
MASTO 
PREPRINT UCRL- 82958 

I C.G (Of ~ lino-* - • 2>S 

Lawrence Livermore Laboratory 
SUPERVISORY CONTROL AND DIAGNOSTICS SYSTEM DISTRIBUTED OPERATING SYSTEM 

P . R. McGoldrick 

November 8 , 1979 

Th i s paper was p r epa red for s u b m i t t a l t o t h e 8 th 
Symposium on E n g i n e e r i n g Problems of Fus ion Re­
s e a r c h , San F r a n c i s c o , CA, November 1 3 - 1 6 , 1979 

This is a preprint of a paper Intended for publication in a journal or proceedings. Since changes may be made 
before publication, this preprint is made available with the understanding that it will not be cited or reproduced 
without the permission of the author. 



SUPERVISORY CONTROL AND DIAGNOSTICS SYSTEM DISTRIBUTED OPERATINC SYSTEM 

P. R. McGoldrick 
Lawrence Livermoro Laboratory, University of California 

Livcrmore, CA 94550 
MASTER 

SUMMARY 

Tli is paper contains a description of the Super­
visory Control and Diagnostics System (SCDS) Dia t r i -
butod Operating System. The SCDS consists of nine 
32-bit minicomputers with shared memory (Fig. 1). 
The systool's main purpose is to control a targe Mir­
ror Fusion Test Faci l i ty (MFTF), The fac i l i ty i:t so 
lnrp,e, containing over 3000 devices to control and 
7000 sensors to monitor, that it is not cost 

*Work performed under the auspices of the U.S. 
Department of KiiLTgy by the Lawrence lAvcrtourn 
Laboratory under contract number W-7405-ENG-48. 

effective (or possible) to have 
of the f a c i l i t y . This type coi 
cer ta in requirements on the syi 

• Avai labi l i ty : The cont 
avai lable . Our design c r i t e r i a 
time for a single-point fa i lure 
than 5 min, 

• F l ex ib i l i t y : The device 
periitient controls; or monitors m, 
Also, new devices may be added 
add i t i onal computers, memory, d. 
or interfaces for cont ro l . ) 

Data Throughput I SCDS may 
cean, .ind display i n moan ing fu 1 
million bytes of information ev> 

only manual control 
t ro l Hystem places 
tern design, 
ol system must be 

are such that down-
should be no more 

that the MFTF ex-
y change regularly. 
(possibly requiring 
.it a storage devices, 

have to collect, pro-
form as much ns four 

cry 5 min. 

i m 
<S~, 

i f l 

F-

f i & 

« * 
-i ' D 3 • " • • 

^>, 

,;.. ,.;„, I>H n ' U-,-. 
Ilk 

Fig. 1. MFTF control and diagnostics system. 

* 



The avail-ability requirement lias been the major 
factor in our design of the SCDS. Fortunately, our 
design requirements are such that we can allow the 
entire SCDS to crash on a single-point failure as 
long as we recover in 5 min. In our design we at­
tempt to prevent crashes of this type, but preventing 
certain hardware failures from crashing the SCDS is 
virtually impossible. 

The_S_CDS Arch itec ture_ 

Nine computers eompriho the SCDS (as aeen in 
Fig. 1), and each has its own local memory while each 
shares some common memory. To keep in line with our 
availability requirement, the shared memory consists 
of two separate units. Tf one shared memory fails, 
the other is usable. Notice that the nine computers 
divide up the MFTF workload. The division was made 
so that each computer could do its function with 
minimal interaction with the others. 

With shared memory it is important for efficiency 
to minimize access to shared memory. The memory 
cycles in shared memory are divided among competing 
machines. It is entirely possible For a machine to 
he locked out of shared memory for eight memory 
cycles (about It us). Wo therefore have each com­
puter perform as much an ponniblo locally. 

To assure availability after single-point fail­
ures, each major component In tho system has a backup 
component. One approach would hove been to have a 
spare control system that switched in whenever then* 
was a failure, hut this is cost-prohibitive. Instead 
wo designate a backup machine for each machine in the 
system, which does its primary function and the back­
up function when necessary. Devices necessary for 
the backup function can be switched to the backup 
machine via bus switches. This architecture allows 
multiple failures provided there is no more than one 
failure per machine and itu backup. When uc are in 
the backup mode, performance of SCDS is degraded. 

The bus switches are potential single points of 
failure that are not backed up. In our investigation 
these units arc very reliable. When a bus switch 
fails, we will replace it. This operation will take 
from a few minutes to an hour. There is other common 
hardware that is critical. We have attempted to 
minimize these; but without redesign of the manu­
facturer's hardware, they cannot be entirely elimin­
ated. 

Distributed Operating System 

We designed a Distributed Operating System to 
fulfill the requirements of SCDS. Managing mulitple 
processors is not different from managing a single 
processor.^ The technology for designing and im­
plementing multiprocessor operating systems exists,2 

BO that the SCDS system need not be developed in an 
ad hoc manner. Brinch Hansen defines an operating 
system to be a set of manual and automatic procedures 
that enables a group of people to share a computer 
installation effectively.2-* Here the key work is 
sharing. We must manage access to shared memory and 
other shared resources. Rather than concentrating 
our design on shared memory and interprocessor com­
munication, we designed a virtual machine that pro­
cesses could use regardless of the need for shared 
memory. In fact, a process should not have to know 
whether it is running in a one machine environment or 
nine. This allows us greater flexibility in deciding 
where processes run. 

The main issues in developing the SCDS Distri­
buted Operating System are: 

• Maintaining availability. 
• Store management. 
• Process control. 

• Mutual exclusion. 
• Error handling. 

Logical__Machuiea and_Ava_ilabi_l_i_t_y_ 

To simplify our thinking about the processes that 
could be operating anywhere in the SCDS, we developed 
the concept of logical machines, which is a logical 
grouping of tasks that work together to perform a 
desired result. For example, the tasks that control 
the vacuum system in the MFTF were grouped to form a 
logical machine. A key element of a logical machine 
is that it has a higher degree of interactivity or 
utilization of a certain set of resources between its 
members than its members have with other logical 
machine members. 

Tho ruleB governing logical machines follow: 

• All members of a logical machine run on a 
single physical machine (i.e., logical machineH are 
mapped onto physical machines). 

• A physical machine may run as many logical 
machines, an it is capable. 

• Logical machines may be moved from one physi­
cal machine to another. 

Wo accomplish the logical-to-physical machine 
mapping by a logieal-to-phydicrtl machine lable in 
shared memory. Moving a logical machine from one 
physical machine to another is our method of main­
taining machine availability. Wo can remove or add 
physical machines to the SCDS by moving logical mach­
ines from them or to them. 

Tasks that form a logical machine use a check­
point system. Whenever a task passes n checkpoint, 
it records the fact in shared memory. Tin; chock-
points can bo thought of as milestones. If a physi­
cal machine fails, the network opcraLor can reassign 
the logical machine-) that had been assigned to the 
failed physical machine to one that in operational — 
the backup machine. When the logical machine is then 
restarted, the tasks that form the logicnl machine 
can determine where they should restart by examining 
the checkpoint statur. in shared memory, thus allowing 
a smooth switchover. 

Store Management 

Each machine has its own local memory while shar­
ing a common memory. We could set aside a portion of 
local memory for members of a logical machine to 
share. When logical machines need to share data, 
shared memory will be used. In this manner we cut 
down access to shared memory. 

In these common memories we are only sharing 
data, not programs. If we placed programs in shared 
memory, we believe it would waste memory cycles on 
instruction fetches. Programs could be placed more 
efficiently in local memory and only access common 
memory when using data. The terms that we will use 
for these common memories are; 

Local common: Memory that can only be accessed 
by a single processor but can be accessed by mulitple 
tasks on that processor. 

Global common or Shared memory: memory that is 
shared among processors. 
One should realize that any information stored in 
local common is lost when a logical machine is moved 
from one processor to another. 

We could preallocatc all buffers and data areas 
in the above commons, but the commons are not big 
enough to hold everything and certainly would not 
easily allow change. We decided to use dynamic mem­
ory allocation/deallocation. Each data area is al­
located based on need. Our algorithm allows unly one 
process to be allocating or releasing memory i.i an 
area at a time, so the dynamic buffer area has its 



access controlled by a semaphore. If we only have 
one dynamic buffer area in shared memory that a l l 
machines use, only one machine can use i t (for a l ­
location or release) at a time. 

A gLod solution to the above inefficiency is to 
have multiple dynamic buffer areas , preferably one 
per logical machine. Each logical machine is as ­
signed a dynamic buffer area where it can obtain buf­
fers . If each logical machine has i t s own area, i t 
wil l never have to wait Eor access. This accom­
pl i shes another very iraportpnt s tep toward a v a i l ­
a b i l i t y . By assigning dynamic buffer areas , we l imit 
the amount of shared memory that each logical machine 
cont ro l s . An aberrant logical machine, generally, 
can at moat f i l l up i t s area (hardware fa i lures not­
withstanding). 

Shared memory is i n i t i a l i z ed , and can be modi­
fied, by a progrom called NETCTRL. Local Common is 
automatically in i t i a l i zed upon boot-up of a computer 
by a program called LMtNIT. 

Another important issue is data in tegr i ty in com­
mon memories. How does one prevent programs with 
anomalies from contaminating shared memory? Our 
solution is to only give a user program di rec t Read­
only access to a common memory. If a program wishes 
to Write, i t must use procedure* that are part of the 
Distributed Operating System. (These procedures ore 
described in SCDS Software System Manuil, Section 
6.1.) These system procedures perform curtain con­
sistency checks to verify correct operation. 

MAIL 

Buffers that are allocated in a dynamic buffer 
area in common memory can be passed around between 
processes. Therefore, we call any buffer in common 
memory MAIL, which is used to implement mutual ex­
clusion, process control, and communication of data 
via three mail typest semaphore, command, and data. 

When each piece of mail is made, the system en­
cases it in an envelope called a header. The header 
contains valuable information that is used by the 
distributed system such as: 

• Postal zone: Local or global. Local mail is 
in local common and can only be sent between pro­
cesses on the same logical machine. Global mail is 
in shared memory and can be sent to anyone at any 
location. 

a DBA: Pointer to the dynamic buffer area the 
mail is in. 

• Parent, younger-sibling, elder-sibling: These 
fields allow mail to be created in a hierarchy. This 
aids in debugging because we can obtain a snapshot of 
the system at anytime. Other benefits of placing mail 
in a hierachy will be discussed later. 

Process Control 
Every process in our distributed system has one 

or more activation records in common memory. These 
activation records are command pieces of mail. Each 
command piece of mail contains the logical machine, 
taskname, and load file of the process the command 
activates. A process is said to own a command if the 
logical machine and taskname in the command are the 
same as the process 1. Processes are created by mail­
ing a command piece of mail to the process to be 
created. 

The postal system requires the process that is 
mailing the command to specify the logical machine, 
taskname, and load file of the process that is to 
receive the command. If the intended recipient of 
the command is not already running (for another com­
mand), the postal system loads and starts the process 

from the load '"ile. Mailing a command results in the 
command being owned by the recipient. When a process 
mails all its ecmaands to others, it IB no longer 
thought to be part of the distributed system and is 
not allowed to make or send mail. Note that in order 
to make mail, a process must own a command piece of 
mail. This prevents unauthorised users from temper­
ing with the Bystem. 

Mutual Exclusion 
There are times when it is safe for only one pro­

cess to manipulate a shared resource at a time. An 
example is allocating or deallocating buffers in 
shared memory. A resource may also be able to be 
shared simultaneously by members of one set of pro­
cesses (readers), but must be used by only one pro­
cess at a time by members of another set of processes 
(writers). 

All shared resources that require exclusive ac­
cess \\a\ piece of mail of type semaphore. We have 
written three routines to control access via a sema­
phore: PS (P sequential), PC (P concurrent), and V. 

Executing a PS operation on a semaphore suspends 
a process until it is the process' turn to have ex­
clusive access to the resource. Executing a PC oper­
ation oil a aemophore suspends the process until the 
resource is not being used by a process that executed 
a PS operation. Executing a V operation will release 
the process' access to the shared resource. 

Error Handling 
Our very strict rules on making and posting mail 

tends to show up errors before they impede the system. 
A command piece of mail has two fields that point 

to mail a process owning the command made in local or 
global common. This allows a hierarchy of commands 
to be made that correspond to processes running in 
the distributed system. 

If a process that owns a command blows up, pauses 
or goes End-of-Task in a suspicious manner, the 
parent of the process is notified by returning the 
command to the parent with the appropriate error 
status. 

Each processor sets an "l am alive" flag in 
shared memory once a second. When a processor fail­
ure is detected, the logical machines that were run­
ning on the failed processor are restarted on another 
processor. 

References 
1. Price, R. J., Multiprocessing Made Easy, National 

Computer Conference, 1978. 
2. Brinch Hansen P., Operating Systems Principles, 

Prentice Hall, 1973. 
3. Brinch Hansen P., "The Programming Language 

Concurrent Pascal," IEEE Transactions on Software 
Engineering, Vol. SE-1, No. 2, June 1975, pp. 
199-207. 

4. Brinch Hansen P., Concurrent Pascal Intro­
duction, Information Science, California Insti­
tute of Technology, July 1975. 

5. Hoare, C. A. R., "Monitors: An Operating System 
Structuring Concept," Communications of the ACM, 
Vol. 17, No. 10, October 1974, pp. 549-557. 

6. Wallentine, V. and McBride, R., Concurrent 
Pascal—A Tutorial, Department of Computer 
Science, Kansas State University, November 1976. 



NCJTICL 
" This report was prepared as an Account of work 
^punsored b) the United States Government. 
Neither the United Stales nor the United Slates 
Department of lincrgy, nor any of their employees, 
nor uny of ihcir cornractors, subcontractors, or 
llicir cmplojces. makes any warranty, express or 
implied, or assumes any legal liability or respon­
sibility for the accuracy, completeness or 
usefulness of any information, apparatus, product 
or process disclosed, or represents that its use 
would not infringe privately-owned rights." 

Kelcrencc to a company 01 product 
H.-IKIf tii>f> Dili i t l iplv jlpprtH'll) OF 
recommendation ol the product hy 
llic rimcrsity of California or the 
l .S, Department of Inergj to the 
exclusion of other;, that may he 
stiilahle. 


