MASTE?
PREPRINT UCRL- 82958

L conl- 791104 --D5 |

Lawrence Livermore Laboratory

SUPERVISORY CONTROL AND DIAGNOSTICS SYSTEM DISTRTRUTED OPERATING SYSTEM

P. R. McGoldrick

November 8, 1979

This paper was prepared for submittal to the 8th
Symposium on Engineeving Problems of Fusion Re-
search, San Francisco, CA, November 13-16, 1979

]

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made
before publication, this preprint is made available with the understanding that it will not be cited or reproduced
without the permission of the author.




SUPERVISORY CONTROL AND DIAGNDSTICS SYSTEM DISTRIBUTED OPERATING SYSTEM

P,

Lawrence Livermore Laboratory, University of Calilornia

R,

McGoldrick

MASTER

Livermore, CA 94550

SUNMARY

This paper contains a description of the Super-
visory Control and Diagnostics System (SCDS) Distri-
buted Operating System, The SCDS consists of nine
32-bit minicomputers with shared memovy (Fig. 1),
The system's main purpose is to control a large Mir-
ror Fusion Test Facility (MFTF), The facility is so
large, containing over 3000 devices to control and
7000 sensors to monitor, that it is not cost

¥Work performed wunder the auspices of the U,S,
Department of Encrpy by the Lawrence Livermore
Laboratory under conlract numbor W-7405-ENG-48,

HINIVIISI

effective (or possible) to have only manual control
of the facility. This type control syatem places
cortain requirements on the system design,

® Avaitability: The control system must be
available. Our dewign criteria are such that down=
time for a single-point failure should be no more
than 5 min,

e Flexibility: The devices that the MFIF ex~
periment controls or monitors may change regularly.
Also, new devices may be added (possibly requiring
additional computers, memory, data storage devices,
or interfaces for control.)

Data Throughputt SCDS may have to colleet, pro-

cess, and display in meaningful form as much ns four
million bytes of informarion every 5 min,

SYStER

Fig. 1. MFTF control and diagnostics system.



The availability requirement has been the major
factor in our design of the SCD3. Fortunately, our
denign requirements are such that we can allow the
entire SCDS to erash on a single-point failure as
long as we recover in 5 min. In our design we at-
tempt to prevent crashes of this type, hut preventing
certain hardware failures from crashing the SCDS is
virtually impossible.

The SCDS Architecture

Nine computers comprise the SCDS (aa seen in
Fig. 1), and each has ita own local memory while each
shares some common memory. To keep in line with our
avaitability requirement, the shared momory conaists
of two neparate wnits. If one shared memory fails,
the other is usable. Notice that the nine computers
divide up the MFTF workload, The division was made
so that ecach computer could do its function with
minimal interaction with the others,

With sharcd memory it is important for efficiency
ta minimize aceeras to shared memory, The memory
cyeloa in shured memory arce divided among competing
machines. 1t is entirely possihle for a machine to
he locked out of shared memory for eight memory
eyeles (about 11 us). We therefore have cach com-
puler perform as much an ponsihle locally,

Ta assure availability after single~point fail-
ures, each major companenl {n the aystem haa a backup
component. One appreach would have been Lo have a
upare conkrol nystem that switched in whenever there
wan a Failure, but this is cost-prohibitive. Instead
we denignate a backup machine for each machine in the
system, which does its primary function and tlhe hack-
up function when necessary, Devices necesaary for
the backup function can be gwitched to the baekup
machine via bus switches. This architecture allows
multiple failures provided there is no more than one
failure per machine and ity backup. When we are in
the backup mode, performance of SCDS is degraded,

The bus switches are potential single points of
failure that are not backed up. In our Investigation
these units are very reliable. When a bus switch
fails, we will replace it, This operation will take
from a few minutes to an hour. There is other common
hardware that is critical. We have attempted to
minimize thesej but without redesign of the manu-
facturer's hardware, they cannot be entirely elimin-
ated.

Distecibuted Operating System

We designed a Distributed Operating System to
fulfill tbe requirements of SCDS. Managing mulitple
processors is not different from managing a single
processor.® The technology for designing and im-
plementing multiprocessor operating systems exists,?
B0 that the SCDS system need not be developed in an
ad hoc manner. Brinch Hansen defines an operating
system to be s set of manual and automatic procedures
that enables a group of peagle to share a computer
installation effeetively.2-% Here the key work is
sharing. We must manage access to shared memory and
otber shared resources. Rather than concentrating
our design on shared memory and interprocessor com~-
munication, we designed a virtual machine that pro-
cesses could use regardless of the need for shared
memory. In Fact, a process should not have to know
whether it is running in a one machine environment or
nine. This allows us greater flexibility in deciding
where processes run.

The main issues in developing the SCDS Distri-
buted Operating System are:

e Maintaining availability.
® Store management.
& Proucess control.

® Mutual exciusion.
e Error handling,

Logical Machines and Availability

To aimplify our thinking about the processes that
could be operating anywhere in the sCDS, we developed
the concept of logical machines, which is a logical
grouping of tasks that work together to perform a
desired result. For exomple, the tasks that control
the vacuum system in the MFTF were grouped to form a
logical machine., A key clement of a logical machiue
is that it has a higher degree of interactivity or
utilization of a certain sct of resources between its
members than it members have with other logicat
machine members.

The rules governing logical machines follow:

e All members of a logical machine run on a
single physical machine (i.e., logical machines are
mapped onto physical machines).

® A physical machine may run as many logical
machines an it is capahle,

e Logical machines may be moved {rom onc physi-
cal machine to another,

We accomplish the logical-to-physical machine
mapping by 4 logical~to-phyaical machine table ia
shared wemory. Moving a logical machine from one
physical machine to another is our methed of main-
taining muchine availability. We can remove or add
pliysical machines to the SCDS by moving logical maeh~
ines from them or to them.

Taaks that form a loglical machine use a check-
point system. Whenever a task passes a checkpoint,
it records the fact in shared memory, The cheeck~
points can be thought of as milestones. If a physi-
cal machine fails, the nctwork operator can reassipn
the logical machines that had been assigned to the
failed physical machine to one that iy operational--
the backup machinc. When the logical machine is then
restarted, the tasks that form the logieal machine
can determine where they should restart by examining
the checkpoint status in zhared memory, thus allewing
a smooth switchover.

Store Management

Each machine has its own local memory while shar-
ing a common memory. We could set aside a portion of
local memory for members of a logical machine to
share. When logical machines need to share data,
shared memory will be used. In this manner we cut
down aceess to shared memory.

In these common nemories we are only sharing
data, not programs. If we placed programs in shared
memory, we believe it would waste memory cycles on
instruction fetches. Programs could be placed more
efficiently in local memory and only access common
memory wben using data. The terms that we will use
for these common memorics are:

Local common: Memory that can only be accessed
by a single processor but can be accessed by mulitple
tasks on that processor.

Global common or Shared memory: memory that is
shared among processors.

One should realize that any information stored in
local common is lost when a logical wmachine is moved
from one processor to another.

We could preallocate all buffers and data areas
in the above commons, but the commons are not big
enough to hold everything and certainly would not
easily allow change. We decided to use dynamic m.m-—
ory allocation/deallocation, Each data area is al-
located based on need. Qur algorithm allows unly ome
process to be allocating or releasing memory fa an
area at a time, so the dynamic buffer area has its



access controlled by a semaphore. 1f we only have
one dynamic buffer area in shared memory that all
machines use, only one machine can use it {(for al-
location or release) at a time.

A guod solution to the above inefficiency is to
have multiple dynamie buffer areas, preferably one
per logical machine. Each logical machine is as-
signed a dynamic buffer area where it can obtain buf-
fers. 1f each logical machine has its own arvea, it
will never have to wait for access, This accom-
plishes another very importent step toward avail-
ability. By assigning dynamic buffer areas, we limit
the amount of shared memory that each logical machine
controls, An aberrant logical machine, generally,
can at most fill up its area (hardware failures not-
withstanding).

Shared memory is initialized, snd can be modi-
fied, by a program called NETCTRL. Local Common is
automatically initialized upon boot-up of a computer
by a program called LMINIT.

Another important issue is data integrity in com-
mon memories. How does one prevent programs with
anomalies {rom contaminating shared memory? Our
solution is to only give a user program direct Read-
Only access to a common mewmory. Lf a program wishes
to Write, it must vse procedurcs that are part of the
Distributed Operating System, (These procedures are
descrihed in SCDS Softwarc System Manual, Section
6.1.) These system procedures perform certain con~
sistoncy ehecks to verify correct operation.

MAIL

Buffery that are allocated in a dynamic buffer
area in common memory can be passed around between
processes. Therefore, we call any buffer in comman
memory MALL, which is used to implement mutual ex~
clusion, process control, and communication of data
via three wail typest semapbore, command, and data.

When each piece of mail is made, the system en-
cases it in an envelope called & header. The header
contains valuable information that is used by the
distributed system such as:

e Postal zone: Local or global. Local mail is
in local common and can only be sent between pro-
cesses on the same logical machine. Global mail is
in shared memory and can be sent to anyone at any
location.

@ DBA:
mail is in.

e Parent, younger-sibling, elder-sibling: These
fields allow mail to be created in a hierarchy. This
aids in debugging because we can obtain a snapshot of
the system at anytime. Other benefits of placing wmail
in a hierachy will be discussed later.

Pointer to the dynamic buffer area the

Process Control

Every process in our distributed system has one
or more activation records in common memory. These
activation records are command pieces of mail. Each
cormand piece of mail contains the logical machine,
taskname, and load file of the procesa the command
activates. A process is said to own a command if the
logical machine and taskname in the command are the
same as the process'. Processes are created by wail-
ing a command piece of mail to the process to be
created,

The postal gystem requires the process that is
mailing the command to specify the logical wachine,
taskname, and load file of the pracess that is to
receive the command. If the intended recipient of
the command is not already running (for another com-
mand), the postal system lpads and starts the process

from the load ‘ile. Mailing a command results in the
command being owned by the recipient. When a process
wails all its eccomands to others, it is no longer
thought to be part of the distributed system and is
not allowed to make or send mail., Note that in order
to make mail, a process must own a command piece of
mail, This prevents unauthorized uasers from tamper-
ing with the system.

Mutual Exclusion

There are times when it is safe for only one pro-
cesa to manipulate a sharved resource at a time. An
example is allocating or deallocating buffers in
shared memory. A resource may also be able to be
ahared simultaneously by membetrs of one set of pro-
ceases (readers), but must be used by only one pro-
cess at a time by members of another set of processes
(writers).

All shared resources that require cxclusive ac-
cess hav piece of mail of type semaphore, We have
written three routines to control access via a sema-
phore: PS (P scquential), PC (P concurrent), and V.

Executing a PS operation on a semaphore suspends
a procems until it is the process' turn to have ex~
clusive access to the resouvrce, Executing a PU oper-
ation on a semaphore suspends the process until the
resource i8 not being used by a process that executed
a PS opcration. Executing a V operation will release
the proccses' access to the shared resource.

Error Handling

Our very otrict rules on making and posting mail
tends to show up errors before they impede the system.

A command piece of mail has two fields that point
to mail a process owning the command made in local or
global common. This allows a hierarchy of commands
to be made that correspond te processes running in
the distributed system.

1f a process that owns a command blows up, pauses
or goes End-of-Task in a suspicious manner, the
parent of the process is notificed by returning the
command to the parent with the appropriate error
status,

Each processor sets an "I am alive” flag in
shared memory once a second. When a processor fail-
ure is detected, the logical machines that were run-
ning on the failed processor are restarted on another
processor.

References

1. Price, R. J., Multiprocessing Made Easy, National
Computer Conference, 1978.

2. DBrinch Hansen P., Operating Systems Principles,
Prentice Hall, 1973,

3. Brinch Hansen P., "The Programming Language
Concurrent Pascal,” IEEE Transactions on Software
Engineering, Vol. SE~1, No. 2, June 1975, pp.
199-207,

4. Brinch Hansen P., Concurrent Pascal Intro-
duction, Information Science, California Insti-
tute of Technology, July 1975.

5. Hoare, C. A. R., '"Monitors: An Operating System
Structuring Concept,” Communications of the ACM,
Vol. 17, No. 10, October 1974, pp. 549~557.

6. Wallentine, V. and McBride, R., Concurrent
Pascal--A Tutorial, Department of Computer
Science, Kansas State University, November 1976.



NOTICE

“This report was prepared as an account of work
sponsored by the United States Government.
Nerther the (Jnited States nor the United States
Department of £nergy, nor any of their employees,
nur any of their contractars, subcontraciors, or
their employees, makes any warranty, express or
implied, or assumes uny legal Tiabilily or respon-
sibility for the accuracy, completeness or
usclulness of any 1aformation, apparatus, product
ot process disclosed, of represents that _ils use

would ot infringe privately-owned rights,

Reference Lot company o1 product
name dues not imply approvid or
recomnmendation of the product by
the Uaivensity of Calitoraia or the
1.8, Department of Fnergy 1o the
exclusion of uthers that w be
suitable.




