UCRL-LR-106975

The Cache Group Scheme for
Hardware-Controlled Cache Coherence and
the General Need for Hardware Coherence

Control in Large-Scale Multiprocessors

Joseph Edward Hoag
(M.S. Thesis)

0 KUL Ulttflir/i

COVER

March 1991

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available

original document.

This document was prepared as an acccount of work sponsored by an agency of the United States Government. Neither
the United States Government nor the University of California nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately own rights.
Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or the University of California, and shall not be used for

DISCLAIMER

advertising or product endorsement purposes.

Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory

under Contract W-7405-Eng-48.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information
P.O. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401, FTS 626-8401

Available to the public from the
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd.,
Springfield, VA 22161

UCRL-LR-106975
Distribution Category UC-705

UCRL-LR--106975

DE91 012106

The Cache Group Scheme for
Hardware-Controlled Cache Coherence and
the General Need for Hardware Coherence

Control in Large-Scale Multiprocessors

Joseph Edward Hoag
(ML.S. Thesis)

Manuscript date: March 1991

LAWRENCE LIVERMORE NATIONAL LABORATORY

University of California ¢ Livermore, California ¢ 94551

DIS 3t OF THIS DOCUMENT 18 UHL

The Cache Group Scheme for Hardware-controlled Cache
Coherence
and
The General Need for Hardware Coherence Control in

Large-scale Multiprocessors

By
JOSEPH EDWARD HOAG
B.S. (Brigham Young University) 1989

THESIS
Submitted in partial satisfaction of the requirements for the degree of
MASTER OF SCIENCE
in
Computer Science
in the
GRADUATE DIVISION
of the
UNIVERSITY OF CALIFORNIA
DAVIS

CONTENTS

Contents

Abstract

1 Introduction

1.1 Multistage interconnection networks and memory latency..........cceceeeveennnn.
1.2 The cache coherence problem and its present SOIUtiONS.......ccccevveieneereennennee.
1.3 Structure Of TRESIS. ...oociiiiiiieee e

2 The Cache Group Scheme

2.1 CaChE GTOUPS....oiiiiiiieiieiieiieie ettt eteete et eteesteabeesseeseesseesseanseesseenseenseesseeseens
2.2 A Note on Coherence and Ordering...........ccceceeveeerierrerieneerieeseesreseesseeseesenens
2.3 MUItICASHINIE. ..c.uveiieiieieecieeiees ettt ee et e e e st es e e seessaesasesseesssessaesssessaesssesseesssenses
2.4 Return Reply CoOmMDbINAtION......c.ccciiriiiriieiieieeiieieeieeiteie e ere e sseesseenaeens

3 Coherence Protocol and Timing

3.1 Protocol States and A CTIONS.ooiiiiiieeieieeeeeeeeeeeeee e eeeeeee e e e e e e e ereeeeeeeeaaaeeeas
3.2 Cache Architecture and ProtOCOIS........cccoovvuiiiiiiiiiiiiiiiee e
3.3 Memory Controller Architecture and Protocol.........cococeiiviniiiininciiinenee

4 Simulation Results

4.1 The Cerberus Multiprocessor STmMULAtOT..........ccccceervierierieneerieneereeeeeeiens
4.2 The simulated codes: gauss, psim, relax and flag...........ccccccoovvevvvevcveiiveeceeneennnn.
4.3 Results of Cache Grouping vs. Full-directory scheme...........ccccovevcvvviviriiennn.
4.4 Results of Cache Grouping vs. No Cache.........ccccovvviviiriiiniiniinieniecieeeeeeeenn
4.5 Effects of Changing Cache Group S1ZeE.......cccccoovrviirieriinieereenieneeseeseeseeenenens
4.6 Notes on other cache coherence SChEMES........ccoceveriiiiiniiiiiiiireeecee

4.6.1 The one-read SChEME.........cccoocoeiiviiiiiiieieee e

4.6.2 The minimal state SChEME..........cccoceevueviiiiiiiiieiereeeeeee e
4.7 Summary of Simulation ReSults........cccovviiiiiniiiiiniieeceecee e

5 Software Costs of CoherenceEnforcement

5.1 The psim network simulator on the TC2000ccccccvvviieviiecieciiriieieeeeiene
5.2 The Gauss linear system solver on the TC2000ccccoccenirienenineenenenenee.
5.3 DISCUSSIOMN..c.uiiuiiiiiiieiteiteeie ettt ettt ettt ettt e et st e e st et esee s bt es e et e ebeebe et enseeneene

ii

10
13
14
17

20
20
21
25

31
31
33
36
41
44
47
47
51
52

53
53
56
59

CONTENTS

6 Discussion

References

A Gaussian elimination code listings

A.l Baseline version ofgauss code

A.2 Coherent cache version of gauss code

A3 TC2000 version of gauss COAC.....ccuunimiiiniiiieiiecieeeie et

B Glossary of Terms and Variables

61

63

65
65
66
68

73
73
74

Abstract

A scheme that employs cache grouping and incomplete directory state in order to
reduce the cost of maintaining directory state is introduced. This thesis discusses the
cache grouping scheme, describes the protocols necessary for its implementation, and
gives the results of detailed simulations of the scheme using various application codes.
The effects of changing cache group size and using sophisticated multicast and combi-
nation features in the interconnect are explored.

It is discovered that the cache grouping scheme can equal the performance of full-
directory schemes, while costing much less. The system is relatively insensitive to cache
group size. Advanced multicast and combination features in the network work best when
used together, and have especially beneficial effect for codes that exhibit a high rate of
one-to-many invalidates. The simulation of a machine employing the cache grouping
scheme indicates significant performance gains over an identical machine without a
shared data cache. We also discuss the time and coding required to coax efficiency
out of codes run on large scale parallel machines without hardware coherent cache

mechanisms.

I INTRODUCTION 2

1 Introduction

1.1 Multistage interconnection networks and memory latency

For some years now. multiprocessors composed of commercially available microprocessors
have been making significant performance gains. As the problems that we wish to solve
become larger and more complex, the need arises for additional computation power in the
form of scalable parallel machines with large numbers of processors. There are various w'ays

to connect the processors together on such machines [1], including but not limited to:

* The shared bus: A shared bus, shown in Figure 1, is the least expensive method of
interconnection. It can be viewed as a wire over which all processors pass messages
and make memory requests. The problem with the shared bus is that it can be satu-
rated by a small number of processors. If 1000 processors need to access 1000 different
memory locations, they will all have to wait their turn for control of the bus. Shared
buses present a potential communication bottleneck that makes them undesirable for
connecting large numbers of processors. The largest commercial shared-bus multipro-
cessor systems use around 30 processors, but this bound has dropped with time as

processor performance has increased.

» Complete connection: In Figure 2, we show 4 processors that are completely connected
to one another. If 1000 processors were connected in such a manner, then all could
make requests of each other simultaneously. However, V processors need V) wires
to connect them, and this is expensive. In addition, each processor would need NV
ports. It is these expenses that preclude the use of complete interconnection for large

numbers of processors.

e The full crossbar: In Figure 3, we show processing elements connected to memory
elements through a full crossbar. A crossbar is a set of V2 switchboxes that will
route messages from any processor to any memory element; this results in excellent
performance. Like the completely connected network, the crossbar becomes far too
expensive when a large number of processors need to communicate with a large number

of memories. In practice, it is rare to see a crossbar that is larger than 8x8.

Multistage interconnection networks (MINs) are the present answer to the difficult prob-

lem of connecting N processing elements to NV memory elements; they are a nice compro-

I

INTRODUCTION

Shared Bus

Figure 1: Shared bus architecture

Figure 2: Completely connected network

O-B o I R
O—EJ

O O O

Figure 3: Full crossbar network

| INTRODUCTION 4

mise between cost and performance. An example of a multistage interconnection network
is shown in Figure 4. Multistage interconnection networks have logk(N) stages, where & is
the fan-out of the switchnodes. and N communication lines between stages. The number of
communication wires needed in a MIN is O(Nlogk{N)), as opposed to V. for the completely

connected and crossbar networks.

Processing Elements

Memory Elements

Figure 4: Multistage Interconnection Network using 2x2 Switchnodes

Unfortunately, communication between processors and memory is relatively slow in a
MIN. Processors are not directly connected, so each communication must cross the network.
In a typical system, shown in Figure 5, it takes on the order of /ogk{N) time for a memory
request to be granted. If there is a large amount of traffic in the network, then the latency
will be even longer. This can make shared memory references slow, compared to local

memory references. This is a major drawback to multistage interconnection systems.

1.2 The cache coherence problem and its present solutions

A well-known solution to the memory latency problem is the use of cache, as shown in
Figure 6, which temporarily holds copies of memory locations as they are reused. However,
the problem of cache coherence is encountered. By definition [2]: “A memory scheme is

coherent if the value returned on a LOAD instruction is always the value given by the latest

| INTRODUCTION 5

Processing Elements

Interconnection Network

Memory Elements

Figure 5: Typical MIN setup

STORE instruction with the same address.” If no protocols or constraints are imposed on
shared memory caches, then they will most likely not be coherent.

As an example, consider a simple spin-wait routine. Suppose processor A is waiting for
processor B to write to shared memory location X. If A and B both have a copy of X in
their shared-memory caches, and no coherence scheme is being employed, then A will spin
forever on a piece of stale data. Even if processor B eventually writes to X, processor A will
have no way of recognizing it. In Figure 7(a) we show the state of the two caches, A and B,
before B writes to X. In Figure 7(b) we show the state of the two caches after B has written
to its copy of X. This accurately illustrates the disastrous results of having shared-memory
data caches without any enforcement of cache coherence. A program is almost guaranteed
to run incorrectly.

Most hardware solutions to the cache coherence problem involve using memory con-
trollers. labeled by K in Figure 6, to enforce coherence. Some sort of state information will
be stored there for every cache line controlled by that particular controller. When a request
comes in for a particular cache line, the memory controller will grant the request only after
taking appropriate actions to insure coherence. These actions could include the invalidation
of previously granted (“outstanding” or “out™) copies of the cache line. A cache line can
be in one of two modes in the cache: read-only, or readable, meaning that no modifications

can be applied to the cache line; and modifiable, or writable, meaning that the line can be

I INTRODUCTION 6

Processing Elements

Interconnection Network

ME 2

Memory Elements

Figure 6: MIN with coherent cache system. The C’s are caches and the K’s are memory

controllers.

Cache A Cache B
X=0 X=0 (a)
X=0 X=1 (b)

Figure 7. Shortcoming of a non-coherent shared memory cache

I INTRODUCTION 7

modified in cache. Usually, read-only copies of a cache line can be granted to any number
of caches, but only one writable copy may be outstanding at a time. When a writable copy
is out. no readable copies can be out.

In Figure 8. we detail the actions that a coherent system would take to insure coherence,
using our spin-wait example above. After step (a), the initial state, cache B sends a request
for a writable copy of X. Step (b) shows the caches after the memory controller invalidates
their read-only copies of X. Step (c) shows cache B being granted line X in writable mode,
and writing a | to X. Cache A is still spinning on X, and so sends a request for a read-only
copy of X. Step (d) shows the caches after the memory controller invalidates and retrieves
cache B’s writable copy of X. Step (¢) shows cache A finally getting the updated copy of X.

Thus, independent of software, cache A can “see” the change to X.

Cache A Cache B
read-only read-only
X=0 X=0
invalidated invalidated
X X
invalidated writable
X X=1
invalidated invalidated
X X
read-only read-only
X=1 xX=1

Figure §: Typical actions taken to insure coherence

There are quite a few proposed hardware solutions! to the cache coherence problem,
but they come in two general classes: directory schemes and broadcast schemes. These
two classes are represented by the full-directory scheme [3] and the 2-bit protocol [4], re-

| There are also many compiler-assisted software-based coherence schemes, but these are beyond the scope

of this thesis.

| INTRODUCTION 8

spectively. The full-directory scheme of Censier and Feautrier suffers in that it requires an
excessive amount of controller memory. It requires (N + 1) bits of controller memory per
cache line, where NV is the number of processors in the system, to explicitly record the lo-
cation of each copy of a cache line. The 2-bit protocol of Archibald and Baer requires very
little controller memory, but uses full broadcasts to implement coherence state changes.
These broadcasts saturate the interconnection network, and unduly impact many of the
caches.

We present a new solution, an interpolation between the full-directory scheme and the
2-bit protocol. It attains the performance of the full-directory scheme, while the memory

requirements to track cache line location can be bounded by log2{N).

1.3 Structure of Thesis

The cache grouping scheme will be presented in detail in section 2. The protocol and
hardware necessary for the implementation of such a scheme will be described in section 3.

In section 4, we give the results of detailed simulations of the cache grouping scheme.
These simulations are performed on an extension of the Cerberus multiprocessor simulator
[5S]. Many issues are resolved. The scheme can and does equal the performance of a full-
directory scheme. Cache group size generally does not affect overall performance. The use
of a coherent cache significantly improves the effectiveness of a system. In section 4, we also
discuss the shortcomings of two alternative schemes, the one-read scheme and the broadcast
scheme.

In section 5, we give examples of the cost of not having a coherent cache mechanism on a
large-scale shared memory multiprocessor. A significant amount of time, effort and coding
must go into coaxing performance from applications on such machines. A good amount
of software effort could be saved through the use of hardware which supports a coherent
shared memory cache.

A short discussion is presented in section 6, summarizing the thesis.

2 THE CACHE GROUP SCHEME 9

2 The Cache Group Scheme

Traditional methods of coherence enforcement run into difficulties when one tries to scale
the size of the system upward. The full-directory scheme [3] of Censier and Feautrier and
the 2-bit protocol of Archibald and Baer [4] represent the two ends of the spectrum of these
traditional methods.

The full-directory scheme employs an (Ar+l)-bit vector in the memory controller for
each cache line (Figure 9), where /V is the number of processing elements in the system.
N bits are used to explicitly record the location(s) of outstanding copies of that cache line.
The i'th location bit being set means that processor i has a copy of the cache line. A “dirty”
bit is used to record the existence of a modifiable copy. Coherence is maintained by means
of point-to-point (i.e., one cache at a time) invalidations. The problem with this scheme
is that the memory needed to track cache line location grows linearly with the number of
processors, N, so that it does not prove to be scalable. For example, in a 1024-processor
system with 16-byte cache lines, it would take 1025 bits in controller memory to handle

each 128-bit cache line in main memory.

N location bits

Figure 9: Memory controller record of cache line with fi//-directory scheme.

The 2-bit protocol, or minimal state scheme, reduces the number of bits necessary to
track each cache line to 2 (Figure 10). There is no knowledge of the location of each cache
line. Instead, a cache line is in one of four states: ABSENT (no copies are outstanding),
PRESENT!I (one read-only copy is outstanding), PRESENT* (many read-only copies out-
standing), and PRESENTM (one modifiable copy outstanding). This scheme minimizes
the number of bits needed to record location information by not remembering the positions
of any outstanding copies of a cache line. Since there is no knowledge of the location(s) of
outstanding copies of a line, full broadcasts are necessary for most coherence operations.

These broadcasts not only degrade the performance of the interconnection network, but

2 THE CACHE GROUP SCHEME 10

they also adversely affect any caches not actually holding the line in question.

(No location bits)

Two state bits

Figure 10: Memory controller record of cache line using two-bit scheme.

In this section, we discuss 3 innovations that can be used to efficiently enforce coherence
without using a disproportionate amount of controller memory: cache groups, multicasting
and return reply combination. We call the combination of these three concepts the cache
grouping scheme. Our primary idea is the concept of cache groups-, we advocate the use of
a directory scheme with a bit for each cache group instead of one per cache. These cache
groups can be of arbitrary size. As cache group size grows, more caches are needlessly
invalidated with multicasts. Small cache group sizes necessitate more controller memory to
partially track cache line location. In order to efficiently enforce the cache group scheme in
the hardware, we propose the implementation of multicasting and return reply combination.
Multicasting enables the interconnection network to quickly propagate invalidation requests
to cache groups. Return reply combination, as we describe it, is a low-cost method of
combining invalidation acknowledgements (from the caches) in the interconnection network.
Unlike some other combining schemes [6], it does not require additional memory at the

switchnode level.

2.1 Cache Groups

The idea of cache groups is an interpolation between the full-directory scheme and the 2-
bit protocol. It is an attempt to capture the performance of a full directory without its
excessive memory requirements.

Baer and Girault suggest combining the 2-bit protocol with the use of a cache index for
a single outstanding copy[7]. By doing this, broadcasts can be avoided for the frequent case

of one-to-one data sharing. We expand on this idea by giving these index bits something

2 THE CACHE GROUP SCHEME 11

to do in the case of one-to-many sharing.

When a cache line is in the PRESENTI] or PRESENTM state, exactly one copy of
it is currently out. Log2(N) location bits will be used to explicitly track the cache line,
where NV is the number of processors (Figure 11). When a cache line is in the PRESENT*
state (many readable copies outstanding), then N/G bits will be used to partially track the

locations of outstanding lines, where G is the size of a cache group (Figure 12).

State) .
bits Log(N) location bits

Cache line location

Figure 11: Cache line representation in memory controller with exactly one copy outstanding

{exact encoding).

State . .
(N/G) location bits

Group 0 Group ! Group N/G - |

Figure 12: Cache line representation in memory controller with indeterminate number of

copies outstanding {partial encoding).

When in PRESENT* state, where an undetermined number of copies of a cache line
are distributed to the processors, a location bit being set means that “this cache group
MA Y hold up to G copies of this cache line.” Some of the caches in the targeted cache
group may NOT have the line in question, and will be unduly affected by the invalidations
to which they are subjected. Nevertheless, the scheme allows for a substantial reduction
in the number of “useless” invalidate requests, compared to the minimal state solution of

Archibald and Baer.

2 THE CACHE GROUP SCHEME 12

Line State Bits needed to record location(s) of line
ABSENT 0

PRESENTI log2(N)

PRESENT* N/G

PRESENTM log2(N)

Table 1: Bits required to track cache line location(s) in various cache states. /V is the

number of processors, G is the size of each cache group.

As we show in Table 1, max(log2{N), N/G) bits are required to track the location of
each cache line, compared with NV bits in the classic fi/l-directory scheme. If the number of
cache groups is set so that N/G ~ log2{N), then the memory requirements of this scheme
will grow as log2(N), which gives it the quality of being scalable in a practical sense.

The idea of cache grouping was also proposed by Gupta, Weber and Mowry [§]: they
called this mechanism coarse vectors. Gupta et al. used the Stanford DASH architecture [9]
as a model. The DASH architecture features clusters of processors connected by a mesh.
In order to evaluate their version of the scheme, they performed event-driven simulations,
using Tango [10] to generate multiprocessor references.

As an example of how cache groups work, consider a 16-cpu system with 4 cache groups
of 4 caches each. If cache line X has been granted to cache 12 as read-only, then the four
location bits will be used to explicitly identify cache 12 (Figure 13). If cache 5 then requests
X as a read-only line, the location bits will be converted to “partial” representation, where

each bit represents a cache group (Figure 14).

State) .
Log(N) location bits

PRESENTI

Cache 12

Figure 13: Setting of location bits for one copy out to cache 12.

2 THE CACHE GROUP SCHEME 13

State .
(N/G) location bits

PRESENT*

GroupO0 Group | Group2 Group 3

Figure 14: Setting of location bits for one copy out to cache 12. one copy out to cache 5.

2.2 A Note on Coherence and Ordering

In our scalable coherent cache system, return receipts and the wait instruction are used to
restrict the ordering of memory operations when this is required by the application. These
features are borrowed from an earlier version of the Cerberus multiprocessor simulator [5],
which did not support caches for shared memory, but still had a problem to be solved with
respect to the ordering of main memory operations.

The idea behind return receipts is that for every request through the processor-memory
interconnect, a receipt is returned to the requestor which indicates that the requested action
has been performed. In the case of the Cerberus multiprocessor simulator the return receipt
for a read request was the returned data, but an explicit receipt was generated for write
requests as well. Because data is not returned to the processor for a write, the return receipt
is necessary to allow the processor to keep track of when its writes have been performed.

In the Cerberus multiprocessor simulator, each processor kept a receipt counter. Every
time a memory request was issued, the counter was incremented. Every time a request
was known to be performed (i.e., the processor received a return receipt) the counter was
decremented. The wait instruction caused a processor to hold issue on any further instruc-
tions until the receipt counter was zero, and therefore all pending memory operations were
complete. This seemingly innocuous mechanism provides for completely dynamic enforce-
ment of ordering between groups of memory references when it is required. In our proposed
scalable coherent cache system we use return receipts and the wait instruction in the same
way. The processing of cache misses, to different cache lines, can be handled concurrently
both within a cache and between the many caches in the system. Return receipts provide

knowledge of when state changes for cache lines are complete, and the wait instruction

2 THE CACHE GROUP SCHEME 14

causes a processor to wait for completion when needed.

An alternative approach to coherence and ordering is the notion of the global synchro-
nizing variable [2]. Those who have some experience in parallel programming know that
it is undesirable to statically declare a global synchronizing variable, or a volatile variable
for that matter. A variable may be used for communication and synchronization in one
instance, and then get used for normal computation later on. If the variable were treated
as a global synchronizing variable all the time, performance would be adversely affected.
By using the wait instruction, which allows the processor to keep track of when memory
operations are complete, one solves the ordering problem in a completely dynamic fashion.

Through the correct use of the wait instruction, any memory location can temporarily
be made into a global synchronizing variable. One simply surrounds the specific access in
question with wait instructions. The first wait instruction will force all previous memory
accesses by the processor to be performed before the synchronization variable is accessed.
The second wait instruction will force access to the synchronization variable to be performed
before any further memory accesses are started. This enforces weak ordering, as defined by

Dubois, Scheurich and Briggs[2].

2.3 Multicasting

Broadcast schemes to enforce cache coherence are generally not looked upon favorably due
to the excessive amount of network traffic that they produce. Cache grouping reduces the
impact of broadcasts by limiting them to groups of caches that may hold the cache line in
question. These specific broadcasts are called multicasts. To further reduce the impact of
broadcasts, we provide efficient hardware support for multicasts in the processor-memory
interconnection network.

In a packet-switching multistage interconnection network, packets are transmitted over
the network a stage at a time. The route through the network depends on a packet’s routing
tag for each stage. Most networks currently utilize log2(k) *logk(N) bits for the routing tag,
where £ is the fan-out of each switchnode and /V is the number of processors in the system.
At each of logk(N) stages in the interconnection network. logz{k) bits of the routing tag
determine the next switchnode (or endpoint) to which the packet will be sent. Packets are
thus transmitted on a one-PE-to-one-ME basis, or a one-ME-to-one-PE basis.

We suggest using k*logk{N) bits for each routing tag, with the & bits per stage enabling

2 THE CACHE GROUP SCHEME 15

us to route a packet out to multiple output ports of a switchnode. For normal routing, only
one bit in each routing field will be set and a single packet will be routed to its destination.
If more than one routing bit is set for any of the fields, the packet will be multicast onto
the appropriate output ports of the switchnode.

As an example, consider the 8-processor system composed of 2x2 switchnodes shown
in Figure 15. A normal point-to-point routing tag would have 3 fields of one bit each. A
multicast routing tag would have 3 fields of two bits each, for independent control of each
output of a switchnode. Point-to-point communications can still be accomplished by setting
only one routing bit per stage.

A multicast from memory 4 to the top group of 4 processors is shown in Figure 15.
This would be typical of a memory controller sending invalidates to a cache group of size 4.
Without the multicast mechanism in the switchnodes, four separate invalidates would have

been necessary.

Figure 15: Path of message with routing tag (10)(11)(11) (solid lines).

In order to examine the benefits of hardware multicast support, a metric packets pro-
cessed. P. needs to be defined. P is a count of the number of packets that need to be

processed across the interconnect in order to effect an invalidation. It is a good indicator

2 THE CACHE GROUP SCHEME 16

of the load that is put on the interconnection network by invalidations.
A significant reduction in network traffic can be realized through multicasting as the
system gets large. If all communications were done on a point-fo-point basis, then an

invalidate to a cache group of size G would involve
P = G * logk(N) (1)

total packets being processed? (where & is the fan-out of each switchnode); the logk{N)
stages of the network must be traversed by G independent invalidate requests. If multicas-

ting is utilized, then an invalidate to a cache group of size G would involve
P = {logk{N) - logk(G)) + 2)

total packets being processed.

The ramifications of the above equations, as the number of processors gets large, are
shown in Table 2. The numbers in the table are the total number of packets processed
for an invalidate to a cache group of size G in an Ar-processor system constructed of 2x2
switchnodes. G is chosen in each case such that the number of cache groups is approximately
log™iN). As is evident, the use of multicasting relieves much of the strain on the network

in terms of invalidation traffic.

P
Configuration Point-to-point method Multicast method
N=8, G=4 12 7
N=16, G=4 16 8
N=32, G=8 40 16
N=128, G=16 112 33
N=1024, G=128 1280 257

Table 2: Packets processed using 2x2 switchnodes, Point-to-point vs. Multicast

Note that the topology of the interconnection network is crucial for the implementation
of multicasting. In Figure 15, the memory controllers must be on the left and the caches on
the right in order for the caches to be efficiently partitioned into cache groups. This topology

causes invalidate packets to travel “down a tree,” which naturally facilitates broadcasting.
2A packet can be processed up to logic {N) times as it traverses the interconnect. A multicast from a

switchnode is counted as | packet processed.

2 THE CACHE GROUP SCHEME 17

There are several memory controller strategies that could be utilized to implement mul-
ticasting. For example, the memory controller could be smart enough to recognize that
neighboring cache groups have a copy of a line, and so could combine the resultant multi-
casts to these groups. In our simulations, a very simple strategy is employed, which is to
look at every cache group individually as invalidation multicasts are sent out. It requires

no special logic to implement this simple method.

2.4 Return Reply Combination

Multicasts are used to invalidate copies of a cache line which are present in one or more
groups of caches. In our scheme, return receipts are required from each cache to which an
invalidation request has been sent. These return receipts are counted by the memory con-
troller. Once the receipts are all accounted for, the memory controller grants the writable
copy. Without any special handling of return receipts they would have to be counted indi-
vidually by the memory controller, leading to a bottleneck if invalidates of multiple readable
copies are frequent. We provide for combination of return receipts in the switchnodes so
that this problem can be avoided.

Unlike the relatively simple modification for multicast support, return reply combination
requires a more sophisticated modification to the switchnodes of the Cerberus multiproces-
sor simulator. The Cerberus processor-memory interconnection network is composed of
F-input, /c-output switchnodes, each with A2 buffers. The original structure of a buffer is
shown in Figure 16. The packet input (in), packet output (out), buffer full (bf), output
inhibit (0i), output busy (0b). and packet selector signals (s,p) are used in an identical
fashion as they were in [11].

Return receipt packets for multicast invalidate requests are special packets which have
both a unique identifier for the request and a counter field which records how many return
receipts the packet represents. The buffers which feed a given output port in the switchnode
have their match lines connected to each other, and their sum out (so) lines feed a /c-input
adder which feeds the sum in (si) lines of the k buffers with its result (Figures 17 and
18). The handling of conflicts for the output port is done in the same way as was done
in [11], with the following additional treatment of multicast return receipts. If the buffer
which wins the conflict for the output port contains a return receipt in a suitable position,

the identifier of this packet is written on the match lines and the counter of this packet is

2 THE CACHE GROUP SCHEME

bf 01

Figure 16: Original switchnode buffer.

sum in

bf match

sum out

Figure 17: Modified switchnode buffer.

Figure 18: Modified 2x2 switchnode.

out

18

2 THE CACHE GROUP SCHEME 19

written on the so lines. The buffers which lose the conflict for the output port read the
match lines and check their lead slot, or more deeply if possible3, for a matching packet. If
they find a matching return receipt they write the sum field of that packet on their so lines
and drop the packet on the floor. The buffers write zero on their so lines if no matching
packet is found. The /c-input adder adds the partial sums together and the buffer which
issued the match request replaces its partial sum with the output of the adder (obtained
from the si lines).

By combining return receipts for multicast invalidate requests, the potential bottleneck
at the memory controller can be avoided. The combining function requires a more compli-
cated buffer, and & /c-input adders to be associated with each switchnode. These adders
would have to be wide enough to accommodate the maximum node count for the system.

It is important to note that our method of return reply combination requires no addi-
tional memory at the switchnode, as do some other combination schemes [6]. Also, note that
the topology of the interconnection network is once again crucial to the efficient implemen-
tation of reply combination. In Figure 15, the caches must be on the right and the memory
controllers on the left in order for invalidation replies to combine as early as possible. This
causes invalidation replies to go “up a tree,” which naturally facilitates combining.

In order to efficiently implement both multicasting and return reply combination, there-
fore, two processor-memory interconnection networks have to be used. However, only one

has to implement multicasting and only one need implement return reply combination.

3In sections 4.3 and 4.5, we discuss the merits of “deep” combining vs. top-level combination. In general,

top-level combination is sufficient.

3 COHERENCE PROTOCOL AND TIMING 20

3 Coherence Protocol and Timing

3.1 Protocol States and Actions

For each cache line in main memory, the associated memory controller needs a method to
track the way in which that line is shared among all caches in the system. This is done by

associating a state with each line. The following five states have their basis in [4]:

ABSENT: No copies of the cache line are currently out.
« PRESENTI1: One read-only copy of the cache line is currently out.

« PRESENT*: An indeterminate number of read-only copies of the cache line are cur-

rently out.
« PRESENTM: One modifiable copy of the cache line is currently out.

e LIMBO: The state of the cache line is in transition, and no access to it is allowed until

the transition is complete.

We added the LIMBO state because certain state transitions do not take place instan-
taneously, and LIMBO was necessary to insure atomic state transitions. For example, if a
line is in state PRESENTM and a request arrived for a read-only copy of that line, then
an invalidate would have to be sent and acknowledged before the read-only line could be
granted. During the time that write-invalidation is performed, no access should be given
to the line in question. It is during these invalidation periods that the LIMBO state is
employed. All requests that arrive for a cache line in main memory while it is in a LIMBO
state are deferred to the wait list (described later in this section).

Communications between cache and memory controller take place through actions which
dispatch messages through the network. These actions control the manner in which cache
lines are tracked and shared.

Cache to Memory Controller Actions:
« REQ RIJLINE(cpu, line) (1 clock). Request a cache line in read-only mode.
« REQ_W_LINE(cpu, line) (1 clock). Request a cache line in writable mode.

« REPORT R _SPILL(line) (1 clock). Notify the memory controller that a read-only

line has been spilled from cache.

COHERENCE PROTOCOL AND TIMING 21
« REPORT W_SPILL(line) (Len clocks). Notify the memory controller that a writable
line has been spilled from cache, and write the line back to memory.

* ACK RINV(line) (1 clock). Respond to a read-invalidate request from the memory

controller.

* ACK-WIJNV(line) (Len clocks). Respond to a write-invalidate request from the

memory controller, sending back the modified cache line.

Memory Controller to Cache Actions:

GRANT_R_LINE(cpu, line) (Len clocks). Send a line to a cache in read-only mode.

GRANT_W_LINE(cpu, line) (Len clocks). Send a writable copy of a line to a cache.

INV_R LINE(cpu | cache group, line) (1 clock). Request a cache (or cache group) to

invalidate its read-only copy(s) of a cache line.

INV_W_LINE(cpu, line) (1 clock). Request a cache to invalidate its writable copy of

a cache line, and to send back the modified copy.

Timing is given for every action described, in terms of the number of clock ticks that

elapse. Most actions take one clock. Some, however, involve buffering cache lines onto the

processor-memory interconnect, and thus their timings are dependent upon cache line size.

Len (for cache line length) will be the symbol for "some amount of time proportional to

cache line size.” In our simulations, Len is | clock for every 8 bytes of cache line.

3.2 Cache Architecture and Protocols

We modified the Cerberus multiprocessor simulator to model quite a few cache configura-

tions. The size, in bytes, of a cache line can be any power of 2, minimum 8 bytes. The

number of lines in each cache can be any power of two. Each cache can be direct-mapped,

2-way associative or 4-way associative.

A line in the cache has the following components, as shown in Figure 19:

* Dirty bit: Set if the cache line is modifiable.

» Valid bit: Set if the cache line is valid. Cache lines are invalidated by resetting this
bit.

3 COHERENCE PROTOCOL AND TIMING 22

* High order address bits: The low logz(L) bits of the main memory address of a cache
line, where L is the number of lines in the cache4, determine the placement of the line
within the cache. It is necessary to store the remaining high-order bits in order to be

able to reproduce the full shared memory address of the cache line.

» Data bytes: The actual data that has been granted from shared memory. The number

of these bytes is synonymous with the cache line size, W.

Dirty bit Valid bit

W data bytes
Line 0
Line |

Line 2

Line L-1

Figure 19: Direct-mapped Cache Configuration

Unlike current microprocessor designs, the Cerberus processor does not stall on the first
miss for a line. The cache has 5 request slots where request records can be stored. A request
record is generated when a cache miss occurs. It contains the register to be loaded from
memory (or, for write misses, the value to be written to memory), the size of the memory
request (byte, short, word or double), the exact address to be read/written, and the type
of the request (READ or WRITE) (see Figure 20). If all of these slots are occupied, then
the processor will stall on a cache miss.

There may be multiple request records awaiting the same cache line being granted from
main memory. When the requested cache line arrives, it services all request records that

are waiting on it.

4The total number of lines in the cache is L multiplied by the associativity level.

3 COHERENCE PROTOCOL AND TIMING 23

Address

Figure 20: Request slots

When multiple steps are required for the cache to respond to an event, then these
steps will be numbered below by roman numerals. When conditional courses of action are
described, these possible courses of action will be assigned the same roman numeral followed
by different lower-case letters. A step 0 is sometimes included for error detection.

The cache must respond to the following events:

* Read Hit(ADDR.REG): The contents of ADDR are loaded into register REG. A
latency of four clocks expires to load a register, but independent loads issue and are

completed at a rate of one per clock.

* Read Miss(ADDR.REG):

0. If the desired address is already being waited upon by the cache, then stall the cpu

until it arrives.

la. If the desired cache line is currently being waited on by a different request record,

then simply create a new request record. This takes one clock.

Lb. If the desired cache line is not already being awaited, then a REQ R LINE(cpu,
ADDR) is sent to the appropriate memory module. This takes one clock, plus one

clock for creating the request record.

* Write HittADDR.REG): The contents of register REG are copied to ADDR. The

associated STORE instruction is a one-clock pipelined instruction.

* Write Miss(ADDR.REG):

3 COHERENCE PROTOCOL AND TIMING 24

0. If the desired address is already being waited upon by the cache, then stall the cpu

until it arrives.

la. If the desired cache line is present in read-only form, then invalidate it and send
a REPORT R. SPILL(line). This takes one clock. Then, send a REQ.W_LINE(cpu.
ADDR) to the appropriate memory module. This involves one clock for creating the

new request record and one clock for sending the request.

Lb. If the desired cache line is currently being waited on by a different request record,

then simply create a new request record. This takes one clock.

Lc. If the desired cache line is not already being awaited, then a REQ W _LINE(cpu,
ADDR) is sent to the appropriate memory module. This takes one clock, plus one

clock for creating the request record.
* GRANTIJIJINE(LINE):

1. If there is room for LINE in the cache, then skip to IV.

II. Invalidate the appropriate line. If cache is associative, invalidate the least recently

used line in a slot.

Ilia. Ifthe line being invalidated is read-only, send a REPORT R _SPILL(spilledLINE)

to the appropriate memory controller. This takes one clock.

Illb. Ifthe line being invalidated is writable, send a REPORT W _SPILL(spilledLINE)

to the appropriate memory controller. This takes Len clocks.
IV. Insert LINE into the cache. Service all appropriate request records. Every register
that is loaded will be available in 2 clocks.
« GRANT W_LINE(LINE):
L. If there is room for LINE in the cache, then skip to IV.

II. Invalidate the appropriate line. If cache is associative, invalidate the least recently

used line in a slot.

Tlia. Ifthe line being invalidated is read-only, send a REPORT R _SPILL(spilledLINE)

to the appropriate memory controller. This takes one clock.

Illb. Ifthe line being invalidated is writable, send a REPORT W_SPILL(spilledLINE)

to the appropriate memory controller. This takes Len clocks.

3 COHERENCE PROTOCOL AND TIMING 25

IV. Insert LINE into cache. Service all appropriate request records.

« INV_R LINE(LINE):
0. If LINE is present and modifiable, give an error message.

1. If LINE is present as read-only in the cache, then invalidate it. This decision takes

2 clocks.

II. Regardless of whether the line was in cache in step I, send back an ACK_RINV(LINE).

This takes one clock.

« INV_W_LINE(LINE):
0. If LINE is present in read-only mode, give an error message.

1. If LINE is present and writable in the cache, then invalidate it. This decision takes

2 clocks.

Ha. If LINE was present and writable in step I, then send an ACK.WJNV(LINE),

which will take Len clocks.

lib. IfLINE was not present and writable in step I, then simply ignore the invalidation
request. This is necessary if a writable line is spilled just before the invalidation request

comes in.

3.3 Memory Controller Architecture and Protocol

Memory is logically interleaved throughout the system in intervals of one cache line, as
shown in Figure 21. Each memory controller maintains a record of each cache line that it
controls.

The memory controller tracks the state of each line and the location of each copy of
each line under its control. There is also a wait list associated with each memory controller
(see Figure 22). Each element of the wait list is a memory request that cannot be granted
until a state transition is effected.

Each element in the wait list has a wait counter associated with it to track acknowledged
invalidations. When a request is enqueued onto the end of the wait list, its wait counter is set
to the number of invalidations expected before that request can be granted. As invalidation

acknowledgements arrive for that request, the wait counter is decremented. When the wait

3 COHERENCE PROTOCOL AND TIMING 26

Memory 0 Memory | Memory N-1
Line 0 Line | Line N-1
Line N Line N+1 Line 2N-1
Line 2N Line 2N+1 Line 3N-1

Figure 21: Interleaving of main memory

counter for a memory request in the list is decremented to 0, then that memory request can
be granted.

The memory controller is a state machine that grants a cache line, or effects state
transitions, according to the present state of the line. For the remainder of this section, we
describe the protocol that determines the behavior the memory controller.

The terms exact encoding and partial encoding are used frequently in this section. An
exact encoding of a cpu (CPU) into the location bits for a cache line implies that logz2(N)
bits are used to explicitly identify CPU. A partial encoding means that the cache group bit
(within the location bits of the line) associated with CPU is turned on.

When multiple steps are required for the memory controller to respond to an event,
then these steps will be numbered below by roman numerals. When conditional courses
of action are described, these possible courses of action will be assigned the same roman
numeral followed by different lower-case letters.

The memory controller must respond to the following events:

« REQ R _LINE(CPU, LINE):

la. If LINE is in state ABSENT, then update its state to PRESENT1. Exactly
encode CPU into the location bits for LINE. Send a GRANT_R_LINE(CPU, LINE)
(Len clocks).

Lb. If LINE is in state PRESENTI, then update its state to PRESENT*. Convert

3 COHERENCE PROTOCOL AND TIMING 27

Memory Controller i

State Location
Line i
Line i+N

Line i+2N

Wait List

Figure 22: Logical Structure of Memory Controller

the location bits to partial encoding, and partially encode CPU. Send a
GRANT_R_LINE(CPU, LINE) (Len clocks).

Lc. If LINE is in state PRESENT*, then partially encode CPU into the location bits
for LINE. Send a GRANT_R_LINE(CPU, LINE) (Len clocks).

Ld. IfLINE is in state PRESENTM, then put the request on the back end of the wait
list (1 clock) and update the state of LINE to LIMBO. Send an INV_W_LINE(XCPU.
LINE), where XCPU is the cpu that presently holds LINE in a writable mode (I
clock).

le. If LINE is in state LIMBO, then put the request on the back end of the wait list
(1 clock).
« REQ W_LINE(CPU, LINE):

la. If LINE is in state ABSENT, then update its state to PRESENTM. Exactly
encode CPU into the location bits for LINE. Send a GRANT_W_LINE(CPU. LINE)
(Len clocks).

Lb. If LINE is in state PRESENTI1, then put the request on the tail of the wait
list and update its state to LIMBO (1 clock). Send an INV_R_LINE(XCPU, LINE),

3 COHERENCE PROTOCOL AND TIMING 28

where XCPU is the cpu that presently holds LINE in read-only mode (1 clock).

Lc. IfLINE is in state PRESENT®, then put the request on the tail of the wait list and
update the state of LINE to LIMBO (1 clock). Multicast an INV_R_LINE(GROUP.

LINE) to each cache group holding a copy of LINE (1 clock per multicast).

Ld. If LINE is in state PRESENTM, then put the request on the tail of the wait list
and update the state of LINE to LIMBO (1 clock). Send an INV_W_LINE(XCPU,
LINE), where XCPU is the cpu that presently holds LINE in a writable mode (1
clock).

le. If LINE is in state LIMBO, then put the request on the tail of the wait list (1
clock).
« ACKJIJNV(LINE):

I. Traverse the wait list until the request for LINE is found. Each element traversed

takes | clock.

II. Decrement the request’s wait counter. If the counter is greater than zero, then

goto VIL

III. (All invalidations have been performed for LINE). Dequeue the request from the
wait list. Update the state of LINE to PRESENTM.

IV. Issue a GRANT W_LINE(XCPU, LINE), where XCPU is the cpu that issued the

waiting request (Len clocks). Exactly encode XCPU into the location bits for LINE.

V. Traverse the wait list in search of another request for LINE (1 clock per element

traversal). If none are found, goto VIL

VI. (Another request for LINE is waiting). Send an INV_W_LINE(XCPU, LINE) to
the cpu that just received LINE as writable (1 clock). Update the state of LINE to
LIMBO.

VII. Done.
* ACK WINV(LINE):

I. Traverse the wait list until the request for LINE is found. Each element traversed

takes | clock.

3 COHERENCE PROTOCOL AND TIMING 29

II. Dequeue the request (REQ) from the wait list. If REQ is a request for a writable
line, then goto step III of ACK RINV(LINE).

III. (REQ is for a read-only copy of LINE). Update the state of LINE to PRESENT].
Issue a GRANT R LINE(XCPU, LINE), where XCPU is the cpu that issued REQ
(Len clocks). Exactly encode XCPU into the location bits of LINE.

IV. Traverse the wait list (1 clock per element) in search of any other REQ R LINE

request for LINE. If none are found, goto VIIL.

V. (Another read request, OTHERREQ, has been found in the wait list). Issue a
GRANTIJI _LINE(XCPU, LINE), where XCPU is the cpu that issued OTHERREQ
(Len clocks). Update the state of LINE to PRESENT*. Convert the locations bits of
LINE to partial encoding if necessary. Partially encode XCPU into the location bits
of LINE.

VI. Goto IV.

VII. Traverse the wait list (1 clock per element) in search of any REQ W _LINE request
for LINE. If none found, goto X.

VII. (A write request for LINE, WREQ, has been found in the wait list). If LINE
is in state PRESENT1, then issue an INV_R LINE(XCPU, LINE) to the cpu hold-
ing line in read-only mode (1 clock). If LINE is in state PRESENT*, multicast an
INV_R LINE(GROUP, LINE) to every cache group holding LINE (1 clock per multi-

cast).
IX. Update the state of LINE to LIMBO.

X. Done.

« REPORT_ R SPILL(LINE).
la. If LINE is in state PRESENT1, then update its state to ABSENT.
Lb. If LINE is in state PRESENT* or LIMBO, ignore this.

Lc. If LINE is in any other state, give an error message.

« REPORT_W.SPILL(LINE):

la. If LINE is in state PRESENTM. then copy LINE back to main memory and
update its state to ABSENT.

3 COHERENCE PROTOCOL AND TIMING

Lb. If LINE is in state LIMBO, then treat this as an ACK.WJNV.

Lc. If LINE is in any other state, give an error message.

30

4 SIMULATION RESULTS

4 Simulation Results

In this section, we give the results obtained from detailed simulations of the cache grouping
scheme using the Cerberus multiprocessor simulator. A short description of Cerberus is
presented, followed by an explanation of the application codes used to test the scheme.
Several issues are addressed in this section. First, we wanted to test the performance
of cache grouping relative to a full-directory scheme. We also wanted to test a system with
cache grouping relative to one with no cache at all, to ascertain the advantages (if any)
of cache coherence in general. In addition, we wanted to test the effects of cache group
size. Finally, we did some less detailed tests showing the shortcomings of two alternative

schemes, the one-read scheme and the broadcast scheme.

4.1 The Cerberus Multiprocessor Simulator

Cerberus was originally developed by Brooks, Darmohray and Axelrod [5]. It is a scal-
able, general-purpose shared memory multiprocessor simulator on which to develop and
benchmark parallel algorithms. The Cerberus machine is composed of autonomous RISC
processors connected to a shared memory through a packet-switched interconnection net-
work. The functional units of each CPU are fully pipelined, including accesses to shared
memory.

The Cerberus package contains complete compiler, assembler, loader and library support
for the virtual computer called the Cerberus machine. The resulting software package and
utilities model the UNIX programmer interface as faithfully as possible.

The processor instruction set for each Cerberus CPU was derived from that of the Ridge
32, a RISC architecture computer manufactured by the now defunct Ridge Computers Inc.
of Santa Clara. California. A number of important constraints had to be satisfied by the

instruction set, including but not limited to:

» Suitability of the instruction set for a fully pipelined processor timing model.

» Load/store operations that were cleanly separated from the computation operations,
required to give an optimizing compiler the ability to schedule memory and compu-

tation operations to mask memory latency.

* A minimum of unused processor state that must be updated as each instruction is

4 S]MULATIONRIQS’iJLTS 32

executed. By unused state, we refer to the condition codes of a processor that are

typically updated by each instruction but only used for conditional branches.

e Fixed instruction formats. This reduced the instruction decode in the simulator to a

single C switch statement.

* An absolute minimum number of instructions. The more ways there are to do a
particular operation with the instruction set, the greater the support that needs to

be built into the compiler.

Cerberus is very valuable in that detailed execution statistics can be obtained without
artificially perturbing execution. For example, timing statistics can be obtained without
taking any simulated time. Also, Cerberus enables us to explore a pipelined architecture
with numbers of processors not otherwise available.

A number of modifications were made to original Cerberus in order to implement our

cache coherence scheme:®

* Simulation codes were written for the cache and memory controller. The protocols

described in the last section were faithfully modeled in these codes.

* All memory requests were directed to the cache, instead of the processor-memory
interconnect. Likewise, the memory controller was made to serve as a buffer between

the interconnect and the memory.

» The interconnection network was modified to handle multicasting. Routing tags were

altered to support this feature.

* Wormhole cut-through routing was introduced to the interconnection network. Pre-
viously, each packet could be moved in one clock. Now, with large cache line sizes, a

packet could take several clocks to transfer from one switchnode to another.

* System calls were now handled through a block of private memory in each processing
node. The instructions LOADBUF, LOADBUFB, STOREBUF, and STOREBUFB

were added to manipulate this block of private memory.

* The bstats() and estats() system calls were added to control the gathering of cache

and memory statistics.

4 SIMULATION RESULTS 33

In order to run large simulations, we needed to be able to run the simulator in parallel
on the BBN TC2000 multiprocessor. Since the TC2000 has no coherent shared memory
cache support in hardware, caching of shared memory had to be done explicitly in software.
This necessitated significant restructuring of the simulator code so as to be able to decouple
the simulator to run efficiently in parallel on the TC2000. However, the functionality of the
simulator remained constant throughout the structure modifications.

The following are some of the parameters associated with the Cerberus machine equipped

with a coherent cache model:

* N is the total number of processing elements in the system.

* n is the order of the system, or the number of levels in the interconnect. Since 2x2
switchnodes were used exclusively in the simulations presented herein. N = 2n and

n = log2(N).

e W stands for the “width” of a cache line, defined as the number of data bytes per

cache line. W Can be any power of 2, with a minimum of 8.

* A is the associativity level of the cache. 4 can be 1. 2 or 4; an associativity level of |

implies a direct-mapped cache.

* L is the “length” of the cache, measured in cache lines. The total number of lines in

any cache is A* L. L can be any power of 2.

» G is the size of each cache group5. G must be a power of 2, since 2x2 switchnodes are

being used. Also, G must be less than or equal to /V.

4.2 The simulated codes: gauss, psim, relax and flag.

Gauss is a linear system solver that uses Gaussian elimination to solve a linear system of
equations, a 3x3 example of which is given below:

SSetting G to 1 is virtually the same as using a full-directory scheme. The only difference is that in
the cache group scheme the memory controller will nof reset the location bit for a cache upon receiving a

line-spill notification from that cache. This makes very little difference in terms of performance.

4 SIMULATION RESULTS 34

aJixXi + a\2X2 + ctiz~3 — b
a2lx] + a22x2 + a"3X3 = b\

ahxi + a32x2 + 033X3 = 63

The reduction phase of the code reduces the matrix to upper triangular form:

O-LIX1 4“ UM2x2 -p 0"3X3 —1 »»
al22x? + a23x3 — "2

a33x3 — "3

The back substitution phase of the code then obtains a solution, element by element. In
the first step of the back substitution, the last element of x is solved using the last equation
and the equations above it are simplified by substitution. This exposes another element of x
to direct solution, followed by another substitution of its value into the equations above it.
This process continues until all x elements have been solved. For a more detailed description
of the algorithm, see [12],

Psim is the network simulator upon which the Cerberus multiprocessor simulator is
based. It is capable of modeling a vast variety of network sizes and topologies. Psim will
have each of its processors fetch a number of memory words from consecutive memory

locations, starting with some random location. The parameters of a psim run are:e

* The base and order of a system, symbolized by £ and n, respectively. The base of
a system is the fan-out of its switchnodes. The order is the number of stages in the

interconnect. There are An processors in a system.
» The vector length (v) is the number of words fetched from memory by each processor.
* The stride (s) is the stride of the memory accesses.

* The buffer length (b) is the number of slots in each of A2 buffers in a switchnode.

4 SIMULATION RESULTS 35

Relax is an iterative relaxation code. The problem space is represented as a set of
discrete elements, and at each iteration each element is recalculated as a function of itself
and its nearest neighbors. For our particular code, we averaged each element with its eight
nearest neighbors, as illustrated in Figure 23. This is called a nine-point stencil. Iterative
relaxation is used for many algorithms, among them the calculation of capacitance[13] and

ocean circulation modeling.

Figure 23: Nine point stencil used for iterative relaxation.

Relax requires N, the number of processors, to be a perfect square; we used 4 and 16
when we tested. The processors are tiled over the domain in such a way that each gets to
compute an equal number of elements. We also took the cache group scheme into account
when we decomposed the domain space as shown in Figure 24; we tried to get members
of a cache group to share data with each other to enhance invalidation efficiency6. Ten
iterations are performed by each run of relax.

We used another test code called flag to test the effectiveness of our scheme when many
one-to-many or one-to-all invalidates are issued. In flag, an array of shared integers is
accessed by all processors; processor 0 will set the 0th element of the array while the other

processors spin on it, then processor | will set the Ist element of the array while the rest

6In fact, the method of tiling proved to make very little difference in the timing or traffic of relax. An

arbitrary tiling gave very similar results.

4 SIMULATION RESULTS 36

0 I 4 5
2 3 6 7
8 9 12 13
10 11 14 15

Figure 24: “Smart” domain decomposition used for 16-cpu relax runs.

of the processors spin on it, and so on. This results in a relatively high rate (40% - 50%)
of one-to-many invalidates being issued. The flag code is actually the gauss code with the
calculation portions stripped from it; it is pure synchronization code.

Gauss is a good example of a code in which there is a lot of locality, and which naturally
decouples for nice parallelization. Psim also decouples to a certain extent, but there is
enough data sharing occurring to prevent the high cache hit rates achieved by gauss. Relax
is a code that exhibits a certain pattern of memory accesses, and is representative of many
applications. The one-to-one invalidation rate of flag is much lower than that of the other
codes. This makes flag useful for testing the effect of changing cache group size, and for

ascertaining the effectiveness of multicasting and return reply combination.

4.3 Results of Cache Grouping vs. Full-directory scheme

One of the first things that we wanted to test was the efficiency of the cache grouping scheme
versus that of a full-directory scheme. Certainly cache grouping uses less memory to track
cache line location: we wanted to ascertain whether the inability of the cache group scheme
to explicitly track every outstanding copy of a cache line would hurt the performance of
the system (relative to a full-directory scheme). Also, we wanted to test the individual
effectiveness of both multicasting and return reply combination.

In the psim and gauss tests run for this section, a group size of 8 (with a 32-CPU system)

4 SIMULATION RESULTS 37

was used to represent the cache group scheme. Eight was chosen since it would divide the
32 caches into 4 groups, which would mean that 4 bits would be used to partially encode
each cache line while in PRESENT* state. Since 5 bits are necessary to exactly encode a
cache while in PRESENT | or PRESENTM states, these 4 bits used for partial encoding are
“free.” The memory needed to track cache line location is therefore bounded by logz{N).
A group size of | was used to represent the full-directory scheme. Neither multicasting nor
return reply combination were used with the full-directory scheme.

Invalidation traffic7 is measured by the number of invalidation messages that actually
reach the CPUs; the way in which they are routed there (i.e. multicasting or some other
method) is not taken into consideration.

The first test was on a gauss run solving a 128x128 matrix. Each Cerberus CPU was
given a 256-Kbyte cache (W=16, L=8192, A=2). In Table 3, we show the results of the

gauss code simulated on a Cerberus machine with 32 processors.

normalized normalized

System configuration time inv traffic
group size = | 1.000 1.000
group size = 8 1.001 1.001
group size = 8, multicasting 1.000 1.019
group size = §, return reply comb 1.000 1.000
group size = 8, multicasting, return reply comb 0.996 1.018

Table 3: Effects of innovations on gauss-\2& over 32 PEs, 256K cache

For this particular example, run-time and invalidation traffic are not significantly af-
fected by switching from the full-directory scheme to the cache group scheme. The cache
hit rate was about 94% in each run. We also tried the same suite of tests over Cerberus
with a 64K cache (W=16, L=2048, A=2). The results of these simulations are shown in
Table 4.

The decreased cache hit rate for the 64K cache (about 69%) had a relatively large effect
on the amount of invalidation traffic, but the run-time of the cache group scheme still

'This traffic measure monitors messages from the memory controller to the cache. Return reply combi-
nation cuts down on the return traffic from the cache to the memory controller. Hence, invalidation traffic

as we’'ve defined it here will not be directly affected by the use of return reply combination.

4 SIMULATION RESULTS 38

normalized normalized

System configuration time inv traffic
group size = | 1.000 1.000
group size = 8§ 1.005 1.038
group size = 8. multicasting 0.999 1.049
group size = 8§, return reply comb 1.000 1.041
group size = 8§, multicasting, return reply comb 0.994 1.045

Table 4: Effects of innovations on gauss-128 over 32 PEs, 64K cache

did not suffer as compared to the full-directory scheme. This is due to the fact that the
Cerberus interconnection network, with its &2 buffers per switchnode, is able to provide
a high amount of bandwidth and can easily handle the added traffic without adversely
affecting the performance of the CPUs.

We ran the same sorts of simulations using psim. We simulated psim -nkv 6 2 64 (a 64
processor network, fetching a vector of length 64) on a 32-processor Cerberus machine with

a 256K cache (W=16, L=8192. A=2). In Table 5, we show the results of these simulations.

normalized normalized

System configuration time inv traffic
group size = | 1.000 1.000
group size = § 1.024 1.686
group size = 8, multicasting 1.016 1.686
group size = 8, return reply comb 1.021 1.687
group size = 8, multicasting, return reply comb 1.005 1.684

Table 5: Effects of innovations on psim -nkv 6 2 64 over 32 PEs, 256K cache

The advantages of multicasting and return reply combination became more apparent
with the psim data. The low cache hit rate of the simulated psim run (34%) reflected an
increase in coherence traffic generated relative to the gauss runs. Raising the group size
from | to 8 caused some spurious read invalidations, and further increased the amount of
invalidation traffic.

Once again, the network was able to absorb the extra traffic and still maintain efficiency.

4 SIMULATION RESULTS 39

When multicasting and return reply combination were turned on, the run time was only
one half of one percent slower than that observed with a full-directory scheme.

The same battery of tests was run for relax, using 16 PEs to iterate over a 256x256
matrix of elements. The results are shown in Table 6. A cache group size of 4 was used
to represent our scheme, for the same reason that a cache group size of 8 was chosen for
the above 2 tests. Once again, there is virtually no difference in performance between the

full-directory scheme and our scheme.

normalized normalized

System configuration time inv traffic
group size = | 1.000 1.000
group size = 4 1.000 1.549
group size = 4, multicasting 1.000 1.549
group size = 4, return reply comb 1.000 1.548
group size = 4, multicasting, return reply comb 1.000 1.548

Table 6: Effects of innovations on relax 256x256 over 16 PEs, 256K cache

We show in tables 7 and 8 that multicasting and return reply combination can be highly
effective for codes that exhibit a high rate of one-to-many invalidates, such as flag. For
this particular example, the performance of the cache grouping scheme not only equals
but betters that of a full-directory scheme. The reason for this is that the one-to-many
invalidates so typical of the flag code are handled much more efficiently by multicasting
than by point-to-point invalidation; there are very few “useless” invalidates. Note that the
effects are more pronounced in the larger (128-PE) system.

In order to measure the effectiveness of return reply combination, we use the two metrics
reply hits and reply misses. Any time two return replies combine in the network, it is
counted as one reply hit. Reply hits are a good measure of the effectiveness of return
reply combination. Any time that two return replies are in the same switchnode, but fail
to combine because they do not reach their respective buffer heads at the same time, it is
counted as one reply miss. Reply misses give us a good idea of the performance improvement
that would result from the implementation of multi-level combination in the switchnode.
In the simulator we have developed, return reply combination is implemented with only

top-level combination.

4 SIMULATION RESULTS 40

Note from the flag results that multicasting and return reply combination work best
when they are used together. Multicasting causes invalidate requests to arrive at their
respective caches at roughly the same time, which means that the resulting return replies
are much more likely to combine on the way back to the memory controllers. In the 128-PE
run, return reply combination by itself resulted in 37587 reply hits and 9485 reply misses.
When return reply combination was aided by multicasting, it resulted in 85175 reply hits
and 686 reply misses. When multicasting is employed, one-deep reply combination appears

to be quite sufficient.

normalized normalized

System configuration time inv traffic
group size = | 1.000 1.000
group size = 4 1.012 1.022
group size = 4, multicasting 0.942 1.026
group size = 4, return reply comb 0.976 1.017
group size = 4, multicasting, return reply comb 0.904 1.034

Table 7: Effects of innovations on flag over 16 PEs.

normalized normalized

System configuration time inv traffic
group size = | 1.000 1.000
group size = 32 1.010 1.102
group size = 32, multicasting 0.989 1.142
group size = 32, return reply comb 0.940 1.106
group size = 32, multicasting, return reply comb 0.874 1.130

Table 8: Effects of innovations on flag over 128 PEs.

The results of the tests shown in this section indicate that, within the bounds of our
simulations, the cache group scheme can equal or better the performance of a full-directory
scheme without incurring its undesirable memory expenses. When a high degree of one-
to-many data sharing is exhibited, as was the case in the flag code, then return reply

combination and multicasting are very effective in boosting the performance of the system.

4 SIMULATION RESULTS 41

One expects the positive impact of return reply combination and multicasting to improve

as the size of the system grows.

4.4 Results of Cache Grouping vs. No Cache

The implementation of hardware support for cache coherence requires a certain amount of
expense. This section addresses the question of whether the added performance warrants the
expense of such support. Does a coherent cache greatly improve performance, or does the
coherence traffic bring a machine to a standstill? Also, we are interested in checking whether
our coherence scheme continues to enhance performance as the number of processors grows
(i.e. whether it is scalable).

We first ran some simulations of the gauss code performing a 128x128 linear system
solution. The simulations were run on original Cerberus (hereafter referred to as uncached
Cerberus) and on Cerberus equipped with a coherent shared memory cache (or cached
Cerberus). The cache configuration for these runs is W=16, A=2. L=8192. Group size was
selected as the smallest group size such that the number of groups was less than or equal

to log2(N).

Scalability of gauss (128x128): cache vs. no cache
1.4e+07

cached
no cache

1.2e+07

le+07 -

8et+06

6e+06

4e+06

2e+06

Number of processors

Figure 25: Gauss timings for uncached Cerberus vs. cached Cerberus.

4 SIMULATION RESULTS 42

In Figure 25. we show the simulated run-time of 128x128 gauss, comparing cached Cer-
berus to uncached Cerberus. The FLOP rates for the two machines are shown in Figure 26.
As the number of processors increases, so does the advantage of a coherent shared memory
cache. The primary reason for this is that as the system gets larger, the processor-memory
interconnect gets deeper. Uncached Cerberus begins to take a long time to ship data back
and forth across the interconnect. The relatively high cache hit rate (93% - 98%) of this
code allows the cache in the cached version to save much of the expense of shared memory

accesses. As the interconnect gets deeper, this savings increases.

Scalability of gauss (128x128): cache vs. no cache

cachi

1.2

|
il
a
3
i

0.4

0.2

0

0 5 10 15 20 25 30 35
Number of processors

Figure 26: Gauss FLOP rate for uncached Cerberus vs. cached Cerberus.

Psim also scaled favorably. A psim -nkv 7 2 64 run was simulated over 2, 4, 8, 16, and
32 processors. In Figure 27, we show the simulated run-times that resulted, and the time
improvement of these runs (| — uncachedtime) *s shown in Table 9. Once again, our cache
group scheme scales nicely. Time improvement relative to the uncached machine tapers off
only as the asymptotic concurrency limit of the benchmark is reached.

The improvements shown by cached Cerberus over uncached Cerberus for the psim runs
occur for the same reasons as for the gauss runs. As the network gets deeper, the cache

saves more and more memory latency time.

4 SIMULATION RESULTS

Simulated clocks

9e+07

8e+07

Te+07

6e+07

5e+07

4e+07

3e+07

2e+07

let+07

43

Scalability of psim -nkv 7 2 64

Cerberus processors (N

cached —-—-
no cache -——

Figure 27: Psim timings for uncached Cerberus vs. cached Cerberus.

Simulated
Processors (N)
2
4
8
16
32

uncached
clocks
84080451
48695298
28148302
16188350
9384505

cached

clocks
74020496
38611226
20589724
11277313

6597257

improvement
12%
21%
27%
30%
30%

Table 9: Effects of scaling on psim -nkv 7 2 64, 256K cache

4 SIMULATION RESULTS 44

The iterative relaxation code (relax) was tested in the same manner. The results are
shown in Table 10. Once again, the code adapts better to scaling on the cached machine
than on the uncached machine.

The test results in this section have shown that a machine equipped with a coherent
cache will indeed outperform a machine that is not so equipped. More importantly, the
performance gap widens as the number of processors grows. This leads us to believe that a
coherent shared memory cache would be very beneficial on any “massively” parallel machine.

In this case, large coherent caches are effectively used as automatic local memories.

uncached cached
N clocks clocks improvement
4 25970530 24607972 5%
16 7042661 6234715 11%

Table 10: Effects of scaling on 256x256 relaxation.

4.5 Effects of Changing Cache Group Size

One of the advantages of the cache group scheme is that the memory required to track cache
line location can grow as logz(N), where N is the number of processors, if the cache group
size is sufficiently large. However, increasing the cache group size also increases the number
of caches that will be hit by “useless” invalidates during multicasts. Does increasing the
cache group size have a significant effect on the performance of a program?

One important aspect of the cache grouping scheme is that one-to-one cache line sharing
is supported in an efficient manner. That is to say, when a cache line is granted in a
PRESENTM or PRESENT!I state, the memory controller has the ability to exactly track
which cache holds the line. No multicasts are needed to invalidate a line in either of the
above states, and invalidation traffic is kept to a minimum. If a significant portion of
the cache lines are granted on a one-to-one basis, then the multicasts necessitated by lines
granted in PRESENT* mode will have a relatively small impact on performance and traffic.

Gauss and psim were both tested as to how they were affected by increasing cache
group size. As usual, each of 32 simulated processors was equipped with a 256-Kbyte cache
(W=16, L=8192, A=2). Multicasting and return reply combination were enabled. Cache

group size was varied from the minimum | to the maximum 32.

4 SIMULATION RESULTS 45

In Table 11. we show the results from the gauss runs. Run-time was not significantly
affected by increasing cache group size; invalidation traffic gets worse as some "useless"

invalidates are issued as group size increases.

group normalized normalized

size time inv traffic
| 1.000 1.000

2 0.997 1.049
4 0.997 1.107

8 0.997 1.206
16 0.997 1.347
32 0.997 1.691

Table 11; Effects of changing cache group size on 128x128 gauss over 32 PEs. 256K cache.

The cache hit rate for gauss was about 94%. In all cases, over 96% of the invalida-
tions were performed on a one-to-one basis. This extremely high amount of one-to-one
invalidations minimizes the impact of multicasts generated by one-to-many invalidations.

The results for similar runs of psim§ are shown in Table 12. Around 91.7% of the
invalidates were one-to-one in all runs. The cache hit rate was around 33.8% in all runs.
The invalidate traffic went fairly high as group size went up, but the simulated time only
went up 2%. The traffic did not come close to flooding the network, so performance was
not severely impeded.

Neither psim nor gauss were significantly affected by changing the cache group size. Both
had one-to-one invalidate rates somewhere above 90%. Relax, on the other hand, exhibited
a one-to-one invalidate rate of about 80%. It had a much better chance of showing some
timing fluctuations due to changing cache group size.

We tested relax of a 256x256 element matrix over 16 simulated processors, trying cache
group sizes of 1, 2, 4, 8 and 16. Eight-byte cache lines were used, in order to cut down
on false sharing; false sharing involves two caches accessing different bytes within the same

81t should be noted that cache group sizes of 16 and 32, for a 32-cpu system, would not be used in
practice. A group size of 8 results in 4 groups, which can be partially encoded into 4 bits. These 4 bits are
“free” in a 32-bit system, since 5 bits are necessary for exact encoding. Any larger granularity may adversely

affect performance but wil// nor lower cost.

4 SIMULATION RESULTS 46

group normalized normalized

size time inv traffic
| 1.000 1.000
2 1.001 1.138
4 1.002 1.341
8 1.005 1.684
16 1.010 2.270
32 1.021 3.128

Table 12: Effects of changing cache group size on psim -nkv 6 2 64 over 32 PEs, 256K cache

cache line. We wanted the one-to-one invalidate rate to be as low as possible, and false
sharing raises that rate. The number of lines in each cache, L, was raised to 16384. in order
to maintain the standard total cache size of 256 Kbytes.

The results of the iterative relaxation cache group size tests are shown in Table 13. Even
at the relatively low 80% one-to-one invalidation rate, varying the cache group size made

very little difference to the overall performance of the program.

group normalized normalized

size time inv traffic
| 1.000 1.000
2 1.000 1.192
4 1.000 1.549
8 1.000 2.139
16 1.002 3.287

Table 13: Effects of changing cache group size on 256x256 relaxation over 16 PEs, 8-byte

cache line.

We show in Table 14 that increasing the cache group size does not adversely affect the
performance of the flag code. In fact, a beneficial effect is observed. When the lion’s share of
the invalidates are either one-to-one or one-to-all, then very little is lost in the way of system
performance when larger cache groups are employed. In fact, large cache groups allow the

one-to-all invalidates to be performed in a much more efficient manner. We included reply

4 SIMULATION RESULTS 47

group normalized normalized reply reply

size time inv traffic hits misses
! 1.000 1.000 30788 8073

2 0.948 1.019 43826 1778

4 0.922 1.056 53003 230

8 0.942 1.066 57745 456

16 0.937 1.081 67103 295

32 0.936 1.129 85175 686
64 0.941 1.216 116765 1352

Table 14: Effects of changing cache group size on flag over 128 PEs.

hit and reply miss measures in Table 14 to make the following points:

e There is a good amount of combination occurring in the reply network; top-level

return reply combination is effective.

» ft appears that there is little to be gained through the implementation of multi-level

return reply combination.

The results from this section lead us to believe that for most real codes, cache group
size could be set to whatever is convenient to the hardware of the system. In codes where
the one-to-one invalidation rate is high, only a small amount of multicasts occur, and so
system performance is not damaged. In codes such as flag where there is a high rate of
one-to-many sharing, multicasts to large groups tend to enhance the overall performance of

the system.

4.6 Notes on other cache coherence schemes
4.6.1 The one-read scheme

Given the results above, one may question the necessity of ever having multiple readable
copies outstanding. With the 80-95% one-to-one invalidation rate that seems to be prevalent
in most codes, could we not greatly simplify the system by allowing only one readable copy
to be out at a time? For lack of a better name, we call this the “one-read” scheme. It would

assuredly cut down on the intelligence needed for both the memory controllers and the

4 SIMULATION RESULTS 48

switchnodes. The memory controllers would not have to handle cache groups or multicasts:
the switchnodes would not have to handle multicasting or return reply combination. Could
such a system be implemented without significant loss of performance?

In Figure 28. we graphically show that the answer is no: the one-read scheme severely
impedes performance. The one-read scheme is not only significantly worse than the cache
group scheme, it does much worse than no cache at all. In Table 15, we show some particular
performance measurements that illustrate the undesirability of the one-read scheme. Note
that traffic is measured in millions for the one-read scheme, and thousands for the cache
group scheme. The effective critical region produced by the one-read scheme kills the

performance of the system.

Scalability of gauss (128x128): cache groups vs. one-read

Figure 28: Cache groups vs. one-read for 128x128 gauss.

What would cause such an increase in network traffic? There are three categories of data
use that cause the one-read scheme to fail, examples of which can be found in Figure 29 [12],

in which we show a code fragment from the gauss benchmark:

* Write-once read-many data: The shared variable dims (lines 1, 6 and 11) is written
once at the beginning of the program, and read many times thereafter, by every

processor. After each processor does an iteration of the k, i or j loop, the loop

4 SIMULATION RESULTS 49

cache group scheme one-read scheme
cache total cache total

N clocks hit rate invalidation traffic clocks hit rate invalidation traffic

2 132M 0.98 42K 19.5M 0.45 12.3M
4 6™ 0.98 48K 12.6M 0.36 15.1M
g 34M 0.97 53K 12.1M 0.33 16.1M
16 1.9M 0.96 59K 14.2M 0.29 17. M
32 1.1IM 0.93 70K 16.4M 0.30 18.8M

Table 15: Performance of 128x128 gauss code . cache group scheme vs. one-read scheme.

variable must be compared to dims. This causes an enormous amount of invalidate
traffic to be generated, since each processor must wait to get its own copy of dims.
If multiple readable copies of such variables are allowed, they can reside permanently

in the cache.

e Synchronization data: Line 2 causes a processor to wait until the next pivot row
has been stabilized. Once again, this will generate a large amount of traffic; while the
pivot row completes its operations the network will be flooded by read requests for
flagfk]. The cache group scheme allows a processor to loop on such a variable in cache
memory; when it is finally modified the caches will be updated. The one-read scheme

forces all such spin waiting to be done over the interconnect.

e Other widely shared data: The j-loop (line 11) has all processors referencing the
pivot row for their calculations. With only one copy of any of the elements out at
a time, performance is once again severely wounded. The situation is even worse
than no cache at all, since multiple readable copies of a piece of data can exist in the

cacheless system.

In order to get reasonable performance out of the one-read scheme, a significant amount
of software modification would have to be performed on any code. This defeats the whole
purpose of a hardware coherent cache mechanism, which is to reduce software cost by
supporting implicit use of data locality. We are convinced that the one-read scheme is not
a viable hardware option. The capability to grant multiple read-only copies of a cache line

is absolutely essential in any parallel machine with a coherent shared memory cache.

4 SIMULATION RESULTS

(1]
(2]
(3]
(4]
[3]
(6]
(7]
(8]
[9]
[10]
[11]
[12]
[13]
[14]

[15]

for (k=0; k<dims; k++) {
while (flags[k]==0); /* wait for the pivot row to be stable. */
/* Custom forall loop which makes sure that the same processor
handles the SAXPY on a given row. */
for(i = k + 1 + (_TINDEX + _TSIZE - (k !. _TSIZE)) ! _TSIZE;

i < dims; i += _TSIZE) {

double temp = A[i][k];

if (temp == 0.0) continue;

A[i] [k] = 0.0;

temp /=A[k][k];

for(j=k+l; j<dims; j++) A[i][j] -= A[k] [j] * temp;
B[i] -=B[k] * temp;

if(i ==k+1) flags[i] = 1;

Figure 29: Reduction loop of gauss code

50

4 SIMULATION RESULTS 51

4.6.2 The minimal state scheme.

The two-bit protocol, or minimal state scheme, of Archibald and Baer [4] requires no mem-
ory to track cache line location. Instead, it does full broadcasts every time a coherence
action needs to be performed. In terms of memory expense, the minimal state scheme is
indeed very scalable. Would the frequent broadcasts hurt the performance of a large scale
multiprocessor?

We did no direct testing of the minimal state scheme. However, the group size variation
tests that we ran might provide some insight into the viability of frequent broadcasts.
Recall Table 16 from the psim group size variation test. A group size of 32 implies a
full broadcast whenever any type of one-to-many sharing is encountered. Approximately
92% of all invalidations were one-to-one; this means that 8% of the invalidations were
handled by full broadcasts. If the minimal state scheme were implemented, then 100%
of the invalidations would be handled by full broadcasts. One would therefore intuitively
expect the performance hit relative to the full-directory scheme to be about 12 times worse
than it was with the cache-group scheme. This would mean a 25% performance lag from

the full-directory scheme, which is significant.

group normalized normalized

size time inv traffic
| 1.000 1.000
2 1.001 1.138
4 1.002 1.341
8 1.005 1.684
16 1.010 2.270
32 1.021 3.128

Table 16: Effects of changing cache group size on psim -nkv 6 2 64 over 32 PEs.

There may be other ill effects from the minimal state scheme, and they would only get
worse as one grew the number of PEs in the system. Surely a “massively” parallel machine
would suffer from frequent full broadcasts. /¢ is essential for any coherent shared memory

system to be able to explicitly track cache lines in the case of one-to-one data sharing.

4 SIMULATION RESULTS 52

4.7 Summary of Simulation Results

The cache grouping scheme, while much less expensive than a full-directory scheme, can
equal or better a full-directory scheme in terms of system performance. The ability to
explicitly record the location of a single cache line in the case of one-to-one sharing is
necessary, as is the ability to grant multiple readable copies of a cache line.

A system that employs cache grouping outperforms a similar system with no cache; the
invalidation traffic is not so great that it bogs down the interconnect. The system seems to
be insensitive to the size of cache groups. For codes that exhibit a high rate of one-to-many
data invalidates, system performance is aided significantly through the use of multicast and
combining features in the interconnect. Multicasting and return reply combination are most
effective when used together. Top-level return reply combination works very effectively for
such codes; there appears to be little to gain through the implementation of multi-level

return reply combination.

5 SOFTWARE COSTS OF COHERENCE ENFORCEMENT 53

5 Software Costs of Coherence Enforcement

A large percentage of funds spent on computing go towards software development and
maintenance. At Lawrence Livermore National Laboratory, hundreds of millions of dollars
are spent on computing each year, and it is estimated that 80% of that figure goes toward
software. In this section, we focus on the amount of time, effort and coding required to
attain high performance for codes that are run on a large-scale parallel machine without a
hardware-enforced cache coherence mechanism. Many of these expenses could be avoided,
for all codes, if a coherent shared memory cache were present.

Recently, there have been efforts to run psim and gauss on a 63-cpu BBN TC2000, which
is not equipped with a coherent shared memory cache. Rather, the user must explicitly
manage the caches and insure data coherence. This section deals with the effort it took to
get these codes to run efficiently, in parallel, on the TC2000.

In order to make valid observations about speedup and efficiency, two symbols here need

to be defined:

* Ts - “Serial Time” - The time it takes to run a code on one processor, using only pri-
vate, copy-back cached memory. This is a good indicator of what the single-processor

performance is for the machine.

* Tn - “n-way parallel time” - The time to run in parallel over n processors, all memory
references going to shared memory unless explicitly routed otherwise by the program-

mer. Ideally, 7n = and Ti = Ts-

5.1 The psim network simulator on the TC2000

Picano. Brooks and Hoag [14] did an in-depth study describing their efforts to run psim
efficiently on the TC2000. A number of modifications were made to the code to place data
in local memory. These modifications were done in phases, and performance results were
gathered after each phase.

The Phase 0 parallel code was written for a shared memory multiprocessor with a
coherent shared data cache; all simulation work was done in shared interleaved memory. 50
lines were added to or modified from the serial code to produce the Phase 0 parallel code.
This version of the code had been run with very good results on the Sequent and Alliant

multiprocessors; 7| was very close to T's on these machines for the Phase 0 code. The Phase

5 SOFTWARE COSTS OF COHERENCE ENFORCEMENT 54

0 code performed very badly on the TC2000. however; 7T\ was about 8 * Ts- The Phase 0
version of the code was 1501 lines long. The reason for this poor performance was the lack
of cache support for shared memory.

In the Phase | parallel code, we streamlined the structures that held the simulated
switchnodes, cpu ports and memory ports, so that these structures could be safely cached
by a single PE for the duration of a run. All portions of the switchnode structure, for
instance, that had to be accessed by other switchnodes (for communications purposes) were
put into separate shared data arrays. For example, see Figure 30 for the structure of a buffer;
buffers are used in switchnodes, cpu ports and memory ports to handle packet collisions.
The flag field was stripped out in Phase | and put into a separate array, since it might need

to be accessed by more than one physical cpu.

struct BUFFER {
PACKET *head; /* Pointer to the head packet in the buffer. */

PACKET *tail; /* Pointer to the tail packet in the buffer */

int count; /* The number of packets in the buffer. */
BOOLEAN flag; /* We move a packet if flag is TRUE. */
lock_t access; /* Lock for buffer access. */

Figure 30: BUFFER Data structure.

This enabled us to cache entire switchnode, cpu port, and memory port data structures
for the duration of a run. We did not have to worry about flushing these structures out of
the cache, since only the cache in which a structure resided would ever need to access that
structure.

Since most of the work of the network simulator is done in the interconnection network
(the switchnodes), this modification resulted in significant improvement in execution time.
The Phase | code was 1814 lines long, and Ti was reduced to about 2*78 for this version
of the code on the TC2000.

In the Phase 2 code, we removed extraneous sharing wherever possible. Necessary shar-
ing represents shared information flow between 2 or more different processing elements

(PEs). which means that data must reside in shared memory in order to insure coherence.

5 SOFTWARE COSTS OF COHERENCE ENFORCEMENT 55

Extraneous sharing represents information that is placed in shared memory, but accessed by
only one PE. For an example network shown in Figure 31. necessary sharing is performed
between stages | and 2. since packets are moved between two different TC2000 processors.
There is extraneous sharing between stages 0 and 1. since all packet "movements" between
these stages actually go from one TC2000 processor to itself9. The Phase 2 code was mod-
ified to detect this, and used private cached memory to handle information flow where the
code would normally suffer from extraneous sharing.

This modification put Ti very close to 7s on the TC2000. The Phase 2 code was 2224

lines long.

stage 0 stage | stage 2

Figure 31: Mapping an 8-cpu psim run onto 2 TC2000 processors. The numbers represent
the PE onto which each individual structure is mapped. The squares represent switchnode

structures: the circles represent memory ports on one side and cpu ports on the other side.

9If the number of PEs is changed, such data might actually be shared between PEs. Extraneous sharing

must be detected "on the fly.”

5 SOFTWARE COSTS OF COHERENCE ENFORCEMENT 56

In the Phase 3 parallel code, we replaced two shared memory accesses through the
switch by one shared memory access through the switch and one local memory access when
possible. For example, packet transfers in the network are simulated by having the simulated
cpu. memory or switchnode that contains the packet write a pointer to it out to a shared
memory location. The receiver of the packet then reads the packet pointer out of that
shared memory location, on the same simulated clock, thus simulating a transfer. Phase
3 made the shared memory “communication" location local to the reader. Each packet
movement now required approximately 2439 nsecs[15] (1889 remote write + 550 local read)
instead of 3802 nsecs (1889 remote write + 1913 remote read).

This modification resulted in only a modest speedup on the TC2000. since Phase 2
already had Ti very close to Ts. The Phase 3 code was 2327 lines long.

The effort to efficiently run psim on the TC2000 was a summer project for one student,
with 2 other people closely collaborating and many more offering help. Phase 1, data
structure streamlining, would be unnecessary with a coherent shared memory cache, since
the cache-able portion of a structure would automatically be cached in such a system. Phase
2. extraneous sharing detection, would also not be necessary since a coherent shared memory
cache would do all possible transactions in cache automatically. Therefore. Phase 2 (2224
lines for our psim example) performance would be attained by Phase 0 code (1501 lines)
on a machine equipped with a coherent shared memory cache (as had been the experience
on the Sequent multiprocessors possessing coherent caches). Such a machine would thereby

place Ts very near 7\ for the 1500-line Phase 0 version of the code.

5.2 The Gauss linear system solver on the TC2000

The original serial gauss code was a relatively trivial program. The 22-line baseline parallel
code (Figure 32), written with the aid of the Parallel C Preprocessor (PCP)[16], involved
the addition or modification of 7 lines to the serial code. The modifications are shown
in boldface in Figure 32. All of the gauss codes mentioned in this section are listed in
Appendix A.

The performance of the serial code on the TC2000 is shown in Table 17. The serial code
is the proper point of reference for parallel speedup measurement. The performance of the
baseline parallel code on the TC2000 is also displayed in Table 17. It is evident that this

version of the parallel code is seriously degraded by the cost of references to shared memory,

5 SOFTWARE COSTS OF COHERENCE ENFORCEMENT

void dgauss(double **a. double *b, int dim) {
for(int k = 0; k < dim: k += 1) { /* reduction outer loop */

forall(int i = k+1; i < dim: i+= 1) {
double temp = a[i][k];
if(temp == 0.0) continue;
a[i][k] = 0.0:
temp /= a[k][k];
for(int j = k+1; j < dim; j += 1) {

afil[j] -= alKI[j] * temp;

b[i] -= b[k] * temp;

for(int i = dim - 1; i >= 0; i -== 1) { /* back substitution outer loop */
master{
b[i] /= a[i] [i];
J
barrier;
forall(intk =1- 1; k>=0; k-=1) {
blk] -= a[k][i] * b[i];

barrier:

Figure 32: Baseline parallel gauss code.

57

5 SOFTWARE COSTS OF COHERENCE ENFORCEMENT 58

since 7\ zz 9 * Ts- An intolerable 11% efficiency is achieved for a 700x700 solution over 10

processors.

Dimension MFLOPSs MFLOPSi MFLOPSio Effxo

100 1.30 0.16 1.01 0.08
200 1.36 0.16 126 0.09
300 1.38 0.16 132 0.10
400 1.40 0.16 1.42 0.10
500 1.41 0.16 1.47 0.10
600 1.37 0.16 1.44 0.11
700 1.28 0.16 1.47 0.11

Table 17: Serial and baseline parallel code performance.

The code was further modified to tile the processors properly when running on a machine
with a coherent shared memory cache. This version of the code insured that given rows
were accessed by the same processor on every iteration, so that those rows could stay in
cache. This new code was 44 lines long, and performed very well on the Alliant FX/8 and
Sequent Symmetry parallel machines. It was written in such a way that it would do very
well on any multiprocessor equipped with a coherent shared memory cache.

However, the 44-line code performed the same as the 22-line code on the TC2000. Since
shared data is not automatically cached on the TC2000, the modifications did nothing to
improve performance.

In order to achieve high performance on the TC2000, the gauss code was completely
re-written. Shared data caching and explicit localization were explicitly handled in this
version of the code, which was 106 lines long. Also, the code needed tuning to get rid
of some memory hotspots that plagued its performance. Finally, the code performed as
displayed in Table 18. (Recall that the speedup is measured against the serial performance
shown in Table 17). A 69% efficiency rate is achieved for a 700x700 solution over 48 TC2000
processors, compared to 11% efficiency for similar runs with the 22-line and 44-line codes.
An even higher 79% efficiency rate is achieved for the 1000x1000 solution over 48 PEs.

These relatively high efficiencies could be (and have been) attained by the 44-line code on

machines equipped with a coherent shared memory cache, such as the Sequent Symmetry.

5 SOFTWARE COSTS OF COHERENCE ENFORCEMENT 59

Dimension MFLOPS4§ Speedup4s Effas

100 3.40 26 0.05
200 10.47 7.7 0.16
300 18.85 137 0.29
400 27.65 19.8 041
500 31.34 222 046
600 38.32 28.0 0.58
700 42.25 33.0 0.69
800 44.74 350 0.73
900 46.96 36.7 0.76
1000 48.39 38.1 0.79

Table 18: Performance of 106-line code over 48 processors.

5.3 Discussion

It is clear from our experience with the psim and gauss codes that one pays a large software
penalty for the lack of a coherent shared memory cache on a scalable multiprocessor. This
penalty is paid in terms of the software effort that is necessary to achieve efficient parallel
performance on such a machine. It is not simply a matter of typing in some extra code. It is
a matter of gradually tuning a program to use local memory as much as possible, and making
frequent checks to insure that the program still runs correctly. Efficient parallelization on

a machine without a coherent shared memory cache is a tedious and onerous task.

Parallel code version Line count Efficiency
Baseline (pure shared memory) 22 11%
Coherent cache 44 11%
Explicit localization 106 69%

Table 19: 700x700 gauss solution performance over 48 TC2000 PEs.

The costs of hand-coded coherence are shown in Tables 19 and 20. The 44-line gauss
code will run with the efficiency of the 106-line gauss code on any machine with a coherent
cache. Likewise, the 1501-line Phase 0 psim code would run with the performance of the

2224-line Phase 2 code on such a machine. That represents a savings of 723 lines and many

5 SOFTWARE COSTS OF COHERENCE ENFORCEMENT 60

Parallel code version Line count Efficiency

Phase 0 1501 Tiss 8* Ts
Phase | 1814 Ti «2*Ts
Phase 2 2224 TTs
Phase 3 2327 Ti ~ Ts

Table 20: Psim parallel code performance.

man-months of programmer effort.

A coherent shared memory cache would be a one-time expense for a scalable multipro-
cessor. Running without a coherent cache means that a significant amount of time and
effort will be expended for every code that is ported to the machine. Given the tremendous
expense that goes toward software, a coherent shared memory cache would end up saving a

considerable amount of time and money during the useful lifetime of a given multiprocessor.

6 DISCUSSION 61

6 Discussion

We have shown through simulation that the cache grouping scheme is comparable in perfor-
mance to the full-directory scheme, though the cache grouping scheme is much less costly.
The memory required to track cache line location can be bounded by o(log2(N)) for cache
grouping, compared to O(N) for a full-directory scheme. Detailed simulation showed that
system performance was not sensitive to cache group size.

Multicasting and return reply combination were highly effective for codes that exhibited
a relatively high rate of one-to-many invalidates. Also, they work better when they are used
in concert. Top-level return reply combination appears to be effective, and it does not look
as though there would be a lot of profit from the implementation of multi-level return
reply combination. This is in sharp contrast to the results of NYU-Ultracomputer-style
combination methods [6]. Our top-level reply combination scheme works well due to the
simultaneous nature of multicasts; return replies leave their respective caches at about the
same time, and so are very likely to meet in top-level combination in the network.

The implementation of a coherent cache, using the cache grouping scheme, showed
a significant improvement over a similar system with no cache. More importantly, the
improvement increased with the number of processors simulated, leading us to believe that
the performance of "massively parallel” machines of 1000 or more processors would be
greatly improved by the addition of a coherent shared memory cache.

We also looked into some alternative coherence schemes, namely the one-read scheme
and the broadcast scheme. The one-read scheme performed very poorly due to the amount
of traffic it generated. The broadcast scheme failed for the same reason. We find that two
capabilities are essential for any scalable coherence scheme: the ability to exactly track
single cache line location for one-to-one data sharing, and the ability to grant multiple
readable copies of a cache line.

We have shown moderate increases of performance of up to 30% with the addition of
a coherent cache. It should be noted that our simulations were limited to what would be
fairly small runs on a “real” machine; time would not permit larger simulations. We did,
however, show that the improvement due to cache improved as the number of processors was
increased. Trends also indicated improved performance with larger problem size. Therefore,

we could expect a greater improvement from the cache running a relatively large “real”

6 DISCUSSION 62

problem on a large number of processors.

Increased system performance, however, is not the only advantage offered by a coherent
shared memory cache. The Lawrence Livermore National Laboratory spends hundreds
of millions of dollars every year on software development. Our experience with scalable
shared memory multiprocessors without coherent shared memory caches is that a significant
amount of software effort is required to shape codes to run efficiently in parallel [14]. A
significant amount of explicit localization of memory and decoupling of data structures is
typically required. A coherent shared memory cache, supported in the hardware, would
greatly cut down on the software costs of efficiently parallelizing existing code. The added
hardware to support such a cache need not be overly expensive. The added performance
of a coherent shared memory cache, as well as the decreased software development time on

such a machine, would be well worth the hardware costs associated with it.

REFERENCES 63

References

(1]

Siegel, H.J., Interconnection Networks for Large-Scale Parallel Processing. Lexington

Books. D.C. Heath and Company, Lexington, Massachusetts, 1985.

Dubois, Michel, Christoph Scheurich. and Faye Briggs, “Memory Access Buffering in
Multiprocessors,” Proceedings of the 13th Annual Symposium on Computer Architec-

ture, Vol. 14, Num. 2, ACM. pp. 434-442, June 1986.

Censier, L.M. and P. Feautrier. “A New Solution to Coherence Problems in Multicache

Systems”, IEEE Transactions on Computers, C-27(12):1112-1118, 1978.

Archibald, James and Jean-Loup Baer, “An Economical Solution to the Cache Coher-
ence Problem™, Proceedings of the 11th International Symposium on Computer Archi-

tecture, SIGARCH Newsletter, Vol. 12, Num. 3, IEEE, pp. 355-362, June 1984.

Brooks, E.D. Ill, T.S. Axelrod and G.A. Darmohray, “The Cerberus Multiproces-
sor Simulator.” In G. Rodrigue, editor, Parallel Processing for Scientific Computing,

pp.384-390, SIAM, 1989.

Almasi. George S. and Allan Gottlieb, Highly Parallel Computing, Ben-
jamin/Cummings Publishing Co., 1989, pp. 434-441.

Baer, J.-L. and C. Girault, “A Petri Net Model for a Solution to the Cache Coher-
ence Problem”, Proceedings of the First International Conference on Supercomputing

Systems, IEEE, pp. 680-689.

Gupta, Anoop, Wolf-Dietrich Weber and Todd Mowry, “Reducing Memory and Traffic
Requirements for Scalable Directory-Based Cache Coherence Schemes,” Proceedings of

the 1990 International Conference on Parallel Processing, Vol. I, Penn State University

Press, pp. 312-321, 1990.

Lenoski. D., J. Laudon, K. Gharachorloo, A. Gupta, J. Hennessy, M. Horowitz and M.
Lam. “Design of Scalable Shared-Memory Multiprocessors: The DASH Approach.” In
Proceedings of COMPCON 90, pp. 62-67, 1990.

Davis, H., S. Goldschmidt and J. Hennessy. “Tango: A Multiprocessor Simulation and

Tracing System.” Stanford Technical Report - in preparation, 1989.

REFERENCES 64

[11] Brooks. E.D. IIl. “A Butterfly Processor-Memory Interconnection for a Vector Pro-

cessing Environment". Parallel Computing, Volume 4. 1987.

[12] Darmohray, Gregory A. and Eugene D. Brooks III, “Gaussian Techniques on Shared
Memory Multiprocessor Computers, Lawrence Livermore National Laboratory Tech.

Rep. UCRL-97939, Livermore, CA. January 1988.

[13] Fox. Geoffrey C. and Steve W. Otto, “Algorithms for concurrent processors,| Physics
Today, pp. 50-59, May 1984.

[14] Picano, Silvio, Eugene D. Brooks III, and Joseph E. Hoag, “MIMD Implementations of
a Network Simulator on a Large Scale, Shared Memory Multiprocessor,” Lawrence Liv-
ermore National Laboratory Tech. Rep. UCRL-JC-105468. Livermore, CA, November
1990.

[15] BBN Advanced Computers Inc., Inside the TC2000, Cambridge. MA 1989.

[16] Brooks, Eugene D. III. “PCP: A Parallel Extension of C that is 99% Fat Free,"
Lawrence Livermore National Laboratory Tech. Rep. UCRL-99673. Rev. 1. Livermore,
CA, September 1989.

A GAUSSIAN ELIMINATION CODE LISTINGS 65

A Gaussian elimination code listings

This appendix details the various gauss codes that were mentioned in section 5.

A.l Baseline version of gauss code

The following is the baseline parallel code; the lines in bold face were the additions/modifications

necessary to produce this code from the serial code:

void dgauss(double **a, double *b, int dim)
{
/* reduction outer loop */
for(int k = 0; k < dim; k += 1) {
forall (int i = k+1; i < dim; i +=1) {
double temp = a[i][k];

if(temp == 0.0) continue;

temp /= a[k][k];
for(intj =k + 1;j < dim; j +=1) {

afi]lj] - = a[k][j] * temp;

barrier;
E* backsolve outer loop */
for(inti=dim - ;i >=0;1i—=1) {
master {
b[i] /= afi][i];
J
barrier;
forall (intk =i—1; k >= 0k —=1) {
blk] — = a[k][i] * b[i];

A GAUSSIAN ELIMINATION CODE LISTINGS

A2

}

barrier;

Coherent cache version of gauss code

66

The following code is the “coherent cache” version that forces a cpu to operate on the

same row(s) of the matrix for the duration of the operation. It performed very well on

multiprocessors with coherent shared memory caches, but not very well on the TC2000.

void

{

dgauss(double **a, double *b, int dim)

/* Flags are initialized to zero: */
static int flags[1024];
master {
flags[0] = 1;
}
/* reduction outer loop */
for(int k = 0; k < dim; k += 1) {
/* Wait for the pivot row to be stable: */
while (flags[k] == 0);
for (inti =k + | + (_tindex + .tsize —
(k% _tsize))% _tsize;
i< dim; i+= _tsize) {
double temp = a]i][k];
if(temp == 0.0) continue;
a[i][k] = 0.0;
temp /= a[k][k];
for(int j= k + 1; j< dim; j+= 1) {
alilli] — = alkI[j] * temp;
}
b[i] — -- b[k] * temp;

A GAUSSIAN ELIMINATION CODE LISTINGS

if i ==k + 1) flags[i] = [;

}

barrier;

/* Now we perform dim back substitutions.
Note that the meaning of flag ==
now means that the data is ready
whereas before it meant not ready.

First solve for the last x: */

master {

b[dim—I] /= a[dim—I][dim—1];
/* Indicate x[dim—I1] is solved. */
flags[dim—I1] = 0;
}
/* backsolve outer loop */
for(inti=dim — I;i>= 1;i—=1) {
if (_tindex == ((i—1) % .tsize)) {
while (flags[i] == 1]);
bli—1] — = a[i-1][i] * b]i];
bli—1] / = a[i—][i—1];
/* Indicate x[i—I] is solved. */
flags[i—1] = 0;

}

else {
/* Wait for x[i] */
while (flags[i] == 1);

}

for (int k= _tindex; k< i—I; k+= _tsize) {
blk] — = a[k][i] * b[i];

}

barrier;

67

A GAUSSIAN ELIMINATION CODE LISTINGS 68

A.3 TC2000 version of gauss code

The following code is the re-written version that ran efficiently in parallel on the TC2000:

/* This parallel routine solves the linear system A.X = B

using Gauss elimination and local memory.

The matrix rows are stripped out to the processors and

the pivot row copied into each processor for the SAXPY operations.
The routine mungs a, leaving the results of the reduction in it, and
puts the solution X in the array B.

*/

#include <stdio.h>

#include <pcp.h>

#define MAXDIM 1024

static int flags[MAXDIM];

void dgauss(a, b, dimension)
double **a;
double *b;
int dimension;
{
register dim = dimension;
register int i, j, k;
register int lc;
int nrows;
private static int not_alloc =1; /* local memory allocation flag */

private static double **pa; /* local memory a matrix rows */

GAUSSIAN ELIMINATION CODE LISTINGS

private static double *pb; /* local memory b values */
double pivot_b;
double pivot[MAXDIM]; /* 1local pivot row */
MASTER {
flags[0] = 1;
/* first time allocate local memory */
if (not_alloc) {
/* calculate no. of rows for each processor */
nrows = dim/_TSIZE;
if (nrows* TSIZE < dim) nrows++;
if ((pa =
(double **)pratalloc(nrows, dim, sizeof(**pa))) == NULL)
fprintf (stderr, "pratalloc for pa failed\n");
exit(1l);
}
if((pb =
(double *)prmalloc((unsigned) (nrows * sizeof(*pb)))) == NULL) {
fprintf (stderr, "prmalloc for pb failed\n");
exit(l);
}
not_alloc = 0;
/* copy a, b rows to local memory, record actual row number: */

lc = 0;
for(i = _TINDEX/) TSIZE; i < dim; i += _TSIZE) ({
for(j = 0; j < dim; j += 1) {

pa[lc] [j] = a[i] []];

69

A GAUSSIAN ELIMINATION CODE LISTINGS

pb[lc] = b[i] ;

lc++

/* We first do dim reduction steps.
*/

for(k = 0; k < dim; k += 1) {

register double aSubK;

register double bSubK;

while(flags[k] == 0) ;
/* copy pivot row to local memory */
for (j = k; j < dim; j++) {

pivot [j] = a[k] []];

pivot b = b[k]:
aSubK = pivot[k];

bSubKk

pivot b ;

if(aSubK == 0.0) { /* Check for 0 in the diagonal.
static lock faultLock = UNLOCKED;
LOCK(&faultLock);
fprintf (stderr, "gauss: a['/,d] ['/d = O\n" k, k);

exit(l);

while(_TINDEX + lc*_ TSIZE < k+l) lc++;
while (_TINDEX + lc* TSIZE < dim) {
register double xtemp;

double dv;

A GAUSSIAN ELIMINATION CODE LISTINGS

>

int dd;

xtemp = pa[lec] [k];

if (xtemp ==0.0) {
continue;

}

pa[lc][k] = 0.0;

xtemp /= aSubK;

dv = -xtemp;

dd = dim - (k + 1);

if(dim > 0) {

daxpyl (&(pa[lc][k+1]),&(pivot[k+1]),

&dv, &dd);

pb[lc] -= bSubK * xtemp;
if LTINDEX + lc*_TSIZE == k+l)
/* copy back out: */
for (j = k+1; j < dim;
a [k+l] [j] = pa[le] []];
b[k+l] = pb[lec] ;

flags[k+l] = 1;

lc++;

/* while(_TINDEX */

> /* for(k */

BARRIER;

{

j++)

/* Now we perform dim back substitutions.

*/

{

/* if (1 == k+l)

*

71

A GAUSSIAN ELIMINATION CODE LISTINGS

MASTER {
b[dim - 1] /= a[dim - 1][dim -1];
flags[dim - 1] =0;

>

for(i = dim - 1; 1 > 1; i -= 1) {

/* Solve the last X

/* Wait for the b[i] element to be up to date. */

while(flags[i] == 1)

pivot b = b[i];

if (_TINDEX == ((i-1)'/, TSIZE)) {
lc = (i-1)/ _TSIZE;
pb[lc] -= pa[lc][i] * pivot b;
pb [le] /= pa[le] [i - 1];
b[i-1] = pb[lc] ;

flags[i-1] = 0;

for (k = _TINDEX; k < i-1; k += _TSIZE)

pb[lc] -= pal[lc][i] * pivot b;
lc++;
> /* for (i */

BARRIER;

{

*/

72

B GLOSSARY OF TERMS AND VARIABLES 73

B Glossary of Terms and Variables

B. Terms
ABSENT: See State.
Interconnect: See Interconnection Network.

Interconnection Network: The matrix of switchnodes and wires that connects proces-
sors to memories in a multiprocessor system. The terms interconnect and network

are synonymous with interconnection network.

Invalidate: A message sent to a cache, from a memory controller, instructing the cache

to flush a certain cache line for the purpose of maintaining coherency.
Invalidate Acknowledgement: Sce Return Reply.
LIMBO: See State.
Modifiable: See Writable.

Multicast: A restricted broadcast. A multicast involves a memory controller sending

some message, usually an invalidate, to a subset of all processors.
Network: See Interconnection Network.
Out: See Outstanding.

Outstanding: When a copy of a cache line is granted to a cache, then that copy is
outstanding. A cache line in state ABSENT has no copies outstanding; a cache line

in state PRESENT* can have many copies outstanding.

Point-to-Point Invalidation: When a memory controller sends an invalidate to exactly
one processor, it is a point-to-point invalidation. When a memory controller broad-

casts an invalidate to a group of processors, it is a multicast.
PRESENT*: See State.
PRESENT1: See State.

PRESENTM: See State.

B GLOSSARY OF TERMS AND VARIABLES 74

Read-only mode: If a cache line resides in a cache in read-only mode, then the line
cannot be modified in cache. The term readable is sometimes used synonymously

with read-only.

Return reply: A message sent from a cache to a memory controller informing the memory
controller that an invalidation has been performed. The term invalidate acknowl-

edgement is synonymous with return reply.

State, or cache line state: The way in which a cache line is currently being shared.

There are 5 possible states:

* ABSENT: The line is not present in any cache.
« PRESENTI1: The line is present in exactly one cache, in read-only mode.

« PRESENT*: The line is present in an indeterminate number of caches, in read-

only mode.
* PRESENTM: The line is present in exactly one cache, in writable mode.

* LIMBO: The line is undergoing a state transition and waiting for invalidate
acknowledgements to come from the caches. A line cannot be granted in any

form while in this state.

Top-level reply combination: Our scheme causes return replies to be combined in the
interconnection network; the actual combination takes place at the switchnode level.
The term “top-level” means that only packets at the heads of buffers are candidates

for combination.

Writable mode: If a cache line resides in a cache in writable mode, then the line can be
modified in cache. Ofcourse, it can also be read. The term modifiable is synonymous

with writable.

B.2 Variables

n: The order of a system; the number of stages in the interconnect.
k: The base of a system; the fan-out of each switchnode.

N: The total number of processing nodes in a given system. N = kn.

B GLOSSARY OF TERMS AND VARIABLES 75

v: The vector length of a psim run.

G: The size of each cache group.

L: The total number of cache lines in the cache.

A: The associativity level of the cache. An A4 of | implies a direct-mapped cache.

W: The number of data bytes per cache line. The total number of bytes per cache is

L *4 *W

Len: Len (for cache line length) is the symbol for “some amount of time proportional to
cache line size.” In our simulations, Len is 1 clock for every § bytes of cache line. In

other words, 8 bytes can be buffered into the interconnect on every clock.

