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Abstract

A scheme that employs cache grouping and incomplete directory state in order to 
reduce the cost of maintaining directory state is introduced. This thesis discusses the 
cache grouping scheme, describes the protocols necessary for its implementation, and 
gives the results of detailed simulations of the scheme using various application codes. 
The effects of changing cache group size and using sophisticated multicast and combi­
nation features in the interconnect are explored.

It is discovered that the cache grouping scheme can equal the performance of full- 
directory schemes, while costing much less. The system is relatively insensitive to cache 
group size. Advanced multicast and combination features in the network work best when 
used together, and have especially beneficial effect for codes that exhibit a high rate of 
one-to-many invalidates. The simulation of a machine employing the cache grouping 
scheme indicates significant performance gains over an identical machine without a 
shared data cache. We also discuss the time and coding required to coax efficiency 
out of codes run on large scale parallel machines without hardware coherent cache 
mechanisms.

1



1 INTRODUCTION 2

1 Introduction

1.1 Multistage interconnection networks and memory latency

For some years now. multiprocessors composed of commercially available microprocessors 

have been making significant performance gains. As the problems that we wish to solve 

become larger and more complex, the need arises for additional computation power in the 

form of scalable parallel machines with large numbers of processors. There are various w'ays 

to connect the processors together on such machines [1], including but not limited to:

• The shared bus: A shared bus, shown in Figure 1, is the least expensive method of 

interconnection. It can be viewed as a wire over which all processors pass messages 

and make memory requests. The problem with the shared bus is that it can be satu­

rated by a small number of processors. If 1000 processors need to access 1000 different 

memory locations, they will all have to wait their turn for control of the bus. Shared 

buses present a potential communication bottleneck that makes them undesirable for 

connecting large numbers of processors. The largest commercial shared-bus multipro­

cessor systems use around 30 processors, but this bound has dropped with time as 

processor performance has increased.

• Complete connection: In Figure 2, we show 4 processors that are completely connected 

to one another. If 1000 processors were connected in such a manner, then all could 

make requests of each other simultaneously. However, N processors need N2 wires 

to connect them, and this is expensive. In addition, each processor would need N 

ports. It is these expenses that preclude the use of complete interconnection for large 

numbers of processors.

• The full crossbar: In Figure 3, we show processing elements connected to memory 

elements through a full crossbar. A crossbar is a set of N2 switchboxes that will 

route messages from any processor to any memory element; this results in excellent 

performance. Like the completely connected network, the crossbar becomes far too 

expensive when a large number of processors need to communicate with a large number 

of memories. In practice, it is rare to see a crossbar that is larger than 8x8.

Multistage interconnection networks (MINs) are the present answer to the difficult prob­

lem of connecting N processing elements to N memory elements; they are a nice compro-
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Shared Bus

Figure 1: Shared bus architecture

Figure 2: Completely connected network
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Figure 3: Full crossbar network
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mise between cost and performance. An example of a multistage interconnection network 

is shown in Figure 4. Multistage interconnection networks have logk(N) stages, where k is 

the fan-out of the switchnodes. and N communication lines between stages. The number of 

communication wires needed in a MIN is 0(Nlogk{N)), as opposed to N2 for the completely 

connected and crossbar networks.
Processing Elements

Memory Elements

Figure 4: Multistage Interconnection Network using 2x2 Switchnodes

Unfortunately, communication between processors and memory is relatively slow in a 

MIN. Processors are not directly connected, so each communication must cross the network. 

In a typical system, shown in Figure 5, it takes on the order of logk{N) time for a memory 

request to be granted. If there is a large amount of traffic in the network, then the latency 

will be even longer. This can make shared memory references slow, compared to local 

memory references. This is a major drawback to multistage interconnection systems.

1.2 The cache coherence problem and its present solutions

A well-known solution to the memory latency problem is the use of cache, as shown in 

Figure 6, which temporarily holds copies of memory locations as they are reused. However, 

the problem of cache coherence is encountered. By definition [2]: “A memory scheme is 

coherent if the value returned on a LOAD instruction is always the value given by the latest
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Processing Elements

Interconnection Network

Memory Elements

Figure 5: Typical MIN setup

STORE instruction with the same address.” If no protocols or constraints are imposed on 

shared memory caches, then they will most likely not be coherent.

As an example, consider a simple spin-wait routine. Suppose processor A is waiting for 

processor B to write to shared memory location X. If A and B both have a copy of X in 

their shared-memory caches, and no coherence scheme is being employed, then A will spin 

forever on a piece of stale data. Even if processor B eventually writes to X, processor A will 

have no way of recognizing it. In Figure 7(a) we show the state of the two caches, A and B, 

before B writes to X. In Figure 7(b) we show the state of the two caches after B has written 

to its copy of X. This accurately illustrates the disastrous results of having shared-memory 

data caches without any enforcement of cache coherence. A program is almost guaranteed 

to run incorrectly.

Most hardware solutions to the cache coherence problem involve using memory con­

trollers. labeled by K in Figure 6, to enforce coherence. Some sort of state information will 

be stored there for every cache line controlled by that particular controller. When a request 

comes in for a particular cache line, the memory controller will grant the request only after 

taking appropriate actions to insure coherence. These actions could include the invalidation 

of previously granted (“outstanding” or “out”) copies of the cache line. A cache line can 

be in one of two modes in the cache: read-only, or readable, meaning that no modifications 

can be applied to the cache line; and modifiable, or writable, meaning that the line can be
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Processing Elements

Interconnection Network

ME 2

Memory Elements

Figure 6: MIN with coherent cache system. The C’s are caches and the K’s are memory 

controllers.

Cache A

X=0

Cache B

X=0 (a)

X=0 X=1 (b)

Figure 7: Shortcoming of a non-coherent shared memory cache
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modified in cache. Usually, read-only copies of a cache line can be granted to any number 

of caches, but only one writable copy may be outstanding at a time. When a writable copy 

is out. no readable copies can be out.

In Figure 8. we detail the actions that a coherent system would take to insure coherence, 

using our spin-wait example above. After step (a), the initial state, cache B sends a request 

for a writable copy of X. Step (b) shows the caches after the memory controller invalidates 

their read-only copies of X. Step (c) shows cache B being granted line X in writable mode, 

and writing a 1 to X. Cache A is still spinning on X, and so sends a request for a read-only 

copy of X. Step (d) shows the caches after the memory controller invalidates and retrieves 

cache B’s writable copy of X. Step (e) shows cache A finally getting the updated copy of X. 

Thus, independent of software, cache A can “see’' the change to X.

Cache A Cache B

read-only read-only
X=0 X=0

invalidated invalidated
X X

invalidated writable
X X=1

invalidated invalidated
X X

read-only read-only
X=1 X=1

Figure 8: Typical actions taken to insure coherence

There are quite a few proposed hardware solutions1 to the cache coherence problem, 

but they come in two general classes: directory schemes and broadcast schemes. These 

two classes are represented by the full-directory scheme [3] and the 2-bit protocol [4], re­

1 There are also many compiler-assisted software-based coherence schemes, but these are beyond the scope

of this thesis.
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spectively. The full-directory scheme of Censier and Feautrier suffers in that it requires an 

excessive amount of controller memory. It requires (N + 1) bits of controller memory per 

cache line, where N is the number of processors in the system, to explicitly record the lo­

cation of each copy of a cache line. The 2-bit protocol of Archibald and Baer requires very 

little controller memory, but uses full broadcasts to implement coherence state changes. 

These broadcasts saturate the interconnection network, and unduly impact many of the 

caches.

We present a new solution, an interpolation between the full-directory scheme and the 

2-bit protocol. It attains the performance of the full-directory scheme, while the memory 

requirements to track cache line location can be bounded by log2{N).

1.3 Structure of Thesis

The cache grouping scheme will be presented in detail in section 2. The protocol and 

hardware necessary for the implementation of such a scheme will be described in section 3.

In section 4, we give the results of detailed simulations of the cache grouping scheme. 

These simulations are performed on an extension of the Cerberus multiprocessor simulator 

[5]. Many issues are resolved. The scheme can and does equal the performance of a full- 

directory scheme. Cache group size generally does not affect overall performance. The use 

of a coherent cache significantly improves the effectiveness of a system. In section 4, we also 

discuss the shortcomings of two alternative schemes, the one-read scheme and the broadcast 

scheme.

In section 5, we give examples of the cost of not having a coherent cache mechanism on a 

large-scale shared memory multiprocessor. A significant amount of time, effort and coding 

must go into coaxing performance from applications on such machines. A good amount 

of software effort could be saved through the use of hardware which supports a coherent 

shared memory cache.

A short discussion is presented in section 6, summarizing the thesis.
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2 The Cache Group Scheme

Traditional methods of coherence enforcement run into difficulties when one tries to scale 

the size of the system upward. The full-directory scheme [3] of Censier and Feautrier and 

the 2-bit protocol of Archibald and Baer [4] represent the two ends of the spectrum of these 

traditional methods.

The full-directory scheme employs an (Ar+l)-bit vector in the memory controller for 

each cache line (Figure 9), where N is the number of processing elements in the system. 

N bits are used to explicitly record the location(s) of outstanding copies of that cache line. 

The i'th location bit being set means that processor i has a copy of the cache line. A “dirty” 

bit is used to record the existence of a modifiable copy. Coherence is maintained by means 

of point-to-point (i.e., one cache at a time) invalidations. The problem with this scheme 

is that the memory needed to track cache line location grows linearly with the number of 

processors, N, so that it does not prove to be scalable. For example, in a 1024-processor 

system with 16-byte cache lines, it would take 1025 bits in controller memory to handle 

each 128-bit cache line in main memory.

N location bits

Figure 9: Memory controller record of cache line with full-directory scheme.

The 2-bit protocol, or minimal state scheme, reduces the number of bits necessary to 

track each cache line to 2 (Figure 10). There is no knowledge of the location of each cache 

line. Instead, a cache line is in one of four states: ABSENT (no copies are outstanding), 

PRESENTl (one read-only copy is outstanding), PRESENT* (many read-only copies out­

standing), and PRESENTM (one modifiable copy outstanding). This scheme minimizes 

the number of bits needed to record location information by not remembering the positions 

of any outstanding copies of a cache line. Since there is no knowledge of the location(s) of 

outstanding copies of a line, full broadcasts are necessary for most coherence operations. 

These broadcasts not only degrade the performance of the interconnection network, but
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they also adversely affect any caches not actually holding the line in question.

(No location bits)

Two state bits

Figure 10: Memory controller record of cache line using two-bit scheme.

In this section, we discuss 3 innovations that can be used to efficiently enforce coherence 

without using a disproportionate amount of controller memory: cache groups, multicasting 

and return reply combination. We call the combination of these three concepts the cache 

grouping scheme. Our primary idea is the concept of cache groups-, we advocate the use of 

a directory scheme with a bit for each cache group instead of one per cache. These cache 

groups can be of arbitrary size. As cache group size grows, more caches are needlessly 

invalidated with multicasts. Small cache group sizes necessitate more controller memory to 

partially track cache line location. In order to efficiently enforce the cache group scheme in 

the hardware, we propose the implementation of multicasting and return reply combination. 

Multicasting enables the interconnection network to quickly propagate invalidation requests 

to cache groups. Return reply combination, as we describe it, is a low-cost method of 

combining invalidation acknowledgements (from the caches) in the interconnection network. 

Unlike some other combining schemes [6], it does not require additional memory at the 

switchnode level.

2.1 Cache Groups

The idea of cache groups is an interpolation between the full-directory scheme and the 2- 

bit protocol. It is an attempt to capture the performance of a full directory without its 

excessive memory requirements.

Baer and Girault suggest combining the 2-bit protocol with the use of a cache index for 

a single outstanding copy[7]. By doing this, broadcasts can be avoided for the frequent case 

of one-to-one data sharing. We expand on this idea by giving these index bits something
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to do in the case of one-to-many sharing.

When a cache line is in the PRESENTl or PRESENTM state, exactly one copy of 

it is currently out. Log2(N) location bits will be used to explicitly track the cache line, 

where N is the number of processors (Figure 11). When a cache line is in the PRESENT* 

state (many readable copies outstanding), then N/G bits will be used to partially track the 

locations of outstanding lines, where G is the size of a cache group (Figure 12).

State
bits Log(N) location bits

Cache line location

Figure 11: Cache line representation in memory controller with exactly one copy outstanding 

{exact encoding).

State
(N/G) location bits

Group 0 Group 1 Group N/G - 1

Figure 12: Cache line representation in memory controller with indeterminate number of 

copies outstanding {partial encoding).

When in PRESENT* state, where an undetermined number of copies of a cache line 

are distributed to the processors, a location bit being set means that “this cache group 

MA Y hold up to G copies of this cache line.” Some of the caches in the targeted cache 

group may NOT have the line in question, and will be unduly affected by the invalidations 

to which they are subjected. Nevertheless, the scheme allows for a substantial reduction 

in the number of “useless” invalidate requests, compared to the minimal state solution of 

Archibald and Baer.
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Line State Bits needed to record location(s) of line

ABSENT 0

PRESENTl log2(N)

PRESENT* N/G

PRESENTM log2(N)

Table 1: Bits required to track cache line location(s) in various cache states. N is the 

number of processors, G is the size of each cache group.

As we show in Table 1, max(log2{N), N/G) bits are required to track the location of 

each cache line, compared with N bits in the classic full-directory scheme. If the number of 

cache groups is set so that N/G ~ log2{N), then the memory requirements of this scheme 

will grow as log2(N), which gives it the quality of being scalable in a practical sense.

The idea of cache grouping was also proposed by Gupta, Weber and Mowry [8]: they 

called this mechanism coarse vectors. Gupta et al. used the Stanford DASH architecture [9] 

as a model. The DASH architecture features clusters of processors connected by a mesh. 

In order to evaluate their version of the scheme, they performed event-driven simulations, 

using Tango [10] to generate multiprocessor references.

As an example of how cache groups work, consider a 16-cpu system with 4 cache groups 

of 4 caches each. If cache line X has been granted to cache 12 as read-only, then the four 

location bits will be used to explicitly identify cache 12 (Figure 13). If cache 5 then requests 

X as a read-only line, the location bits will be converted to “partial” representation, where 

each bit represents a cache group (Figure 14).

State
Log(N) location bits

PRESENTl

Cache 12

Figure 13: Setting of location bits for one copy out to cache 12.
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State
(N/G) location bits

PRESENT*

Group 0 Group 1 Group 2 Group 3

Figure 14: Setting of location bits for one copy out to cache 12. one copy out to cache 5.

2.2 A Note on Coherence and Ordering

In our scalable coherent cache system, return receipts and the wait instruction are used to 

restrict the ordering of memory operations when this is required by the application. These 

features are borrowed from an earlier version of the Cerberus multiprocessor simulator [5], 

which did not support caches for shared memory, but still had a problem to be solved with 

respect to the ordering of main memory operations.

The idea behind return receipts is that for every request through the processor-memory 

interconnect, a receipt is returned to the requestor which indicates that the requested action 

has been performed. In the case of the Cerberus multiprocessor simulator the return receipt 

for a read request was the returned data, but an explicit receipt was generated for write 

requests as well. Because data is not returned to the processor for a write, the return receipt 

is necessary to allow the processor to keep track of when its writes have been performed.

In the Cerberus multiprocessor simulator, each processor kept a receipt counter. Every 

time a memory request was issued, the counter was incremented. Every time a request 

was known to be performed (i.e., the processor received a return receipt) the counter was 

decremented. The wait instruction caused a processor to hold issue on any further instruc­

tions until the receipt counter was zero, and therefore all pending memory operations were 

complete. This seemingly innocuous mechanism provides for completely dynamic enforce­

ment of ordering between groups of memory references when it is required. In our proposed 

scalable coherent cache system we use return receipts and the wait instruction in the same 

way. The processing of cache misses, to different cache lines, can be handled concurrently 

both within a cache and between the many caches in the system. Return receipts provide 

knowledge of when state changes for cache lines are complete, and the wait instruction
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causes a processor to wait for completion when needed.

An alternative approach to coherence and ordering is the notion of the global synchro­

nizing variable [2]. Those who have some experience in parallel programming know that 

it is undesirable to statically declare a global synchronizing variable, or a volatile variable 

for that matter. A variable may be used for communication and synchronization in one 

instance, and then get used for normal computation later on. If the variable were treated 

as a global synchronizing variable all the time, performance would be adversely affected. 

By using the wait instruction, which allows the processor to keep track of when memory 

operations are complete, one solves the ordering problem in a completely dynamic fashion.

Through the correct use of the wait instruction, any memory location can temporarily 

be made into a global synchronizing variable. One simply surrounds the specific access in 

question with wait instructions. The first wait instruction will force all previous memory 

accesses by the processor to be performed before the synchronization variable is accessed. 

The second wait instruction will force access to the synchronization variable to be performed 

before any further memory accesses are started. This enforces weak ordering, as defined by 

Dubois, Scheurich and Briggs[2].

2.3 Multicasting

Broadcast schemes to enforce cache coherence are generally not looked upon favorably due 

to the excessive amount of network traffic that they produce. Cache grouping reduces the 

impact of broadcasts by limiting them to groups of caches that may hold the cache line in 

question. These specific broadcasts are called multicasts. To further reduce the impact of 

broadcasts, we provide efficient hardware support for multicasts in the processor-memory 

interconnection network.

In a packet-switching multistage interconnection network, packets are transmitted over 

the network a stage at a time. The route through the network depends on a packet’s routing 

tag for each stage. Most networks currently utilize log2(k)*logk(N) bits for the routing tag, 

where k is the fan-out of each switchnode and N is the number of processors in the system. 

At each of logk(N) stages in the interconnection network. log2{k) bits of the routing tag 

determine the next switchnode (or endpoint) to which the packet will be sent. Packets are 

thus transmitted on a one-PE-to-one-ME basis, or a one-ME-to-one-PE basis.

We suggest using k*logk{N) bits for each routing tag, with the k bits per stage enabling
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us to route a packet out to multiple output ports of a switchnode. For normal routing, only 

one bit in each routing field will be set and a single packet will be routed to its destination. 

If more than one routing bit is set for any of the fields, the packet will be multicast onto 

the appropriate output ports of the switchnode.

As an example, consider the 8-processor system composed of 2x2 switchnodes shown 

in Figure 15. A normal point-to-point routing tag would have 3 fields of one bit each. A 

multicast routing tag would have 3 fields of two bits each, for independent control of each 

output of a switchnode. Point-to-point communications can still be accomplished by setting 

only one routing bit per stage.

A multicast from memory 4 to the top group of 4 processors is shown in Figure 15. 

This would be typical of a memory controller sending invalidates to a cache group of size 4. 

Without the multicast mechanism in the switchnodes, four separate invalidates would have 

been necessary.

Figure 15: Path of message with routing tag (10)(11)(11) (solid lines).

In order to examine the benefits of hardware multicast support, a metric packets pro­

cessed. P. needs to be defined. P is a count of the number of packets that need to be 

processed across the interconnect in order to effect an invalidation. It is a good indicator
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of the load that is put on the interconnection network by invalidations.

A significant reduction in network traffic can be realized through multicasting as the 

system gets large. If all communications were done on a point-to-point basis, then an 

invalidate to a cache group of size G would involve

P = G * logk(N) (1)

total packets being processed2 (where k is the fan-out of each switchnode); the logk{N) 

stages of the network must be traversed by G independent invalidate requests. If multicas­

ting is utilized, then an invalidate to a cache group of size G would involve

P = {logk{N) - logk(G)) + (2)

total packets being processed.

The ramifications of the above equations, as the number of processors gets large, are 

shown in Table 2. The numbers in the table are the total number of packets processed 

for an invalidate to a cache group of size G in an Ar-processor system constructed of 2x2 

switchnodes. G is chosen in each case such that the number of cache groups is approximately 

log^iN). As is evident, the use of multicasting relieves much of the strain on the network 

in terms of invalidation traffic.

P

Configuration Point-to-point method Multicast method

N=8, G=4 12 7

N=16, G=4 16 8

N=32, G=8 40 16

N=128, G=16 112 33

N=1024, G=128 1280 257

Table 2: Packets processed using 2x2 switchnodes, Point-to-point vs. Multicast

Note that the topology of the interconnection network is crucial for the implementation 

of multicasting. In Figure 15, the memory controllers must be on the left and the caches on 

the right in order for the caches to be efficiently partitioned into cache groups. This topology 

causes invalidate packets to travel “down a tree,” which naturally facilitates broadcasting.
2A packet can be processed up to logic {N) times as it traverses the interconnect. A multicast from a 

switchnode is counted as 1 packet processed.
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There are several memory controller strategies that could be utilized to implement mul­

ticasting. For example, the memory controller could be smart enough to recognize that 

neighboring cache groups have a copy of a line, and so could combine the resultant multi- 

casts to these groups. In our simulations, a very simple strategy is employed, which is to 

look at every cache group individually as invalidation multicasts are sent out. It requires 

no special logic to implement this simple method.

2.4 Return Reply Combination

Multicasts are used to invalidate copies of a cache line which are present in one or more 

groups of caches. In our scheme, return receipts are required from each cache to which an 

invalidation request has been sent. These return receipts are counted by the memory con­

troller. Once the receipts are all accounted for, the memory controller grants the writable 

copy. Without any special handling of return receipts they would have to be counted indi­

vidually by the memory controller, leading to a bottleneck if invalidates of multiple readable 

copies are frequent. We provide for combination of return receipts in the switchnodes so 

that this problem can be avoided.

Unlike the relatively simple modification for multicast support, return reply combination 

requires a more sophisticated modification to the switchnodes of the Cerberus multiproces­

sor simulator. The Cerberus processor-memory interconnection network is composed of 

F-input, /c-output switchnodes, each with k2 buffers. The original structure of a buffer is 

shown in Figure 16. The packet input (in), packet output (out), buffer full (bf), output 

inhibit (oi), output busy (ob). and packet selector signals (s,p) are used in an identical 

fashion as they were in [11].

Return receipt packets for multicast invalidate requests are special packets which have 

both a unique identifier for the request and a counter field which records how many return 

receipts the packet represents. The buffers which feed a given output port in the switchnode 

have their match lines connected to each other, and their sum out (so) lines feed a /c-input 

adder which feeds the sum in (si) lines of the k buffers with its result (Figures 17 and 

18). The handling of conflicts for the output port is done in the same way as was done 

in [11], with the following additional treatment of multicast return receipts. If the buffer 

which wins the conflict for the output port contains a return receipt in a suitable position, 

the identifier of this packet is written on the match lines and the counter of this packet is
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bf 01

Figure 16: Original switchnode buffer.

sum in
bf match

out

sum out

Figure 17: Modified switchnode buffer.

Figure 18: Modified 2x2 switchnode.
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written on the so lines. The buffers which lose the conflict for the output port read the 

match lines and check their lead slot, or more deeply if possible3, for a matching packet. If 

they find a matching return receipt they write the sum field of that packet on their so lines 

and drop the packet on the floor. The buffers write zero on their so lines if no matching 

packet is found. The /c-input adder adds the partial sums together and the buffer which 

issued the match request replaces its partial sum with the output of the adder (obtained 

from the si lines).

By combining return receipts for multicast invalidate requests, the potential bottleneck 

at the memory controller can be avoided. The combining function requires a more compli­

cated buffer, and k /c-input adders to be associated with each switchnode. These adders 

would have to be wide enough to accommodate the maximum node count for the system.

It is important to note that our method of return reply combination requires no addi­

tional memory at the switchnode, as do some other combination schemes [6]. Also, note that 

the topology of the interconnection network is once again crucial to the efficient implemen­

tation of reply combination. In Figure 15, the caches must be on the right and the memory 

controllers on the left in order for invalidation replies to combine as early as possible. This 

causes invalidation replies to go “up a tree,” which naturally facilitates combining.

In order to efficiently implement both multicasting and return reply combination, there­

fore, two processor-memory interconnection networks have to be used. However, only one 

has to implement multicasting and only one need implement return reply combination.

3In sections 4.3 and 4.5, we discuss the merits of ‘“deep” combining vs. top-level combination. In general, 

top-level combination is sufficient.
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3 Coherence Protocol and Timing

3.1 Protocol States and Actions

For each cache line in main memory, the associated memory controller needs a method to 

track the way in which that line is shared among all caches in the system. This is done by 

associating a state with each line. The following five states have their basis in [4]:

• ABSENT: No copies of the cache line are currently out.

• PRESENT1: One read-only copy of the cache line is currently out.

• PRESENT*: An indeterminate number of read-only copies of the cache line are cur­

rently out.

• PRESENTM: One modifiable copy of the cache line is currently out.

• LIMBO: The state of the cache line is in transition, and no access to it is allowed until 

the transition is complete.

We added the LIMBO state because certain state transitions do not take place instan­

taneously, and LIMBO was necessary to insure atomic state transitions. For example, if a 

line is in state PRESENTM and a request arrived for a read-only copy of that line, then 

an invalidate would have to be sent and acknowledged before the read-only line could be 

granted. During the time that write-invalidation is performed, no access should be given 

to the line in question. It is during these invalidation periods that the LIMBO state is 

employed. All requests that arrive for a cache line in main memory while it is in a LIMBO 

state are deferred to the wait list (described later in this section).

Communications between cache and memory controller take place through actions which 

dispatch messages through the network. These actions control the manner in which cache 

lines are tracked and shared.

Cache to Memory Controller Actions:

• REQ_RJLINE(cpu, line) (1 clock). Request a cache line in read-only mode.

• REQ_W_LINE(cpu, line) (1 clock). Request a cache line in writable mode.

• REPORT_R_SPILL(line) (1 clock). Notify the memory controller that a read-only 

line has been spilled from cache.
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• REPORT_W_SPILL(line) (Len clocks). Notify the memory controller that a writable 

line has been spilled from cache, and write the line back to memory.

• ACK_RJNV(line) (1 clock). Respond to a read-invalidate request from the memory 

controller.

• ACK-WJNV(line) (Len clocks). Respond to a write-invalidate request from the 

memory controller, sending back the modified cache line.

Memory Controller to Cache Actions:

• GRANT_R_LINE(cpu, line) (Len clocks). Send a line to a cache in read-only mode.

• GRANT_W_LINE(cpu, line) (Len clocks). Send a writable copy of a line to a cache.

• INV_R_LINE(cpu | cache group, line) (1 clock). Request a cache (or cache group) to 

invalidate its read-only copy(s) of a cache line.

• INV_W_LINE(cpu, line) (1 clock). Request a cache to invalidate its writable copy of 

a cache line, and to send back the modified copy.

Timing is given for every action described, in terms of the number of clock ticks that 

elapse. Most actions take one clock. Some, however, involve buffering cache lines onto the 

processor-memory interconnect, and thus their timings are dependent upon cache line size. 

Len (for cache line length) will be the symbol for "some amount of time proportional to 

cache line size.” In our simulations, Len is 1 clock for every 8 bytes of cache line.

3.2 Cache Architecture and Protocols

We modified the Cerberus multiprocessor simulator to model quite a few cache configura­

tions. The size, in bytes, of a cache line can be any power of 2, minimum 8 bytes. The 

number of lines in each cache can be any power of two. Each cache can be direct-mapped, 

2-way associative or 4-way associative.

A line in the cache has the following components, as shown in Figure 19:

• Dirty bit: Set if the cache line is modifiable.

• Valid bit: Set if the cache line is valid. Cache lines are invalidated by resetting this 

bit.
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• High order address bits: The low log2(L) bits of the main memory address of a cache 

line, where L is the number of lines in the cache4, determine the placement of the line 

within the cache. It is necessary to store the remaining high-order bits in order to be 

able to reproduce the full shared memory address of the cache line.

• Data bytes: The actual data that has been granted from shared memory. The number 

of these bytes is synonymous with the cache line size, W.

Dirty bit Valid bit

W data bytes
Line 0
Line 1
Line 2

Line L-l

Figure 19: Direct-mapped Cache Configuration

Unlike current microprocessor designs, the Cerberus processor does not stall on the first 

miss for a line. The cache has 5 request slots where request records can be stored. A request 

record is generated when a cache miss occurs. It contains the register to be loaded from 

memory (or, for write misses, the value to be written to memory), the size of the memory 

request (byte, short, word or double), the exact address to be read/written, and the type 

of the request (READ or WRITE) (see Figure 20). If all of these slots are occupied, then 

the processor will stall on a cache miss.

There may be multiple request records awaiting the same cache line being granted from 

main memory. When the requested cache line arrives, it services all request records that 

are waiting on it.

4The total number of lines in the cache is L multiplied by the associativity level.
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Address

Figure 20: Request slots

When multiple steps are required for the cache to respond to an event, then these 

steps will be numbered below by roman numerals. When conditional courses of action are 

described, these possible courses of action will be assigned the same roman numeral followed 

by different lower-case letters. A step 0 is sometimes included for error detection.

The cache must respond to the following events:

• Read Hit(ADDR.REG): The contents of ADDR are loaded into register REG. A 

latency of four clocks expires to load a register, but independent loads issue and are 

completed at a rate of one per clock.

• Read Miss(ADDR.REG):

0. If the desired address is already being waited upon by the cache, then stall the cpu 

until it arrives.

la. If the desired cache line is currently being waited on by a different request record, 

then simply create a new request record. This takes one clock.

lb. If the desired cache line is not already being awaited, then a REQ_R_LINE(cpu, 

ADDR) is sent to the appropriate memory module. This takes one clock, plus one 

clock for creating the request record.

• Write Hit(ADDR.REG): The contents of register REG are copied to ADDR. The 

associated STORE instruction is a one-clock pipelined instruction.

• Write Miss(ADDR.REG):
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0. If the desired address is already being waited upon by the cache, then stall the cpu 

until it arrives.

la. If the desired cache line is present in read-only form, then invalidate it and send 

a REPORT_R._SPILL(line). This takes one clock. Then, send a REQ.W_LINE(cpu. 

ADDR) to the appropriate memory module. This involves one clock for creating the 

new request record and one clock for sending the request.

lb. If the desired cache line is currently being waited on by a different request record, 

then simply create a new request record. This takes one clock.

lc. If the desired cache line is not already being awaited, then a REQ_W_LINE(cpu, 

ADDR) is sent to the appropriate memory module. This takes one clock, plus one 

clock for creating the request record.

• GRANT JIJJNE(LINE):

1. If there is room for LINE in the cache, then skip to IV.

II. Invalidate the appropriate line. If cache is associative, invalidate the least recently 

used line in a slot.

Ilia. If the line being invalidated is read-only, send a REPORT_R_SPILL(spilledLINE) 

to the appropriate memory controller. This takes one clock.

Illb. If the line being invalidated is writable, send a REPORT_W_SPILL(spilledLINE) 

to the appropriate memory controller. This takes Len clocks.

IV. Insert LINE into the cache. Service all appropriate request records. Every register 

that is loaded will be available in 2 clocks.

• GRANT_W_LINE(LINE):

I. If there is room for LINE in the cache, then skip to IV.

II. Invalidate the appropriate line. If cache is associative, invalidate the least recently 

used line in a slot.

Ilia. If the line being invalidated is read-only, send a REPORT_R_SPILL(spilledLINE) 

to the appropriate memory controller. This takes one clock.

Illb. If the line being invalidated is writable, send a REPORT_W_SPILL(spilledLINE) 

to the appropriate memory controller. This takes Len clocks.
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IV. Insert LINE into cache. Service all appropriate request records.

• IN V _R_LINE (LINE):

0. If LINE is present and modifiable, give an error message.

1. If LINE is present as read-only in the cache, then invalidate it. This decision takes 

2 clocks.

II. Regardless of whether the line was in cache in step I, send back an ACK_RJNV(LINE). 

This takes one clock.

• INV_W_LINE(LINE):

0. If LINE is present in read-only mode, give an error message.

1. If LINE is present and writable in the cache, then invalidate it. This decision takes 

2 clocks.

Ha. If LINE was present and writable in step I, then send an ACK.WJNV(LINE), 

which will take Len clocks.

lib. If LINE was not present and writable in step I, then simply ignore the invalidation 

request. This is necessary if a writable line is spilled just before the invalidation request 

comes in.

3.3 Memory Controller Architecture and Protocol

Memory is logically interleaved throughout the system in intervals of one cache line, as 

shown in Figure 21. Each memory controller maintains a record of each cache line that it 

controls.

The memory controller tracks the state of each line and the location of each copy of 

each line under its control. There is also a wait list associated with each memory controller 

(see Figure 22). Each element of the wait list is a memory request that cannot be granted 

until a state transition is effected.

Each element in the wait list has a wait counter associated with it to track acknowledged 

invalidations. When a request is enqueued onto the end of the wait list, its wait counter is set 

to the number of invalidations expected before that request can be granted. As invalidation 

acknowledgements arrive for that request, the wait counter is decremented. When the wait
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Memory 0 Memory 1 Memory N-l

Line 0 Line 1 Line N-l

Line N Line N+l Line 2N-1

Line 2N Line 2N+1 Line 3N-1

Figure 21: Interleaving of main memory

counter for a memory request in the list is decremented to 0, then that memory request can 

be granted.

The memory controller is a state machine that grants a cache line, or effects state 

transitions, according to the present state of the line. For the remainder of this section, we 

describe the protocol that determines the behavior the memory controller.

The terms exact encoding and partial encoding are used frequently in this section. An 

exact encoding of a cpu (CPU) into the location bits for a cache line implies that log2(N) 

bits are used to explicitly identify CPU. A partial encoding means that the cache group bit 

(within the location bits of the line) associated with CPU is turned on.

When multiple steps are required for the memory controller to respond to an event, 

then these steps will be numbered below by roman numerals. When conditional courses 

of action are described, these possible courses of action will be assigned the same roman 

numeral followed by different lower-case letters.

The memory controller must respond to the following events:

• REQ_R_LINE(CPU, LINE):

la. If LINE is in state ABSENT, then update its state to PRESENT1. Exactly 

encode CPU into the location bits for LINE. Send a GRANT_R_LINE(CPU, LINE) 

(Len clocks).

lb. If LINE is in state PRESENT1, then update its state to PRESENT*. Convert
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Memory Controller i

State
Line i 
Line i+N 

Line i+2N

Location

Wait List

Figure 22: Logical Structure of Memory Controller

the location bits to partial encoding, and partially encode CPU. Send a 

GRANT_R_LINE(CPU, LINE) (Len clocks).

lc. If LINE is in state PRESENT*, then partially encode CPU into the location bits 

for LINE. Send a GRANT_R_LINE(CPU, LINE) (Len clocks).

ld. If LINE is in state PRESENTM, then put the request on the back end of the wait 

list (1 clock) and update the state of LINE to LIMBO. Send an INV_W_LINE(XCPU. 

LINE), where XCPU is the cpu that presently holds LINE in a writable mode (1 

clock).

le. If LINE is in state LIMBO, then put the request on the back end of the wait list 

(1 clock).

• REQ_W_LINE(CPU, LINE):

la. If LINE is in state ABSENT, then update its state to PRESENTM. Exactly 

encode CPU into the location bits for LINE. Send a GRANT_W_LINE(CPU. LINE) 

(Len clocks).

lb. If LINE is in state PRESENT1, then put the request on the tail of the wait 

list and update its state to LIMBO (1 clock). Send an INV_R_LINE(XCPU, LINE),
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where XCPU is the cpu that presently holds LINE in read-only mode (1 clock).

lc. If LINE is in state PRESENT*, then put the request on the tail of the wait list and 

update the state of LINE to LIMBO (1 clock). Multicast an INV_R_LINE(GROUP. 

LINE) to each cache group holding a copy of LINE (1 clock per multicast).

ld. If LINE is in state PRESENTM, then put the request on the tail of the wait list 

and update the state of LINE to LIMBO (1 clock). Send an INV_W_LINE(XCPU, 

LINE), where XCPU is the cpu that presently holds LINE in a writable mode (1 

clock).

le. If LINE is in state LIMBO, then put the request on the tail of the wait list (1 

clock).

• ACKJIJNV(LINE):

I. Traverse the wait list until the request for LINE is found. Each element traversed 

takes 1 clock.

II. Decrement the request’s wait counter. If the counter is greater than zero, then 

goto VII.

III. (All invalidations have been performed for LINE). Dequeue the request from the 

wait list. Update the state of LINE to PRESENTM.

IV. Issue a GRANT_W_LINE(XCPU, LINE), where XCPU is the cpu that issued the 

waiting request (Len clocks). Exactly encode XCPU into the location bits for LINE.

V. Traverse the wait list in search of another request for LINE (1 clock per element 

traversal). If none are found, goto VII.

VI. (Another request for LINE is waiting). Send an INV_W_LINE(XCPU, LINE) to 

the cpu that just received LINE as writable (1 clock). Update the state of LINE to 

LIMBO.

VII. Done.

• ACK_WJNV(LINE):

I. Traverse the wait list until the request for LINE is found. Each element traversed 

takes 1 clock.
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II. Dequeue the request (REQ) from the wait list. If REQ is a request for a writable 

line, then goto step III of ACK_RJNV(LINE).

III. (REQ is for a read-only copy of LINE). Update the state of LINE to PRESENT1. 

Issue a GRANT_R_LINE(XCPU, LINE), where XCPU is the cpu that issued REQ 

(Len clocks). Exactly encode XCPU into the location bits of LINE.

IV. Traverse the wait list (1 clock per element) in search of any other REQ_R_LINE 

request for LINE. If none are found, goto VII.

V. (Another read request, OTHERREQ, has been found in the wait list). Issue a 

GRANTJl_LINE(XCPU, LINE), where XCPU is the cpu that issued OTHERREQ 

(Len clocks). Update the state of LINE to PRESENT*. Convert the locations bits of 

LINE to partial encoding if necessary. Partially encode XCPU into the location bits 

of LINE.

VI. Goto IV.

VII. Traverse the wait list (1 clock per element) in search of any REQ_W_LINE request 

for LINE. If none found, goto X.

VIII. (A write request for LINE, WREQ, has been found in the wait list). If LINE 

is in state PRESENT1, then issue an INV_R_LINE(XCPU, LINE) to the cpu hold­

ing line in read-only mode (1 clock). If LINE is in state PRESENT*, multicast an 

INV_R_LINE(GROUP, LINE) to every cache group holding LINE (1 clock per multi­

cast).

IX. Update the state of LINE to LIMBO.

X. Done.

• REPORT _R_SPILL(LINE):

la. If LINE is in state PRESENT1, then update its state to ABSENT.

lb. If LINE is in state PRESENT* or LIMBO, ignore this.

lc. If LINE is in any other state, give an error message.

• REPORT _W.SPILL(LINE):

la. If LINE is in state PRESENTM. then copy LINE back to main memory and 

update its state to ABSENT.
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lb. If LINE is in state LIMBO, then treat this as an ACK.WJNV.

lc. If LINE is in any other state, give an error message.



4 Simulation Results

In this section, we give the results obtained from detailed simulations of the cache grouping 

scheme using the Cerberus multiprocessor simulator. A short description of Cerberus is 

presented, followed by an explanation of the application codes used to test the scheme.

Several issues are addressed in this section. First, we wanted to test the performance 

of cache grouping relative to a full-directory scheme. We also wanted to test a system with 

cache grouping relative to one with no cache at all, to ascertain the advantages (if any) 

of cache coherence in general. In addition, we wanted to test the effects of cache group 

size. Finally, we did some less detailed tests showing the shortcomings of two alternative 

schemes, the one-read scheme and the broadcast scheme.

4.1 The Cerberus Multiprocessor Simulator

Cerberus was originally developed by Brooks, Darmohray and Axelrod [5]. It is a scal­

able, general-purpose shared memory multiprocessor simulator on which to develop and 

benchmark parallel algorithms. The Cerberus machine is composed of autonomous RISC 

processors connected to a shared memory through a packet-switched interconnection net­

work. The functional units of each CPU are fully pipelined, including accesses to shared 

memory.

The Cerberus package contains complete compiler, assembler, loader and library support 

for the virtual computer called the Cerberus machine. The resulting software package and 

utilities model the UNIX programmer interface as faithfully as possible.

The processor instruction set for each Cerberus CPU was derived from that of the Ridge 

32, a RISC architecture computer manufactured by the now defunct Ridge Computers Inc. 

of Santa Clara. California. A number of important constraints had to be satisfied by the 

instruction set, including but not limited to:

• Suitability of the instruction set for a fully pipelined processor timing model.

• Load/store operations that were cleanly separated from the computation operations, 

required to give an optimizing compiler the ability to schedule memory and compu­

tation operations to mask memory latency.

4 SIMULATION RESULTS

• A minimum of unused processor state that must be updated as each instruction is



324 SIMULATION RESULTSIIu
executed. By unused state, we refer to the condition codes of a processor that are 

typically updated by each instruction but only used for conditional branches.

• Fixed instruction formats. This reduced the instruction decode in the simulator to a 

single C switch statement.

• An absolute minimum number of instructions. The more ways there are to do a 

particular operation with the instruction set, the greater the support that needs to 

be built into the compiler.

Cerberus is very valuable in that detailed execution statistics can be obtained without 

artificially perturbing execution. For example, timing statistics can be obtained without 

taking any simulated time. Also, Cerberus enables us to explore a pipelined architecture 

with numbers of processors not otherwise available.

A number of modifications were made to original Cerberus in order to implement our 

cache coherence scheme: •

• Simulation codes were written for the cache and memory controller. The protocols 

described in the last section were faithfully modeled in these codes.

• All memory requests were directed to the cache, instead of the processor-memory 

interconnect. Likewise, the memory controller was made to serve as a buffer between 

the interconnect and the memory.

• The interconnection network was modified to handle multicasting. Routing tags were 

altered to support this feature.

• Wormhole cut-through routing was introduced to the interconnection network. Pre­

viously, each packet could be moved in one clock. Now, with large cache line sizes, a 

packet could take several clocks to transfer from one switchnode to another.

• System calls were now handled through a block of private memory in each processing 

node. The instructions LOADBUF, LOADBUFB, STOREBUF, and STOREBUFB 

were added to manipulate this block of private memory.

• The bstats() and estats() system calls were added to control the gathering of cache 

and memory statistics.
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In order to run large simulations, we needed to be able to run the simulator in parallel 

on the BBN TC2000 multiprocessor. Since the TC2000 has no coherent shared memory 

cache support in hardware, caching of shared memory had to be done explicitly in software. 

This necessitated significant restructuring of the simulator code so as to be able to decouple 

the simulator to run efficiently in parallel on the TC2000. However, the functionality of the 

simulator remained constant throughout the structure modifications.

The following are some of the parameters associated with the Cerberus machine equipped 

with a coherent cache model:

• N is the total number of processing elements in the system.

• n is the order of the system, or the number of levels in the interconnect. Since 2x2 

switchnodes were used exclusively in the simulations presented herein. N = 2n and 

n = log2(N).

• W stands for the “width” of a cache line, defined as the number of data bytes per 

cache line. W Can be any power of 2, with a minimum of 8.

• A is the associativity level of the cache. A can be 1. 2 or 4; an associativity level of 1 

implies a direct-mapped cache.

• L is the “length” of the cache, measured in cache lines. The total number of lines in 

any cache is A* L. L can be any power of 2.

• G is the size of each cache group5. G must be a power of 2, since 2x2 switchnodes are 

being used. Also, G must be less than or equal to N.

4.2 The simulated codes: gauss, psim, relax and flag.

Gauss is a linear system solver that uses Gaussian elimination to solve a linear system of 

equations, a 3x3 example of which is given below:

5Setting G to 1 is virtually the same as using a full-directory scheme. The only difference is that in 

the cache group scheme the memory controller will not reset the location bit for a cache upon receiving a 

line-spill notification from that cache. This makes very little difference in terms of performance.
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aJjXi + a\2X2 + cti3^3 — b\ 

a21xl + a22x2 + a^3X3 = b\ 

ahxi + a32x2 + 033X3 = 63

The reduction phase of the code reduces the matrix to upper triangular form:

O-ljXi 4“ U^2x2 -p 0^3X3 —1 b-^ 

a22x2 + a23x3 — ^2 

a33x3 ~ ^3

The back substitution phase of the code then obtains a solution, element by element. In 

the first step of the back substitution, the last element of x is solved using the last equation 

and the equations above it are simplified by substitution. This exposes another element of x 
to direct solution, followed by another substitution of its value into the equations above it. 

This process continues until all x elements have been solved. For a more detailed description 

of the algorithm, see [12],

Psim is the network simulator upon which the Cerberus multiprocessor simulator is 

based. It is capable of modeling a vast variety of network sizes and topologies. Psim will 

have each of its processors fetch a number of memory words from consecutive memory 

locations, starting with some random location. The parameters of a psim run are: •

• The base and order of a system, symbolized by k and n, respectively. The base of 

a system is the fan-out of its switchnodes. The order is the number of stages in the 

interconnect. There are kn processors in a system.

• The vector length (v) is the number of words fetched from memory by each processor.

• The stride (s) is the stride of the memory accesses.

• The buffer length (b) is the number of slots in each of k2 buffers in a switchnode.
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Relax is an iterative relaxation code. The problem space is represented as a set of 

discrete elements, and at each iteration each element is recalculated as a function of itself 

and its nearest neighbors. For our particular code, we averaged each element with its eight 

nearest neighbors, as illustrated in Figure 23. This is called a nine-point stencil. Iterative 

relaxation is used for many algorithms, among them the calculation of capacitance[13] and 

ocean circulation modeling.

Figure 23: Nine point stencil used for iterative relaxation.

Relax requires N, the number of processors, to be a perfect square; we used 4 and 16 

when we tested. The processors are tiled over the domain in such a way that each gets to 

compute an equal number of elements. We also took the cache group scheme into account 

when we decomposed the domain space as shown in Figure 24; we tried to get members 

of a cache group to share data with each other to enhance invalidation efficiency6. Ten 

iterations are performed by each run of relax.

We used another test code called flag to test the effectiveness of our scheme when many 

one-to-many or one-to-all invalidates are issued. In flag, an array of shared integers is 

accessed by all processors; processor 0 will set the 0th element of the array while the other 

processors spin on it, then processor 1 will set the 1st element of the array while the rest

6In fact, the method of tiling proved to make very little difference in the timing or traffic of relax. An 

arbitrary tiling gave very similar results.



4 SIMULATION RESULTS 36

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

Figure 24: “Smart” domain decomposition used for 16-cpu relax runs.

of the processors spin on it, and so on. This results in a relatively high rate (40% - 50%) 

of one-to-many invalidates being issued. The flag code is actually the gauss code with the 

calculation portions stripped from it; it is pure synchronization code.

Gauss is a good example of a code in which there is a lot of locality, and which naturally 

decouples for nice parallelization. Psim also decouples to a certain extent, but there is 

enough data sharing occurring to prevent the high cache hit rates achieved by gauss. Relax 

is a code that exhibits a certain pattern of memory accesses, and is representative of many 

applications. The one-to-one invalidation rate of flag is much lower than that of the other 

codes. This makes flag useful for testing the effect of changing cache group size, and for 

ascertaining the effectiveness of multicasting and return reply combination.

4.3 Results of Cache Grouping vs. Full-directory scheme

One of the first things that we wanted to test was the efficiency of the cache grouping scheme 

versus that of a full-directory scheme. Certainly cache grouping uses less memory to track 

cache line location: we wanted to ascertain whether the inability of the cache group scheme 

to explicitly track every outstanding copy of a cache line would hurt the performance of 

the system (relative to a full-directory scheme). Also, we wanted to test the individual 

effectiveness of both multicasting and return reply combination.

In the psim and gauss tests run for this section, a group size of 8 (with a 32-CPU system)
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was used to represent the cache group scheme. Eight was chosen since it would divide the 

32 caches into 4 groups, which would mean that 4 bits would be used to partially encode 

each cache line while in PRESENT* state. Since 5 bits are necessary to exactly encode a 

cache while in PRESENT 1 or PRESENTM states, these 4 bits used for partial encoding are 

“free.” The memory needed to track cache line location is therefore bounded by log2{N). 

A group size of 1 was used to represent the full-directory scheme. Neither multicasting nor 

return reply combination were used with the full-directory scheme.

Invalidation traffic7 is measured by the number of invalidation messages that actually 

reach the CPUs; the way in which they are routed there (i.e. multicasting or some other 

method) is not taken into consideration.

The first test was on a gauss run solving a 128x128 matrix. Each Cerberus CPU was 

given a 256-Kbyte cache (W=16, L=8192, A=2). In Table 3, we show the results of the 

gauss code simulated on a Cerberus machine with 32 processors.

System configuration

normalized

time

normalized

inv traffic

group size = 1 1.000 1.000

group size = 8 1.001 1.001

group size = 8, multicasting 1.000 1.019

group size = 8, return reply comb 1.000 1.000

group size = 8, multicasting, return reply comb 0.996 1.018

Table 3: Effects of innovations on gauss-\2& over 32 PEs, 256K cache

For this particular example, run-time and invalidation traffic are not significantly af­

fected by switching from the full-directory scheme to the cache group scheme. The cache 

hit rate was about 94% in each run. We also tried the same suite of tests over Cerberus 

with a 64K cache (W=16, L=2048, A=2). The results of these simulations are shown in 

Table 4.

The decreased cache hit rate for the 64K cache (about 69%) had a relatively large effect 

on the amount of invalidation traffic, but the run-time of the cache group scheme still

'This traffic measure monitors messages from the memory controller to the cache. Return reply combi­

nation cuts down on the return traffic from the cache to the memory controller. Hence, invalidation traffic 

as we’ve defined it here will not be directly affected by the use of return reply combination.
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System configuration

normalized

time

normalized

inv traffic

group size = 1 1.000 1.000

group size = 8 1.005 1.038

group size = 8. multicasting 0.999 1.049

group size = 8, return reply comb 1.000 1.041

group size = 8, multicasting, return reply comb 0.994 1.045

Table 4: Effects of innovations on gauss-128 over 32 PEs, 64K cache

did not suffer as compared to the full-directory scheme. This is due to the fact that the 

Cerberus interconnection network, with its k2 buffers per switchnode, is able to provide 

a high amount of bandwidth and can easily handle the added traffic without adversely 

affecting the performance of the CPUs.

We ran the same sorts of simulations using psim. We simulated psim -nkv 6 2 64 (a 64 

processor network, fetching a vector of length 64) on a 32-processor Cerberus machine with 

a 256K cache (W=16, L=8192. A=2). In Table 5, we show the results of these simulations.

System configuration

normalized

time

normalized

inv traffic

group size = 1 1.000 1.000

group size = 8 1.024 1.686

group size = 8, multicasting 1.016 1.686

group size = 8, return reply comb 1.021 1.687

group size = 8, multicasting, return reply comb 1.005 1.684

Table 5: Effects of innovations on psim -nkv 6 2 64 over 32 PEs, 256K cache

The advantages of multicasting and return reply combination became more apparent 

with the psim data. The low cache hit rate of the simulated psim run (34%) reflected an 

increase in coherence traffic generated relative to the gauss runs. Raising the group size 

from 1 to 8 caused some spurious read invalidations, and further increased the amount of 

invalidation traffic.

Once again, the network was able to absorb the extra traffic and still maintain efficiency.
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When multicasting and return reply combination were turned on, the run time was only 

one half of one percent slower than that observed with a full-directory scheme.

The same battery of tests was run for relax, using 16 PEs to iterate over a 256x256 

matrix of elements. The results are shown in Table 6. A cache group size of 4 was used 

to represent our scheme, for the same reason that a cache group size of 8 was chosen for 

the above 2 tests. Once again, there is virtually no difference in performance between the 

full-directory scheme and our scheme.

System configuration

normalized

time

normalized

inv traffic

group size = 1 1.000 1.000

group size = 4 1.000 1.549

group size = 4, multicasting 1.000 1.549

group size = 4, return reply comb 1.000 1.548

group size = 4, multicasting, return reply comb 1.000 1.548

Table 6: Effects of innovations on relax 256x256 over 16 PEs, 256K cache

We show in tables 7 and 8 that multicasting and return reply combination can be highly 

effective for codes that exhibit a high rate of one-to-many invalidates, such as flag. For 

this particular example, the performance of the cache grouping scheme not only equals 

but betters that of a full-directory scheme. The reason for this is that the one-to-many 

invalidates so typical of the flag code are handled much more efficiently by multicasting 

than by point-to-point invalidation; there are very few ‘‘useless” invalidates. Note that the 

effects are more pronounced in the larger (128-PE) system.

In order to measure the effectiveness of return reply combination, we use the two metrics 

reply hits and reply misses. Any time two return replies combine in the network, it is 

counted as one reply hit. Reply hits are a good measure of the effectiveness of return 

reply combination. Any time that two return replies are in the same switchnode, but fail 

to combine because they do not reach their respective buffer heads at the same time, it is 

counted as one reply miss. Reply misses give us a good idea of the performance improvement 

that would result from the implementation of multi-level combination in the switchnode. 

In the simulator we have developed, return reply combination is implemented with only 

top-level combination.
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Note from the flag results that multicasting and return reply combination work best 

when they are used together. Multicasting causes invalidate requests to arrive at their 

respective caches at roughly the same time, which means that the resulting return replies 

are much more likely to combine on the way back to the memory controllers. In the 128-PE 

run, return reply combination by itself resulted in 37587 reply hits and 9485 reply misses. 

When return reply combination was aided by multicasting, it resulted in 85175 reply hits 

and 686 reply misses. When multicasting is employed, one-deep reply combination appears 

to be quite sufficient.

System configuration

normalized

time

normalized

inv traffic

group size = 1 1.000 1.000

group size = 4 1.012 1.022

group size = 4, multicasting 0.942 1.026

group size = 4, return reply comb 0.976 1.017

group size = 4, multicasting, return reply comb 0.904 1.034

Table 7: Effects of innovations on flag over 16 PEs.

System configuration

normalized

time

normalized

inv traffic

group size = 1 1.000 1.000

group size = 32 1.010 1.102

group size = 32, multicasting 0.989 1.142

group size = 32, return reply comb 0.940 1.106

group size = 32, multicasting, return reply comb 0.874 1.130

Table 8: Effects of innovations on flag over 128 PEs.

The results of the tests shown in this section indicate that, within the bounds of our 

simulations, the cache group scheme can equal or better the performance of a full-directory 

scheme without incurring its undesirable memory expenses. When a high degree of one- 

to-many data sharing is exhibited, as was the case in the flag code, then return reply 

combination and multicasting are very effective in boosting the performance of the system.
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One expects the positive impact of return reply combination and multicasting to improve 

as the size of the system grows.

4.4 Results of Cache Grouping vs. No Cache

The implementation of hardware support for cache coherence requires a certain amount of 

expense. This section addresses the question of whether the added performance warrants the 

expense of such support. Does a coherent cache greatly improve performance, or does the 

coherence traffic bring a machine to a standstill? Also, we are interested in checking whether 

our coherence scheme continues to enhance performance as the number of processors grows 

(i.e. whether it is scalable).

We first ran some simulations of the gauss code performing a 128x128 linear system 

solution. The simulations were run on original Cerberus (hereafter referred to as uncached 

Cerberus) and on Cerberus equipped with a coherent shared memory cache (or cached 

Cerberus). The cache configuration for these runs is W=16, A=2. L=8192. Group size was 

selected as the smallest group size such that the number of groups was less than or equal 

to log2(N).

Scalability of gauss (128x128): cache vs. no cache
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Figure 25: Gauss timings for uncached Cerberus vs. cached Cerberus.
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In Figure 25. we show the simulated run-time of 128x128 gauss, comparing cached Cer­

berus to uncached Cerberus. The FLOP rates for the two machines are shown in Figure 26. 

As the number of processors increases, so does the advantage of a coherent shared memory 

cache. The primary reason for this is that as the system gets larger, the processor-memory 

interconnect gets deeper. Uncached Cerberus begins to take a long time to ship data back 

and forth across the interconnect. The relatively high cache hit rate (93% - 98%) of this 

code allows the cache in the cached version to save much of the expense of shared memory 

accesses. As the interconnect gets deeper, this savings increases.
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Figure 26: Gauss FLOP rate for uncached Cerberus vs. cached Cerberus.

Psim also scaled favorably. A psim -nkv 7 2 64 run was simulated over 2, 4, 8, 16, and 

32 processors. In Figure 27, we show the simulated run-times that resulted, and the time 

improvement of these runs ( 1 — uncachedtime ) *s shown in Table 9. Once again, our cache 

group scheme scales nicely. Time improvement relative to the uncached machine tapers off 

only as the asymptotic concurrency limit of the benchmark is reached.

The improvements shown by cached Cerberus over uncached Cerberus for the psim runs 

occur for the same reasons as for the gauss runs. As the network gets deeper, the cache 

saves more and more memory latency time.
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Scalability of psim -nkv 7 2 64
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Figure 27: Psim timings for uncached Cerberus vs. cached Cerberus.

Simulated

Processors (N)

uncached

clocks

cached

clocks improvement

2 84080451 74020496 12%

4 48695298 38611226 21%

8 28148302 20589724 27%

16 16188350 11277313 30%

32 9384505 6597257 30%

Table 9: Effects of scaling on psim -nkv 7 2 64, 256K cache
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The iterative relaxation code (relax) was tested in the same manner. The results are 

shown in Table 10. Once again, the code adapts better to scaling on the cached machine 

than on the uncached machine.

The test results in this section have shown that a machine equipped with a coherent 

cache will indeed outperform a machine that is not so equipped. More importantly, the 

performance gap widens as the number of processors grows. This leads us to believe that a 

coherent shared memory cache would be very beneficial on any “massively” parallel machine. 

In this case, large coherent caches are effectively used as automatic local memories.

uncached cached

N clocks clocks improvement

4 25970530 24607972 5%

16 7042661 6234715 11%

Table 10: Effects of scaling on 256x256 relaxation.

4.5 Effects of Changing Cache Group Size

One of the advantages of the cache group scheme is that the memory required to track cache 

line location can grow as log2(N), where N is the number of processors, if the cache group 

size is sufficiently large. However, increasing the cache group size also increases the number 

of caches that will be hit by “useless” invalidates during multicasts. Does increasing the 

cache group size have a significant effect on the performance of a program?

One important aspect of the cache grouping scheme is that one-to-one cache line sharing 

is supported in an efficient manner. That is to say, when a cache line is granted in a 

PRESENTM or PRESENTl state, the memory controller has the ability to exactly track 

which cache holds the line. No multicasts are needed to invalidate a line in either of the 

above states, and invalidation traffic is kept to a minimum. If a significant portion of 

the cache lines are granted on a one-to-one basis, then the multicasts necessitated by lines 

granted in PRESENT* mode will have a relatively small impact on performance and traffic.

Gauss and psim were both tested as to how they were affected by increasing cache 

group size. As usual, each of 32 simulated processors was equipped with a 256-Kbyte cache 

(W=16, L=8192, A=2). Multicasting and return reply combination were enabled. Cache 

group size was varied from the minimum 1 to the maximum 32.
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In Table 11. we show the results from the gauss runs. Run-time was not significantly 

affected by increasing cache group size; invalidation traffic gets worse as some "useless" 

invalidates are issued as group size increases.

group

size

normalized

time

normalized

inv traffic

1 1.000 1.000

2 0.997 1.049

4 0.997 1.107

8 0.997 1.206

16 0.997 1.347

32 0.997 1.691

Table 11; Effects of changing cache group size on 128x128 gauss over 32 PEs. 256K cache.

The cache hit rate for gauss was about 94%. In all cases, over 96% of the invalida­

tions were performed on a one-to-one basis. This extremely high amount of one-to-one 

invalidations minimizes the impact of multicasts generated by one-to-many invalidations.

The results for similar runs of psim8 are shown in Table 12. Around 91.7% of the 

invalidates were one-to-one in all runs. The cache hit rate was around 33.8% in all runs. 

The invalidate traffic went fairly high as group size went up, but the simulated time only 

went up 2%. The traffic did not come close to flooding the network, so performance was 

not severely impeded.

Neither psim nor gauss were significantly affected by changing the cache group size. Both 

had one-to-one invalidate rates somewhere above 90%. Relax, on the other hand, exhibited 

a one-to-one invalidate rate of about 80%. It had a much better chance of showing some 

timing fluctuations due to changing cache group size.

We tested relax of a 256x256 element matrix over 16 simulated processors, trying cache 

group sizes of 1, 2, 4, 8 and 16. Eight-byte cache lines were used, in order to cut down 

on false sharing; false sharing involves two caches accessing different bytes within the same

8It should be noted that cache group sizes of 16 and 32, for a 32-cpu system, would not be used in 

practice. A group size of 8 results in 4 groups, which can be partially encoded into 4 bits. These 4 bits are 

“free” in a 32-bit system, since 5 bits are necessary for exact encoding. Any larger granularity may adversely 

affect performance but will not lower cost.
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group

size

normalized

time

normalized

inv traffic

1 1.000 1.000

2 1.001 1.138

4 1.002 1.341

8 1.005 1.684

16 1.010 2.270

32 1.021 3.128

Table 12: Effects of changing cache group size on psim -nkv 6 2 64 over 32 PEs, 256K cache

cache line. We wanted the one-to-one invalidate rate to be as low as possible, and false 

sharing raises that rate. The number of lines in each cache, L, was raised to 16384. in order 

to maintain the standard total cache size of 256 Kbytes.

The results of the iterative relaxation cache group size tests are shown in Table 13. Even 

at the relatively low 80% one-to-one invalidation rate, varying the cache group size made 

very little difference to the overall performance of the program.

group

size

normalized

time

normalized

inv traffic

1 1.000 1.000

2 1.000 1.192

4 1.000 1.549

8 1.000 2.139

16 1.002 3.287

Table 13: Effects of changing cache group size on 256x256 relaxation over 16 PEs, 8-byte 

cache line.

We show in Table 14 that increasing the cache group size does not adversely affect the 

performance of the flag code. In fact, a beneficial effect is observed. When the lion’s share of 

the invalidates are either one-to-one or one-to-all, then very little is lost in the way of system 

performance when larger cache groups are employed. In fact, large cache groups allow the 

one-to-all invalidates to be performed in a much more efficient manner. We included reply
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group

size

normalized

time

normalized

inv traffic

reply

hits

reply

misses

1 1.000 1.000 30788 8073

2 0.948 1.019 43826 1778

4 0.922 1.056 53003 230

8 0.942 1.066 57745 456

16 0.937 1.081 67103 295

32 0.936 1.129 85175 686

64 0.941 1.216 116765 1352

Table 14: Effects of changing cache group size on flag over 128 PEs. 

hit and reply miss measures in Table 14 to make the following points:

• There is a good amount of combination occurring in the reply network; top-level 

return reply combination is effective.

• ft appears that there is little to be gained through the implementation of multi-level 

return reply combination.

The results from this section lead us to believe that for most real codes, cache group 

size could be set to whatever is convenient to the hardware of the system. In codes where 

the one-to-one invalidation rate is high, only a small amount of multicasts occur, and so 

system performance is not damaged. In codes such as flag where there is a high rate of 

one-to-many sharing, multicasts to large groups tend to enhance the overall performance of 

the system.

4.6 Notes on other cache coherence schemes 

4.6.1 The one-read scheme

Given the results above, one may question the necessity of ever having multiple readable 

copies outstanding. With the 80-95% one-to-one invalidation rate that seems to be prevalent 

in most codes, could we not greatly simplify the system by allowing only one readable copy 

to be out at a time? For lack of a better name, we call this the “one-read” scheme. It would 

assuredly cut down on the intelligence needed for both the memory controllers and the
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switchnodes. The memory controllers would not have to handle cache groups or multicasts: 

the switchnodes would not have to handle multicasting or return reply combination. Could 

such a system be implemented without significant loss of performance?

In Figure 28. we graphically show that the answer is no: the one-read scheme severely 

impedes performance. The one-read scheme is not only significantly worse than the cache 

group scheme, it does much worse than no cache at all. In Table 15, we show some particular 

performance measurements that illustrate the undesirability of the one-read scheme. Note 

that traffic is measured in millions for the one-read scheme, and thousands for the cache 

group scheme. The effective critical region produced by the one-read scheme kills the 

performance of the system.

Scalability of gauss (128x128): cache groups vs. one-read

Figure 28: Cache groups vs. one-read for 128x128 gauss.

What would cause such an increase in network traffic? There are three categories of data 

use that cause the one-read scheme to fail, examples of which can be found in Figure 29 [12], 

in which we show a code fragment from the gauss benchmark:

• Write-once read-many data: The shared variable dims (lines 1, 6 and 11) is written 

once at the beginning of the program, and read many times thereafter, by every 

processor. After each processor does an iteration of the k, i or j loop, the loop
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cache group scheme one-read scheme

cache total cache total

N clocks hit rate invalidation traffic clocks hit rate invalidation traffic

2 13.2M 0.98 42K 19.5M 0.45 12.3M

4 6.7M 0.98 48K 12.6M 0.36 15.1M

8 3.4M 0.97 53K 12.1M 0.33 16.1M

16 1.9M 0.96 59K 14.2M 0.29 17.7M

32 1.1M 0.93 70K 16.4M 0.30 18.8M

Table 15: Performance of 128x128 gauss code : cache group scheme vs. one-read scheme.

variable must be compared to dims. This causes an enormous amount of invalidate 

traffic to be generated, since each processor must wait to get its own copy of dims. 

If multiple readable copies of such variables are allowed, they can reside permanently 

in the cache.

• Synchronization data: Line 2 causes a processor to wait until the next pivot row 

has been stabilized. Once again, this will generate a large amount of traffic; while the 

pivot row completes its operations the network will be flooded by read requests for 

flagfk]. The cache group scheme allows a processor to loop on such a variable in cache 

memory; when it is finally modified the caches will be updated. The one-read scheme 

forces all such spin waiting to be done over the interconnect.

• Other widely shared data: The j-loop (line 11) has all processors referencing the 

pivot row for their calculations. With only one copy of any of the elements out at 

a time, performance is once again severely wounded. The situation is even worse 

than no cache at all, since multiple readable copies of a piece of data can exist in the 

cacheless system.

In order to get reasonable performance out of the one-read scheme, a significant amount 

of software modification would have to be performed on any code. This defeats the whole 

purpose of a hardware coherent cache mechanism, which is to reduce software cost by 

supporting implicit use of data locality. We are convinced that the one-read scheme is not 

a viable hardware option. The capability to grant multiple read-only copies of a cache line 

is absolutely essential in any parallel machine with a coherent shared memory cache.
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[1] for(k=0; k<dims; k++) {
[2] while(flags[k]==0); /* wait for the pivot row to be stable. */
[3] /* Custom forall loop which makes sure that the same processor
[4] handles the SAXPY on a given row. */
[5] for(i = k + 1 + (_TINDEX + _TSIZE - (k */. _TSIZE)) '/. _TSIZE;
[6] i < dims; i += _TSIZE) {
[7] double temp = A[i][k];
[8] if(temp == 0.0) continue;
[9] A[i] [k] = 0.0;
[10] temp /= A[k][k];
[11] for(j=k+l; j<dims; j++) A[i][j] -= A[k] [j] * temp;
[12] B[i] -= B[k] * temp;
[13] if(i == k+1) flags[i] = 1;
[14] >
[15] }

Figure 29: Reduction loop of gauss code
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4.6.2 The minimal state scheme.

The two-bit protocol, or minimal state scheme, of Archibald and Baer [4] requires no mem­

ory to track cache line location. Instead, it does full broadcasts every time a coherence 

action needs to be performed. In terms of memory expense, the minimal state scheme is 

indeed very scalable. Would the frequent broadcasts hurt the performance of a large scale 

multiprocessor?

We did no direct testing of the minimal state scheme. However, the group size variation 

tests that we ran might provide some insight into the viability of frequent broadcasts. 

Recall Table 16 from the psim group size variation test. A group size of 32 implies a 

full broadcast whenever any type of one-to-many sharing is encountered. Approximately 

92% of all invalidations were one-to-one; this means that 8% of the invalidations were 

handled by full broadcasts. If the minimal state scheme were implemented, then 100% 

of the invalidations would be handled by full broadcasts. One would therefore intuitively 

expect the performance hit relative to the full-directory scheme to be about 12 times worse 

than it was with the cache-group scheme. This would mean a 25% performance lag from 

the full-directory scheme, which is significant.

group

size

normalized

time

normalized

inv traffic

1 1.000 1.000

2 1.001 1.138

4 1.002 1.341

8 1.005 1.684

16 1.010 2.270

32 1.021 3.128

Table 16: Effects of changing cache group size on psim -nkv 6 2 64 over 32 PEs.

There may be other ill effects from the minimal state scheme, and they would only get 

worse as one grew the number of PEs in the system. Surely a ‘‘massively” parallel machine 

would suffer from frequent full broadcasts. It is essential for any coherent shared memory 

system to be able to explicitly track cache lines in the case of one-to-one data sharing.
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4.7 Summary of Simulation Results

The cache grouping scheme, while much less expensive than a full-directory scheme, can 

equal or better a full-directory scheme in terms of system performance. The ability to 

explicitly record the location of a single cache line in the case of one-to-one sharing is 

necessary, as is the ability to grant multiple readable copies of a cache line.

A system that employs cache grouping outperforms a similar system with no cache; the 

invalidation traffic is not so great that it bogs down the interconnect. The system seems to 

be insensitive to the size of cache groups. For codes that exhibit a high rate of one-to-many 

data invalidates, system performance is aided significantly through the use of multicast and 

combining features in the interconnect. Multicasting and return reply combination are most 

effective when used together. Top-level return reply combination works very effectively for 

such codes; there appears to be little to gain through the implementation of multi-level 

return reply combination.
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5 Software Costs of Coherence Enforcement

A large percentage of funds spent on computing go towards software development and 

maintenance. At Lawrence Livermore National Laboratory, hundreds of millions of dollars 

are spent on computing each year, and it is estimated that 80% of that figure goes toward 

software. In this section, we focus on the amount of time, effort and coding required to 

attain high performance for codes that are run on a large-scale parallel machine without a 

hardware-enforced cache coherence mechanism. Many of these expenses could be avoided, 

for all codes, if a coherent shared memory cache were present.

Recently, there have been efforts to run psim and gauss on a 63-cpu BBN TC2000, which 

is not equipped with a coherent shared memory cache. Rather, the user must explicitly 

manage the caches and insure data coherence. This section deals with the effort it took to 

get these codes to run efficiently, in parallel, on the TC2000.

In order to make valid observations about speedup and efficiency, two symbols here need 

to be defined:

• Ts - “Serial Time” - The time it takes to run a code on one processor, using only pri­

vate, copy-back cached memory. This is a good indicator of what the single-processor 

performance is for the machine.

• Tn - “n-way parallel time” - The time to run in parallel over n processors, all memory 

references going to shared memory unless explicitly routed otherwise by the program­

mer. Ideally, Tn = and Ti = Ts-

5.1 The psim network simulator on the TC2000

Picano. Brooks and Hoag [14] did an in-depth study describing their efforts to run psim 

efficiently on the TC2000. A number of modifications were made to the code to place data 

in local memory. These modifications were done in phases, and performance results were 

gathered after each phase.

The Phase 0 parallel code was written for a shared memory multiprocessor with a 

coherent shared data cache; all simulation work was done in shared interleaved memory. 50 

lines were added to or modified from the serial code to produce the Phase 0 parallel code. 

This version of the code had been run with very good results on the Sequent and Alliant 

multiprocessors; T\ was very close to Ts on these machines for the Phase 0 code. The Phase
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0 code performed very badly on the TC2000. however; T\ was about 8 * Ts- The Phase 0 

version of the code was 1501 lines long. The reason for this poor performance was the lack 

of cache support for shared memory.

In the Phase 1 parallel code, we streamlined the structures that held the simulated 

switchnodes, cpu ports and memory ports, so that these structures could be safely cached 

by a single PE for the duration of a run. All portions of the switchnode structure, for 

instance, that had to be accessed by other switchnodes (for communications purposes) were 

put into separate shared data arrays. For example, see Figure 30 for the structure of a buffer; 

buffers are used in switchnodes, cpu ports and memory ports to handle packet collisions. 

The flag field was stripped out in Phase 1 and put into a separate array, since it might need 

to be accessed by more than one physical cpu.

struct BUFFER {
PACKET *head; /* Pointer to the head packet in the buffer. */
PACKET *tail; /* Pointer to the tail packet in the buffer. */
int count; /* The number of packets in the buffer. */

BOOLEAN flag; /* We move a packet if flag is TRUE. */
lock_t access; /* Lock for buffer access. */

>;

Figure 30: BUFFER Data structure.

This enabled us to cache entire switchnode, cpu port, and memory port data structures 

for the duration of a run. We did not have to worry about flushing these structures out of 

the cache, since only the cache in which a structure resided would ever need to access that 

structure.

Since most of the work of the network simulator is done in the interconnection network 

(the switchnodes), this modification resulted in significant improvement in execution time. 

The Phase 1 code was 1814 lines long, and Ti was reduced to about 2*T$ for this version 

of the code on the TC2000.

In the Phase 2 code, we removed extraneous sharing wherever possible. Necessary shar­

ing represents shared information flow between 2 or more different processing elements 

(PEs). which means that data must reside in shared memory in order to insure coherence.
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Extraneous sharing represents information that is placed in shared memory, but accessed by 

only one PE. For an example network shown in Figure 31. necessary sharing is performed 

between stages 1 and 2. since packets are moved between two different TC2000 processors. 

There is extraneous sharing between stages 0 and 1. since all packet "movements" between 

these stages actually go from one TC2000 processor to itself9. The Phase 2 code was mod­

ified to detect this, and used private cached memory to handle information flow where the 

code would normally suffer from extraneous sharing.

This modification put Ti very close to Ts on the TC2000. The Phase 2 code was 2224 

lines long.

stage 0 stage 1 stage 2

Figure 31: Mapping an 8-cpu psim run onto 2 TC2000 processors. The numbers represent 

the PE onto which each individual structure is mapped. The squares represent switchnode 

structures: the circles represent memory ports on one side and cpu ports on the other side.

9If the number of PEs is changed, such data might actually be shared between PEs. Extraneous sharing 

must be detected "on the fly.”
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In the Phase 3 parallel code, we replaced two shared memory accesses through the 

switch by one shared memory access through the switch and one local memory access when 

possible. For example, packet transfers in the network are simulated by having the simulated 

cpu. memory or switchnode that contains the packet write a pointer to it out to a shared 

memory location. The receiver of the packet then reads the packet pointer out of that 

shared memory location, on the same simulated clock, thus simulating a transfer. Phase 

3 made the shared memory “communication" location local to the reader. Each packet 

movement now required approximately 2439 nsecs[15] (1889 remote write + 550 local read) 

instead of 3802 nsecs (1889 remote write + 1913 remote read).

This modification resulted in only a modest speedup on the TC2000. since Phase 2 

already had Ti very close to Ts. The Phase 3 code was 2327 lines long.

The effort to efficiently run psim on the TC2000 was a summer project for one student, 

with 2 other people closely collaborating and many more offering help. Phase 1, data 

structure streamlining, would be unnecessary with a coherent shared memory cache, since 

the cache-able portion of a structure would automatically be cached in such a system. Phase

2. extraneous sharing detection, would also not be necessary since a coherent shared memory 

cache would do all possible transactions in cache automatically. Therefore. Phase 2 (2224 

lines for our psim example) performance would be attained by Phase 0 code (1501 lines) 

on a machine equipped with a coherent shared memory cache (as had been the experience 

on the Sequent multiprocessors possessing coherent caches). Such a machine would thereby 

place Ts very near T\ for the 1500-line Phase 0 version of the code.

5.2 The Gauss linear system solver on the TC2000

The original serial gauss code was a relatively trivial program. The 22-line baseline parallel 

code (Figure 32), written with the aid of the Parallel C Preprocessor (PCP)[16], involved 

the addition or modification of 7 lines to the serial code. The modifications are shown 

in boldface in Figure 32. All of the gauss codes mentioned in this section are listed in 

Appendix A.

The performance of the serial code on the TC2000 is shown in Table 17. The serial code 

is the proper point of reference for parallel speedup measurement. The performance of the 

baseline parallel code on the TC2000 is also displayed in Table 17. It is evident that this 

version of the parallel code is seriously degraded by the cost of references to shared memory,
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void dgauss(double **a. double *b, int dim) {

for(int k = 0; k < dim: k += 1) { /* reduction outer loop */ 

forall(int i = k+1; i < dim: i+= 1) { 

double temp = a[i][k]; 

if(temp == 0.0) continue; 

a[i][k] = 0.0: 

temp /= a[k][k];

for(int j = k+1; j < dim; j += 1) { 

a[i][j] -= a[k][j] * temp;

}

b[i] -= b[k] * temp;

}

barrier;

}

for(int i = dim - 1; i >= 0; i -= 1) { /* back substitution outer loop */ 

master{

b[i] /= a[i] [i];

}

barrier;

forall(int k = i - 1; k >= 0; k -= 1) { 

b[k] -= a[k][i] * b[i];

}

}
barrier:

}

Figure 32: Baseline parallel gauss code.
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since T\ zz 9 * Ts- An intolerable 11% efficiency is achieved for a 700x700 solution over 10 

processors.

Dimension MFLOPSs MFLOPSi MFL OPS io Effxo

100 1.30 0.16 1.01 0.08

200 1.36 0.16 1.26 0.09

300 1.38 0.16 1.32 0.10

400 1.40 0.16 1.42 0.10

500 1.41 0.16 1.47 0.10

600 1.37 0.16 1.44 0.11

700 1.28 0.16 1.47 0.11

Table 17: Serial and baseline parallel code performance.

The code was further modified to tile the processors properly when running on a machine 

with a coherent shared memory cache. This version of the code insured that given rows 

were accessed by the same processor on every iteration, so that those rows could stay in 

cache. This new code was 44 lines long, and performed very well on the Alliant FX/8 and 

Sequent Symmetry parallel machines. It was written in such a way that it would do very 

well on any multiprocessor equipped with a coherent shared memory cache.

However, the 44-line code performed the same as the 22-line code on the TC2000. Since 

shared data is not automatically cached on the TC2000, the modifications did nothing to 

improve performance.

In order to achieve high performance on the TC2000, the gauss code was completely 

re-written. Shared data caching and explicit localization were explicitly handled in this 

version of the code, which was 106 lines long. Also, the code needed tuning to get rid 

of some memory hotspots that plagued its performance. Finally, the code performed as 

displayed in Table 18. (Recall that the speedup is measured against the serial performance 

shown in Table 17). A 69% efficiency rate is achieved for a 700x700 solution over 48 TC2000 

processors, compared to 11% efficiency for similar runs with the 22-line and 44-line codes. 

An even higher 79% efficiency rate is achieved for the 1000x1000 solution over 48 PEs.

These relatively high efficiencies could be (and have been) attained by the 44-line code on 

machines equipped with a coherent shared memory cache, such as the Sequent Symmetry.



5 SOFTWARE COSTS OF COHERENCE ENFORCEMENT 59

Dimension MFL OPS4$ Speedup4s Eff48

100 3.40 2.6 0.05

200 10.47 7.7 0.16

300 18.85 13.7 0.29

400 27.65 19.8 0.41

500 31.34 22.2 0.46

600 38.32 28.0 0.58

700 42.25 33.0 0.69

800 44.74 35.0 0.73

900 46.96 36.7 0.76

1000 48.39 38.1 0.79

Table 18: Performance of 106-line code over 48 processors.

5.3 Discussion

It is clear from our experience with the psim and gauss codes that one pays a large software 

penalty for the lack of a coherent shared memory cache on a scalable multiprocessor. This 

penalty is paid in terms of the software effort that is necessary to achieve efficient parallel 

performance on such a machine. It is not simply a matter of typing in some extra code. It is 

a matter of gradually tuning a program to use local memory as much as possible, and making 

frequent checks to insure that the program still runs correctly. Efficient parallelization on 

a machine without a coherent shared memory cache is a tedious and onerous task.

Parallel code version Line count Efficiency

Baseline (pure shared memory) 22 11%

Coherent cache 44 11%

Explicit localization 106 69%

Table 19: 700x700 gauss solution performance over 48 TC2000 PEs.

The costs of hand-coded coherence are shown in Tables 19 and 20. The 44-line gauss 

code will run with the efficiency of the 106-line gauss code on any machine with a coherent 

cache. Likewise, the 1501-line Phase 0 psim code would run with the performance of the 

2224-line Phase 2 code on such a machine. That represents a savings of 723 lines and many
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Parallel code version Line count Efficiency

Phase 0 1501 Ti ss 8 * Ts

Phase 1 1814 Ti « 2 * Ts

Phase 2 2224 T^Ts

Phase 3 2327 Ti ~ Ts

Table 20: Psim parallel code performance.

man-months of programmer effort.

A coherent shared memory cache would be a one-time expense for a scalable multipro­

cessor. Running without a coherent cache means that a significant amount of time and 

effort will be expended for every code that is ported to the machine. Given the tremendous 

expense that goes toward software, a coherent shared memory cache would end up saving a 

considerable amount of time and money during the useful lifetime of a given multiprocessor.
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6 Discussion

We have shown through simulation that the cache grouping scheme is comparable in perfor­

mance to the full-directory scheme, though the cache grouping scheme is much less costly. 

The memory required to track cache line location can be bounded by 0(log2(N)) for cache 

grouping, compared to O(N) for a full-directory scheme. Detailed simulation showed that 

system performance was not sensitive to cache group size.

Multicasting and return reply combination were highly effective for codes that exhibited 

a relatively high rate of one-to-many invalidates. Also, they work better when they are used 

in concert. Top-level return reply combination appears to be effective, and it does not look 

as though there would be a lot of profit from the implementation of multi-level return 

reply combination. This is in sharp contrast to the results of NYU-Ultracomputer-style 

combination methods [6]. Our top-level reply combination scheme works well due to the 

simultaneous nature of multicasts; return replies leave their respective caches at about the 

same time, and so are very likely to meet in top-level combination in the network.

The implementation of a coherent cache, using the cache grouping scheme, showed 

a significant improvement over a similar system with no cache. More importantly, the 

improvement increased with the number of processors simulated, leading us to believe that 

the performance of "massively parallel” machines of 1000 or more processors would be 

greatly improved by the addition of a coherent shared memory cache.

We also looked into some alternative coherence schemes, namely the one-read scheme 

and the broadcast scheme. The one-read scheme performed very poorly due to the amount 

of traffic it generated. The broadcast scheme failed for the same reason. We find that two 

capabilities are essential for any scalable coherence scheme: the ability to exactly track 

single cache line location for one-to-one data sharing, and the ability to grant multiple 

readable copies of a cache line.

We have shown moderate increases of performance of up to 30% with the addition of 

a coherent cache. It should be noted that our simulations were limited to what would be 

fairly small runs on a “real” machine; time would not permit larger simulations. We did, 

however, show that the improvement due to cache improved as the number of processors was 

increased. Trends also indicated improved performance with larger problem size. Therefore, 

we could expect a greater improvement from the cache running a relatively large “real”
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problem on a large number of processors.

Increased system performance, however, is not the only advantage offered by a coherent 

shared memory cache. The Lawrence Livermore National Laboratory spends hundreds 

of millions of dollars every year on software development. Our experience with scalable 

shared memory multiprocessors without coherent shared memory caches is that a significant 

amount of software effort is required to shape codes to run efficiently in parallel [14]. A 

significant amount of explicit localization of memory and decoupling of data structures is 

typically required. A coherent shared memory cache, supported in the hardware, would 

greatly cut down on the software costs of efficiently parallelizing existing code. The added 

hardware to support such a cache need not be overly expensive. The added performance 

of a coherent shared memory cache, as well as the decreased software development time on 

such a machine, would be well worth the hardware costs associated with it.
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A Gaussian elimination code listings

This appendix details the various gauss codes that were mentioned in section 5.

A.l Baseline version of gauss code

The following is the baseline parallel code; the lines in bold face were the additions/modifications 

necessary to produce this code from the serial code:

void dgauss(double **a, double *b, int dim)

{

/* reduction outer loop */ 

for(int k = 0; k < dim; k += 1) {

forall (int i = k+1; i < dim; i +=1) { 

double temp = a[i][k]; 

if(temp == 0.0) continue; 

a[i][k] = 0.0; 

temp /= a[k][k];

for(int j = k + 1; j < dim; j +=1) { 

a[i][j] - = a[k][j] * temp;

}
b[i] — = b[k] * temp;

}

barrier;

}
/* backsolve outer loop */ 

for(int i = dim - 1; i >= 0; i — = 1) { 

master {

b[i] /= a[i][i];

}

barrier;

forall (int k = i—1; k >= 0; k — = 1) { 

b[k] - = a[k] [i] * b[i];

}
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}

barrier;

}

A.2 Coherent cache version of gauss code

The following code is the “coherent cache” version that forces a cpu to operate on the 

same row(s) of the matrix for the duration of the operation. It performed very well on 

multiprocessors with coherent shared memory caches, but not very well on the TC2000.

void dgauss(double **a, double *b, int dim)

{

/* Flags are initialized to zero: */ 

static int flags [1024]; 

master {

flags [0] = 1;

}

/* reduction outer loop */ 

for(int k = 0; k < dim; k += 1) {

/* Wait for the pivot row to be stable: */

while (flags[k] == 0);

for (int i = k + 1 + (_tindex + .tsize —

(k%_tsize))%_tsize;

i< dim; i+= _tsize) { 

double temp = a[i][k]; 

if(temp == 0.0) continue; 

a[i][k] = 0.0; 

temp /= a[k][k];

for( int j= k + 1; j< dim; j+= 1) { 

a[i][j] - = a[k][j] * temp;

}

b[i] — -- b[k] * temp;
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if (i == k + 1) flags[i] = 1;

}

}

barrier;

/* Now we perform dim back substitutions. 

Note that the meaning of flag == 0 

now means that the data is ready 

whereas before it meant not ready.

First solve for the last x: */ 

master {

b[dim—1] /= a[dim—l][dim—1];

/* Indicate x[dim—1] is solved. */ 

flags[dim—1] = 0;

}

/* backsolve outer loop * / 

for(int i = dim — 1; i >= 1; i — = 1) { 

if (_tindex == ((i—1) % .tsize)) { 

while (flags[i] == 1]); 

b[i—1] - = a[i-l][i] * b[i]; 

b[i—1] / = a[i—l][i—1];

/* Indicate x[i—1] is solved. */ 

flags[i—1] = 0;

}

else {

/* Wait for x[i] */ 

while (flags[i] == 1);

}

for (int k= _tindex; k< i—1; k+= _tsize) { 

b[k] - = a[k] [i] * b[i];

}

}

barrier;
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}

A.3 TC2000 version of gauss code

The following code is the re-written version that ran efficiently in parallel on the TC2000:

/* This parallel routine solves the linear system A.X = B 
using Gauss elimination and local memory.
The matrix rows are stripped out to the processors and
the pivot row copied into each processor for the SAXPY operations.
The routine mungs a, leaving the results of the reduction in it, and 
puts the solution X in the array B.

*/

#include <stdio.h>
#include <pcp.h>

#define MAXDIM 1024 
static int flags[MAXDIM];

void dgauss(a, b, dimension) 
double **a; 
double *b; 
int dimension;
{

register dim = dimension; 
register int i, j, k; 
register int 1c; 
int nrows;

private static int not_alloc =1; /* local memory allocation flag */ 
private static double **pa; /* local memory a matrix rows */
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private static double *pb; /* local memory b values */
double pivot_b;
double pivot[MAXDIM]; /* local pivot row */

MASTER {
flags[0] = 1;

>

/* first time allocate local memory */ 
if (not_alloc) {

/* calculate no. of rows for each processor */ 
nrows = dim/_TSIZE; 
if (nrows*_TSIZE < dim) nrows++; 
if((pa =

(double **)pratalloc(nrows, dim, sizeof(**pa))) == NULL) { 
fprintf(stderr, "pratalloc for pa failed\n"); 
exit(l);

}
if((pb =
(double *)prmalloc((unsigned)(nrows * sizeof(*pb)))) == NULL){ 

fprintf(stderr, "prmalloc for pb failed\n"); 
exit(1);

}

not_alloc = 0;
>

/* copy a, b rows to local memory, record actual row number: */ 
1c = 0;
for(i = _TINDEX’/0_TSIZE; i < dim; i += _TSIZE) { 

for(j = 0; j < dim; j += 1) { 
pa[lc] [j] = a[i] [j] ;

}
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pb[lc] = b[i] ; 
lc++;

}

/* We first do dim reduction steps.
*/

for(k = 0; k < dim; k += 1) {

register double aSubK; 
register double bSubK;

while(flags[k] == 0) ;
/* copy pivot row to local memory */ 

for (j = k; j < dim; j++) { 
pivot [j] = a[k] [j] ;

>

pivot_b = b[k]; 
aSubK = pivot[k];
bSubK = pivot_b ;

if(aSubK == 0.0) { /* Check for 0 in the diagonal. */

static lock faultLock = UNLOCKED;
L0CK(&faultLock);
fprintf (stderr, "gauss: a['/,d] ['/,d] = 0\n", k, k); 
exit(1);

>

1c = 0;
while(_TINDEX + lc*_TSIZE < k+1) lc++; 
while(_TINDEX + lc*_TSIZE < dim) {

register double xtemp; 
double dv;
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int dd;

}

xtemp = pa[lc] [k]; 
if(xtemp ==0.0) { 

continue;
}
pa[lc][k] = 0.0; 
xtemp /= aSubK; 
dv = -xtemp; 
dd = dim - (k + 1); 
if(dim > 0) {

daxpyl_(&(pa[lc][k+1]),&(pivot[k+1]),
&dv, &dd);

pb[lc] -= bSubK * xtemp;
if LTINDEX + lc*_TSIZE == k+1) { /* if(i == k+1) */

/* copy back out: */
for (j = k+1; j < dim; j++) { 
a [k+1] [j] = pa[lc] [j] ;

>

b[k+l] = pb[lc] ; 
flags[k+1] = 1;

lc++;
> /* while(_TINDEX */

> /* for(k */

BARRIER;

/* Now we perform dim back substitutions. 
*/
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MASTER {
b[dim - 1] /= a[dim - 1][dim -1]; /* Solve the last x */
flags[dim - 1] =0;

>

for(i = dim - 1; i >= 1; i -= 1) {
/* Wait for the b[i] element to be up to date. */ 
while(flags[i] == 1) ; 
pivot_b = b[i];
if (_TINDEX == ((i-l)'/,_TSIZE)) {

1c = (i-1)/ _TSIZE;
pb[lc] -= pa[lc][i] * pivot_b;
pb [1c] /= pa[lc] [i - 1] ;
b [i-1] = pb[lc] ;
flags[i-1] = 0;

}
1c = 0;
for (k = _TINDEX; k < i-1; k += _TSIZE) { 

pb[lc] -= pa[lc][i] * pivot_b; 
lc++;

>

> /* for (i */
BARRIER;
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B Glossary of Terms and Variables

B.l Terms

ABSENT: See State.

Interconnect: See Interconnection Network.

Interconnection Network: The matrix of switchnodes and wires that connects proces­

sors to memories in a multiprocessor system. The terms interconnect and network 

are synonymous with interconnection network.

Invalidate: A message sent to a cache, from a memory controller, instructing the cache 

to flush a certain cache line for the purpose of maintaining coherency.

Invalidate Acknowledgement: See Return Reply.

LIMBO: See State.

Modifiable: See Writable.

Multicast: A restricted broadcast. A multicast involves a memory controller sending 

some message, usually an invalidate, to a subset of all processors.

Network: See Interconnection Network.

Out: See Outstanding.

Outstanding: When a copy of a cache line is granted to a cache, then that copy is 

outstanding. A cache line in state ABSENT has no copies outstanding; a cache line 

in state PRESENT* can have many copies outstanding.

Point-to-Point Invalidation: When a memory controller sends an invalidate to exactly 

one processor, it is a point-to-point invalidation. When a memory controller broad­

casts an invalidate to a group of processors, it is a multicast.

PRESENT*: See State.

PRESENT1: See State.

PRESENTM: See State.
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Read-only mode: If a cache line resides in a cache in read-only mode, then the line 

cannot be modified in cache. The term readable is sometimes used synonymously 

with read-only.

Return reply: A message sent from a cache to a memory controller informing the memory 

controller that an invalidation has been performed. The term invalidate acknowl­

edgement is synonymous with return reply.

State, or cache line state: The way in which a cache line is currently being shared. 

There are 5 possible states:

• ABSENT: The line is not present in any cache.

• PRESENT1: The line is present in exactly one cache, in read-only mode.

• PRESENT*: The line is present in an indeterminate number of caches, in read­

only mode.

• PRESENTM: The line is present in exactly one cache, in writable mode.

• LIMBO: The line is undergoing a state transition and waiting for invalidate 

acknowledgements to come from the caches. A line cannot be granted in any 

form while in this state.

Top-level reply combination: Our scheme causes return replies to be combined in the 

interconnection network; the actual combination takes place at the switchnode level. 

The term “top-level” means that only packets at the heads of buffers are candidates 

for combination.

Writable mode: If a cache line resides in a cache in writable mode, then the line can be 

modified in cache. Of course, it can also be read. The term modifiable is synonymous 

with writable.

B.2 Variables

n: The order of a system; the number of stages in the interconnect.

k: The base of a system; the fan-out of each switchnode.

N: The total number of processing nodes in a given system. N = kn.
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v: The vector length of a psim run.

G: The size of each cache group.

L: The total number of cache lines in the cache.

A: The associativity level of the cache. An A of 1 implies a direct-mapped cache.

W: The number of data bytes per cache line. The total number of bytes per cache is 

L * A * W.

Len: Len (for cache line length) is the symbol for “some amount of time proportional to 

cache line size.” In our simulations, Len is 1 clock for every 8 bytes of cache line. In 

other words, 8 bytes can be buffered into the interconnect on every clock.




