractometer. It is interesting to note that these
measurements and others that followed were made
solely to determine the signs and (in some cases)
the magnitudes of scattering amplitudes. Almost
three decades would pass before neutron reflection
would be reintroduced as a microscopic-scale
probe of surfaces and interfaces.

Another major step forward in neutron
spectroscopy, although it wasn’t apparent at the
mg time, was P.R. O’Connor and G.T. Seaborg’s “©
slits, shiekding, seoomd spectrometer with lwaz:on of 1948 investigation of the neutron-producing

powder specimen and counter. spallation reaction. More than two decades would
E.0. Wollan and C.G. Shull elapse before spallation would be seen as a
Phys. Rev. 73, 830 (1948) practical alternative to fission as a means of

generating copious neutron beams for research.

Fig. 6 Schematic of Wollan and Shull’s 1948 powder
diffractometer. Although the beams produced by the first
reactors were considerably more intense than
those provided by either Ra-Be sources or, for that matter, the accelerators of the day, they were
still only marginally adequate for diffraction measurements. Aware that neutron diffraction was
unlikely to be competitive for the kinds of structural studies that traditionally fell within the domain
of x-ray crystallography, the early neutron spectroscopists chose, instead, to take advantage of the
. magnetic moment of the neutron and concentrate on an area that was not then accessible with x-
rays and about which little was known; i.e. magnetism and magnetically ordered structures. It
was, in fact, an early attempt to explore magnetic ordering in iron with neutrons that led Donald
Hughes and his collaborators @V to the realization that small angle neutron scattering was a
potentially valuable source of information concerning structures of intermediate scale (in this case
magnetic domains). Figure 7 shows the facility they built in 1949 for small-angle studies at the
Argonne reactor. Utilizing a polychromatic beam defined by cadmium slits, their instrument can be
seen today as the first step towards the creation of the small-angle-neutron-scattering spectrometers
that are used today to explore the mlcroscop1c -scale configurations of polymers and biological
systems.
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Fig. 7 Schematic of the Hughes, Burgy, Heller and Wallace apparatus built in 1949
for small angle investigations.

As a unique source of information relating to magnetic structures and magnetic ordering
transitions, neutron diffraction investigations soon began to attract the attention of the scientific
community. This rapid rise of interest in magnetic systems was the inspiration for the next step
forward in instrumentation: a polarization-analysis capability, it was recognized,would increase
the sensitivity and selectivity of magnetic measurements. Thus a search began for better ways to
polarize neutrons,

Up to the end of 1949, neutron instruments and instrument components were basically
copies of their x-ray and accelerator physics counterparts. But in attacking the polarization
problem, a purely neutron approach emerged. Both the Argonne and Oak Ridge groups decided to
try exploiting a concept that derived from Otto Halpern and M.H. Johnson’s ** theoretical
analysis of neutron interactions with magnetic atoms; namely that the nuclear and magnetic parts of
the scattering were coherent and would therefore interfere. Looking through tables of the
commonly available ferromagnetic materials, Morton Hamermesh at Argonne found one, cobalt, in
which the magnetic scattering amplitude was larger than the nuclear amplitude. He suggested that
one of the two spin states of the neutron would have a positive scattering amplitude and therefore
be totally reflected at finite angles, while the other , having a negative scattering amplitude, would
only totally reflect at zero angle. Capitalizing on Argonne’s earlier experience with mirrors,
Hughes and Merle Burgy “? constructed a pair of identical cobalt mirrors bonded to copper
substrates, one to serve as polarizer and the other as polarization analyzer. Although they were not
able to align the cobalt magnetic moments completely with the available field, Hughes and Burgy
nevertheless found they could produce substantially better broad-band polarizations by reflection
than could be achieved by the earlier method of transmitting the beams through magnetized iron.
Theirs was the first demonstration of neutron polarization by reflection.

Charateristically, the Oak Ridge Group chose to apply the interference concept somewhat
differently. Based on their familiarity with diffraction techniques, Shull, Wollan and Walter
Koehler ™ made a search for ferro or ferri-magnetic single crystals with low-index Bragg
reflections in which the nuclear and magnetic parts of the scattering were so closely matched that
only one of the two spin states of the neutron would scatter coherently. Using transmission
through magnetically saturated iron to analyze the polarization of the Bragg-reflected beam, they
were able to show that the monochromatic beam produced by the (220) Bragg reflection from a
magnetically saturated single crystal of magnetite (a ferrimagnet) was essentially 100 percent




}spzcmoumn

Schematic diagram of the apparatus. The angle of
scattering ¢ can be changed by moving the specimen and the
spectrometer as indicated.

B.N. Brockhouse, Phys. Rev. 98, 601 {1955)

Fig. 8 Schematic of Brockhouse’s original triple-axis spectrometer built in 1954..

" polarized. This striking result inspired the subsequent building of a number of crystal
diffractometers with a polarization analysis capability.

Another instrument introduced during these early years was the helical-groove, slow-
neutron velocity selector. By replacing the slotted-disk rotor of Dunning et al with a rotor
containing spiral grooves, J.G. Dash and H.S. Sommers, Jr " were able to produce continuous,
monochromatic, slow neutron beams by mechanical means alone. Although the helical-groove
velocity selector subsequently fell into disfavor because its resolution and spectral range were
limited, it is now coming back into its own both as a higher-order filter and as a monochromator
for special applications (such as small angle scattering) where lower energy neutrons are preferred
and high intensity is more important to the over-all performance of the instrument than energy
resolution.

Because Argonne and Oak Ridge were the only places where facilities for neutron
spectroscopy were available, almost all neutron instrument development work up to this point was
concentrated at these two laboratories. But within a few years of the end of World War I new
laboratories for nuclear and condensed matter research were under construction, not only in the
United States but in Canada, western Europe and the Soviet Union, and as fast as these these new
institutions were completed they began to build their own reactors and organize neutron scattering
programs. With facilities for neutron research becoming more generally accessible, the focus of
instrument development then began to shift from Argonne and Oak Ridge to the newer institutions.

In the early post-war years, reactor-produced beam intensities were barely sufficient for
elastic studies and inelastic scattering investigations weren’t given any serious consideration. But
by the early 1950’s a second generation of reactors producing more intense beams had come on-
line and Bertram N. Brockhouse decided that the time had come to try adding a third axis (for an
energy analyzing crystal) to the two-axis spectrometer. The first triple-axis s?ectrometer, which he
built and installed at the NRX reactor at Canada’s Chalk River Laboratory "®, is shown in Figure
8. With it Brockhouse made the first direct observations of propagating and diffusive modes in
condensed matter systems launching thereby the new field of inelastic neutron spectroscopy.

33



It is interesting to note that in cases where instruments based on either crystal diffraction or
time-of-flight could serve experimental needs equally well, both types tended to be developed at
about the same time and were, for the most part, equally convenient and effective. Thus while
plans to build a triple-axis spectrometer were moving forward at Chalk River, a variety of time-of-
flight and combined crystal diffraction and time-of-flight approaches to inelastic spectroscopy were
also under active consideration. at other laboratories. At Harwell, for example, Peter Egelstaff
was thinking in terms of building a phased, two-rotor system to produce bursts of monochromatic
neutrons ‘7. But the technical problems of operating such systems and handling the large amounts
of data they produced were not then easily resolved, and it would be well into the next decade
before instruments based on time-of-flight became available for inelastic scattering investigations.

With increasing emphasis on inelastic neutron spectroscopy, a demand arose for spectrally
tailored beams, particularly beams of sub-thermal energy. Interestingly, attempts to down-shift the
spectrum of Ra-Be neutrons with cryogenically cooling hydrogenous moderators had actually been
made in pre-war days, but the results had been inconclusive ™®. But by the 1950’s numerous
advances had been made in neutron technolgy and Egelstaff and his collaborators at Harwell
decided to have another look at the problem. Coming ultimately to the conclusion that liquid
hydrogen and deuterium offered the best prospects for success, they designed and constructed a
liquid hydrogen moderator that was installed in Harwell’s BEPPO reactor . It performed so
well that another was soon made for their DIDO reactor. Building on this early experience, liquid
hydrogen (deuterium) moderators were subsequently installed in a number of other research
reactors.

Retrospective

Looking back, 1960 appears as a watershed year for neutron spectroscopy. At that point,
most of the basic instrumental concepts were in-place and neutron-based experiments were
beginning to have a considerable impact on condensed matter physics. But it was a field still
plagued by many problems. Certainly the major one was that it was very much source-
constrained: beam intensities were marginal even at the best reactors and collecting statistically
reliable data was a time-consuming and not always successful process. And because the vacuum
tube electronics of theé day were prone to drift and malfunction, even in the rare instances when
sufficient beam time was available, reproducing data tended to be difficult, particularly when small
Cross section processes were the major focus of the investigation. Beyond that, the performance of
the instruments themselves left much to be desired. Those employng crystal diffraction for
monochromation were handicapped by the inadequate reflectivity of the available crystals; those
based on time-of-flight had problems relating to support bearings and speed and phase control
systems and were,. in addition, adversely affected by the limitations of their vacuum-tube-based
data collection and data analysis systems.

In the decades that followed, high flux research reactors would be designed and built,
stable transistorized electronics and digital computers would become commonly available, neutron
guides would make their appearance, much better monochromating and polarizing crystals would
be found and the development of magnetic suspension bearings and computerized instrument
control, data collection and data analysis systems would bring time-of-flight-based spectrometers
to full parity with their crystal-based counterparts. But even with these many technological
advances, it is still easy to discern in today’s state-of-the-art instruments the pervasive influence of
instruments built by the first neutron spectroscopists long ago.
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APPROACHES TO INSTRUMENT DESIGN AT PULSED NEUTRON SOURCES

R. K. Crawford*
IPNS
Argonne National Laboratory
Argonne, IL 60439

Abstract

A number of tools are used in the design of scattering instruments for pulsed neutron sources.
Initial design is based largely on simple analytical calculations. More complicated analytical
calculations and Monte Carlo simulations come into play as the design is optimized to maximize the
data rate and to improve the data quality. Examples are used to illustrate the relative roles of these
different computational tools. Areas are also identified where appropriate computational tools are
currently lacking. '

DESIGN ISSUES

An instrument is designed to do a certain kind of science. Before beginning the design, one must
be clear about what is to be measured.

e  Isthis a diffractometer or an inelastic instrument (how many wavelength analyses are
required)?

e  What are the desired energy and momentum transfer ranges?

e  What are the desired resolutions?

e  Ispolarization to be used?

Once these questions have been answered, the next step is to form a concept of an instrument that
can perform these measurements to the desired specifications. One must decide how to perform the
necessary wavelength analyses. A totally new idea of how to make these measurements is always
welcome, but this is exceedingly rare. Most methods currently used for wavelength analyses are
just extensions of the basic techniques developed in the 1940s, namely time-of-flight (TOF),
velocity selector, Bragg reflection, or transmission through a filter. Once the method is selected, it
remains to define the geometry of the instrument and to specify the components in detail. The
design then needs to be evaluated and optimized, and perhaps compared with alternative designs
meeting the same specifications. External constraints, including spatial conflicts with neighboring
instruments, conflicting requirements for shared moderators, etc., must be considered in selecting
and optimizing the design.

In assessing instrument performance, one needs to look at actual resolutions and data rates, and
possible trade-offs between these. Data quality is also extremely important. This can include
statistical errors (related to data rate), calibration procedures to minimize Systematic errors,
instrument background, sample—dependent background, container scattering, multiple scattering

*  Work supported by U.S. department of Energy, BES, contract No. W-31-109-ENG-38.
in the sample or sample and surroundings, etc. One needs appropriate tools to assess each of these
quantities, in order to fully evaluate a particular design.

Ideally, some of these tools may also prove useful once the instrument is built. Possible uses
include the design and planning of experiments and the analysis of the data and evaluation of
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sources of problems in the data. Finally, many of these tools also have potential as training devices
for the non—expert.

For pulsed sources the instrument designers must also consider questions relating to the target—
moderator—teflector system, including the width and shape of the pulse from the moderator, the
intensity spectrum, the source repetition rate, and the background between pulses. The background
from high energy neutrons is a major concem in the design of instruments for pulsed sources.
Frame overlap (related to the source repetition rate) needs t0 be considered in determining the
instrument geometry. Finally, at least one of the wavelength analyses must be made using TOF in
order to make effective use of the pulsed nature of the source.

The design tools available include simple analytical calculations, more sophisticated analytical
calculations, Monte Carlo simulations, and measurements using a prototype.

SIMPLE ANALYTICAL CALCULATIONS

Simple analytical formulas are used to fix the geometry and scale of the instrument. Use of such
formulas has frequently been referred to as “back—of-the—envelope” calculations. However,
anyone who has ever dined with a group of scientists knows that a table napkin is really the
preferred medium for such calculations. Thus we will refer to these as “napkin” calculations.

To indicate the process and the level of accuracy that can be expected, we will work through such
calculations for one particular example - a crystal-analyzer quasielastic spectrometer similar to the

QENS instrument at IPNS. The crystal-analyzer geometry is shown schematically in Fig. 1. This
instrument is to use the 002 planes of a graphite analyzer (002 d-spacing =3.348 A) to select a
particular scattered energy E = 3.6 meV, chosen to allow use of a beryllium filter to remove the
higher order reflections from the graphite. The analyzer crystals select the wavelength A given by

)“sc = 2dBragg SineBragg (1)
and the scattered energy is related by
e m[ ~ h ] _ 2045 .
sc 2 12md Bragg sin GB,agg (dBragg sin® Braggj
for dy,,, in A and E_ in meV. For this 3.6 meV final energy, 0, ~ 45.4°.
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Figure 1. Basic geometry for a crystal-analyzer spectrometer.

The sample—-analyzer—detector flight time t_, is given by
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and the incident energy is determined by TOF time t according to
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forE,  inmeV,L_and L, inm,andt and t_in s. The variable of interest is the energy transfer,
given by

E=E,-E, ' &)

The scattered flight path sample-analyzer—detector is short, say L, = 1m, to maximize the solid
angle sampled by the analyzers while minimizing the required crystal and detector area. The

instrument views a 10 cm X 10 cm poisoned solid methane moderator at a 30 Hz source. We want to
design the instrument to have a quasielastic resolution oE < 70 peV.

The resolution requirements determine the instrument geometry. The energy resolution is
determined from the variation in the energy transfer E, given by

OE = -BTStp + -a_fi_n-c-SLinc + ESLSC + 59_&;893“% ©)

Assuming 0L, and 06, are uncorrelated so the resolution contributions can be added in quadrature
gives
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For quasielastic scattering, A, = A,.. The measured fwhm source pulse width for a poisoned solid
methane moderator at A, =\, =4.77 Ais 81, = 50 ps.

For a fwhm resolution E =70 peV with equal L, 6, and t resolution contributions we need
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For equal L, 6, and t resolution contributions we also need
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Figure 2. Sample-analyzer-detector geometry showing the natural collimation for
a single analyzer crystal.




Using the natural collimation provided by the geometry shown in Fig. 2, we can show that the
fwhm variation in the Bragg angle is

1/2
0’7 (Wsim + Wjet)
865y, = T 1)
which requires
W, =W, <05cm (12)

For equal L, 0, and t resolution contributions we also must have

2 2 }/2 1 JE
E;{SLM) +6L YL =~ FE- - ooul (13)
which is satisfied for
oL . =d0L_<29cm 14)

This is rather large, so this resolution condition does not impose an immediate constraint.

The quasielastic spectrometer QENS at IPNS is an instrument of this type, having L, _=8m and
L.=11m. QENS uses the 002 planes of graphite analyzers with Oy, =45° has 0.625cm
diameter sample and detectors, and views a 10 cm % 10 cm poisoned solid methane. The measured

quasielastic resolution of this instrument is 8E =70 peV. Thus this exercise essentially reproduces
the parameters for the quasielastic spectrometer QENS using only very simple resolution
calculations. This is a typical result, that a simple analytical resolution estimate is adequate to fix
the instrument scale and geometry.

MORE SOPHISTICATED ANALYTICAL CALCULATIONS

Neutrons are very expensive to produce, so we want to design the instrument to make maximum
use of them. Thus a major part of the effort in designing neutron scattering instruments is involved
with optimizing the geometry to increase the data rate without spoiling the resolution. Typically,
this is done after the basic instrument parameters are defined by simple calculations as indicated
above.

The data rate in a given TOF channel for a detector at a given scattering angle 20 and energy
transfer E on a crystal-analyzer spectrometer is given by

d’c
I(E’e) = (p(Einc){N dg d‘E}mple 8det(Esc )AQAEsc AEinc (15)




where @(E, ) is the flux on sample per unit energy, N is the number of scattering centers in the
sample, (d*°c/dQdE) is the differential scattering cross—section of the sample, &(E, ) is the detector
efficiency, AQ is the scattering solid angle used, AE_, is the range of scattered energies accepted by

the analyzer system, and AE, _ is the energy width of the incident energy TOF bin. Inspection of
this formula indicates several potential methods for increasing the data rate:

Increase the flux on sample

Increase the sample size

Improve the detector efficiency

Increase the scattering solid angle sampled
Increase the range of accepted scattered energies

Which of these can we do without compromising the desired resolution?

We return to the quasielastic spectrometer example considered above, and consider as an example
the effects of increasing the scattering angle sampled. For a flat crystal, increasing the crystal

horizontal dimension increases 80y,,,,, Which is not allowed by resolution constraints. Can we
increase the crystal horizontal dimension without increasing 86j,,.,?

Figure 3. Constant 0

focusing of a crystal-analyzer array.

Bragg

A “tablecloth” analytical calculation (more extensive than a napkin calculation) leads us to the

concept of constant 8, focusing, shown schematically in Fig. 3. To achieve such focusing, the
centers of the analyzer crystals must lie on a circle passing through the sample and detector, while
the reflecting planes must be inclined by varying amounts relative to the circle tangent, as shown in
the figure. With this geometry, different paths will have different L, and this will constrain the
size of the crystal array.




MONTE CARLO SIMULATIONS

The spectra measured in a neutron scattering instrument result from a probability—weighted
integration over the various possible neutron paths from moderator to sample to detector. The
Monte Carlo technique uses a suitable set of randomly-selected neutron paths to simulate these
integrals. Quantities to integrate over include the source spectrum, the surface of moderator, the
volume of the sample, the volume of the crystal array and the volume of the detector.

To perform these integrals we can use probability—weighted paths, where at each interaction point
the various possible paths of interest are assigned an appropriate probability and these weighted
paths of interest are then followed on through the instrument. An extreme version of this is the use
of “forcing techniques”, where only paths with vertices in the necessary volumes are considered.
Alternatively, we can use probability—terminated paths, where probabilities are used to select only
one possible outcome at each interaction point, and the resulting path is followed through the
instrument. The former approach is usually computationally more efficient. Furthermore, we can
choose to treat general case, or we can include only the interactions of interest. We will refer to the
latter approach as “ad hoc Monte Carlo”.

Figure 4. Geometry for an ad hoc Monte Carlo simulation of the performance of a
crystal-analyzer array. Two of the many alternate neutron paths from sample to
analyzer array to detectors are shown.

As an example of an ad hoc Monte Carlo simulation, suppose we want to calculate the resolution
contribution from the scattering flight path in the quasielastic spectrometer considered above, this
time including 3-dimensional effects. The geometry is shown in Fig. 4. Monte Carlo will allow us
to explore the effects of increasing the crystal or detector vertical dimension and the effects of
vertical curvature of the crystal array. These are conditions that are difficult to explore with
analytical calculations. For these simulations the incident beam is irrelevant, so we can consider
only the effects of the scattering paths. We use random positions within the sample, random
positions on the surface of the crystal array (assuming the crystals are thin) weighted to scale to
random directions from sample, and random positions within the volume of the detector array,
weighted according to detection probability and crystal mosaic distribution. The calculated

distribution of 6y, for this weighted distribution of paths then gives E,, and 3E_.
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The use of a general Monte Carlo program to simulate the full 3-dimensional performance of the
complete instrument is most useful after the instrument design is complete or nearly complete. This
general Monte Carlo simulation tracks neutron paths through the entire instrument, and can indicate
whether the instrument is performing as you believe it should and whether there are any
“surprises” that need to be accounted for in the design. If this simulation provides a sufficiently
accurate representation of the instrument, it can also be useful in designing experiments and in
analyzing data once the instrument is built.

THE USE OF PROTOTYPES

Despite the extensive array of calculational tools available, there are still a number of questions that
these tools are inadequate to answer. Foremost among these are the questions relating to data
quality, including effects of imperfections in the beam optics and the magnitude of the background
for various choices of beam geometry. If answers to these questions are essential to the instrument
design, there is no choice but to make measurements on a prototype of the instroment or instrument
component. Prototype measurements also serve as useful benchmarks against which to test the
calculational tools.

DISCUSSION OF DESIGN TOOLS

In this paper we have tried to indicate the relative roles played by simple analytical calculations,
more sophisticated analytical calculations, ad hoc Monte Carlo simulations, general Monte Carlo
simulations, and prototype measurements. All of these have their uses, but there are still some
problems that cannot be handled adequately by any of the calculational tools, and it frequently is
not practical to use prototypes. Thus there are still some areas in which improvement is needed.

Most of these problem areas are related to low—probability events, to complex geometries, or to
inadequate modeling of physical processes. Among these are problems associated with tailoring the
incident beam. Questions here include the geometry and choice of materials for collimators and
apertures. These can involve issues such as the correct modeling of surface scattering and the
treatment of the stopping or scattering and thermalization of fast neutrons in some of the more
massive collimator elements. In all cases, very low probability events must be considered in order
to assure that the beam definition meets the requirements for sharpness at the edges.

Another large class of problems that are not well reated by any calculational techniques are those
associated with instrument and sample—dependent background. Issues include treatment of multiple
scattering in the sample and other components, and thermalization of fast neutrons in the
instrument components and in various parts of the shielding must be considered in many cases.
Proper modeling of scattering from the interior surfaces of the instrument can also be an issue. The
shielding geometries are usually very complicated and a composite of different types of materials
are used to thermalize and then stop the neutrons in the shielding. Also, it is usually difficult to
determine appropriate source terms 10 use in such a calculation.

Finally, it would be desirable to extend the use of some of these computational techniques,
particularly the general Monte Carlo simulations, into other areas, such as the diagnosis and
analysis of experimental design and/or problems in data, and to instrument simulations that could
be used as teaching aids. Such applications will require detailed modeling of most of the instrument
components, some detailed cross—section information for the samples, and a user—friendly, fast,
reliable general Monte Carlo code.
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CONCLUSION

In this paper we have attempted to indicate a typical path through the instrument design process,

“and to show where the available tools are or are not adequate for the job. The simple analytical
calculations are the natural starting point to define the overall instrument geometry. More
sophisticated analytical calculations can then lend considerable insight to the optimization of
instrument performance, including the recognition of potential focusing geometries. Ad hoc Monte
Carlo simulations are extremely useful for analyzing particular instrument components and
optimizing their performance. Finally, general Monte Carlo simulations of entire instruments serve
as a useful check for processes that may have been overlooked in the design.

One of the most important tools, however, is not strictly calculational. Probably the most important
of the design tools is the thought process of the instrument designer. Clearly some thinking is
required in the beginning, in order to define the instrument requirements and a general concept for
the instrument. However, all too often thinking stops when computing starts, and it is important to
avoid this trap. The designer should stop and think at every stage of the process, asking such
questions as “Do these results make sense?” or “Are the results indicating that a different design
concept might be appropriate?”. Frequent use of simple analytical calculations to check the results
of more complicated analytical calculations or Monte Carlo simulations can eliminate many
problems.

The stages in a typical instrument design process are summarized here.

e THINK - define concept and requirements

» Simple analytical calculations

e THINK - what do these calculations imply

e More complicated analytical calculations

e THINK - is a better way to do the measurement indicated by the analysis
e Adhoc Monte Carlo for various components

e THINK - has an optimum condition been found and do the results make sense
e Prototype ?

e THINK - what are the implications of the measurements

e Detailed conceptual design

e General Monte Carlo for design verification ?

e THINK - are there any surprises

Improvements in any of the available tools can help this process




ANALYTICAL TECHNIQUES FOR INSTRUMENT DESIGN - MATRIX
METHODS

R. A. Robinson
Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Abstract

We take the traditional Cooper-Nathans approach, as has been applied for many years for steady-
state ftriple-axis spectrometers, and consider its generalisation to other inelastic scattering
spectrometers. This involves a number of simple manipulations of exponentials of quadratic
forms. In particular, we discuss a toolbox of matrix manipulations that can be performed on the 6-
dimensional Cooper-Nathans matrix: diagonalisation (Mgller-Nielsen method), coordinate changes

(e.g. from {AkpAkr} to {AE, AQ & 2 dummy variables}, integration of one or more variables
(e.g. over such dummy variables), integration subject to linear constraints (e.g. Bragg's Law for
analysers), inversion to give the variance-covariance matrix, and so on. We show how these tools
can be combined to solve a number of important problems, within the narrow-band limit and the
gaussian approximation.  We will argue that a generalised program that can handle multiple
different spectrometers could (and should) be written in parallel to the Monte-Carlo packages that
are becoming available. We will also discuss the complementarity between detailed Monte-Carlo
calculations and the approach presented here. In particular, Monte-Carlo methods traditionally
simulate the real experiment as perfomed in practice, given a model scattering law, while the
Cooper-Nathans method asks the inverse question: given that a neutron turns up in a particular
spectrometer configuration (e.g. angle and time of flight), what is the probability distribution of
possible scattering events at the sample" The Monte-Carlo approach could be apphed in the same
spirit to this question.

1. INTRODUCTION

In any measurement of inelastic neutron scattering from dispersive collective excitations (sound or
spin waves, for instance), it is essential t0 know both the energy and Q resolution of the
experiment. It may also be useful to know the correlations between them, as these correlations
may be exploited to "focus" the scattering and improve the resolution of the experiment at no cost
in intensity. While well-established methods[1-4] exist for the triple-axis spectrometer, the same
treatment is not usually applied to time-of-flight spectrometers, even though they have been used to
measure dispersive excitations in the past{5]. However, with the recent advent of high-intensity
spallation sources, there is more interest in studying dispersive excitations on time-of-flight
spectrometers. To date, there have been successful studies of high-energy spin waves in itinerant
ferromagnets [6,7] and low-dimensional magnetic systems[8-10]. Serious consideration is being
given to neutron Brillouin scattering [11-15], where relatively high energies and good resolution
are required. Furthermore, a number of different time-of-flight crystal-analyser spectrometer
concepts have been proposed and tested [16-23], with the specific intention of measuring collective
excitations.  Although there are resolution calculations for pulsed-souce crystal analyser
spectrometers [16,18], they are somewhat cumbersome. There is clearly a need for an approach
which is less dependent on the specifics of the spectrometer configuration. In this article, we
present such an approach, which exploits well known matrix algebra and properties of
exponentials of quadratic forms. In practice, rather than ploughing through the whole problem
algebraically, one can then use standard numerical matrix subroutines [24] to do the arithmetic.

It is not our intention here to model every minute detail of the spectrometer resolution function as
one can in a Monte-Carlo simulation, or as has been done analytically for chopper spectrometers
[25]. Rather, we present an approach which is easily applied to any inelastic scattering
spectrometer, which is computationally fast and which readily gives the essential features of the
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resolution function in (Q,E) space. This is achieved by working in the gaussian approximation,
which will be reasonable if the individual components of the resolution are symmetric and lacking
in long tails. For the case of time distributions from pulsed moderators, this is not the case [26-28]
and the detailed lineshape will be incorrect. However, even in this case, the means and standard
deviations will be reliable and the essential features of focussing will be readily apparent.

The approach presented here is a generalisation of the methods [1,2] widely used for triple-axis
spectrometers, on which phonon and magnon dispersion curves have been measured routinely for
at least 30 years. For this type of spectrometer, the primary and secondary spectrometer
resolutions are uncoupled, a fact that greatly simplifies the description of the spectrometer
resolution. In both the Cooper-Nathans [1] and Nielsen-Mgller [2] methods one starts out with a
gaussian description of the resolution function in a 6-dimensional space, 3 components for errors
in the incident wave-vector ky and 3 for the final wave-vector kg  Thus, the probability of a
neutron making it through the spectrometer is "

= LixT.M.
P =P, exp 2{2& M z} ),

where x is a 6-dimensional vector representing errors in ky and kg and M is a 6x6 symmetric
matrix containing all of the resolution information:

X= ( AkI w AkI L7 AkI z AkF I AkF £ Ak )

(2).

In the Nielsen-Mgller method, one diagonalises this matrix and then convolves the 6 resultant
independent distributions with the sample scattering law to obtain the observed resolution. In the
Cooper-Nathans method, one performs a change of coordinate system, in order to describe the
resolution in terms of errors in the energy transfer E and 3 components of wave-vector transfer Q.

For instance, one may want to work in terms of (AE,AQ;,AQ,AQ,;) where AQy and AQ, are
components of the error in Q within the scattering plane and parallel and perpendicular to Q and

AQ;, is the error in Q perpendicular to the scattering plane, or one may want to work in terms of

(AE,AQx,AQy,AQ,) where AQy and AQy are components of the error in Q within the scattering
plane and parallel and perpendicular to some other axis (like a reciprocal lattice vector of the
sample). Soif

2(..' = ( AEa AQI: AQZ& AQ33 XI’ XZ ) (3)

where %; and y(, are dummy variables (for instance, one might choose %; = Akg; and ¥z = AKg,).
2. CHANGING COORDINATES
The new coordinates are related to the old ones by a matrix A:

X=A.x x=Al.X 4).

Within a linear approximation, the elements of A, ajj, are the partial derivatives for the
transformation:
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ox’. Ix.

RS | i
a.=—2>; 4 =—=
g ij > ax'j

),

and therefore the determinants of A and A-1 are the Jacobians for the transformation and the
inverse transformation respectively:

(X', X'y, eeeX'p) 14, O(X Xy, weeXp)
Al = 5 A
9(X,,Xy, «eeesXp)

T O(X' Xy, )

P ] .
P=-2 exp--—l-{L'T-AlT-M-AI‘Z(_'}
(Al 2 (7).

We have couched the above in the elegant language of matrix algebra, following Refs. 3 and 4.
This allows us to use many standard mathematical identities and to deal with cases where algebraic
diagonalisation is difficult.

3. INTEGRATION OVER EXPONENTIALS OF QUADRATIC FORMS

If

P=P0exp--—;-{2£T-£s L} ®,

where X is a vector in n dimensions, then

b3

'3
LAl ).

IP dx" = P,

The most obvious application of this formula is to give the resolution volume of the spectrometer
directly.

4. INTEGRATION OVER ONE DIMENSION OF A QUADRATIC FORM
If

P =P, exp -—é—{LT-A L}

then the integral over the kth component of x, X, is

dexk = /%::—k exp—%-{z"T._A_"-i"}

where x"' is the same as x but with the kth component removed




"=x"j=x; forizk (12),

and

aika

A"=a",=a,- forizk,j#k
j
a‘kk (13)

An alternative method is to work with the inverse matrices as follows:

(@) Invert the matrix A to give A-1

(b) Cross out the row and column correspondmg to the integrable variable.

© Invert this reduced matrix back into the original space to give A". The
corresponding prefactor P" is then given by:

N
= P27 2 14
OV Al (4

Either of these methods can be used to integrate either over a dummy variable or a physically
uninteresting variable.
5. INTEGRATION OVER ONE DIMENSION SUBJECT TO A CONSTRAINT

If

- 14T
P—Poexp—z{l A L} as)

and we want to integrate over the kth dimension subject to the constramt that x is equal to a linear
combination of the other components of x:

X = biXi=b..K

izk (16)

where x"' is the same as x but with the kth component removed, as in Eq. (12), then
[P8(xy —b.x")dxy = Pgexp- %{;T A x} 17,

where

A" = 3{3 =a;+ biakj + bjaik + bibjakk a1s).

There are two obvious applications for this tool: either to reduce the number of variables, or to
integrate over a plane (for instance a dispersion surface).




6. INTEGRAL OVER A PLANAR DISPERSION SURFACE

If one is in a coordinate system x = (AE,Q;,Q2,Q3), and the dispersion surface of an excitation
branch can be defined in those coordinates such that the unit vector normal to the plane is fi , then
we simply need to rotate coordinates such that fi is along one of the new coordinate axes (say the
ith axis), using Eq. (7) in which A is now a unitary matrix. The new matrix will be A-1T . M. A-1.
Its inverse A. M-1. AT will contain as its ith diagonal element the variance of the distribution along
f : 62. Now, experiment scans are not normally made along normals to dispersion surfaces. In
the case of time-of-flight spectrometers, they are made along the time-of-flight locus for that

particular detector, and for triple-axis spectrometers, constant-Q scans or constant-E scans along
symmetry direction are common practice. In any case, the scan direction can always be defined by

a unit vector £ along the scan direction. The width along the scan direction is then simply
6.=0c,/I8 .8 I (19),

where | . € |is simply the cosine of the angle between fi and € . This argument follows that

given by Nielsen and Mgller[2]. We discuss what their method amounts to in Section 9 below.
Note however that we do not have to diagonalise M to obtain this result.

7. DEFINING THE AXES OF AN ELLIPSE IN 2 DIMENSIONS
If

1{ T

P=P exp—={X .A .X
where x is a 2-dimensional vector, the lines of equal probability are ellipses, which can be
described by an angle of inclination 8, semi-major and semi-minor axes a and b. For the one
standard deviation contour, 6, a and b are given by:

_ %
tan26 = e a
(a11 h a::z) (21D),

a
- a,, cos?0 + 2y, $in0 + 2 sin® cosd

: 2 22)

a
b2 = a,, sin %0 + a,, c0s % - —Z sinf cosd
’ 2 (23)

Note, however, that these values are dependent on the units used for x7 and x». If one uses these

values to plot out ellipses, the values of a, b and 0 are dependent on the scales used for x; and x».
This is very useful if one wants to plot out the projected resolution function on top of a two-
dimensional map of intensity, or on top of a calculated dispersion curve (see Fig. 4 of Ref. 9).




8. QUADRATIC FORMS AND THE VARIANCE-COVARIANCE MATRIX
If

P=P0exp—;{z<_T-A L} 2

then inverse matrix A-1 is simply the variance-covariance or error matrix in which

al=z<x® ; al=<xx>
i i ij i%j (25)

where the "-1" refers to the inverse of A. Note that this relation can be used both ways: (a) it can
be used to set a problem up in terms of the parent distributions, where the matrices are diagonal
and one only needs to know the standard deviations of those distributions, and (b) at any time in
the analysis, the matrix A can be inverted to provide the variances in each of the coordinates,
without performing any explicit integrals. By comparison with Eq. (7), then

AM AT —<xx. > (26)

]
and the prefactor is simply defined as before.
9. THE NIELSEN-M@LLER METHODI[2] IN THE MATRIX APPROACH

Once one has the 6-dimensional matrix M, one need not immediately project on to the 4

dimensions (AE,Q;,Q,,Qs3), but one can always diagonalise it straight away in six dimensions.
This has been done algebraically for the triple-axis spectrometer by Nielsen and Mgller [2], and we
could clearly do this step numerically for any spectrometer: one merely needs to rotate by a matrix
made up of the eigenvectors of M to end with a diagonal matrix, whose diagonal elements are the
eigenvalues of M. The eigenvalues correspond to inverse widths of independent distributions and
the eigenvectors are the axes defining those distributions. In the triple-axis case the eigenvectors
have some physical significance, because the primary and secondary spectrometers are uncoupled.
But in general this is not the case. The particular merit of the Nielsen-Mgller method is that one
can calculate separately the incident- and final-resolution contributions to the scan width of Eq.
(19) including the effects of the dispersion surface, and then try to optimise the instrumental
parameters by matching them. In the general case, diagonalisation does not yield such a separation
and the method does not have the same utility. Indeed the dispersion surface (or its normal to be
more precise) must be transformed into the independent coordinates. This is actually fairly

straightforward: one simply projects the independent axes onto the 4 dimensions (AE,Q1,Q2,Q3)
and adds the contributions to the total width in quadrature there.

10. WAYS TO PREPARE THE COOPER NATHANS MATRIX
There are three different ways to prepare M (and thereby its inverse M1 = <x;x;>):

(a) Do an analytic calculation of the traditional type[1,22,23] and calculate all the terms
algebraically.
(b)  Use the matrix method right from the beginning:
(i) Start out with the variances of all the parent distributions (for instance, angles to
define particle trajectories, coordinates to describe point and time of origin in source
and likewise to describe scattering point in sample and, orientation of mosaic block in
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a crystal analyser, angle of particle relative to a slot in a chopper, and so on). This
will give a diagonal matrix in those coordinates, as many as are necessary. In a full
3-dimensional calculation, there must be at least six such coordinates.

(i) If there are more than six coordinates, they will be related by constraints, which must
be written down in the form given in 5. One can then integrate over the extra
variables using Eqs. (17) and (18) sequentially, if necessary, to get down to six
dimensions.

(iii) Transform from these coordinates to the errors in ky and kg given in Eq. (2). Use
Eq. (7) to do this.

Via the Monte-Carlo method:

(i) Do a Monte-Carlo calculation, in which the scattering process at the sample is
unconstrained but that the neutron arrives in the nominal detector element at the
nominal time. Within the calculation, calculate the error matrix for the 3 components
of k; and the 3 components of K, to get <x;x;>.

(i) Invert <xx;>to get M.

11. COMPARISON WITH MONTE-CARLO SIMULATION

Because it is s0 easy to make algebraic or programming errors in calculations of this nature, it is
this author's belief that it should be checked against a Monte-Carlo simulation. There are two
types of calculation that are useful. The first mimics the present analytic calculation in that it
explores all possible neutron trajectories through the spectrometer which end up in the correct
detector element at the correct time. For each history, we can determine any of the variables
described above and calculate their variances and covariances. Thus, any of the matrices can be
calculated, including M in six dimensions. By this means, the analytic calculation can be checked
at every stage. This is not the way Monte-Carlo simulations of spectrometers are normally done,
however.

The alternative approach, which is independent of any matrix manipulation is to mimic an
experiment with a delta-function scatterer (like Bragg scattering, though in this case we can also
calculate for non-zero energy transfers). So for each neutron trajectory arriving at the sample, we
we assume that

d26/dQdE = &(Q - Qo,E-Eo) @mn

Then the neutrons are spread out in both time and angle from the nominal values and one
determines Q and E, in exactly the same ways as in an experiment. Then the distribution of
neutrons I(Q,E) is actually the inverse of the resolution function described above[2], in the sense
that:

I(Q.E) =R(-Q,-E) (28)

But one cannot determine the distributions of ky and kg independently, for exactly the same reason
that one cannot in a real experiment. So, while one can map out the resolution matrix in terms of

(AE,Q1,Q2,Q3), one cannot obtain it in the full six dimensions. This can be a handicap in
diagnosing errors, by comparison with the analytic calculation.

Of course Monte-Carlo calculation has far greater potential when it comes to modelling real
spectrometers. One need not assume gaussian distributions: realistic moderator pulse shapes [26-
28] can be included, as can realistic crystal reflectivity profiles[29,30] or the real geometries of
moderators, samples and detectors. On the other hand the analytic approach given here is much




much faster and readily lends itself to studies of spectrometer optimisation in which many different
configurations are explored and evaluated.

12. DISCUSSION

In Sections 2 - 8 we have simply provided a toolkit for manipulating the resolution matrix and its
inverse, the error matrix. The tools can be used in a many different ways to get different results
from the matrix M. For instance, we have described how to get resolution volumes (Section 3),
widths of observed scans (Section 6), elliptical projections that represent the resolution function in
useful coordinates (Section 7) and the projected energy- and Q-resolutions (section 8). In the last
case, it is trivial to calculate the Q-resolution, something which is rarely done for chopper
spectrometers. But much more is possible.

Suppose we wish to know the incident-energy and final-energy resolution: then we take M and
transform it into coordinates including Ej and Ef, along with 4 dummy variables. Then invert the
transformed matrix and two of the diagonal elements will contain the variances for E; and Ep.
Indeed, the corresponding off-diagonal term will be their covariance.

On crystal-monochromator instruments (like the triple-axis spectrometer), it is normal to think of
resolution in terms of angular distributions defined by Soller collimators, whereas on time-of-flight
machines, the divergences are defined by apertures. If small samples are used on triple-axis
spectrometers, one should also include the effect of sample size on the allowed neutron trajectories.
And, likewise, when Soller collimators are installed on time-of-flight instruments, one should
consider the effect of limiting the allowed divergence as well as limiting translational coordinates
by means of apertures. In the latter case, this effect has been considered by Carpenter and
Mildner[31], but it is easy to do this in the present formalism. All one needs to do is prepare a new
Cooper-Nathans matrix M, using the method of Section 10(b), but adding the distribution of
angles allowed by the Soller collimator and using the constraint that the difference in positional
deviations on source and sample define the angular deviation.

Or suppose we wish to compare the resolution characteristics of two different types of
spectrometer (e.g. the triple-axis and chopper spectrometer) for the same measurement. All one
needs to do is calculate M for each spectrometer and then perform the same manipulations from
there on, at least if the scattering triangles are the same. If they are not, one needs to account for
different sample orientations and the fact that the dispersion surface may be oriented differently.
Or if we think of a new type of spectrometer, the same program can be used to analyse its
resolution characteristics - one just has to calculate M for it, using one or more of the methods in
Section 3. For instance it would be easy to apply these ideas to a time-of-flight crystal-
monochromator spectrometer like IN4 in Grenoble [32] or as has been proposed for the pulsed
spallation sources.

Another area of application would be that of spectrometer optimisation. We give here a fast general
method of calculating the full resolution function for any spectrometer, and if the prefactors are
included the intensity too. Clearly, one can try to optimise the spectrometer within this framework.
This is already done routinely, within certain limits, for triple-axis spectrometers. But one can go
further: the idea of "total performance”[33] has been gaining ground. By this, one means
considering the whole spectrometer from source to detector, including optical components,
monochromators and choppers, as a complete system to be optimised. While there are good
descriptions[29,30] of mosaic crystals and their reflectivity profiles as a function of angle and
neutron energy, these are not usually included in an integral way in the optimisation of reactor
instruments. Likewise, for pulsed sources, it is only recently that a parametric description[28] of
the moderator flux and time distributions has been given. If such descriptions are included in the
method given in this article, then one can really try to optimise "total performance." Indeed, the




final component of such an optimisation should perhaps be one of the new figures of merit
proposed, on the basis of information theory, by Silver et al.[34].
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BRAGG OPTICS COMPUTER CODES FOR
NEUTRON SCATTERING INSTRUMENT DESIGN
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Institute of Physics and Technology of Materials, Bucharest, Romania

Abstract:
Computer codes for neutron crystal spectrometer design, optimization and experiment planning are
described. Phase space distributions, linewidths and absolute intensities are calculated by matrix
methods in an extension of the Cooper-Nathans resolution function formalism. For modeling the
Bragg reflection on bent crystals the lamellar approximation is used. Optimization is done by
satisfying conditions of focusing in scattering and in real space, and by numerically maximizing
figures of merit. Examples for three-axis and two-axis spectrometers are given.

1. Introduction

In the early 1970’s, after the resolution function formalism was invented [1], curved
monochromators and related focusing techniques also emerged [2]. The question arose of how to
express spatial focusing effects in the resolution function language.

A paper by Dorner [3] highlighted the physical meaning of the resolution matrix M as the
inverse of the covariance matrix of the scattering space X-variables, and that of the normalization
factor as the product of the k-space volumes of the monochromator and analyzer units. A general
procedure of computing resolution functions was soon advanced [4]. By differentiating the
wavevector transfer Q=k.—k, and energy transfer ho=(k;’>~k?h%(2m) one obtains X=BY,
where Y=(Ak,,AK,) is a vector (or column matrix) having 6 or 5 components and B is a 4x6 or
3x5 matrix (for inefastic and elastic scattering cases, respectively). Then one gets M! standardly as
M-1=BN-IBT, N-1 being the covariance matrix of Y-variables - the matrix of second-order
moments N'1={<Yin>}. The integral of the distribution function p(Y) gives the normalization
factor, proportional to Vdet(N-!) in the Gaussian approximation. For going beyond the Gaussian
approximation, expansions in Hermite polynomials were proposed [4], with first Gaussian terms
corresponding to matrices of second-order moments, and further terms corresponding to tensors of
higher-order moments of the distributions.

This procedure is applied to the case of curved crystals by extending Y to a vector Z that
includes the spatial variables Ar of the sample, Z=(AK;,Ar,AKk.) [5]. This is similar to the phase
space treatment of the synchrotron radiation (SR) optics [6], but goes up to the detector by
including the scattering process. The covariance matrix G~ ={<ZiZj>} is computed from the
instrument geometry, Bragg law constraints (and Soller collimators, if any) accounted for. The
normalization factor is proportional now to \/det(G'l). p(Y) is the integral of the distribution
function p(Z) over Ar, so one obtains N-! by simply eliminating from G! the rows and columns
corresponding to Ar. In the case of flat crystals and Soller collimators one gets the Cooper-
Nathans results with the sizes of the source, crystals, sample and detector accounted for.

The matrix technique was first applied in a program for neutron time-of-flight (TOF)
diffraction [7] used for the optical design of a diffractometer at the Dubna IBR-2 reactor [8]. The
program went beyond the Gaussian approximation by accounting for higher-order moments of
some of the variables. An early program for curved-crystal three-axis spectrometers followed [9].

A series of computer programs have been written in 1984-1990 in Romania under a project
supported in part by JAEA Vienna. Programs for computing neutron intensities at sample already
existed [10]. Codes considering both resolution and intensity were developed under the project, for
design and optimization of scattering instruments, as well as for planning experiments. The three-
axis and two-axis spectrometer programs have been extensively used for the design of focusing
configurations, especially after having been upgraded at the Missouri University Research Reactor
(MURR). They have already been presented [5,11] and will only briefly be described.
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2. Modeling the Bragg reflection

For neutron optics computations, simple modeling of the Bragg reflection on bent crystals
is needed. In our matrix programs, the Bragg law is assumed to hold at every point in the crystal
for the local value of the reciprocal lattice vector T. The variation of 1 is computed by the theory of
elasticity [12], leading to an improved version of the old lamellar model for perfect crystals [13].1

The Bragg law k;-k=t, written in projections, gives three relations. One of them just
defines Ak;, the other two act as constraints on the distribution of spatial variables at source,
monochromator and sample. Mathematically, spatial focusing occurs when these constraints are
accounted for. The effective sample size becomes finite even for an infinitely extended sample and
depends on the radii of curvature that enter the elements of the matrix of constraints. With flat
crystals and Sollers, the constraints modify the effective collimation of the reflected beam, making
it finite even if no collimator is in place (see [5,14] for the procedure of introducing constraints).

The contribution to the reflectivity width due to bending is added in quadrature to the flat
crystal reflectivity width by the matrix procedure itself. Reflectivity curves of bent perfect crystals
are obtained as trapezoids with widths [12] and peaks [17] in agreement with the dynamical theory
for homogeneously curved plates [15]. Mosaic crystal reflectivities are approximated by Gaussians
of width given by the standard theory (plus the contribution from bending, usually small).

The conservation of phase volumes, as required by the Liouville theorem, is checked (the
determinants of covariance matrices of phase space variables must be equal before and after
reflection). For perfect crystals it is automatically satisfied. For mosaic crystals a factor has to be
inserted [10,5] as at asymmetric reflection the mosaic model conserves k-volumes only.

A library of crystal planes of interest for neutron monochromators is built in the programs.
The phase space distribution of neutrons at sample, beam size included, is given as an intermediate
result (in the Gaussian approximation; for shape details, Monte Carlo programs would be needed).
A technique of measuring phase space distributions with powder samples and position sensitive
detection (PSD) is planned to be developed on a test bench for neutron monochromators to be
installed at MURR within a project awarded recently by DOE under the "Facilities Initiative".

3. The figure of merit

The neutron state is "marked"” differently in conventional and bent crystal spectrometers.
With flat crystals, the Bragg angle "marker” is the angular deviation from the beam axis, which is
controlled by collimation. With bent crystals the Bragg angle depends on where the neutron strikes
the crystal, so the role of the marker is played by the positions where the diffraction in the crystal
and the scattering in the sample occur. Collimation can be relaxed. Accurate marking for high
resolution is achieved with thin crystals of narrow reflectivity width and thin plate samples.

Experiment optimization involves trading intensity for resolution. In our codes this is done
by maximizing a figure of merit defined as the ratio of the peak intensity at detector Ipeax to the
square of the linewidth w at given scattering law. The maximal figure of merit depends on k; and
the type of instrument (conventional or bent-crystal). The relation Inex=Fm(k;)w? expresses the
well-known rule that to improve resolution n times one has to sacrifice intensity n2 times.

To go to the maximal figure of merit at given configuration, in conventional instruments
one balances the collimator divergences. In bent-crystal instruments one balances the contributions

1 The components of T in the reference frame directed with axis 1 along the nominal 7, of the unbent crystal,
axis 3 out of the diffraction plane, arc obtained as [5,12,14]: T,=To(1+bfe-Ax sgn(0+Y)/Re);
T=To[cEeH(y+BX)sgn(8+))/Rel; Ti=To(CEaz cosY/R), (1) where &g,E, are the flat crystal
reflectivity curve variables 1n the ction (equatorial, subscript ¢) and out-of diffraction
(axial, subscript a) planes, R¢,R, are the radii of curvature in the same Iplanes, X,y,z, are the
spatial coordinates in the _crystgl Bplate (corresponding to thickness, Iateral exténsion and
height, respectively), 9 is the Bragg angle and (3{ the crystal cuttmg anéle (zero for
symmetric reflectionj, b=0 and b=c06s8cosy/sin(§ —);)_ for  mosaic and perfect crystals,
réspectively, c=c'=1 for mosaic crystals, c=Cos@siny/sin(6~y), c'=0 for perfect crystals,
A=1-(1+x)cos?y, B=(1+K)sm)&costyh, K=-U,,/u,, with u,, and u,, the deformation tensor
components normal and paraliel to the surface {can be computed through elastic constants
and curvatures [12,15]). For plastically bent perfect crystals the situation is not clear and
equations for modeling the Bragg reflection have yet to be worked out. For lack of a better
solution, in this case the programs put u,,=0, an approximation accepted with SR [16].
Second order terms in (1) have also been derived [14% . :
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to linewidths coming from the thickness and reflectivity width of crystals, and from the sample size
(diameter or thickness). With PSD, the spatial resolution must also match the sample size.

The figure of merit Fp(k;) can be increased by shifting the spectrum or by changing the
instrument type (or by a combination of both). The ILL Grenoble success story is an illustration of
the former approach. However, shifting the neutron spectrum with cold sources comes at the price
of a restricted access range in the (Q,®) space. Changing the instrument from conventional to
focusing has a price too: for the resolution to be high, the sample size (or thickness) must be small.

Our experience with early codes showed that computing resolutions and intensities through
matrix (or Monte Carlo) methods is not sufficient. Guidance is needed as to the arrangements to be
considered and to the expected results. To get it, the conditions of focusing in scattering and the
residual linewidths (when these conditions are satisfied) have been investigated [18,5,11,19]. The
results were incorporated in the codes, which can go automatically to optimal configurations. The
figure of merit is then further maximized by balancing the various contributions to linewidths.

4. Three-axis spectrometer code

After analytical conditions for focusing in scattering were derived [18], the early three-axis
program [9] was written anew, overhauled into the design and optimization code TRAX [5].
Agreement with experiment was found for linewidths as well as intensities [5]. Projections of the

resolution ellipsoid were measured by a

*TThermal source, 10" flux, vanadium sample 1 mm thick novel technique with powder samples [3].
% | 1:Flat PG (00.2) monochromator and analyzer Ihe pr(_)gram has .been used occasmnally
% a4 2: "Zoom" PG (00.2) monochromator and analyzer L m B?ﬂm and SadaY- It Was.ngraded and
£ | 3:Bent Si (111) wafers as monochromiator and analyzer put in user-friendly form in 1992.'93 at
- ] MURR[II] Ttwas recently “martied: a
5 2 S : with the program into
z T BnoSoler the RESTRAX resolution p%ogram 21}
8 3, 1o Sollers Linewidths and peak intensities are
s ] ] computed for vanadium and for
£ 1, Sollers 40" all "standard” phonon and diffraction cross
E o sections. Computed absolute intensities
g / have to be comrected separately for

44/ Dotted: energy range not accessible on TRIAX absorption in air and sample, neutron

00 005 010 015 020 O

5 020 025 030 03 040 guide losses, opacity of Soller collimators
Vanadium linewidth (meaV)

and detector efficiency.

Figure 1 shows computed peak
intensities (uncorrected, logarithmic scale)
Fig. 1. Peak intensities as function of linewidths, vanadium  for vanadium thin plate samples on a
sample, focusing (2,3) vs conventional (1) arrangements.
spectrometer that was installed recently at
MURR, with quite typical geometry [22].

Cold source, flux 10'%, vanadium sample 1 mm thick The linewidths on the abscissa were

’Ev? 1: Flat PG (00.2) monochromator and analyzer obtained by varying the incident neutron
;of 44 2 'Zoom'.‘ PG (00.2) monochromator and analyzer L energy. Curve 1 1s for a conventional
g 3: Bent Si (111) wafers as monochromator and analyzer arrangement with 40" Sollers, horizontally
3 . - 2, 1o Sollers i flat and vertically focusing pyrolytic
> | 7 graphite (PG) monochromator, flat PG
g |/ analyzer, sample in symmetric
£ 293 no Sollers - transmission. With no Sollers, "zoom"
g """ 1, Sollers 40" all monochromator (doubly focusing), sample
£ .0, . at optimal orentation and analyzer
2 g' Dotted : energy range not accessible on TRIAX horizontally curved, the peak intensities are
[ computed to be more than 20 times higher
‘e o ok o5 sk (curve 2). Curve 3 is for commercial thin Si
Vanadium linewidth (meV) (111) wafers instead of PG, with spherical

Fio. 2. f 1, cold 20K) i £ curvature (pneumatic bending), sample at
ig. 2. Same as figure 1, cold source (20 K) instead of thermal optimal orentation, Bent perfect silicon
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appears to allow going to extremely high resolutions, at intensities comparable to those that would
be obtained with PG "zoom" crystals at actually inaccessible Bragg angles.

The data in figure 2 were computed under the same conditions as in figure 1, except for the
neutron spectrum (20 K assumed instead of 340 K). A cold source is seen to increase the figures
of merit by an order of magnitude, but also to double the gain from focusing (curve 2 over 1).
With commercial thin Si wafers, resolutions of 10 mev would correspond to the peak of the
spectrum (curve 3). Twice thicker silicon plates would shift the curve 3 by doubling the linewidths
and quadrupling the intensities, but bending them without breaking would become a problem. The
problem could be circumvented with packets of thin wafers [23], but to put together the reflectivity
curves of individual wafers, these must be tilted one relative to another.

Variable curvature devices for bending silicon wafers of 6" diameter, by controlled sub-
pressure (vacoum method) as well as by the 4-point mechanical method, have been fabricated at
MURR (for two-bent-crystal SANS arrangements [24]). A problem with the pneumatic bending is
the curvature non-uniformity. Wafers of still larger diameter will probably be needed to ensure the
uniformity required for very high resolutions.

5. Two-axis spectrometer code

The first version of the two-axis spectrometer code DAX was written ten years ago. It has
also been upgraded at MURR [11], but has yet to be put in user-friendly form. It has the option of
double reflection monochromators, with
curvatures automatically set at phase space

1.50 4 . = 4 - . - L + +
Jake-oft 9:;*:{;“ perfect Si (511), A=148 A matching [25]. Absorption in sample can be
1254 1 x=81.1° (present plate, 6 mm thick), R=13m i accqunped for. The figure of merit that is
& |2 X=15.8 (old <100> plate, 3 mm thick), R=6 m maximized numerically refers to powder
g | 3x0 (plate24mmiicl. Rdm diffraction. Separate versions were adapted
g~ . " to small angle neutron scattering (SANS)
£ 3 with the two-crystal (flat or bent) technique,
R " to multilayer monochromators (single or
£ double) for pinhole SANS arrangements,
3 0% 2 /' and to double crystal SR monochromators
5 \\ y (with Si or Ge crystal planes only). The
0254 1 ~ + programs have been used in the design of
monochromator units for neutron powder
S F % % % @ % % % @ . diffraction, SANS and SR (see [11,19] for

Detector angle 28 (degrees) reviews).

Figure 3 refers to bent silicon (511)

Fig. 3. Profile functions for different reflection asymmetries ~ monochromators on the high-resolution
powder diffractometer with PSD at MURR

N Germvwspn TP TS [26]. It shows the effect of the asymmetry
e ot o . Mt bneumatically of reflection on the profile function for
1 Fultline: computed instrumental linewidths . Rietveld analysis (dependence of powder
Dotted lines - GSAS finewidths, various samples diffraction linewidths on the detector angle,
having the same functional form in focusing
and conventional instruments). The plate
thickness is close to the breaking limit in
each case. Curve 3 is for symmetric
reflection (=0). Curve 2 cotresponds to a
<100> plate with a natural ¥ of 15.8°
(vacuum bent) that was used temporarily.
The present monochromator (curve 1) was
cut from a large diameter ingot for increased
o 1o % 3 % % & 7 & % o o TIeflection asymmetry (x=31°, thickness 6
Detector angle 28 (degrees) mm, bent pneumatically with compressed

] ) air). The flattening of the profile function on
Fig. 4. Computed and measured (GSAS) profile functions passing from 3 to 1 gives an intensity gain

in excess of 1.5, whereas in conventional instruments such a flattening involves heavy losses.
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Figure 4 shows GSAS [27] profile functions (dotted lines) for various samples measured at
MURR with bent Si (511) monochromator. They are slightly above the instrumental profile (thick
line, same as curve 1 of figure 3), as expected for materials having some intrinsic line broadening.

Linewidth (fwhm, degrees)

Fig. 5. Computed and measured linewidths, standard 3 mm dia

1.2

1.04

0.8+

0.6+

0.4+
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0.0

Take-off 90°, bent perfect Si (511), 1.48 A
Old <100> Si plate 3 mm thick, R=6 rm pneumatically
Lines: computed instrumental linewidths

5 cm wide plate sample (Al)
3 mm thick, -44° inclination |

3 mm dia standard sample (Ni

0 10 20 g0 100 110

% 40 50 60 70 &
Detector angle 28 (degrees)

and extended plate samples on the MURR PSD diffractometer

Figure 5 shows the computed and
observed linewidths for a standard sample
of small diameter and a plate sample with
fixed orientation, optimized for 90° detector
angle. The minimal linewidth for the plate
sample corresponds to its thickness (3 mm),
the contribution of the lateral extension (5
cm) having been canceled by the focusing in
scattering. The <100> plate monochromator
was used in these measurements, so the
lower curve in figure S is the same as curve
2 in figure 3. The profile function for plates
will coincide with that for small-diameter
samples, if the PSD range is narrow enough
and the plate orientation is varied during the
detector scan.

For the planned upgrade of the
MURR PSD diffractometer, a perfect Si
monochromator, curved both horizontally
(mechanical 4-point method) and vertically
(by segmentation) was fabricated and

bench-tested [28]. It has a multiple choice of wavelengths with the (511), (331), (311) or (533)
reflections. The plate was obliquely cut from an 8" diameter <100> ingot so as to have all these
planes in the same zone and ideally the same asymmetry of reflection (same optimal curvature) for
two of them, (511) and (331).

Such units, optimized for particular geometries, can be designed and fabricated at MURR,
at reasonable cost. They go to the practical limit of what elastically bent silicon can give for high

resolution powder diffraction. Further progress is possible with plastic bending methods.
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| L=56m,Ly,=1.8m,L,=0.68m,L,=0.8 m

| Cu3 mm thick, 9’ eff. mosaic, symmetric reflection

PG (00.2)+ Cu (200), total take-off 83.4°, A=1.66 A
PG 2 mm thick, 36’ effective mosaic, R,;=2.2m

Ryy=2 m, R,,=<0.55 m

Neutron microfocusing is achievable
with double reflection by bent crystals in
(+,+) setting. With flat crystals, such a
setting is dispersive and gives low intensity,
but the beam is self-collimated. With bent
crystals one can get high intensity at phase
space matching, and the beam can be

0
o

focused into small spots [19]. Mosaic
crystals and symmetric reflection can be
used, as the angular divergence of the
doubly reflected beam is very large anyway.
Bench tests have confirmed expectations
[19,29].

Microfocus double monochromators
for diffraction stress profiling have been
designed for MURR and ORNL. One of
them is presented in figure 6. The profile
function is shown for PG (00.2) + Cu
(200), 2x2x5 mm sample, PSD of 2 mm
spatial resolution. At a computed beam size at sample of 4x5 mm, the linewidths around 90°
detector angle are seen to be still narrow enough. For the Fe (211) line an intensity gain of about
90 is expected over the ORNL HB-2 configuration with flat mosaic Be (11.0) that was taken as
reference.
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Fig. 6. Profile function for a microfocus monochromator unit
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A microfocus monochromator with two Cu (200) crystals is being fabricated for the stress
profiling instrument under installation at MURR [19,30]. A technology of two-dimensional plastic
bending of thin copper plates, with minimal induced mosaic spread, needs to be developed.

6. Problems and perspectives

A possible development is a modular code for arrangements with any sequence of units,
similar to SR codes [31], but with matrices all the way instead of Monte Carlo. Going beyond the
Gaussian approximation is needed for hybrid TOF + crystal configurations. A more realistic model
of the Bragg reflection on mosaic crystals is needed, that would automatically conserve phase
space volumes. The reflectivity of plastically bent crystals needs to be modeled.

Theoretical analysis and bench-testing of bent packets of thin wafers, relative tilts included,
could revive a good old idea [23].

Second-order aberrations might come into play on going to very high resolutions with open
beams. This has to be checked. Second-order terms in the neutron optics have been derived for
powder diffraction [14], but a comprehensive com[f)utational technique has yet to be developed.

There are difficulties with the alignment of bent crystal instruments; related to the strong
correlation between real space and wavevector space variables. It is precisely these correlations that
make focusing possible, so such difficulties are unavoidable. A theory of misalignments is needed.

This work was supported in part by the grant DOE-DE-FG02-96ER45599.
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THE MCLIB LIBRARY: NEW FEATURES

Philip A. Seeger
Manuel Lujan Jr. Neutron Scattering Center and Sumner Associates
Los Alamos National Laboratory
Los Alamos, NM 87545 USA

Abstract

This report describes the philosophy and structure of MCLIB, a Fortran library of Monte Carlo
subroutines that has been developed to test designs of neutron scattering instruments. Emphasis is
placed on new features added to the library since the previous presentation of MCLIB at ICANS-
XIII in October, 1995 [1]. These new features include toroidal mirrors, writing and reading
source files, splitting and banking of histories, and a Maxwellian probability distribution. The
only change of a program structure has been to include charge and polarization vector in the
description of a particle. The latest release of the source code and documentation may be obtained
by anonymous ftp from fip://azoth.lansce.lanl.gov/pub/mclib/. WoIk is also continuing on a more
friendly web-based user interface, and user input is requested for additional features to be added to
the library.

INTRODUCTION

Monte Carlo is a method to integrate over a large number of variables. Random numbers or
samples from random distributions are used to select a value for each variable, and the integrand is
then evaluated. The process is repeated a large number of times and the resulting values of the
integrand are averaged. For a neutron transport problem, we first select a neutron from the source
distribution, and project it through the instrument using either deterministic or probabilistic
algorithms to describe its interaction whenever it hits something, and then (if it hits the detector)
tally it in a histogram representing where and when it was detected. This is intended to simulate
the process of running an actual experiment (but it is much slower). Monte Carlo is a useful
supplement to analytical treatment of an instrument, in particular to check and demonstrate “non-
intuitive” focusing arrangements, but should never be used as a substitute for thinking.

The process is carried out in two stages. First a program must be generated to describe the
geometry of the specific instrument being simulated; for example, the program LQDGEOM may be
used to define a small-angle scattering instrument with pinhole collimation, up to three choppers,
and an on-axis 2-dimensional position sensitive detector. Essentially all of the user interaction
occurs in this stage. To simplify this step, a web page is being developed [2], linked to the home
page of the Manuel Lujan Jr. Neutron Scattering Center, http.//www.lansce.lanl.gov/minsc/. This
will eventually allow users to design instruments by defining the locations and properties of a
variety of beam elements. Whether from a stand-alone program or from this web page, the output
is a geometry file containing the complete problem definition.

The geometry file is then passed to a second-stage program, for example MC_RUN (which can be
downloaded from fip:/azoth.lansce.lanl.gov/ipub/mclib/ along with the Monte Carlo library and
documentation). This will be executed at the user’s facility to transport neutrons and tally the
results in histograms. Principal outputs are a file with a statistical summary, and a data file with
histograms of the spectrum and detector. A third stage, which is not part of the Monte Carlo
process, is to perform whatever data reduction is appropriate to the experiment being simulated.
Some measure of the information content (or a “figure of merit”) is then used to evaluate the design
of the instrument.
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GEOMETRY DESCRIPTION

The geometry of a system is described by surfaces and regions. A surface is defined by a general
3-dimensional quadratic equation of the form

Ax2 + Bx +Cy2 + Dy +Ez22 + F2+ G+ Pxy+ Qyz+Rzx = 0 1

with 10 coefficients, plus a roughness parameter (BETA). The surface divides 3-dimensional

space into two parts, which are called the + and — sides of the surface depending on whether the
left-hand side of Eq. 1 evaluates to a positive or a negative value. For example, a plane

perpendicular to the z-axis at z = 1 can be expressed by the equation zD-212=0, ie., F=1

and G = -1 (all other coefficients zero). Then all points with z < 1 are on the — side and all points
with z > 1 are on the + side of the surface. Higher-order surfaces such as toroids that can not be
described by Eq. 1 must instead be defined as parameters of a special region (e.g., toroidal mirror,
type 14). The scaling of Eq. 1 is arbitrary, but we tend to evaluate non-quadratic surfaces as m

{coefficients B, D, and F dimensionless and G in m) and quadratic surfaces as m2 (coefficients A,

C, E, P, Q, and R dimensionless, coefficients B, D, and Fin m, and G in m2). The parameter
BETA is the length of a randomly oriented 3-dimensional vector that is added to the unit vector
normal to the mathematical surface to determine the surface orientation when a particle interacts.
For a perfect smooth surface, BETA = (; for 0 < BETA < 1, BETA is the sine of the maximum
angular deviation of the surface normal from smooth. If BETA < ( {or BETA >> 1), the surface is
completely random. :

The geometric shape of each region is defined by its relationship to all of the defined surfaces. A
positive or negative integer is placed in the region definition if every point in the region is on the +

or — side of the corresponding surface, and surfaces that do not bound the region are set to zero.
Special characteristics of the boundary are given by the value of the integer: +1 for an ordinary
surface with roughness BETA and the possibility of refraction or critical reflection; +2 for total
reflection; +3 for diffuse scattering (independent of BETA); +4 for total absorption; £5 for cases
requiring special action (such as a coordinate transformation) whenever a particle enters or leaves
the region; and %6 if the neutron history is to be split after crossing the surface. Care must be
taken to avoid reentrant regions, but provision is made for having a “scattering chamber” region
type that may contain embedded regions (e.g., samples and detectors). Surfaces of embedded
regions are marked by adding 10 to the surface type number, and are not tested as part of the
definition of being inside the region. When the trajectory of a particle inside the region intersects
the surface, it will exit if a valid region exists on the other side, but will otherwise remain in the
enclosing region. This method must also be used with care, since particles within the embedded
regions also pass the test for being within the enclosing region.

Regions have names and have associated types. Defined type numbers are listed here, and the
definitions of parameters are given in Appendix A. Types that have been added since the ICANS
13 proceedings [1] are marked “*”.

Simple material types:

type 0 = total absorber; no parameters

type 1 = amorphous unpolarized material; 4 parameters

type 2 = aluminum, including Bragg edges; no parameters

type 3 = hydrogenous, including multiple scattering

type 4 = supermirror represented by trapezoidal reflectivity; 4 parameters
type S = beryllium at 100K, including Bragg edges; no parameters

type 6 = single-crystal filter, Freund formalism; 3 parameters
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Complex regions:

type 10=  multi-aperture collimator

type 11 =  multi-slit collimator, vertical blades; 3 or 5 parameters

type 12= multi-slit collimator, horizontal blades; 3 or S parameters

= crystal monochrometer; 10 parameters

= monochromator without beam axis bend (analyzer); 10 parameters
*type 14= toroidal mirror; 10 parameters

Time-dependent regions:

types 20.n = chopper (disk or blade); 6 parameters
20.0 or 20.2 for motion in x-direction, 20.1 or 20.3 for y-direction
20.2 or 20.3 is counter-rotating (fully closed when edges at 0)

type 21 =  Fermi chopper (not yet implemented)

type 22 =  gravity focuser; 5 parameters

type 23 =  removable beamstop; no parameters

Scattering samples:

type 30 =  sample that scatters at constant Q; 2 parameters

type 31 =  scattering sample of hard spheres; 2 parameters

type 32 =  isotropic scatterer with fixed energy change; 2 parameters

type 34 =  inelastic scattering kernel; no parameters; NAME is '[path]filename’ of S(c,B) file
in MCNP Type I format

type 35=  scattering from layered reflectometry sample; 1 + 4 N parameters

type 36 =  scattering from isotropic polycrystalline powder; 6 parameters + 2 X table length

Detectors (zero- and one-dimensional):

type 40 =  detector; 9 parameters

type 41 =  vertical linear detector; 14 parameters
type 42 = horizontal linear detector; 14 parameters
type 44 =  longitudinal linear detector; 14 parameters

Detectors (two-dimensional):
type 43.nm = 2-D detector; 19 or 22 parameters
43.00, 43.10, 43.20, rectilinear coordinates, respectively (X,Y), (Z,Y), (X.,Z)

43.01, 43.11, 43.21, plane polar coordinates (p, ¢), axes respectively Z, X, and Y

* 43.02, 43.12, 43.22, cylindrical coordinates, respectively (Z, ¢), (X, ¢), (Y, ¢)
* 43.03, 43.13, 43.23, spherical coordinates (6, ¢), axes respectively Z, X, and Y
Scattering chamber:

type 50 =  scattering chamber, void-filled. No parameters, but other regions may be embedded,
indicated by surface types with 10s digit on.

Sources:
types 90.n = source size and phase space to be sampled; 14-18 parameters
90.1 or 90.2 with rectangular aperture(s)
90.4 with vertical offests of apertures (option numbers may be added)
type 91 =  source energy distribution table and line shape parameters; 12 parameters plus
length of table
*type 95 = source file, direct-access binary; no parameters, but NAME must be '[path]filename’
for the file. The file must be opened with logical unit number 95.
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Figure 1. Structures used in MCLIB.
PROGRAM STRUCTURES

The relationships of the structures used by MCLIB are shown schematically in Fig. 1. Each
surface is a record of type /SURFACE/, and elements are referenced as (e.g.} SURFACE.G.
Similarly, a geometric region is a record of type /REGION/, which is a vector IGEOM of 2-byte
integers, of length equal to the maximum allowed number of surfaces. An additional structure,
MC_GEOM, contains the numbers of surfaces and regions in the problem, NSURF and NREG,
and arrays of surface and region records. Information about types within the regions is contained
in a structure called MC_ELEMENT that includes NAME and INDEX arrays, the parameter block
PARAM, and the pointer NEXTINDX to the next available location in PARAM. Structures
MC_GEOM and MC_ELEMENT represent the complete description of the instrument being
simulated.

The final structure, PARTICLE, is the object that is acted upon by the beam element subroutines in
the library. It includes position, velocity, time of flight, mass (1 for a neutron), charge (0 for a
neutron), statistical weight, and vector polarization (not yet implemented in the code). A purely
“analog” Monte Carlo traces each individual neutron until it is either lost or detected. MCLIB uses
“weighted” neutrons, and in many of the processes the statistical weight is multiplied by the
probability of survival instead of using a random number to decide whether to terminate the history
(“Russian Roulette™). This is especially beneficial when scattering probability is small, as in
subcritical reflection. To track more long-wavelength neutrons (which in general have larger

scattering probability), the source distribution usually used is A2 I() instead of I(A) and the initial

weight is proportional to 1/A2. The tallied results are then the sum of detected neutron weights.
The relative error in each bin, however, depends on the number of histories recorded.
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NEW AND REVISED SUBROUTINES

The following routines have been added or modified. The most up-to-date listing of the subroutine
abstracts and of the source codes may be found at fip://azoth.lansce.lanl.gov/mclib/.
ANGTORUS04 Aug 96 computes the cosine of the angle of incidence with respect to a
toroidal surface (including wobble)
DISTORUSO08 Dec 96 finds distance along a trajectory to a horizontal or vertical toroidal
shell (including gravity)
GET_SPACE25 Jan 96 added source brightness to calling sequence
N_SOURCE25 Jan 96 get source neutron: added Q and polarization vector; may read from
direct-access binary file (type 95)
OPERATE27 Aug 96 find what happens to particle within region: small-angle scattering

~A2; additional region for chopper blade material; add toroidal
, mirrors (type 14)
PLMXWLN25 Mar 96 probability from Maxwellian
PLNORM 23 Jul 96 probability from normal distribution (faster algorithm)
POWDER 07 Dec 95 scatter from polycrystalline powder sample, was always isotropic if

A > 2nd edge

SRC_PROB11 Jul 96 probability density /meV/us from type 91 table (new)
TESTIN 04 Apr 96 find if within region, now computes in double precision

The program MC_RUN has also had several modifications, most notably:

{ prepare direct-access MON output file for subsequent use as a source, and open and initialize |
the source file if type=95

{ periodic output of data (DAT) file for protection against computer crashes during long runs
{ fix error in refraction into void, including type=50

{ bank 20 levels of saved neutrons instead of 1; split by 2 after surface type 6

( test for “rapped” neutrons that could cause a job to freeze

CREATING A NEW TYPE

The process of adding toroidal mirrors to MCLIB will be used as a case study. There were four
steps:

1. Define a new region type (14) and assign parameters and names.

2. Develop needed algorithms and procedures (DISTORUS and ANGTORUS).

3. Insert the “methods” for the new type in subroutine OPERATE.

4. Test, debug, and refine the previous three steps.

1. There is renewed interest in the use of focusing mirrors in neutron instruments, for
example the proposal of Benno Schoenborn for a Laue protein-crystallography instrument [3], and
a recent paper by John Copley [4]. Although an ellipsoid would be the optically preferred shape, a
toroid may be more practical to manufacture. Since a toroid can not be defined as a surface by Eq.
1, it was necessary to define it as a region. The nature of the region is that it is divided into two
subregions by the toroidal surface. The ten parameters can be seen in Appendix A at type 14. The
torus is defined by its major radius R, the radius r of the generating circle, the offset of the center
of the generating circle from the beam axis, and the longitudinal position of the center of
revolution. Also, the sign of the major radius shows which side of the beam axis the center is on,

and the sign of the minor radius is used as a flag for orientation: + for horizontal and — for
vertical. (The choice of parameter three as a small offset instead of distance from the center of the
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torus was crucial to maintaining precision.) The fifth parameter is surface roughness, and then
three parameters are provided to define a rotation of the instrument beam axis after reflection.
Finally, there are two pointers to define the materials inside and outside the torus. The “inside”
material is in front of the mirror surface, and is usually void, indicated by a pointer of zero. The
“outside” is the mirror surface/substrate, and the pointer is the offset of its definition in the
PARAM block relative to the torus parameters; e.g., if the material type immediately follows this
block, then the pointer value is 12 (or 1 + NUMBER_14, the number of cells in PARAM used by
type 14).

2. Finding the intersections of a line with a torus (a quartic surface) is not a trivial problem.
Previous codes [4,5] have solved the problem very generally with sophisticated methods to retain
precision. My approach was to begin with three limiting assumptions and one complication:

{ only the near half of the toroid is relevant
{ only the outer (concave) half-shell of the toroid is relevant
{ only real solutions for the intersections are relevant

( the particle trajectory is a gravitational parabola instead of a straight line.

At this stage I had the assistance of Mike Fitzsimmons and Tom Klugel (MLNSC) to study
methods of setting up and solving the fourth-order equation. The first method we used to set up
the equation was copied from [5], using analytic derivatives of the trajectory in the coordinate
system of the torus. This ran into serious difficulties when gravity was included (see §4 below),
and the eventual solution was first to bracket the nearest and furthest intersections (if any!) of the
parabola with bounding cylinders and planes of the relevant portion of the torus, and to solve for
the distance from the surface parametrically vs. time of flight at five equally spaced points. Since
the spacing of the points is uniform, multiplication by a predetermined constant matrix solves for
the coefficients of the fourth-order equation of nearest distance as a function of time. One or two
real roots (if any) are then found by the “safe” Newton-Raphson method discussed in Numerical
Recipes [6], which uses bisection to keep the roots bracketed whenever the iteration step would
move outside the current bracket. For further details, see the source code for DISTORUS in file
MCLIB.SRC at fip://azoth.lansce.lanl.gov/pub/mclib/.

Finding the angle of incidence, subroutine ANGTORUS, is far simpler. It is essentially a copy of
WOBBLE with derivatives of the torus equation instead of Eq. 1. As in DISTORUS, precision is

enhanced by accounting for the fact that the major radius of the torus is large compared to any other
distance.

3. Inclusion of type-specific code in subroutine OPERATE requires adherence to the overall
structure of the routine, and will probably be the most difficult (or dangerous) aspect for a user to
add a function to MCLIB. Here is the scenario:

{ When a particle enters a region, OPERATE is called with the following references:
PART = record containing description of particle (input/output)
EXDIST = distance to exit surface particle is aimed at (m) (input/output)
PARAMS = array with description of what is in this region (input)
GEOM = structure with all surface and region definitions (input)
IREG = region number of device, or subregion within device (input/output)
JSURF = surface number, if particle is initially on surface (input)
KSURF = surface number that particle is pointed toward (input/output)
NAME = name of region, used as file name for type 34 (input)
TRANSMIT = flag to compute transmission of sample types 30-39 (input)
FLAG = flag set to .FALSE. if (e.g.) chopper in wrong frame (output)
PART_2 = description of particle created by operation (output)
DET_WT = statistical weight of detected particle (output)
IX, IY = position bin numbers of detected particle (output)
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ISEED =random-number generator seed (input/output)

{ OPERATE determines the region type from PARAMS(1) and transfers to the appropriate block
of code in an IF-THEN-ELSE IF structure (this will become a CASE structure when F90 is

more widespread).

{ The code may use any variables marked “input” and may change any variables marked “output”
in the above list. Local variables will have to be declared, and any variables to be retained
across entries must have distinctive names and be placed in a SAVE statement.

{ Valid operations include: moving the particle to the exit from the region with possible
reeducation of statistical weight to account for absorption (set EXDIST to 0); selection of a
subregion without moving; reflection (set KSURF negative); rotate the coordinate system;
statistically split the particle or create a new one (in PART_2); scatter either elastically or
inelastically; multiple scattering, keeping control through several motions of the particle till it
reaches the region exit; detect the particle and find encoded position in detector. Examples of
all these possibilities can be found in OPERATE.FOR.

{ For compatibility with older Fortran compilers without recursive subroutines, the code should
not make any calls to OPERATE for processing subregions. Use no numbered statements.
Style should be similar to the existing OPERATE.FOR code.

In the case of the toroidal mirror, the actions are to determine the distance to the torus and which

side the particle is on using DISTORUS, and to move either to that surface or the region exit

(whichever is closer) through the appropriate material, compute reflection probability using

ANGTORUS and the ratio of scattering length densities across the surface, and repeat all of these

actions till the region is exited. Note that only material types O (void), 1 (amorphous non-

magnetic), or 4 (supermirror layer) are allowed, due to the restriction that all code for the type must
be inline. In fact, the code for type 1 and type 4 regions has been copied into this block.

4. The debugging of this module is an example of cooperation with outside users. The code
had been tested by reproducing the results in [4], but in a different coordinate system. When John
Copley tried to use the code, there were subtle errors. It took one more test to show that my code
was at fault, rather than John’s interpretation of it, two more rounds of modification and testing to
uncover a serious philosophical flaw in the algorithm, and two more rounds to “perfect” the code.
This version passes all tests, and is twenty times faster [7] than the program used previously.

SMALL-ANGLE SCATTERING

The original paper on curved-mirror neutron optics [8] suggested small-angle scattering as an
application. The authors considered a bent mirror forming a cylinder with axis transverse to the

rture
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Figure 2. Small-Angle Scattering instrument using a focusing mirror for increased intensity.
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beam, and a narrow slit aperture with the solid angle of the mirror matched to the solid angle of the
neutron source. The same geometrical matching can be applied to illuminate a mirror that focuses
in two dimensions, as illustrated in Fig. 2. (Note that the transverse dimensions in Fig. 2 are
exaggerated by a factor of 10 relative to the longitudinal dimensions.) The MCLIB code allows us
to compare mirror shapes in this geometry: the ideal ellipsoid, the tangent toroid, cylindrical
segments (with longitudinal cylinder axes), or toroidal segments (bent cylinders with varying
curvatures). Compared to a two-aperture collimation system with the same resolution, a factor of
10 increase in intensity is possible because the full illuminated surface of the moderator may be
viewed. The tradeoff between intensity and resolution depends on the single aperture.

The mirror considered as an example was 3.0 m long and 75 mm wide, with a major axis of 9 m
and transverse (minor) axes of 157 mm. The glancing is 1° at the center (beam axis bent by 2°).
The radius-of-curvature parameters of the tangent toroid are R = 257.77 m and r = 78.54 mm. The
source aperture had a diameter of 2.0 mm, located at one focus of the ellipsoid; at this eccentricity,
the focus is less than 1 mm from the vertex. Also, the transverse diameter of the ellipsoid at the
focus is only 2.7 mm, so the source is “large” in terms of optical properties, and Monte Carlo is a
useful tool a estimating resolution at the detector placed at the other focus. The detector pixel size
was made small (0.25 mm) and the encoding uncertainty was zero so as not to affect the computed
resolution when compared to the source aperture size, which contributes 0.50 mm to the standard
deviation in each detector coordinate. Since the effect of gravity is always included in the
algorithms of MCLIB (for any particles with rest mass), it is necessary to place the source aperture
(and the detector center) below the instrument axis if the reflection plane is horizontal by a distance
that is proportional to wavelength, such that the nominal trajectory at the mirror center is
horizontal. However, if the reflection is upwards (mirror horizontal and concave up), then no
correction is necessary because the excess downward velocity acquired before striking the mirror is
reflected and then canceled by downward acceleration after reflection (this cancellation is exact only
for neutrons reflected at the center of the mirror, but is independent of wavelength). For a white
source (i.e., spallation) the vertical reflection plane is much to be preferred.

(1 a A [ . —

Figure 3. Images of a 2-mm diameter aperture for ellipsoidal (left side) and toroidal (right side)
focusing mirrors. The reflection plane is vertical (upward) to correct for gravity. Each pattem is a
histogram for 250000 detected neutrons with wavelength distribution from 220 A, from a coupled

liquid-hydrogen moderator. Each figure is 20 mm square on the detector (printed at four times
size), and the intensity scale is logarithmic from 1 to 93250 counts per pixel.
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A comparison of the beam spots for the ellipsoid and toroid is shown in Fig. 3, for vertical
reflection of a cold-moderator spectrum from 2-20 A. (A supermirror reflecting layer was
assumed, and reflectivity is good above 3 A.) The standard deviations for the ellipsoid are 0.64
mm in both the horizontal and vertical directions, and those for the toroid are 1.05 mm horizontal
and 2.29 mm vertical. A minimum Q-value less than 0.001 A~! could be achieved with this
geometry in an instrument of total length 13 m (with the ellipsoidal mirror). Further details of this
simulation will be presented later.

REQUESTS FOR ADDITIONAL ELEMENT TYPES

It is hoped that the MCLIB code will be generally useful to designers of neutron instruments. For
this goal to be realized, two sets of improvements are being pursued. First, the general user
interface is being moved to a web page so that geometry files may be constructed more easily than
is now possible. Second, we are soliciting input of algorithms from interested or potential users,
so that the code will do what you want. Please communicate with the author by e-mail to
PASeeger@aol.com if you have any questions or suggestions.
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APPENDIX A. MC_ELMNT.INC
C Definitions of beam elements which may ocar in regions, and their parameters

P. A. Seeger, April 20, 1994

04 Jan 1995: define offsets of parameters within blocks, rather than
structure with UNIONs [PAS]

10 Jan 1995: modified source type 90; added type 91 for source spectrum
and lineshape description [PAS]

01 Feb 1995: added types 5 (Be), 13 (crystal monochromator), and 35
(reflectrometry) [PAS]

15 Feb 1995: modified type 91; moved structure definition to MC_GEOM.INC
[PAS]

04 Mar 1995: types 90.n for rectangular and/or offset phase space [PAS]

09 Mar 1995: type 44 (longitudinal detector); all detectors need surface
number [PAS]

06 Jun 1995: 2 more parameters in monochromator type 13 [PAS]

13 Jul 1995: type 36, general powder [PAS,Uli Wildgruber,Luke Daemon]

04 Aug 1995: type 6, single-crystal filter [PAS]

26 Aug 1995: type 32, isotropic scatterer [PAS]

05 Sep 1995: revised parameters for pulse shape (type 91) [PAS]

16 Oct 1995: changed parametrization of supermirror (type 4) [PAS]

11 Nov 1995: add NUMBER _nn to all types [PAS]

22 Nov 1995: add subtypes and coordinate origin to type 43 [PAS]

24 Jan 1996: type 95, source from direct-access binary file [PAS]

- 05 Aug 1996: type 14, toroidal mirror [PAS]
01 Jul 1997: type 13.1; revised Ikeda-Carpenter form for type 91 [PAS]
03 Jul 1997: changed subtypes of type 43 (2 digits) [LLD,PAS]
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C The first entry in PARAM for each element identifies the
C type, followed by a varying number of parameters.
C

INTEGER ELMINT_TYPE
PARAMETER (ELMNT_TYPE=0)
C type 0 =total absorber; no additional parameters
INTEGER NUMBER_{0
PARAMETER (NUMBER_0(=1)
C type 1 =amorphous unpolarized material; 4 parameters
C Real and Imaginary scattering-length density (10**10/cm**2)
C IAacroscopic scattering cross section (1/my)
C velocity-dependent cross section, at 1 m/us (1/us)
INTEGER REAL_RHO, IMAG_RHO, NSIGMAO, NSIGMAV, NUMBER_01
PARAMETER (REAL_RHO=1,IMAG_RHO=2,NSIGMA(Q=3,NSIGMAV=4,
1 NUMBER_(1=5)
C type 2 = aluminum, including Bragg edges; no additional parameters
INTEGER NUMBER_(2
PARAMETER (NUMBER_02=1)
C type 3 = hydrogenous, including multiple scattering; 1 parameter
C Relative hydrogen density compared to water
INTEGER H_DENSITY, NUMBER_03
PARAMETER (H_DENSITY=1,NUMBER_03=2)
C type 4 = supermirror represented by trapezoidal reflectivity; 4 parameters
C Real & Imaginary scattering-length density (10**10/cm**2) (see type 1)
C Supermirror multiplier




C  Refectivity at maximum supermirror limit
INTEGER SUPER_MULT, SUPER_REFL, NUMBER_04
PARAMETER (SUPER_MULT=3,SUPER_REFL=4 NUMBER_04=5)
C type 5 =beryllium at 100K, including Bragg edges; no additional parameters
INTEGER NUMBER_05
PARAMETER (NUMBER_05=1)
type 6 = single-crystal filter, Freund formalism; 3 parameters
xsec = sigfree*(1-exp(-C2/lambda**2)) + sigabs*lambda
Limiting (short wavelength) free-atom macroscopic cross section (1/cm)
-In(1 - (sig(1A)-sigabs)/(sigfree-sigabs)) (A**2)
sum of 1/v macroscopic cross sections at 1A (1/cm/A)
INTEGER XSIGFREE, X_C2, XSIGABS, NUMBER_06
PARAMETER (XSIGFREE=1,X_C2=2,XSIGABS=3,NUMBER_06=4)

olololole]

type 10 = multi-aperture collimator
type 11 = multi-slit collimator, vertical blades; 3 or 5 parameters
Spacing of slits, centerline-to-centerline (m)
Rate of convergence (>0) or divergence (<0) of one slit
Z at entrance of the region, where spacing is measured (m)
INTEGER C_DELTA, C_TAPER, C_ZENTER
PARAMETER (C_DELTA=1,C_TAPER=2,C_ZENTER=3)
For a curved system (bender),
sine of half the angle of bend
cosine of half the angle of bend
INTEGER B_SIN_PHI, B_COS_PHI, NUMBER_11
PARAMETER (B_SIN_PHI=4,B_COS_PHI=5,NUMBER_11=6)
C type 12 = multi-slit collimator, horizontal blades; 5 parameters
C Same parameters as type 11
INTEGER NUMBER_12
PARAMETER (NUMBER_12=6)
type 13.n = crystal monochromator; 10 parameters
Twice the crystal plane spacing (A)
following 3 parameters are ignored if type=13.1:
Nominal Z position for rotation of instrument axis (m)
Sine and cosine of take-off angle
X-, Y-, and Z-components of mosaic spread, rms of sines of angles
rms spread of plane spacing, (delta d)/d
max number of loops (or microcrystal orientations) to try
probability normalization factor per try, derived from reflection
probability at peak wavelength: 1 - (1-max_prob)**(1/trys)
INTEGER M_2D_SPACE, M_Z0, M_SIN_2TH, M_COS_2TH, M_ROTX,
1 M_ROTY, M_ROTZ, M_D_SPREAD, M_TRY, M_PROB, NUMBER_13
PARAMETER (M_2D_SPACE=1,M_Z0=2M_SIN_2TH=3,M_COS_2TH=4,
1 M_ROTX=5.M_ROTY=6,M_ROTZ=7,M_D_SPREAD=8,
2 M_TRY=9M_PROB=10,NUMBER_13=11)
type 14 = toroidal mirror; 10 parameters
Radius of rotation of torus, from axis to center of generating
circle; positive if torus axis right of or above beam axis (m)
Radius of cross section of torus; negative if torus vertical (m)
Offset of center of generating circle from beam axis (m)
Z-coordinate of torus axis (m)
Surface roughness parameter
INTEGER TORUS_A, TORUS_B, TORUS_D, TORUS_Z, TOR_BETA
sin, cos, and Z-center for beam axis rotation (if any)
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INTEGER TOR_SIN_TH, TOR_COS_TH, TOR_Z_ROT
C Offsets to parameter blocks for interior and exterior regions,
C zero if void; types 1 and 4 are supported
INTEGER INSIDE_OFFSET, OUTSIDE_OFFSET, NUMBER_14
'PARAMETER (TORUS_A=1, TORUS_B=2, TORUS_D=3, TORUS_Z=4,
TOR_BETA=5, TOR_SIN_TH=6, TOR_COS_TH=7, TOR_Z_ROT=8§,
INSIDE_OFFSET=9, OUTSIDE_OFFSET=10, NUMBER_14=11)

1
2
types 20.n = chopper (disk or blade); 6 parameters
.0 or .2 for motion in x-direction, .1 or .3 for vertical
.2 or .3 is counter-rotating (fully closed when edges at 0)
Linear velocity of opening crossing beam centerline (m/us)
Time to cover or uncover half the width of the moderator (us)
Nominal time at which opening chopper edge crosses zero (us)
Nominal time at which closing chopper edge crosses zero (us)
Phase jitter of chopper, rms (us)
Period of chopper (us)
INTEGER CHP_VEL, CHP_HALF, CHP_OPEN, CHP_CLOSE,
1 CHP_JITTER, CHP_PERIOD, NUMBER_20
PARAMETER (CHP_VEL=1,CHP_HALF=2,CHP_OPEN=3,CHP_! CLOSE-4
1 CHP_JNITTER=5,CHP_PERIOD=6,NUMBER_20=7)
C type 21 = Fermi chopper
C type 22 = gravity focuser; 5 parameters
g acceleration (m/us**2), and rms phase jitter (us)
C

ololvieoieleioieliele)

nominal times for start and top of upward stroke (us)
time between pulses (us)
INTEGER G_ACCEL, G_JITTER, G_START, G_TOP, G_PERIOD, NUMBER_22
PARAMETER (G_ACCEL=1,G_JITTER=2,G_START=3,G_TOP=4,G_PERIOD=5,
1 NUMBER_22=6)
C type 23 =removable beamstop; no additional parameters
INTEGER NUMBER_23
PARAMETER (NUMBER_23=1)
C
C first parameter of many samples is -In(transmission at 1 A)
INTEGER SIGMA_1A
PARAMETER (SIGMA_1A=1)
C type 30 = sample which scatters at constant Q; 1 additional parameter
C value of Q for scatter (1/A)
INTEGER Q_SCATTER, NUMBER_30
PARAMETER (Q_SCATTER=2,NUMBER_30=3)
C type 31 = scattering sample of hard spheres; 1 additional parameter
C hard-sphere radius for scatter (A)
INTEGER R_SPHERE, NUMBER_31
PARAMETER (R_SPHERE=2, NUMBER_31=3)
C type 32 = isotropic scatterer with constant energy change; 1 additional
- C inelastic energy change (0 if elastic) (eV)
INTEGER DELTA_E, NUMBER_32
PARAMETER (DELTA_E=2 NUMBER_32=3)
C type 34 =inelastic scattering using MCNP file; no parameters, but NAME
C must be '[path]filename’ for the file
INTEGER NUMBER_34
PARAMETER (NUMBER_34=1)
C type 35 = scattering from layered reflectrometry sample; 1 + 4*N parameters
C number of layers, including substrate
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parameters for each layer, starting with substrate:
4pi*Real and Imaginary scattering-length density (1/A**2)
Thickness of layer (zero for substrate) (A)
Roughness, 2*sigma**2 of outer surface of this layer (A**2)
INTEGER NLAYERS, REAL4PINB, IMAG4PINB, THK_LAYER, ROUGHNESS,
1 NUMBER_35
PARAMETER (NLAYERS=1, REALAPINB=2, IMAG4PINB=3,
1 THK_LAYER=4, ROUGHNESS=5, NUMBER_35=2)
type 36 = scattering from isotropic polycrystalline powder; 6+2*N parameters
number of Bragg edges included
limiting (short wavelength) macroscopic total xsection (1/cm)
macroscopic incoherent scattering xsection (1/cm)
macroscopic 1/v scattering xsection at 1 A (1/cm/A)
macroscopic 1/v absorption xsection at 1 A (1/cm/A)
table of d-spacings of Bragg edges (A), followed by explicit 0 and
table of cumulative macroscopic xsections at 1 A (1/cm/A**2)
INTEGER N_BRAGG, PSIGMAT, PSIGMAI, PSIGMAS, PSIGMAA, D_BRAGG,
1 NUMBER_36 '
PARAMETER (N_BRAGG=1,PSIGMAT=2,PSIGMAI=3,PSIGMAS=4 PSIGMAA=5,
1 D_BRAGG=6,NUMBER_36=7)
C
C type 40 = detector; 9 additional parameters
C first parameter of all detectors is surface number
C second parameter of all detectors is -In(1 - efficiency at 1 A)
INTEGER DET_SURF, D_ALPHA_1A
PARAMETER (DET_SURF=1,D_ALPHA_1A=2)
time-of-flight clock parameters:
minimum and maximum times (us)
number of time channels
if logarithmic, dt/t (otherwise dt/t = 0)
minimum clock tick in determining log scale (us)
electronic delay of detector events (us)
repeat period of data-acquisition electronics (us)
Note: if t-o-f is logarithmic, TMAX is overriden
INTEGER D_TMIN, D_TMAX, D_TCHANS, D_DT_OVER_T, D_TICK, D_DELAY,
1 D_T_PERIOD, NUMBER_40
PARAMETER (D_TMIN=3,D_TMAX=4,D_TCHANS=5D_DT_OVER_T=6,
1 D_TICK=7,D_DELAY=8,D_T_PERIOD=9,NUMBER_40=10)
type 41 = vertical linear detector; 14 additional parameters
locations of bottom and top of detector (m)
number of detector elements
size of detector element (m)
root-mean-square encoding error of detector (m)
INTEGER DET_YMIN, DET_YMAX, DET_NY, DET_DELY, DET_RMSY,
1 NUMBER_41
PARAMETER (DET_YMIN=10,DET_YMAX=11,DET_NY=12,DET DELY=13,
1 - DET_RMSY=14NUMBER_41=15)
type 42 = horizontal linear detector; 14 additional parameters
locations of left and right ends of detector (m)
number of detector elements
size of detector element (m)
root-mean-square encoding error of detector (m)
INTEGER DET_XMIN, DET_XMAX, DET_NX, DET_DELX, DET_RMSX,
1 NUMBER_42 :
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PARAMETER (DET_XMIN=10,DET_XMAX=11,DET_NX=12,DET_DELX=13,
1 DET_RMSX=14 NUMBER_42=15)
type 43.nm = 2-D detector; 19 or 22 additional parameters
n = axis orientation digit: 0=27Z, .1=X, 2=Y
m = coordinate type digit: .00 = rectilinear, .01 = plane polar,
02 = cylindrical, .03 = spherical

m nl 0 | | | 2

. .
T

0 XY | @Yy | X2

{ | |

01 | (thoXY, phiXY) | (hoZY,phiZY) | (thoXZ, phiXZ)
| | |

021 (ZZO,phiXY) | (X-XO,phiZY) | (Y-YO, phiXZ)
| 1 |
03 | (thetaZ, phiXY) | (thetaX, phiZY) | (thetaY, phiXZ)

where: thoXY = sqrt[(X-XO)*2 + (Y-Y0)"2)] = distance from Z-axis (m),
phiXY = arctan[(Y-Y0)/(X-X0)] = angle from +X toward +Y (rad),
thetaZ = arctan[rhoXY/(Z-Z0)] = angle away from Z-axis (rad)
Parameters:
locations of min and max X (abscissa) edges of detector (m or rad)
number of detector elements in the abscissa direction
width of detector abscissa element (m or rad)
root-mean-square abscissa encoding error of detector (m or rad)
locations of min and max Y (ordinate) edges of detector (m or rad)
number of detector elements in the ordinate direction
height of detector ordinate element (m or rad)
root-mean-square ordinate encoding error of detector (m or rad)
origin of coordinates (m)
INTEGER DET2_XMIN, DET2_XMAX, DET2_NX, DET2_DELX, DET2_RMSX
INTEGER DET2_YMIN, DET2_YMAX, DET2_NY, DET2_DELY, DET2 RMSY
INTEGER DET2_X0, DET2_YO0, DET2_Z0, NUMBER_43
PARAMETER (DET2_XMIN=10,DET2_XMAX=11,DET2_NX=12,
1 DET2_DELX=13,DET2_RMSX=14,DET2_YMIN=15,
2 DET2_YMAX=16,DET2_NY=17,DET2_DELY=18,
3 DET2_RMSY=19,DET2_X0=20,DET2_Y0=21,
4 DET2_Z0=22 NUMBER_43=23)
type 44 = longitudinal linear detector; 14 additional parameters
locations of upstream and downstream ends of detector (m)
number of detector elements
size of detector element (m)
root-mean-square encoding error of detector (m)
INTEGER DET_ZMIN, DET_ZMAX, DET_NZ, DET_DELZ, DET_RMSZ,
1 NUMBER_44
PARAMETER (DET_ZMIN=10,DET_ZMAX=11,DET_NZ=12,DET_DELZ=13,
1 DET _RMSZ=14 NUMBER_44=15)

QOO0 OONOOOOOOOAOONONNONONONN
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C
C type 50 = scattering chamber, void-filled. No parameters, but other regions
C may be embedded, indicated by surface types with 10s digit on.
INTEGER NUMBER_50
PARAMETER (NUMBER_50=1)
C
C types 90.n = source size and phase space to be sampled; 14-18 parameters
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C edges of rectangular moderator face (m)
INTEGER MOD_XMIN, MOD_XMAX, MOD_YMIN, MOD YMAX
PARAMETER (MOD_XMIN=1,MOD_XMAX=2 MOD_YMIN=3,MOD_YMAX=4)
C location and radius (half-width) of apertures which define beam (m)
INTEGER APTR1_Z, APTR1_R, APTR2_Z, APTR2_R
PARAMETER (APTR1_Z=5,APTR1_R=6,APTR2_7=7,APTR2_R=8)
C additional vertical space to sample for gravity focus (m)
INTEGER G_DELY2
PARAMETER (G_DELY2=9)
C min and max neutron energy to be sampled (€V)
C time between beam pulses and square pulse width (us)
INTEGER S_EMIN, S_EMAX, S_PERIOD, S_WIDTH
PARAMETER (S_EMIN=10,S_EMAX=11,S_PERIOD=12,S_WIDTH=13)
C offset to parameter block with spectrum and lineshape parameters
INTEGER E_OFFSET
PARAMETER (E_OFFSET=14)
C (optional) half-heights of apertures, type 90.1 or 90.2 (m)
INTEGER APTR1_Y, APTR2_ Y
' PARAMETER (APTR1_Y=15,APTR2_Y=16)
C (optional) vertical offsets of apertures, type 90.4 (m)
- INTEGER APTR1_Y_OFFSET, APTR2_Y_OFFSET, NUMBER_90
PARAMETER (APTR1_Y_OFFSET=17,APTR2_Y_OFFSET=18, NUMBER_90=19)
C type 91 = source energy distribution table and lineshape parameters; 12
parameters plus length of table
number of entries in energy table (1 is special case)
location in table of center of normal distribution (index units)
or value of nominal neutron velocity (m/us) (if # entries = 1)
standard deviation of normal distribution (table index units)
or relative fwhm of velocity selector (if # entries = 1)
source brightness, summed over limits of E_TABLE (n/ster/m**2/MW/s)
INTEGER N_E_TABLE, CENT_TABLE, SIGMA_TABLE, S_BRIGHT
PARAMETER (N_E_TABLE=1,CENT_TABLE=2,SIGMA_TABLE=3,S BRIGHT_4)

olololelolole]

Parameter | Gaussian/exponential | Ikeda-Carpenter/exponential
Name | (T_WIDTH>=0) | (-1<=T_WIDTH<0)

e
T

TAU_TH1 [Late-time exponential (us) [|Late-time exponential (us)
TAU_TH2 [Intermediate exponential (us)lIntermediate exponential (us)
TAU2_RATIOIFraction of TAU_TH2 [Fraction of TAU_TH2
TAU_EPI [Epithermal time const. (us/A)Mean (t/lambda) (us/A)
T_DELAY |Gaussian midpoint (us/A) [|Early exponential (us/A)
T WIDTH IGaussian width (us/A) I- fraction in early exp., or

I | -1if no early exp.

INTEGER TAU_THI, TAU_TH2, TAU2_RATIO
PARAMETER (TAU_THI1=5TAU_TH2=6,TAU2_RATIO=7)
epithermal (high energy) time constant proportional to lambda (us/A)
or mean (t/lambda) parameter of Ikeda-Carpenter (us/A) (if width<0)
Gaussian delay and width, /lambda (us/A) (width < 0 is special case)
INTEGER TAU_EPI, T DELAY, T WIDTH
PARAMETER (TAU_EPI=8,T_DELAY=9,T WIDTH=10)
C switching function 1/e point (A) and power (slope)
INTEGER SWITCH_LAMBDA, SWITCH_POWER
PARAMETER (SWITCH_LAMBDA=11,SWITCH_POWER=12)

OOOOOOOOOO0N0n

olele!

76




C origin of table of cumulative energy distribution (weighted by
C lambda**2) of source spectrum on equally spaced normal-curve values
C of log(energy/1meV)
INTEGER E_TABLE, NUMBER_91
PARAMETER (E_TABLE=13,NUMBER_91=13)
C type 95 = source file, direct-access binary; no parameters, but NAME must
be '[path]filename’ for the file. File format is
Ist record: 16 bytes of coding information and 17-character ID
2nd record: 40-character TITLE of job that created the file
3rd record: source surface definition
4th record: # of histories (integer*4), sum of weights, source MW-s,
modified source brightness, phase space, lethargy
records 5-(# of histories+4): source neutrons
INTEGER NUMBER_95
PARAMETER (NUMBER_95=1)

slelololelele!
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Quantifying the Information Measured by Neutron Scattering
Instruments

M W Johnson

Rutherford Appleton Laboratory,
Chilton, Didcot, Oxon OQ11 0QX, UK

Abstract

The concept of the information content of a scientific measurement is introduced, and a theory is
presented which enables the information that may be obtained by a neutron scattering instrument to
be calculated. When combined with the time taken to perform the measurement the bandwidth of
the instrument is obtained. This bandwidth is effectively a figure of merit which is of use in three
respects: in the design of neutron instrumentation, the optimisation of measurements, and in the
comparison of one instrument with another.

1 Introduction

The purpose of this paper is to offer a new tool for assessing the ‘usefulness’ of instruments. We
will do this by quantifying the rate at which information may be obtained using a neutron
diffractometer or spectrometer. The techniques used may be straightforwardly extended to any
other counting instruments.

What is information? A theory of information transmission was first developed by Shannon [1]
and its application to science has been explored by Bruillouin [2] , and Jaynes [3] , among others.
This theory disentangles the qualitative aspects of information content (which are nonetheless
important ) from the quantitative aspects. In this paper we apply this theory to instrumental
measurements.

Consider a system, S, which, as far as an observer is concerned, can be in A, equally probable
states. If further information is given to the observer, which reduces the number states that S can
be in to A, then the content (/) of this information is defined as:

I=KIn(Ay/Ay) 1)
This definition of information results in an additive rule for independent information. Thus if

information is received in two stages, our knowledge about a system changing from A, to A, to
A, , the total information received is equal to the sum of the information received:

A A, A A A
Iy =Kl 22| = K| 2020 | = Kin| =24 K| 20| = 1, + 1 2
’ l:A2i| |:A1 AZ:' [Al] [AZ] ] : ( )

In a similar way a message may be said to contain information /,, :

Iy =KIn(M,/ M,) 3)
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where MO and M, are the number of possible messages before and after the message was received.
If the message is unambiguous then M, will equal unity and the information content of the message
simply equal to K In(M,). Thus, if a signalling system can transmit a binary digit of length »n
bits, the number of possible messages will be 2% » and the information content will be given by:

I, =KIn(2") @

The coefficient K in the above expressions is arbitrary, but if chosen to be equal to 1/ In(2) then
the information is expressed in units of 'bits’ . Thus substituting this value for X into equation 4
gives a value for Iy of nbits, in agreement with the binary message length.

In a similar way, the use of an instrument to perform a measurement may be considered a
transmission of information. We may calculate the quantity of information in a similar way, by
considering the number of outcomes that were possible before the measurement, and compare it to
the number possible after the measurement.

2 The scalar counter

All neutron scattering instruments are essentially counting devices. We must therefore begin by
establishing the information contained in an experiment involving a single scalar counter. The
number of possibilities before the measurement is clearly related to the maximum count that can be
measured by the scalar in the time chosen. With a maximum count of M, it could be argued that the
information contained in the measurement is:

I=Kin(M +1) | )

since one possible count has been determined (A ) from the M+1 (including zero) possible before
the measurement occurred (A,). This is too superficial since it ignores the effect of statistical
noise. The number of possibilities after the measurement is related to the probability distribution

- of the 'true count’ © that may be derived from the actual count k. When this is taken into account
the result is:

I=KhnfM[2n (6)

The details of this derivation, together with other results given below are to be found in reference
[S]. Having obtained the information content of a single scalar counter it is necessary to
consider the effects of backgrounds. Such backgrounds may be broadly of two sorts, those that
are independent of the actual count, k, but may be regarded as a constant fraction of the maximum
possible count (b = f.M), and those that are linearly related to the actual countk (b =£fk). Of
coulr‘se the background could be a mixture of these two types, or related in a more complex way to
both.

Here we will consider the first type of background. Using the result C4 - appendix of reference
[5] we may, quite generally write the information content of a pair of counts (k,1) from foreground
and background measurements:

]sample = Kz Zpklln(AOIAkI) (7)
k1



where p,, is the probability of the pair of measurements, and A, A, the possibilities before and
after the measurements. The details of the calculation are given in the appendix section E of
reference [5] and give the result:

; =K1:1J—47— LK -7) ( 2f )f/(l—f)
‘ 27 1+ \1+f @®

where the background, b=fM.

The equation (8) may be written

I.=Kh M

2z
®

where the maximum count, 3, is now modified by the factor, ¢, which is given by
FR-NT
1- 2
o[ 00 (2 )
+r)2\1+f

10

Thus c(f) is a measure of the effective reduction in the maximum count M due to the presence of a
background , b=fM. It will be seen that 10% background equivalent to a 50% reduction in
intensity, and 50% background equivalent to reducing the intensity by more than 90%.

3 A spectrum of scalar counts

We are now in a position to evaluate the information content of measurement on an instrument that
consists of a series of scalar counters. From the additive rule for independent measurements (2)
the information contained in a spectrum of n, independent scalar counters will be :

K G M,
I=—In — 11
2 ,E 2r b
where ¢, and M, are the background correction and maximum count for the i® scalar. If we can
make the simplifying assumption that these are the same for all scalars then equation (11) reduces
to:

M
1, = Kn_ In Jo— (12)
27

where n, is the number of channels in the spectrum of scalar counters.
Care must be taken in calculating n,, since it is the number of independent channels in a spectrum.

Thus, in a time-of-flight spectrum with n, time channels n_is generally less than n, since the data
recorded in adjacent time channels is not independent. To calculate the effective number of
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independent time channels we may use the equation (B4 ) to determine the effective width, A, of -
a peak in a spectrum.

It is interesting to note that the effective width (A ) of an exponential peak with a shape
y=exp{-t/7}is A, = et which, when expressed in terms of the standard deviation o, or

full-width at half height (w)is A, =ec,=ew,/In2 = 3.9w. For a Gaussian A g =027

and hence A g = 4130 g = 176w g+ Thus it will be seen that a Gaussian has an effective width

that is greater than an exponential peak of similar standard deviation. In fact it has been shown [4]
that, for a given standard deviation, the Gaussian is the widest (least informative) peak shape of
all.

Knowing the effective peak width in a time spectrum (A,) we may calculate the number of
independent time channels by dividing the time axis into channels with these widths. For example a
time-of-flight pattern in which the exponential peak shape varies such that w=r¢ (where r = 5. 10
) the number of independent time channels is given by

& =J_" B 39rt _39r i f1) 43

which for the HRPD instrument at ISIS operating between 1 and SA gives a value forng of 822.
It is also straightforward to show that, if instead of choosing to describe the powder diffraction
pattern as a time spectrum, we had worked in units of neutron momentum (Q o< 1f¢), the number
of momentum channels », isthe same. ~We may therefore rewrite equation (13) in terms of the
momentum channels ng,or, for an inelastic spectrometer in terms of the energy channels ne , SO

long as each is calculated using the effective width parameter in the appropriate units, and is
calculated from the resolution function using equation (14).

A =exp { Idx p(x)In p(x)} (14)

For instruments which measure both momentum and energy changes, for which the resolution in
energy and momentum are independent, and in which all channels have equal c and M :

cM
I =Kn,n, I, f=— 15
Rohy T (15)

In situation where A, and A, are not independent, the product n n, must be replaced by ng
channels, representing the number of independent areas into which the g-w plane may be divided,

using a 2-d version of equation (14).
4 Different sample states

By altering the conditions of the sample, changing its temperature for example, we are given new
information about a, potentially, different sample. An instrument that is capable of changing




sample temperature from 200 to 1000 C in steps of 2C can provide 400 independent
measurements. Thus we may combine the results outlined above to arrive at the complete equation
for the information that may be obtained from a single sample:

I=Knp, m{’g (16)

The above equation combines our knowledge about the count-rate, background, resolution and
range of the instrument together with the sample environment ranges of an instrument to produce a
figure for the information content of a measurement or series of measurements on a single sample.

5 The bandwidth of an instrument .

So far we have left out of this analysis the time taken to do experiments. Clearly an instrument that
takes a long time to set up and make a measurement is inferior to one that is quick to operate. For
this reason we wish to express the total effectiveness of an instrument as a bandwidth - and
calculate the rate at which instruments can acquire information. Introducing the term R for the
maximum rate that the i® channel can count, gives for a single sample state:

cR(t —ts)
I = Kn_ In JJ—m—rn™t (17
2r

Where t. is the set-up time of the experiment.

To understand the variation of this information measure as a function of time it is shown in Figure
1. For a certain length of time the information gained is zero- (O to A in Figure 1). This time is
comprised two parts: the set-up time and the time taken for the expected maximum effective count

(ie.cR(t-t) ) toexceed 27 (since a scalar that has a maximum count below this value is
providing no new information). From point A onwards the information content increases - but
only logarithmically.

Fig1
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The bandwidth (B) of the instrument may be defined by the rate, in ‘ bits / sec °, that information is
obtained. The expression for this quantity is therefore given by:
Kn,

g Knn. [cR(t-1,)

t 2

(18)

This measure is not constant and varies with the length of the measurement ,t. It reaches a
maximum at point B in Figure 1 and then declines. For later times , at C for example, the
information gained will be greater , but the rate at which it has been acquired will be slower. It is

interesting to note that the time at which the bandwidth is at its highest is when (if ¢=10)

Rt =2rme (19)

which means after there are approximately 17 counts in the highest scalar. This is clearly at a
point in the data collection at which there is too little information for the run to be complete but it
does provide some explanation for the ‘first neutrons are best” phenomenon. They certainly
provide the most information per neutron of the whole run.

If we now consider a set of runs, each lasting a time t, the total information gained over a time t will

be:
Knt ’cR(t, —ts)

t, 2r

(20)

Such an equation is relevant for a series of different sample environment settings on the same
sample, or in the case of a 3-AXIS instrument where data is recorded at a series of different
orientations of the same sample. The above equation now allows us to compare the rate at which
information can be collected, taking into account, intensity, backgrounds, resolution, temperature
ranges and set up time.

To compare instruments with one another is known to be difficult, and since their bandwidths vary
with time it is not possible to simply place instruments on a single real axis for comparison. It must
also be remembered that in setting the values for R and n_ in equation 19 the values may be
calculated for an ideal sample, to give the highest bandwidth possible for that instrument; or may
be modified to account for the effects of measuring samples which will lower these ideal values.
The instrument and sample must often be considered as a system if useful results are to be
obtained.

One way to proceed is to list the information that may be gathered, in certain lengths of time from a
single, ideal sample. A simple instrument, a low resolution liquids diffractometer for example,
will acquire information rapidly, but never achieve a very high value in reasonable length of time
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due to the logarithmic nature of the information gain. A very complex instrument, such as a
triple-axis spectrometer, may have a lower data collection rate, but a much higher eventual
information gain since the information is dominated in this case by the number of crystal settings
that may be employed (thus affecting n_ ) and not the count rate of the instrument.

Thus a useful way to proceed is to enumerate the information gain, from a single sample, that may
be obtained from an instrument over certain lengths of time.  This has been done for a range of
time periods, and for a set of ‘typical’ instruments - the results being shown graphically in Fig. 2.

6 Discussion

The information content of a measurement, and the bandwidth of an instrument may provide
measures of their usefulness, but how do these measures relate to the quality or quantity of
'science' that might be done using them? At the highest level the purpose of the measurement
might be to provide evidence for the mechanism of high temperature superconductivity - but the
connection between such high-level goals and the raw data is not straightforward.

Fig.2

Information {bits)

Measurement Time (sec)
What we have done, in determining the information content of a measurement made using a
particular instrument, is to determine the discriminating power of the instrument. Thus we have
effectively determined the total number of ‘distinguishable data states' that a particular
measurement can identify. We can call this the total number of states in d-space. However, raw
data is not the object of interest. The end product of all data analysis is a parameterised model of
the system under study. We may call this the p-space.
In crystallography, for example, the p-space consists of lists of atom types, positions and thermal
amplitudes. In spectroscopic studies the p-space might consists of modes, frequencies and
amplitudes. What does our knowledge of the maximum number of distinguishable d-states (n,)
tell us about the number of distinguishable p-states (n,) ? The answer is that :

n,<n, (21)
since in the mapping from d-space to p-space:
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i) one-to-many mappings are not allowed since they imply a single data state could give rise to
more than one distinguishable p-space state, and ii) many-to-one mappings reduce n,.

The information content of the p-space data (L) is related to that in the d-space (L) througha
similar relationship

1,<1, 22)

This result derives from equation (21) above together with the fact that the probability of each of
the d-space states was considered equally probable. Introducing non-equal probabilities into either
n, or n, reduces the information content. It is interesting to compare the information
content of a measurement on the High Resolution Powder Diffractometer (HRPD) at ISIS with one
of its results in p-space. The results of a powder diffraction measurement on a sample of benzene
produced a crystaliographic description of the crystal lattice that involved a total of 27 parameters
which were described using approximately 120 decimal digits. The length of this p-space message
is therefore around 400 bits , significantly less than the d-space information content of
approximately 20 kbits.
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Elements of Bayesian Experimental Design

D. S. Sivia
Rutherford Appelton Laboratory
Chilton, Oxon, 0X11 0QX, United Kingdom

We consider some elements of the Bayesian approach that are important for
optimal experimental design. While the underlying principles used are very general,
and are explained in detail in a recent tutorial text (Sivia 1996), they are applied here
to the specific case of characterising the inferential value of different resolution
peakshapes. This particular issue was considered earlier by Silver, Sivia and Pynn
(1989, 1990a, 1990b), and the following presentation confirms and extends the
conclusions of their analysis.

1. Introduction

Fig. 1. is a schematic representation of the idealised design process for the construction of
a new neutron scattering instrument or facility. Long before the hardware is ever built, the
proposed spectrometer is simulated in software, perhaps through the use of appropriate ray-tracing
Monte Carlo programs. In essence, the instrumental parameters, such as the lengths of the flight-
paths, collimation angles, moderator poison-depth, and so on, are varied to obtain the best data
from a typical input signal or scattering law. The crux of the problem is, of course, what do we
mean by the “best” data?

Well, the easiest response is to simply look at the resulting simulated measurements and
decide which appears to be better. Such visual considerations usually lead to:

(i) a preference for symmetric-looking data;
(ii) the use of a figure-of-merit of the type  Total number of neutrons/ (Fwim)*, where FWHM is
the full-width-half-maximum of the resolution, or point-spread, function.

"Typical" Simulation E——— ‘
spectrum X Data

Flight-path length,
collimation angles, j&
moderator, ... "Oplimise” design

Fig. 1: A schematic illustration of the process of instrument design; the central issue is what we mean by
“optimise”.
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To improve on these naive conclusions, we must take a step back and ask ourselves: why
do we do experiments 7 Clearly, because we want to learn something! Therefore, the more we learn
about our object of interest (per unit time, or money, or whatever) the better the experimental
design. While this basic criterion is eminently reasonable, its implementation tends to be awkward
as it often raises as many questions as it answers. Despite the difficulties, however, it’s well worth
thinking about optimal experimental design: even if we can only manage a rather crude analysis,
the insight it provides can be of enormous benefit in guiding us in the right direction. We illustrate
some the issues involved with a few simple examples in Section 2, generalise the analysis is
Section 3 and conclude with Section 4.

2. Simple examples

In order to see the sort of difficulties that arise when we consider optimal instrument
design, let’s begin with some fairly easy problems; although elementary in nature, they are highly
instructive because the situations are simple enough to be understood in detail.

Amplitude and position of a peak

Suppose we have a sharp isolated peak (3-function) which is blurred by a Gaussian
resolution function of width w to yield a noisy signal of scattered neutrons. Then, with some
suitable approximations, it can be shown (Sivia 1996) that the uncertainty in the inferred amplitude
A and position . of the peak allowed by the data is roughly given by:

w(T+BJ§)

. and  (3ASH) = 0 , (1)

T+ B2
BA%) o —— | (Ju?) o<
(a7) o= TEBZ | (50)
where T is the amount of time for which the measurements are made and B is the magnitude of a
slowly-varying background (which might also be proportional to T). If the background signal is
negligible, then we find that the reciprocal of the location-uncertainty yields the conventional
figure-of-merit:
2 2
(7)o« 2 o (V) . @
Tw Total number of neutrons

This is not the complete answer, of course, as Eq. (1) also tells us that the uncertainty in A is
inversely proportional to w. Thus, we are faced with a typical experimental design dilemma: for a
given amount of data collection time, the accuracy in our estimate of the peak position is improved
by making the resolution function as narrow as possible while a broader point-spread function is
needed to obtain a reliable measure of the amplitude! Such conflicting requirements can only be
settled through a deeper soul-searching about exactly what is most important to us, but the analysis
has helped to focus our attention on the relevant issues. Two other conclusions that can be drawn
from Eq. (1) are that (i) the errors in our estimates of the amplitude and position of an isolated peak
are essentially uncorrelated, and (ii) the uncertainty in our inference of both parameters is inversely
proportion to VT for Poisson data.

Relative amplitudes of two closely-spaced peaks

Now let’s move on to a problem that resembles the analysis of powder diffraction data,
albeit in its most embryonic form: the extraction of Bragg peak intensities from two reflections of
known, but closely-spaced, locations. We will assume that both peaks are inherently narrow, so
that the signal of scattered neutrons is dominated by the resolution function, and consider the effect
of the four alternative lineshapes shown in Fig. 2(a): a Gaussian, a triangle, a rectangular box and
a sharp-edged exponential. While these idealised point-spread functions may be somewhat
removed from reality, they will still help us to gain an appreciation of the main points. They have
been scaled to have the same area and FWHM, although our general conclusions would be very
similar had we equalised their variance instead.




Fig. 2(b) shows a plot of the relative uncertainty in the ratio of the intensities of the two
Bragg peaks, o(z)/z where z=I,/I,, as a function of the separation AX between them. The curves
are for the case when the true ratio is unity, and for a certain level of counting statistics; if data
were collected for ten times longer, then all the lines would be shifted down by a factor of V10. We
see that the error-bars converge to the same (small) value in the well-separated limit AX >>
FWHM. This is as expected because it is simply the total number of scattered neutrons, or the
integrated area under the resolution function, that controls the reliability of the intensity estimates
for isolated peaks. The shape of the point-spread function becomes important, however, when the
reflections start to overlap significantly. Indeed, Fig. 2(b) shows that, for a given AX << FWHM,
the ratio uncertainty (6z/z) satisfies the relationship:

€)

z)2> (FWHM)®  Gaussian / triangle
oC
z

Total number of neutrons X <(§— .
FWHM top - hat / exponential

Resolution Function R(X)
A
Relative Error In Ratio

100 PG

L 1] ‘\, X‘A"\ 2 .

5 // \ L
NS N N 0.01 b - i
P 2 0.01 0.1 1
X=Coordinats Separataion AX/FWHM

Relative Error In Ratlo
Relative Error in Ratio

1 sat ' 0.01 i .
0.01 0.1 1 ©0.01 04 1
Separataion AX/FWHM Seporataion  AX/FWHM

Fig. 2: The relative uncertainties in the inferred ratio of the intensities of two closely-spaced Bragg peaks for the
four different resolution functions shown in (a). In (b) and (d) the true ratio is unity, while it is four in (c);
(d) is for data that were binned 16 times more coarsely than those for (b) and (c).
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Therefore, while a four-fold increase in the experimental time is required to compensate for a
doubling in the width of a Gaussian resolution function (or a halving in the separation between the
peaks), only a two-fold increase is needed in the case of a sharp-edged exponential point-spread
function.

The curves in Fig. 2(c) are for an identical set-up to the one in Fig. 2(b), except that the
true ratio of the Bragg intensities is four instead of unity. The main difference that results is that the
reliability of the inferred ratio from the asymmetric, decaying, resolution function depends on the
order in which the smaller and larger peaks appear. Thus we meet another dilemma that often
confronts us in optimal experimental design problems: what’s best can depend on the answer! This
difficulty can be resolved here by weighing it against the versatility afforded by having a sharp-
edged point-spread function: the reliability from even the adverse orientation is better than that for
the Gaussian case, for example, when AX << FWHM, and also Eq. (3) tells that any misfortune is
more easily compensated for by increased counting time in that instance. The only real drawback in
having a peak-shape with a sharp edge is that we need to have good resolution in our X
measurement space (spatial and/or temporal) in order to make the most of it. This is illustrated in
Fig. 2(d), which is for the same set-up as in Fig. 2(b) except that the data where collected in bins
that were 16 times more coarse; for very close Bragg peak spacing, the uncertainty behaviour of
the ratio from the top-hat and exponential point-spread functions starts to mimic that from the
Gaussian and triangle.

3. A more general analysis

Rather than working through more elaborate specific examples, let’s extend the analysis by
considering a generic data analysis problem. In essence, our central task usually boils down to one
of making inferences about an object of interest, defined by a set of parameters {a;} =a, given a set
of data D, from experimental set-up E, and the relevant background information 1. As such, our
state of knowledge (or ignorance) is encapsulated in the conditional probability distribution

function (pdf) prob(a|D,E,I). The position of the maximum can be regarded as our best estimate
of a, while the spread of the posterior pdf about this point indicates our degree of uncertainty; the
sharper the posterior pdf, the more reliable the inference.

The criterion for optimal experimental design is then simply one of trying to make the
posterior pdf for a as narrow as possible. To see how the data enter into this equation, we need to
use Bayes’ theorem:

prob(a| D,E,I) o< prob(D|a,E,I) x prob(a|l) , ey

where we have dropped an unnecessary conditioning on E in the term on the far right-hand-side.
Thus, the measurements influence our inference of a through the likelihood function and so we
must look at the way in which the set-up E affects the spread of prob(Dla,E.I) : the sharper this
pdf, the greater the constraints imposed by the data and the more we learn from the experiment.

Singular Value Decomposition

In order to summarise the essential breadth-characteristics of the likelihood function, it is
convenient to make a multivariate Gaussian approximation to it. This is most easily done by
expanding its logarithm as a quadratic Taylor series about the maximum at a,:
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Fig.3: The Gaussian, or quadratic, approximation to the likelihood function, where its width and orientation is
given by the eigen-properties of the second-derivative H matrix.

prob{D|a,E,I) o< exp[ 1(a—a‘,)TH(a—a,,):| , 5)

2

where the elements of the (real) symmetric matrix H are given by minus the second-derivatives
0°L/oaida, evaluated at a,, and L =log,[prob(D}a,E,I)]. The situation is illustrated in Fig. 3,
which represents a 2-dimensional slice through the pdf of Eq. (5). Within this approximation, the
width and orientation of the likelihood function is determined by the eigen-properties of H:

Hei = }biei . (6)

The eigenvectors {e;}, which are the principle directions of the ellipsoid in Fig. 3, yield the linear
combinations of the parameters {a;} that can be estimated independently of each other; the square-
roots of the reciprocal of the eigenvalues {);} give the corresponding reliabilities.

Large eigenvalues (A—o0), therefore, indicate the features of the object of interest that are
determined well by the data, where as small ones (A—0) warn of great uncertainty. As such, the
effective “number of good measurements” Ngooq i equivalent to the number of directions in which

the likelihood function is narrower than some desired value. One suitable measure of this quantity
is:

> A
Ngood = e )
SR W ery
where unity is contributed to the sum when A;>>M, and nothing is added when Aj<<Ag. We
cannot claim anything particularly fundamental about the choice of the formula in Eq. (7), other
than it being analogous to a statistic that appears in classic MaxEnt data analysis (Gull 1989) which
has a similar interpretation. The important point is that the information content of a set of data, with
regard to the M parameters {a;} defining the object in which we are interested, is contained in the
eigenvalue spectrum of the log-likelihood function; Eq. (7) simply represents a single-value
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measure which captures an essential characteristic of it, and lies in a continuum between zero and
M.

Resolution functions
Since experimental measurements are usually regarded as being subject to mdependent,

additive, Gaussian noise, the likelihood function is given by the exponennal of the x* misfit
statistic (the sum of the squares of the “data minus fit over the error-bar” residuals):

2
L = log,[prob(D|a,E,I)] = Constant — -XE- . (8)

While Eq. (8) may be highly idealised, it’s a good approximation to the Poisson model when there

are more than a few counts per channel The components of the important H matrix are then related
to the second (partial) derivatives of 3°:

1 a2 X2
o= 9
Hl'] 2 aaiaaj ( )
If the problem is linear, so that the object-to-data transform can be written as:
M
Dk = 2 ij a,j + Ck x Ok » (10)

=1

wherek = 1,2, 3, ..., N, and the elements of the matrix O (whose ijt2 element would be like exp|-

(x-x;)*/2w"] for a Gaussian blur) and vector C (which might equal to a constant for a slowly-
varying background) are independent of a, then Eq. (9) becomes:

N
0. O..
Hij=24‘l-2-ﬂ. an

= Ok

For the specific case of a convolution with a invariant resolution function r(x), it can be

shown (Sivia 1996) that the eigenvalue spectrum of H is roughly given by its Fourier transform
R(w). That is to say, the eigen-functions are:

e(x) o sin(w;x) and  cos(ox) , (12)
and the corresponding eigenvalues are:

T[R(o;)’

" (1+B()R(0) 4
where T is the amount of time for which the data are collected, By is the fraction of the neutron
counts emanating from the background signal, as compared to those from the spectrum of interest,
and R(0) is the integral of r(x). While the sines and cosines of Eq. (12) only hold exactly under
simple ideal conditions, being replaced by wavelet-like functions in practice, a Rayleigh-Ritz type
argument (e.g. Arfken 1970) suggests that Eq. (13) should provide a good approximation to the
eigenvalue spectrum more generally.

The eigenfunctions of Eq. (12) tell us that, for a convolution problem, it is natural to think
about the object of interest, a spectrum f(x) say, as being constructed from the sum of sines and
cosines; the eigenvalues of Eq. (13) indicate how well the related coefficients in the series
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expansion can be estimated from the data. In particular, the uncertainty in the structure on length-
scales of 1/ is given by the reciprocal of IR(w) . Since the magnitude of the Fourier transform of
1(x) systematically becomes smaller for large w’s, as illustrated in Fig. 4, higher frequency features
become increasingly unreliable. This confirms our intuition that information about fine detail is lost
in a blurring process. The degree of the loss is not uniform, of course, and depends strongly on
the shape of the point-spread function. This is readily seen from Fig. 4, which shows the Fourier
transforms of a Gaussian and a sharp-edged exponential resolution function (both having the same
FWHM and area); the eigenvalue spectrum from the former nose-dives rapidly towards zero, where
as it decays away only slowly for the latter. One consequence of this behaviour is that we cannot
differentiate between two closely-spaced narrow peaks and one of a moderate width when the data
are subject to a broad Gaussian blur, but we can do so when the resolution function has a sharp
edge. Figure 4 also indicates that to compensate for a doubling in the FWHM of a Gaussian r(x), at
the finest level of detail, would

10 ;:‘ : 1

IR()!

Fig. 4: (a) A Gaussian and exponential resolution function having the same FWHM and integrated area. (b) The
modulus of their Fourier transforms. (¢) The same as (b), but plotted on a logarithmic scale. (d) The
equivalent of (c), but for a Gaussian and exponential having only a quarter of the width in (a).
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entail an increase in the count time by many orders of magnitude! As mentioned earlier, the only
proviso to the numerous advantages of having a sharp edge in our response function is that the data
must be collected in bins of sufficiently high resolution.

4. Conclusions

The topic of optimal experimental, or instrument, design is both important and messy. The
essence, of course, is very easy: we need to make the data as sensitive as possible to the object of
interest. Its implementation, however, is usually not so straightforward! There are two main
reasons for this: (1) what’s best depends on the precise question being asked; and even worse, (ii)
what’s best can depend on the answer we’re seeking. Despite these, and many other, difficulties,
it’s always well worth thinking about the question of optimal experimental design in a Bayesian
manner; at the very least, it might stop us from doing anything too silly. For example, we quickly
start to appreciate that the shape of a resolution function is often more important than its raw width.
In particular, we learn that it is extremely useful to preserve and, if possible, enhance sharp
features in a point-spread function if detailed information is required.

References

Arfken, G. (1970), Mathematical Methods for Physicists, Academic Press, New York.

Gull, S.F. (1989), “Developments in maximum entropy data analysis”, in Maximum Entropy and
Bayesian Methods, Cambridge 1988, ed. J. Skilling, Kluwer, Dordrecht.

Silver, R.N., Sivia, D.S. and Pynn, R. (1989), “Information Content of Lineshapes”, in
Advanced Neutron Sources 1988, ed. D. K. Hyer, Institute of Physics Conference Series
97, 673-683.

Silver, R.N., Sivia, D.S. and Pynn, R. (1990), “Optimization of Resolution Functions for
Neutron Scattering”, Nucl. Instr. Meth. A287, 538-550.

Sivia, D.S., Silver, R.N. and Pynn, R. (1990), “The Bayesian approach to optimal instrument
design”, in Neutron Scattering Data Analysis 1990, ed. M. W. Johnson, Institute of
Physics Conference Series 107, 45-55.

Sivia, D.S. (1996), Data Analysis: a Bayesian tutorial, Clarendon Press, Oxford.
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Abstract

We describe methods that we have used for the conceptual design of the Disk Chopper
Spectrometer at the Cold Neutron Research Facility, National Institute of Standards and
Technology. Most of the discussion concerns the multiple chopper system. No single design
method is best in every situation. We believe that an analytical approach is preferable, whenever
possible. Graphical methods of expressing problems have been very instructive. We have also
found it useful, and occasionally invaluable, to cross-check results obtained using different
methods, such as analytical integration and ray-tracing.

INTRODUCTION

One of the new neutron inelastic scattering instruments at the Cold Neutron Research Facility
(CNRF), National Institute of Standards and Technology (NIST), is a direct geometry time-of-
flight spectrometer known as DCS (Disk Chopper Spectrometer) [1]. The DCS promises to be an
exciting addition to the portfolio of instruments at the CNRF. We anticipate that it will be usable

over a wide range of incident wavelengths A, from <3 A [1A = 0.1 nm] to 10 A or more, thanks
in part to a so-called “optical filter" [2] and in large measure to the excellent performance of the
liquid hydrogen cold source [3]. We also expect that the possibility of operating the instrument in
three distinct “resolution modes,” to be discussed below, will significantly enhance its range of
applications.

The DCS is a direct descendant of the first disk chopper instrument, the INS spectrometer at the
Institut Laue Langevin (Grenoble, France). Other instruments of this type are MIBEMOL at the
Laboratoire Léon Brillouin (Saclay, France), and NEAT at the Hahn-Meitner-Institut (Berlin,
Germany) (HMI). Each of these instruments, along with the DCS, uses a number of rotating disk
choppers to produce a pulsed monochromatic neutron beam at the sample position. A large array
of detectors is placed at a common distance from the sample position, and the energies of the
detected neutrons are deduced from their times of arrival [4]. The secondary spectrometer (after
the sample) is conceptually straightforward to design. In contrast, the conceptual design of the
primary spectrometer, especially the multiple chopper system, is far from trivial. Though the
designs of the chopper Systems of IN5, MIBEMOL and NEAT have been documented [5],
relatively little has been written about design methods. In the present article we partially redress
the situation, describing some of the more important aspects of the approach that was used for the
conceptual design of the DCS choppers. We also discuss, albeit briefly, methods that were used to
design other components of the DCS.

Since the early stages of planning the CNRF, two time-of-flight (TOF) instruments were
envisaged. One was the double monochromator Fermi chopper spectrometer that was already
operating in the reactor confinement building. The front end of this instrument was redesigned and
the spectrometer was relocated in the neutron guide hall [4]. The second TOF instrument was
intended to complement the Fermi chopper spectrometer, with improved energy resolution and a
clean elastic line shape. These considerations, with the additional requirement that the instrument

94




be operable over a broad range of incident wavelengths, led us to conclude that the pulsed
monochromatic beam at the sample should be produced using a set of phased disk choppers.

The decision to use phased disks implied that the DCS, in common with IN5, MIBEMOL and
NEAT, would have one or more pulsing choppers, monochromating choppers and order removal
choppers, plus a frame removal chopper (for a discussion of the functions of these different

types of choppers, see Ref. 4). The decision also provoked a number of important questions that
were to some extent interdependent. Thus, the process of designing and optimizing the instrument
at a conceptual level was iterative. The more basic questions were considered first, and answers
were obtained using simplified assumptions about the less important parameters of the instrument.
Additional questions were then addressed, and in so doing earlier conclusions were sometimes
modified. The process continued over many months, in the course of which several papers were
written, describing specific aspects of the overall design [6,7,8]. This exercise was useful in that it
helped us to clarify our thoughts during the critical design process.

In the following paragraphs we provide a ““broad brush" description of the approach that was
used for the conceptual design of the DCS. The discussion is necessarily brief, and somewhat
simplified. What really happened was more complicated and considerably less logical than what is
described.

OVERALL PERFORMANCE

As a first step in thinking about the conceptual design of the choppers, we made simple estimates
of count rates and resolution widths for the complete instrument. We did this in order to develop a
quantitative understanding of chopper design constraints imposed by performance requirements for
the instrument as a whole. Because of their known advantages (see e.g., Ref. 7) and in common
with MIBEMOL and NEAT, we assumed that the DCS would use pairs of counter-rotating
choppers to pulse and monochromate the neutrons. To understand the overall performance of the
instrument, we assumed that the counter rotating choppers had single slots. We also ignored
intermediate order and frame removal choppers and we assumed that the speeds and dimensions of
the choppers would be comparable with those of the choppers planned for the NEAT spectrometer,
since significantly higher values could not be contemplated due to engineering ( i.e. safety and
material property) considerations. Important quantities that were varied were the chopper slot
widths and the distances D,, and D, between the choppers and the sample position (Fig. 1).
Reasonable assumptions were made with regard to the wavelength dependence of the cold source
intensity, guide dimensions, and the critical angles per unit wavelength of the guide surfaces; some
of these parameters were dictated by the design of the cold source itself. We calculated the
intensity per pulse at the sample position, and chopper contributions to the elastic energy
resolution[9]. Contributions from the sample and detectors were handled using expressions
discussed by Windsor [10], treating the size of the sample, along with the dimensions and fill
pressure of the assumed gas detectors, as variable quantities. Putting in a value for the sample-
detector distance, Dg,,, we could then compute the overall elastic energy resolution of the
instrument. Given a reasonable criterion for the speed of the frame overlap removal chopper, we
could also calculate the neutron intensity at the sample position and we could estimate the count rate
per detector, assuming that the sample was an isotropic elastic scatterer which scattered, say, 10%




ARBAY
rRARAFE AR
IR IR -2 R—
TR N CHAMBER
(11 ININL I“H
e _—
u _.,_,_h GUIDE
SR A
\-.
Dm\
"‘-.Dq,s."&

Dyg

Fig. 1. A schematic diagram showing the main components of the DCS. Two pairs of counter-
rotating choppers are shown. Intermediate choppers are omitted. Each chopper is shown with a
single slot. Slot widths are 2W, and 2W,, for the pulsing and monochromating choppers
respectively, and the width of the guide is 2W;. of the incident neutrons. It was important to
calculate the count rate since the number of detectors required to fill a given solid angle, which
strongly influences the total cost of an instrument, depends quadratically on Dgp!

These calculations could have been performed using Fortran (or some other programming
language), and indeed a few calculations were made in this way, but we found that using a simple
spreadsheet program was a more rewarding approach, in the present context and indeed for a
number of calculations that the author has performed in the past few years. Such calculations
typically require several input parameters which are related by rather simple equations to

the output quantities of interest. The input is readily modified, and a number of intermediate
quantities can be displayed. The spreadsheet method is good at answering, ™~ What if?"
questions, such as, “~What if I change the incident wavelength from 6 A to 6.5 A2," and it is
particularly useful when some or all of the implications of a change in an input parameter turn out
to be less than obvious. In such situations one can readily work one's way through the
spreadsheet in order to understand what is going on. (It is good practice to do cross-check
calculations using a conventional programming language, since a disadvantage of the spreadsheet
approach is that error discovery is not always straightforward.)

OPTIMIZING THE CHOPPERS AND THE GUIDE

One of the initial design goals for the DCS was to achieve a full width at half maximum (FWHM)
energy resolution of =10 peV, with instrument parameters optimized to maximize the intensity in
the detectors, using a relatively short wavelength of about 6 A in order to be able to access a broad
range of wave vector transfers. Our spreadsheet calculations told us that this imposed significant
constraints on several key parameters, including the distance D, ,between the chopper pairs, the
chopper burst times, the size of the sample, the distance Dgp,, and the thickness of the detectors.
We established that D,, and D, should be roughly 8 m and 4 m respectively, and that the detectors
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should be no more than about 12 mm thick. (The actual values of D,,and Dg, for the DCS are 9 m
and 4 m respectively, and the nominal inside thickness of the detectors is 11.5 mm.)

Our treatment of the choppers [9] was still relatively crude, so the next step was to improve our
understanding of the transmission properties of two counter-rotating chopper pairs with a guide
placed in between. For this purpose, we ignored the small distance between members of a chopper
pair, and we ignored the chopper/guide mismatch, i.e., the mismatch between the wedge shape of
the chopper slots and the rectangular shape of the guide. With these approximations, we

developed [6] analytical expressions for the energy resolution at the detector (elastic and inelastic)
and for the intensity at the sample. (The treatment also yielded results for single choppers separated
by a length of guide [6].) Independent programs were written to confirm the analytical results and
to investigate effects due to chopper/guide mismatch.

A key conclusion from these calculations was that optimization imposes conditions on the ratios
2W,/2Wand 2W ,/2W;, where 2W, and 2W  are the widths of the slots in the pulsing and
monochromating choppers respectively, and 2Wj, is the width of the guide. To take a simple
example, doubling 2W, and 2W, (in order to improve the count rate at the expense of resolution)
implies 2W, should also be doubled. The assumption, and the hope, was that we would be able
to design the counter-rotating chopper disks with at least three slots of different widths on each
disk, so that we could select from among the same number of resolution/intensity combinations, or
““resolution modes" by changing the relative phases of the disks in each pair. We were therefore
faced with the challenge of devising a method to change the width of the guide, since failure to do
s0 would result in considerable intensity loss. The only practical way that we could achieve the
effect of changing the guide width, was to design a channeled guide [6, 4], better regarded as a set
of nested guides. The analytical treatment was extended to handle such a device and the numerical
calculations were similarly modified.

THE TRANSMISSION OF A COUNTER-ROTATING PAIR OF CHOPPERS

In parallel with these developments, we had to determine how many slots we could actually place
on a pair of counter-rotating choppers, and where they should be placed, assuming certain slot
widths (dictated by the desired burst times of the choppers) and requiring that the chopper pair
produce one pulse (and only one pulse) per chopper revolution, in each of its phasing
configurations, i.e. each of the resolution modes. We initially (and quite unconsciously) assumed
that we could neglect the separation between the choppers, which is about 55 mm. The problem

could then be succinctly formulated as a (©, t) diagram, where t is time and © is angular
displacement (see Ref. 7, Fig. 2), but a general method of finding acceptable slot locations was not
obvious. We concluded that a ““brute force" approach was the most practical way to try to solve a
given problem. Using this approach, in combination with the analytical work described in the
previous section, we designed slot patterns for the pulsing and monochromating choppers. We
also constructed paper models of the disks in order to convince ourselves that our choice of slot
locations would work. Our design called for four pairs of diametrically opposed slots on the
pulsing chopper disks, and six such pairs on the monochromating chopper disks.

Some weeks after the design had been communicated to the manufacturer, we realized that the
design would not work after all. We were fortunate that the manufacturer had not started to
machine the slots! The problem was that we had failed to appreciate the implications of neglecting
the separation between members of a chopper pair. Taking this into account literally added an extra
dimension to the problem, since the requirement of only one pulse per revolution had to apply for
all conceivable wavelengths in the guide. In the time that a 20 A neutron takes to travel 55 mm (the
approximate distance between two disks of a pair) each disk, turning at 20,000 rpm, rotates more
than 33°! Thus, it should not be hard to appreciate that our design for the slots would have been a
miserable failure.
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Fig. 2: A typical transmission function P(A, t) for a separated pair of counter-rotating choppers. It
is only nonzero within the solid areas. The symmetry of the diagram is centered rectangularly;

vectors of the primitive lattice are (0,T) and (A, T/2). This particular diagram describes the
transmission function for the pulsing choppers of the DCS. For choppers turning at 20,000 rpm

with 55 mm separation, T = 3000 ps and A = 216 A..

We accordingly had to develop a method of analyzing the behavior of a separated pair of counter-
rotating choppers with more than one slot on each disk [7]. The transmission P for such a device

is periodic, not only in time with period T = 2%/w, where ® is the rotational speed of the disks,
but also in wavelength Awith repeat wavelength A = (b/m)(T/2s), where h is Planck's constant, m

is the neutron mass, and 2s is the chopper separation; Ais the wavelength of neutrons that take one
complete chopper period to travel the distance between the two disks. For a typical pair of

choppers with several slots apiece, P(A, t) is only nonzero within small areas in (A, t) space (Fig.
2). Neglecting the time dependence of P, the chopper pair is a crude velocity selector which only
transmits neutrons whose wavelengths lie within certain bands. The locations of these bands are
linearly related to the relative phase of the disks [8].

Combining our previous analytical studies [6]and our desire to have at least three slots of different
widths on each disk (and an appropriate channeled guide) corresponding to at least three
significantly different resolution modes, we determined the widths of the slots on the disks. For
given slot locations it was a simple matter to determine which wavelengths, relative to the desired

wavelength A, would be transmitted by a counter-rotating chopper pair, but the challenge was to
find acceptable slot locations, i.e. slot locations such that the chopper pair produces only one pulse
per revolution in each of the resolution modes. Though the task could probably have been
automated, we adopted an interactive approach, “manually” adjusting slot locations in order to
maximize the smallest of the separations between the lowest unwanted wavelength and the desired
wavelength, there being one such quantity for each resolution mode. We also had to take into
account the periodicity of the transmission diagram as a function of wavelength, since short

wavelength (A < A )contaminant neutrons will be transmitted if A, exceeds a threshold value
(which itself is a function of the slot widths and locations and of the resolution mode).
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Using this approach, the best slot configurations that we obtained were still not completely
satisfactory, because the shortest contaminant wavelength, considering all conceivable operating
conditions, was not long enough that we could be entirely sure that it would not cause us
problems. On reflection, we realized that we could improve the situation by finding slot
configurations that produced different contaminant wavelength spectra for the pulsing choppers
and the monochromating choppers. The differences between the spectra were such that the
shortest contaminant wavelength jointly transmitted by the pulsing and monochromating chopper
pairs was considerably longer than the shortest contaminant wavelength transmitted by the chopper
pairs considered one at a time [8]. This is how we decided the final slot locations. We also
concluded that no more than three slots could be located on each disk (whereas we had previously
thought that we could have at least four pairs of slots per disk).

ORDER AND FRAME REMOVAL CHOPPERS

At this stage, the conceptual design called for two pairs of counter-rotating choppers, each of
which had three slots of different widths, optimized for three distinct resolution modes, such that
each pair would transmit one and only one neutron pulse per revolution as long as the desired

wavelength A, (with the choppers spinning at their maximum speed of 20,000 rpm) was no
greater than A__ ~ 15 A =, and as long as we could assume that neutrons with wavelengths greater
than A, + A = were sufficiently scarce that their presence in the guide could be totally ignored

[8]=; the calculated value of the fixed offset A, was originally =64 A[8],buta very recent
analysis, prompted by the task of writing this paper (!), uncovered an oversight in the earlier

calculation; A is in fact ~42 A. (The values of A_,_ and A are proportional to the chopper
period.)

A single pulsing chopper and a single monochromating chopper, each with single narrow slots,
turning with period T, separated by a distance D,, , and phased to transmit neutrons of wavelength

Ao , will also transmit neutrons of order k, i.e., neutrons with wavelengths A, = A, + kAA, where
k is a positive or negative integer and A\ = (W/m)(T/D,,) Typically AX is of order 1 A. For

example, AL = 1.32 A if T = 3000 us and D,, =9 m. A comparable situation obtains if the single
choppers are replaced with counter-rotating chopper pairs, but the range of k is generally more
restricted because the chopper pairs act as crude velocity selectors as discussed earlier. To
suppress the unwanted orders in a multiple chopper instrument, one (INS, MIBEMOL) or two
(NEAT) intermediate choppers are generally installed. For the DCS we decided to use two order
removal choppers. The widths of the single slots in these choppers were chosen to be as small as
possible, such that the choppers would not remove neutrons with wavelengths corresponding to k
= (. The positions of the choppers were determined by trial and error, and the final choice of
chopper positions was carefully checked using an acceptance diagram procedure [11].

The location of the frame removal chopper is relatively unimportant (though there can be situations
where this chopper assists in the task of order removal). For convenience the frame removal
chopper is located in the same housing as one of the order removal choppers.

THE REST OF THE INSTRUMENT

A neutron optical filter is installed between the source and the choppers [2]. The device consists of
two parallel sections of guide, with a tapered section in between. Angular offsets between the
sections are such that there is no line of sight from the source to the choppers. Hence high energy

neutrons and y-rays are strongly attenuated, but long wavelength neutrons are transmitted with
high efficiency. The acceptance diagram approach was used for the design of the optical filter, and
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ray-tracing calculations were performed to confirm the analytical results and to investigate losses
associated with imperfect surface reflectivities. Acceptance diagrams have also been used to
estimate the effects of guide cuts at the beam shutter and at the chopper disks, and the intensity loss
associated with the inevitable gap between the end of the guide and the sample.

An important component of the DCS is the oscillating radial collimator located within the sample
chamber. Itis designed to remove much of the scattering from materials surrounding the sample,
such as heat shields and vacuum jackets, without significantly reducing the scattering from the
sample itself. To quantify our understanding of this type of device, we used analytical and Monte
Carlo ray-tracing techniques [12].

FINAL REMARKS

Our experience with the conceptual design of the DCS has taught us several important lessons. We
have found that many problems with guide systems and choppers can be usefully formulated,
pondered, and sometimes solved, by drawing rather simple two-dimensional straight line

diagrams. A good example for guide systems is the (y, B) acceptance diagram, where y and
represent a neutron's transverse spatial and angular coordinates in the horizontal plane [11].

Examples in the context of chopper systems include (y, t) and (O, t) plots such as Figs. 1-4 in Ref
13}) and Fig. 2 in Ref.7, (t, x) plots where x represents distance along the direction of travel (e.g.,

Fig. 19 in Ref.4, Figs. 5 and 7 in Ref. 7), and (A, t) plots such as those in Ref. 7). A particularly
fortunate circumstance is that a single diagram sometimes represents many situations. For

example, the (A, t) diagram shown in Fig. 2 applies for all choices of chopper speed, all choices of
incident wavelength, and all three choices of resolution mode, as long as the diagram is correctly

located with respect to the t axis and its periodicity in Aand t is borne in mind.

Certain problems can be formulated by drawing diagrams, analogous to those just discussed, but

in three or more dimensions. An example is the (y, B, z,y)) acceptance diagram, where z and y
represent a neutron's transverse spatial and angular coordinates in the vertical plane. Such a
diagram is almost impossible to visualize. On the other hand, algorithms almost certainly exist to
handle the four-dimensional operations that are required to make manipulations analogous to those
used with two-dimensional acceptance diagrams [11], to project the results into a reduced
dimensional space so that they can be visualized, and to compute integral properties such as
volumes, centroids and widths.

To handle more complicated problems, the author's preference is to see how much progress can be
made using analytical techniques, and to use ray-tracing if and when analytical methods are
inadequate or cumbersome. Some people prefer to use ray-tracing in all but the simplest situations.
This approach has considerable merit but it must be used with care, whenever possible
implementing well-known techniques such as importance sampling in order to make the calculation
reasonably efficient. Simulations can be very valuable for calculations of intensity and resolution,
especially when one wants to incorporate complications such as imperfect guide reflectivities,
misalignments, difficult geometries and so on. On the other hand, great caution is required if the
object of the exercise is to determine whether the probability of an unlikely event is simply very
small or identically zero; a good example is a calculation which seeks to confirm that order removal
choppers have been correctly placed. Analytical approaches are not without their own limitations
and disadvantages, and mistakes are just as easy to make. There is great merit in using more than
one method to solve a problem, since disagreement implies that there is an error in at least one of
the approaches. Unfortunately, the fact that there is agreement among the results of different
calculations does not necessarily imply that the correct answer has been obtained!
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MONTE CARLO

Monte Carlo (MC) cannot be used to prove that something is impossible, e.g., that neutrons cannot
get through a device. If MC says that the transmission T>0, we know that T>0; but if MC says T
= (), we do not know whether T = 0 or T>0.

MC is not the best approach in cases where the measured performance only depends on
combinations of parameters.

Look at “http://www.ilLfr/in5/IN5.html”, “http://www-11b.cea.fr/menl/spectro/mibemol.htm]”, and
“http://www.hmi.de/grossgeraete/bensc/instrumente/v3.html” for information about INS,
MIBEMOL and NEAT respectively.

For information about IN5, MIBEMOL and NEAT, look at \newline
“http://www ilLfr/inS/INS.html”, “http://www-l1Ib.cea.fr/menl/spectro/mibemol.htm]”, and
“http://www.hmi.de/grossgeraete/bensc/instrumente\-/v3\-. html” respectively.

Look at “www.hmi.de/grossgeraete/bensc/instrumente\-/v3\-.html”, “www-

1Ib.cea.fr/menl/spectro/mibemol.html”, and “www.ill.fr/inS/INS.html”, for information about
INS, MIBEMOL and NEAT respectively.

101
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Abstract
The IN15 neutron spin echo spectrometer at the Institut Laue-Langevin (Grenoble) has been
designed to accomodate a toroidal focusing mirror. This mirror will be used to increase the
intensity at the sample position for measurements at long neutron wavelengths and to perform

measurements in the low g-range (10-3 A-1). This paper summarizes the results of ray-tracing
simulations for the toroidal mirror system. These calculations were performed in order to assess
the effects of the neutron wavelength, gravitational fall, wavelength resolution and spherical
aberrations on the quality of the focused beam. The gain in flux that can be expected from the
focusing geometry is estimated. The recent installation and characterisation of the mirror is also
briefly described.

INTRODUCTION
The IN15 neutron spin echo spectrometer at the Institut Laue-Langevin, Grenoble, has been
designed with the aim of (1) increasing the energy resolution and (2) extending the minimum wave

vector transfer range (g-range) to the 10-3 A-l range while maintaining a reasonable flux. To
achieve these goals, first the precession coils were optimized: the dimensions were increased and
larger Fresnel coils were developed to correct the phase inhomogeneities. However, the gain in
resolution is mainly obtained by using long wavelength neutrons and IN15 is "fuelled” by neutrons
moderated in the ILL cold source. The use of long wavelength neutrons is also a step towards the

small g-range. However, in order to perform measurements in the 10-3 A-1 range, without
building a very long instrument, IN15 was constructed with a focusing option. In this
configuration, neutrons are totally reflected by a large toroidal mirror which produces an image of
the source aperture in the plane of an area detector. It is thus possible to recover a large solid angle
of the diverging incident beam; provided that the image is sufficiently good, this leads to an
increase in the intensity at the sample position, compared with the conventional pinhole
collimation, without loss of resolution (see refs. [1] and [2] for further discussions).

The aim of this paper is to summarize the results of ray-tracing calculations for the IN15 focusing
mirror option. We begin with a short presentation of the ray-tracing programme. The IN15
instrument geometry is then described with details of the chosen toroidal mirror. The results of a
number of ray-tracing calculations are then presented with attention paid particularly to the effects
of the neutron wavelength, gravitational fall and the wavelength distribution on the quality of the
focused neutron beam. Comparisons between an ellipsoidal mirror and the chosen
"ellipsoidal-equivalent” toroidal mirror are made. We also estimate the gain in flux that may be
expected once the toroidal mirror is used in a spin-echo experiment. Finally, we briefly describe

* Present address: CRC Clinical Magnetic Resonance Research Group, The Royal
Marsden NHS Trust,
Downs Road, Sutton, Surrey SM2 5PT, United Kingdom.
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the actual (recent) alignment of the 4 m-long mirror, together with the results of preliminary tests of
the mirror quality.

RAY-TRACING SIMULATIONS

Programme description

A ray-tracing programme has been written to estimate the imaging properties of doubly-curved
mirrors for neutron focusing applications. This programme is described in ref. [3]. Briefly, the

programme begins with a definition of the source parameters (neutron wavelength, A, wavelength

resolution, AA/A, incident beam divergence, source aperture size and postion), the mirror figure
(ellipsoidal, toroidal or cylindrical) and the mirror geometry (size, position, focal length). The
paths of a large number of rays are traced to the mirror and the angle of incidence with the mirror
surface is determined. If the angle of incidence is less than the critical angle, Oc, of the reflecting
surface, the path of the reflected ray is traced to the image plane. The number of rays passing
through the system at any point after the mirror may be counted. In particular, we have used the
programme 10 count the number of neutrons ftraversing the sample aperture. An additional
programme also exists to simulate a conventional small-angle spectrometer.

The gravitational fall of the neutron, A(A,L), over the flight distance (L) is included in the
calculation of the neutron's trajectory. The neutron's gravitational fall depends on its wavelength
and on the distance travelled:

2
AL = 88922 1
2h2

In Fig. 1 we plot the gravitational fall as a function of the flight distance for 10, 15, 20 and 25 A
neutrons. It is clear that gravitational effects are important at longer neutron wavelengths.
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Fig. 1. The distance fallen as a function of the flight distance for a range of neutron wavelengths
10 A (-0-), 15 A (-m-), 20 A (-O-) and 25 A (-@-).

IN15S NEUTRON SPIN ECHO SPECTROMETER

A schematic of the IN15 standard spin echo spectrometer geometry is shown in Fig. 2a. The
focusing instrument geometry is shown in Fig. 2b: a 4 m-long doubly-curved toroidal mirror is
placed half-way between the velocity selector and the position-sensitive detector. The chosen
mirror consists of eight identical elements (500 mm x 170 mm). The height of the useful

reflecting surface is 150 mm. The reflecting surface is 5Cu, evaporated onto a highly polished



zerodur substrate. The surface microroughness, measured using the Wycko Topo 2D technique, is

3 A (rms.). The 65Cu layer is protected against oxidation by a thin layer of aluminium. The mirror
geometry is fixed so that neutrons with wavelengths greater than 15 A are reflected.
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Fig. 2. Schematic of the IN15 neutron spin echo spectrometer: (a) standard configuration, (b) focusing mirror
configuration. PF = precession field.

RESULTS OF RAY-TRACING SIMULATIONS

Image quality

In this section, some illustrative examples of ray-tracing calculations for the IN15 focusing
instrument geometry are presented. The source aperture size for all calculations is 10 mm and,
unless stated otherwise, the wavelength resolution is 15 % (Gaussian distribution). Images are
viewed looking towards the detector.

Fig. 3 shows contour plots of the ima%e of a 10 mm-diameter source aperture for three different
neutron wavelengths (17, 20 and 23 A). Figs. 3a and 3b are images formed by a 4 m-long
ellipsoidal mirror; Figs. 3¢ and 3d, are images formed by an "ellipsoidal-equivalent" toroidal
mirror (i.e. the IN15 mirror). For both mirror types, we also show the effect of the position of the
source aperture on the quality of the image. In Figs. 3a and 3c, the source aperture is placed at the

focus, in Figs. 3b and 3d, the source aperture is placed a distance A(A, L) (see Eq. 1 above) below
the focus, where L = 10.7 m. »

104




A=17 A
(a) Ellipsoidal mirror:

-10p

0
y (mm)

-20

A=204
source aperture at focus

-6 Ol

20

(b) Ellipsoidal mirror: source aperture a distance A(A) below focus

z (mm)

(c)

z (mm)

(@)

z (mm)

0
-10
-20
-30
-40

20

0
y (mm)

-20

Toroidal mirror: source aperture at focus

o
-10k
-20k
-30}b
-40F
-50F

-6 Ol

20

0
y (mm)

-20

Toroidal mirror: source aperture a distance A(A) below focus

0 T T T
-1 @
-2
-3
-4 | S I |

20 0

y (mm)

-20

20 0 -20
y (mm)

0 3 T )
_.-10 -
£
E.20 1
N.30 .

-40 1 1 1
20 0 -20
y (mm)
Oﬂ' T T T
-10F 1
. -20F -
£
E .30} .
N.asof -
-50F .
-6 0
20 0 -20
y (mm)

0 —
—-10 -
£
E . 20 -
N .30 -

-40 1 1 1
20 0 -20
y (mm)

z (mm)

0
-10
-20
-30
-40

20

0 -20
y (mm)

Fig. 3. Calculated images of a 10 mm-diameter source aperture for ellipsoidal and tordoidal mirrors and for three
different wavelengths (17 A, 20 A and 23 A reading from left to right across the page). The effect of the position of
the source aperture on the quality of the image is shown for both types of mirror.

105




The calculations indicate that for typical neutron wavelengths and for AMA = 15 %, there is little
difference in the images formed by 4 m-long ellipsoidal and toroidal mirrors. The toroidal mirror
image is asymmetric and slightly larger when the source aperture is positioned at the focus.

However, on placing the source aperture a distance A(A, L) below the focus, the image of the
10 mm-diameter aperture is vastly improved and the images formed by both mirror types are almost
identical. This correction has already been discussed in refs. [3-5]. Essentially, the improvement,
which is especially significant in the horizontal plane, occurs because lowering the source causes
neutrons to strike the mirror at angles such that they appear to have come from points much closer
to its focus. The remaining vertical distortion is due to the neutron wavelength distribution.

The results of calculations for two different wavelengths, A=17 A and A =23 A, and for three

different wavelength distributions, AMA =10, 15 and 25%, are shown in Fig. 4. The image
quality deteriorates rapidly with increasing wavelength and increasing wavelength distribution. The
longer wavelength neutrons fall farther than the shorter wavelength neutrons, which spreads the
beam. The only way to reduce this chromatic aberration is t0 use a mirror surface which is
horizontal rather than vertical (ref. [6]).
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Fig. 4. Calculated contour plots of the images of a 10 mm-diameter source aperture positioned a distance A(A,L)
below the focus. (a-¢) A=17 A and AALL) = 104 mm, (@) A =23 A and AQA,L) = 19 mm. The wavelength
resolution is 10, 15 and 25 % reading from left to right across the page.

Flux gains

We have used the ray-tracing programme to estimate the flux gains that can be expected from the
IN15 focusing mirror system compared with the standard instrument geometry. The relative
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performance is analysed as a function of the g-resolution, 6q. Given that the contribution of the
wavelength spread to the overall instrumental resolution is identical for both configurations, we
refer here only to the geometric contributions to the g-resolution.

For the standard IN15 instrument geometry the g-resolution is a function of both ¢ and ¢s, which
are the source and sample aperture diameters, respectively. For ¢¢=2¢s, we write the g-resolution
as 8q = (r/A)(2¢e/L.) where L is the sample-to-detector distance. For the focusing geometry, §s is

unimportant and we write the g-resolution as 8q=(m/A)(f¢e/L) where the prefactor f accounts for

the imperfect imaging properties of the toroidal mirror; it is a function of the source aperture size,
the wavelength and the wavelength distribution. We estimated the values of f from the calculated

images, defining 8qas the value of q where the intensity has dropped to 10 % of its peak value.
Typically f varied from 1.6 to 3.4, depending on the parameters of the simulation.

In order to cover a sufficiently large g-range, the calculations were performed for a range of source
sizes, sample apertures and neutron wavelengths. For the standard configuration, the diameters of
the source and sample apertures were in the range 10-30 mm and 5-15 mm respectively. The
first ("source”) aperture was placed a distance 4.67 m from the sample position. The neutron
wavelength was varied between 9 and 25 A. For the focusing mirror geometry, the source
aperture was between 5 and 40 mm and the sample aperture diameter was fixed at 30 mm; the

calculations were performed for A = 16 to 25 A. In order to make realistic estimates of the
intensity gains, the number of rays "emitted” by the source at a given wavelength was proportional
to the corresponding measured flux at the exit of the IN15 velocity selector; the source was
assumed to be uniformly illuminated and the divergence was that of a neutron beam emerging from
a Ni guide.
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Fig. 5. Plot of the calculated intensity at the sample position as a function of the
g-resolution for the

IN15 standard (open symbols) and focusing (filled symbols) instrument geometries.

Fig. 5. shows a plot of the intensity at the sample position as a function of the g-resolution for both
IN15 instrument configurations. The intensity gain obtained with the focusing mirror increases the




lower the g-resolution. For 8q = 10-3 A-1, a tenfold gain in intensity is estimated. This could be
increased further by using a larger sample aperture, though this is dependent on sample
availability. It is obvious from the graph that the mirror is certainly of value in the low g-resolution
range. However, these calculations do not take into account the surface microroughness of the
reflecting surface, nor the small-angle scattering that can arise from the spin echo components
(flippers, Fresnel coils). Both of these can influence the signal to noise ratio and hence, the
minimum ¢ value which will be experimentally accessible.

IN15 TOROIDAL MIRROR: ALIGNMENT AND PRELIMINARY TESTS

The eight mirrors were aligned using a 1 mm diameter halogen (diverging) light source placed at
the focus (i.e. just after the velocity selector as shown in Fig. 2b). The image was observed on a
screen placed at the other focus (i.e. at the position of the IN15 multidetector). Each mirror was
individually aligned, starting with the central mirrors, and adjusted so that the images superposed.
Individual images from the extreme mirrors are shown in Figs. 6a and 6b and the image obtained
with all eight mirrors aligned is shown in Fig. 6¢. The corresponding simulated images are shown
in Figs. 6d-f, respectively. The images are viewed looking towards the mirror. The size of the
image obtained with all eight mirrors is approximately 4 mm high, 8 mm wide. As can be seen,
the calculated image is highly distorted and much wider than that obtained experimentally. This is
because the mirrors were individually adjusted so as to achieve optimum focusing conditions.

@ O

(d) (e) €9

<+
12 mm

Fig. 6. Photographs of the focused images of a 1 mm-diameter light source: (a) extreme left mirror, closest to the
light source, (b) extreme right mirror, (c) all eight mirrors. The images are observed looking towards the mirror and
at a distance 10.7 m from the centre of the mirror. The corresponding calculated images are shown in figures df
respectively.
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IMAGING PROPERTIES OF THE TOROIDAL MIRROR SYSTEM

Source aperture placed at the focus
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Fig 7. Measured contour plots (linear scale) of the focused neutron beam for a source aperture diameter of 2 mm.
The wavelengths are 14, 17.5, 20 and 22 A reading from left to right across the page. In the upper panel, the source
aperture is positioned at the focus. In the lower panel, the source aperture is placed a distance A(A,L) below the
focus; the values of A(A,L) are indicated in the figure for each of the wavelengths.

The imaging properties of the IN15 mirror were measured with a two-dimensional
position-sensitive detector with a spatial resolution of 1.5 mm. The principal results of the initial
tests may be found in ref. [5]. Fig. 7 shows the focused images of a 2mm-diameter source
aperture for four different neutron wavelengths (14, 17.5, 20 and 22 A). The measurements were
made with a neutron wavelength distribution of 15 % (full-width at half-maximum). The images
are viewed looking towards the detector. With the 2 mm diameter source aperture at the focus, the
image rapidly enlarges with increasing wavelength and is located below the focus (which is at
(y,2) = (0,0)in the figure). The shape of the image is asymmetric at all wavelengths. Such
distortions may be attributed mainly to the gravitational fall of the neutrons and to the large
wavelength distribution. Coma due to the great length of the mirror and aberrations due to the
toroidal shape also contribute to the imperfect imaging. The lower panel of Fig. 7 shows what

happens when the source aperture is located a distance A(A,L) below the focus, where
L =10.7 m. We see an important improvement in the image quality for all wavelengths. This
improvement is especially significant in the horizontal plane, the remaining vertical distortion is due
to the neutron wavelength distribution.




Neutron intensity profiles of the focused neutron beam in the horizontal direction are shown in
Fig. 8 for A = 17.5 A. The intensity profiles measured with and without a vertical shift of the

source diaphragm are compared. The FWHM (I'12) of the image is substantially smaller when the
source aperture is positioned below the focus (FWHM = 10.5mm with source at focus,
FWHM =4.5mm with source 11 mm below the focus). Furthermore, the contrast ratio

(noise-to-peak ratio) is a factor of two times better at a distance 2I'12 from the peak maximum
when the source is vertically lowered and is of the order of 5 x 10-3 in both the horizontal and
vertical directions for q =~ 1.3 x 10-3 A-1,

SUMMARY AND CONCLUSIONS

We have presented some results of ray-tracing calculations for the IN15 focusing mirror option.
Our calculations indicate that the use of a toroidal mirror rather than an ideal ellipsoidal mirror is
amply justified: the calculated images for both mirror types are almost identical for a range of
typical values of the neutron wavlength and wavelength distribution. We have also used the
ray-tracing programme to make realistic estimates of the overall gain in flux that can be expected
from the completed mirror system. Including the effects of imaging errors, gains in beam intensity

of the order of ten for 8q = 10-3 A-1 should be attainable with the focusing mirror geometry.
Finally, the preliminary tests of the 4-m long focusing mirror have shown that SANS optical
focusing is feasible with a toroidal mirror and that with a high-quality reflecting surface, contrast

ratios as low as 5x 10-5 may be achieved for g=10-3 A-1.
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Fig. 8. Intensity profiles (horizontal direction) for A = 17.5 A. The full line comesponds to the image
obtained with the 2 mm diameter source aperture at the focus, the dotted line comresponds to that obtained
with the source aperture postioned A(A,L) = 11 mm below the focus. The corresponding contour plots show
the position and orientation of the intensity profiles.
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, Abstract
A Time-of-Flight Diffractometer with high pulse rates, allowing multiple frame overlap, is a
completely novel design of an instrument dedicated for high resolution strain-field mapping. We
elaborated a detailed concept of this instrument, applying analytical calculations and Monte Carlo
computer simulations. Having established the instrument concept, the computer simulations will
now be extended to optimize the total performance of the instrument. To illustrate the necessity and
possibilities of applying modern tools for instrument design, we describe, as an example, the
different steps towards the development of the detailed design of this instrument, which we intend
to build at the Swiss spallation source SINQ in the near future.
INTRODUCTION
Neutron sources, as a matter of principle, do not possess high primary flux (as do nowadays the
synchroton radiation facilities), and possibilities of flux improvements at the source or beamlines
by implementing special devices are limited. Therefore, it is essential to optimize the instruments
regarding neutron economy and best performance for a dedicated purpose. While a variety of
special components are available or can be developed which allow substantial steps towards
optimization, their combination can be complicated and very quickly develops to a multi-parameter
problem. The design of a new instrument whose requirements touch the limits of feasibility can,
therefore, often be optimized only by using modern, computer based tools and advanced methods
for instrument design.
We experienced this situation during the design of a new instrument for the Swiss spallation
neutron source SINQ: As one of the second generation instruments we envisage a dedicated
instrument to map strain fields in bulk materials with high accuracy and spatial resolution,
combined with the requirement to measure under extreme pressure and/or temperature, and in
particular also highly radioactive materials.
For strain field measurements it is necessary that a samll gauge volume of the sample can be

defined. This implies that only neutrons scattered in a small angular range near 90° can be used.
Furthermore the instrument need not be optimized for structure analysis, but must allow
determination of selected lattice constants with high accuracy. The combination of these
requirements led to the concept of a multiple frame overlap time-of-flight diffractometer.

The present paper illustrates the different steps which were undertaken to reach a detailed design.
Formulating the purpose of the instrument and goals, and even the principal concept did not require
much more than the well-known "back-of-an-envelope” calculations. Working out details of the
design and necessary properties of instrument components, computer-based analytical calculations
became necessary. Finally, in order to simulate the performance of the overall concept and to
optimize the spectrometer parameters, a Monte Carlo simulation program was written and adapted
to the selected components and given boundary conditions.

THE INSTRUMENT CONCEPT - BASIC IDEAS

The condition of measuring at scattering angles near 90° and still covering a range of neutron
wavelength can best be met by time of flight diffractometry. At present there exist two different
types of time-of-flight-diffractometers: )

The standard time-of-flight-diffractometer uses individual pulses. For each scattered neutron the
wavelength is determined by the time between the source pulse or the opening of the chopper and
the detection of the neutron. For an unambiguous determination of the neutron wavelength frame
overlap must be avoided, i.e. the time between two pulses has to be chosen in a way that the fastest
neutrons cannot catch up with the slowest ones of the previous pulse. Typical times between two
pulses for those diffractometers are some 20ms.




The concept of a reverse time of flight- or Fourier-diffractometer follows a different philosophy.
The chopper opening and closing times are the same. Therefore, the neutrons arriving at the
sample (or detector) position at a given time can have originated from several hundreds of different
pulses. Consequently, it is not possible to assign a detected neutron to a particular time of flight or
wavelength. It is only possible to give a probability for each wavelength. Each recorded spectrum
taken at a fixed chopper frequency is assigned to a spectrum of probabilities. Combining all the
spectra measured with a variety of frequencies finally gives the desired wavelength-spectrum.

The great advantage of a Fourier-diffractometer is the high gain in counting rate which exceeds that
of the standard time of flight spectrometer by a factor of several hundreds. On the other hand the
contrast of the spectra is poor. This is due to two facts: (i) The contrast of the chopper (defined
below by Eq. (1)) is low and this contrast is even reduced by further time uncertainties on the flight
path of the neutrons through the spectrometer and (ii) the difference in the arrival time of the
neutrons of different Bragg-reflections (and pulses) is small compared to the time resolution.

The principal ideas of the spectrometer presented in the present study is (i) to optimise the
conflicting quantities contrast and intensity of the measured spectra and (ii) to decouple them from
the resolution of the instrument.

In the following we aim to explain an instrument concept which meets this conditions. The
contrast of the spectra mainly consists of the contrast of the pulsed primary neutron flux and the
contrast of the scattering function of the sample. A good contrast at the detector can therefore be
achieved only by a high contrast XK. of the pulsed flux which we will define as
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where I is the average of the pulsed flux and !, i the cycle time of the chopper. This contrast

can be selected by the ratio of the opening time z_,,, t0 the cycle time, the so-called duty cycle 7. of

the chopper. For a triangular shape of the intensity of the neutron pulse the contrast is given by:
K=(1-nc) 2)

whereas the average intensity I is proportional to 7).

In order to assign the neutrons unambigously to the pulse they come from we will make use of the

dependence of the arrival time z,,,, of the neutrons on the scattering angle 26. For this, we need a

1-dimensional position sensitive detector with good spatial resolution.

For a given neutron momentum transfer Q at a Bragg-reflection the time of flight of a neutron
between chopper and detector is:

2-m, .
tﬂighz = _l{-—Q_ S0t (6)'81119 (3)
where m, is the neutron mass, 7 is Planck’s constant and s, ,, is the total length of the flight path of
a neutron from the chopper to the detector which may vary with the scattering angle. In a contour
plot of the neutron time of flight versus scattering angle (time-26-plot) each Bragg reflection is

represented by a line. For a fixed geometry the slopes of these lines depend only on O, or for a

fixed 6 only on the time of flight of the neutrons. Therefore we can use this slope to trace the slit of
the chopper the neutrons come from and hence determine the neutron wavelength. This can be
seen best if Eq. (3) is transformed to

dr £0 1 ds,, 4
de - tﬂighz '| €O + de ( )

stot
For an unambiguous determination of the slits through which the neutrons have passed we have t0

determine the slope d#/d8 with a relative accuracy of better than
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To give an example, for neutrons with a velocity of 1500m/s, a puise repetition rate of 10000/s and
a total flight path of 15m we have to determine the slope with an accuracy of 1%. Consequently,

we determine the Q-value only slightly better than 1% by the slope of the line in the time-26-plane.

The final accuracy for the Q-value of the order of some 10* (or better: a FWHM of =2-10%)
corresponding to the instrument resolution is obtained from the absolute value of the flight time

given by the position of the line in the time-26-plane. This procedure allows us to work with a
single chopper frequency.

The resolution of a time-of-flight instrument has a geometrical component and a component from
uncertainty in the determination of the time of flight. The latter is mainly given by ¢,,,./%,,, Which
depends, for a given length of the flight path, only on the width of the beam at the chopper and on
the chopper speed. Therefore, the resolution of the instrument can be varied through the chopper
speed. Since the average neutron flux does not depend on the chopper speed, the intensity at the
detector as well as the contrast is independent on the resolution of the instrument. This is one
major advantage compared to a standard time-of-flight-diffractometer.

A sketch of the proposed instrument is given in Fig. 1. Since the aim of this paper is to describe
the procedure and the tools used to achieve a novel instrument design rather than to describe the
instrument itself, the components are described only briefly. A detailed description of the
instrument will be given elsewhere.
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Fig. 1: Sketch of the instrument

Chopper
The envisaged disk-chopper with characteristics close to the limits of what is currently considered

feasible yields a minimum pulse width of less than 8us (FWHM) at a beam width at the chopper
position of 4 mm. Since the total length of the flight path will be about 14 m, this pulse width
contributes a relative uncertainty of ~ 8.6-10” to the measured time of flight of neutrons with a
velocity of 1500 m/s.

Neutron optics
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In the following the expression ‘neutron optics’ is used for the entirety of elements between
chopper and sample that interact with the neutron beam.

In order to obtain short chopper pulses the width of the beam at the chopper position has to be
small. Therefore, the neutron optics between chopper and sample have to be optimised to have
minimum losses of neutron density in phase space. The best way to transmit the neutrons with
minimum Josses in phase space density is to image the slit at the chopper onto the sample. This
will be done by a neutron mirror with elliptical surface.

There are some further advantages of such a mirror: (i) It can transform a beam with a small width
and a large divergence in to a broader beam with lower divergence without losses in phase space
density (trumpet-effect). (ii) The mirror can be much shorter than the chopper-sample distance,
therefore there is always enough space to insert sample equipment and beam manipulation devices
like velocity selector, diaphragms etc.. (iii) All neutrons are reflected only once and within a
narrow range of reflection angles, therefore the loss of neutrons is minimized, and, at the same
time, neutrons with shorter wavelength than the critical one are suppressed very efficiently.
Detectors

To achieve well defined gauge volumes in the specimens the detectors are positioned at scattering
angles between 90° and 120°. On each side of the sample a one-dimensional position-sensitive

*He-detector, with an aperture of 30° will be used. The spatial resolution of each detector should
be about 2mm. This is possible either with a microstrip-detector or with a high resolution wire-
chamber detector. The thickness of a *He-detector for thermal neutrons is about 20-30 mm which

corresponds to a time of flight of the neutrons of 10-40 ps. To avoid a time uncertainty of this
magnitude which would spoil the time resolution of the instrument each detector element must be
positioned in time focusing condition. According to Eq. (4) the time focusing condition is

achieved if we chose 1/s-ds,,/d6 = -cot0. Since the chopper-sample distance is constant ds,,, = dr
where r is the sample-detector distance and the above given condition reads 1/s-dr/d6 = -cot.

SIMULATIONS AND OPTIMISATION OF THE NEUTRON OPTICS SYSTEM
So far, rather straight forward analytical considerations ("back-of-an-envelope” calculations)
brought us to the point, where the principle ideas of contrast and intensity optimization, combined
with a decoupling of resolution and intensity, could be realized by means of the above presented
conceptual instrument design. For the optimization of single instrument components, we used
computer-assisted analytical calculations. As an example, we present our computer simulations
based on analytical equations which describe the neutron optics system. They describe the
performance of a 7m neutron mirror of elliptical shape placed in 12m flight pass between chopper
and sample. The simulations were restricted to the scattering plane, neglecting the influence of
vertical divergence of the beam. The parameters kept fixed in the simulations are the following: the
critical angle of the mirror chosen to be three times that of natural nickel, the reflectivity which is 1
up to this angle and 0 above, a width of 4 mm for the first diaphragm, 12 m length of flight path
between the diaphragm and the sample. The direct flight path through the mirror device is
obstructed by a second diaphragm. After having passed the neutron-optic system the simulated
neutrons are monitored on a horizontal line perpendicular to the neutron beam. Fig. 2 shows the
result for an ideally shaped mirror. If we replace this mirror by a polygon of 50 cm straight
elements we get the phase space plot shown in Fig. 3. Both plots show the pear-shaped density
distribution which is the result of the ‘trumpet’ effect of the mirror. The first part of the mirror
transforms high divergences into a large beam width which is represented in the upper part of the
pear. This shows that even when the diaphragm in the incoming beam is only 4 mm wide, the
beam at the sample position has a width of about 8 mm at a divergence of about 0.1°. On the other
hand the second part of the mirror produces a very narrow beam with a larger divergence which is
very useful for small samples or gauge volumes. Thus, with the help of diaphragms at the end of
the mirror and in front of the sample we can select either good collimation or small beam width.
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Fig. 2: Simulation result of the neutron optics system with ideally shaped mirror.
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Fig. 3: Same as Fig. 2 but with a mirror consisting of a polygon of 50 cm long straight sections.
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The suppression of the short wavelength by the mirror is demonstrated in Fig. 4 where the
transmission of the neutron-optic system is plotted versus its wavelength, This figure also shows
that we lose a factor of nearly two if we use a polygon of straight elements instead of an ideally
curved mirror. A comparison of Figs. 2 and 3 shows why: The width of the beam at the sample is
increased by nearly a factor of two by the straight elements compared to the ideal mirror, and
consequently this factor is lost in phase space density.
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Fig. 4: Transmission of the n-optic system for a 2.5 mm wide sample as a function of the neutron
wavelength. The closed symbols represent the data of the ideally shaped mirror, the open ones
those of the polygon of straight elements.

MONTE-CARLO-SIMULATIONS - SCATTERING PERFORMANCE IN TIME-

20-SPACE

The aim of this Monte Carlo program is mainly to demonstrate the function of the concept
presented and to optimise the parameters of the secondary spectrometer. It is not (yet) a program
which simulates the performance of the whole instrument.

The program, therefore, contains the following idealisations:

— no vertical divergence is considered (the simulation is performed only in the scattering plane),
— the primary beam and the sample have zero spatial extension

— the neutron flux is constant inside a given wavelength interval and zero outside

— the transmission function of the chopper has triangular shape

— the absorption probability in the detector is constant

— all neutrons are scattered in the half-circle where the linear detector is positioned (2= rather than

4z for better statistics)
The most important parameters concerning the detector, however, have been taken into account:

— the detector elements have a size of 2 x 20 mm?




— they are arranged on a circle (whose center does not coincide with the sample position)
— the neutrons

19¢.00

$0.90 92,08 94.00
scatfering angle [°)
Fig. 5: Monte-Carlo simulation result in a time-26-contour-plot. For reasons of clarity only a 10°-
region of the detector is shown.

Fig. 5 shows the simulation results by means of a contour plot in the time-26-plane. The contour
lines represent 0.5% ,1% ,2% ,5%, 10%,20% 30% 50%, and 70% of the maximum intensity. The
origin of the time scale is the opening of the chopper. For reasons of clarity only a 10° part of the
30° detector is shown. In this simulation 10’ neutrons impinging on the chopper where used. The

opening time of the chopper t,,., was 10us, and the ratio ¢, /,,., was 10. The range of
wavelengths was 1.5° A, and the distance of the sample to the detector was 2m at 90° scattering
anf%le. The plot shows the intersecting lines of different slope produced by the different Bragg-
reflections.

These plots are stored in a histogram memory and the second part of the program evaluates these
data. For the time being, the evaluation of the data is based on the following concept:

For every possible scattering vector and each detector element the time of flight is calculated.
Than, for the given scattering vector, all detected neutrons in the corresponding time channel of
each detector element are added (weighted with respect to their statistical errors). After finishing
this procedure for every possible scattering vector the resulting spectrum is multiplied with a
"damping” factor. This is necessary since in the procedure each element in the plot of Fig. 5 has
been added several times to the spectrum. Now we can recalculate the angle-time contour plot
expected for this first spectrum. The resulting contour plot is subtracted from the measured plot,
and the calculation is repeated with this residual plot until no significant improvements are
achieved. The result of this procedure for the data of Fig. 5 (but taking into account the whole 30°-
range of the detector) is shown in Fig. 6.

One characteristic feature of such spectra is the occurrence of side peaks at each Bragg reflection.
They correspond to wavelengths of neutrons attributed to an earlier or later pulse. These side
peaks result from the way in which we evaluate the data. If we would actually fit the data, these
peaks would vanish as long as the condition of Eq. (4) can be fulfilled. However, these side peaks
have no influence on the determination of the Bragg peak position, which is the main purpose of
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the instrument. Fig. 7 shows an enlargement of the region around the first Bragg reflection with
the side peaks.
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Fig. 6: Diffraction pattern calculated from the contour plot of Fig. 5.
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Fig. 7. Region of the first Bragg-peak in an enlarged scale which shows the side peaks.
In Fig 8 a simulation of the same sample but now with only 25% Bragg-scattering and 75%

incoherent scattering is shown. It demonstrates that the quality does not suffer very much from
high background levels.
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Fig. 8: Same as Fig. 7 but with a ‘sample’ with 75% incoherent scattering.
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Fig 9. Diffraction pattern from a simulation of a sample with 17 Bragg
reflections in the investigated Q-range. 10° neutrons at the chopper position
were used for this simulation.
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Increasing the number of Bragg reflections leads to a decrease in contrast in the time-26-pattern
which reduces the statistics and makes the determination of weak Bragg reflections more difficult.
In Fig. 9 a spectrum of a sample with 17 Bragg reflections in the investigated Q-range is shown. It
demonstrates that such spectra are still measurable with this instrument. If the number of Bragg
reflections increases further, the quality of the spectra decreases significantly. This may be
considered as the penalty for the increased intensity of the instrument relative to the direct TOF
technique. However, the purpose of this instrument is not primarily structure analysis; the main
application will be the investigation of samples of simple materials with significantly less than 20
Bragg-reflections in the Q-range (which could, if necessary, be limited by a velocity selector in-
front of the mirror) .

CONCLUSION AND OUTLOOK

A novel concept of a time-of-flight diffractometer has been evaluated. The main advantage of this
type of instrument is that it can be optimised to high flux and high resolution simultaneously, and
that this optimisation can be adapted to the task the instrument is expected to perform. The high
intensity is achieved by using many pulses of the chopper in short sequence and solving the frame

overlap problem by evaluation of the time-26-pattern. A resolution of about 107 is expected for
this diffractometer. Before starting the construction of the instrument we plan to carry out two
more major tasks: Firstly, to ran Monte-Carlo-simulations of the complete instrument involving all
components with realistic characteristics. Secondly, and even more important, develop an

improved procedure for the analysis of the time-26-plot.
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Abstract
The rotating analyser (ROTAX) spectrometer has been devised and installed at ISIS. Practical

scans in (Q,A®) space with a nearly arbitrary scan direction, i.e. polarisation of g vs. Q, are
possible and feasible with no compromises on the resolution. Valuable technological and
methodological knowledge has been compiled for an improved version of such a type of
instrument. At present, ROTAX lacks competitiveness with other spectrometers from an
unexpectedly weak neutron flux of its particular beam-line and an unfavourable adaption of the
analyser’s drive power to the time frame or neutron source frequency

1. INTRODUCTION

The principle ideas of the rotating crystal analyser spectrometer ROTAX were first introduced in
1986 [1]. Meanwhile ROTAX has been devised and installed at ISIS. The method of inelastic
neutron spectroscopy by using the rotating analyser principle has proved to provide feasible
experimental scans in (Q,A®) space with a much enhanced scan versality. We emphasize the
advantages of the rotating analyser technique compared with triple axis, direct geometry chopper
and MAX-type inverted time-of-flight spectrometers. No compromises on the resolution with
respect to the spinning analyser had to be made. The rotating analyser technique deserves a serious
consideration for its use on a new intense short pulsed neutron source.

2. COMPARISON WITH OTHER SPECTROMETERS

On ROTAX various time-of-flight (tof) scans in (Q,2m) space can be performed [1,2]. Let’s
consider the "scattering paraboloid” for every type of neutron tof-spectrometer. All scattering takes:
place its surface and the more of it is covered simultaneously the better the efficiency of any
particular instrument. The triple-axis spectrometer scans only one point at a time. It uses
monochromatic incoming neutrons from a reactor source. On tof-machines the key-word is
"multiplexing”: numerous tof-channels are detected simultaneously. Parabolic tof-scans through an

anticipated scattering point P in (Q,20) space on the surface of the scattering paraboloid are
obtained. The specific scan direction is fixed by the 1nstruments geometry and set-up, only on
ROTAX this scan direction may well vary [1,2,3].

Fig 1 illustrates the scattering paraboloids and tof trajectories the various types of tof-spectro-
meters: a) A direct geometry chopper spectrometer (like HET/MARI/MAPS at ISIS [4]) operates at
a fixed incident neutron energy Ei. With an array of detectors a range scattering angles ¢, at a
surface section between the two k. extremes is scanned. b) Inverted geometry scattering
spectrometers (like PRISMA at ISIS [5]) run n scattering arms at constant final energies E(n) and
scattering angles ¢,+nA¢, the sample is bathed the white incident beam. Every arm defines its own
and inverted scattering paraboloid culminating at their analyser’s Bragg energies -E(n). Geometric
constraints to avoid detector clashes restrict the tof-trace along a line dQ parallel to k;. Q. is kept
constant for all spectrometer arms and for times. A bunch of tof-parabolas through and around the
considered point P is obtained to coarsely map its vicinity. No further adjustment of the scan
direction can yet be made. For practical purposes of single-crystal spectroscopy Q. must be chosen

in units modulo 2n/d,,, which is, in practice, a considerable limitation of the feasibility of PRISMA
as discussed in by Dorner [6].
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This problem is overcome by the use of a non-uniformly rotating analyser crystal (ROTAX). There
is only one analyser crystal that rotates and modifies the final energy E(t) contineously. This
instrument is characterised by a whole continuum of paraboloids rather than a discrete set (fig 1c).
There are no clash conditions and no constraints of Qu=const. The Q-trace of the tof-scan is

parameterised by the Q-value of the centre-axis of the scattering paraboloids that moves in (Q,z®)
space in accordance with the scan set out on ROTAX. So far we have introduced the const-Aw and
the const-Q/1Q! or const-¥ scans [1,2] and there is a generalisation of the const-¥ scans to the

(a) MAPS (b) PRISMA (c) ROTAX
Fig. 1: scattering paraboiloids for a chopper (a), an invertedt geometry (b) and the ROTAX

psectrometers, respectively. The same scattering triangle for a scan point P(Q, #®) and an
imaginative Q-lattice are shown for all 3 instrument types discussed in the text.

1)

The technical performance of ROTAX scans is limited only by the time frame at an incident flight
path L, and the achievable angular acceleration on the analyser, i.e. the power resources of the
analyser drive system. The analyser spin does not neccessarily have to follow an analytic curve,
the analyser drive control works on an entirely digital basis. The vicinity of point P under
consideration is observed with a high degree of pixeled density of scans when a linear detector
array of high angular/spatial resolution is used. This is essential for evaluating the 2-dimensional
multiplex advantage and it is the reason why ROTAX can acquire more usefull data simlutaneously

with only one analyser than a PRISMA-type machine with n=16 analyser-detector assemblies.

Experimental results of inelastic neutron scattering on ROTAX were published and described in

detail, elswhere [7,8]. The results are satisfactorily, except of two facts that had lead to the

decision to not further develop this instrument at ISIS:

1) The obtained intensities are too weak for inelastic applications because of defecient neutron flux
on the particular ROTAX beam line at ISIS.

2) There is still insufficient power on the analyser drive system to make full use of all scan
feasibilities on the rotating analyser system. This deficience, however, can be overcome with a
revised geometric design of the machine (cf. below) and with today’s technology.

3.) IMPROVED DESIGN OF A ROTAX TYPE INSTRUMENT

With respect to the resolution required a ROTAX type instrument would exploit its full features on
a short pulsed neutron source. The ISIS instrument has proved the principal capability and feasility
of such a set-up. Todays technology to run a digitally controlled gear-less direct drive of the non-
uniformly spinning analyser crystal can be copied and easily installed. One needs an ordinary

computer to design the anticipated (Q,®) scan (e.g. with the software developed for ROTAX at
ISIS) and then



¢ parameterise and store the values of the analyser’s angular motion versus time.

o transfer the data to a high-performance standard signal processor that runs and controles a three-
phase power inverter and inverted servo-motor of the analyser drive (the program establishes a
dymanic control and feed-back of the actually achieved drive performance)

e start the scan, collect the data from a time-resolved linear position sensitive detector and

e combine the detector tof-data with the tof-dependend actually achieved analyser position data
and neutron scan parameters for a proper interpretation of the results obtained.
All subsequent data treatment is standard-like.

The control and regulation hardware employed on ROTAX is sketched in fig. 2. Standard
electronic hardware components and a commercially available servo-motor are used. The signal
processor based control program manages the synchronisation with the pulsed source, scan and

power generation, position verification and veto-handlung within 90 ys of time. The instantaneous

position regulation itself takes typically 1 ms of time for 0.1° angular positioning accuracy to be
achieved. These are limits to be required for ROTAX at ISIS.
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Fig. 2: Hardware of the ROTAX analyser drive after the 1995 technical impovements

With respect to the present technical power limitations a future instrument should stretch its time-
of-flight length scale by approximately a factor of two, i.e. stretch its in-pile flight path to ca. 30
m. The result would be a twicely time-zoomed general motion and every scan would demand only
1/8 of the ROTAX analyser drive power. This would make many more scans to become technically
feasible. However, such an instrument should view a pulsed (cold) moderator through a proper
beam guide and not a simple beam tube on the grounds of neutron flux considerations. In
principle, there could be more than only one secondary spectrometer, each arm possibly equipped
with one or two multidetectors (cf. fig. 3).
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With the experience gained on ROTAX at ISIS and with respect to the considerations explained
above, a revised ROTAX type instrument would provide a real alternative to existing instrument
designs but with a much enhanced scan flexibility and versality.

ROTAX
ANALYSERS

POSIT JON

Fig. 3 Double-ROTAX set-up for two independent simultaneous scans in (Q,Aw) space.
ACKNOWLEDGEMENT

Numerous people had advised and helped us to get ROTAX off the ground; they can’t be named
explicitely here but their contributions have been very valuable. Financial support by the German
Minister for Education and Research BMBF under contract no.s 03-ge3-wue and 04-wi3-bon is
gratefully acknowledged.

‘REFERENCES

[1] R Geick and H Tietze, Nucl. Inst. & Meth. A 249 (1986) 325
[2] H Tietze and R Geick, Proc. ICANS IX, PSI 1986, SIN-rep. 40926 (1987) 389
[3] W Schmidt, H Tietze-Jaensch and R Geick, Proc. ICANS XII, Abingdon 1993,
RAL rep. 94-025, p. 1-293
[4] R S Eccleston and R Osbom, RAL rep. 94-117
S M Bennigton and R S Eccleston, RAL rep. 94-102
T G Perring, A D Taylor, R Osborn, D Mc Paul, A T Boothroyd and G Aeppli;
Proc. ICANS XTI, Abingdon 1993, RAL rep. 94-025, p. I-60
[5] U Steigenberger, M Hagen, R Caciuffo, C Petrillo, F Cilloco and F Sacchetti;
Nucl. Instr. & Meth. B53 (1991) 87-96
[6] B Dorner, J Neutron Research 2.3 (1994) 115-127
[71 H Tietze-Jaensch, W Schmidt, R Geick and U Steigenberger;
Physica B 213 & 214 (1995) 878-830
[8] H. Tietze-Jaensch, W. Schmidt, R. Geick and G. Will
Proc. ICANS XIII, PSI Switzerland 1995, PSI rep. 95-02 I-6 (1995) 130




MONTE-CARLO SIMULATION OF AN
ULTRA SMALL-ANGLE NEUTRON SCATTERING
INSTRUMENT BASED ON SOLLER SLITS.

Thomas Rieker
Center for Micro-Engineered Materials
Department of Chemical and Nuclear Engineering
University of New Mexico, Albuquerque, NM 87131

Paul Hubbard
Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185-1349

Abstract

Monte Carlo simulations are used to investigate an ultra small-angle neutron scattering instrument
for use at a pulsed source based on a Soller slit collimator and analyzer. The simulations show that

for a gy, of ~1e-4 At (15 A neutrons) a few tenths of a percent of the incident flux is transmitted
through both collimators at g=0.

Introduction

A wide g-range is required to accurately determine the micro-structure of materials by small-angle -
scattering. Currently the widest g-ranges are available at reactor sources through a combination of
variable geometry pinhole and Bonse-Hart instrumentation. Pulsed neutron sources, at present,
provide pinhole instrumentation with a minimum

q of ~0.003 A-1[1].

For a SANS instrument it is important to maintain high flux in the main beam, yet quickly suppress
the tails of the main beam to obtain good signal-to-noise ratios in the scattering regime. We
investigate here the possibility of extending the low-q limit at a pulsed source with a SANS
instrument based on two Soller slit [2] packages - one as a collimator, the other as an analyzer, as
shown in Figure 1. Soller slits are alternating sheets of transmitting and absorbing layers. They
are insensitive to wavelength and therefore take advantage of the full spectrum available at pulsed
sources. The angular resolution of this instrument is determined by the correlation of the two slit
packages (just as in the Bonse-Hart spectrometer). Time of flight is used to gate the detector in

order to determine the energy resolution and q value at a particular 20 offset angle of the analyzer
slit package.

Zz

o

Collimator Detector

=

Sample positioned on Analyzer

analyzer rotation axis

Figure 1. Schematic of an ultra small-angle neutron scattering instrument based on Soller slits.
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Experiment

We performed Monte-Carlo simulations of the Soller slit ultra small-angle neutron scattering
instrument on the IBM SP1 at the University of New Mexico. The geometry of our experiment is
a circular source centered on the origin in the X, Y plane. The source is 5 cm in diameter asis a
beam pipe of length 3m with long axis normal to the source and centered on the Z axis. The Soller
slit packages are composed of alternating sheets of absorptive (thickness fixed in all calculations to

30 um) and transmissive layers, both 3.5 cm in height and 15 cm in length. We chose an odd
number of absorptive layers such that the central absorptive layer is centered on the Z-axis with its
long direction along Z and the height along Y. The analyzer package is identical to the collimating

package. For 20 =( it has the same orientation as the collimator except that it is displaced along Z

with a gap of 30 cm between the two packages. The analyzer package is rotated by an angle 26 in
the X, Z plane, about the sample position, midway between the two collimators.

The performance of a particular instrument geometry is tested as 20 scans. At every 20 point, 106
‘neutrons’ are created each with random r (0 <r<2.5 cm) and ¢ (0 < ¢ < 2n) in the plane of the
source and random azimuthal angle 0 (0 <0 <2.5/300). The X and Y coordinates of each neutron

are calculated at the entrance and exit of each of the collimators (Z=3.0m, 3.15m, 3.45 m, 3.60
m). Those that 'hit' an absorber or fall outside of the slit package are eliminated. Data is reported

as number of neutrons passing through both collimators for each point in 20.

Results and Discussion

Figure 2 illustrates the trade-off of intensity with resolution. Each point represents a simulation
with fixed Soller slit package dimension of 3.5 x 3.5 x 15 cm, but with varying thickness and
therefore number of transmissive slits. Narrow transmissive slits yield high angular resolution and

lead to low minimum q at a cost in overall transmission through both slit packages at 20 = 0.
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Figure 2. Percent transmission (I(26=0) at detector/ 106) VS. Qpin (for 15A neutrons and 26
chosen as 1(26=0)/10).
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Figure 3 shows how the beam profile varies as the number of slits increases.
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Figure 3. Beam Profiles. Intensity vs. 20 for 10, 50, 100, 350, and 582 transmissive slits each
30 um in width.

Practical considerations

Soller slits for neutron optics can be fabricated from Si sheets (transmissive layers) coated both
sides with thin films of boron. Small angle scattering within the transmissive layers and
reflectivity from the interfaces between absorptive and transmissive layers need to be suppressed.
Single crystal silicon should yield no SANS. To avoid reflectivity, the boron needs to be index
matched to the silicon. Fortunately, the coherent neutron scattering length of Si (b = 4.155 fm) lies
between that for natural boron (b=5.3 fm) and g™

(b=-0.2 fm) making index matching possible.

Conclusions .
To achieve low-q resolution on the order of 1e-4 A, the transmission through both collimators

(28 = Q) is a few tenths of a percent of the incident flux. While this is a substantial reduction, it is
partially offset by the ability of the instrument to accept the entire neutron spectrum. Time of flight
makes it possible to collect a range of q values at

fixed 26.
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Abstract

We have designed two polarizing neutron devices for pulsed cold neutrons. The devices have
been tested at the pulsed neutron source at the Booster Synchrotron Utilization Facility of the
National Laboratory for High Energy Physics. These two devices proved to have a practical use
for experiments to investigate condensed matter physics using pulsed cold polarized neutrons.

Introduction

Polarized neutrons are now widely used for condensed matter physics, especially in magnetism.
However, compared with unpolarized neutrons, polarized neutrons have not been used
extensively in experiments. This is mainly because more than a half of incident neutrons from
sources are wasted by a polarizing device. Therefore, it is necessary to have more intense
neutron sources and better polarizers for polarized neutron technique to be more popular for
experiments. Plans to construct intense neutron sources have been proposed worldwide, and
some have made progress. We have designed two polarizing devices using supermirrors for
pulsed neutron sources based on e present configurations. One is a polarizing neutron guide
(PNG) [1] and another is a polarizing beam-splitter (PBS) [2] by which polarized neutrons are
introduced into two different beam lines from one beam line. Such devices have been used quite
practically at the reactor based neutron sources, HMI, ILL and LLB, but never at pulsed neutron
sources. We have already reported the performance of these devices {3-4]. This is a brief report
on tests of PNG and PBS.

( a ) Polarizing Neutron Guide (PNG)

The polarizing neutron guide was assembled by CILAS. It consists of a straight natural Ni guide

tube with a beam cross section of 20 x50 mm and 28 Fe/Si polarizing supermirrors. The mirrors
form a V-shape in the guide tube from the top view, which cuts the total length of PNG in half
compared with a straight alignment. The Fe/Si supermirror has a different critical momentum
transfer value, Q. for + neutrons and Q. for — neutrons, under which the total reflection of
neutrons occurs according to each spin state. Here the “+” expresses neutron spin parallel to the
magnetization of the supermirrors, and “~” opposite. The difference makes it possible to filter the
+ neutrons by the total reflection and produce polarized neutrons with — spin going through the
supermirrors in the O range between Q.'and O, as shown in Fig. 1(a). In the case of Fe/Si
supermirrors, Q. is the same as Q. of Si substrate, Q(Si), and cannot be artificially changed. On
the other hand, Q.’can be controlled by evaporation sequence to same extent. Therefore, as we
have a larger Q.', we have a wider wavelength band of polarized neutrons available. Mirrors of
1.6 Q.(Ni) were used in PNG where Q.(Ni) is the critical momentum transfer of natural Ni. The
horizontal beam width of 20 mm and the Q. define the total length of PNG of 1200 mm and the
incident angle of neutrons to the mirrors of 0.5 degrees. Under these conditions, polarized
neutrons in the wavelength band of 3-10 A are theoretically available.
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(a) Polarizing Neutron Guide

(b ) Polarizing Beam- Splitter

Fig. 1 Schematic representation of the Polarizing Neutron Guide (a) and Polarizing Beam-Splitter (b)
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Fig. 2 (a) Observed and (b) calculated polarization of neutrons polarized by PNG. (c) and (d) are polarizing
efficiencies of PNG and the Co/Ti spin analyzer, respectively.

PNG was mounted on the TOP spectrometer at the pulsed neutron source in the Booster
Synchrotron Utilization Facility of the National Laboratory for High Energy Physics ( KENS )
by

replacing the end section of C3 cold neutron guide tube [S]. The C3 guide tube’s beam cross

section is 20 x50 mm and curved has an actual cutoff wavelength of 3 A. A polarizing The TOP
Soller guide of Co/Ti supermirror was used as a spin analyzer, and a two-coil spin flipper was
employed to determine polarizing efficiencies of PNG. A magnetic field of 200 Oe was applied
to the supermirrors to saturate their magnetizations by ferrite magnets. Unpolarized neutrons,
with the natural collimation of the C3 guide tube, were introduced to PNG, and transmitted
neutrons were collimated by two pairs of horizontal slits between PNG and the analyzer. The
intensities of outgoing neutrons were counted by a one dimensional position sensitive detector
(PSD) system, however, intensities at all positional channels of PSD were summed up at each




TOF channel in these measurements. Polarizations of neutrons, P(4 ), were obtained by two
intensities at each wavelength, 7*(A ) and 7(4 ), using the following expression,

T (M-T"(A)

PO =T M

Here T*(A ) represents intensities when the spin flipper was activated and 7°(4 ) when it was not.
Figure 2 (a) and (b) show the observed and calculated wavelength dependence of polarizations in
the case of horizontal beam collimation of 0.06 degrees. The observed polarizations are the
product of polarizing efficiencies of PNG itself by that of the Co/Ti analyzer. The calculated
curve in Fig. 2 (b) was deduced by product of calculated PNG’s efficiencies in Fig. 2 (c) by that
of the analyzer measured in the other experiment as shown in Fig. 2 (d). In the calculation the
standard matrix method was used to determine reflectivity and transmissivity of PNG [6], and
experimental resolution was taken into account but absorption effect was ignored. Figure 2
indicates that the gradual decrease of polarization with increasing wavelength is not due to PNG
but the analyzer. Therefore, it can be concluded that the polarizing efficiencies of PNG keep the
values higher than 90% in the wavelength band of 3-9 A. We have not directly measured the
transmission of PNG. To compare with the Co/Ti analyzer, PNG provides twice as many
polarized neutrons at the sample position of TOP (estimated by measurement of intensities of
incoherent scattering of light water at the sample position).

(b) Polarizing Beam-Splitter (PBS)

In the case of PNG, neutrons with one spin state are used for experiments, and neutrons with the
other were thrown away. PBS is intended to use both spin states of polarized neutrons. The +
neutrons in the O range between Q,*and Q. are totally reflected by the mirror, while the —
neutrons are transmitted through the mirrors. In the case of PNG, the reflected polarized
neutrons are absorbed by boron glasses under the Ni layer of guide tube. If there were no Ni
layer and the boron glasses, the reflected polarized neutrons would be separated away from the
transmitted ones with a separation angle of twice incident angle to the mirrors, as schematically
shown in Fig. 1 (b). Therefore, the supermirror has a possibility of providing polarized neutrons
to the two different beam lines from one beam line, without loss of intensity.

PBS was manufactured by OSMIC, Inc. From the top view, it is shaped as a trapezoid in order
not to disturb the reflected polarized neutrons. The area of exit, 36 x50 mm, is twice as large as

that of the entrance, 18 x50 mm. Fe/Si polarizing supermirrors of 3 Q(Ni) are mounted on the
line between the apex of the shorter side of the trapezoid and the middle point of the Jonger side.
The incident angle is set to be 0.9 degrees in order to polarize neutrons of wavelength longer
than 3 A by the 3 Q,(Ni) polarizing supermirrors. The angle and the horizontal beam width at the
entrance (18 mm) make the length of PBS total 1180 mm

PBS has been mounted on the TOP spectrometer by replacing the end section of the C3 guide
tube in the same way as PNG. The Co/Ti analyzer and the spin flipper again were used to
determine polarizing efficiencies of PBS. As the incident angle of PBS was set to be higher than
that of PNG, polarized neutrons in a wider wavelength band of 3-18 A were available by using
PBS rather than PNG. A magnetic field of 300 Oe was applied to the mirrors by the permanent
magnets.

Figure 3 shows the wavelength dependence of polarizations of transmitted neutrons (a) and that
of reflected neutrons (b) after correcting polarizing efficiencies of the analyzer. In the figures the
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experimental data are plotted by open circles. The line denoted as P.(4 ), calculated by the same
procedures as PNG, completely reproduces the observation. This indicates that the transmitted
neutrons have an excellent polarization in the whole wavelength band of 3-18 A. On the other

hand, the deviation between the calculated curve, P, (4 ), and the observation is very large for the
reflected neutrons. This seems to be originated in the fact that the reflected beam is more
divergent than transmitted one. Such a divergent beam effectively drops the polarizing

efficiencies of the analyzer shown in Fig. 2 (d). The P, (A ) is the calculated curve that takes
into consideration the reduction of the efficiencies and contamination of unpolarized neutrons
originated in geometrical configuration of experimental set-up. The correction greatly improved
the simulation. The intensities of both transmitted and reflected beam were also well described by
the calculation with the correction. These simulations show that the transmitted beam is well
collimated and polarized but has less intensity, and that the reflected one is more divergent and
less polarized but stronger than the transmitted one. The detailed procedures of these calculation
appear in Reference 4.
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Fig. 3 Polarization of transmitted and reflected polarized neutrons produced by PBS.

Conclusions

We have made two polarizing neutron devices for the pulsed cold neutrons and investigated their
performances. Comparison of experimental results of polarizing efficiencies of PNG with the
simple calculation reveals that PNG has a good polarizing efficiencies, higher than 90% for the
wavelength band of 3-10 A. The polarizing efficiencies of transmitted polarized neutrons through
PBS were also well reproduced by the simple calculation and keep excellent efficiencies higher
than 95% in the whole wavelength band of 3-18 A. That the reflected polarized neutrons have
much less polarization can be well understood by the assumption that the reflected beam is more
divergent than the transmitted ones. This indicates that the transmitted beam is suitable for
experiments in which well-collimated polarized neutrons with high polarization are required. On
the other hand, "reflected” neutrons are more intense than the "transmitted” one. Thus the
reflected polarized neutron may be used for the

experiments that require more intensity.
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A NEW CLASS OF NEUTRON DETECTORS
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Abstract

An optimized neutron scattering instrument design must include all significant components,
including the detector. For example, useful beam intensity is limited by detector dead time;
detector pixel size determines the optimum beam diameter, sample size, and sample to
detector distance; and detector efficiency vs. wavelength determines the available energy
range. As an example of the next generation of detectors that could affect overall
instrumentation design, we will describe a new scintillator material that is potentially
superior to currently available scintillators. We have grown and tested several small, single
crystal scintillators based upon the general class of cerium-activated lithium lanthanide
borates. The outstanding characteristic of these materials is the high scintillation efficiency--
as much as five times that of Li-glass scintillators. This increase in light output permits the
practical use of the exothermic B (n, alpha) reaction for low energy neutron detection. This
reaction provides a four-fold increase in capture cross section relative to the Li (n,alpha)
reaction, and the intriguing possibility of demanding a charged-particle/ gamma ray
coincidence to reduce background detection rates. These new materials will be useful in the
thermal and epithermal energy ranges at reactors and pulsed neutron sources.

INTRODUCTION

Four exothermic neutron capture reactions dominate the low-energy neutron detector field:
SHe (n,p)T, 6Li (n,o) T, B (n,&) “Li, and Gd(n,gamma). The ®He reaction utilized in gaseous
proportional counters has been the most popular system for several decades, but Li based
scintillators have begun to supplant these detectors at both reactors and pulsed sources. Aside
from BF3 proportional counters, no practical 1°B-based detectors have been available. This is
unfortunate, because the B (n,0) reaction possesses several advantages over the other
reactions, namely the capture cross section of 1B is 4.1 times that of ¢Li. The maximum range
of the 9B charged reaction products is 4 microns vs 40 microns for 6Li. This permits the use of
thinner detectors and could also result in superior spatial resolution in some situations. The
478 keV gamma ray that is emitted in 94% of the capture reactions in 1B can be utilized as a
coincidence signal to greatly reduce the effects of ambient gamma background. A condensed
state 1B detector will be much more efficient in thin layers than gaseous detectors.Edge effects
are greatly reduced in solid detectors.In scintillator form, the 19B detector recovery time can be
~ much shorter than that of proportional counters.

The primary characteristic that has inhibited the use of 19B-based scintillators is the low
scintillation efficiency of B-loaded organic scintillators. The high energy-loss rate of the
heavy charged reaction products is particularly detrimental to the efficient production of
scintillation light in aromatic or aliphatic organic scintillator solvents. For example, in BC-
454 (plastic) the light output per unit energy for the combined alpha, 7Li signal from B
capture is only 4% that of electrons of the same energy. Another measure of the seriousness of




this problem is that the light output for the °B reaction (2.31 MeV) is only 10% of that for the
¢Li reaction (4.79MeV), both in liquid organic scintillators.

TECHNICALRESULTS . .

In light of the significant advantages attached to the 1B reaction, it seemed useful to search for
a B- based scintillator with greatly improved scintillation efficiency. The lithium lanthanide
borates have been reported in the literature as a class of stoichiometric laser materials which
can incorporate three of the popular neutron absorbing nuclei: B, Li and Gd. When activated
with Ce3*, these materials achieve a remarkably high scintillation efficiency compared to
organic scintillators. Table 1 lists the relative signal size of LicGd (BOs)3(Ce) compared to the
three most efficient competing materials. In addition, the estimated absolute number of
detected photoelectrons in a typical PM tube is shown for the three reactions of interest. These
latter numbers are based upon the assumption that the number of detected photoelectrons
from GS-20 glass scintillator is 960 per MeV of electron energy deposited. The observed factor
of five improvement (over GS-20) in scintillation efficiency for the ¢Li reaction just
compensates for the factor of five decrease in light output from 6Li to 1B in the borate
scintillator. The result is that the signal size from the present sample of Li¢Gd (BOs)3(Ce) upon
10B capture equals that of GS-20 for 6Li capture. This result should provide a practical, good-
pulse-height-resolution signal for many applications.

Tablel
SCINTILLATOR COMPARISON Table 1l
RELATIVE PULSE HEIGHT DETECTOR OVERVIEW
MATERIAL “Bn,d) ®Li(n, ) Gd(n,gamma) COLD 10meV THERMAL 150meV EPITHERMAL
LigGd(BO): 10 10 10 ‘LY "B ‘LiGd "B
BC-454 012 - *He Liy'"'B  °Licd'B
{plastic)
. 3 .
6820 om0 Zn'S (°Li) He Zn S (L)
(glass) B - 8 :
ZnS (L) Li glass
GSO -~ - 067
PE/ PE/ PE/ . s
neutron neutron MeV gamma LiLn B = Lis Ln (BOs)s (Ce)
Lis Gd (BOs)s 1450 7060 3390

PE = Detected photoelectrons in PM tube.
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An overview of present detectors and potential applications of the new materials is shown in
Table II. The Lis Y (BOs)s(Ce) version of the detector is designed to increase the efficiency
below 150 meV by replacing the competing high cross section Gd with Y. The various
materials listed illustrated the versatility obtained by interchanging the various isotopes and
chemical species.

The best Y based scintillator to-date is only 1.3 times that of GS-20, but as shown in Table IIJ,
the decay time is shorter than that of the Gd based material. Table IV lists the calculated
efficiencies for three materials of interest. The efficiency for the two borates refers to the
10B(n,0) reaction. The effect of replacing gadolinium with low cross section yttrium is evident
at Jow energy.

Table i} ‘ Table IV
MATERIAL CHARACTERISTICS
CALCULATED EFFICIENCIES*
SLi-Glass LisGd(BO,): Li.Y(BO:), FOR NEUTRON CAPTURE

Relative Signal
Amplitude ( 10 59 1.3(powder) Neutron  °Li-Glass

Energy (GS-20) LisGd('*BO3)s LigY(**BO3)3
Atomic Density  1.72 (L)) 3.30 (L) 3.30 L) {eV) (%) (%) {%)
(X 10® atoms ecm™) 1.65 ("*B) 1.65 (°B) 0.0254 79 19 99.8

0.10 54 38 96
Macroscopic Cross- 0.15 47 57 92
Section (cm™) 0.20 42 68 - 89
(at thermal) 16.1 (°Li) 63.3 ("B) 53.3 ("B) 1.00 22 63 63
Density (@m cm™) 25 35 ~28 *All materials are 1.0 mm thick
Capture Peak,
Electron Energy  1.47 (°Li) 22(L) -
Equivalent (MeV) 0.47 (°B) -
Alpha-to-Beta
Rato 0.23 15 S — -
Signat Decay 70 200,700 100
Time (ns)

Figure 1 shows the pulse height spectrum obtained from a thermal neutron irradiation of
Li¢Gd (BOs3)3(Ce). The peak near channel 400 is due to the 6Li (n,0) reaction and that near

channel 80 from YB(n,&). The modest observed resolution is probably the result of
imperfections in the small single crystal available.

Figure 2 shows the pulse height spectrum obtained from a Nal (TI) well-type detector that
surrounds a 6 cm? block of BC454 boron-loaded plastic scintillator. The system was irradiated
with thermalized neutrons from a Cf source. The peak near channel 200 represents the full

energy peak for the 478 keV gamma rays from 7Li* de-excitation following the 9B (n,x)
reaction. No coincidence was required.
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Figure 3 shows the result of requiring a coincidence with the & +7Li signal in the plastic

scintillator. The large improvement in background suppression is seen. (The 100 channel shift
in the peak position is due to electronics abnormalities).
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Roger Pynn:

Firstly, I would like to thank Rex Hjelm and the others on his team for organising this meeting.
I think it was a good idea to assemble the community of designers of neutron spectrometers and
discuss how we might make progress in a field which still seems to be need artisans to a much
larger extent than many other fields of science.

As several speakers have stressed during this meeting, we design neutron spectrometers to learn
something about condensed matter, and the adequacy of our design depends very strongly on what
we are trying to learn. Because neutron sources are so fecble, a single type of neutron scattering
spectrometer just will not serve all our needs, even though all we ever do is measure S(Q,E) over

* some appropriate dynamic range, with an appropriate resolution and statistical precision. As we all
know, we are often forced to trade one “appropriate” variable against another to get data of the
quality that we need.

Nevertheless, the world has changed in a way that makes some of the trade-offs we used to make
redundant. In the early days of neutron scattering, Brockhouse invented the constant-Q scan as a
way of collecting the data he needed in a serial fashion. Although he did not have some of the
technology that he would have needed to collect data in parallel channels - such as position
sensitive detectors and multi-crystal analysers - one of the most serious limitations Brockhouse
faced was the complexity of interpreting parallel data channels. As a graduate student, I took
inelastic scattering data with a cold-neutron time-of-flight spectrometer at Harwall using a large
(150 cm®) single crystal of magnesium. Like all TOF machines, the spectrometer recorded many
channels of information in parallel. But because I didn’t have sufficient computing power at my
disposal, those parallel channels took a long time to process. I remember drawing scattering
curves by hand on large pieces of graph paper and interpolating between phonon peaks. If I was
lucky and waited until 2 am, I could get the entire Cambridge University computer to myself for an
hour or so each night to analyse my data. 120 kilobytes of bulk store all to myself!

Modern computers have to a large extent made serial data accumulation a part of the history of
neutron scattering. We can now think of neutron scattering as a technique for obtaining large
quantities of information that we can mine with a PC to extract the data we need. Instead of
spending 70% of an experiment looking for a window within which to observe a phenomenon of
interest, we can now accumulate data, analyse and display it in real time, and plan our experimental
strategy to maximise the information output. Unfortunately, in many cases our thinking about
neutron scattering instrumentation has not kept pace with this computer revolution and we are still
doing many things that are not optimal.

If you ask yourself how we design new neutron scattering spectrometers, I think you will find that
we usually base them on what we have done in the past. We have rules of thumb which represent
the wisdom distilled from our own mistakes and those of our predecessors. Dick Deslattes from
NIST has pointed out that complex experiments never work until you have made all the mistakes
that stand in the way of success. A corollary is that the only variable you have at your disposal to
reach success is the speed with which you can make mistakes! That is why I am such a fan of
computer simulations - they allow us to make mistakes quickly and without having to pay the price
we used to have to pay for hardware that didn’t quite work as we thought it should. I understand
and accept all of the caveats that Kent Crawford and others have told us about - that we need to do
analytical calculations to gain full understanding and that a simulation is only as good as the
imagination of the scientist who defined the universe within which it operates. But, nonetheless,

I believe that we are at the beginning of a new era of instrument design. One in which we will be
able to simulate not only optics but also background sources. One in which we will be able to
teach new graduate students to design instrumentation without forcing them to make the sort of
expensive mistakes some of us have had to make in our time. And as the computer tools become
more sophisticated, I am quite sure they will lead us to new ways of using neutrons for scattering
experiments. We saw here, for example, in Roland’s elegant talk, how to think about resolution in

140




real space and time instead of in the traditional reciprocal and energy space. This makes me
wonder what one can learn by imposing more sophisticated spatial and angular correlations on
neutron beams than we have done in the past. It is hard for me to think this through in any but the
simplest circumstances, but it is trivial to simulate. Of course, all the simulation does for me is
make me think about concrete results rather than generalities. It does not relieve me of the need to
think. It just gives me something to think about. I claim this is a real advantage.

Of course, as John Copley and others have told us, we need to be careful how we develop and use
simulation tools as a community. We will need to include all the right disclaimers. If we do not put
in all of physics, we will not get complete answers. That is obvious to us now, but I would hate to
have to explain to someone who relied on a simulation package that he or she should not have
omitted neutronic shielding from their spectrometer even though the simulation did not indicate the
need for such shielding!

As an example of the sophistication that is needed in simulations, let me come back to an issue that
I briefly mentioned in a discussion period - surface roughness. If you want to use focusing
mirrors as optical elements in a neutron spectrometer, you will need to consider carefully the effect
of surface roughness. “Carefully” in this context means that you will need to consider not only the
distribution of heights of the true surface with respect to an ideal flat surface, but also the length
scales parallel to that ideal surface. The effects of “roughness”, “waviness”, and “misoriented
facets” on the angular distribution of neutrons diffusely scattering from a focusing mirror are quite
different and all need to be included in a simulation.

Another issue which I find quite confusing is the notion of “resolution”. We are all used to
thinking of this as a single number, basically because most of our calculations are done in the
Gaussian approximation and it only takes one number to specify the width of such a function. We
are all used to applying the Central Limit theorem to the “matching” of various contributions to the
resolution, again because it clearly pertains when we are dealing with many contributions that are
roughly Gaussian or triangular in shape. But what happens when transmission function of one of
our spectrometer components is very asymmetric in some direction? Should we really be using the
standard deviation to match various resolution elements of the spectrometer? I think Devinder
Sivia clearly showed us examples where this is not the right thing to do. The intriguing thing is
whether we can make improvements to our ability to retrieve information by deliberating using the
asymmetry of some relevant functions, such as the time distribution of neutrons escaping from
moderators at a pulsed spallation source.

Finally, I would like to stress my strong support for widespread collaboration on the design of
new neutron scattering spectrometers. No facility has the opportunity to design and build many
spectrometers per decade. They are just too complex and expensive. We just have to make sure
that each time we build a new instrument it collects more information (measured as Mike Johnson
told us, in “bits”) than any neutron spectrometer that has been built previously to study similar
science. I do not believe this is possible unless we pool our knowledge and collaborate to develop
new tools - hardware and software. For this reason, I hope this conference will be the first of
many that discuss ever more sophisticated approaches to the design of neutron scattering
spectrometers.
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Kent Crawford:

I would like to indicate my own ideas of what are some of the needs that have emerged
from this workshop. This idea mentioned by Roger Pynn of perpetuating the knowledge base is
very important and has various aspects. One of the most important of these is the rules-of-thumb
that Roger mentioned frequently. Those are not written down anywhere. If we could get some
mechanism for compiling those in an accessible form, I think that would be useful, not only to
ourselves but to the people who follow along after us for designing instruments. Probably of lesser
importance, but I think still useful, would be some sort of a centralized bibliography of relevant
information.

One of the things that I feel fairly confident about is that it is going to be a long time before
we are able to calculate everything that we need to know about instruments, so we are always
going to have to have some places to do some testing. I urge strongly that we make every effort to
preserve some beam lines in some various places to do these kinds of things.

A lot of the discussion has been associated with what might be done to improve Monte
Carlo. I think it was quite clear that if we could incorporate some 3-D visualization it can make the
Monte Carlo considerably more useful. The little bit that Frans Trouw showed us about how one
might consider applying visualization capabilities was very intriguing.

We need a way of getting an easy definition of the geometry for the Monte Carlo codes. 1
am not quite sure what is the right way, but it has to be something that is user friendly and that
doesn’t take an expert in the program in order to use it. One thing that occurs to me is that there are
a lot of solid modeling programs of one sort or another out there. Can one use those to define the
geometry, say in something like a CAD program or other modeling program, and then output this
geometry to the Monte Carlo program? Instruments are ultimately designed with a CAD program,
so it would be nice to get the geometry from that.

Can the various code modules be defined to match more or less the physical modules that
one would think of in an instrument. If you can do that, than it is an easy cut and paste operation to
piece together the model for an instrument with different kinds of components.

The Monte Carlo code should be fast. I do not know whether the codes we have right now
are fast enough. Maybe the computers will get fast enough to make that a non-issue.

It probably is important at some stage in this that we get some professional programming
help. The neutron-scattering scientists are good at working out the physics that goes in these
codes, but they are not, for the most part, particularly knowledgeable about how to make a good
user interface for codes. For that I think it is important to get someone who is more in that line of
work.

Finally, once these codes are working, it is important to benchmark them against some actual
measurements. I think that would give everybody a lot more confidence that what we are
calculating is correct.
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New Challenges for Computational Evaluation of Neutron Scattering
Instrument Performance.

F. Mezei, BENSC, Hahn-Meitner-Institut, Glienicker str. 100, 1409 Berlin, Germany

It has been slowly but generally recognized by now that, compared to fission reactors, spallation
offers the superior method of neutron beam production for the whole of neutron scattering
research. This change of technology, incidentally, also requires the complete redefinition of the
ground rules for projecting neutron scattering facilities, namely the replacement of linear, step by
step design by a global system optimization. Indeed, in the early days, neutron scattering activities
were kind of “parasitic’’ on research reactors conceived, operated and financed for other use. The
advent of a very few research reactors built for the primary purposes of neutron scattering work
did not change much the process of project planning: The reactors could be fundamentally designed
for providing the best thermal flux in the reflector region, i.e., optimized for a single parameter. All
the rest was linearly added on, with little feedback on the fundamental design of the active zone of
the reactor. For example, had the installation of a cold source cost a sum comparable to the
construction costs of the reactor itself (in reality it is far from that), one would have to carefully

_ weigh the advantages offered by cold neutrons against the necessary reduction of the reactor power
and the thermal flux under boundary conditions, such as constant total costs or best cost- to-
benefit ratio. Cold and hot sources could also be added to these reactors without detailed
consideration of the instruments to be built, since the user requirements could simply be specified
by “best flux at a given Maxwellian temperature.” The linear adding-on approach has also been the
rule when the current spallation sources were built. All of them have been based on recycled
nuclear physics accelerator facilities, and this approach has determined many of the technical
possibilities. However, the choice of the target station, and in particular that of the moderator, has
involved an unprecedented amount of analysis of the variety of instrumental requirements. The
current result is the definition of only a few canonical kinds of moderators, and the instruments are’
basically just added on to the predetermined best suited beam.

In contrast, let us project to one of the future, green field spallation sources dedicated to neutron
scattering research. In trying to fulfill the compulsory “best value for the money” requirement, we
are forced to reconcile items such as the choice of the ion source against fine details of instrumental
response functions. The fundamental reasons for this are, of course, financial in all respects, and
technical in some. For example, the variety of parameters characterizing the output of the proton
accelerator system, (such as time averaged and peak beam power, beam energy per pulse, and
pulse duration, (in contrast to the single crucial parameter, thermal flux in the reflector of a reactor)
cannot be independently determined under the assumption of a given total budget. Thus, duration
pulses of a given energy cost about twice as much to produce than ms long pulses of the same
energy. So we end up, in this respect, with the choice between several-times-higher-energy long
pulses, or more instruments that directly utilize short pulses. Making this choice requires weighting
the merits for the whole scientific community of those instruments favored by higher energy
pulses, against those favored by the short duration pulses. This has to be accomplished well before
the accelerator goes to the final design stage. This means that now we are faced with early
decisions which can only be accomplished with rather exact knowledge of the performance of the
whole facility in experimental use; i.e., in contrast to past practice, we cannot proceed by linear
adding-on in steps, building on the previous ones without fundamental feedback. The global
system optimization we need to do requires a fairly exact global “flight simulation” to be available
well before any basic design choices can propetly be made. This is a new and most important
challenge for the theoretical, “first principles” computational evaluation of neutron scattering
instrument performance.




Before turning to the question of global optimization and an illustration that examines aspects of
a specific example, let us consider a number of additional good reasons for trying to calculate the
response of a neutron scattering instrument with high accuracy and reliability. The most
important ones would include the following:

a) for optimizing the layout of an instrument,
b) for testing new ideas in instrument design,
c) for planning an experiment,

d) for evaluating an experiment.

The reason is quite obvious why, for all these purposes, a sufficiently exact knowledge of the
behavior of a given instrumental setup is of crucial importance. On the other hand, a computational
evaluation of a given instrumental configuration —analytical or via Monte Carlo simulation—played,
up until now, a distant second role behind experiments performed using standard samples or a
trial-and-error approach. The very well justified reason for this is the inferior precision and
reliability of the calculations, compared, e.g., to a calibration run with a well known sample, such
as Vanadium for incoherent elastic scattering. This lack of precision is due to two main factors: On
the one hand, the complexity of the problem involving many dozens of parameters for the exact
description of an instrumental configuration (such as monochromators, collimators, choppers,
diaphragms, windows, detectors, shielding materials, air, etc., etc.). On the other hand, these
parameters can only be known with a finite precision, and actually can vary with time, particularly
in relation to detector efficiency. I would like to emphasize that, in any case, the calculation of the
background neutron counting rate is to be excluded as a hopeless task, since in confrast to the
incoming and scattered beams, we have no detailed knowledge of the trajectory of the neutrons
counted in the background. (Note that this also applies to neutrons scattered both on the sample
and on some structural components of the spectrometer, such as parts of the cryostat around the
sample, while multiple scattering within the sample can be fairly well evaluated.)

The secondary role that instrument performance computation played in the past can be expected to
change gradually. This is, without doubt, partially due to the evolution of the power of easily
accessible computers, but there are other factors, too, which are related to neutron scattering
techniques themselves. One such obvious aspect is the practical impossibility of doing more than a
limited amount of “trial and error”” experimental search on a large, expensive facility. In neutron
scattering the most relevant trials only follow each other with several-year intervals, when a new
instrument is built somewhere or an old instrument is refurbished. The spectacular progress of
instrument performance in the past decades was as much due to learning from the shortcomings of
the previous trial as to the introduction of materially improved components. With the increasing
complexity of our instruments, (e.g., due to the simultaneous data collection in a large number of
detectors), the feasibility of conventional trial and error instrument “tuning” rapidly decreases and
we have to rely more and more on combinations of extensive calculations and limited, strategic
experimental validations. This complexity also makes the planning and conducting of experiments
more difficult without computational assistance, so we actually need to develop “computer aided
experiment conducting” techniques, especially with the widespread availability of CAD tools. This
amounts to nothing less than building up codes that provide the “virtual instrument” equivalents to
the real spectrometers in order to facilitate two things: the finding of adequate data collection
strategies for optimal use of the valuable and never sufficient beam time, as well as the evaluation
of the collected data. In this approach the standard calibration runs will serve as validation anchors,
allowing the validation and tuning of the virtual instrument code to he precision that is today only
achieved by direct normalization of sample spectra to standard runs.

The theoretical basis of this kind of instrument model calculation— our understanding of neutron

propagation in instrument components and samples- is fundamentally perfect. This can appear to
be a paradox: For the description of the scattering processes the neutron is treated as perfect plane
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wave, while for the evaluation of its trajectory through the various instrument parts, such as
collimators, choppers, etc., the same neutron is considered a point- like particle with infinitely well
defined velocity. It is also crucial for the evaluation of multiple scattering effects to be able to
follow the classical neutron trajectories within the sample between two quantum mechanical
scattering events. As Roland Gaehler [1] reported at the workshop, he and his collaborators tried to
remove this paradox by also describing the neutron propagation through the whole instrument as a
wave mechanical phenomenon. They borrowed this approach from light optics, where it is
inevitable. Critically examined, their results confirm the validity of the above conventional dual
approach in neutron scattering (precise classical trajectories of point-like particles scattered as
waves when interacting with matter), since the optical coherence lengths calculated for neutrons,
although much larger than the neutron wavelengths, remain negligible compared to the geometrical
dimensions characterizing instrument components (such as collimator slits).In view of the large
number of parameters defining an instrument, it is quite obvious that a precise calculation of the
response cannot be practically performed in an analytical fashion, and we will have to work with
Monte Carlo (or eventually numerical integration) codes. This is, of course, the standard approach
to calculating the neutron transport and beam characteristics of fission reactors and also of
spallation sources. It has, nevertheless, to be stressed that “{It is] a deplorable tendency to
substitute a ‘code’ for a theory, to substitute a display of many curves for a detailed physical
understanding of the system.” [2]. This is particularly valid in an effort to optimize the
performance of a whole facility or even just major parts of it. The Monte Carlo codes we are
concerned with are much too complex and require so much CPU time even for just one part of the
total system (say reflector-moderator layout, as an example), that no automatic search of an
optimum can be built into the code. One has to resort to a trial and error approach, by which some
phenomenological or more or less vague analytical understanding is used as a guide for Monte
Carlo testing of various configurations, in the hope that the process converges. This is prominently
valid for the optimization of the of the whole spallation source facility, including accelerator, target
station and instruments. It also has also to be stressed that the boundary conditions play a
determinant role in any optimization process. One crucial boundary condition is a clear definition of
the scientific goal to be fulfilled, which curiously appears to be the most vague part of the
discussion of projects. The definition of this goal implies an analysis of the of the spectrum of
expected utilization of the facility , along with the assignment of relative weights to the various
applications. For example, a facility optimized under the assumption that small angle scattering is
of no future importance, while powder diffraction on small elementary cell samples is the
overwhelming interest, would have hardly anything in common with the one which is optimized
under the opposite assignment of priorities.

The results of a set of detailed Monte Carlo simulation calculations [3] presented in Figs. 1 and 2
provide specific examples of the issues we are confronted with and the kind of answers we can
get. Small angle neutron scattering experiments have been simulated for three "equivalent”
instruments operating on three different sources, viz., a 5 MW 50 Hz short pulse spallation source
(SPSS), an equal average power 25 Hz long pulse spallation source (LPSS), and a continuous
reactor source with the flux of ILL. By "equivalent” we mean equal angular resolution at equal
sample cross section and by using identical x-y detectors. In the pin-hole geometry assumed, this
practically means equal sample to detector distances (9 m in the examples) with matching incoming
collimation paths. On the pulsed sources the whole instrument was supposed to be outside a 6 m-
thick bulk shielding. On the pulsed sources the wavelength was determined by the time of flight,
assuming a coupled cold moderator, a t, chopper and three wavelength band definition/frame
overlap disc choppers (all choppers outside the bulk shielding). On the continuous source a 10 %
FWHM velocity selector was assumed.
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Fig. 1. Monte Carlo simulation results for measured calibration spectra for equal angular
resolution and detector solid angle small angle neutron scattering experiments obtained on two
neutron sources within equal data collection times. ‘

Figure 1 shows the comparison of the as-measured isotropic scattering (H,O sample) calibration
spectra after bining into 30 momentum transfer Q channels (which for the continuous source means
bining over detector pixels— - 1 by 1 cm in a 60 by 60 pixel detector, while for the pulsed sources
the bining additionally involves the neutron wavelength). The ratio of the neutron data collection
rate of the two sources is obviously Q dependent, and in addition the LPSS source covers a
somewhat larger Q range in a single scan. Thus, the relative gain offered by the LPSS source
cannot be fully characterized by a single number , e.g., by the ratio of the total number of neutrons
collected in the spectra. Rather, it will somewhat depend on the Q range that is the most relevant in
a given experiment. This illustrates one of the points to be made when comparing the same kind of
instruments on different types of sources: The relative merits can generally be only roughly
characterized by a global neutron intensity ratio, while a precise analysis reveals variations from
one type of sample scattering function to another.
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Fig. 2. Comparison of sample small-angle neutron scattering spectra for three neutron sources
under conditions described in the caption of Fig. 1 and in the text.

In Figure 2 the normalized scattering spectra—the obtained I(Q) functions—from a sample of a dilute
‘ensemble of hard spheres are shown for the three sources. In order to keep track of the intensity
ratios, the I(Q) spectra as shown in the figure are multiplied by the total counting rate in the
corresponding calibration run ( cf. Fig 1). For the SPSS source it was assumed that the proton
beam power was divided between two target stations, as usually envisaged, in a ratio 1:2. Using a
1:1 division ratio or a single 50 Hz target station would only have a minor effect on the final
performance (well below a factor of 2). The superior performance of the LPSS variant is this case
is due to its two-times-higher power per pulse, while the pulse length is fairly irrelevant, with the
wavelength resolution already at least two times better than required by the comparison to the ILL-
type instrument. The results in this figure illustrate features of the optimization of source
performance in terms of cost-benefit ratio. Based on currently published cost estimates in various
project studies, the construction costs of the three sources can be estimated to scale as 1:1.8:1 for
the LPSS, SPSS and ILL, respectively. (If we assume an equal number of instruments on each
source, the operational costs are rather close to each other, since they are dominated by the
personal costs, and the rest is also not too much different, e.g., electric power vs. nuclear fuel.)
Thus, in this application:

a) The LPSS approach provides a neutron intensity 5 times higher) than a continuous
reactor source at equal cost.

b) The LPSS approach provides a neutron intensity about 2 times than the SPSS approach

at 55% of the cost.

Both a) and b) demonstrate the absolute necessity of a serious cost-benefit optimization in new
projects, because there are huge factors to be gained or lost. Of course, this optimization has to
include the whole spectrum of instruments, and a proper synthesis of the relative merits for the

- 147




various instruments can only be accomplished in view of well defined scientific goals, which in
turn determine the weights to be attributed to the various instruments and types of experiments.
This inevitable task of optimization is a future challenge for all neutron source projects currently in
discussion, and it is obvious that advanced instrument performance evaluation is a key input in the
process.
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